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Abstract

This thesis presents an approach for the design time analysis of energy efficiency for static
and self-adaptive software systems.
The quality characteristics of a software system, such as performance and operating

costs, strongly depend upon its architecture. Software architecture is a high-level view on
software artifacts that reflects essential quality characteristics of a system under design.
Design decisions made on an architectural level have a decisive impact on the quality of a
system. Revising architectural design decisions late into development requires significant
effort. Architectural analyses allow software architects to reason about the impact of
design decisions on quality, based on an architectural description of the system. An
essential quality goal is the reduction of cost while maintaining other quality goals. Power
consumption accounts for a significant part of the Total Cost of Ownership (TCO) of data
centers. In 2010, data centers contributed 1.3% of the world-wide power consumption.
However, reasoning on the energy efficiency of software systems is excluded from the
systematic analysis of software architectures at design time. Energy efficiency can only be
evaluated once the system is deployed and operational. One approach to reduce power
consumption or cost is the introduction of self-adaptivity to a software system. Self-
adaptive software systems execute adaptations to provision costly resources dependent on
user load. The execution of reconfigurations can increase energy efficiency and reduce
cost. If performed improperly, however, the additional resources required to execute a
reconfiguration may exceed their positive effect.
Existing architecture-level energy analysis approaches offer limited accuracy or only

consider a limited set of system features, e.g., the used communication style. Predictive
approaches from the embedded systems and Cloud Computing domain operate on an
abstraction that is not suited for architectural analysis. The execution of adaptations can
consume additional resources. The additional consumption can reduce performance and
energy efficiency. Design time quality analyses for self-adaptive software systems ignore
this transient effect of adaptations.
This thesis makes the following contributions to enable the systematic consideration

of energy efficiency in the architectural design of self-adaptive software systems: First,
it presents a modeling language that captures power consumption characteristics on an
architectural abstraction level. Second, it introduces an energy efficiency analysis approach
that uses instances of our power consumption modeling language in combination with
existing performance analyses for architecture models. The developed analysis supports
reasoning on energy efficiency for static and self-adaptive software systems. Third, to ease
the specification of power consumption characteristics, we provide a method for extracting
power models for server environments. The method encompasses an automated profiling
of servers based on a set of restrictions defined by the user. A model training framework
extracts a set of power models specified in our modeling language from the resulting
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Abstract

profile. The method ranks the trained power models based on their predicted accuracy.
Lastly, this thesis introduces a systematic modeling and analysis approach for considering
transient effects in design time quality analyses. The approach explicitly models inter-
dependencies between reconfigurations, performance and power consumption. We provide
a formalization of the execution semantics of the model. Additionally, we discuss how
our approach can be integrated with existing quality analyses of self-adaptive software
systems.

We validated the accuracy, applicability, and appropriateness of our approach in a variety
of case studies. The first two case studies investigated the accuracy and appropriateness
of our modeling and analysis approach. The first study evaluated the impact of design
decisions on the energy efficiency of a media hosting application. The energy consumption
predictions achieved an absolute error lower than 5.5% across different user loads. Our
approach predicted the relative impact of the design decision on energy efficiency with an
error of less than 18.94%. The second case study used two variants of the Spring-based
community case study system PetClinic. The case study complements the accuracy and
appropriateness evaluation of our modeling and analysis approach. We were able to predict
the energy consumption of both variants with an absolute error of no more than 2.38%. In
contrast to the first case study, we derived all models automatically, using our power model
extraction framework, as well as an extraction framework for performance models. The
third case study applied our model-based prediction to evaluate the effect of different self-
adaptation algorithms on energy efficiency. It involved scientific workloads executed in a
virtualized environment. Our approach predicted the energy consumption with an error
below 7.1%, even though we used coarse grained measurement data of low accuracy to
train the input models. The fourth case study evaluated the appropriateness and accuracy
of the automated model extraction method using a set of Big Data and enterprise workloads.
Our method produced power models with prediction errors below 5.9%. A secondary
study evaluated the accuracy of extracted power models for different Virtual Machine
(VM) migration scenarios. The results of the fifth case study showed that our approach
for modeling transient effects improved the prediction accuracy for a horizontally scaling
application. Leveraging the improved accuracy, we were able to identify design deficiencies
of the application that otherwise would have remained unnoticed.
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Zusammenfassung

Diese Arbeit präsentiert einen Ansatz zur Entwurfszeit-Bewertung der Energieeffizienz
von statischen und selbst-adaptiven Software-Systemen.

Software-Architektur hat einen wesentlichen Einfluss auf nichtfunktionale Qualitäts-
eigenschaften von Software-Systemen wie Performanz und Betriebskosten. Architektur-
modelle bilden die für architekturelle Entscheidungen relevanten Qualitätseigenschaften
mit angemessener Abstraktion ab. Mithilfe von analytischen Modellen können auf Basis
dieser Modelle Architekturentscheidungen bezüglich ihrer Auswirkungen auf Qualität
bewertet werden. Durch eine frühzeitige Bewertung können Architekturentscheidungen
zielorientiert getroffen werden. Energieeffizienz ist ein wichtiges Qualitätsziel für Software-
Systeme, da sich die Effizienz maßgeblich auf die Betriebskosten von Software-Systemen
auswirkt. 2010 betrug der Anteil von Rechenzentren amweltweiten Energieverbrauch 1.3%.
Ein möglicher Ansatz zur Erhöhung der Energieeffizienz von Systemen ist die Einführung
von Selbst-Adaptivität. Selbst-adaptive Systeme können Rekonfigurationen ausführen, um
die verwendeten Ressourcen an schwankende Nutzerlast anzupassen. Allerdings können
Rekonfigurationen auch die Energieeffizienz verschlechtern. Dies ist insbesondere dann
der Fall, wenn der Mehraufwand durch das Ausführen einer Rekonfiguration mögliche
Verbesserungen überwiegt.

Bereits vor der Implementierung hat der Architekturentwurf wesentlichen Einfluss auf
die Energieeffizienz von Software-Systemen. Architekturentscheidungen sollten deshalb
schon frühzeitig bezüglich ihrer Auswirkungen auf Energieeffizienz bewertet werden. Für
Performanz und Zuverlässigkeit gibt es etablierte Analysemodelle, die zur Entwurfszeit
eingesetzt werden können. Bestehende Techniken zur Bewertung der Energieeffizienz auf
Architekturebene konzentrieren sich auf den Vergleich von spezifischen Entwurfsmustern,
oder bestimmen die Effizienz anhand von Messungen erst nach Inbetriebnahme. Analy-
semodelle für die Qualitätsbewertung selbst-adaptiver Systeme aus bisherigen Arbeiten
berücksichtigen die Mehraufwände durch Rekonfigurationen nicht.

Ziel meiner Arbeit ist es, den systematischen Entwurf von energieeffizienten Software-
Systemen zu ermöglichen. Dazu entwickle ich einen Ansatz zur Modellierung und Analyse
der Energieeffizienz von Software-Architekturen. Der Ansatz ist neben klassischen stati-
schen auch für selbst-adaptive Software-Systeme anwendbar. Neben der Beurteilung der
Energieeffizienz von Gesamtsystemen kann er zur Beurteilung der Auswirkung einzelner
Entwurfsentscheidungen genutzt werden. Um die systematische Berücksichtigung von
Energieeffizienz beim Architekturentwurf von Software-Systemen zu unterstützen, liefert
meine Dissertation die folgenden Beiträge:

1. Konzeption einer Modellierungssprache zur Beschreibung der Energiever-

brauchseigenschaften von Software-Systemen. Das entwickelte Metamodell
unterstützt die Modellierung der Verbrauchseigenschaften von Software-Systemen.
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Das Metamodell komplementiert etablierte Architekturmodellierungssprachen wie
das Palladio Component Model (PCM).

2. Entwicklung einer Energieeffizienz-Analyse zum Einsatz auf Architektur-

ebene. Die Analyse nutzt Instanzen des entwickelten Metamodells in Kombination
mit etablierten Methoden zur Performanzvorhersage, um den Energieverbrauch
eines Systems zu schätzen. Auf Grundlage der Verbrauchs- und Performanzvorher-
sagen kann dann die Auswirkung von Entwurfsentscheidungen auf die Energieeffi-
zienz bewertet werden. Der Ansatz unterstützt sowohl die Analyse von statischen
Software-Systemen als auch die Analyse selbst-adaptiver Systeme.

3. Methode zur Extraktion von Energieverbrauchsmodellen. Voraussetzung für
die Analyse der Verbrauchseigenschaften sind genaue Verbrauchsmodelle. Um diese
Modelle bestimmen zu können, werden aussagekräftige Messdaten von Servern
benötigt, die für den Betrieb des Systems in Frage kommen. Die entwickelte Methode
umfasst ein automatisiertes Verfahren zum Ausmessen des Verbrauchsprofils eines
Servers. Das Verfahren trainiert mit dem Profil eine Menge in Frage kommender
Verbrauchsmodell-Typen, und bewertet deren geschätzte Vorhersagegenauigkeit.

4. Entwicklung eines systematischenModellierungs- undAnalyseansatzes zur

Berücksichtigung des Mehraufwandes von Rekonfigurationen. Das Metamo-
dell dient der Beschreibung der Mehraufwände, die beim Ausführen von Rekon-
figurationen entstehen. Mit dem Metamodell können explizit Beziehungen zwi-
schen Rekonfigurationen, Performanz und Energieverbrauch beschrieben werden.
Die von mir entwickelte Analyse kann mit bestehenden simulativen Analysen für
selbst-adaptive Systeme gekoppelt werden. Dadurch kann die Genauigkeit dieser
Analyseverfahren gesteigert werden.

Die Beiträge wurden in mehreren Fallstudien validiert. Genauigkeit und Anwendbarkeit
der Modellierungssprache und Energieeffizienz-Analyse sind Gegenstand der ersten zwei
Fallstudien. Die erste Fallstudie untersuchte die Auswirkung einer Entwurfsentscheidung
für eine Medienvertriebs-Anwendung. Dabei konnte die relative Auswirkung der Entschei-
dung auf die Energieeffizienz mit einem Fehler niedriger als 18.94% vorhergesagt werden.
Für absolute Verbrauchsvorhersagen lag der Fehler unter 5.5%. In der zweiten Fallstudie
habe ich den Analyseansatz auf zwei Varianten des Spring Fallstudiensystems PetClinic
angewendet. Im Gegensatz zur ersten Fallstudie wurden die verwendeten Modelle mit mei-
nem Ansatz zur Modellextraktion in Kombination mit einem Werkzeug zur automatischen
Architekturmodellextraktion erstellt. Dabei konnte ein absoluter Vorhersagefehler von
weniger als 2.38% erreicht werden. Die dritte Fallstudie hat meinen Vorhersageansatz auf
die Bewertung unterschiedlicher Ressourcenverwaltungs-Algorithmen für Rechenzentren
angewendet. Obwohl als Eingabedaten nur grob aufgelöste Daten mit großer Messunge-
nauigkeit verfügbar waren, erzielte mein Ansatz absolute Vorhersagefehler von höchstens
7.08%. In der vierten Fallstudie habe ich untersucht, ob die Methode zur Extraktion von
Energieverbrauchsmodellen zu genauen Modellen führt. Dazu habe ich die Genauigkeit der
resultierendenModelle für unterschiedliche Big Data-Anwendungen und das SPECjbb2015-
Fallstudiensystem ausgewertet. Die mittels der Methode ausgewählten und trainierten
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Modelle erreichten für die betrachteten Systeme einen Fehler von unter 5.9%. In einer
weiterführenden Fallstudie habe ich den Vorhersagefehler der Modelle für unterschied-
liche Migrationsszenarien von Virtuellen Maschinen (VMs) untersucht. Die Ergebnisse
der fünften Fallstudie zeigen, dass mein Ansatz zur Modellierung von Rekonfigurations-
Mehraufwänden die Vorhersagegenauigkeit bei der Bewertung selbst-adaptiver Systeme
erhöht. Für das untersuchte horizontal skalierende System konnte aufgrund der erhöhten
Genauigkeit ein Mangel im Entwurf identifiziert und gelöst werden.
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1. Introduction

The present thesis introduces an approach for the systematic consideration of energy
efficiency in the architecture level design of software systems. The approach enables
software architects to evaluate the power consumption of static and self-adaptive software
systems from a software architecture description. This chapter illustrates why energy
efficiency is an important software quality concern that should be considered from early
design stages. We identify a gap in state of the art that concerns the design time support
of energy efficiency. From this gap analysis, we derive a set of challenges and research
questions. We further give an overview of our contributions, use cases and design decisions
supported by our approach. The final section concludes with an outline of the thesis.

1.1. Motivation

Energy consumption is a major cost factor in the operation of enterprise software systems.
While the interfaces of user-facing services have largely moved to mobile devices, back-end
services still run in traditional data center server environments. Koomey [110] estimated
the share of data center power consumption from the total consumption at 1.3% worldwide,
and 2% in the US. More recent study results estimate US data center energy consumption in
2014 at 73 TWh [190]. This accounts for 1.8% of the total US energy consumption. Shehabi
et al. [190] predicted an 8.2% increase of total US data center energy consumption from
2010 to 2020. For data centers based on commodity hardware, energy costs can account
for up to 26% of the Total Cost of Ownership (TCO) depending on their load [13]. The
industry adoption of the Cloud Computing paradigm has increased the importance of data
center energy consumption: Cloud-enabled enterprise applications almost exclusively run
in data centers.

The energy consumption of a software system depends on four factors:

· The energy consumption characteristics of its execution environment, e.g., server
hardware [14],

· the types and intensity of user interactions with the systems [10, 173, 194]

· the architectural design [101] and implementation [87] of the software, and

· the use of power management mechanisms [14].

In order tomeet its purpose, a software system has to fulfill functional and non-functional
requirements. The promotion of energy-awareness can entice users and developers to
choose functional alternatives which result in a lower energy consumption. However, it
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1. Introduction

does not fundamentally change the energy consumption characteristics of the hard- and
software.

The increase of energy efficiency is an alternative strategy that can help reduce energy
consumption of software systems, while ensuring efficient operation of the system. Energy
efficiency of software systems quantifies howmuch energy is required to offer their services.
Energy efficiency is commonly defined as a ratio of the amount of useful work done, and
the energy consumption required to complete the work [210]. If one system manages to
process the same workload with a smaller energy consumption than an alternative system,
it is more efficient. By definition, energy efficiency thus encompasses both performance
and energy consumption.
The use of more efficient server hardware is a straightforward measure for increasing

energy efficiency of a software system. Another approach is to increase the efficiency of
the software design, and its implementation. Example improvements can be, e.g., the use
of more efficient algorithms, or the reduction of avoidable computations.

Whether a software system meets its Quality of Service (QoS) requirements “is largely
determined by the time the architecture is chosenž [54]. Software architecture can be
defined as a set of design decisions [102], or the result of these decisions [170]. Aside
from the composition of components, software architecture also includes the mapping of
components to their execution environment [170].

Each architectural design decision affects development and operational cost, in addition
to its impact on multiple QoS dimensions. Architectural design decisions decisively
influence energy efficiency, as is illustrated in [101, 200]. Alternative decisions may
require different amounts of development resources. At runtime, design decisions affect
performance and energy consumption. Software architects have to make trade off decisions
to meet contradictory QoS goals. This also applies to energy efficiency. A deployment of
software components on slow but energy efficient servers might improve energy efficiency.
However, the resulting performance degradation might lead to unacceptable response
times.

In order to make informed trade off decisions, the software architect needs to be aware
of the effect of design decisions on energy efficiency and other QoS dimensions. Systematic
architecture design and analysis methods enable the evaluation of software systems in early
design stages. Established methods support the analysis of performance [22], reliability
[33], and further QoS characteristics [176]. Existing methods for the analysis of energy
efficiency at design time make simplifying assumptions regarding the power consumption
characteristics of software systems. These assumptions affect the accuracy [35] and
applicability [182, 184] of the approaches. This makes it difficult for software architects to
reason on the effect of design decisions on energy efficiency.

Ideally, servers would have constant energy efficiency at all load levels. This is, however,
not the case. When modern servers are idle, they consume just below 30% of their power
consumption under full load [155].

Traditional software architecture design produces a one-size-fits-all architecture, which
remains static over time. In order to meet performance goals under peak user load, the
software architect has to overprovision software components on a large number of servers.
This leaves the servers underutilized under average load. Since servers typically offer
higher energy efficiency at higher load levels, static software systems showcase poor

2



1.2. Problem Statement

energy efficiency at low to average load. This can be addressed by collocating workloads
with heterogeneous characteristics on the same server [61]. In cases where multiple
collocated workloads concurrently encounter a burst in user demand, their performance
can deteriorate. Performance measures are commonly part of Service Level Agreements
(SLAs) between system operators and service customers. A performance deterioration
thus can lead to SLA violations.

In recent years, the concept of self-adaptivity has gained traction. Self-adaptive software
systems can adapt their structure and deployment, as well as functionality to changing
environmental conditions. A frequent use case of self-adaptivity is the autonomic provi-
sioning of resources for the application depending on its current and expected workload
[84].

Self-adaptivity can also be used to increase the energy efficiency of software systems. A
notable example of an energy-conscious adaptation tactic is the consolidation of software
components on fewer servers. This frees up hosts, which in turn may be turned off to save
energy. A realization of this tactic is VM consolidation [165]. Hereby, a self-adaptation
mechanism consolidates a set of VMs on a smaller number of servers. The emptied servers
then may be shut down to save energy. VM consolidation uses VM migration, which
moves a VM from a source to a target server. The execution of adaptations, such as VM
consolidation, does not necessarily increase energy efficiency. If the number of servers on
which components are consolidated is too small, the servers may become overloaded. This
in turn worsens performance. If the performance degradation is too large, performance-
related SLAs might be violated. In order to reason on energy efficiency, the interplay
between performance and energy consumption needs to be considered in the design of
energy-conscious self-adaptive software systems.

The goal of this thesis is to enable the energy efficiency evaluation of software systems
in early design phases. The presented approach enables a systematic analysis of energy
efficiency for traditional static software architectures as well as self-adaptive system
architectures.

1.2. Problem Statement

We identified the following problem areas which are addressed as part of this thesis. The
areas concern the needed level of abstraction, applicability, and accuracy of an adaptation-
aware architecture modeling and analysis approach of energy efficiency.

RepresentationofPowerConsumptionCharacteristics. Existing powermodeling approach-
es [28, 58] for system or server level power modeling offer a level of detail which is not
suited as input for quantitative design time power consumption predictions. Runtime
power modeling and prediction approaches often rely on low-level system metrics and
hardware performance counters. It is not feasible to obtain predictions of these low-level
metrics at design time. Design time approaches [35, 184] model power consumption
characteristics with a low level of detail. This restricts the accuracy of derived predictions.
Reasoning on power consumption characteristics of large software systems requires

a model that captures the power distribution infrastructure. The infrastructure in data
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centers follows a hierarchical power distribution topology [69]. The only existing archi-
tectural abstraction [35] fails to represent this information. Data center level modeling
and simulation approaches represent the hierarchical power distribution infrastructure.
They use a simple additive model [45], or a fixed factor abstraction [166] to evaluate power
consumption on different levels. The existing approaches, however, fail to provide means
to define power models of distribution infrastructure and individual servers in a flexible
manner. A modeling language for specifying power consumption characteristics for design
time analysis needs be expressive enough to describe heterogeneous server and data center
environments.

Power Consumption Prediction Accuracy. The frequency and type of user requests impact
both performance and power consumption of a software system. Existing approaches for
evaluating power consumption at design time [35, 182, 184] assume an additive effect of
requests on power consumption, i.e., each additional request increases power consumption
by the same amount. The effect of an additional user request is not additive. This means
that its effect can not be approximated accurately as a fixed factor. An architectural analysis
needs to accurately predict the effect of design decisions on energy efficiency in order to
support informed trade-off decisions with other QoS dimensions.

Effort for Power Model Extraction. The manual construction of accurate power models
requires significant effort. It is possible to use a large set of system metrics at runtime to
predict the power consumption of a software system. Existing power model extraction
approaches [58, 65] focus on the construction of power models for runtime power con-
sumption estimation. The approaches assume that their user is able to measure low-level
system metrics and performance counters. The design time prediction of low-level metrics
and performance counters requires significant effort, or is impossible. Even if it is possible
to predict a low-level metric, it can make sense to exclude it from the metrics considered
by the power model extraction. This is the case if the modeling effort required to predict
the additional metric at design time outweighs a potential increase in power consumption
prediction accuracy. A power model extraction approach that aims to construct models as
input to design time analyses needs to consider the tradeoff between modeling effort and
accuracy.

Consideration of QoS Effects of Adaptations. An accurate evaluation of self-adaptive soft-
ware systems requires the consideration of transient effects. Transient effects refer to the
immediate effect of an adaptation on QoS. This includes, e.g., the performance overhead
incurred by the adaptation execution. The execution of adaptations should not further
deteriorate performance by using already congested resources. Another example is server
power management. A server already consumes power while it boots. It may, however,
only be used to host services once it has fully booted. A central goal in the design of
adaptation mechanisms is that they effectively and efficiently improve QoS under changing
environmental conditions. Existing design time analyses of self-adaptive software systems
do not consider transient effects incurred by adaptations [20, 133], or require an explicit
modeling of the full adaptation space [77]. Due to the complexity of distributed, service-
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based applications it is not realistic to model all user interactions and system configurations
in advance [208]. The use of resource provisioning mechanisms such as horizontal scaling
of VMs compounds this problem. Transient effects need to be considered in design time
QoS analyses of self-adaptive systems so that the efficiency and effectiveness of adaptation
mechanisms can be evaluated.

1.3. State of the Art

Green Software Engineering and the architectural design of energy efficient software
systems has recently become an area of interest to many researchers [88]. In this field,
research has emerged that targets the evaluation and improvement of energy consumption
or energy efficiency of software systems. This section discusses central work in this
field. Chapter 8 discusses the approaches in greater detail and compares them to our
approach.
Procaccianti et al. [164, 165] have identified architectural best practices which can

increase energy efficiency. The collection of these best practices provides a software
architect with a starting point for architectural improvements. However, it remains
unclear how their application quantitatively affects energy efficiency.
Schulze [182] presents an approach for the estimation of ecological cost (eco-cost) in

early software design phases. In addition to the prediction of high level metrics like
greenhouse gas emissions, the approach can also be applied to predict energy consump-
tion. The prediction model of Schulze relies on energy consumption annotations to
Unified Modeling Language (UML) objects, their operations and attributes. An example
annotation is the energy consumption that results from storing a specific object in a
database. The author notes that it is difficult to obtain accurate annotations in early design
phases. Schulze [182] hence proposes the continuous refinement of eco-cost annotations
throughout software development.
Existing architectural modeling and analysis methods estimate energy efficiency of

specific architectural communication patterns [184], or compare the efficiency of different
software releases [101]. Palladio [22] is an established method that supports the analysis
of QoS properties, e.g., performance and reliability, in early design stages. It predicts
performance and reliability on the basis of composable specifications. Brunnert et al. [35]
sketch an approach for energy consumption evaluation based on aggregated Palladio
performance predictions. The authors rely on linear power models for all servers and their
resources. This makes their prediction inaccurate for most modern server environments.
Their approach only supports aggregate energy consumption predictions. It fails to offer
an analysis of power consumption over time.
System level power models [58, 65, 172] enable the estimation of server power con-

sumption based on measured system metrics. Several approaches support the automated
or semi-automated construction of power models from measurements [58, 172]. The
approaches focus on the extraction of models to estimate power consumption at runtime.
They aim at the prediction of power consumption for servers that lack permanent means
to measure power consumption, i.e., via an integrated power meter. Runtime power model
extraction approaches can leverage all system metrics as their measurement results with
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little to no overhead. Runtime approaches lack support for identifying central system
metrics that need to be considered to accurately predict power consumption. The identi-
fication or selection of central system metrics is needed when extracting power models
for use in design time analyses. The reason for this is that the accurate prediction of any
additional system metric at design time results in additional modeling effort. This effort
should be avoided if it fails to result in an increased prediction accuracy.
SimuLizar [17] extends Palladio to the domain of self-adaptive systems. It supports

software architects in designing scalable, and elastic software systems. SimuLizar focuses
on the analysis of performance. Software architects further can use SimuLizar to derive
scalability and elasticity metrics from the results of a performance analysis run. SimuLizar
lacked support for predicting the power consumption of self-adaptive systems prior to
this thesis. It further assumed that adaptations require a negligible amount of time
and resources to execute. This clashes with the observation that the execution of some
adaptations requires significant time, and causes computational overhead.

1.4. Challenges and Research Questions

A set of challenges have to be addressed to support the systematic analysis of energy
efficiency for static and self-adaptive software systems at design time. This section outlines
three central areas in which we identified challenges. For each challenge area we derive a
set of research questions.

1.4.1. Modeling and Analysis of Software System Power Consumption

Characteristics

The power consumption of a software system depends not only upon the hardware
components of its servers. The software stack executes hardware instructions on the
server it is deployed on. The power consumption of the server varies depending on these
instructions. The software stack induces the execution of hardware instructions dependent
on user requests. In order to assess the power consumption of a software system, the
design and usage of deployed software components hence need to be considered.

Designing a software system, decisions that impact the power consumption of a software
system are already made on the architecture level. Manotas et al. [130] conducted an
empirical study involving 464 practitioners from ABB, Google, IBM and Microsoft. The
study revealed that the study participants judged that “high-level designs are impacted by
energy usage concerns more frequently than low-level designsž. Examples of such high-
level decisions given by the authors are the selection of design patterns and components.
This suggests the need for an architecture-level consideration of power consumption and
energy efficiency.

Existing approaches for evaluating the power consumption of software require that the
software has already been fully implemented and can be deployed. While these approaches
enable reasoning on power consumption at implementation and deployment time, they can
not be used to evaluate the effect of architectural design decisions on power consumption.
Architectural quality analyses that consider power consumption focus on subsets of design
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decisions, or provide insufficient prediction accuracy. This thesis derives the following
Research Questions (RQs) from the need to make the effect of architectural design decisions
on energy consumption predictable:

Research Question 1. What is a good abstraction level for modeling power consumption

characteristics of software systems? We consider a model abstraction good if it

• produces accurate power consumption predictions,

• can be constructed from information available at design time,

• contains as little redundant information as possible with existing architectural modeling

languages and viewpoints.

Research Question 2. How can the power consumption of software systems be predicted

on an architectural level?

Research Question 3. How accurate are power consumption predictions performed on an

architectural level?

Research Question 4. How can we evaluate the effect of architectural design decisions on

energy efficiency?

1.4.2. Extraction of Power Models

Reasoning on the effect of design decisions on power consumption requires predictive
models that correlate software or system activity with power consumption. In the context
of this thesis, system metric-based power models are used to predict the consumption of
the software system. Since the power consumption of servers varies significantly depend-
ing on their hardware, it is not possible to derive power models that are agnostic of their
deployment environment. Extracting power models manually based on measurements is
cumbersome and requires significant effort for the construction and analysis of measure-
ment experiments. Existing approaches that automate the construction of power models
focus on runtime power estimation. These approaches leverage system knowledge that is
not yet available at design time. This thesis addresses the following questions towards the
extraction of power models for use in design time analyses.

Research Question 5. How can the effort in deriving power models for architecture-level

power consumption analyses be reduced?

Prior to this thesis, the construction of power models for use in design time analyses
was a manual process. It required the collection of measurement data from experiments.
Engineers had to rely on expert knowledge or trial and error to construct a power model
for use in design time predictions. Research Question 5 regards the reduction of this effort.

Research Question 6. What is the effect of considering different system level metrics as

input in power consumption analyses?
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Research Question 6 concerns the evaluation of different system metrics and their effect
on energy efficiency. System metrics should only be considered in architecture level
analyses if they improve the prediction accuracy.

Research Question 7. How can software architects and system deployers be supported in

the selection of input metrics for energy efficiency analyses?

Research Question 7 aims at the interactions of modeling effort and prediction accuracy.
The use of additional input metrics, e.g., storage throughput, may marginally increase the
prediction accuracy. A software architect or performance engineer will likely opt against
its inclusion if the prediction of the input metric

· relies on the sophisticated modeling of storage access patterns,

· fails to increase performance prediction accuracy significantly.

It hence makes little sense to consider a metric in a power model if it does not improve
performance or energy consumption prediction accuracy.

1.4.3. Transient Effects of Reconfigurations

Self-adaptive software systems adapt their configuration to maintain QoS goals under
changing user load. Design time analyses of self-adaptive software systems enable soft-
ware architects to perform QoS analyses before the system has been fully implemented.
These analyses enable software architects and operators to reason on the efficiency and
effectiveness with which a system adapts itself. If reconfiguration decisions are made too
late, additional resources might not become available in time. This then leads to resource
contention. If the system triggers a reconfiguration too early, resources are wasted. Should
the system reconfigure too frequently, the overhead incurred by the reconfigurations might
surpass their beneficial effect on QoS. Transient effects refer to the impact of reconfigura-
tions on QoS in transient phases. A transient phase is the interval between reconfiguration
start, and the maximum point in time at which the reconfiguration finishes or at which
the system recovers from the increase in load. Existing analyses neglect these transient
effects. Consequently, their predictions are not accurate for transient phases. This thesis
aims at enabling software architects to evaluate the energy efficiency not only of static
software systems, but also of self-adaptive software systems. Thus, this thesis investigates
the following research questions:

ResearchQuestion 8. How do reconfigurations affect power consumption and performance?

Research Question 9. What is an architecture-level description of reconfigurations that

describes the effect of reconfigurations on system metrics such as performance and power

consumption?

Research Question 10. How can we consider the effects of runtime reconfigurations in

software quality analyses at design time?

Research Question 11. Does the consideration of transient effects enable the (a) detection

and (b) solution of design problems in self-adaptive software systems?
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1.5. Contributions

The scientific contributions of this thesis are:

C1: Design of a modeling language for the description of power consumption

characteristics of software systems. Our metamodel enables the modeling of
server and power distribution infrastructure consumption characteristics. It employs
power models to describe the consumption characteristics of servers and their
resources, e.g., CPU or HDD.

C2: Development of an approach for energy efficiency analysis at design time.

The approach uses instances of the developed metamodel in combination with es-
tablished performance prediction approaches to predict the power consumption of a
software system. The predictions can be leveraged to evaluate the effect of design
decisions on energy efficiency. We designed the analysis to support evaluations of
static as well as self-adaptive software systems. We validate the analysis for two
enterprise software systems. Additionally, we apply it to predict power consump-
tion in a set of data center management scenarios. The validation shows that our
prediction approach has a high accuracy. The prediction accuracy outperforms the
only other existing architecture level prediction approach.

C3: A method for the extraction of power models for use in design time predic-

tions. Accurate power models are a prerequisite for the power consumption analysis.
To train the power models, representative power consumption and performance
measurements of the servers in the target deployment environment are needed. The
presented method encompasses the automated profiling of server power consump-
tion and utilization. We train a set of power models on the extracted server profile.
The model with highest predicted accuracy is selected from these candidate models.
The validation applies our method to a diverse set of Big Data and enterprise work-
loads. The extracted power models have a high prediction accuracy. The resulting
models are significantly more accurate than state of the art approaches if multiple
system metrics are considered, e.g., CPU utilization and HDD throughput.

