105 research outputs found

    Towards fast metamodel evolution in LiquidML

    Get PDF
    The software industry is applying Model-driven development approaches due to a core set of benefits, such as raising the level of abstraction and reducing coding errors. However, their underlying modeling languages tend to be quite static, making their evolution hard, specifically when the corresponding metamodel does not support primitives and/or functionalities required in specific business domains. This paper presents an extension to the LiquidML language to support fast metamodel evolution by allowing experts to abstract new language concepts from primitives while supporting automatic tool evolution and zero application downtime. To probe our claims, we evaluate the evolutionary capabilities of existing modeling languages and LiquidML in a real world language extension.Ministerio de EconomĂ­a y Competitividad TIN2016-76956-C3-2-R (POLOLAS)Ministerio de EconomĂ­a y Competitividad TIN2015-71938-RED

    A Systemic Approach to Evaluating the Organizational Agility in Large-Scale Companies

    Get PDF
    This paper presents action research to analyze an approach for assessment of the alleged agile transformation. This approach was implemented at AK Bars Digital Technologies, an IT spin-off of one of the largest banks in Russia using the Scaled Agile Framework. The approach is based on the Goal-Question-Metric approach, non-invasive measurement collection, and systemic analysis. It uses data from several different sources, including interviews, code repositories, user ratings in the play stores, and templates for agile assessment. The effectiveness of the approach is subjectively validated by the adoption of the proposed recommendations by the banks’ senior management. Details are provided on the approach, the required effort from the side of both those assessing and of the people being assessed and the results. The final part of the paper is devoted to the discussion of its generalizability and the plan for future experimentation and refinement

    Adaptation-Aware Architecture Modeling and Analysis of Energy Efficiency for Software Systems

    Get PDF
    This thesis presents an approach for the design time analysis of energy efficiency for static and self-adaptive software systems. The quality characteristics of a software system, such as performance and operating costs, strongly depend upon its architecture. Software architecture is a high-level view on software artifacts that reflects essential quality characteristics of a system under design. Design decisions made on an architectural level have a decisive impact on the quality of a system. Revising architectural design decisions late into development requires significant effort. Architectural analyses allow software architects to reason about the impact of design decisions on quality, based on an architectural description of the system. An essential quality goal is the reduction of cost while maintaining other quality goals. Power consumption accounts for a significant part of the Total Cost of Ownership (TCO) of data centers. In 2010, data centers contributed 1.3% of the world-wide power consumption. However, reasoning on the energy efficiency of software systems is excluded from the systematic analysis of software architectures at design time. Energy efficiency can only be evaluated once the system is deployed and operational. One approach to reduce power consumption or cost is the introduction of self-adaptivity to a software system. Self-adaptive software systems execute adaptations to provision costly resources dependent on user load. The execution of reconfigurations can increase energy efficiency and reduce cost. If performed improperly, however, the additional resources required to execute a reconfiguration may exceed their positive effect. Existing architecture-level energy analysis approaches offer limited accuracy or only consider a limited set of system features, e.g., the used communication style. Predictive approaches from the embedded systems and Cloud Computing domain operate on an abstraction that is not suited for architectural analysis. The execution of adaptations can consume additional resources. The additional consumption can reduce performance and energy efficiency. Design time quality analyses for self-adaptive software systems ignore this transient effect of adaptations. This thesis makes the following contributions to enable the systematic consideration of energy efficiency in the architectural design of self-adaptive software systems: First, it presents a modeling language that captures power consumption characteristics on an architectural abstraction level. Second, it introduces an energy efficiency analysis approach that uses instances of our power consumption modeling language in combination with existing performance analyses for architecture models. The developed analysis supports reasoning on energy efficiency for static and self-adaptive software systems. Third, to ease the specification of power consumption characteristics, we provide a method for extracting power models for server environments. The method encompasses an automated profiling of servers based on a set of restrictions defined by the user. A model training framework extracts a set of power models specified in our modeling language from the resulting profile. The method ranks the trained power models based on their predicted accuracy. Lastly, this thesis introduces a systematic modeling and analysis approach for considering transient effects in design time quality analyses. The approach explicitly models inter-dependencies between reconfigurations, performance and power consumption. We provide a formalization of the execution semantics of the model. Additionally, we discuss how our approach can be integrated with existing quality analyses of self-adaptive software systems. We validated the accuracy, applicability, and appropriateness of our approach in a variety of case studies. The first two case studies investigated the accuracy and appropriateness of our modeling and analysis approach. The first study evaluated the impact of design decisions on the energy efficiency of a media hosting application. The energy consumption predictions achieved an absolute error lower than 5.5% across different user loads. Our approach predicted the relative impact of the design decision on energy efficiency with an error of less than 18.94%. The second case study used two variants of the Spring-based community case study system PetClinic. The case study complements the accuracy and appropriateness evaluation of our modeling and analysis approach. We were able to predict the energy consumption of both variants with an absolute error of no more than 2.38%. In contrast to the first case study, we derived all models automatically, using our power model extraction framework, as well as an extraction framework for performance models. The third case study applied our model-based prediction to evaluate the effect of different self-adaptation algorithms on energy efficiency. It involved scientific workloads executed in a virtualized environment. Our approach predicted the energy consumption with an error below 7.1%, even though we used coarse grained measurement data of low accuracy to train the input models. The fourth case study evaluated the appropriateness and accuracy of the automated model extraction method using a set of Big Data and enterprise workloads. Our method produced power models with prediction errors below 5.9%. A secondary study evaluated the accuracy of extracted power models for different Virtual Machine (VM) migration scenarios. The results of the fifth case study showed that our approach for modeling transient effects improved the prediction accuracy for a horizontally scaling application. Leveraging the improved accuracy, we were able to identify design deficiencies of the application that otherwise would have remained unnoticed