C4: Development of a systematic modeling and analysis approach for consider-

ing transient effects in software quality analyses. We present a metamodel
for the description of transient effects. The metamodel supports the description
of inter-dependencies between adaptations, performance and power consumption.
We outline a transient effect analysis that extends existing simulative analyses of
self-adaptive software systems. Our analysis improves the prediction accuracy of
the analyses via the consideration of transient effects. The analysis builds upon
a set of formalized execution semantics presented in this thesis. Our validation
shows that the consideration of transient effects significantly improves prediction
accuracy for the investigated self-adaptive software system. The validation further
illustrates that the analysis enabled us to identify a design deficiency of the system.
This deficiency would have otherwise remained undetected.
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The following Section 1.5.1 names central prerequisites of our approach. Section 1.5.2 pro-
vides an overview of application scenarios for our contributions. Section 1.5.3 goes into
detail on categories of supported design decisions.

1.5.1. Prerequisites

Our modeling and analysis approach can be applied if the following conditions are met.

Availability of Architecture-Level Performance Models. The power and energy consump-
tion analyses presented in this thesis build upon existing architecture-level performance
analyses, such as the Palladio performance simulators SimuCom and SimuLizar. Our
analyses rely on performance prediction results from these analyses. The power and
energy consumption analyses use performance metrics like CPU utilization and HDD
throughput.

To apply performance prediction methods, input architecture-level performance models
must be available. Palladio performance simulators use a Palladio Component Model (PCM)
instance that includes performance annotations. PCM encompasses a set of viewpoints,
which Section 2.5.1 elaborates on. “If architectural models and deployments are already
modeled, Palladio creates virtually no additional overheadsž [170, p. 195] compared to
other architecture modeling methods and languages. The largest modeling effort results
from the creation of performance descriptions, the Resource-Demanding Service Effect
Specifications (RDSEFFs). An RDSEFF is a “parametrized, behavioral abstraction and
quality specification for a single component servicež [170, p. 99]. An RDSEFF consists of a
set of activities, similar to UML activity diagram. Resource demand specifications annotate
the activities with the amount of work they cause on resources, e.g., CPUs or HDDs.

It is challenging to accurately describe the behavior of a service in early design stages.
However, software architects may use design documents, prior implementations or the
approximated algorithmic complexity to derive an initial RDSEFF. The behavior models
can be refined throughout different design stages, as prototypes or initial component
implementations become available. During software evolution, static code analysis [116]
and dynamic runtime analysis methods [116, 220] can be applied to obtain performance
models from existing implementations.

InformationonPowerConsumptionCharacteristicsofDeploymentEnvironment. Our Pow-
er Consumption metamodel describes the power consumption characteristics of software
deployment environments. It relies on power models which describe the characteristics
of individual servers. Users of the power consumption analysis must be able to obtain
server power models of the servers in the targeted deployment environment. The required
power models can be obtained using one of the following methods.

First, the power consumption characteristics can be derived via systematic server profil-
ing. This thesis presents an approach that automates the construction of server power
models for use in design time via systematic profiling. It employs representative workloads
to profile server power consumption at different load levels. Additionally, we describe
an approach for the extraction of power models from historical measurements. A server
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power model from a profiling run can be used for all servers of the same model or type.
Both approaches require a power meter to obtain power consumption measurements
of the server. Second, power models of similar servers can be used if the target server
type is unknown or the required equipment is unavailable. Finally, power consumption
data from publicly accessible benchmark results can be leveraged as a fallback solution,
as Schmitt et al. [181] discuss. These substitute models can be refined during development,
deployment and operation once the deployment infrastructure is finalized.

1.5.2. Application Scenarios

The QoS offered by a system depends on the implementation, assembly, deployment of its
components and the behavior of users that interact with the system.

1.5.2.1. Design Time Energy Consumption Analysis of Enterprise Software Systems

Design decisions made in early stages of design, i.e., on the architecture level, decisively
impact QoS and development cost of a software system. This thesis presents a modeling
and analysis approach that enables the systematic consideration of energy efficiency in
the architectural design of software systems. Our approach builds upon information
obtained as part a systematic architectural design process like Palladio [22]. It supports
energy efficiency analyses in early design phases. It enables software architects to make
informed trade-off decisions between performance and power consumption, and other
QoS dimensions such as cost.

We leverage an architecture level, model-based analysis to reason on energy efficiency.
The analysis employs architectural performance models like PCM combined with our
Power Consumption metamodel presented in this thesis as input. The analysis can be used
to predict the energy efficiency of a software system before its implementation has been
completed.

1.5.2.2. Energy-Conscious Evolution of Enterprise Software Systems

Software systems must evolve over time to address newly identified user requirements,
and to continue a satisfactory QoS [122]. Increased energy efficiency is a quality goal that
is of growing significance. Existing approaches use measurements to evaluate the effect of
design decisions after they have been implemented. The feedback from the measurements
provides feedback to the developers. It thereby can help them make better decisions in
the future. The evaluation is only possible once a decision has been implemented. This
increases the risk of introducing systematic design deficiencies and, ultimately, inadequate
energy efficiency or performance.

Our approach enables software architects to evaluate the effect of design decisions on
energy efficiency before they are implemented. It thereby reduces the risk from uncertain
effects of design decisions on QoS.
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1.5.2.3. Data Center Planning

Power consumption is used as a primary cost indicator in data center planning. The
estimated power consumption of the planned servers informs the sizing requirements in
terms of cooling, power distribution equipment and space [13]. According to Barroso et al.,
“approximately 80% of total construction cost goes towards power and coolingž [13, p.
92]. The authors note that the construction costs of larger data centers scale linearly with
Watts. Barroso et al. estimate the total construction cost at roughly $9-13 total per Watt.
Power consumption estimation is thus not only essential to the estimation of operational
cost, but also a central factor in data center planning.

Our modeling and prediction approach can be used for data center planning and sizing.
It has been applied as part of the CACTOS project [152] to support data center operators,
planners and algorithm engineers in the evaluation of design decisions. Our approach
enables them to evaluate the effect of infrastructure sizing, and runtime management
algorithms design and configuration on data center energy efficiency.

1.5.3. Supported Design Decisions

Design decisions which increase energy efficiency also impact other QoS dimensions, e.g.,
cost or performance. Decisions commonly have adverse effects on multiple dimensions.
An example of this is the consolidation of components on fewer servers. The consolidation
reduces energy consumption. It can, however, lead to higher response time under peak
user load. The assessment of the design decision depends on the amount of saved energy,
and the expected response time degradation. In summary, trade-offs between multiple QoS
dimensions require quantitative estimations of energy consumption. We thus designed
our analysis approach to support quantitative energy consumption estimations.

The following discusses a set of design decisions and scenarios which can be analyzed
with our approach.

Effect of User Load and Behavior Variations. Type and intensity of user interactions with
software systems varies over time. This variation may follow a random distribution or a
trend, i.e., an increased rate of requests during business hours. Our approach supports
the consideration of variations in user load and behavior. Software architects can use
our approach to explore whether a system meets energy efficiency goals and other QoS
requirements during workload spikes, and for expected changes in the mix of user requests.

Component Selection. Component-based software systems are seldom constructed from
scratch. Software architects may reuse existing component implementations to save
development effort. For common library functionality, software architects can often
choose from multiple component implementations with similar functionality but different
QoS characteristics. Software architects can apply our analysis approach to evaluate the
effect of component selection on energy efficiency. Tradeoffs of the energy efficiency
predictions with other QoS attributes require little to no additional effort, as our approach
integrates with the established design time prediction method Palladio.
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Infrastructure Sizing. Idle servers still consume a significant portion of their power con-
sumption when idle. Power infrastructure sizing is an additional cost factor. The power
distribution infrastructure of data centers needs to be capable of handling peak data center
load. If “a data center operates at 50% of its peak power capacity, the effective provisioning
cost per Watt used is doubledž [13]. It is common practice to size power distribution infras-
tructure based on the expected load instead of the theoretical power draw of all installed
equipment [13, p. 83]. This is done to avoid cost that results from an oversized power
distribution and cooling infrastructure. In practice, sizing decisions are typically made
based on rough utilization estimates, see [56]. The use of power beyond the peak power
capacity can result in power and server outages. Dynamic load management techniques
like power capping aim to reduce the risk of outages by limiting the peak load.

The modeling and analysis methods presented in this thesis support reasoning on power
consumption at different levels of a hierarchical power distribution infrastructure. The
peak power consumption predicted by our analysis can be used to assess whether the
planned infrastructure and power management algorithms meet peak power demand with
acceptable performance.

ComparisonofDeploymentStrategies. A central aspect in the operation of energy efficient
software systems is deployment, or distribution, of components on servers. The power
consumption of individual servers depends on the utilization of its resources, e.g., CPU
and HDD, by components that are deployed on the server. The power consumption of
servers increases with their load. Energy efficiency of servers improves at higher load
levels. Simultaneously, the response time of requests can suffer if a server reaches load
levels above a certain threshold.
Deployers can leverage our method to evaluate deployment strategies which achieve

good energy efficiency while maintaining other QoS goals.

Design and Selection of Adaptation Mechanisms. Self-adaptive software systems continu-
ously optimize their assembly, deployment and functionality to meet changing environ-
mental conditions. The execution of adaptations can incur an overhead, which results in
performance deterioration and increased energy consumption [205, 206]. Our metamodel
and analysis for the consideration of transient effects provides architects with the means
to reason on adaptation overheads. Thereby, software architects can assess if an adapta-
tion mechanism increases efficiency and effectiveness of a software system or if its use
deteriorates QoS.
Additionally, we support the evaluation of energy-conscious adaptation mechanisms

such as power capping. These are adaptation mechanisms that aim to improve energy
efficiency through the use of active power management. Example power management
actions include the boot-up and shutdown of servers.

1.6. Outline

This thesis is structured as follows:
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Chapter 2 introduces the foundations of our work. It introduces power models, which
our modeling approach builds upon. The definition of energy efficiency as used in this
thesis is presented. We discuss powermanagement techniques that can be used in servers to
adapt the tradeoff between power consumption and performance of servers. We introduce
fundamentals of self-adaptive software systems. We outline the Palladio approach for
architecture level modeling and analysis of software systems. Palladio serves as the
foundation of our energy efficiency modeling and analysis approach. The overview of
Palladio provides an overview of SimuLizar, a simulation-based analysis of self-adaptive
software systems.

Chapter 3 presents a modeling language for describing power consumption character-
istics of software systems. It describes the Power Consumption metamodel, a metamodel
used to characterize consumption characteristics of servers, their components, and con-
nected power distribution infrastructure.

InChapter 4we describe our approach for the design time power consumption analysis
of software systems. Our approach uses instances of the Power Consumption metamo-
del combined with performance predictions to reason on the power consumption of
software systems. The analysis supports the architecture level analysis of both static and
self-adaptive software systems. We show how aggregate energy consumption and energy
efficiency predictions can be derived from the power consumption predictions.

Chapter 5 presents a method for the automated extraction of power models for use in
design time analyses. The method consists of three steps: server profiling, model training
and model selection. Server profiling performs systematic experiments to extract the
power consumption profile of a server. Model training uses statistical learning to produce
a set of candidate power models. These models describe the consumption characteristics
of the server under investigation. The model selection step selects the model with the
highest predicted accuracy from the candidates.

Chapter 6 introduces a modeling and analysis approach for considering transient effects
in simulation-based software performance and power consumption analyses. First, the
section presents the Adaptation Action metamodel. The metamodel enables a coupled
specification of adaptation outcome and the performance effect of adaptation execution.
In addition to the structural semantics defined by the metamodel, the chapter presents
the formalized execution semantics of the model. Finally, we develop a transient effects
analysis approach that extends an existing simulation-based analysis.

Chapter 7 presents the results of our validation case studies. Our case studies cover the
contributions discussed in Chapters 3 to 6. The case studies cover a range of applications
and benchmarking frameworks.

Chapter 8 surveys related work. It contextualizes our contributions with approaches
from related fields, e.g., Cloud simulators, Green Software Engineering, and energy effi-
ciency benchmarks.

InChapter 9we discuss how our contributions can be integrated with existing software
engineering development approaches.

Chapter 10 concludes with a summary of this thesis and an outlook on potential future
work.
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This chapter introduces foundations that the following chapters build upon. Section 2.1
outlines fundamental power modeling and energy estimation concepts. In Section 2.2 we
contrast different definitions of energy efficiency (EE), and establish the definition used
in this thesis. Section 2.3 gives an overview of different power management techniques.
We summarize central concepts of self-adaptive software systems in Section 2.4, which
are relevant to our approach. Section 2.5 outlines the Palladio approach. It discusses
the Palladio Component Model (PCM), an architectural modeling language that enables
performance predictions in early design phases. Furthermore, the section provides details
on the software performance simulators that we use and extend. Section 2.6 discusses
model selection criteria, which we apply as part of our power model extraction approach.
Finally, Section 2.7 introduces foundations of methods we use in our validation.

2.1. Power Models and Energy Consumption Estimation

This section presents methods whichmodel and predict the power and energy consumption
of software systems. The methods address the analysis of power consumption at runtime
or implementation time. Power and energy models estimate the power consumption based
on measurable software system characteristics. These characteristics may be system level
metrics, e.g., CPU utilization, or software metrics like the number of bytes occupied by an
object. The main reason for using power models at runtime is a lack of permanent power
monitoring or measurement equipment.
Over the years, a multitude of functions have been proposed to model the power con-

sumption of different types of hardware components and device types, e.g., server or
mobile phones. Dayarathna et al. [59] provide an extensive survey of different power mod-
eling techniques. At the lowest abstraction level three types of power and energy models
can be distinguished. Section 2.1.1 introduces bookkeeping models. Section 2.1.2 presents
system metric-based power models. Section 2.1.3 outlines Power State Machines (PSMs)
for modeling stateful power consumption characteristics.

2.1.1. Bookkeeping Energy and Power Models

Bookkeeping models estimate the energy consumption of hardware [23] or software
instructions [185, 186, 207]. They estimate the consumption by assigning each instruction
type or operation with its estimated energy demand.

Definition 2.1 (Bookkeeping Energy Model). A bookkeeping energy model estimates the

energy consumption of a set of operations Op executed in an interval [t0, te].
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EOp =
∑

o∈Op
Et(o)(o),

where EOp is the estimated energy consumption of the operations and o is an operation. t(o) is
the operation type of o and Et(o)(o) is the estimated energy consumption induced by executing

o.

Bookkeepingmodels enable a straightforwardmapping of energy consumption estimates
to hardware and software components. The total energy consumption estimate of a server
can be aggregated from all instructions, which the server executes in the specified interval
[t0, te]. Similarly, energy consumption estimates E(C) of a software component C may be
calculated as the sum over the energy consumption of all operations that result from calls
to the interfaces provided by C [186]:

E(C) = ∑

I∈provInterfaces(C)

∑
m∈I

EOp(m),

wherem ∈ I is an operation of interface I that is provided by C. The set provInterfaces(C)
contains these operations. Op(m) are the operations executed by all calls tom.
Bookkeeping models are reasonably accurate for predicting the power consumption

of a software system deployed on a specific server with a known load. Bookkeeping
approaches [23, 183] separately account for the idle power consumption of systems. This
increases the accuracy of the predictions when the user load changes. A disadvantage of
bookkeeping models is their disregard for nonlinear effects in the power consumption of
their execution environment. Bookkeeping models calculate the total consumption as the
sum over the energy consumption of individual operation calls Et(o)(o). This implies that
the bookkeeping models assume a linear relation between the number of operation calls
and the total system consumption. Hence, bookkeeping models have a low prediction
accuracy when the relation between utilization and power consumption is non-linear.
Variations in user load or execution environment changes compound these inaccuracies.

2.1.2. SystemMetric-Based Power Models

System metric-based power models predict the power consumption of servers or individual
hardware components from measured metrics [58, 65, 66, 172]. Power models estimate
the current power draw at a given point in time. Power models do not isolate the power
consumption of individual instructions. Instead, they predict the power consumption of
hardware components from a set of measurable system metrics. System metrics quantify
the activity of hardware components. Example system metrics are CPU utilization or disk
write throughput. The energy consumption of a system can be calculated as the integral
over an interval of the sampled power consumption estimates from the power model.

Definition 2.2 (Power Model). A system metric-based power model is a function

p : U1 × . . . ×Un → P

that maps a set of input metric values (u1, . . . ,un) ∈ U1 × . . . × Un to a predicted power

consumption pvalue ∈ P .
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The linear power model is a widespread baseline power model used to compare more
sophisticated power models [35, 65, 69, 82, 104, 135, 172, 231]. Linear power models
estimate the power consumption of servers as a sum of linear factors of system metrics:

Definition 2.3 (Linear Power Model). A linear power model p is a function

p(u) = c0 +
n∑
i=1

ai ∗ ui ,

where u = (u1, ...,un) is a system metric tuple. The constant factor c0 characterizes the static

power consumption of the hardware. Commonly, ui are utilization metrics normalized to

[0, 1].

2.1.3. Power State Machine (PSM)

PSMs model the power consumption characteristics of a hardware component as a Finite
State Machine (FSM) [26]. PSMs are a well-established concept in the domain of embedded
systems design. They can be used to reflect the effect of active power management
mechanisms on power consumption. An example mechanism is the shutdown of idle
hardware components after they have remained unused for a defined interval.

PSMs characterize the power consumption as a set of finite states. Power consumption
in a state is assumed to be constant. The hardware component transitions between the
power states depending on the implemented power management. The power management
that triggers the transitions may be implemented in software or hardware. The transitions
between power states are assumed to take time. Extensions to PSM annotate transitions
with further costs. This includes additional power consumption caused by the transition
between power states [73].

~10 µs

run

idle

160 ms

sleep
~90 µs

~90 µs~10 µs

P = 400 mW

P = 50 mW P = 0.16 mW

Wait for interrupt Wait for wake‐up event

Figure 2.1.: PSM of StrongARM SA-1100 processor, as modelled by Benini and Micheli [27].

Figure 2.1 depicts an example PSM of a StrongARM SA-1100 processor [27]. The example
PSM has the three states run, sleep and idle. The PSM models the power consumption in
each state as constant. The PSM captures direct transitions from idle to run or sleep, from
run to idle or sleep, and from sleep to run. Each transition takes a fixed amount of time.
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2.2. Energy Efficiency

Fundamentally, the energy efficiency of a software system is the ratio of energy consumed
to perform a certain amount of work. Tsirogiannis et al. [210] define energy efficiency as
“the ratio of useful work done to the energy usedž:

Definition 2.4 (Efficiency of Software Systems). The energy efficiency (EE) of a software

system is a ratio of the work executed by a software system, and the energy required to

perform the work:

EE = Work Done
Energy =

Throughput×Time
Power×Time =

Throughput
Power

.

Definition 2.4 showcases that the EE definition can be expressed as the ratio of through-
put (per time period) and power consumption.
Software applications inherently do not consume energy. The hardware required to

execute the applications, however, does. When users call the services of an application,
the application issues instructions to its execution environment. This leads to an increased
level of hardware activity. The increased activity results in additional energy consumption.
Hardware, e.g., servers and their components, consume power even when idle. Some

authors [47, 104] only attribute the power consumption to an application which is caused
by the additional activity of the software. This definition shows its limitations when
distributed deployment scenarios are considered. The focus on active utilization fails to
sufficiently reflect the benefits of consolidation strategies. If it is possible to operate a
distributed application with a smaller number of servers, this significantly reduces the total
energy consumption. The energy efficiency definition of [47, 104] disregards efficiency
increases that result from a reduction of static consumption.

Capra et al. [47] note that high energy efficiency is commonly wrongly equated to good
performance. This is not the case as the following examples illustrate. The use of less
efficient hardware may boost performance in return for an increased energy consump-
tion. Highly parallel executions may offer lower response times. Their energy efficiency,
however, can decrease due to parallelization overhead in the shape of additional task
distribution and synchronization effort.

Definition 2.4 defines energy efficiency as the amount of useful work done for an amount
of energy consumed. In order to compare the energy efficiency of systems, the amount of
useful work done is usually kept constant. When comparing the energy efficiency of two
systems, it is more intuitive to compare the inverse energy efficiency, i.e., the amount of
energy consumed per unit of work:

Definition 2.5 (Difference in Energy Efficiency). The difference ∆EE in EE of two software

systems I and Z is the difference in energy E consumed to complete the same amount of work

W :

∆EE(I ,Z ,W ) = EI−EZ
W

.

The efficient operation of data center infrastructure is an important cost factor, as
Section 1.1 motivated. Barroso et al. [13] present a definition of data center energy
efficiency:
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Definition 2.6 (Data Center Energy Efficiency). The energy efficiency of a data center is:

EE = ( 1
PUE ) × ( 1

SPUE ) × ( Computation
Total Energy on Electric Components ), where

• Power Usage Effectiveness (PUE) measures the facility efficiency,

• Server Power Usage Effectiveness (SPUE) quantifies the server power conversion effi-

ciency, and

•
Computation

Total Energy on Electric Components is the energy efficiency of the server.

The data center energy efficiency definition separates the definition of server energy
efficiency, server power conversion efficiency (SPUE), and facility efficiency (PUE). This
makes the definition compatible with the previously discussed definition of server energy

efficiency. The factor Computation
Total Energy on Electric Components corresponds to the definition of energy

efficiency in Definition 2.4.

Definition 2.7 (Power Usage Effectiveness (PUE)). PUE estimates the facility efficiency as

the ratio of total power consumed by the data center facility divided by the power consumed

by IT equipment [13]:

PUE =
Facility Power

IT Equipment Power
.

PUE can be modeled as a fixed factor-based on historical measurements or derived from
estimation models, e.g., for facility power conversion losses and cooling infrastructure.
SPUE is the ratio of “power consumed by the electronic components directly involved in
the computationž and the total server consumption [13]. Example components involved
in the computation are CPU and HDD. The total consumption subsumes further power
consumption from conversion losses, or internal server cooling equipment.

2.3. Power Management

This section provides an overview of the technical foundations of power management on
the level of individual servers, and data centers.
Power management mechanisms can be grouped into two categories. Active power

management [145] mechanisms directly control the power consumption by changing the
configuration of hardware components. An example active powermanagement mechanism
is Dynamic Voltage and Frequency Scaling (DVFS) and its integration with Advanced
Configuration and Power Interface (ACPI), which the next section discusses. Indirect
power management, or what Nathuji [145] refer to as Soft Scaling, aims to reduce power
consumption by migrating load away from or reducing load on computing resources.

Indirect power management exploits the energy (dis-)proportionality of servers and their
components. For example, modern server have a drastically reduced power consumption
when idle [68]. Load consolidation to a smaller number of servers can consequently reduce
the power consumption of a software system. The reason for the reduced consumption
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is that the marginal increase in power consumption on the hosts remaining after the
consolidation is much lower than the consumption decrease achieved by clearing up
underutilized servers. The underutilized server may then be turned off or switched into
lower power states via active power management mechanisms.

On a fully utilized system, the previously discussed power management approaches can
not be applied to reduce power consumption without affecting performance. Application
brownout is an indirect power management technique [229] that can be employed for fully
utilized systems. Brownout-compliant applications may “downgrade user experience to
avoid saturationž [109]. Xu et al. [229] use brownout-compliant applications to uphold the
throughput of applications by reducing the quality of the output.

2.3.1. ACPI

The Advanced Configuration and Power Interface (ACPI) [86] is a standardized interface
for motherboard configuration and power management. ACPI was developed as a common
standard to enable the implementation of configuration management that is independent
of firmware specifics. It is the standard power management interface of PCs and servers.
ACPI lets the operating system control the power performance tradeoff for devices and
hardware components using a set of predefined states. Within the lower power states,
functionality and speed of the devices is limited. There are five types of states in ACPI:

· Global system states (Gx-states) control the power state of the full system. There
exist four Gx-states. G0 is the working state, G1 the sleep state. G2 is the soft off,
and G3 the mechanical off state.

· Device power states (Dx-states) define the available managed states of hardware
components other than the CPU. Example components controlled via Dx-states are
network adapters and HDDs. D0 is the on state, while D1-D3 are low power states.

· Processor power states (Cx-states) support power savings by temporarily disabling
the execution of instructions. The active processing state C0, and the power state C1
are mandatory. Optional states beyond C1 may be offered to implement lower-power
inactive states.

· Target throttling states (Tx-states) optionally support alternative power/performance
trade-offs via a reduction of CPU frequency.

· Device and processor performance states (PX -states) offer different power/perfor-
mance trade-offs within the C0 and D0 states of processors and devices, respectively.
In addition to the lower power state P1, up to 14 further performance states can be
supported.

Recently, there has been a shift to implement the power management policies in hard-
ware [62]. This allows for a higher responsiveness of power management, but reduces
flexibility of the used policies.
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2.3.2. Power Capping

As the power draw of hardware components changes with their utilization, a static power
provisioning infrastructure on average still ends up being largely underutilized. The
reason for this is that the infrastructure not only needs to be able to handle the average
consumption load, but also peaks in power usage. Power capping is a technique that
addresses this problem by dynamically regulating the power draw of hardware components.
This is done by switching the components between low and high power states.

Software-level power management controllers commonly use ACPI [86]. There is a
multitude of strategies [25] and system architectures [167] for optimizing the power
allocation in distributed computer systems. Controlling the power consumption allows
for much higher Power Supply Unit (PSU) and Power Distribution Unit (PDU) utilization
since the risk of breakdowns is reduced.
Data center power management is often implemented atop the Intelligent Platform

Management Interface (IPMI) [99]. IPMI supports the control of server power states as
part of its network resource management protocol. On local servers it leverages interfaces
such as ACPI to enact power management decisions.

2.4. Self-Adaptive Software Systems

Self-adaptive software systems can adapt their structure and deployment, as well as
functionality, to changing environmental conditions. This enables them to maintain SLAs
under variable user load, or software and hardware failures.

Analyze

Monitor

Plan

ExecuteKnowledge

Managed Element

Autonomic Manager

Figure 2.2.: MAPE-K control loop introduced by Kephart et al. [105].

The most prevalent model for structuring self-adaptive systems is the Monitor, Analyze,
Plan, Execute, Knowledge (MAPE-K) control loop [105]. In the control loop illustrated in
Figure 2.2 an Autonomic Manager adapts a Managed Element. The Autonomic Manager
follows a continuous iterative process when adapting the system. In a first step, the
manager collects data from sensors in the system. These sensors capture system metrics,
e.g. the average response times of a specific service over the last minute. The Autonomic
Manager then analyzes the measurements to determine if it is necessary to adapt the
system. This might be the case if the response times violate QoS agreements. Based
on the analysis the Autonomic Manager chooses a set of adaptation actions in the Plan
step. The planned actions are enacted in the Execute step. The adaptation actions can
encompass adaptations to both software and hardware of a managed software system.
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After the autonomic manager has completed a loop iteration, it checks if the adaptations
were effective in successive Monitor-Analyze steps. If necessary, the manager triggers
further adaptations.

Besides measurements from the system, the Autonomic Manager makes its decisions on
theKnowledge base that contains information on the system structure and state. Commonly,
one part of the Knowledge base of a software system is its representation in an architectural
model [97]. An advantage of architecture level adaptation frameworks over low level
implementations of MAPE-K is that the current system state and adaptations are easier to
comprehend, e.g., for a system operator. Example frameworks that use a an architecture
model as the foundation for reasoning of the Autonomic Manager are Descartes [93] and
RAINBOW with its Stitch extension [51]. The following section Section 2.4.1 discusses
how architecture-based adaptation frameworks describe the space of potential adaptation
actions. Section 2.4.2 outlines a method that supports the description of complex adaptation
logic from a set of adaptation actions.

2.4.1. Adaptation Point Models

Adaptation decisions made by a an architecture-based self-adaptation frameworks need to
be performed automatically as part of the MAPE-K loop. The Autonomic Manager of an
architecture-based adaptation framework requires access to an executable description or
implementation of potential adaptation operations.

AdaptationPointDescriptions AdaptationPoint AdaptableEntity

VariationType ModelEntityConfigurationRange

minValueConstraint : OclConstraint

maxValueConstraint : OclConstraint

PropertyRange

possibleValues : OclConstraint

SetOfConfigurations

EObject

minValue : EDouble

maxValue : EDouble

ModelVariableConfigurationRange

0..*

adaptationPoints

1adaptableEntity
variationPossibility

1

1
entity

0..*

variants

Figure 2.3.: Adaptation points meta-model proposed by Huber et al. [95].

In order to support systematic runtime adaptations, Huber et al. [96] propose to repre-
sent the available runtime adaptation operations as part of an explicit adaptation space
model. The model enables automated model-driven reasoning and decision-making on
the choice of adaptation actions. The Adaptation Points metamodel [95] spans the adap-
tation space available to the adaptation framework. Figure 2.3 depicts the metamodel.
The Adaptation Points metamodel enables the specification of possible variations in the
software architecture-based on value or property ranges. It defines the domain of con-
figurations targeted by the execution of adaptation actions. For example, the space of
alternative VM deployments compatible to a certain hypervisor would be specified as
a SetOfConfigurations variation type with values ranging all the servers running the
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hypervisor, as Huber [94, p. 157] illustrates. A VM deployment action may only deploy
new VMs on compatible hypervisors.

2.4.2. Strategies, Tactics, Action (S/T/A)

Strategies, Tactics, Action (S/T/A) is a modeling concept that hierarchically structures
adaptation mechanisms into strategies, tactics, and actions.

An action is a reconfiguration operation supported by the execution environment of the
software system. Example actions are VM migrations or the change of media encoding
quality of a media encoder.
A tactic composes multiple adaptation actions. Each tactic comes with an estimated

expected benefit that results from its execution. This enables a preemptive evaluation
of adaptation tactics before they are executed. Each tactic “is guarded by a dynamically
evaluated precondition that determinesž whether a tactic can be applied [51]. Adaptation
tactics are also referred to as adaptation rules. An example of a tactic is the consolidation
of VMs in an Infrastructure as a Service (IaaS) data center. First, all VMs deployed to an
under-utilized host are migrated to other nodes via the VM migration. Subsequently, the
original host is shut down using the corresponding operator.
A strategy defines a reactive process for managing a software system using a set of

adaptation tactics. It consists of “a tree of condition-action-delay decision nodes with
explicitly defined probability for conditions and a delay time-window for observing tactic
effectsž [51]. The probabilities of executing the tactics can be adapted based on their
previous success or failure. The success of a tactic is determined after a predefined delay
has passed. It is checked by evaluating whether the tactic has managed to fulfill the
previously violated condition.

Examples of S/T/A languages are Stitch and the S/T/A modules of Descartes Modeling
Language (DML). Cheng and Garlan [51] propose a self-adaptation language Stitch that
structures the adaptation space into strategies, tactics and operators. Operators correspond
to actions.
Huber et al. propose an S/T/A modeling language for designing “run-time system

adaptations in component-based system architecturesž [96]. Like Cheng and Garlan [51],
Huber et al. structure the adaptation process into stragies, tactics and actions (S/T/A).
Strategies formulate a high-level QoS objective such as maintaining response times below a
certain threshold. Tactics specify how an objective is achieved by successively performing
a set of actions. Actions always refer to an adaptation point in the software system [96].

2.5. Palladio

Palladio is a an architecture-level approach for the systematic engineering of component-
based software systems in early design phases [170]. It uses the Palladio Component Model
(PCM) to describe the architecture of software systems. PCM has similarities to UML
component diagrams and UML Marte [211]. What sets PCM apart from standard UML are
its included quality annotations. PCM was designed to be composable. This enables the
reuse of, e.g., component specifications in different software architecture models. Palladio
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supports the analysis of different QoS characteristics based on the quality annotations.
Foundation of the Palladio analyses is the PCM. Supported quality dimensions include
performance [22], reliability [33], cost [111], maintainability [176], and elasticity [124].

This section provides an overview of the parts of Palladio that this thesis builds upon. It
is structured as follows. Section 2.5.1 introduces the PCM. Section 2.5.2 discusses SimuLizar,
which extends Palladio to the domain of self-adaptive software systems. In Section 2.5.3,
we outline the Palladio software performance simulators. Section 2.5.4 sketches the quality
analysis workflow with Palladio.

2.5.1. Palladio Component Model (PCM)

The Palladio Component Model (PCM) is a modeling language for the description of
component-based software architectures. Its purpose is the modeling of characteristics
that are required for design time analyses of QoS properties. PCM is realized as a Essential
Meta-Object Facility (EMOF)-based metamodel. The core PCM couples the structural
description of software components with a high level description of their performance
and reliability characteristics.

PCM separates different architectural design concerns into distinct modeling viewpoints.
The components are modeled in the Repository viewpoint. The System viewpoint instanti-
ates and composes components from the Repository viewpoint into a software system.
PCM models the deployment environment and its hardware characteristics in the Resource
Environment viewpoint. The hardware characteristics concern performance and reliability
properties, which are required to reason on these quality characteristics. Allocation maps
the component instances in the System to the deployment environment described in the
Resource Environment. The Usage viewpoint models a set of users and their interactions
with the systems. A separate model instantiates each of the viewpoints. This eases the
composition of models that represent the viewpoints.
A viewpoint encompasses the modeling concerns that are relevant to a specific role

in the Palladio development process [170]. The component developer designs component
specifications using the Repository viewpoint. In the System viewpoint, the software

architect assembles the components to a software architecture. The system deployer

defines the execution environment of the architecture, and deploys the components to
the environment. The domain expert models users and their interaction patterns with the
system.

The following sections provide further details on the viewpoints of Palladio.

2.5.1.1. Repository Viewpoint

The Repository viewpoint addresses the modeling of software components. Component
developers use the viewpoint to model components and their provided and required
interfaces.

Figure 2.4 illustrates the relationship of a set of keymodeling constructs in the Repository
viewpoint. It shows an example component definition in the Repository viewpoint. The
depicted component A has a required and provided interface. Its component specification
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<<Repository>>

<<BasicComponent>> A

<<ResourceDemandingSEFF>> method2

<<InternalAction>>

doSomething

<<ExternalCallAction>>

method3

<<Interface>>

MyInterface

void method1(Object par)

Object method2()

<<Interface>>

YourInterface

INT method3()

void method4()

<<ProvidedRole>> <<RequiredRole>>

...

<<specifies>>

...

Figure 2.4.: Illustration of modeling construct subset supported by the Repository view-
point. The figure is based on [171, p. 38].

references the provided interface MyInterface via a Provided Role. A Required Role specifies
the required interface YourInterface of A.

Component developers may specify the behavior of components stored in the Reposi-
tory. Service Effect Specifications (SEFFs) model the behavior of services provided by a
component. A SEFF is an abstract specification of the behavior of a component. It describes
the “relationship between provided and required services of a componentž [171, p. 53].
SEFFs model the behavior of components similar to UML activity diagrams.

Resource-Demanding Service Effect Specification (RDSEFF) specializes SEFF to model
the performance impact of service calls. RDSEFF models the behavior as a sequence of
actions. Actions may be control flow abstractions, e.g., branches, loops and forks. External
Actions model calls to external required services. Internal Actions model the performance
impact of a set of operations. It describes the impact in terms of execution costs on
resources like CPUs. The action models the execution cost as a Resource Demand. A
Resource Demand can model the cost of a single hardware instruction, or subsume the
performance impact of a set of calls that are not explicitly modeled. Commonly, Resource
Demands are specified as the amount of time it takes to process an instruction relative to
the speed of a resource, e.g., CPU.

Component A in Figure 2.4 is annotated with an RDSEFF. It contains two actions that
describe the behavior of calls to method2. The Internal Action doSomething consumes a
specified amount of Resource Demand, which the figure omits. The External Call Action
links the call sequence to the required service method3.

PCM supports themodeling of Resource Demands using stochastic distribution functions.
Dependencies to input parameters can be expressed via parametric dependencies. PCM
uses the Stochastic Expressions (StoEx) language [21] to specify Resource Demands,
including their distribution and parametric dependencies.
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2.5.1.2. System Viewpoint

The System viewpoint instantiates the components from Repositories. Assembly Context is
the construct in the System viewpoint that can be used to instantiate a component from
a Repository. A component can be instantiated multiple times. Each Assembly Context
has a set of component parameters. These parameters can be used to model instantiation
specific settings. The system architect composes the Assembly Contexts using Assembly

Connectors. An Assembly Connector wires a required interface of a component instance
to the provided interface of another component instance.

   <<System>>

   ExampleSystem

A B

MyInterface

YourInterface

<<AssemblyContext>>
<<ProvidedDelegation

     Connector>>

<<AssemblyConnector>>
<<OperationProvided

    Role>>

Figure 2.5.: Illustration of modeling construct subset supported by the System viewpoint.

Figure 2.5 gives an example of the modeling constructs in the System viewpoint based
on Figure 2.4. The ExampleSystem System model instantiates the component A and
wires it with matching component instances. An Assembly Context instantiates A. An
Assembly Connector links the Required Role of A with the Provided Role of B that offers
YourInterface. An Operation Provided Role exposes the provided interface MyInterface to
users of ExampleSystem. A Provided Delegation Connector links the System role to the role
of A.

2.5.1.3. Resource Environment and Allocation Viewpoint

The Resource Environment viewpoint models the deployment environment of a software
system. It focuses on properties that are relevant to performance or reliability. The
modeled properties include servers and their resources, e.g., CPUs and HDDs. Additionally,
middleware specific properties can be modeled in the Resource Environment.
Figure 2.6 depicts an excerpt of the metamodel classes from the viewpoint, which

are relevant in the scope of this thesis. The figure omits reliability characteristics. In
addition to the Resource Environment, it includes classes from the supplemental Resource
Type repository are included. Resource Environment contains a set of Resource Containers
and Linking Resource. A Resource Container represents an execution environment, to
which components may be deployed. It represents either a physical server, VM, or other
deployment environments like enterprise web servers. Resource Containers can contain
other Resource Containers. This enables the modeling of hierarchies in the deployment
environment.
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Figure 2.6.: Excerpt of Resource Environment and Resource Type viewpoints. Reliability
characteristics are omitted.
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A Resource Container has a set of Processing Resource Specifications. A Processing
Resource Specification models processing resources such as a CPU. Its processing rate

defines the rate at which the resource is able to serve Resource Demands which are
scheduled on it. The number of replicas is the number of redundant instances of processing
units that can be used in parallel. For CPUs it specifies the number of cores.
Resource Type is a supplementary viewpoint. It models Resource Types, e.g., CPU and

storage resources. Each Processing Resource Specification references its Resource Type.
The Resource Type viewpoint includes the definition of Scheduling Policies. A Scheduling
Policy represents the policy with which the resource serves requests. An example policy
is first come, first served (FCFS).

The Allocation viewpoint models the deployment of component instances to the execu-
tion environment. It contains a set of Allocation Contexts. Every Allocation Context maps
an Assembly Context to a Resource Container. In combination, Allocation and Resource
Environment correspond to the deployment diagram in UML.

2.5.1.4. Usage Viewpoint

The Usage viewpoint models user frequency and behavior of users that interact with the
software system. PCM groups users in categories, the Usage Scenarios. A Usage Scenario
models the behavior of a group of users in a similar way to SEFFs. The domain expert
characterizes a Usage Scenario by its number of users, and their behavior. The Usage
Scenario models the behavior as a sequence of branches, loops, forks, and calls to the
system. Scenarios can issue calls to all services of the OperationProvidedRoles of the system.
The Usage root element stores a set of Usage Scenarios in a Usage model. Palladio analyses
consider all contained scenarios to execute concurrently.

PCM distinguishes two types of Usage Scenarios. A Closed Workload scenario models a
group of users with a fixed population size, e.g., four users. Each user starts a new run
every time an iteration of the Usage Scenario completes. User think and wait times can be
modeled using Delay actions. Each time a user completes an execution of the scenario in
a Closed Workload, the next user immediately starts executing. Open Workload models
assume an open user model, where a new user arrives at the system every t time units. For
example, a user could arrive at the system every four seconds. This interarrival time can be
modeled using stochastic distribution functions. This enables the modeling of fluctuations
of user populations according to a distribution.

2.5.2. SimuLizar ÐModeling and Analyzing Self-Adaptive Software Systems

with Palladio

Palladio initially focused on the systematic design of static component-based software
systems. Becker extended the Palladio approach to self-adaptive software systems [17, 18,
20] in order to support the systematic design time engineering of self-adaptive software
systems. The name of the extended approach is SimuLizar. SimuLizar also refers to the
subsumed simulation-based analysis which supports the design time quality analysis of
self-adaptive software systems. This section provides an overview of the central extensions
of SimuLizar.
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Becker [17] introduces the self-adaptive system architect role, who is responsible for
modeling the dynamic behavior of the system. The self-adaptive system architect is
responsible for the same tasks as the software architect in standard Palladio. Additionally,
the self-adaptive system architect is responsible for specifying the adaptation behavior
of the system. She specifies the behavior in the self-adaptation viewpoint [17]. The self-
adaptation viewpoint encompasses the specification of reconfiguration mechanisms, and
runtime measurements. We refer to [17, p. 68] for a detailed discussion of the integration
of self-adaptivity with the modeling process.

This section introduces the modeling and analysis approach by Becker, which this thesis
extends. It is structured as follows. Section 2.5.2.1 details how measurement points can be
specified in SimuLizar. Section 2.5.2.2 introduces how reconfigurations are specified with
SimuLizar. In addition, the section discusses the model for capturing measurements. The
reconfigurations may form their adaptation decisions based on the captured measurements.
Section 2.5.2.3 outlines an extension to the Usage viewpoint that supports the modeling of
load variations and patterns.

2.5.2.1. Monitor Model

The Monitor model enables software architects to specify which measurements should be
collected where and how in the self-adaptive software system. The collected measurements
serve as input to adaptation mechanisms. An example adaptation tactic could trigger
adaptation actions when the response time becomes too large.
The Monitor model contains a set of Monitors. Each Monitor references a measuring

point in the system under design. The measuring point defines a location in the system at
which measurements should be collected. For example, a measuring point may reference a
processing resource in a Resource Container.
In addition to the measuring point specification, a Monitor contains a measurement

specification. The measurement specification identifies the metric for which measurements
should be collected at the measuring point. CPU utilization is an example metric that can
be collected at a measuring point installed at a processing resource. Monitors support
the specification of an aggregation method and aggregation interval for the metric. For
example, CPU utilization might be aggregated over a sliding window interval of a specific
length.

2.5.2.2. Adaptation Specification and Runtime Measurement

SimuLizar enables architects to specify the dynamic behavior of a self-adaptive software
system. It supports the definition of adaptation mechanisms via in-place model trans-
formations. The model transformations operate on the runtime model of the system.
The runtime model represents the runtime state of the simulated software system. If the
runtime state meets a set of specified conditions, a transformation reconfigures the system
by performing a series of model change operations. For example, an adaptation transfor-
mation may add an additional Resource Container to the Resource Environment in order
to increase the available computational power. Following this adaptation, reconfigurations
can allocate additional component instances on the newly available Resource Container.
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SimuLizar uses an instance of PCM as the initial architecture configuration of the self-
adaptive system. SimuLizar represents the runtime state of the system, the runtime model,
in an instance of PCM. In the scope of this thesis, we added the ability to extend the runtime
model by further models. Thereby, additional system aspects like power management can
be exposed to adaptation mechanisms.
SimuLizar uses the Palladio Runtime Measurement Model (PRM) to expose measure-

ments to reconfiguration mechanisms. Example measurements are the current CPU
utilization and service response times. The measurements represent the state of the simu-
lated software system at the current point in the analysis. Source of the measurements is
the simulation-based analysis. The PRM contains the measurements for all measurement
points and aggregation methods, which the Monitor model specifies.
Becker [17] presents a metamodel which integrates individual adaptation transforma-

tions into an S/T/A framework. The transformations specify conditions for adaptation
strategies as well as the execution semantics of adaptation actions. Becker touches upon a
potential modeling of resource demands that result from the execution of reconfigurations
[17, 98 f.]. The author, however, does not outline the analytical semantics of the sketched
modeling.

2.5.2.3. Usage Evolution Model

The Usage Evolution [31] model enables domain experts to specify usage patterns and
trends in the behavior and number of users that interact with a software system. Interactive
software systems seldom serve a fixed number of users with a fixed set of requests. PCM
expresses the variability of user requests and interests via stochastic processes. Variations
in interarrival rates and requests can be modeled using the StoEx language. Under realistic
conditions, the distribution of users and their requests does not remain constant over time.
Rather, it follows usage patterns and trends [106].
Brataas et al. [31] introduce the Usage Evolution viewpoint as an extension to the

Usage viewpoint of PCM. The Usage Evolution viewpoint is realized as an annotation
model to PCM. Figure 2.7 provides an overview of the Usage Evolution metamodel. Usage
Evolution consists of a set of Usages. Each Usage instance models the variation in a Usage
Scenario as a pattern. If the Usage Scenario contains an open workload, the pattern models
the variation in the interarrival rate over time. For closed workloads, Usage describes a
variation in the user population.

Usage expresses the loadEvolution workload pattern variation as an instance of the
Descartes Load Intensity Model (DLIM) [106]. DLIM is a metamodel for defining load
variations as functions over time. Figure 2.7 shows the core classes of DLIM. Sequence is
the central entity in the metamodel. It defines a load pattern as a set of piecewise defined
Functions. TimeDependentFunctionContainer embeds a Function into a definition interval of
length duration. The starting point of the Function is defined relative to an internal clock.
The metamodel excerpt omits this clock reference. DLIM supports different primitive
function types and patterns, e.g., Seasonal or Burst. Functions can be folded with other
functions by applying a Combinator to an existing function.
In addition to user intensity variations, Usage Evolution supports the modeling of

parameter variations. Each Usage may contain any number ofWorkParameterEvolutions. A
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Figure 2.7.: Usage Evolution viewpoint.

WorkParameterEvolutionmodels the variation of a parameter in any of the PCM viewpoints.
The DLIM Sequence referenced by evolution models this variation as a function over time.

2.5.3. Software Performance Simulation

There are different analytical [113, 156] and simulation-based quality analysis approaches
[18, 22, 138] for PCM. They enable software architects to reason on quality characteristics of
software systems that are represented as PCM instances. The following gives an overview
of the two performance simulators SimuCom and SimuLizar. This thesis employs the
analyses to evaluate the performance of software systems. We use their performance
predictions as input to our power consumption analysis. Additionally, this thesis extends
SimuLizar to enable reasoning on energy-conscious self-adaptive software systems.

2.5.3.1. SimuCom

SimuCom [21, 22] is a Discrete Event Simulation (DES)-based software simulator for PCM
instances. SimuCom supports the analysis of performance and reliability characteristics
of software systems. SimuCom uses model transformations to generate a software per-
formance simulator from a PCM instance. The generated simulation code uses SimuCom
framework functionality, e.g., to simulate processing resources and their scheduling poli-
cies. Example QoS metrics supported by SimuCom are response times of individual user
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requests, and resource utilization. SimuCom only supports the analysis of static software
systems.

2.5.3.2. SimuLizar

SimuLizar [17, 18, 20] is a software performance simulator for self-adaptive software
systems. It implements the SimuLizar approach by Becker [17] for modeling and analyzing
self-adaptive software systems at design time. Section 2.5.2 introduced the modeling con-
cepts of SimuLizar. The SimuLizar implementation builds upon the SimuCom simulation
framework. In contrast to SimuCom, it does not generate simulation code for each PCM
instance. SimuLizar supports the consideration of dynamic aspects in the the behavior
and environment of a system under investigation. This includes the variation of user load
or behavior over time.

In SimuLizar, Adaptation mechanisms are expressed as in-place model transformations.
SimuLizar has been built to support the flexible extension of different model transformation
languages and engines. Example model transformation languages supported by SimuLizar
are QVTo and Henshin [6]. In addition to the performance metrics of SimuCom, SimuLizar
makes it possible for architects to reason on elasticity metrics. Becker et al. [19] provide
details on these metrics.

2.5.4. Quality Analysis Workflowwith Palladio

Software architects can leverage Palladio to evaluate the effect of design decisions on
quality before they are implemented. The central advantage of PCM over general-purpose
modeling languages like UML is its focus on quality-aware software architecture specifica-
tion. PCM models characterize the quality properties of individual hardware and software
components in a composable manner. This section sketches how software quality can be
performed as part of a quality-aware development process. The steps discussed in the
following must not be performed sequentially. They are usually iteratively performed
at different stages of the system design development. The PCM model can be refined
once additional information becomes available in the development process. The presented
workflow description is based on [170, pp. 213ś215].

Figure 2.8 represents the quality analysis workflow. It depicts the interactions of the
different roles that are involved in a model-based quality analysis using Palladio.

Component developers provide a behavior model of their component. They specify this
model using the Repository viewpoint. The model contains a behavior description in the
form of the SEFFs, which Section 2.5.1.1 introduced. The SEFFs must be annotated with
quality characteristics in order to analyze the quality of the system. The performance
analysis of a system, e.g., requires the specialized Resource-Demanding Service Effect Spec-
ifications (RDSEFFs). Component developers may estimate the Resource demands in the
RDSEFF via component micro-benchmarks or experience from previous implementations.
In the System Environment Specification, system deployers model the deployment en-

vironment of the software system using the Resource Environment viewpoint. This
model contains quality annotations that, e.g., quantify the processing power of CPUs or
throughput of HDDs. The system deployer provides a description of available or projected
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Figure 2.8.: Quality analysis workflow of the Palladio approach for the quality-aware
software architecture design. Figure from [170, p. 213].

hardware. She may provide multiple alternative deployment descriptions to reason on
QoS trade-offs related to infrastructure sizing. The deployer is furthermore responsible for
mapping the components in the system architecture to the deployment environment. This
step is part of the Allocation activity which produces an allocation models. The activity
may produce multiple Allocation models to compare different allocation strategies, or
allocations for different Resource Environment models.
The Domain Expert derives a set of users and scenarios from input use case models in

the Use Case Analysis. The input models can be provided, e.g., as UML use case diagrams
and accompanying textual descriptions. In later development stages, frontend monitoring
data can serve as a source of user interactions. During Usage Model Refinement, the
domain expert refines or transforms the existing models to PCM Usage Scenarios. For this,
the expert enriches activity diagrams with performance related characteristics, e.g., call
frequencies, user think times, and probabilistic request distributions.

The software architect drives and coordinates all tasks involved in the quality analysis
workflow. The architect assembles individual component specifications from the compo-
nent developers to a software architecture. She models the architecture as an instance
of the PCM System model. The architect validates that the models cover all use cases
and design alternatives that shall be explored in the quality analysis. If necessary, she
requests the other involved roles to refine their models. The architect can also complete
missing specifications in the environment and component models. Figure 2.8 represents
this set of activities as the Architecture Information Integration. The software architect
performs the quality analysis for all investigated quality dimensions. For this, the architect
can choose from the available quality analysis approaches presented in the introductory
paragraph of Section 2.5. The software architect iteratively checks the predicted quality of
different software architecture variants against business requirements. Requirements may
include tail response times, e.g., specified as part of SLAs. If the predictions show that
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the architecture under investigation violates quality requirements, “the software architect
either has to modify the specifications or renegotiate the requirementsž [170, p. 214].

2.6. Model Selection and AIC

The selection of a prediction model without knowledge of the final input data can be
classified as a model selection problem. There are a variety of approaches for model
selection [7]. In Software Performance Engineering (SPE), model selection techniques
are used to evaluate the quality of a performance model without full knowledge of the
target workload. The k-fold cross-validation has been applied to evaluate the quality of
performance model predictions [147, 225]. An alternative to k-fold cross-validation is the
Akaike’s Information Criterion (AIC).

The Akaike’s Information Criterion (AIC) is an information-theoretic measure. It es-
timates the information loss between a model and the “unknown true mechanismž [42]
which generated the data. For known distributions, the Kullback-Leibler distance quanti-
fies this loss of information. AIC provides a way to estimate the loss when the underlying
distribution is not known. It estimates the distance from the maximum value of the
empirical log-likelihood function [42]:

Definition 2.8 (Akaike’s Information Criterion (AIC)). AIC = −2 logL(θ̂ |y + 2k), where

• L is a log-likelihood function of a known distribution with an unknown parameter θ ,

• θ̂ is the maximum likelihood estimate of the unknown parameter θ ,

• y are empirical observations, or data,

• k is the number of parameters estimated by the model.

For a set of models, a larger AIC indicates that a model is less likely, or plausible,
to accurately describe the true mechanism that has produced y. AIC and k-fold cross-
validation are asymptotically equivalent [202]. Compared to k-fold cross-validation, AIC is
less complex to compute, as it does not require the partitioning of data. AIC is commonly
applied to model selection problems of models which describe empirical data [42].

2.7. Validation Foundations

This section provides an overview of foundations of validation approaches and statistical
methods which we use in the validation presented in Chapter 7.

2.7.1. Goal Question Metric Approach

The Goal Question Metric (GQM) approach by Basili et al. [15] systemizes the structuring
and planning of experimental validations in the software engineering domain. In essence,
the GQM approach enforces the orientation of a validation alongside quantifiable and
measurable metrics.
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Figure 2.9.: Overview of GQM structure according to Basili et al. [15]

Table 2.1.: Example of a goal formulated using the GQM approach.
Purpose Improve
Issue the prediction accuracy
Object of performance predictions
Viewpoint from the viewpoint of software architects.

The GQM approach hierarchically structures goals, questions, and metrics. Figure 2.9
illustrates the hierarchical relation between them. Prerequisite of GQM is a definition of
goals for the subject under investigation. Each goal has to be formulated so that it can be
answered by collecting and analyzing a set of measurement data. Basili et al. name software
products, processes, and resources as target candidate categories of goals. According to
the authors, each goal should clearly state:

· The purpose of the validation,

· the issue to be measured,

· the measured object,

· the viewpoint from which the measurement is conducted.

The purpose hereby refers to the benefit of the approachwhich the validation is supposed
to show. Typically, the viewpoint matches the target user, or beneficiary, of an approach.
Table 2.1 lists an example goal statement, which might be stated as part of the validation
of a software performance simulator.
Each goal maps to a set of questions. A question characterizes a way in which the

particular goal shall be validated. It refines the goal to a specific quality criterion, evaluated
from a viewpoint [15]. For the validation goal listed in Table 2.1, a question could be:
Does the new simulator improve the prediction accuracy of design time architectural

performance predictions?

On the lowest level of GQM every question relates to measurable metrics. Each metric
serves as input to an answer of one or more higher level questions. Basili et al. [15] state
that metrics may be objective or subjective. A metric is subjective if its value depends on
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the viewpoint from which it is collected. Conversely, it is objective if it does not depend
upon the viewpoint. Subjective metrics may quantify, e.g., the user-perceived usability of
a simulator on a scale from one to ten. An example objective metric, which answers the
prior example question, is the mean response time prediction error of the new simulator
compared to the simulation baseline.

2.7.2. Validation Levels

Böhme and Reussner [30] distinguish three levels in the validation of prediction models.
The levels categorize validations by their validation purpose. The classification facilitates
the estimation of validation effort and necessary measures to show certain properties of
the validation object. It suffices to measure and compare the accuracy of the new and
baseline approach to evaluate, e.g., if a new performance simulator has a higher prediction
accuracy than a baseline approach. The validation levels are level I, II and III.

Level I is called metric validation. Validations categorized as level I conduct a validation
as a comparison of predictions and measurements. A prerequisite to conduct a level I
validation is that an implementation of the analytical metric required “to perform the
predictionsž is available [30]. Böhme and Reussner [30] note that this requires the metric
to be computable. The authors note that the availability of an implementation could
be classified as a level 0 validation. The authors, however, explicitly refrain from an
introduction of a distinct level 0. Other authors establish a feasibility validation at level
0 [64, 83]. Heger [83] refers to this as a validation “through theoretical assessmentsž.

Level II is the applicability validation. It evaluates whether “the input data can be acquired
reliably and whether the results of the metric can be interpreted meaningfullyž [30]. Böhme
and Reussner state that if the input data is not collected automatically, the Level II validation
“can be conducted as an experiment or a case study with human participantsž. Frequently,
the definition of level II validation is reduced to its realization as an empirical user study.
We also consider a validation a level II validation if the input data of the validated approach
is collected automatically.

Level III is called benefit validation. Böhme and Reussner [30] prescribe this validation for
analytical metrics that are part of a method that covers a software development approach. If
this is the case, the validation needs to show the benefit of using the software development
approach in comparison to established or competing approaches. A level III validation is
difficult to conduct, as it relies on the availability of comparable approaches. Furthermore,
it is resource intensive to realize the same software product using multiple development
approaches.

2.7.3. Kernel Density Estimation (KDE)

When collecting measurement data, its underlying distribution is usually not known.
Kernel Density Estimation (KDE) allows to approximate the distribution of the collected
data [227]. The Kernel Density Estimation (KDE) estimates the underlying true probability
distribution p(x) of data x1,x2, ...xn with the estimator p̂ [227]:

Definition 2.9 (Kernel Density Estimation (KDE)). Given a data set x1,x2, ...xn.
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p̂ = 1
n

∑n
i=1Kσ (x ,xi) = 1

nσ

∑n
i=1K[

x−xi
σ

]

is an estimator of the probability distribution function of the data set. Kσ is a non-negative

kernel function. with an integral value of 1.

Kernel functions are also known as window functions. This thesis uses the Gaussian
kernel function. p̂ converges towards the true probability distribution p with increasing
size of the input data used to train the estimator.
KDE may be applied to estimate and visualize data distribution over the domain of

x1,x2, ...xn. Compared to histogram-based techniques, KDE is not affected by the choice
of bin size and bin size distribution. Additionally, KDE is less prone to the curse of
dimensionality.

2.7.4. Correlation Coefficients

Correlation coefficients quantify the relationship between variables. Correlation coeffi-
cients assume values between −1 and 1. Depending on the absolute value size, variables
are estimated to have a strong or weak correlation. Positive correlation cofficients signal a
positive correlation: If one variable increases, the other one increases as well. A negative
correlation coefficient signifies an inverse relationship: If one variable increases, the other
one decreases. Corder and Foreman [55] illustrate the significance of different coefficient
values. Absolute correlation values closer to 0 indicate a weak (negative) correlation.
Values closer to 1 signal a strong correlation. There are different statistical approaches for
the calculation of correlation coefficient. The two subsequent sections present two well
established correlation coefficiencts, which we use in the validation of this thesis.

2.7.4.1. Pearson’s Correlation Coefficient

The sample correlation coefficient, or Pearson correlation coefficient, measures how well
the relationship between two variables x and y may be described by a linear model
y = a + bx . It is is defined as follows [175]:

Definition 2.10 (Pearson’s Correlation Coefficient). Let sx , sy be the sample standard

deviations of x and y. The Pearson’s correlation coefficient r of x and y is defined as:

r =
∑n
i=1(xi−x̄)(yi−ȳ)
(n−1)sxsy =

∑n
i=1(xi−x̄)(yi−ȳ)√∑n

i=1(xi−x̄)2
√∑n

i=1(yi−ȳ)2
.

2.7.4.2. Spearman’s Correlation Coefficient

The Spearman correlation coefficient, or Spearman rank-order correlation quantifies the
relationship of two variables x and y. It is the Pearson correlation coefficient between the
ranks of the two variables [55].

Definition 2.11 (Spearman’s Correlation Coefficient). The Spearman’s correlation coeffient

of two variables x and y is defined as:

rs = 1 − 6
∑
D2

i

n(n2−1) ,
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if there are no ties in Di . Di is the difference in ranking of a variable pair in X × Y , when

ranked according to the relative position in X and Y . When there are ties, the Spearman’s

correlation coeffient is defined as:

rs =
(n3−n)−6∑D2

i −(Tx+Ty )/2√
(n3−n)2−(Tx+Ty )(n3−n)+TxTy

, where

Tx =
∑д

i=1 t
3
i − ti , and Ty =

∑д
i=1 t

3
i − ti .

Hereby, д is the number of ties between the ranks of x and y. ti is the number of ties in a tie

group [55].

Spearman’s correlation coefficient expresses to which extent a monotonic function
explains the relation between x and y. Compared to the Pearson’s correlation coefficient,
Spearman’s correlation coefficient thus identifies a wider range of correlations.
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Characteristics of Software Systems

This chapter presents our modeling approach for the description of the power consumption
characteristics of a software system. The contributions presented in this chapter build
upon the publications [198, 200] and a supervised thesis [114].

This chapter consists of the following sections. Section 3.1 motivates challenges that the
metamodel needs to consider. Section 3.2 outlines our metamodel for describing the power
consumptions characteristics of a software system. Section 3.3 discusses assumptions
and limitations of our modeling approach. Section 3.4 concludes with a summary of the
presented modeling approach.

3.1. Challenges

This thesis aims to provide an approach that allows software architects to reason on power
consumption characteristics of a software system. Research Question 1 formulates the
problem that this chapter addresses:

Research Question 1. What is a good abstraction level for modeling power consumption

characteristics of software systems? We consider a model abstraction good if it

• produces accurate power consumption predictions,

• can be constructed from information available at design time,

• contains as little redundant information as possible with existing architectural modeling

languages and viewpoints.

In order to assess the power consumption characteristics of a software system, one
needs a model that links the behavior of the system to its power consumption. Research
Question 1 can be broken down into Challenges.

Ch1 Suitable Level of Abstraction. The designed model needs to capture the power
consumption characteristics on abstraction level that supports power consumption
analyses with reasonable accuracy. Simultaneously, it should abstract from details
of the execution environment and the software system that can not be predicted at
design time.

Ch2 Portability of model instances. Instances defined using the designed metamodel
should capture power consumption characteristics so that they are applicable to
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multiple software systems and different user workloads. An important part of archi-
tectural analysis approaches like Palladio is the comparison of design alternatives
before they are implemented. This allows architects to reason on the effect of design
decisions without having to implement and benchmark them against each other.
The approach presented in this thesis aims to support energy efficiency tradeoff
decisions. The metamodel hence has to support analyses that estimate the effect of
design decisions. For this, it must be possible to compare different power distribution
infrastructure design alternatives with limited modification effort.

Ch3 Limited semantic overlap with jointly used Architecture Description Lan-

guage (ADL). The approach presented in this thesis is designed to be applied in
conjunction with existing architectural modeling and analysis approaches. Architec-
tural models like PCM capture system characteristics that are relevant to a set of
design concerns. PCM focuses on the modeling and analysis of QoS goals related
to performance and reliability. Energy efficiency is defined as the ratio of energy
consumption and another QoS metric. For performance and reliability there is a
strong link between energy consumption and the QoS of the system. The utilization
of CPUs strongly correlates with their power consumption. The number of redun-
dant components increases reliability as well as power consumption. The designed
metamodel shall have limited semantic overlap with the architectural model used in
conjunction with our model. The metamodel must not specify characteristics of a
system that can already be derived from the architecture model.