    A model-driven approach to broaden the detection of software performance antipatterns at runtime

    Full text link
    Performance antipatterns document bad design patterns that have negative influence on system performance. In our previous work we formalized such antipatterns as logical predicates that predicate on four views: (i) the static view that captures the software elements (e.g. classes, components) and the static relationships among them; (ii) the dynamic view that represents the interaction (e.g. messages) that occurs between the software entities elements to provide the system functionalities; (iii) the deployment view that describes the hardware elements (e.g. processing nodes) and the mapping of the software entities onto the hardware platform; (iv) the performance view that collects specific performance indices. In this paper we present a lightweight infrastructure that is able to detect performance antipatterns at runtime through monitoring. The proposed approach precalculates such predicates and identifies antipatterns whose static, dynamic and deployment sub-predicates are validated by the current system configuration and brings at runtime the verification of performance sub-predicates. The proposed infrastructure leverages model-driven techniques to generate probes for monitoring the performance sub-predicates and detecting antipatterns at runtime.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Evaluating Architectural Safeguards for Uncertain AI Black-Box Components

    Get PDF
    Although tremendous progress has been made in Artificial Intelligence (AI), it entails new challenges. The growing complexity of learning tasks requires more complex AI components, which increasingly exhibit unreliable behaviour. In this book, we present a model-driven approach to model architectural safeguards for AI components and analyse their effect on the overall system reliability

    Quality of process modeling using BPMN: a model-driven approach

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia InformáticaContext: The BPMN 2.0 specification contains the rules regarding the correct usage of the language’s constructs. Practitioners have also proposed best-practices for producing better BPMN models. However, those rules are expressed in natural language, yielding sometimes ambiguous interpretation, and therefore, flaws in produced BPMN models. Objective: Ensuring the correctness of BPMN models is critical for the automation of processes. Hence, errors in the BPMN models specification should be detected and corrected at design time, since faults detected at latter stages of processes’ development can be more costly and hard to correct. So, we need to assess the quality of BPMN models in a rigorous and systematic way. Method: We follow a model-driven approach for formalization and empirical validation of BPMN well-formedness rules and BPMN measures for enhancing the quality of BPMN models. Results: The rule mining of BPMN specification, as well as recently published BPMN works, allowed the gathering of more than a hundred of BPMN well-formedness and best-practices rules. Furthermore, we derived a set of BPMN measures aiming to provide information to process modelers regarding the correctness of BPMN models. Both BPMN rules, as well as BPMN measures were empirically validated through samples of BPMN models. Limitations: This work does not cover control-flow formal properties in BPMN models, since they were extensively discussed in other process modeling research works. Conclusion: We intend to contribute for improving BPMN modeling tools, through the formalization of well-formedness rules and BPMN measures to be incorporated in those tools, in order to enhance the quality of process modeling outcomes