Ch4 Non-invasive specification of power consumption characteristics and other

quality characteristics. The developed metamodel should not require changes to
the core of an existing ADL. Users of quality aware ADLs usually do not want to
consider all quality characteristics at once. The use of the model developed in this
thesis should not be mandatory. Rather, it should be usable as an optional module
that complements existing quality characteristic specifications.

Ch5 Compatibility of modeling constructs with different quality aware ADLs.

There are multiple quality aware ADLs with constructs that are specific to their
problem domain, e.g., runtime management or design time analysis. The developed
modeling shall be compatible with different ADLs. It should not be tailored to depend
on language specifics of a single ADL.

3.2. A Metamodel for Specifying Power Consumption

Characteristics

This section presents our metamodel for specifying the power consumption characteristics
of software systems. We designed the model to address the challenges identified in
the previous section. Our metamodel focuses on the description of power consumption
characteristics of the hardware environment. The following refers to the metamodel as
the Power Consumption metamodel.
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Figure 3.1.: Overview of the designed Power Consumption model.

Figure 3.1 provides a high-level overview of the package structure in the metamodel.
Each of the packages in the metamodel corresponds to one of a set of layered viewpoints on
the system under design. The Resource Environment package (pcm::resourceenvironment)
refers to the deployment environment description in PCM. The Resource Environment
viewpoint contains the description of performance and reliability characteristics of the
deployment environment as Section 2.5.1.3 explains. The Infrastructure viewpoint of the
Power Consumption metamodel annotates the processing resources and representations
of servers in the Resource Environment with their consumption characteristics. All other
parts of the Power Consumption model are agnostic of the PCM or other ADL specific
constructs. This strict separation of ADL specific annotation classes and independently
reusable modeling constructs addresses Challenge Ch4.
The Power Consumption metamodel has four viewpoints. Each of the viewpoints

corresponds with a metamodel package.
The Specification viewpoint supports the definition of power model types. Power model

types can be reused to describe the power consumption of different types of servers,
devices, and processing resources. An example of a power model type is the linear power
model based on a set of system utilization metrics:

Plin(ucpu,uread,uwrite) = c0 + c1ucpu + c2uread + c3uwrite (3.1)

This linear power model predicts the power consumption of a server based on its CPU
utilization ucpu, disk read throughput uread and write throughput uwrite. Plin is defined
independently of the concrete power consumption profile of a server type. In order for
Plin to reflect the consumption of a specific server type, its parameters c0 and cm have to
be instantiated. The resulting instance, the power model, reflects the static and dynamic
power consumption of the server components.
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bootupon off

shutdown

binary

Figure 3.2.: Power State Model example of a server with two power states.

The State viewpoint supports the specification of stateful powermodels as statemachines.
Figure 3.2 shows an example PSM. The depicted example showcases a simple example
of a PSM for a server that can be put in on and off states. There exist two transitions
bootup and shutdown between the two states. Both transitions represent the transition
of the server between its on and off state. The State viewpoint captures the definition
of distinct power states. The state definition is independent of the power consumption
characteristics of a specific device.

The Binding viewpoint encompasses elements for describing the consumption charac-
teristics of specific server types and distribution infrastructure. It supports the modeling of
power model instances using the definition of abstract power model types in the Specifica-
tion viewpoint. Binding instantiates a power model type from the Specification viewpoint
for a specific server type. An example instantiation of the power model type listed in 3.1
for a specific server type is:

Plin, R815(ucpu,uread,uwrite) = 367.30W + 300.40W · ucpu (3.2)

+ 13.52W · uread + 10.06W · uwrite

Plin, R815 models the power consumption of an R815 PowerEdge server. It estimates the
power consumption of the server based on its idle consumption, and the estimated corre-
lation of CPU and HDD metrics with power consumption. The power model is specific to
servers of the R815 type, but can be applied to any other servers of the same type.

The Infrastructure viewpoint describes the power distribution infrastructure of the
deployment environment on a structural level. It annotates the Resource Environment
with the description that specifies the relation of power consumers and power distribution
equipment in the deployment environment. Furthermore, it defines consumption con-
straints specific to the deployment environment, i.e. upper consumption limits for power
capping. The Infrastructure viewpoint defines the power consumption characteristics of
servers and PDUs by referencing power model instances defined in the Binding viewpoint.

The following sections discuss the individual viewpoints of the model in greater detail.
Section 3.2.1 introduces the Specification viewpoint. Section 3.2.2 presents the State
viewpoint. In Section 3.2.3 we describe the Binding viewpoints. Section 3.2.4 discusses the
Infrastructure viewpoint. Section 3.2.5 concludes with a discussion of the applicability of
our Power Consumption metamodel to ADLs other than PCM.
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Figure 3.3.: Overview of Specification viewpoint used for defining power model types

3.2.1. Specification Viewpoint

Figure 3.3 provides an overview of the key entities in the Specification viewpoint. We
omit utility attributes of model entities, e.g., Universally Unique Identifier (UUID), from
this and all following figures. The viewpoint groups a set of power model types in the
PowerModelRepository. PowerModelSpecification models the power model types. Instances
of PowerModelSpecificationmodel a relationship between a set of input variables, or factors,
and the power consumption of an entity. PowerModelSpecification has a set of Consump-

tionFactors that correlate with or contribute to the power consumption of the modeled
entity.

PowerModelSpecifications can be characterized along two orthogonal dimensions. Fig-
ure 3.4 shows the relation between the two orthogonal modeling dimensions. The first
dimension is the distribution type. It is concerned with the type of entity whose power
consumption characteristics the model explains. The ResourcePowerModelSpecification and
DistributionPowerModelSpecification are two types along this dimension. The ResourcePow-
erModelSpecification models the power model of a resource, or device. DistributionPower-
ModelSpecification describes the consumption characteristics of distribution infrastructure,
such as PDUs. The second dimension is the implementation type of a power model type.
BlackBoxPowerModelSpecification refers to a power model type implemented by a black-box
library, e.g., written in Java. Its design rationale is to support the specification of power
models in code, as Section 4.4 outlines. The implementation of power model types in code
is particularly helpful for functions that can not be represented by a closed-form expression,
or when a closed form expression is difficult to formulate. Examples for such functions are
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Multivariate Adaptive Regression Splines (MARS) model as investigated by Davis et al. [57,
58] and Lewis et al. [127]. DeclarativePowerModelSpecifications define power models as
mathematical expressions. The expressions conform to a grammar. Section 3.2.1.4 provides
more details on the expressions.

The implementing classes in both dimensions are combined with all other implementing
classes of the other dimensions. Figure 3.4 depicts the resulting subtypes. While the
combination of two orthogonal classifications can also be solved by composition, as
Strittmatter and Heinrich [203] outlined, we opted for an explicit modeling of all potential
subtypes.

The following sections further elaborate on the elements in the Specification viewpoint.

3.2.1.1. Consumption Factors

A ConsumptionFactor models a factor in a software system which correlates with the power
consumption of the software system. The Specification viewpoint differentiates between
two factor types, MeasuredFactors and FixedFactors. A FixedFactor models a static factor
impacting the power consumption of a device or distribution infrastructure component.
In the case of regression models, a FixedFactor corresponds with an independent variable.
Recalling the prior linear power model example from Equation 3.1, c0 through c3 are
FixedFactors.
MeasuredFactors are measured metrics that influence or correlate with the power con-

sumption of the entity. In contrast to FixedFactors, MeasuredFactors model dynamic power
consumption factors. When PowerModelSpecification is a regression model, its Measured-

Factors specify the dependent variables of the regression function. In the linear power
model example from Equation 3.1, CPU utilization ucpu, disk read throughput uread, and
write throughput uwrite are the MeasuredFactors. The factors of power models described
in the Specification viewpoint are strictly typed by their units of measurement. The unit
of a MeasuredFactor must be compatible with the unit of measurement of its metricType.
The metricType characterizes the metric of the MeasuredFactor using the NumericalBase-

MetricDescription entity from the Metric Specification metamodel [123]. Each instance
of NumericalBaseMetricDescription uniquely identifies a metric type like CPU utilization.
While the Metric Specification metamodel finds use in the context of Palladio, its defini-
tion of metrics is not specific to the PCM ADL. An alternative to the Metric Specification

metamodel is the Structured Metric Metamodel (SMM) [204].

3.2.1.2. Resource Power Models

ResourcePowerModelSpecification defines a power model type for an individual or a set of
system resources. Thereby, it supports the specification of power models for individual sys-
tem components, or groups of system components. ResourcePowerModelSpecification has
two subtypes, as can be seen in Figure 3.4. A BlackBoxResourcePowerModelSpecification de-
scribes a black-box power model of a resource. DeclarativeResourcePowerModelSpecification

expresses the power model of a resource via an associated functional expression.
Figure 3.5 shows an example instance of its BlackBoxResourcePowerModelSpecifica-

tion subtype. The illustrated model realizes the power model type specification of Plin
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Figure 3.5.: Linear power type Plin defined in the Specification viewpoint
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from Equation 3.1. The LinearPowerModel reflects the fixed parameters c0 through c3 as
FixedFactors. The independent variables of Plin are modeled as MeasuredFactors. Every
MeasuredFactor references its metric type modeled in a Metric Specification metamodel
instance.

3.2.1.3. Distribution Infrastructure Power Models

A DistributionPowerModelSpecification models the power model type of an entity type that
distributes power to other connected components. Examples for entities that distribute
power to connected components are server or rack level Power Supply Units (PSUs).
DistributionPowerModelSpecification specializes PowerModelSpecification to model the

power consumption characteristics of the distribution infrastructure. This implies that the
distribution model is also characterized by ConsumptionFactors. For ResourcePowerMod-

elSpecifications, each factor models an individual metric measurement source. Applying
this modeling abstraction to distribution models would induce significant modeling ef-
fort. The distribution model of a PDU with n = 1, 2, . . . connected servers would have
to be modeled separately, since the consumption of each server contributes to the total
consumption on the PDU level. Thus, we extended the semantics of MeasuredFactor for
DistributionPowerModelSpecification in comparison to ResourcePowerModelSpecification. In
addition to the semantics introduced in Section 3.2.1.1, MeasuredFactors may refer to sets
of measured metric values.
An example application of DistributionPowerModelSpecification is the description of

consumption overheads in the context of data center power distribution infrastructure. The
data center-wide power efficiency estimation equation noted by Barroso et al. [13, p. 67]
defines the relation between data center efficiency, power consumption of servers and
power consumption caused by other equipment, e.g., cooling. Definition 2.6 introduced
this equation. The relation between total consumption and overheads can be expressed as
a function:

PDC =
1

PUE
· 1

SPUE
·
∑

s∈S
Ps (3.3)

Hereby, S is the set of servers where every server consumes Ps power. PUE is the Power
Usage Effectiveness factor on the full data center level. SPUE is the PUE of servers.
Figure 3.6 depicts the distribution power model specification for PDC. It uses the black

box subtype of the DistributionPowerModel. The distribution power model contains two
FixedFactors for PUE and SPUE. Like ResourcePowerModelSpecification, the predicted con-
sumption of a DistributionPowerModel may depend upon measurable metrics. Each input
metric can be modeled as a MeasuredFactor. In the example shown in Figure 3.6, PDC
depends upon the MeasuredFactor P . Hereby, P is the set of power consumption measure-
ments on the server level, with Ps ∈ P for all servers s ∈ S .

3.2.1.4. Declarative Power Models

We use system metric-based power models to predict the power consumption of servers
and their resources. Recalling Definition 2.2, this thesis defines a power model as a function
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Figure 3.6.: Distribution power model type PDC defined in the Specification viewpoint

p : U1 × . . . ×Un → P that maps a set of input metric values (u1, . . . ,un) to a predicted
power consumption p ∈ P . In many cases, power models can be expressed as closed-form
functions of limited complexity [35, 65, 69, 82, 104, 135, 172, 231]. The linear power model
example Plin shown in Equation 3.1 is an example of such a model. In order to ease the
definition of power models types, the Specification viewpoint allows for the definition of
power model types using mathematical expressions.

The DeclarativePowerModelSpecification supports the declarative specification of power
model expressions for power model types. Its functionalExpression attribute contains
a mathematical expression specified in conformity with an extensible formal grammar.
We use an extended variant G of the mathematical expression grammar defined by the
ExpressionOasis framework [214]. An expression e hereby is valid if

· it is a sentence derived from the grammar G,

· each identifier in e corresponds to exactly one ConsumptionFactor of the PowerMod-

elSpecification,

· e parametrized by ConsumptionFactors C is a function p : U1 × . . . ×Un → P , where
{U1, . . . ,Un} ⊆ C .

Applying the example from Figure 3.5 to the declarative specification of the power model,
all attributes of the LinearPowerModel remain unchanged. Instead of BlackBoxResourcePow-
erModelSpecification, LinearPowerModel now has the type DeclarativeResourcePowerModel-

Specification. The functionalExpression of the DeclarativeResourcePowerModelSpecification

is set to the following expression:

c0+c1∗u_cpu+c2∗u_read+c3∗u_write.

The expression represents the power model type Plin from Equation 3.1. Each variable
identifier in the expressions matches to one of the ConsumptionFactors by name.
Aside from the specification of power model types for system resources, Declarative-

PowerModelSpecification can also be used to model power model types for distribution
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infrastructure. DeclarativeDistributionPowerModelSpecification adds a functionalExpression
to the attributes inherited from its super type DistributionPowerModel.
To enable modeling of distribution infrastructure, we introduced folding operations

to the ExpressionOasis grammar G for sets of measured metric values specified in a Mea-

suredFactor. The distribution power model type from Equation 3.3 can be formulated as a
functionalExpression:

1/(pue∗spue)∗SUM(P). (3.4)

SUM(P) represents the sum expression
∑

s∈S Ps . The index s ∈ S is not explicitly specified
by the expression, but derived from the input MeasuredFactor with the name P. P models
all devices that contribute to the power consumption of the distribution unit.

In addition to the sum operator, the grammar supports a multiplication folding operator.
MUL(P) represents the multiplication operator

∏
s∈S , where P and S are defined as in the

prior example.

3.2.2. State Viewpoint

The State viewpoint encompasses the definition of Power State Machines (PSMs). PSMs
model the power consumption of resources as distinct states. Section 2.1.3 outlines founda-
tions of PSMs. Our Power Consumption metamodel uses PSMs to specify the state space
of the power consumption behavior for a device. The State viewpoint is independent of
the Specification viewpoint.

<<abstract>>

AbstractPowerState

*

0..1

PowerState

Machine

1..*0..1

PowerState

Repository

PowerState
Transition

State
initialState

*1

targetState

*1

state

Figure 3.7.: Power State Model viewpoint of the Power Consumption model

Figure 3.7 depicts the Power Consumption metamodel package which specifies the PSM
metamodel. A PowerStateRepository contains a set of PowerStateMachines. Unlike some
FSM definitions, our PSMs do not define a distinct starting state.

A PowerStateMachine consists of states and transitions. Its core semantics match a FSM.
States correspond with PowerStates, state transitions correspond with TransitionStates.
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PowerState and TransitionState share a common abstract super class AbstractPowerState.
TransitionState serves as a transitional state that a stateful resource temporarily takes
when it transitions between two PowerStates.

on:PowerState

state

BasicSpecRepo

:PowerState

Repository

binary:PowerState

Machine

off:PowerState
bootup

:TransitionState

shutdown

:TransitionState

initialState

targetState

initialState

(a) Abstract syntax

bootup

on

off

shutdown

binary

(b) Conrete syntax

Figure 3.8.: Power State Model example of a server with two power states

Figure 3.8 shows the abstract and concrete syntax for the example PSM introduced in
Figure 3.2. The depicted binary PSM models the power consumption characteristics of a
server that can be put in an on and off state. The model consists of one PowerState instance
per state. Two TransitionStates shutdown and bootup model the transition between on and
off PowerStates. The concrete syntax represents the transition states as edges.

The PSM viewpoint does not model the power consumption in each state. Section 3.2.3.2
explains how PSMs can be instantiated to describe the consumption characteristics of
specific devices. This separation of PSM state and consumption characteristics definition
enables the reuse of the same PSM specification for different devices.

Further, the separation facilitates the definition and analysis of active powermanagement
mechanisms. The power management mechanisms can define transition behavior in
relation to a general PSM. In the context of the example shown in Figure 3.8, a power
management policy may switch off unused servers. The implementation of the power
management mechanism may reference the server independent on and off states. The
implementation can be reused for all server specifications, which reference the PSM from
Figure 3.8. Section 6.2.7.3 elaborates on the benefit of the separation of state definition
and device consumption specification.

3.2.3. Binding Viewpoint

The Binding viewpoint instantiates the power model types defined in the Specification
viewpoint. It links the power consumption characteristics of a server type with the model
used to predict the server power consumption. The bindings defined in the viewpoint
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instantiate the power model types from the Specification viewpoint to specific device types.
A binding that represents the consumption characteristics of a server may then be reused
across all identical servers.
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Figure 3.9.: Binding viewpoint of the Power Consumption metamodel

Figure 3.9 depicts the key model entities in the Binding viewpoint. The PowerBindin-
gRepository groups a set of PowerBindings to ease their reuse. A binding specified in the
repository can be reused across identical hardware components. The abstract PowerBinding
type models the power consumption characteristics of a specific device type, e.g., a certain
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server model. PowerBinding can be differentiated into two types, the StatefulResource-
PowerBinding and PowerFactorBinding.

3.2.3.1. Power Factor Bindings

A PowerFactorBinding is an instance of a power model type defined by a PowerModelSpecifi-

cation. It contains a set of AbstractFixedFactorValues. An AbstractFixedFactorValue instanti-
ates a FixedFactor of a PowerModelSpecification. AbstractFixedFactorValue is a generic type.
Its parameter Q defines the metric type of the quantified FixedFactor. The value attribute
serves to specify the metric value. It conforms to the metric type of class parameter Q.
As of now, there are two subtypes of AbstractFixedFactorValue. FixedFactorValuePower
instantiates a factor with a value of a power unit, e.g., Watt. FixedFactorValueDimensionless

instantiates a factor with a unit-less value. In the future, further typed values may be
introduced. The MeasuredFactors of a power model do not get instantiated in the Binding
viewpoint. The metrics required by a power model type do not depend on the server
for which it is instantiated. Thus, the binding only instantiates the server-specific fixed
factors.
There are two implementing subtypes of this binding that distinguish between power

models for resources, ResourcePowerBindings, and power models for distribution infras-
tructure, DistributionPowerBinding. Both subtypes reference the respective distribution
or resource power model type they instantiate. ResourcePowerBinding and Distribution-

PowerBinding are independent of the implementation type of their referenced power model
type.
Figure 3.10 shows the specification of the example power model Plin defined in Equa-

tion 3.2. The ResourcePowerBinding of Plin, R815 instantiates the linear power model type
Plin, which LinearPowerModel represents. The binding contains the four fixed factors
c0 to c3. Each of the factors has the unit Watt. Hence, the fixed factors are of type
FixedFactorValuePower.

3.2.3.2. Stateful Resource Power Binding

Section 3.2.2 had introduced the modeling of stateful resources via PSMs. The explicit
modeling of power states enables the consideration of power saving policies and recon-
figurations in power consumption analyses. The PSM metamodel outlined in this thesis
separates the modeling of the states and transitions in the PSM from device specific power
consumption characteristics. The StatefulResourcePowerBindings instantiates a PSM with
the consumption characteristics of a specific resource or device. This addresses Challenge
Ch2 for the reusability of PSM specifications. PSM specifications can be reused for different
resource, server and device types. Besides reducing the specification effort when model-
ing consumption characteristics, the reuse of common PSMs definitions also enables the
generic implementation of power management policies as part of the power consumption
analysis. Section 6.2.7.3 elaborates on this.
A StatefulResourcePowerBinding models the power consumption characteristics of a

stateful resource type, where the referenced PowerStateMachine describes the power state
space and transitions of the stateful resource type. The referenced AbstractPowerBindings
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Figure 3.10.: Resource Binding of example linear power model for R815 server

describe the consumption characteristics each state and transition. A PowerStateBinding

models the power consumption in a power state. We employ power models to describe
the consumption in each state. This extends the modeling capabilities of traditional PSMs,
which assume a constant consumption in each state. The power consumption in the state
follows the power consumption model of a referenced ResourcePowerBinding as described
in Section 3.2.3.1.

The separation of power model and state-specific consumption characteristics enables
a step-wise refinement of power models of resources. Initially it may suffice to model
the power consumption of a running server using a ResourcePowerModel. Once power
management is considered for the server, themodel might be refined to distinguish between
consumption in different power states.

The TransitionStateBindingmodels the power consumption of the server when transition-
ing between two power states. The ConsumptionBehavior models the power consumption
in the transition as a function p : [0, tmax] → P . The ConsumptionBehavior describes the
power consumption p(t) based on the time t ∈ [0, tmax] that has passed since the start of the
transition. The upper limit of the domain, tmax, defines the duration of the transition. The
transition consumption function p(t) is modeled using a Sequence from the DLIM [106]. A
Sequence models a piecewise defined mathematical function. Since the values Sequence are
not typed, ConsumptionBehavior has a unit attribute. The unit attribute captures the type
of the function, e.g., Watt. ConsumptionBehavior abstracts from the potential correlation of
system metric values and the consumption in the transition state. The models builds upon
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the assumption that system metrics can not be predicted or measured during the transition.
In the example bootup transition modeled in Figure 3.8, system metrics are not available
when the system has not fully booted yet. If there is a distinct transition phase in a system
whose consumption can be characterized by system metrics, the consumption behavior
should be modeled as a distinct PowerState, instead of a TransitionStateBinding. Pathak
et al. [153] use this modeling technique to describe the transition states they identify for
components of mobile devices.
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Figure 3.11.: Stateful Resource Binding example of an R815 server with on and off states

Figure 3.11 depicts an example StatefulResourcePowerBinding. It instantiates a PSM-based
power model for the R815 server that adheres to the PSM shown in Figure 3.8. The on
binding uses the linear power model Plin, R815 depicted in Figure 3.10. Power consumption
in the idle state is modeled via a separate ResourcePowerBinding, which estimates the
standby consumption using a flat power consumption value. The figure does not depict
the Sequence representation of the power consumption during the transitions.
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3.2.4. Infrastructure Viewpoint

The Infrastructure viewpoint models the power distribution infrastructure of a software
system. The chosen abstraction builds upon the power distribution infrastructure entities
found in data centers and the operation of enterprise server systems.
The power distribution infrastructure in data centers follows a hierarchical topology

[69]. On the top level, a main power supply provisions power to the facility, which then
distributes power among subcompartments of the data center, such as server rooms. Power
Distribution Units (PDUs) distribute power among further subunits such as server racks.
Server racks host the individual servers. Within a server, a PDU or the mainboard, or
both, distribute power. Depending on the type of policy used for ensuring continuous
operation via an Uninterruptible Power Systems (UPS), multiple conversions between
Direct Current (DC) and Alternating Current (AC) may take place [13, p. 48 ff.]. The
Infrastructure viewpoint supports modeling of power consumers and power distribution
infrastructure components. Aside from the power consumption of resources, it allows to
model consumption characteristics of the power distribution infrastructure.

Figure 3.12 provides an overview of the central entities in the Infrastructure viewpoint.
The Infrastructure viewpoint extends the Resource Environment viewpoint of PCM. The
viewpoint allows users to add power consumption characteristics to an existing Resource

Environment view as captured by instances of the PCM ADL. The metamodel extends
the PCM by means of annotation. Thereby, the PCM did not need to be modified. The
realization of our metamodel as an annotation metamodel addresses Challenge Ch4, as it
separates the specification of power consumption, and other quality characteristics.

The PowerInfrastructureRepository stores the devices of a software system that contribute
to its power consumption. It defines the system boundaries of the modeled software system
with regards to its power consumption characteristics. The containedPowerProvidingEntities
containment includes all top level entities that affect the power consumption. When
modeling a data center, the top level entity is the main supply connecting the data center
to the power grid. In smaller-scale server environments the PSU of a server or the PDU of
a rack are appropriate top level entities.
The abstract PowerProvidingEntity represents an entity that provides or distributes

power to other entities or system components. The suppliablePeakPower restricts the max-
imum peak power that can be supplied by a PowerProvidingEntity. An upper bound for the
suppliable peak power is the power that it physically can provision at any given time. PSUs
are commonly rated for a maximum suppliable peak power. If the peak power threshold is
surpassed, safe and continuous operation of the powered components is not guaranteed.
Aside from physical contraints, the suppliable peak power can be used to constrain the
consumption for subsystems of the power distribution infrastructure. Restrictions on
the suppliable peak power can be motivated by limited cooling resources [121], available
power [76], or power and cost saving policies [49, 167]. The PowerProvidingEntity provides
its power to a set of consumers. The nestedPowerConsumingEntities containment reference
links the consumers to the provider. Power consumption at the PowerProvidingEntity

comprises of the consumption of contained consumers. The distributionPowerBinding links
the entity to the DistributionPowerBinding instance that models its consumption character-
istics. The distribution binding may include an estimation of the consumption caused by
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Figure 3.12.: Overview of the classes in the Power Infrastructure metamodel package.
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distributing power to the connected components. By setting the distributionPowerBinding
reference to a binding, one defines the distribution model that shall be used to predict the
power consumption of the entity.

A PowerConsumingEntity is a power consumer in the modeled software system. It draws
its power from the parent PowerProvidingEntity in which it is contained. We distinguish
two types of power consumers, PowerConsumingProvidingEntity and its subtypes, and
AbstractPowerConsumingResourceSet.

3.2.4.1. Types of Power Consuming Resources

PowerConsumingResourceSet represents a set of active hardware components that draw
power from the distribution infrastructure. It annotates a set of ProcessingResourceSpecifi-
cations in the Resource Environment viewpoint with their power consumption character-
istics. The processingResourceSpecifications reference links it to the annotated processing
resources. Each PowerConsumingResourceSet references the ResourcePowerBinding that can
be used to model its power consumption. A ResourcePowerBinding instantiates a Resource-
PowerModelSpecification, as Section 3.2.3.1 outlined. Instances of ResourcePowerBinding
and its subtypes instantiate a ResourcePowerModelSpecification.

In order to perform predictions using the ResourcePowerModelSpecification, the annotated
hardware environment must model all factors that are needed to predict the systemmetrics
represented by the MeasuredFactors of the ResourcePowerModelSpecification. This requires
that all the metrics specified in the factors must be measurable or predictable for the set of
annotated active resources.

PowerConsumingResourceSet realizesAbstractPowerConsumingResourceSet for processing
resources. It links the set processingResourceSpecifications to the ResourcePowerBinding
that describes the power consumption characteristics of the processing resources. The
reference between the set and the referenced processingResourceSpecifications is realized as
a unidirectional reference from the Power Consumption metamodel to PCM. The reference
hence requires no modification of the PCM.

StatefulPowerConsumingResourceSet defines the power consumption of a set of process-
ing resources dependent upon their consumption state. Its powerState reference defines
the current state that the processing resources are in. The state must be set to one of the
AbstractPowerStateBindings from the referenced statefulResourcePowerBinding. A resource
set can be transitioned into a different power state by setting its powerState to the target
state.
The Infrastructure viewpoint groups multiple active hardware components in a Ab-

stractPowerConsumingResourceSet instead of annotating every component with its power
consumption characteristics. The rationale for this is as follows. First, it eases modeling in
the underlying Binding and Specification viewpoint. The running example power model
type Plin shown in Figure 3.5 illustrates this. Plin depends upon the system metrics ucpu,
uread and uwrite. It would be possible to separate Plin into three power model type functions
Plin = Pdist ◦ (Plin,cpu ◦ Plin,hdd), where Plin,cpu is the power consumption of the CPU, Plin,hdd
the storage power consumption, and the distribution power model Pdist. By separating the
power models, the power consumption has to be broken down per component, even if
only the aggregate consumption is relevant. This increases measurement or analysis effort.
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In cases where two or more MeasuredFactors of the power model interact, this separation
is not possible. Practical power model examples where two or more variables interact are
MARS models as investigated by Davis et al. [57, 58] and Lewis et al. [127].

3.2.4.2. Types of Power Distributing Entities

The PowerConsumingProvidingEntity represents entities that simultaneously consume and
provide power. This applies to all PDUs in the distribution infrastructure. A PDU draws
its power from a source. In relation to the source, it has the role of the power consumer.
Additionally, a PDU may convert the electric current before redistribution. Since the
conversion incurs a loss, the PDU adds to the total power consumption [168].

PowerDistributionUnit realizes the PowerConsumingProvidingEntity. It represents a PDU
in a data center. MountedPowerDistributionUnit extends PowerDistributionUnit. It models a
PDU that is physically connected to a specific subunit of the computing infrastructure.
Rack mounted PDUs or PSUs of individual servers are example subunits. The resourceCon-
tainer reference links the modeled PDU to the rack or server specification in PCM. Since
the referenced PCM models servers and their enclosures as nested ResourceContainers,
it does not further differentiate MountedPowerDistributionUnits. The link between a Re-
sourceContainer and its MountedPowerDistribution is realized as a unidirectional reference
from the Power Consumption model to PCM.
In summary, the Power Consumption metamodel meets Challenge Ch4 as it only has

unidirectional references to PCM in PowerDistributionUnit and PowerConsumingResource-

Set.

3.2.5. Application of Power Consumption Model to Different ADLs

The previous sections introduced our Power Consumption model for describing the power
consumption characteristics on an architectural abstraction level. The presented meta-
model complements the architectural performance description of PCM. The following steps
need to be taken by a language developer in order to apply the metamodel to describe the
power consumption characteristics of another quality-aware ADL. First, the developer has
to identify the language constructs used to model servers and their processing resources.
Second, she has to specialize the abstract class AbstractPowerConsumingEntity for each
of the ADL processing resource modeling constructs. Optionally, the language designer
can specialize PowerDistributionUnit to annotate constructs that represent servers with
integrated PDUs. We conclude that ItemCh5 is met by our Power Consumption metamodel,
as the core constructs of the metamodel are ADL independent.
This section is structured as follows. Section 3.2.5.1 outlines the application of our

modeling language to specific ADLs. Section 3.2.5.2 discusses the integration of the
Power Consumption metamodel with the CACTOS Infrastructure Model. The CACTOS
Infrastructure Model is a modeling language for the runtime management, and design
time analysis of IaaS data centers. The metamodel was developed as part of the CACTOS
project [152]. The integration with the model showcases the practical applicability of our
modeling language to describe the consumption characteristics of data center-scale server
infrastructure.
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3.2.5.1. Application to specific ADLs

We designed the Power Consumption metamodel so that its integration with ADLs other
than PCM requires little effort.
Descartes Modeling Language (DML) [93] is an architecture-level modeling language

used for autonomic resource management of software systems. In DML, a specialized
MountedPowerDistributionUnit could be defined to HardwareInfrastructure entities. The
subtypes of HardwareInfrastructure correspond to different device groups in data centers.
This includes servers, network devices, and dedicated storage servers. ActiveResourceSpec-
ification of DML corresponds to the ProcessingResourceSpecification from PCM. Hence, a
DML specific realization of AbstractPowerConsumingEntity as a PowerConsumingResource-

Set would have to reference the ActiveResourceSpecification.
For UML-based ADLs, like KLAPER [78] and UML MARTE [211], AbstractPowerCon-

sumingEntity could be specialized to reference the processing resource specifications in
the respective metamodel. For UML MARTE, the specification is found in the Hardware
Resource Modeling (HRM) profile. In plain UML, Device represents both servers and their
processing resources [212]. Thus, both AbstractPowerConsumingEntity and PowerConsum-

ingResourceSet may be specialized to annotate Device in UML.

3.2.5.2. Integration with CACTOS Infrastructure Model

The CACTOS Infrastructure Model [44, 79] is an Ecore-based metamodel for describing
IaaS data centers. The metamodel has two central purposes. First, it can be used as input to
runtime optimization mechanisms. Instances of the metamodel represent the data center
state. This includes the current and planned assignment of VMs and software components
to physical resources, i.e., servers. Second, instances of the CACTOS Infrastructure Model
can be used for what-if analyses at design time. This enables data center operators to
reason on data center sizing. The integration with the CACTOS Infrastructure Model
does not include explicit power models for the distribution infrastructure. The modeling
assumes a fixed loss factor across all power distribution infrastructure in a data center.

In order to support reasoning on power consumption of data centers at design time, we
integrated the Power Consumptionmetamodel with the CACTOS InfrastructureModel. We
integrated the core classes and packages into the CACTOS metamodel. Figure 3.13 depicts
the integration of Power Consumption metamodel with the CACTOS Infrastructure model.
The physicaldc package contains the representation of physical devices and hardware in the
data center. AbstractNode and its subclasses describe servers. The nodes are contained in
representations of data center infrastructure, such as racks. Power management, monitor-
ing and analysis is an integral part of CACTOS. For this reason, we opted to integrate the
Infrastructure viewpoint of our model with the server specifications. AbstractNode extends
both PowerProvidingEntity and PowerConsumingEntity. This replaces the annotation-based
modeling in the Infrastructure viewpoint, which Section 3.2.1 presented. All processing
resource representations in the CACTOS metamodel extend PowerConsumingResource.
ProcessingUnitSpecification is an example of a processing resource.

The Binding and Infrastructure viewpoint in the CACTOS Infrastructure Model adhere
to the Power Consumption metamodel in its central characteristics. We omitted the State
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Figure 3.13.: Excerpt of the Power Consumption metamodel integration with CACTOS
Infrastructure Model.
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viewpoint from the CACTOS Infrastructure Model, as it already represents the operational
state of servers as explicit server characteristics. The CACTOS resource management
assumes power distribution to operate at a fixed loss. Thus, we simplified the modeling so
that power models are only specified for PowerConsumingEntities.
Compared to the general Power Consumption metamodel, the power modeling inte-

grated with the CACTOS metamodel generalizes the relationship between power con-
sumers and providers. The general metamodel assumes each PowerConsumingEntity to
draw its power from exactly one PowerProvidingEntity. The integrated metamodel gener-
alizes this to a many-to-many relation between consumers and providers. This enables a
modeling of redundant power distribution infrastructure. In CACTOS, the distribution of
power draw among multiple power providers is defined by convention. The next section
discusses a more flexible extension of our Power Consumption metamodel, which supports
redundancy modeling.

The CACTOS Infrastructure metamodel only supports declarative consumption power
model types. PowerModel in its Specification viewpoint represents these power model
types. We implemented this simplification as the CACTOS tooling solely uses parametric
regression techniques to construct power models.

3.3. Assumptions and Limitations

This section discusses the assumptions and limitations of the presented Power Consump-
tion metamodel.

Hierarchical power distribution structure. The Power Consumption metamodel assumes
that there exists exactly one power source, a PowerProvidingEntity, for each power con-
sumer, a PowerConsumingEntity. Power distribution infrastructure of data centers uses
redundant distribution to improve the reliability of the infrastructure. As Barroso et al. [13,
p. 48 ff.] discuss, data centers leverage Uninterruptible Power Systems (UPS) to supply
power in case of temporary power outages. Multiple UPSs are commonly connected in
parallel [13, p. 51 f.]. This allows that a subset of the UPSs can fail. The power consump-
tion of individual servers may also be balanced between multiple PDUs. The purpose of
this redundancy is to increase reliability by connecting servers to different circuits. The
presented model abstracts from redundancy to reduce model complexity. The impact of
redundancy can be accurately modeled as fixed overheads [13, p. 67].
Additionally, our modeling abstraction can be extended to model redundancy in the

distribution infrastructure. Figure 3.14 sketches a model extension that adds support for
modeling redundancy and load distribution. A RedundantConsumer connects the contained
connectedEntity to a set of redundant providers. It links the consumer to the providers via
the redundantProviders reference. Similar to PowerProvidingEntity, a RedundantConsumer

defines how it consumes power from its providers. The ConsumerBinding defines how
power consumption is distributed among the providers. It instantiates a power consump-
tion model that the figure omits. Distributed provisioning models found in practice are an
even distribution among available connected providers [85, 98], or a failover protected
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Figure 3.14.: Power Infrastructure extension to model redundancy

consumption from a single provider [85]. Hereby, the consumer switches to another power
provider once the primary provider fails.

The sketched extension illustrates that our power consumption modeling approach is
compatible with and can easily be extended to support an explicit modeling of redundancy.
We hence consider the limitation minimal.

No explicit modeling of cooling infrastructure. The Power Consumption metamodel does
not explicitly model the cooling infrastructure of servers or data centers. However, the
metamodel supports the modeling of the impact of cooling on power consumption. The
power consumption of cooling equipment can be specified dependent on server activity.
Fan et al. state that the power consumption of cooling equipment “can be approximately
modeled as a fixed tax over the critical powerž [69]. Since the presented Power Con-
sumption model supports the extension of PowerConsumingEntity, sophisticated power
consumption models for cooling can be added. Thus, this is a weak limitation.

Knowledge of target deployment environment. The model describes power consumption
of software systems in relation to the power consumption of active resources, servers and
distribution equipment in its deployment environment. Hence, the modeling approach
requires the deployment environment of an analyzed software system to be known. In
early design phases, the deployment environment might not be fixed yet. Nevertheless,
architecture performance models used in early design phases like PCM assume knowledge
of the performance characteristics of the deployment environment. If the deployment
environment is not known, the performance characteristics are projected from the current
and planned infrastructure. Similarly, the power consumption of the targeted deployment
environment can be projected using power models of comparable environments.
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Knowledge of power consumption characteristics of deployment environment. The out-
lined Power Consumption model builds upon system metric-based power models of
servers. These power models correlate system metrics with power consumption. In order
to correlate power consumption and performance metrics, the used server types need to be
derived. One way to derive the models is the use of systematic server profiling to collect
system load and power measurements at different load levels. Since a power model only
needs to be derived once per server type, the measurement effort that results from the
profiling can be justified. Once a power model of a server type is available, it can be reused
to evaluate the power consumption of all servers of that type. The models of each server
type could be shared online via a central repository, similar to the Server Efficiency Rating
Tool (SERT) energy efficiency benchmark results [68]. Software architects could then use
the provided models to explore the energy consumption of their projected system.

Availability of metric predictions or measurements. Power and energy consumption anal-
ysis approaches that use the presented Power Consumption metamodel require a source
of metric predictions or measurements to evaluate the energy consumption of software
systems. Most commonly, power models correlate power consumption with performance.
At design time, performance predictions like the ones supported by Palladio are viable
sources of such measurements. We showed this in our previous work [200]. We consider
the assumption that performance models are available at design time to be feasible as
the analysis of power and performance is strongly intertwined. Energy efficiency, the
operational efficiency of a software system, is defined as a ratio of power and performance.

Abstraction from low-level hardware characteristics. Our modeling language abstracts
from low-level hardware characteristics that impact the power consumption of servers.
Example characteristics are the influence of supported and used CPU instruction sets
[107]. Another example concerns hardware internal power management [135], which is
not exposed via monitorable metrics. Our language models the power consumption of
hardware resources via power models. The power models predict the power consumption
from a set of fixed factors and measured metrics. Consequently, our modeling approach
can not capture all hardware characteristics that influence their power consumption. To
the best of our knowledge, no modeling approach addresses these shortcomings. Our
validation investigates whether power consumption predictions made using instances of
our model are accurate enough to inform architecture-level design decisions. Section 7.2
presents the validation results.

3.4. Summary

This chapter discussed the Power Consumption metamodel for describing the power
consumption characteristics of a software system. The goal of the metamodel is to capture
power consumption characteristics for the use in architecture-level energy efficiency (EE)
analyses. The metamodel is realized as an Ecore metamodel.
The instances of the metamodel describe the power consumption of deployment en-

vironments. The metamodel separates the definition and instantiation of power models
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for different server types from the specification of the distribution infrastructure. Three
layered viewpoints separate the three concerns power model definition, instantiation and
infrastructure modeling. The infrastructure modeling viewpoint annotates the deployment
environment description with its power consumption characteristics.

In the design of the Power Consumption model, the challenges presented in Section 3.1
had to be addressed. The following summarizes to which extent the chosen modeling
addresses each of the challenges.

Challenge Ch1 states that instances of the designed metamodel should support analyses
to make power consumption predictions with reasonable accuracy. This chapter focused on
the rationale and general semantics of the presented Power Consumption model. Chapter 4
outlines how its model semantics can be leveraged to predict the power consumption
of software systems at design time. Section 7.2 evaluates the prediction accuracy of the
analyses. Aside from enabling accurate predictions, Ch1 also requires that the level of
abstraction should be suitable for architectural design time analyses. Chapter 5 presents
an automated approach that allows to automate the extraction of Power Consumption
model instances. The extracted model instances can be used to compare different software
architectures and design decisions, as Section 7.3 illustrates.
The outlined model does not require annotation of consumption characteristics to

service specifications, such as the Service Effect Specification (SEFF) in PCM. This fulfills
Challenge Ch2.
The semantic overlap of PCM and the Power Consumption metamodel is limited to

the specification of server and device characteristics. The overlap is constrained to the
definition of server enclosures and processing units, and their corresponding representation
as power consumers or providers in our model. The Power Consumption metamodel does
not replicate any information beyond the name and UUID of the referenced PCM element.
Conclusively, our metamodel meets Challenge Ch3 due to its limited overlap with existing
ADLs.

Since we realized the metamodel as an annotation-based model, it is noninvasive by
design. Hence, the metamodel fulfills Challenge Ch4. The presented model only depends
on ADL specific constructs to link it with the deployment environment description of
the ADL. Section 3.2.4 further elaborated on this. The core packages and entities of the
presented Power Consumption model are compatible with a large number of ADLs, as
Section 3.2.4 discussed. Thus, the model fulfills Challenge Ch5.

The next Chapter 4 presents an approach for analyzing the energy efficiency of software
systems on an architectural level. The approach uses the Power Consumption model in
combination with the annotated PCM to predict power and energy consumption.
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Analysis

This chapter discusses the energy efficiency analysis for software systems. The presented
analysis approach addresses Research Question 2:

Research Question 2. How can the power consumption of software systems be predicted

on an architectural level?

The analysis outlined in this section builds upon the Power Consumption metamodel
presented in the previous chapter. The energy efficiency analysis predicts the energy
efficiency of a software system as the ratio of performance and power consumption. The
presented approach leverages existing architectural performance prediction methods. It
complements the performance prediction methods with an approach for power and energy
consumption prediction. This enables us to combine performance and power consumption
predictions. We can then derive energy efficiency (EE) predictions from the power and
performance predictions.

The Power Consumption Analyzer (PCA) evaluates the power consumption of a software
system using instances of the Power Consumption metamodel presented in Chapter 3. The
initial design of the prediction approach was proposed in [198]. The analysis approach for
static software systems was also outlined and employed in [200]. Its implementation was
refined as part of a supervised Master’s thesis [114].

This thesis distinguishes between two use cases for design time analyses of power and
energy consumption: post- and intra-simulation analysis. The post-simulation analysis
evaluates the power consumption of a software system under investigation after a perfor-
mance analysis has been conducted. The post-simulation analysis provides consumption
estimates based on the performance metric measurements collected from simulation. This
loose coupling enables a clear separation of our power consumption analysis and the
upstream performance analysis. Keeping the power consumption analysis separate from
performance analyses offers the following advantages:

· No modification of existing performance analysis. Performance and power
consumption analysis can be developed and maintained separately.

· Exchange of used performance analysis. As the power consumption analysis
does not require any modifications of the performance analysis, the performance
analysis can be exchanged independent of the power consumption analysis.

· Decoupling of power and performance analysis steps. Different power models
and power distribution topologies can be compared using the same performance
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simulation results. A rerun of the performance simulation only becomes necessary
once the performance characteristics of the system under investigation are modified,
e.g., if an additional server is introduced.

The selection and design of self-adaptation mechanisms is a degree of freedom at
design time [20]. This degree of freedom extends the degrees considered in the design
of static software systems. An energy-conscious self-adaptive software system performs
adaptations based on power consumption measurements or estimations. Examples of
power-conscious self-adaptations are discussed in [63, 103, 167, 215]. These energy-
conscious adaptation mechanisms require a measurement or estimation source for power
consumption. In order to evaluate the mechanisms, they must be provided with a source
for power consumption estimations. Our intra-simulation power consumption analysis
addresses this by propagating power consumption predictions to a design time analysis of
a self-adaptive software system.

Our intra-simulation consumption analysis supports the analysis of an energy-conscious
self-adaptive software system. It can be performed as part of a simulative performance
analysis of a self-adaptive software system. We extended the design time performance
analysis SimuLizar with the intra-simulation analysis. The combined analysis supports
the consideration of tradeoffs between power and performance at design time.
This chapter is structured as follows. Section 4.1 presents the general approach of

Power Consumption Analyzer (PCA) and its application to static software systems. Sec-
tion 4.2 extends the PCA concept to self-adaptive software systems. Section 4.3 outlines a
method for combining energy consumption predictions from PCA and PCM performance
predictions to reason on the effect of design decisions on energy efficiency. Section 4.4
provides an overview of the PCA tooling architecture. Section 4.5 discusses assumptions
and limitations. Section 4.6 concludes.

4.1. Power Consumption Evaluation Based on Software

Performance Predictions

This section presents the approach for evaluating the power consumption of static software
systems. We realized the analysis as a post-simulation analysis. The analysis evaluates the
power consumption subsequent to a performance analysis.

Figure 4.1 provides an overview of the automatic power consumption analysis for static
software system as an UML activity diagram. The analysis receives the following inputs:

· the PowerProvidingEntity ppe for which the consumption analysis should be per-
formed,

· a set of performance metric providers from the analysis environment,

· the power consumption analysis configuration.

The analysis calculates the predicted power consumption for the PowerProvidingEntity
ppe which is passed as an input. The analysis aggregates over the power consumption of

66



4.1. Power Consumption Evaluation Based on Software Performance Predictions

<<Loop>>

select required

metric providers

Power

ProvidingEntity

performance

metric providers
  required derived metrics?

instantiate derived

metric providers

analysis

configuration calculate current power

consumption of ppe

metric providers

yes
no

(test) metric providers 

have next measurement

continue with 

next measurement

power consumption

predictions

ppe

Figure 4.1.: Activity diagram of the power consumption analysis for static software systems

all consumers connected to the PowerProvidingEntity. The select required metric providers

activity identifies all relevant metric providers from the input metric providers. A metric
provider supplies prediction values for a metric. If necessary, instantiate derived metric

providers calculates derived metrics from the input metrics. An example application of
derived metric providers is the aggregation of multiple metrics to a single metric. The
activity loop calculates the power consumption for the input metric measurements. It
returns the set of power consumption predictions for the passed PowerProvidingEntity.

The Power Consumption Analyzer (PCA) evaluates the power consumption of a software
system. It implements the activities depicted by Figure 4.1. PCA supports consumption
analyses of both static and self-adaptive software systems. This section presents the
fundamental design of PCA and its application to static software systems. The following
Sections 4.1.1 to 4.1.5 describe the activities shown in Figure 4.1 in greater detail. Section 4.2
discusses the extension of PCA to the design time analysis of power consumption for
self-adaptive software systems.

4.1.1. Select Required Metric Providers

The select required metric providers activity matches the metrics specified in the Measured-

Factor of each PowerModelSpecificationwith metrics available in the input Experiment Data
Persistency & Presentation (EDP2) repository. As setup of the analysis, the select required
metric providers activity selects a subset of all available performance metric providers from
the available metrics. The metrics are read from any analysis measurement framework.
For Palladio analyses, this framework is EDP2 from the Quality Analysis Lab (QuAL) [123].
QuAL enables analyses to query and process analysis data via unified interfaces. For static
analyses, this activity gathers metric providers from the EDP2 components of QuAL. EDP2
persists the results of software quality analyses. In the case of architectural performance
predictions, this includes the performance metric measurements needed as input for PCA.

67



4. Architecture-Level Energy Efficiency Analysis

The activity selects the performance metric providers based on the metric specifications
of PowerConsumingEntities. It performs the selection for all consumers contained in the
PowerProvidingEntitiy, and recursively for its contained consumers.

4.1.2. Instantiate Derived Metric Providers

The source of metrics for the analysis are performance metric values from a previous
performance analysis. The scope of available metrics is limited to the metrics available in a
specific analysis run. The power models may specify further MeasuredFactors that are not
contained in the measurements persisted by EDP2. If the missing required metrics can be
derived from available performance metrics, the instantiate derived metric providers activity
instantiates these metrics. An example of such a metric is CPU utilization. Prior to this
thesis, all existing Palladio analyses did not support the calculation of resource utilization
metrics over time. In order to support power models that rely on input utilization metrics,
the activity instantiates a derived metric provider that calculates resource utilization
metrics from the available metrics.

The instantiation of derived metric providers may depend upon parameters. In the case
of CPU utilization, such parameters are the length of the interval over which utilization
should be aggregated, and the step width in which the metric shall be calculated. These
additional parameters either need to be specified by the user of the analysis, or set to
default values.

+getSourceMetrics() : Collection<Set<MetricDescription>> 

#getSourceMetricIds() : Collection<Set<String>>

+getTargetMetrics() : Set<MetricDescription> 

+getDataSource(Set<IDataSource> availableDataSources) : IDataSource

+canProvideMetric(MetricDescription desiredMetric,

                         Collection<MetricDescription> availableSourceMetrics)

<<abstract>> ExtendedMeasureProvider

de.fzi.power.interpreter.measureprovider

Figure 4.2.: Class diagram view of extension point definition for registering additional
metric providers

Figure 4.2 depicts the abstract class that must be realized and registered to the PCA
extension point of the same name. The extension point allows to register additional
metric providers to PCA. PCA uses these metric providers as part of the instantiate derived
metric providers activity. An ExtendedMeasureProvider defines a mapping of a set of source
(getSourceMetrics) to a set of target metrics (getTargetMetrics). The getSourceMetricsmethod
returns sets ofMetricDescriptions. Each set contains a description of the metrics supplied by
an individual input metric provider. A class that extends ExtendedMeasureProvider defines a
mapping between source and target metrics in its implementation of availableDataSources.
The returned IDataSource is an iterable measurement collection as defined by EDP2.
Metric providers may work on different metrics that can be used interchangeably. The
method getSourceMetrics hence returns a collection of metric combinations that can be
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used interchangeably. The function canProvideMetric checks whether the metric provider
can provide a desired target metric for a a set of available source metrics.

An example of a derived metric provider is UtilizationFilterMeasureProvider. This utiliza-
tion measure provider calculates the utilization of a processing resource over time from
its queue length.

4.1.3. Power Model Calculators

+isCompatibleWith(PowerModelSpecification specification) : boolean 

+instantiateDistributionPowerModelCalculator(DistributionPowerBinding 

binding) : AbstractDistributionPowerModelCalculator

+getPriority() : int

+instantiateResourcePowerModelCalculator(ResourcePowerBinding binding) 

: IResourcePowerModelCalculator

<<interface>> CalculatorFactory

de.fzi.power.interpreter.calculators

+calculate(Collection<MeasuringValue> list) : Amount<Power> 

+getInputMetrics() : Set<MetricDescription>

<<interface>> IResourcePowerModelCalculator

+calculate(Map<PowerConsumingEntity, Amount<Power>> 

outletConsumptions) : Amount<Power> 

<<abstract>> AbstractDistributionPowerModelCalculator

Figure 4.3.: Class diagram view calculator super type and calculator factory extension
point type definitions

PCA uses power model calculators to determine the power consumption of individ-
ual consumers in the software system. Our Power Consumption metamodel classifies
all consumers via the PowerConsumingEntity type. A calculator implements the power
consumption function p : U1 × . . . × Un → P that maps a set of input metric values
(u1, . . . ,un) to a predicted power consumption p ∈ P . This definition was first introduced
in Section 3.2.1.4. PCA distinguishes between calculators for PowerProvidingEntities and
PowerConsumingResourceSets. Figure 4.3 depicts the respective supertype and interface
definitions, AbstractDistributionPowerModelCalculator and IResourcePowerModelCalculator.
Both calculator types define a calculate method that returns a power consumption estimate.
The calculators estimate the power consumption from values that comply with the param-
eter types defined by the MeasuredFactors of a PowerModelSpecification, as Section 3.2.1.1
outlined.

AbstractDistributionPowerModelCalculator calculates the power consumption of a Pow-
erProvidingEntity. AbstractDistributionPowerModelCalculator calculates the power con-
sumption based on the outlet consumption of all connected consumers. Hence, the metric
supplied by all of its input metric providers is power consumption. PCA instantiates one
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calculator per PowerBinding. PCA reuses the calculator for all PowerProvidingEntities,
which reference the same binding.

PCA supports the introduction of additional calculator types and implementations via
the Eclipse extension point mechanism. Clayberg and Rubel [53] elaborate on the design of
the Eclipse extension point mechanism. In order to introduce a new calculator, an extension
needs to supply an implementation of CalculatorFactory shown in Figure 4.3. Calculator-
Factory instantiates the power model calculators supplied by the extension. An example
factory is the CalculatorFactoryImpl from the de.fzi.interpreter.calculator.expressionoasis
extension. The factory instantiates the calculators for declarative power models. PCA
determines the matching calculator factory for each PowerModelSpecification by calling
its isCompatibleWith method. If the method of a factory returns true, PCA uses that
factory to instantiate the calculator for a PowerModelSpecification. In the case of the factory
for declarative power models, the isCompatibleWith method checks whether the passed
specification is an instance of DeclarativePowerModelSpecification. For BlackBoxPowerMod-

elSpecification, a factory typically only supports the instantiation of a set of specifications
supported by its calculator implementations. The EssentialCalculatorsFactory from the
de.fzi.power.interpreter.calculators.essential extension is an example of a calculator factory
implementation that only supports specific power model specifications. As multiple facto-
ries could provide a calculator for the same specification, the factories are called in order
of their priority (getPriority). On matching priority, any factory may be used.

4.1.4. Power Consumption Analysis Algorithm

Once all needed parameters have been selected and instantiated, the core power consump-
tion analysis starts. In the activity diagram shown in Figure 4.1, the power consumption
analysis corresponds to the loop and its nested activities. Algorithm 1 shows the algorithm
used to analyze the power consumption of a PowerProvidingEntity ppe. The algorithm
specifies the steps executed as part of the loop activity. It calculates the power consumption
of the PowerProvidingEntity ppe over time. The metric providersM from the instantiate
derived metric providers serve as input to the algorithm.
The power consumption calculation of ppe proceeds as follows. First, the algorithm

fetches the time of the first measurement for all metric providers M (line 2). Then, it
associates each metric provider with the initial time and stores them in the mapM (line
3).
Each iteration of the algorithm estimates the power consumption at the current point

in time tcur. The algorithm determines the starting point of the power consumption
analysis as the first point in time tcur, for which a measurement is available for all required
metric providersM . SinceM only contains the required metric providers, this matches the
maximum over all initial points in time (line 4).
Line 7 identifies all metric providers whose next measurement has a current point in

time smaller or equal tcur. For these metric providers, it moves on to the most recent
measurement that is smaller or equal tcur (lines 8ś12).

Next, the algorithm calculates the consumption ofppe at tcur (line 13). The called function
evaluatePowerConsumption recursively visits the consumers of ppe and its contained
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state :Metric measurements over time M ← ∅
Current point in time tcur ← 0

input :Metric providersM , PowerProvidingEntity ppe,
analyzed time interval [0, tmax)

output :Power consumption measures over time Pt
1 foreachm ∈ M do

2 t ←getCurrentPointInTime(m);
3 M(t) ← M(t) ∪ {m};
4 tcur ← max{tcur, t};
5 end

6 while ∃t ∈ [0, tmax) : ∃m ∈ Mt : hasNextMeasurement(m) do

7 Mmin ← {m |m ∈ M, getNextPointInTime (m) ≤ tcur};
8 foreachm ∈ Mmin do

9 M(getCurrentPointInTime(m)) ← M(getCurrentPointInTime(m)) \m;
10 moveForward (m);
11 M(getCurrentPointInTime (m)) ← M(getCurrentPointInTime(m))) ∪m;
12 end

13 Pt ← Pt ∪ {(tcur,evaluatePowerConsumption(ppe,M))};
14 tcur ← min

∀m′∈Mmin

getNextPointInTime(m′);

15 Mnext ← {m |m ∈ Mmin, getNextPointInTime(m)) = tcur};
16 end

Algorithm 1: Power consumption analysis over a defined analysis interval
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PowerProvidingEntities. The function aggregates the consumption along the composition
tree spanned by the providers and consumers.

The input metric providersM are not necessarily synchronized. This implies that they
do not provide measurements for all t ∈ [0, tmax). In order to get the current metric
measurement for any tcur, the function uses the most recent measurement ofm.

After calculating the consumption using evaluatePowerConsumption, Algorithm 1moves
on to the next relevant point in time (line 15). Hereby, we assume that the metric values
remain constant between two sampling times tcur and tcur’ > tcur. The power consumption
between the old tcur, and new tcur’ does not need to be evaluated, as the values of all metric
providers between these power consumption measurements remain unchanged. If the
calculation of measurement values for t ∈ [0, tmax) is generalized to other interpolation
functions, this does not hold true. In this case, the calculation of power consumption needs
to be changed to a sampling-based calculation. Section 4.2 discusses the realization of
such a sampling-based power consumption analysis as an extension to PCA.

Power consumption of multiple connected PowerProvidingEntities and PowerConsuming-

Entities can be predicted in two ways. A straightforward approach is the execution of
the algorithm for each entity. Alternatively, the value of each nested consumer can be
persisted within the execution of evaluatePowerConsumption.
PCA realizes evaluatePowerConsumption by means of the visitor pattern. PCA recur-

sively aggregates the power consumption over the nested elements, which draw their
power from PowerProvidingEntity instances. If a PowerConsumingEntity also classifies as a
PowerProvidingEntity, PCA repeats this recursively. PCA determines the power consump-
tion of each entity by calling the referenced power consumption calculator.

state :M,
tcur

input :metric providersM , PowerProvidingEntity ppe,
1 switch Type of ppe do
2 case PowerConsumingProvidingEntity do

3 C ← ∅ foreach consumer in ppe.nestedPowerConsumingEntities do

4 evaluatePowerConsumption (consumer,M);
5 C ← C ∪ (consumer ,pconsumer);
6 end

7 return calculate (C) with calculator of ppe;
8 case PowerConsumingResource do

9 return calculate (M) with calculator of ppe;
10 end

output :Power consumption Pppe at time tcur

Algorithm 2: Power consumption analysis evaluatePowerConsumption at the point
in time tcur

Algorithm 2 lists the calculation logic of evaluatePowerConsumption used to calculate
the power consumption of ppe. If the type of ppe extends PowerConsumingProvidingEntity,
the algorithm calculates the current power consumption of all connected consumers. Then,
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it uses the calculator of ppe to aggregate the consumption. If ppe extends PowerConsuming-

Resource, the algorithm calculates the power consumption using the resource calculator of
ppe.

4.1.5. Calculating Energy Consumption

In order to calculate the energy consumption E of a system in an interval [t0, tend), PCA
integrates over the power consumption samples by means of numerical integration. PCA
uses the power consumption analysis presented in Section 4.1.4 to estimate the power
consumption of a software system over time. The estimated power consumption samples
serve as input for the energy consumption estimation.
PCA employs Simpson’s rule for estimating the energy consumption. Prerequisite

for the use of Simpson’s rule is that the time intervals between all successive power
samples power consumption samples are of equal width. The samples from both post-
and intra-simulation power consumption analysis meet this requirement. In case of the
post-simulation analysis, all utilization metrics are sampled at the same rate via derived
metric providers. PCA calculates power consumption predictions of a selected power
provider using the metric measurement values. As the metric measurement values are
of equal width, the calculated power consumption samples are as well. Intra-simulation
power consumption analysis samples the power consumption using explicitly defined
sampling rates. All sampling rates are defined with uniform interval width across all
sampled metric values. Consequently, the power consumption estimation samples are of
equal width.
When no equi-width power samples are available, the PCA can easily be modified to

use the trapezoidal rule to estimate the energy consumption based on power consumption
estimates.

4.2. Consideration of Power Consumption in Design Time

Analyses of Self-Adaptive Systems

This section discusses the extension of PCA to the analysis of energy-conscious self-
adaptive software systems. The previous section outlined the PCA method for calculating
power consumption of a static software system. Analyzing the power consumption of
self-adaptive software systems introduces the following additional challenges:

Ch1 Availability of power consumption predictions to adaptation mechanism.

Self-adaptive software systems adapt their structure, deployment and composition
as a reaction to monitored changes to the environment of the system. Energy-
conscious adaptation mechanisms adapt the system to provision its services to
achieve energy efficiency goals. Energy-conscious adaptation mechanisms may
take adaptation decisions based on the current or past power consumption. They
thus require continuous access to power consumption predictions. In order to
evaluate the effect of energy-conscious adaptation mechanisms on QoS and energy
efficiency of the system at design time, our analysis must support the evaluation of
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these adaptation mechanisms. This requires us to expose power predictions to the
mechanism during the design time analysis.

Ch2 Effects of reconfigurations on power consumption. Energy-conscious adapta-
tions reconfigure the system with the goal of reducing power consumption of the
system. In order to reason on the efficiency and effectiveness of energy-conscious
adaptations, the analysis needs to consider the effect of reconfigurations on power
consumption. An example reconfiguration that affects power consumption is the
startup of an additional server.

Challenges Ch1 and Ch2 induce a coupling of design time power consumption analysis,
and the performance analysis for self-adaptive software systems. The coupling must
be realized specific to a design time analysis of self-adaptive software system. For self-
adaptive systems, the power consumption analysis predicts the power consumption as
part of the analysis. Hence, it is an intra-simulation analysis. Challenge Ch2 necessitates
that power consumption predictions need to be exposed to the adaptation mechanisms,
which execute as part of a design time performance analysis. Consequently, the power
consumption measurements need to be exposed to a suitable interface of the design time
self-adaptive systems analysis. ChallengeCh2 requires that the Power Consumption model
is part of the runtime models on which the adaptation mechanisms reason. Thus, the
Power Consumption model needs to be registered with analysis-specific interfaces.

We opted to realize the coupling between PCA and the design time performance analysis
SimuLizar. The following discusses the intra-simulation coupling of power consumption
and design time performance analysis by the example of PCA and SimuLizar.

4.2.1. Extending the Runtime Model by the Power Consumption Model

Energy-conscious adaptation mechanisms reconfigure the system to meet energy consump-
tion and other quality goals. For this, the adaptation mechanisms may leverage adaptation
actions that actively or indirectly affect the tradeoff between these goals. Section 2.3
introduced different power management actions. Active power management, e.g., DVFS,
controls the tradeoff between power consumption and performance. It achieves this by
switching between different power states, where each state represents a different tradeoff.
Energy-conscious adaptation mechanisms switch between these states depending on past
and expected energy consumption. The mechanisms use the power states as adaptation
points.