    Evaluating Architectural Safeguards for Uncertain AI Black-Box Components

    Get PDF
    Künstliche Intelligenz (KI) hat in den vergangenen Jahren große Erfolge erzielt und ist immer stärker in den Fokus geraten. Insbesondere Methoden des Deep Learning (ein Teilgebiet der KI), in dem Tiefe Neuronale Netze (TNN) zum Einsatz kommen, haben beeindruckende Ergebnisse erzielt, z.B. im autonomen Fahren oder der Mensch-Roboter-Interaktion. Die immense Datenabhängigkeit und Komplexität von TNN haben jedoch gravierende Schwachstellen offenbart. So reagieren TNN sensitiv auf bestimmte Einflussfaktoren der Umwelt (z.B. Helligkeits- oder Kontraständerungen in Bildern) und führen zu falschen Vorhersagen. Da KI (und insbesondere TNN) in sicherheitskritischen Systemen eingesetzt werden, kann solch ein Verhalten zu lebensbedrohlichen Situationen führen. Folglich haben sich neue Forschungspotenziale entwickelt, die sich explizit der Absicherung von KI-Verfahren widmen. Ein wesentliches Problem bei vielen KI-Verfahren besteht darin, dass ihr Verhalten oder Vorhersagen auf Grund ihrer hohen Komplexität nicht erklärt bzw. nachvollzogen werden können. Solche KI-Modelle werden auch als Black-Box bezeichnet. Bestehende Arbeiten adressieren dieses Problem, in dem zur Laufzeit “bösartige” Eingabedaten identifiziert oder auf Basis von Ein- und Ausgaben potenziell falsche Vorhersagen erkannt werden. Arbeiten in diesem Bereich erlauben es zwar potenziell unsichere Zustände zu erkennen, machen allerdings keine Aussagen, inwiefern mit solchen Situationen umzugehen ist. Somit haben sich eine Reihe von Ansätzen auf Architektur- bzw. Systemebene etabliert, um mit KI-induzierten Unsicherheiten umzugehen (z.B. N-Version-Programming-Muster oder Simplex Architekturen). Darüber hinaus wächst die Anforderung an KI-basierte Systeme sich zur Laufzeit anzupassen, um mit sich verändernden Bedingungen der Umwelt umgehen zu können. Systeme mit solchen Fähigkeiten sind bekannt als Selbst-Adaptive Systeme. Software-Ingenieure stehen nun vor der Herausforderung, aus einer Menge von Architekturellen Sicherheitsmechanismen, den Ansatz zu identifizieren, der die nicht-funktionalen Anforderungen bestmöglich erfüllt. Jeder Ansatz hat jedoch unterschiedliche Auswirkungen auf die Qualitätsattribute des Systems. Architekturelle Entwurfsentscheidungen gilt es so früh wie möglich (d.h. zur Entwurfszeit) aufzulösen, um nach der Implementierung des Systems Änderungen zu vermeiden, die mit hohen Kosten verbunden sind. Darüber hinaus müssen insbesondere sicherheitskritische Systeme den strengen (Qualitäts-) Anforderungen gerecht werden, die bereits auf Architektur-Ebene des Software-Systems adressiert werden müssen. Diese Arbeit befasst sich mit einem modellbasierten Ansatz, der Software-Ingenieure bei der Entwicklung von KI-basierten System unterstützt, um architekturelle Entwurfsentscheidungen (bzw. architekturellen Sicherheitsmechanismen) zum Umgang mit KI-induzierten Unsicherheiten zu bewerten. Insbesondere wird eine Methode zur Zuverlässigkeitsvorhersage von KI-basierten Systemen auf Basis von etablierten modellbasierten Techniken erforscht. In einem weiteren Schritt wird die Erweiterbarkeit/Verallgemeinerbarkeit der Zuverlässigkeitsvorhersage für Selbst-Adaptive Systeme betrachtet. Der Kern beider Ansätze ist ein Umweltmodell zur Modellierung () von KI-spezifischen Unsicherheiten und () der operativen Umwelt des Selbst-Adaptiven Systems. Zuletzt wird eine Klassifikationsstruktur bzw. Taxonomie vorgestellt, welche, auf Basis von verschiedenen Dimensionen, KI-basierte Systeme in unterschiedliche Klassen einteilt. Jede Klasse ist mit einem bestimmten Grad an Verlässlichkeitszusicherungen assoziiert, die für das gegebene System gemacht werden können. Die Dissertation umfasst vier zentrale Beiträge. 1. Domänenunabhängige Modellierung von KI-spezifischen Umwelten: In diesem Beitrag wurde ein Metamodell zur Modellierung von KI-spezifischen Unsicherheiten und ihrer zeitlichen Ausdehnung entwickelt, welche die operative Umgebung eines selbstadaptiven Systems bilden. 