In order to evaluate energy-conscious adaptationmechanisms at design time, a definition
of available adaptation points needs to be exposed to the mechanisms. In self-adaptive
software systems, adaptation points can be defined as an explicit [96] or implicit [217]
part of the runtime model. If the adaptation points are implicit, adaptations are enacted
by transforming the runtime model from the current configuration to an intended target
configuration. SimuLizar uses PCM as the runtime model. The adaptation points definition
is an implicit part of PCM. This means that adaptation mechanisms transform the runtime
PCM model to enact adaptations.

This thesis extends the runtime model of SimuLizar with optional instances of the Power
Consumption metamodel. The PSM viewpoint of our Power Consumption metamodel can
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be used to represent the power states and transitions of a power management mechanism.
This is a prerequisite for addressing Challenge Ch2. The model must be accessible to
reconfiguration rules. This is a prerequisite to support the evaluation of the rules which
use active power management techniques to improve the energy efficiency of the system.

Adaptation mechanisms can affect the configuration of the system by transforming the
runtime Power Consumption metamodel instances. The mechanisms may enact changes
in the power state of resources, i.e., StatefulPowerConsumingResourceSet instances, by
changing their power state. To enact the transition to a new power state, an adaptation
mechanism simply has to set the powerState reference of a resource to the desired target
power state.

4.2.2. Consideration of Power State Changes in the Power Consumption

Analysis

Active power management mechanisms as subsumed by ACPI allow to adapt the state of
resources in the deployment environment of a software system. Active power management
can be used to reduce the power consumption of the system. Conversely, it can be used to
increase performance in exchange for higher power consumption. Section 3.2.2 presented
a model for characterizing the consumption states of resources as Power State Machines
(PSMs). Section 3.2.3.2 outlined how power consumption characteristics when transitioning
between states can be modeled.

PCA evaluates the power consumption in transition states via a specialized power model
calculator. StatefulPowerConsumingResourceCalculator implements the IResourcePowerMod-

elCalculator interface depicted in Figure 4.3. StatefulPowerConsumingResourceCalculator

consists of a TransitionStatePowerModelCalculator for each state transition, and a IResour-
cePowerModelCalculator for each consumption state of the Power State Machine (PSM).

The StatefulPowerConsumingResourceCalculator evaluates the power consumption of a
set of resources on the basis of their current state. It delegates the consumption calculation
to the calculator of the current state. StatefulPowerConsumingResourceCalculator holds an
internal state, which represents the current power state. The calculator needs to maintain
the state for its associated resource. This is needed as the prediction of the calculator
depends not only on metric input values, but also on the current resource state.

The TransitionStatePowerModelCalculator evaluates the power consumption in the tran-
sition from the source to the target state of the PSM. The calculator evaluates the function
p : [0, tmax] → P specified in the ConsumptionBehaviour of the TransitionStateBinding. The
calculator parametrizes p with the time that has passed since the transition was triggered.

4.2.3. Integration of Power Consumption Analysis and SimuLizar

This section provides an overview of the integration of PCA and SimuLizar. The integration
enables the design time analysis of energy conscious self-adaptive software systems
modeled with PCM and the Power Consumption metamodel.
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Definition ofmonitored power consumption infrastructure. This thesis leverages the Mon-
itor specification model of SimuLizar to specify for which parts of the infrastructure
the PCA should expose power consumption predictions to adaptation mechanisms. The
self-adaptive systems architect creates a monitor for each of the entities in the power
consumption infrastructure that she wants to expose to the self-adaptation mechanisms.
As part of the monitor specification, the software architect defines the sampling frequency
and method by which power consumption predictions should be calculated.

Analyzing power consumption within the performance analysis of SimuLizar. The intra-
simulation analysis uses the same power consumption prediction algorithm as the post-
simulation anaylsis. Algorithm 1 lists this algorithm. The intra-simulation analysis cal-
culates the power consumption for each PowerProvidingEntity specified in the monitor
specification model.

SimuLizar

Power

ProvidingEntity

ppe

runtime model

calculate current power

consumption of ppe

Interval i

power consumption

predictions

add to runtime model

trigger

reconfigurations

new power

consumption

measurement

available

<<Loop>>

(test) for all 

reconfiguration rules that 

monitor ppe

evaluate 

reconfiguration 

rule

Power Consumption Analyzer

Figure 4.4.: Activity diagram of the power consumption analysis coupling with SimuLizar

Figure 4.4 depicts the power consumption process of the intra-simulation analysis.
The analysis triggers a new power consumption evaluation for the interval i specified
in a monitor. It calculates the power consumption of the PowerProvidingEntity using the
consumption prediction algorithm. Subsequently, the analysis exposes the new power
consumption measurement to the adaptation mechanism. Reconfiguration rules then may
act upon the new power consumption measurement.
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Unlike the inter-simulation analysis presented in Section 4.1, the coupled analysis
applies a sampling-based strategy for evaluating power consumption. At each sampled
point in time, the power consumption algorithm estimates the power consumption of
processing resources using the most recently collected metric measurements.
For power distribution infrastructure, i.e., PowerConsumingProvidingEntity, there are

two possible alternative sampling strategies. First, the power consumption of all connected
consumers may be sampled every time we evaluate the power consumption of the dis-
tribution infrastructure. Second, power consumption at the distribution infrastructure
entity may be interpolated from previous predictions for the connected consumers. By
default, we employ the first strategy, as it offers the highest prediction accuracy with a
minor difference in performance.

4.3. Effect of Design Decisions on Energy Efficiency

In the scope of this thesis, energy efficiency (EE) is defined as the ratio of performance
and power consumption (see Section 2.2). Design decisions made on an architectural
level impact both performance and power consumption [184, 200]. Consequently, both
performance and power consumption of the system have to be analyzed to reason on the
effect of design decisions on EE.
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Figure 4.5.: UML Activity diagram of process for evaluating the impact of design decisions
on energy efficiency

Figure 4.5 depicts the process this thesis proposes for evaluating the impact of design
decisions on EE. The following discusses the involved activities.
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In the first step, the software architect has to identify relevant user workload definitions.
Both performance and power consumption strongly depend upon the load intensity and
workload mix. For low load intensities, it might make sense to consolidate multiple
components on the same server to reduce power consumption. However, it might not
be possible to perform said consolidation for higher load intensities without violating
performance SLAs.

The set of workloadsw serves as input to the evaluate performance and energy consump-

tion activity. The architect triggers a performance and power consumption analysis for
every workload definition inw . For the performance analysis, the architect can use the
PCM simulators SimuLizar or SimuCom. The architect can either specify the performance
model based on early estimates, or extract it via automated tooling [220]. PCA realizes
the power consumption analysis, as we discussed in Chapter 4. If a user performs the
post-simulation consumption analysis, PCA executes on the results of the performance
analysis. For the intra-simulation analysis, the power consumption analysis runs coupled
with the performance analysis.

After performing the power and performance analysis onw , the architect applies a set of
design decisions s to the architecture performance modelm and the Power Consumption
model p. The apply design decisions activity produces the architecture modelms and the
Power Consumption models ps . The architect applies the decisions on both models. The
architect uses the performance and energy consumption analysis to evaluate the resulting
system (ms ,ps) in the respective quality dimensions.
In the final activity evaluate impact on energy efficiency, the architect reasons on the

effect of the design decision set s on EE. The architect determines the effect of design
decisions on EE as a comparison of EE prior to and after the design decisions set s has
been applied. If the architect is indifferent regarding the performance effect of a design
decision, its effect on EE can be quantified as the relative change in energy consumption
between (m,p) and (ms ,ps). A scenario where the architect may be indifferent is if both
alternatives meet the performance requirements. In this scenario, the scenario with the
lower power consumption would meet the requirements in a more efficient manner.

In addition to the comparative EE analysis, the architect may leverage any of the existing
EE metrics discussed in Section 2.2 to rank design alternatives. All of the discussed metrics
evaluate EE as a ratio of work, and power or energy consumption. In order to reason on
EE using the presented metrics, both power and performance metrics are needed.

The EE of a software system depends on the workload issued by its users. If the architect
expects different workload intensities and patterns, she has to accumulate the results of
multiple EE analyses. Each EE analysis evaluates the efficiency of the system for a specific
user workload. The architect may accumulate multiple EE estimates based on the expected
workload distribution.

4.4. Toolkit Architecture

This section provides an overview of the PCA architecture and its integration with existing
Palladio analysis tooling. The PCA implementation conforms to the component-based
design paradigm. It is realized inside the Eclipse framework and integrates with the
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Palladio Bench [22]. Each component discussed in the following has been realized as an
Eclipse plugin. The wiki page [161] gives an overview of update sites via which the PCA
tooling can be installed into an Eclipse-based Palladio IDE.
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Figure 4.6.: Simpli�ed UML component diagram of PCA architecture and integration with
Palladio tooling. Component namespace pre�xes are omitted for brevity.

Figure 4.6 shows a simpli�ed view on the architecture of PCA and its integration with
Palladio tooling. The core PCA components occupy the de.fzi.power.* namespace. The
diagram groups these components with a frame of the same name. The diagram does not
display editor components and interface components that are re-exported by the displayed
components. The �gure does not depict components and dependencies that are not the
focus of the architecture discussion. It only shows essential components from QuAL, and
the components of SimuLizar involved in the intra-simulation power analysis.
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PCA Core Components The power component implements our Power Consumption me-
tamodel on the basis of the Eclipse Modeling Framework (EMF) technology stack. The
power.specification.resources component offers a base library, including common power
model specifications. This includes linear power models for processing resources, and
distribution models with linear loss factors.

The power.interpreter component implements the core power consumption evaluation
logic discussed in Section 4.1. The component offers two extension point interfaces
ExtendedMeasureProvider and CalculatorFactory. ExtendedMeasureProvider enables the
registration of components, which calculate derived metrics from available metrics. Cal-
culatorFactory offers support for registering calculators for specific power model types.
Section 4.1 provide more information on the purpose and design of the interfaces. The inter-
preter calculates power consumption of entities in a software system. It uses data streams
from EDP2 as the source of input metric measurements. These measurements are then
passed to the calculators as Section 4.1 outlined. The EDP2 component edp2.datastream
defines this shared data stream interface type with IDataStream.

The power.interpreter.calculator.expressionoasis and power.interpreter.calculator.essential

components implement the CalculatorFactory. Both components offer implementations of
the CalculatorFactory interface defined in power.interpreter. The components lack explicit
provided interfaces on a component level. The power.interpreter component selects and
calls the extensions based on the contract established as part of its CalculatorFactory
extension point. Vogel and Milinkovich [216] further discusses Eclipse extension point
semantics. The power.interpreter.calculator.expressionoasis component implements the
calculator logic for all instances of the DeclarativePowerModelSpecification type from the
Power Consumption metamodel. Section 3.2.1 discussed the semantics of this power
model type. The component uses the ExpressionOasis framework by VedantaTree [214] to
evaluate the mathematical expressions specified by the declarative power model type. The
expressions instantiate an extensible grammar. The grammar defines the domain of valid
declarative power model types.

The power.interpreter.calculator.essential component contains calculator implementa-
tions for a set of standard black-box power model types, e.g., piecewise defined linear
power models for ResourcePowerModelSpecifications, and PowerProvidingEntities with linear
loss factors. The library contains implementations of all black box models specified in
power.specification.resources.

The ExtendedMeasureProvider extension point of the interpreter allows for the regis-
tration of additional metric providers that are derived from other input metrics. The
previous Section 4.1 had introduced the interface contract of the extension point. The
power.interpreter.measureprovider.utilization component offers UtilizationFilterMeasure-

Provider that calculates the utilization of resources based on their work queue length. For
this, the filter uses the component experimentanalysis.utilization component from QuAL.
This QuAL component was implemented as part of this thesis to calculate utilization
metrics on any EDP2 metric data streams. Krach [114] uses the ExtendedMeasureProvider

extension point to register additional derived wireless network metric providers for mobile
devices. The registered metric providers are added to the power model input metrics, as
discussed in Section 4.1.
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PCAUI The power.ui component serves as the UI entry point to the post-simulation power
consumption analysis of PCA. It calculates power consumption via the power.interpreter,
and the energy consumption with the power.calculator.energy component. Unlike the name
suggests, power.calculator.energy does not implement the calculator interface. Rather, it
calculates the energy consumption of a software system based on a set of passed power
consumption samples. The calculator estimates the energy consumption by means of
numerical integration.

SimuLizar Intra-Simulation Power Analysis The simulizar.power component realizes the
intra-simulation power analysis. It contributes the Power Consumption metamodel to
the runtime model of SimuLizar via the ModelLoad extension point. The component
calculates power consumption using power.interpreter, and the energy consumption us-
ing power.calculator.energy. Instead of EDP2 metric data streams, the intra-simulation
integration calculates the power consumption using the measurements in the Palladio
Runtime Measurement Model (PRM) [20] of SimuLizar. simulizar.runtimemeasurement

couples PRM with SimuLizar. It allows for the registration of additional metric providers
to SimuLizar. simulizar.power contributes the power consumption measurements via this
interface. SimuLizar propagates all measurements in PRM and the EDP2 repository of the
analysis to all plugins registered via its ProbeFrameworkListenerDecorator extension point.

Simulizar uses simulizar.slidingwindow to calculate sliding window aggregates on met-
rics that are recorded in the PRM instance of an analysis. As part of this thesis, a genericmet-
ric processing pipeline based on the pipes-and-filters pattern was introduced to SimuLizar.
This generic aggregation mechanism is used to calculate the average utilization in the
sampling interval. The mechanism is implemented separate from its equivalent for the
post simulation analysis, the UtilizationFilterMeasureProvider.

4.5. Assumptions and Limitations

The PCA approach bases on a set of assumptions. The following summarizes the assump-
tions and discusses limitations.

Availability of architecture performance model. The PCA prediction approach requires
an architecture performance model as a prerequisite for power and energy consumption
predictions. This does not limit the applicability of the approach if an architecture per-
formance model is already used to evaluate the performance of a system at design time.
Investigating the impact of design decisions on power or energy consumption in isolation
of other quality characteristics offers little insight to a software architect. In disregard of
all other quality criteria, power and energy consumption is typically minimal if a minimal
number of servers is used. However, the consolidation of software components on a mini-
mal number of servers negatively impacts performance. This illustrates that the evaluation
of design decisions regarding their effect on energy efficiency inherently requires both
performance and energy consumption predictions. Software architects can use the same
architecture performance model as the foundation of performance and energy consump-
tion analyses when they apply our PCA prediction approach. Thus, the assumption does
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not limit the applicability of our approach due to the interconnectedness of power and
performance.

Availability of consumption characteristics description. The presented analysis approach
PCA relies on a consumption characteristics description in the form of a Power Consump-
tion model instance. Power Consumption models can be extracted automatically using the
method outlined in Chapter 5. Alternatively, they can be defined manually based on power
models extracted by different approaches. We designed PCA to be extensible. If the power
consumption of a set of power consumers in a software system can not be expressed as
a mathematical expression, PCA supports the introduction of complex black-box power
models. The implementation of the black-box power models can be added to PCA via
custom calculators.

Limited influence of hidden device states. McCullough et al. [135] name “hidden device
statesž as a source of inaccuracies in power consumption predictions. Hidden device states
are power saving states which are not explicitly documented and accessible, e.g., via IPMI.
The PCA prediction approach outlined in this thesis assumes that

1. the influence of such hidden states on the power consumption of the system under
investigation is limited, or

2. the states can easily be identified via profiling.

Different evaluations [35, 65, 69, 82, 104, 135, 172, 231] show that power models for
servers are accurate even when ignoring hidden device states. Thus, assumption 1 holds
for servers. For mobile devices, hidden device states can significantly impact power
consumption. However, these states can be identified by means of profiling, as illustrated
by Yoon et al. [230]. The power consumption of identified states can be analyzed with
PCA. Consequently, assumption 2 holds for mobile devices. Other device categories, such
as embedded systems, are not investigated in this thesis. Due to their limited influence on
power consumption prediction accuracy in the domain of enterprise and mobile computing,
the assumption is considered weak.

Noexplicitmodelingofvariations inpowerconsumptionacross identical components. Iden-
tical server components can showcase different power consumption characteristics due to
variations in the production process [108]. Our metamodel does not explicitly express these
variations as part of the Binding or Specification viewpoint. The influence of consumption
variations of individual components on the full server is less significant. Hence, we opted
to not include an explicit abstraction of consumption variations in the model. In order
to apply our model to domains where the variations have a more significant impact, i.e.,
sensor networks, this limitation can be addressed in one of the following ways:

1. Modeling of variations between components via different PowerBindings. The differ-
ences in power consumption between individual server components can be expressed
by creating a PowerBinding for each varying type. A disadvantage of this approach
is that it does not model uncertainty, but rather the variations between specific
servers.
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2. Use of a FixedFactor to model the variability across instances of the same device. In
this case, the consumption variability can be modeled via a stochastic power model.

3. Introduction of a new type which extends ConsumptionFactor. This type could be
used to distinguish consumption variations from other factors that describe the
power consumption of a component.

Approaches 1 and 2 are supported by the current modeling abstraction. Only 3 would
require an explicit model extension regarding the captured consumption factors. As the
metamodel has been designed to support the introduction of new ConsumptionFactors, we
consider the limitation regarding the chosen modeling abstraction minor.

4.6. Summary

This chapter presented the PCA approach for the design time analysis of power and
energy consumption of a software system. Our approach complements performance
prediction approaches. Thereby, it enables trade-offs between performance and power
consumption. PCA predicts the power consumption of individual infrastructure elements
based on performance metric predictions. It leverages existing performance analyses such
as SimuCom [22] and SimuLizar [18, 20] as the source of its predictions. Furthermore, it
supports the integration of derived metrics as input metrics. PCA supports the analysis
of power consumption for static as well as self-adaptive software systems. Based on the
power consumption prediction approach, the chapter developed a method for evaluating
the impact of design decisions on energy efficiency (EE).
We designed PCA to be extensible, e.g., to support the consideration of new power

model types. The implementation as of writing this thesis supports a set of black-box
power models used in the evaluation of [200]. Additionally, it supports the analysis of
power models that are defined as mathematical expressions.
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This chapter presents an automated approach for power model extraction of servers. We
designed the approach to extract power models as input for architecture-level power
consumption analyses. The extracted power models predict the power consumption of a
server from a set of input system metrics, e.g., CPU utilization. A power model has to be
learned once for each server type. Once the power model has been learned, the power
model can be used to evaluate the power consumption of different software systems if
they were to be deployed on a server of the same server type. We published the method
presented in this chapter in [201].

Our approach aims to reduce the effort required to derive power models by automating
server profiling, model training, and model selection. The approach uses systematic
experiments to obtain a representative power consumption profile of a server. The profile
serves as input to model training techniques, such as statistical learning. We leverage
these techniques to learn power models. Using an information-theoretic model selection
criterion, we support the selection of relevant system metrics, and the power model for
design time predictions.
We implemented the systematic server profiling in a server profiling framework. We

implemented the framework atop the technical foundation of SERT [29]. The profil-
ing collects power consumption measurements and system level performance metrics,
e.g., CPU utilization and HDD throughput. Our framework collects power consumption
measurements from a dedicated wall power meter. Our implementation of the model
training automates the construction of instances of the Power Consumption metamodel
presented in Chapter 3. It automates the parametrization of power model bindings from a
PowerBindingRepository. Finally, we rank all bindings based on our ranking criterion.
In Section 5.1 we discuss the challenges that have to be addressed by an automated

approach for power model extraction. Section 5.2 presents our automated power model
extraction method. Section 5.3 outlines an extension of our approach for the extraction
based on historical measurements. Assumptions and limitations are discussed in Section 5.5.
Lastly, Section 5.6 provides a summary.

5.1. Challenges

Chapter 4 presented the design time power consumption prediction approach PCA. PCA
relies on accurate power models to predict the power consumption of a software sys-
tem. Power models can be derived via manual measurement and model parametrization.
However, the manual extraction of power models is cumbersome and error-prone. In
this context, extraction refers to the collection of training data, and the training of power
models for a server on the data. We derived Research Question 5 from this observation:
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Research Question 5. How can the effort in deriving power models for architecture-level

power consumption analyses be reduced?

Our architecture-level analysis predicts the power consumption of a software system
using these power models. Our power consumption analysis uses performance metric
predictions as input to the power consumption analysis. This avoids a redundant behavior
specification as a prerequisite to analyze power and performance characteristics. The
software architect does not need to provide a separate behavior specification, which
is tailored towards the prediction of power consumption. Instead, she can use metric
predictions from performance model specifications as input to the power consumption
analysis.
The Power Consumption metamodel complements the behavior specification with a

description of server power consumption. This description can be reused to evaluate the
power consumption of different software architectures and workload mixes. Depending
on the hardware, the power consumption may correlate with different power consumption
metrics. The power consumption of servers has been observed to strongly correlate
with CPU utilization. It is not clear whether the consideration of additional metrics, e.g.,
storage utilization, may improve prediction accuracy. This led us to the following Research
Question:

Research Question 7. How can software architects and system deployers be supported in

the selection of input metrics for energy efficiency analyses?

We derive a set of challenges from the two research questions. Our approach aims at
addressing these Challenges.

Ch1 Required knowledge of metrics affecting power consumption. The software
architect has to identify central metrics that impact the power consumption of a
software system. In order to avoid unnecessary effort, only metrics that significantly
impact the prediction accuracy of power and performance should be considered.
Every additional metric considered by a power model increases the complexity of
model learning. The parameter space of a system metric-based power model grows
exponentially with the number of input metrics. More importantly, every introduced
metric also needs to be predicted by the performance analysis that provides the
prediction input for the power model. The prediction of metrics, e.g., storage read
and write throughput, requires that the architectural performance model provides
the information to predict these metrics. In case of storage metrics, this necessitates
a modeling of resource demands caused by storage accesses.

Ch2 Selection and construction of representative workloads. When extracting
power models for use in design time analyses, the implementation of the system
is not yet fully available. Consequently, we cannot train power models using the
target application and user load. The construction of power models for design time
analyses thus relies on workloads that are representative of the target workload. We
refer to a set of workloads as representative if it meets the following criteria.
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· It produces representative measurements. We consider measurements repre-
sentative if they cover the system metric load levels expected from the software
system under design.

· It allows to correlate the variance of system metrics with power consumption
for the considered metric measurement domain.

Ch3 Selection of suitable power model. Over the years, many different power model
types have been proposed to model the power consumption of servers using sys-
tem metrics [59]. The selection of a power model that best describes the power
consumption of a server under investigation has not been addressed in previous
work.

5.2. Power Model Extraction by Systematic Experimentation
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Figure 5.1.: Overview of the power model model extraction process.

Figure 5.1 depicts an overview of the power model extraction method for extracting
power models for architecture-level energy efficiency analyses. The method process is
subdivided into three main steps server profiling, model training and model selection. In
server profiling, we automatically profile the server under investigation for a set of resource
metrics. This produces a server profile used as input for themodel training. Model training
trains a set of power models on the measured system metrics and power consumption.
The third step model selection ranks power models based on their predicted accuracy. This
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enables users to select a suitable power models, and reason on the effects of system metrics
on prediction accuracy.
The following sections further elaborate on each of the three phases. Section 5.2.1

presents our approach for an experiment-driven server profiling. Section 5.2.2 outlines
how the resulting power consumption profiles can be used to learn power models. Section
5.2.3 describes a model selection method that can be used to evaluate the impact of metrics
on prediction accuracy.

5.2.1. Server Profiling

This section presents an approach for the automated profiling of server power consumption
for predefined metric measurement targets. The following refers to the realization of the
approach as profiling framework. Prerequisite to our approach is the availability of a
measuring device for collecting power data. This can either be a dedicated power meter
connected to the wall socket of the server PSU, or a meter built into the PSU.

5.2.1.1. Running Example

The running example illustrates our profiling method along the analysis of an enterprise
server deployment environment. We employ the PowerEdge R815 server as an example of
a server in this category.
Design time performance analyses like SimuLizar [20] or SimuCom [22] support the

prediction of central system performancemetrics. Examples of suchmetrics are the average
CPU utilization ucpu, storage read tpread and write throughput tpwrite. Our PCA approach
uses these system metric predictions as input to its design time power consumption
predictions. PCA uses power models to evaluate the power consumption of hardware
resources based on the input metric predictions. PCA thus has to rely on metrics supported
by the design time performance analysis.
Our running example assumes that the three metrics ucpu, tpread, and tpwrite can be

predicted by the used performance analysis.

5.2.1.2. Selection of Used Resource Metrics andWorkloads

The user initially defines the set of metrics that she considers candidates for input parame-
ters of power models. Each metric quantifies the utilization of a system resource such as
CPU or storage devices. The metrics selected by the user are the system metrics that the
server profiling considers when measuring out the server under investigation.
The metric set is defined as Mprofile = {m1, . . . ,mn} ⊆ M . Hereby, M is the set of

measurable metrics. The metrics Mprofile selected by the user are the metrics that she
would be able to predict at design time. For our running example, we select the metrics
Mprofile = {ucpu, tpwrite, tpread}

Based on the metrics selected by the user in this step, server profiling can automatically
select workloadsW ⊂Wrepo from a set of workloads that are predefined in a repository
Wrepo. Each workload w ∈Wrepo has a controllable load intensity parameter l . The load
intensity parameter l ∈ (0,∞) · 1/s controls the rate with which a load driver executes
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workload transactions. Every W ⊂ Wrepo is assigned to exactly one metric mj ∈ M ,
where steady state measurements ofmj increase monotonically with l . This implies that
a workload w stresses the utilization of one of the resources that is quantified by the
metrics selected by the user. The increased utilization manifests in higher measurement
values ofmj . Information of a relationship of l andmj is persisted alongside the repository
definitionWrepo. The user does not need to determine the relation betweenmj and l . Once
a new workload has been added toW ⊂Wrepo, any future user can leverage the persisted
relation.
An example workload for ucpu is the AES encryption workload wAES from the SERT

framework. For the CPU-intensive workloadwAES, ucpu increases monotonically with l .
wrwrite is an I/O intensive workload from SERT. It performs storage write operations that
follow a randomized access pattern. Forwrwrite, tpwrite increases monotonically in l .

Individual workloads can be combined to workload mixes. A workload mix is a subset
{w1, . . . ,wn} ⊂W . {waes,wrwrite} is a workload mix that combines a CPU- with a storage-
intensive workload. As a default, all possible workload mixes may be used. To reduce
measuring effort and time, the user can limit the set of considered workloads.

5.2.1.3. Definition of Profiling Ranges

The automated power consumption profiling uses the workloads selected in the previous
step to measure out the profiling domain. The profiling domain marks the range of
measurements that the user considers relevant. The profiling domain can be derived from
benchmarks or stress tests that push the metric to the maximum or minimum measurable
value. The range between minimum and maximum values corresponds to the profiling
domain of an individual metric. The combined domain of each metric forms a conservative
boundary of the multidimensional profiling domain. In conjunction with the workload
selection from step 5.2.1.2, the combined domain limits form the profiling configuration.
In order to profile the server for specific metric measurement thresholds, we have to

sample its profiling domain. Our profiling framework, by default, employs an equi-width
sampling of the profiling domain of each considered metric. Then, it constructs the full
profiling domain as the Cartesian product of the individual domains.

For the example PowerEdge R815 server, we determined the maximumwrite throughput
to be around 120 MB/s. Using a sample size of six, equi-width sampling produces the write
grid Ltpwrite = {24iMB/s | 0 ≤ i ≤ 5 ∧ i ∈ N} for the R815 server. An equi-width grid for
ucpu with sample size 21 results in Lucpu = { 1

20i | 0 ≤ i ≤ 20 ∧ i ∈ N}. For ucpu and tpwrite,
this results in a combined profiling domain grid of Lucpu × Ltpwrite .

5.2.1.4. Profiling Server Power Consumption

The profiling of the server automates the extraction of a representative server for a given
profiling configuration. The server profiling executes the predefined workload mixes on
the target environment. It conducts a profiling run for each tuple in the profiling grid. An
example tuple from the grid Lucpu × Ltpwrite is (lucpu, ltpwrite) = (0.55, 24MB/s).

Figure 5.2 visualizes a profiling run for (lucpu, ltpwrite) of the running example. Figure 5.2b
shows the graphs for the storage intensive workload wrwrite. Figure 5.2a displays the
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(a) Top: ucpu. In gray: smoothed average of the measurements, and target value 55%. Bottom:
Transaction delays forwAES.
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Figure 5.2.: Example run for target level (lucpu, ltpwrite) = (0.55, 24MB/s) of workload mix
(wAES,wrwrite). Both displayed processes 5.2b and 5.2a execute in parallel.

90



5.2. Power Model Extraction by Systematic Experimentation

results for the CPU intensive workloadwAES. The top half graph of Figures 5.2a and 5.2b
display metric samples over time as black points. The sliding window average over the
measurements is displayed as a gray line. The lower half graph shows the delays between
successive transaction executions over time for the given workload. The profiling uses
varying delays to target different load intensities.

The framework executes both workloads in parallel. Thereby, it is able to observe and
react upon effects of each workload on the metric values of other controlled workloads. In
the running example, the storage intensive workloadwrwrite also causes some load on the
CPU. To consider this load, the framework has to increase the delay of wAES above the
delay of an isolated execution ofwAES.
A profiling run executes in six phases. The vertical lines in Figure 5.2 highlight these

phases. In phase 1, the profiling framework initializes each workload in the workload
mix. Phase 2 is the calibration phase. The calibration varies the mean delay value until it
reaches a delay value for which the workload stresses the system to the target level. The
load intensity calibration is performed to ensure that measurements are collected for the
specified target measurements. For this, the profiling framework controls the mean delay
of all workloads in a workload mix in parallel.

state : thresholdReached ← false
input :Current system metric value u, Target metric value ut ,

Threshold metric value uthold, Metric-specific alpha αm,
Initial delay currentDelay

output :Delay to throttle workload currentDelay

1 if ¬thresholdReached then
2 if u < uthold then thresholdReached ← true;
3 else currentDelay ← 2 · currentDelay;
4 else

5 targetDelay ← currentDelay · u
ut
;

6 currentDelay ← currentDelay · (1 − αm) + targetDelay · αm;
7 if αm > 0.1 then αm ← 0.9 · αm + 0.01;

Algorithm 3: Adaptive calibration policy for controlling workload intensity.

Algorithm 3 delineates the load intensity calibration algorithm. The profiling framework
executes the algorithm in each profiling run. The framework executes the algorithm
concurrently for each workload in the workload mix. The framework periodically executes
an iteration of the algorithm with the configured calibration interval time. The example
profiling run depicted in Figure 5.2 was executed with an interval time of 0.7 seconds.
The calibration algorithm operates on a controlled system metric u. We assume u to

be a metric whose measurements grow monotonically with the load intensity l . The load
intensity grows proportional to the inverse delay currentDelay. ut is the target metric
measurement level. For the example workload mix ut has the values 0.55 and 24MB/s,
respectively.

The algorithm proceeds in the following way. First, the algorithm tries to reach a practi-
cal starting value for currentDelay (lines 1ś3). The algorithm starts from an initial input
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value for currentDelay. This input value is workload specific, as the size and complexity
of transactions varies between workloads. The initial delay is also system specific to a
certain extent. Different initial delays should be used if two systems process transactions
at rates that are orders of magnitude apart. The algorithm doubles the delay in each
iteration, starting from the initial currentDelay. The algorithm performs the exponential
delay adjustment to prevent contention on the resource of u. Otherwise, if the initial
currentDelay were set too low, the calibration could overload the resource. Since the initial
transaction delay is too high for wAES, it is not visible in Figure 5.2a. For the storage
intensive workloadwrwrite, the initial exponential delay adaption was not needed. Thus,
Figure 5.2b does not display corresponding effects.

After the initial starting value has been found, the algorithm gradually adjusts the delay
(lines 5ś7). The algorithm estimates the delay required to achieve the target level ut as the
delay value used in the last iteration multiplied with the ratio of the current value u and
ut .

Line 6 applies an exponentially moving weighted average (EWMA) to the controlled
delay value currentDelay. We employ an exponentially smoothened delay value to lessen
the effect of temporary fluctuations of the controlled systemmetric (line 6). am is the metric
specific exponential smoothing factor. The EWMA quickly devalues older measurements
for larger αm. For smaller αm, older measurements have a higher weight.
The running example illustrates the benefit of the exponential smoothing. As we can

see in Figure 5.2b, individual measurements of tpwrite scatter strongly throughout the
calibration phase. One reason for this is the aggregation of write operations in storage
drivers and middleware.

The algorithm reduces the exponential smoothing factor αm throughout the calibration
to counteract fluctuations caused by the scattering of measurement values (line 7). This
reduces the effect of later target delay estimations. Line 7 causes αm to approach a
smoothing factor of 0.1 from above. For the running example, the reduction causes
currentDelay to converge towards the delay, which reaches an average utilization close to
the intended target metric tuple (lucpu, ltpwrite) = (0.55, 24MB/s).

Figure 5.2b illustrates the functioning of the second part of the load calibration algorithm
by the example of wrwrite and tpwrite. The lower half of the graph shows the value of
currentDelay at any point throughout the calibration. The starting value of currentDelay is
10ms. Initially, αm is set to 0.2 for wrwrite and the write throughput metric tpwrite. Each
subsequent run of the algorithm reduces αm towards 0.1. The algorithm quickly steers
currentDelay towards approximately 30ms.

The load calibration forwrwrite andwAES shown in Figure 5.2a operates with an initial
value αm = 0.65. The transaction delay starts at 30ms and quickly gets reduced below
2.5ms. Due to the higher stability of the CPU load measurements, the delay remains stable
after the initial reduction.

In phase 3, the framework halts all workloads. Phase 4 serves as a warmup phase. In it,
the framework restarts the workloads with the final delay values. The purpose of phase 3
and 4 is to increase measurement stability.
In phase 5 (measurement), the framework collects measurements of the considered

system level metrics and power. It uses the final value of currentDelay from the calibration
phase to profile the server under investigation for the target level. The framework keeps the
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delay value stable. We consider the measurements collected in this phase as representative
of the system under the target load level. The framework collectsmeasurements throughout
the profiling run using a fixed sampling rate. It smooths the measurements by applying
EWMA to the measurements. Figure 5.2 represents raw measurements as points. The
EWMA is displayed as a gray line.
The workload continues its execution into phase 6 due to technical reasons. I.e., this

gives the framework time to persist the measurements from the measurement phase. The
profiling framework assigns the measurements collected in the measurement phase to the
corresponding target level. The resulting server profile contains a mapping of each input
target level to measurements, and the power consumption measurements collected for the
target level.

5.2.2. Model Training

The model training step trains a set of power model types. A power model type is a power
model with unbound independent variables, as Section 3.2 explained. It produces a set of
power models trained to predict the power consumption of the server under investigation.
The model learning uses the server profile collected in the server profiling phase as

training data. The model learning trains the power models types contained in a provided
Power Model Repository. Section 3.2.1 introduced the repository specification of our
Power Consumption metamodel. Prior to the training, the power model types contained
in the repository are filtered to only contain power model types with metrics that were
considered in the server profiling. In the running example, we filter the repository to only
consider power model types that have a subset of {ucpu, tpwrite, tpread} as unbound input
variables.

Model learning techniques that can be used on the profile are nonparametric and
parametric regression techniques. An example parametric regression technique is iterated
reweighted least squares regression as implemented by Rousseeuw et al. [177]. Instances
of nonparametric regression techniques are MARS [71] or symbolic regression [178]. Both
MARS [58] and symbolic regression [8] have been applied in related work to model the
power consumption of servers.

We employ iterated reweighted least squares regression as the default method to train
declarative power model types, i.e., DeclarativePowerModelSpecifications. As the regression
method requires starting parameters, we apply it to a given ResourcePowerBinding of a
declarative model. The initial values of the FixedFactors of the model serve as starting
parameters. From there, our framework uses the implementation by Rousseeuw et al. [177]
to train the binding on a given server profile.

5.2.3. Model Selection

The model training step trained a set of power models to predict the power consumption
of the server. The power models predict the power consumption with varying degrees of
accuracy. In order to get an unequivocal power consumption prediction, we need to select
one of the power models.
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Selecting a power model for use at runtime is straightforward. The accuracy of runtime
power models can be evaluated using the actual workload. Model prediction accuracy
of power models can be determined at runtime by comparing the runtime predictions
from the power models against measurements. The model that performs best in the direct
comparison of measurement and prediction then can be selected.

At design time, the final application architecture, its implementation and user load may
not be known yet. Consequently, we can not determine the prediction accuracy of power
models by comparing predictions with measurements. The uncertainty regarding the
behavior of the final application makes it challenging to determine and select an accurate
power model.
We employ AIC to evaluate the prediction accuracy of the power models M in the

Power Model Repository that were trained in the previous model training step. Section 2.6
introduced the AIC foundations. We rank all power models in the repository based on
their AIC. If all power models with the metricm ∈ M are dominated by any model in
M \ {m}, we deduce that the consideration ofm likely does not increase the accuracy for
the server under investigation. If the model is not dominated, a trade-off has to be made
between the expected gain in accuracy and the effort required to considerm in the design
time architecture performance model.

In theory, it would be possible to reason on model quality using the relative likelihood of
the models calculated from their AICs [42, p. 75]. This would allow to quantify the differ-
ence between the models on a numerical scale. However, we did not observe meaningful
differences between the models we considered in our validation. Section 7.3.8 discusses
these validation results. The relative likelihood of all but the first place model had very
similar relative statistical likelihood scores. Thus, we concluded that the differentation
along a numerical scale provided no additional benefit beyond the AIC ranking.

5.3. Deriving Power Models fromHistorical Measurements

Section 5.2.1 presented amethod for deriving powermodels via systematic experimentation.
The outlined method requires the server under investigation to be available in isolation
for the profiling period. In this time, no productive workload can be deployed on the
server. During operation, it may not be possible to isolate servers that are in use by
productive workloads. However, it is possible to use power consumption measurements
from production if power consumption measurements can be collected from the server.
The training of power models on historical measurements is an alternative to systematic
profiling. We can use the historical measurements to learn power models if the server
under investigation

· can not be reserved for systematic profiling,

· has historically run workloads that are representative of the target workload.

Prerequisite for the model learning is that historic power and system metric measure-
ments are available for the server over a period of time. In order to avoid an over-weighting
of, e.g., idle measurements, the historic measurements should be cleaned up and filtered.
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One approach towards this is a pre-aggregation of power measurements for measured
values of the system metrics. In the case of CPU utilization ucpu, its domain can be sub-
divided into 100 histogram buckets from 0 to 1. For each of the histogram buckets, the
power measurements can be averaged. If the power model of the server is learned using
the aggregated profile, this reduces the effect of frequent measurements values such as
idle utilization.
Compared to the systematic profiling, the use of historical measurements does not

interfere with the productive use of existing infrastructure. However, the accuracy of the
resulting power models is limited by the availability of representative measurements. The
trained power models have to extrapolate from existing measurements. This leads to inac-
curate consumption predictions, if the recorded measurements do not cover the utilization
levels and workload types relevant for the target workload. If the historical workload
is similar to the expected target workload, the training on historical measurements may
produce more accurate power models than the training on the profile from the systematic
measurements. Since the profiling workload matches the operational workload, the error
introduced by differences, e.g., in memory access patterns, is minimal.

5.4. Implementation

This section provides an overview of the implementation of the profiling framework pre-
sented in this chapter. An overview of the tooling implementation is available online [162].

5.4.1. Server Profiling

The implementation of our systematic profiling approach builds upon the technical foun-
dation of SERT 1.1.1 [187]. This enabled us to reuse the existing workload specifications
of SERT.
SERT executes a set of representative workloads, also referred to as Worklets. SERT

issues its load in transactions. Each transaction encompasses a set of calls to the interface
of a Worklet. The successive execution of Worklets forms an aggregate workload. The
Director component of SERT serves as a load driver that runs the individual Worklets on
the server under investigation. By default, the load driver performs an initial calibration
run for each SERTWorklet. In this run, the controller determines the maximum achievable
transaction rate of the Worklet on the system. Then, it derives the load levels lower than
100% by linearly reducing the transaction rate. Section 8.4 elaborates on the differences
between SERT and our work.
We replaced the default SERT load driver with a custom one. Our load driver imple-

mentation replaces the calibration logic of SERT with the logic discussed in Section 5.2.1.4.
During calibration, the load driver changes the delay time to arrive at target metric val-
ues. The load driver varies the transaction rate using the calibration method listed in
Algorithm 3. Instead of steering the load towards fractions of the maximum measured
load, it steers load towards the metric measurement values in the input system metric
domains. The input metric domains are passed as input parameters to the tooling. Our
implementation collects the input system metrics of the algorithm, e.g., CPU utilization,
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using Sigar [143]. For power consumption measurements, we leverage PTDaemon [192].
In addition to the steered metrics, further metrics can be captured in the recorded server
profile.
The SERT load driver only executes one Worklet at any point in time. Our load driver

is able to execute multiple Worklets in parallel. This allows us to simultaneously stress
multiple resources, e.g., CPU and HDD. Our implementation instantiates one load driver
for each steered metric. Each load driver separately controls the transaction rate of its
Worklet. This enables different mixes between the executed Worklets. Additionally, it
allows the calibration algorithm running in one load driver to adjust its transaction rate to
the resource utilization that other load drivers cause.

The server profiling produces a server profile, which assigns each metric level with the
measurements collected for it. This includes the power consumption measurements.

5.4.2. Model Training and Selection

We implemented the model training and model selection steps as an extension to the Power
Consumption Analyzer (PCA) tooling environment, which Section 4.4 discussed. We
built the model training implementation on the implementation provided by Krach [114].
Compared to the initial implementation, we extended the range of supported power
model types, and improved component modularity. The tooling supports the training of
declarative power models, i.e., DeclarativeResourcePowerModelSpecification.
Figure 5.3 provides an overview of the model training and selection implementation

architecture. The power.profilingimport components realizes functionality for importing
the server profile produced by the profiling into EDP2. The regression components train a
set of specified power models. The power.regression.r component uses regression imple-
mentations [67, 177] available for the statistics framework R. Communication with the
R backend is realized via the Rserve [213] library. We calculate the AIC for the ranking
using the log-likelihood values returned by the regression implementations. Thus, this
functionality is also offered by the regression components.
In addition to parametric regression methods, our implementation also supports the

use of non-parametric regression. Non-parametric regression techniques are particularly
useful when none of the known power model types accurately model the relationship
between system metrics and power consumption. The two currently supported methods
are symbolic regression [70], and Multivariate Adaptive Regression Splines (MARS) [140].

5.4.3. Power Model Extraction from Historical Measurements

We implemented the extraction of power models from historical measurements for the
CACTOS variant of our Power Consumption metamodel. Section 3.2.5.2 outlined the core
principles of this metamodel implementation. CactoScale realizes the monitoring and
data collection infrastructure of CACTOS. It persists system level metrics of servers to an
instance of the NoSQL database HBase [4]. Our power model extraction tooling uses the
historical data collected in HBase as the source of training data.
The tooling uses the measurements collected in a specified time window as input to

the model training. Prior to training a power model via iterated reweighted least squares
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regression [177], the input data is cleaned up. Every discrete utilization metric value is
assigned the median value over all collected power consumption measurements, which has
been collected for this metric value. This reduces the influence of measurement fluctuations
and imbalances in the distribution of the input data.

5.5. Assumptions and Limitations

This section discusses assumptions and limitations of the power model extraction method.

Availability of power consumption measurements. The presented profiling approach re-
lies on a source of power consumption measurements. Power consumption measurements
can be provided by dedicated external measurement devices, such as power meters. Alter-
natively, built-in power meters, as found in PSUs of servers, may be used.

Steering of load intensity based on individual systemmetrics. The presented load calibra-
tion algorithm assumes that each workloadw is assigned to exactly one system metricm.
The load intensity ofw is varied with the goal of varyingm. The load intensity calibration
does not explicitly consider that higher load intensities ofw can increase measurement
values of multiple system metrics, e.g., ucpu and tpwrite. If the additional system metrics
are simultaneously stressed by separate workloads, the calibration algorithm considers
the load caused byw . In summary, this does not restrict the applicability of our approach,
as it implicitly accounts for workloads that stress multiple system resources.

Representativeness of the sampling strategy. The presented approach aims to derive
power models for use at design time. Thus, its server profiling has to be performed
without prior knowledge of the final workload. By default, the systematic profiling ap-
proach equally weights all target system metric levels in L1× · · · ×Ln. The equal weighting
of target levels results in a distribution of metric measurements that are roughly equally
distributed. Individual applications and user workloads, however, seldom stress the full
utilization range of a server. The equal weighting does not anticipate the uneven distribu-
tion of server utilization levels. This results in a mismatch between the server profile used
for power model learning and the utilization distribution. Most model learning techniques
such as iterated reweighted least squares regression aim to reduce the error for frequently
occurring input parameter values. As a consequence, the prediction accuracy of the learned
models is lower than if the distribution was known.
We consider this to be a minor limitation due to the following two reasons. In design

time analyses the workload intensity issued to software systems is varied to explore quality
characteristics and energy efficiency at different workload levels. A weighting of specific
utilization ranges reduces the prediction accuracy of learned power models for values
outside of the weighted range. Second, the presented approach supports the consideration
of uneven workload distributions. If the user of our approach has prior knowledge of the
workload distribution, the distribution can be considered:

· in the selection of input target levels for the profiling,
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· by aggregating system metric measurement before the model learning. The impor-
tance of different target level runs can then be weighted based on the workload
distribution.

Accuracy of AIC-based ranking. In order for AIC to provide any meaningful prediction
on model quality requires that the data set is representative of the system’s behavior.
The power model ranking hence is only accurate under the assumption that the profiling
approach produces a representative server profile. Since AIC is an information theoretic
criterion, the ranking only reflects the likelihood that a model is accurate. It does not
imply that the model with the highest AIC has the highest accuracy for any server that
the ranking approach is applied to.

Noconsiderationofhiddendevicestates. The presented profiling approach targets specific
power system utilization levels. The profiling approach does not consider the influence of
“hidden device statesž as observed by McCullough et al. [135]. These states refer to device
or resource states that can not be observed, e.g. in different values of system metrics. If the
hidden device states are known and can be triggered specifically, the presented approach
can be used to profile the power consumption in specific system states. Thus, we consider
this limitation not specific to our approach, but a general shortcoming of power models
based on system metrics.

5.6. Summary

This chapter presents a power model extraction method. It allows users to obtain power
models for use in design time power consumption predictions. The central benefit of the
power model extraction method lies in its high degree of automation. Thereby, it reduces
the effort for constructing power models compared to a manual or semi-manual power
model extraction. The approach focuses on the reduction of effort to obtain the power
models, which our design time energy efficiency analysis requires.
The chapter derives a set of challenges from Research Question 5 and Research Ques-

tion 7. These challenges need to be met to address both questions.
The power model extraction method consists of the three steps server profiling, model

training, and model selection. Server profiling leverages systematic experiments to extract
representative power consumption profiles of servers. The experiments put varying
degrees of load on multiple system resources. By automating the measurement of multiple
metrics, this enables the user to reason on the effect of considering different metrics. This
addresses Challenge Ch1. Our server profiling approach builds upon the transactional
workload definition of SERT. We added a novel mechanism to derive mixed workloads
from the individual workloads. Thereby, our approach supports the integration and reuse
of diverse workloads (Ch2).
In conclusion, the presented approach addresses Research Question 5 by automating

the significant parts of server profiling, model training, and model selection.
Using the consumption profiles, we train a set of power model types from a repository.

This produces a set of power models that predict the consumption of the server under

99



5. Power Model Extraction

investigation. A ranking based on AIC supports the selection of an accurate power model
for design time predictions (Ch3).

We provide an implementation of our approach that automates the process from system-
atic measurement, measurement analysis, model training, to model selection. We validate
our approach for a diverse set of workloads. In Section 7.2.2, we apply it as part of an
end-to-end case study. The case study evaluates the energy efficiency of a software system
on an architectural level. Section 7.3 evaluates our power model extraction approach to a
set of Big Data and enterprise workloads.
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This chapter presents an approach for the coupled specification and analysis of transient
effects of reconfigurations in self-adaptive software systems. The approach integrates with
existing architectural approaches for the design time analysis of self-adaptive software
systems like SimuLizar [18, 20], or SLAstic.SIM [133]. An earlier version of the metamodel,
the analysis and formalization is outlined in [199].
After motivating the problem addressed by our approach in Section 6.1, Section 6.2

presents a metamodel for specifying the transient effects of reconfigurations in self-
adaptive software systems. Section 6.3 details the formal semantics of the modeling
constructs of the metamodel. Section 6.4 explains how the transient effects captured by
instances of the metamodel can be considered in an existing quality analysis for self-
adaptive software systems. Section 6.5 discusses assumptions and limitations of the
presented approach. Section 6.6 concludes this chapter.

6.1. Motivation

Self-adaptive software systems aim to uphold QoS requirements under changing and
uncertain environmental conditions. Examples for changes in environmental conditions
are bursts in user load or variations of the available power budget of a system. Self-adaptive
software systems trigger reconfigurations of their structure, deployment and configuration
to deal with these changes.

It is crucial for the QoS offered by a self-adaptive system that its adaptation mechanisms
act effectively and efficiently. The mechanisms should adapt the system when changes
that violate QoS are expected to occur. For this, the mechanisms have to identify when,
where and what to adapt. Ideally, reconfiguration mechanisms prevent QoS violations by
preemptively triggering adaptations. The following properties of adaptations contribute
to the difficulty of designing efficient and effective self-adaptive software systems.

1. Adaptations do not complete instantaneously. While adaptations like the ad-
justment of the load distribution policy used by a load balancer [20] takes a negligible
amount of time, adaptations like VM migrations have execution times well above
a couple of seconds [179, 205, 219]. A VM migration moves a running VM from a
source host to a target host without requiring the VM to be shut down.

2. Adaptations require resources to execute. In the case of VMmigration, network
bandwidth is needed to migrate the VM, its memory and potentially its storage to
the target host. The VM migration algorithm running on the migration host and
target causes CPU, memory and storage load. The increased resource utilization
increases power consumption.
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3. The impact of adaptations can not be observed immediately. After an adapta-
tion has been completed, its effect on QoS is delayed. Reconfiguring a load balancer
to distribute new requests away from an overloaded server does not cause the re-
sponse time of user requests to recover immediately. Requests queued up on the
server still need to be processed.

This thesis classifies the manifestation of these three adaptation properties as transient
effects. Transient effects refer to the impact of reconfigurations on quality characteristics
that are caused by changes in the system environment and the adaptation made to address
the changes. Examples for such changes are an increase or decrease in user load, or the
power budget available to a set of servers in a data center.
Design time analyses for self-adaptive software systems like SimuLizar by Becker et

al. [18, 20], or SLAstic.SIM by Massow et al. [133] allow software architects to analyze
self-adaptive software systems at design time. These existing approaches allow reasoning
on the delayed effect of reconfigurations (3). However, they do not consider the effect of
reconfigurations on execution time (1) and consumed resources (2).

It is possible for an analysis to implicitly consider the delay between the completion and
the time by which the adaptation effect can be observed. SimuLizar [18, 20] achieves this
by separating the analysis of architectural runtime state and the state of pending requests.
In order to account for the execution time (1) and consumed resources of adaptations (2)
in architecture-level quality analyses, Research Question 9 needs to be addressed:

Research Question 9. What is an architecture-level description of reconfigurations that

describes the effect of reconfigurations on system metrics such as performance and power

consumption?

Section 6.2 addresses Research Question 9 by introducing a metamodel for a coupled
specification of adaptation effect on system state and behavior. The proposed metamodel
is based on Ecore. As such, it defines the syntax for the adaptation specification. Due to
the limited semantic expressiveness of Ecore [134], Section 6.3 provides a formalization of
the behavioral semantics [37] of the metamodel.
To support reasoning on transient effects at design time, analysis approaches must

consider the impact of reconfigurations on quality dimensions like performance and power.
Research Question 10 formulates these challenges:

Research Question 10. How can we consider the effects of runtime reconfigurations in

software quality analyses at design time?

Two approaches can be taken towards the realization of a software quality analysis,
which considers transient effects. The first option would be to design a new software
quality analysis that considers transient effects. Second, an existing analysis approach can
be extended to account for transient effects. The second approach offers the following
advantages over the design of a new approach:

· Reduced validation effort. The validation of the developed analysis approach
can build upon validation results for the existing approach. This reduces the set of
analysis characteristics that need to be validated to the newly introduced or altered
parts of the analysis.
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· Reuse of existing tooling and models. The integration with existing analysis
approaches allows users to easily evaluate and adopt the approach.

Due to the listed advantages, we opted to develop an approach that is compatible with
existing analysis approaches. The following refers to the simulation component which
realizes the analysis as Transient Effect Interpreter. We developed the central semantics
of the transient effects analysis to be independent of a specific software performance
simulation. Section 6.3 outlines the analysis semantics implemented by the Transient
Effect Interpreter. As proof of concept, we integrated our analysis with SimuLizar by
Becker et al. [20]. Section 6.4 provides more information on the Transient Effect Interpreter,
and its integration with SimuLizar.

6.2. A Metamodel for an Architecture-Level Description of

Transient Effects

Our Adaptation Action metamodel supports the reusable specification of self-adaptation
actions for use in design time analyses. A self-adaptation action is an atomic reconfiguration
operation. In deployed systems, actions group a set of atomically executed middleware
operations. Self-adaptation languages based on the S/T/A paradigm [51, 96] embed actions
into higher level reconfiguration abstractions to specify reconfiguration rules and plans.
The presented metamodel links the adaptation effect specification with a behavior

specification. The behavior specification defines the overhead of the reconfiguration, i.e.,
its execution cost. The metamodel links this specification to individual adaptation action
definitions. This enables a high level of composability and reuse. The effect of complex
reconfigurations on performance and system configuration can be derived from their
composed actions. The action specifications can be integrated with S/T/A languages to
support design time analyses of reconfiguration mechanisms implemented using these
languages.
Figure 6.1 provides an overview of the Adaptation Action metamodel. The model

consists of four packages core, parameter, instance, mapping and context. The core package
consists of the central entities for describing the structural and behavioral impact of self-
adaptation actions. The instance and parameter packages group entities that parametrize
the execution of an adaptation action. The mapping package subsumes entities that model
a correspondence or mapping relation between entities in the architectural performance
model and the input and output variables of an action. The package context contains an
entity used for identifying the execution context of asynchronously executed actions.

6.2.1. Action Behavior Specification and Instantiation

An AbstractAdaptationBehavior couples a structural effect specification of an adaptation
action with a specification of its performance effect. An AbstractAdaptationBehavior

consists of a set of ordered adaptationSteps of type AdaptationStep. An adaptation step
defines a substep of the action. All steps need to be executed before the action completes.
Section 6.2.5 elaborates on the different types of steps.
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AdaptationBehaviorRepository persists a set of actions of the type Action. The repository
may include and export further referenced repositories via its includedRepositories reference.
This allows for a composition of a repository from multiple existing repositories.

Action is the central entity of the model. It couples the structural effect specification
of an adaptation action with a description of its performance impact. Action realizes
AbstractionAdaptationBehavior. The type corresponds to type specification of an adaptation
action in S/T/A frameworks. The steps contained in the action specify its adaptation logic.

An Action is instantiated using its execute operations. Action defines two operations
execute and executeAsync. Each call to an execute operation instantiates the Action using
the passed parameters. The Adaptation Action metamodel implements the operations
as EOperations. The operations couple the model specification with the Transient Effect
Interpreter. Section 6.4 further discusses the Transient Effect Interpreter. An adaptation
mechanism triggers the execution of an adaptation action by calling one of the two
operations. The Adaptation Action metamodel implementation realizes the two optional
parameters of the operations by providing 22 = 4 method implementations. This eases the
use of the methods, as they can be called without passing null arguments for the non-used
parameters.

6.2.2. Action Parameters

Adaptation actions depend upon parameters. Example parameters are the subjects of an
adaptation action. Our metamodel refers to the parameters, which capture the entities
involved in executing the adaptation, as roles. Each Action is parametrized by a set of roles.
The involvedRoles containment links the adaptation behavior to the RoleTypes involved in
the action. A RoleType defines the parameters of the action at the type level. It references
the EClass type of the parameter passed to the action. A Role instantiates the RoleType
it references. The relationship between Role and RoleType is an ontological instance-of
relationship [9]. A RoleSet subsumes a set of Role instances in its roles containment. All
operations of Action are parametrized by a RoleSet.

In addition to the role parameters, the metamodel supports the specification of additional
factors that influence the transient effects of adaptation actions. ControllerCallInputVari-
ableUsageCollection is the first optional parameter of the execute operations of an action.
The ControllerCallInputVariableUsage parameters contained in the collection parametrize
calls to the performance model that describe the transient behavior of the action. Controller-
CallInputVariableUsage contains a VariableUsage specification from PCM. This matches
the instance type of parameters passed to operations as defined in PCM.

The central use of ControllerCallInputVariableUsage is the specification of dynamic,
performance influencing factors outside of the roles. An example factor is the execution
time of an algorithm that formulates a reconfiguration strategy. The algorithm execution
time of an Action is a factor that influences its execution time. The dependency on
algorithm execution time can be expressed as a ControllerCallInputVariableUsage. If defined,
a reconfiguration mechanism can pass the execution time as an execution parameter of
the action via a ControllerCallInputVariableUsage.
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6.2.3. Synchronous and Asynchronous Execution

Self-adaptive software systems can simultaneously trigger or execute multiple adaptation
actions. Action offers asynchronous execute operations with executeAsync, in order to
support the asynchronous execution of actions specified in the presented metamodel.
The difference between an asynchronous and synchronous execution of actions is that
no simulation time passes before the asynchronous call returns. The optional execution
parameter of type ExecutionContext identifies the context in which an asynchronous call
is executed. The explicit representation of the execution context in the model allows
reconfiguration actions to make decisions and progress dependent on asynchronously
executed adaptation steps.

The synchronous execute returns a Boolean that indicates whether the action has been ex-
ecuted successfully. The executeAsync methods return the ExecutionContext that identifies
the current execution context. If the method caller explicitly passes an ExecutionContext,
the Transient Effect Interpreter executes the action in the passed context. If the caller does
not pass a context, the Transient Effect Interpreter creates a new context. The interpreter
emits an event once an asynchronous action completes. Adaptation mechanisms may
react upon this event, e.g., to check if it should trigger further adaptations.

6.2.4. Identification of Running Actions

An adaptation action reconfigures the system to reach a target state from its source state.
While the adaptation action is executed, the system entities involved in the reconfiguration
may be in a transient state. During the transient phase, the subjects of adaptation actions
might not be involved in further reconfigurations. An example of this is a VM migration
action. While a migration of a VM is in process, it is not possible to migrate the same
VM again until the migration completes. Our metamodel represents the subjects of an
adaptation that are in transient states by annotating them with their state. We realized
this annotation of transient states using a metamodel profile mechanism.
The Action references a Profile specification. Profile is a stereotype annotation that is

realized using EMF Profiles [120]. The profile annotates the entities reconfigured by the
adaptation action. It marks these adaptation subjects as being in a transient state. The
explicit marking enables the definition of adaptation preconditions that consider whether
an entity is already being reconfigured.

6.2.5. Adaptation Steps

This section outlines the types of steps in the metamodel used to model the effect of
adaptation actions on system configuration and performance.
Figure 6.2 depicts the subtypes of AdaptationStep that Figure 6.1 omitted. A Branchin-

gAdaptationStep contains a set of conditionally executed adaptations. Every execution path
is modeled by a GuardedTransition and its contained behavior description. The attribute
booleanCondition models the boolean condition on which the execution of GuardedTransi-
tion depends. The conditions are specified in QVTo model queries. An alternative solution
would have been to allow users to specify the conditions using OCL expressions. While this

106



6.2. A Metamodel for an Architecture-Level Description of Transient Effects

<<abstract>>

AbstractAdaptation

Behavior

<<abstract>>

AdaptationStep

Branching

Adaptation

Step

enactment

: QVToTm

EnactAdaptation

Step

Controller

Call

Controller

Mapping

Mapping

controllerMappings

mapping 1
1..*

booleanCondition 
: QVToTm

GuardedTransition1

1

guardedTransitions

guardedStep1

*

adaptationSteps

1
adaptationBehavior

1..*

produces

controllerCalls

step1

1..*

core

mapping

Basic

Component

Operation

Interface

Operation

Signature

providedInterfaces

0..11..*

operations

interface
0..1

*

pcm::Repository

calledSignature1

parameter

ControllerCallInput

VariableUsage

ControllerCallInput

VariableUsage

Collection

1

*

1

corresponding

ControllerCall

pcm::parameter

VariableUsage
1

variableUsage

controllerCompletion

: QVToTm

Resource

DemandingStep

Nested

Adaptation

Behavior
1

mappedCall

Operation

ProvidedRole

1controllerRole

1

providedInterface

Figure 6.2.: Detailed class diagram view of the coupled behavior specification in the Adap-
tation Action metamodel.

107



6. Transient Effects

would have increased the compactness of conditions, it would have limited their expres-
siveness. The NestedAdaptationBehavior contained in a GuardedTransition describes the
behavior that is executed if the condition evaluates to true. As NestedAdaptationBehavior
specializes AbstractAdaptationBehavior, it consists of a set of contained adaptationSteps.

We specify the performance effect of an adaptation action via ResourceDemandingSteps.
A ResourceDemandingStep specifies the performance of an adaptation action as a set of
calls to operations offered by the components of an architecture performance model. This
thesis leverages the Repository viewpoint of PCM to describe the performance impact
of adaptation actions in an Adaptation Performance Model. A ResourceDemandingStep

contains a set of ControllerCalls. Each controller call models a call to the Adaptation
Performance Model. The execution of the steps that follow the call continues only once
the call has been processed.