2. Zuverlässigkeitsvorhersage von KI-basierten Systemen: Der vorgestellte Ansatz erweitert eine existierende Architekturbeschreibungssprache (genauer: Palladio Component Model) zur Modellierung von Komponenten-basierten Software-Architekturen sowie einem dazugehörigenWerkzeug zur Zuverlässigkeitsvorhersage (für klassische Software-Systeme). Das Problem der Black-Box-Eigenschaft einer KI-Komponente wird durch ein Sensitivitätsmodell adressiert, das, in Abhängigkeit zu verschiedenen Unsicherheitsfaktoren, die Prädektive Unsicherheit einer KI-Komponente modelliert. 3. Evaluation von Selbst-Adaptiven Systemen: Dieser Beitrag befasst sich mit einem Rahmenwerk für die Evaluation von Selbst-Adaptiven Systemen, welche für die Absicherung von KI-Komponenten vorgesehen sind. Die Arbeiten zu diesem Beitrag verallgemeinern/erweitern die Konzepte von Beitrag 2 für Selbst-Adaptive Systeme. 4. Klassen der Verlässlichkeitszusicherungen: Der Beitrag beschreibt eine Klassifikationsstruktur, die den Grad der Zusicherung (in Bezug auf bestimmte Systemeigenschaften) eines KI-basierten Systems bewertet. Der zweite Beitrag wurde im Rahmen einer Fallstudie aus dem Bereich des Autonomen Fahrens validiert. Es wurde geprüft, ob Plausibilitätseigenschaften bei der Zuverlässigkeitsvorhersage erhalten bleiben. Hierbei konnte nicht nur die Plausibilität des Ansatzes nachgewiesen werden, sondern auch die generelle Möglichkeit Entwurfsentscheidungen zur Entwurfszeit zu bewerten. Für die Validierung des dritten Beitrags wurden ebenfalls Plausibilitätseigenschaften geprüft (im Rahmen der eben genannten Fallstudie und einer Fallstudie aus dem Bereich der Mensch-Roboter-Interaktion). Darüber hinaus wurden zwei weitere Community-Fallstudien betrachtet, bei denen (auf Basis von Simulatoren) Selbst-Adaptive Systeme bewertet und mit den Ergebnissen unseres Ansatzes verglichen wurden. In beiden Fällen konnte gezeigt werden, dass zum einen alle Plausibilitätseigenschaft erhalten werden und zum anderen, der Ansatz dieselben Ergebnisse erzeugt, wie die Domänen-spezifischen Simulatoren. Darüber hinaus konnten wir zeigen, dass unser Ansatz Software-Ingenieure bzgl. der Bewertung von Entwurfsentscheidungen, die für die Entwicklung von Selbst-Adaptiven Systemen relevant sind, unterstützt. Der erste Beitrag wurde implizit mit Beitrag 2 und mit 3 validiert. Für den vierten Beitrag wurde die Klassifikationsstruktur auf bekannte und repräsentative KI-Systeme angewandt und diskutiert. Es konnte jedes KI-System in eine der Klassen eingeordnet werden, so dass die generelle Anwendbarkeit der Klassifikationsstruktur gezeigt wurde

    Strategies for the intelligent selection of components

    Get PDF
    It is becoming common to build applications as component-intensive systems - a mixture of fresh code and existing components. For application developers the selection of components to incorporate is key to overall system quality - so they want the `best\u27. For each selection task, the application developer will de ne requirements for the ideal component and use them to select the most suitable one. While many software selection processes exist there is a lack of repeatable, usable, exible, automated processes with tool support. This investigation has focussed on nding and implementing strategies to enhance the selection of software components. The study was built around four research elements, targeting characterisation, process, strategies and evaluation. A Post-positivist methodology was used with the Spiral Development Model structuring the investigation. Data for the study is generated using a range of qualitative and quantitative methods including a survey approach, a range of case studies and quasiexperiments to focus on the speci c tuning of tools and techniques. Evaluation and review are integral to the SDM: a Goal-Question-Metric (GQM)-based approach was applied to every Spiral
    • …
    corecore