A ControllerCall references theOperationSignature in the Adaptation PerformanceModel
that the ControllerCall calls. The referenced operation signature definition belongs to a
BasicComponent. The BasicComponent is not part of the initial architectural performance
model definition of the analyzed software system. The reason for this is the open world
assumption made in this thesis: We assume that is infeasible to preempt and model all
system configurations at design time.
The controllerCompletion QVTo model transformation referenced by the ResourceDe-

mandingStep ensures that the components involved in processing the ResourceDemand-

ingStep are present in the system. The transformation implements a performance model
completion. Existing performance completion approaches [80, 228] enhance the analyzed
model in a preprocessing step prior to the analysis. Unlike this, the controllerCompletion

adds the Adaptation Performance Model mid-analysis when the action is executed. The
model completion is parametrized by the architectural runtime model of the system under
analysis, and the RoleSet passed to the action. The model completion produces a Mapping

of the Roles in the RoleSet of the action. The Mapping contains a set of ControllerMappings.
A ControllerMapping references the OperationProvidedRole of the component from the
Adaptation Performance Model. Each ControllerMapping links the ControllerCall to the
component, to which the call should be issued. The Transient Effect Interpreter uses the
mappings to identify the component instances, and process the ControllerCalls.

EnactAdaptationStep expresses the effect of an adaptation on the system configuration.
Its enactment QVTo model transformation maps the runtime architecture model prior to
the execution of the action to the architecture model after the action has completed. Since
EnactAdaptationStep realizes AdaptationStep, the enactment of an action can be executed
in multiple steps.

6.2.6. A Process for the Definition of Actions

Our Adaptation Action metamodel provides a modeling language for the reusable specifi-
cation of reconfiguration effects on system state and behavior. Subject of the modeling
abstraction are self-adaptation actions. Self-adaptation actions may be composed to com-
plex self-adaptation rules, e.g., as part of a S/T/A framework.
We identified the following steps as a guideline for the specification of actions in our

modeling language:
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1. Establish the intended outcome of the action. An action reconfigures a set of
components or devices. This transitions them from a source to a target state. The
action specification needs to model this transition.

2. Identify actors and subjects involved in the action. This includes service com-
ponents, which manage the execution of the action.

3. Specify preconditions of the action. An action may only be executed if a set of
preconditions are met. A common precondition is that the subject of an action may
not already be reconfigured by the ongoing execution of a previous action. The
preconditions should be limited to technical constraints, and not conditions of the
reconfiguration rule which executes the action.

4. Model the performance impact of the action. The performance impact of the
action can be derived using standard SPE techniques, e.g., systematic performance
experiments. Parametric dependencies between characteristics of the input parame-
ters, or the deployment environment should be explored as part of the performance
modeling.

We applied the outlined approach to define coupled specifications of the adaptation
effect on system state and behavior using Adaptation Action metamodel. The subsequent
section discuss the resulting three example action instances.

6.2.7. Examples

This section illustrates our Adaptation Action metamodel via three example instances.
The presented adaptation actions are examples of architecture-level adaptation actions.

6.2.7.1. Horizontal Scaling

This section outlines a specification of a scale-out action used to horizontally scale an
application. Horizontal scaling enables applications to adjust the number of service replicas
to deal with load variations. In an IaaS context, scale-out is realized by booting additional
VMs, on which service replicas are deployed. These replicas are then wired with a load
balancer that distributes user requests between all VM instances.

Figure 6.3 depicts a specification of scale-out action using the Adaptation Action meta-
model. The QVTo file pictograms represents a QVTo model transformation that the object
references. Each model transformation either implements a set of conditions via model
queries, or extends the sytem model via model completions. We omit certain details of the
action specification, e.g. IDs, from the figure in order to improve understandability.

ScaleOut has three parameter RoleTypes. InstantiatedComponent refers to the component
which is started up as part of the scale-out. The InstantiationController is wired with
the component of the passed LoadBalancer Assembly Context. InstantiationController
represents the software component that controls the scale-out execution. The deployment
location of the controller does not need to be identical to the target location. This is the case
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Figure 6.3.: Object diagram view of scale-out expressed as an instance of Adaptation Action
metamodel.
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if component instantiation is controlled by a management service. TargetResourceContainer
is the Resource Container on which the launched component instance is deployed.

The specification root ScaleOut references an EMF Profile. The Profile contains a
stereotype annotation for the type ResourceContainer. The annotation serves as a marker
of Resource Containers, to which the scale-out deploys an additional component instance.
Additionally, the root Action composes the adaptation behavior description from a set of
Steps. The preconditionsMet contains the checkPreconditions transition that acts as a guard
to the instantiation behavior. A QVTo query realizes the precondition check conditional on
which the scale-out executes. In its current implementation, it checks whether any scale-
outs that target the same TargetResourceContainer are already in execution. An additional
conceivable constraint could be, e.g., that only one instance of instantiatedComponent can
be created by a scale-out at any point in time.

The child element instantiateComponent of checkPreconditions specifies an ordered
sequence of steps which comprise the adaptation behavior.

Its initial step is instantiationOverhead. The step triggers the performance overhead
induced by the instantiation. The linked QVTo transformation implements a perfor-
mance model completion. The model completion allocates and wires instances of the
components that induce the performance overhead. It allocates an instance of Compo-

nentInstantiationLocation on the Resource Container passed via the Action parameter
TargetResourceContainer. In its ComponentInstantiationController, the instantiate RDSEFF
issues a specified resource demand, and calls instantiate of the newly allocated Compo-

nentInstantiationLocation instance. If a prior execution of the model completion already
had allocated the components on TargetResourceContainer and InstantiationController, the
model completion looks up the respective Allocation Contexts. When executed as part of
the transient effects analysis, the model completion returns the allocated components in
a Mapping collection (c.f. Section 6.2). The instantiateController ControllerCall defines a
call to a ComponentInstantiationController. This call needs to be processed as part of the
performance analysis, before the scale-out can be enacted.

The second step enactAdaptation specifies how the scale-out is enacted in the soft-
ware system analysis. The linked QVTo transformation links a new Assembly Context
of InstantiatedComponent with the system architecture, and allocates it to the TargetRe-
sourceContainer. Finally, the transformation removes the steoreotype annotation from the
passed TargetResourceContainer. Subsequent scale-outs may then instantiate components
on the TargetResourceContainer again.

The third step wireWithLoadBalancer wires the new component instance with the load
balancer component instance that is passed in the loadBalancer parameter.

While the resource demands in the scale-out implementation uses fixed resource de-
mands, the parameter can easily be extended, e.g., to resource demands that depend
upon Basic Component properties. Example properties could be the memory footprint of
components, or specific startup times.

Scale-out allows applications to deal with increases in load. We did not discuss its
counterpart, scale-in, which decommissions replicated instances once they are no longer
needed. Scale-in follows the same process logic as scale out. However, shutdown replaces
startup, and the removal from the load balancer supersedes the addition.
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6.2.7.2. Virtual Machine Migration

This section presents a model of VM live migrations that is specified with our Adaptation
Action metamodel. The motivation in Section 6.1 introduced VM live migration as an
example adaptation action that induces a transient effect. VM live migrations take time to
complete. Their completion time depends on the CPU utilization of themigration target and
source, network load, and memory activity. The presented example VM migration model
abstracts from most performance dependencies. It models the transient effect as fixed
resource demand distribution. We opted for this simple modeling as it was sufficient for
the investigations we conducted in our validation. More complex performance interactions
can be introduced to the linked PCM performance model, if needed.

Figure 6.4 depicts an example model of VM live migration. The outlined model assumes
VMs to be represented as composite, or black box software components. The VMmigration
action has three parameters. MigratedComponentAssemblyContext refers to the Assembly
Context, which is migrated from one server to another. TargetResourceContainer refers
to the target server of the VM migration. The third parameter MigrationController is the
migration service component that orchestrates the migration.
Before the action can be executed, the QVTo model query associated with checkPre-

conditions checks if the component is currently already being migrated. This is achieved
by checking if the Assembly Context of the component has been tagged with the Mi-

gratedAssemblyContext stereotype. If the preconditions hold true, the Assembly Context
is tagged with the Assembly Context, and the migration starts.
The migration behavior consists of two steps. The first step migrateController speci-

fies the performance effect of the migration. Its migrateVm controller call specifies the
performance effect of migration as a call to the linked PCM performance model. The
performance model completion of migrateController defines how the components in the
PCM performance model are supposed to be allocated in the system under analysis:

· MigrationController should be allocated on the passed MigrationControllerLocation

Resource Container,

· MigrationSource on the migration source Resource Container, and

· MigrationTarget on the migration target Resource Container.

If the PCM system model already contains applicable instances of the migration middle-
ware or controller components, the model transformation returns the existing instances
instead. The performance model completion wires the migration controller with the mi-
gration source and target, and the migration target with the source. MigrationController

orchestrates the migration by calling MigrationTarget. In turn, MigrationTarget starts
the VM migration via a call to the transferComponent operation of the MigrationSource

component.
The second step of the migration behavior EnactAdaptationStep finalizes the VM mi-

gration. Its model transformation moves the allocation location of the migrated com-
ponent from the source to the target Resource Container. Subsequently, it removes the
MigratedAssemblyContext from the migrated component instance.
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Figure 6.4.: Object diagram view of component migration adaptation expressed as an
instance of Adaptation Action metamodel.
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6.2.7.3. Switching of Power States

This section presents a modeling of power state switching, or transitions, in a software
system. The proposed modeling accounts for reconfiguration times of adaptation actions,
which affect the power state of devices.

Computational and communication devices commonly can operate in different power
states. Each state realizes a different trade-off between power consumption and perfor-
mance. Active power management policies adapt the current power state to reduce power
consumption in exchange for reduced performance. The goal of power management
policies is to increase the energy efficiency, or battery lifetime of devices. Our Power
Consumption metamodel explicitly captures power states, and transitions between power
states. Section 3.2.2 introduced the Power State Machine (PSM) viewpoint. This viewpoint
can be used to model power states and transitions. The Binding viewpoint instantiates
power state machines via device type specific StatefulResourcePowerBindings. A State-

fulResourcePowerBinding models the consumption of a device type in each power state,
and during the transition between states. It subsumes a set of TransitionStateBinding and
PowerStateBindings. A TransitionStateBinding captures the power consumption during
the transition between two power states. It describes the transitional consumption as a
function of power consumption over time. PowerStateBindings model the consumption in
the power states.

We identified a set of constraints which concern the analytical semantics of PSM:

1. It shall only be possible to transition from a source PowerState to a target state, if a
TransitionState links them as sourceState and targetState.

2. A StatefulResourcePowerBinding enters a transition state when its contained Ab-

stractPowerStateBinding is set to a TransitionStateBinding. Once it is in the transition
state, the transition can not be rolled back, or overwritten by the next transition.

3. The transition between two states has to take the amount of time to complete, which
is specified in the powerCurve of the ConsumptionBehavior. The TransitionStateBind-
ing references this curve with transitionConsumption.

We identified two alternative solutions to enforce the constraints in our power con-
sumption analysis.

1. Enforce the constraints as part of the power consumption analysis. This would have:

· Required a deep integration of performance simulation and power analysis.
Otherwise, it would not be possible to enforce the transition between specific
power states dependent on time.

· Resulted in a loss of flexibility. While it makes sense to enforce the model
semantics in general, there are use cases in which it makes sense to make an
exception to the constraints. An example exception is an immediate device
shutdown. A shutdown stops all current power state transitions and imme-
diately turns off the device. This contradicts constraint 2. Nevertheless, we
would still like to be able to express immediate shutdowns without an explicit
extension of the PSM metamodel.
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2. Define the analytical semantics constraints using our Adaptation Action metamodel.
This has the following advantages over the first solution:

· Non-invasive realization of the time-dependent transition between power
states. Our Adaptation Action metamodel supports the specification of de-
pendencies between reconfiguration enactment, and the system performance.
Using ResourceDemandingSteps, we can specify that a certain amount of time
must pass before a device transitions from a source to a target state. The corre-
sponding power state transition action may define this time as the duration of
the powerCurve of a ConsumptionBehavior .

· Simplified specification of the performance impact of power state transitions.
The transition between two power states usually impacts the performance of the
reconfigured device. In case of a server, the transition into a low power mode
reduces its processing speed. An Action can couple the effect specification of
the state transition on power consumption in the Power Consumption Model,
and on performance in the PCM Resource Environment viewpoint.

· Maintained flexibility. Reconfiguration rules can bypass the constraints defined
by the state switching action. This allows an implementation of reconfigura-
tions that perform, e.g., immediate device shutdowns.

We opted for the second solution due to its advantages over the first option. The
following discusses the realization of the transient effect of power state transitions as an
action of the Adaptation Action metamodel.

Figure 6.5 depicts the power state change action. The action has three parameters. The
AffectedResourceSet specifies the device, or resource, that shall transition from one power
state to another. TargetPowerState is the power state which the device will be in, once
the adaptation action has finished. The third parameter, CurrentAllocation, identifies the
context in which the action executes. The action executes if the following conditions are
met:

· TargetPowerState is a valid target state of AffectedResourceSet,

· The device modeled by AffectedResourceSet is not already in a transition state.

The QVTo model query of checkPreconditions implements the conditions. If the con-
ditions hold, the device enters the transition state which connects the source and target
power state. The changeToTransition step specifies this transition. Its QVTo model query
selects the transition based on the assumption that there is exactly one transition from
source to target power state. Once the delay ControllerCall has been processed, the tran-
sition completes. The performance model completion of transition adds an instance of
the DelayController component to the system under analysis. The component models the
time that the device remains in the transition state. The performance model completion
sets the time to the upper boundary of the definition interval of the power transition
function. The TransitionStateBinding references this transition function in the contained
ConsumptionBehavior.
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Figure 6.5.: Object diagram view of power state change adaptation expressed as an instance
of Adaptation Action metamodel.
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Once the transition time has passed, the changePowerState step completes the state
transition by setting the binding of the device to the target state binding. This finalizes
the power state transition.

6.3. Transient Effect Model Semantics

This section contributes a formalization of the execution semantics for the Adaptation
Action metamodel. The formalization complements the syntactical definitions outlined in
Section 6.2. It describes the underlying concepts of the model independent of a specific
architecture modeling language.
The formalization builds upon the “self-adaptive system modelž defined by Becker

et al. [20]. An initial version of the formalization was published in [199]. The formalization
presented in this section refines the semantics specification and extends it with an execution
semantics definition for asynchronously executed Actions.

Definition 6.1 (Self-Adaptive System Model based on [20]). A self-adaptive system model

is a tuple (S,E,σ ), where

• S is the domain of all system states,

• E is the domain of monitored environment states,

• σ is the set of self-adaptation rules {σ1, . . . ,σl }.

A system state s ∈ S subsumes all aspects of the state that may be considered by
self-adaptation mechanisms. This includes the architectural state, e.g., the deployment
of components. Furthermore, the state covers system metrics, such as average response
times or power consumption. The state also includes properties that architecture models
abstract from. Example details are the state of active user requests and server resources.
In the context of design time analyses of self-adaptive software systems, s is not a running
software system. Rather, it is the simulation model of the system under analysis.
Refining the formalization by Becker et al. [20], we introduce Ml ⊂ S as the domain

of all architectural runtime models that conform to an ADL l . An instancems ∈ Ml is an
abstraction of the system state s . The modelms represents a runtime architecture model.
It only contains system characteristics that can be expressed in l . As an example, PCM
instances may only describe system properties that can be expressed according to the
PCM metamodel.
The runtime management of a self-adaptive system ensures consistency between an

architectural runtime model instancems ∈ Ml and the corresponding system state s ∈ S .
The runtime management continuously executes an implementation of the self-adaptive
system runtime management consistency function.

Definition 6.2 (Self-adaptive System Runtime Management Consistency Function). The
self-adaptive system runtime management consistency function is defined as

χ : S ×M → S ×M .
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χ is an idempotent mapping that ensures consistency betweenm ∈ M and s ∈ S .

The consistency function χ operates on both the domain of runtime states S , and the
architectural runtime model domainM . The function definition updates the architectural
model m ∈ M with changes to the system s ∈ S . Secondly, the function enacts any
adaptations on s that are realized as model transformations onm.
The Adaptation Action metamodel allows for the decomposition of adaptation mech-

anisms or tactics into a set of conditionally executed, parametrized adaptation actions.
Actions specified in the metamodel consist of a set of adaptation steps.

Becker et al. [20] define a simulation as a function that returns a metric value for an
input metric and a given point in time. While this definition is sufficient for the scope of
their paper, we complement it with a simulator definition that accounts for simulation
state.

Definition 6.3 (Discrete Software System Simulator). A quality-driven, discrete software

system simulator is a function:

τ : S ×C → S ×T ,

where C is the domain of the set of calls issued on the system. T is the time domain.

The discrete software simulation function defined in 6.3 advances the simulation of a
system s ∈ S , until all calls c ∈ Ct ∈ C made to s have returned. τ returns the state s′ ∈ S

that represents the system state at the time t ′ ∈ T at which the last call has completed.
Our definition of a software system simulator focuses on the properties of a simulator

which are relevant to the analysis of transient effects. It abstracts from the detailed behavior
of the system. An example of this is the relation between user interactions and resource
utilization. Koziolek [112] provides a detailed behavioral semantics definition for a specific
ADL, namely PCM.

Individual adaptation steps only depend upon a subset of adaptation parameters. De-
pending on its type, an adaptation step may or may not affect the runtime state and its
representation in the runtime model. Definition 6.4 introduces a shorthand notation that
we use for composing functions that do not share all inputs and outputs.

Definition 6.4 (Partial Composition Operator). Let f1 : Γi1 × . . . × Γi j → Γo1 × . . . × Γok

f2 : Ωi1 × . . . × Ωit → Ωo1 × . . . × Ωou . The order of Γi1, . . . , Γi j and Γo1, . . . , Γok shall be

consistent between f1 and f2. The partial composition operator ◦̂ is defined as:

◦̂(γi) =
(
Πm1((f2◦̄f1)(γi)) ∪ ΠΩm1

(ΠΓi−Ωo
(γi)), . . . ,Πml

((f2◦̄f1)(γi)) ∪ Πml
(ΠΓi−Ωo

(γi)), . . .
)

where

• γi ∈ Γi1 × . . . × Γi j , Γi = {Γi1, . . . , Γi j }, and Γo = {Γo1, . . . , Γok },

• Π is the projection operator from relational algebra,

• m1, . . . ,ml ∈ {Γi1, . . . , Γi j } ∪ {Ωo1, . . . ,Ωou }.
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• ◦̄ : f2◦̄f1(γi) = f2

(
ΠΩi1

(f1(γi)) ∪ ΠΩi1
(ΠΓi−Γo (γi)), . . . ,ΠΩij

(f1(γi)) ∪ ΠΩij
(ΠΓi−Γo (γi))

)
.

The following example illustrates ◦̂: Let f1 : A × B ×C → B, and f2 : A × B → C . Then
f2◦̄f1 : A × B ×C → A × B ×C is a function that passes the fitting attribute values of f1 to
f2, and otherwise passes the input γi through.
The partial composition ◦̂ enables a definition of an adaptation step as a partially

composed set of adaptation step functions and the self-adaptive runtime management
consistency function:

Definition 6.5 (Adaptation Action). Let ϕ = {ϕ1, . . . ,ϕm} ∈ Φ be a set of adaptation

parameters, where Φ is the domain of adaptation action parameters. Additionally, let s ∈ S

andm ∈ M . An adaptation action is defined as:

a(s,m,ϕ) = µn◦̂ . . . ◦̂µ1(s,m,ϕ)

Here, µi = pi ◦̂χ with 1 ≤ i ≤ n is the partial composition of an adaptation step pi ∈ P , and

the management consistency function χ .

The inclusion of χ in the definition of µi implies that the execution of a step pi proceeds
only once. It updates the runtime state to include the execution of the step.

Definition 6.6 (Adaptation Step). An adaptation step pi ∈ P is an individual operation

executed as part of an adaptation action. P = Pbr ∪ Prd ∪ Pσ combines the domains of the

different types of Adaptation Steps to couple the description of conditional branches (Pbr ) and

reconfigurations (Pσ ) with their performance effect (Prd ).

Definition 6.7 (Resource-Demanding Adaptation Step). A resource-demanding adaptation

step prd ∈ Prd is a function prd : S × Φ → S , where

prd(s,ϕ) = τ (s,Ct (ϕ))

with s ∈ S , m ∈ M , ϕ ∈ Φ. Ct (ϕ) ∈ C is a set of parametrized concurrent calls issued to

components in the simulated self-adaptive software system.

Resource-demanding adaptation steps specify the effect of actions on system performance.
They can be used to define both the impact on and dependency to system performance of
an adaptation action. The performance impact and dependency result from a set of calls
Ct (ϕ) to the system. These calls are represented in the system state model s . Once the
system has processed a call, other adaptation steps that waited for the completion can be
applied to the system.

An example adaptation action that contains a resource-demanding adaptation step is VM
migration. VMmigration induces a performance overhead on the system s ∈ S in the shape
of network traffic sent from the source to the target host of the migration. The duration
and network load caused by a VM migration depends, among other characteristics, on the
size of the transferred VM image. This dependency can be expressed as a set of parameters
ϕ ∈ Φ.

Definition 6.8 (Enact Adaptation Step). An enact adaptation step pσ ∈ Pσ is a function

pσ : M × Φ → M .
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An enact adaptation step applies an adaptation to the runtime architecture modelm ∈ M

of the system. Unlike the resource demanding adaptation step, it does not directly modify
the system state s ∈ S . It transformsm from the source state prior to the adaptation to the
target state.
A branching adaptation step groups a set of conditionally executed branches. At most,

one of its branches is executed. If none of the conditions of the branches hold, the step
leaves the system state unchanged:

Definition 6.9 (Branching Adaptation Step). A branching adaptation step is a function

pbr : S ×M × Φ → S ×M × Φ

pbr (s,m,ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ1m◦̂...◦̂µ11(s,m,ϕ) if c1(m,ϕ) = true,

µ2
k
◦̂...◦̂µ21(s,m,ϕ) if ¬c1(m,ϕ) ∧ c2(m,ϕ) = true,

...

µn
l
◦̂...◦̂µn1(s,m,ϕ) if

⋀
1≤i<n

¬ci(m,ϕ) ∧ cn(m,ϕ) = true,

(s,m,ϕ) else .

cj is a function cj : Ml × Φ → {true, false} that evaluates whether the runtime architecture

modelm ∈ Ml and a set of passed parameters ϕ ∈ Φ meet specific adaptation preconditions.

A branching adaptation step groups a set of adaptation step sequences {µ1, ..., µi , ..., µn},
where µi = µij ◦̂...◦̂µi1.

The formalization sketched thus far assumes that all adaptation actions execute sequen-
tially. The assumption is part of Definition 6.5 of adaptation actions, and Definition 6.7
of resource-demanding steps. First, adaptation actions are defined as a composition of
adaptation steps. Second, all resource-demanding adaptation steps apply the simulation
function τ . The two definitions imply that all steps are executed in sequence, and that
further steps can only be started once a preceding resource-demanding step has completed.
We extend the prior definitions to consider asynchronous executions of adaptation

actions. An asynchronously executed adaptation action does not immediately advance
the simulation time by applying τ . In order to achieve this, we construct an alternative
definition of asynchronous adaptation steps:

Definition 6.10 (Asynchronous Adaptation Action). Let ϕ = {ϕ1, . . . ,ϕm} ∈ Φ, s ∈ S and

m ∈ M . C is the domain of sets of service calls. An asynchronous adaptation action is defined

as aasync : S ×M → S ×M ×C with

aasync(s,m,ϕ) = µn◦̂ . . . ◦̂µ1(s,m,ϕ)

Here, µi = pi ◦̂χ with pi ∈ Pasync = Pbr ∪ Prdasync ∪ Prd ∪ Pσ .

Definition 6.11 (Asynchronous Resource-Demanding Adaptation Step). An asynchronous

resource-demanding adaptation step prdasync ∈ Prdasync is a function prdasync : Φ → C , where

prd(ϕ) = Ct (ϕ)
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with ϕ ∈ Φ. Ct (ϕ) ∈ C is a set of parametrized concurrent calls issued to components in the

simulated system.

In contrast to synchronous adaptation steps, asynchronous steps do not execute the
calls c ∈ Ct (ϕ). The calls are collected and can be executed by later synchronous resource-
demanding adaptation steps.
Adaptation actions can be combined to form adaptation mechanisms. Adaptation

mechanisms execute adaptation actions dependent on a set of given conditions. The
condition combined with the resulting actions are also referred to as self-adaptation rules:

Definition 6.12 (Self-Adaptation Rules and Adaptation Actions). A self-adaptation rule

σt : S ×M × E → S ×M × Φ ∈ σ is defined as

σ (s,m, e) =
{
χ ◦̂kv ◦̂ . . . ◦̂kд◦̂ . . . ◦̂k1(s,m, e), if c(m, e) = true

s, if c(m, e) = false

where

• c : Ml × E → {true, false} is the condition of the rule.

• kд is defined as either

ś a parametrized call of an adaptation action: kд(s,m, e) = a(s,m, ξд(m, e)). The
function ξд : Ml × E → Φ maps the runtime architecture and environment state

to appropriate adaptation action parameters ϕ ∈ Φ.

ś an execution of previous asynchronously started calls Casync ∈ C of asynchronous

adaptation actions on the simulated system s ∈ S via τ (s,Casync),
ś the execution of an idle action as defined by Pavlović and Abramsky [154] to wait

for the completion of the prior Casync.

S/T/A frameworks can formulate self-adaptation rules as part of larger adaptation plans,
i.e. adaptation tactics.

6.4. Coupled Evaluation of Transient Effects in Model-Driven

Software Quality Analyses

Section 6.3 established the model semantics of the Adaptation Action metamodel. In order
to reason on performance effects of self-adaptations, the developed model and its semantics
have to be considered in a software quality analysis. This section outlines the approach
for the analysis of Adaptation Action metamodel as part of an existing simulative software
quality analysis. The approach realizes the simulation of transient effects as a coupled
simulation that interacts with an underlying software quality simulation. We refer to the
simulation component that implements the analysis as the Transient Effect Interpreter. As
an example we present the integration with SimuLizar.
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Figure 6.6.: Simplified integration architecture of the Transient Effect Interpreter and
SimuLizar.

6.4.1. Integration Architecture

Figure 6.6 sketches the integration architecture of the Transient Effect Interpreter and
SimuLizar. The figure classifies the SimuLizar components by the phase of the MAPE-K
feedback loop to which they contribute. Added components are highlighted in gray. The
Adaptation Action metamodel discussed in Section 6.2 extends the runtime model of
SimuLizar with a set of executable adaptation actions. The actions are available to any
reconfiguration mechanism integrated into the simulated self-adaptive system. SimuLizar
supports the integration of different reconfiguration engines [17]. Reconfiguration engines
enact adaptations by transforming the runtime model of SimuLizar from the current to
the desired target state. Self-adaptation mechanisms like the mechanisms A and B shown
in Figure 6.6 trigger an adaptation action by calling its execute method. The following
section details how mechanisms can issue actions, and how the Transient Effect Interpreter
processes them.

6.4.2. Use and Execution of Actions

This section discusses the use and execution of actions specified with the Adaptation
Action metamodel. An adaptation mechanism instantiates an Action by calling its execute
operation with the relevant instantiation parameters.
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Listing 6.1: Example QVTo transformation snippet executing a scale-out action

1 property targetResourceContainerRoleId = . . . ;
2 property instantiatedComponentRoleId = . . . ;
3 property loadBalancerRoleId = . . . ;
4 property controllerContainerRoleId = . . . ;
5

helper scaleOut(var instantiateVm : Action, instantiatedComponent : BasicComponent,
targetResourceContainer : ResourceContainer, controllerContainer :
ResourceContainer) : Boolean {

// Instantiate parameters for Action
var roleSet : RoleSet := object RoleSet@roleSets {

9 roles += object instance::Role {
10 roleType := instantiateVm.getRoleTypeById(

targetResourceContainerRoleId);
value := targetResourceContainer.oclAsType(EObject);

};
13 roles += object instance::Role {
14 roleType := instantiateVm.getRoleTypeById(

instantiatedComponentRoleId);
15 value := instantiatedComponent.oclAsType(EObject);

};
17 roles += object instance::Role {
18 roleType := instantiateVm.getRoleTypeById(loadBalancerRoleId);

value := controllerContainer.oclAsType(EObject);
20 };
21 roles += object instance::Role {
22 roleType := instantiateVm.getRoleTypeById(controllerContainerRoleId

);
value := controllerContainer.oclAsType(EObject);

};
25 };
26

return instantiateVm.execute(roleSet, prepareInputForControllerCall());
28 }
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Listing 6.2: Call to Transient Effect Interpreter by the execute EOperation

1 return org.palladiosimulator.simulizar.action.interpreter.ActionRuntimeState.
getInterpreterBuilder(affectedRoleSet, getRepository()).
addControllerCallVariableUsages(controllerCallsVariableUsages).
addExecutionContext(executionContext).build().doSwitch(this).
getExecutionResultAsBoolean();

Listing 6.1 shows an excerpt from an adaptation rule specified in the QVTo model
transformation language. The listed QVTo helper method that starts a scale-out action.
Section 6.2.7.1 had introduced the scale-out action executed in the example. Lines 8 to 25
instantiate the roles that parametrize the scale-out. For scale-out, the roles encompass in
listed order:

1. The target Resource Container of the scaled component (lines 9-12),

2. the component which is instantiated as part of the scale-out (lines 13-16),

3. the Assembly Context of the load balancer that forwards request to the scaled
component (lines 17-20),

4. the allocation location of the management service, which instantiates the component
(lines 21-24).

Line 27 calls the execute EOperation of the scale-out action. This starts the execution of
the action. The call to the helper method prepareForControllerCall() initializes a set of
input parameters of the type ControllerCallInputVariableUsageCollection. These parameters
specify factors in addition to the passed roles that impact the performance effect of the
action, as Section 6.2 outlined.
When a reconfiguration mechanism calls the execute operation, it issues a call to a set

of methods implemented in the Transient Effect Interpreter. Listing 6.2 shows the method
body of the execute operation. The operation constructs the execution context of the action
using the input parameters. Then, it processes the action and returns.

Figure 6.7 depicts a class diagram excerpt of the classes called by the executemethod. The
ActionRuntimeState class offers interfaces to the extension point IAccessRuntimeState shown
in Figure 6.6. The SimuLizar core component passes an instance of AbstractSimuLizarRun-

timeState to the Transient Effect Interpreter. This provides the interpreter access to the
simulated runtime state of the analyzed software system. The execute operation constructs
a TransientEffectInterpreter via an instance of the TransientEffectInterpreterBuilder. The
class applies the builder pattern to construct the Transient Effect Interpreter. Once all pa-
rameters have been passed, the call to build returns the resulting TransientEffectInterpreter.
This interpreter instance processes the passed Action. The interpreter is implemented
according to the visitor pattern. It leverages the automatically generated CoreSwitch base
class for visiting all classes of the Adaptation Action metamodel in the core package.
Steinberg [195] further explain the functioning of this pattern. The execute operation in
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+getInterpreterBuilder(RoleSet roleSet, AdaptationBehaviorRepository 

repository) : TransientEffectInterpreterBuilder

+setRuntimeStateModel(AbstractSimuLizarRuntimeState passedState)

ActionRuntimeState

org.palladiosimulator.simulizar.action

+isAsync() : TransientEffectInterpreterBuilder

+isAsync(ExecutionContext) : TransientEffectInterpreterBuilder

+addControllerVariableUsages(ControllerCallInputVariableUsageCollect

ion controllerCallVariableUsages) :  TransientEffectInterpreterBuilder

+addExecutionContext(ExecutionContext ctx) : 

TransientEffectInterpreterBuilder

+build() : TransientEffectInterpreter

TransientEffectInterpreterBuilder : 

CoreSwitch<TransientEffectExecutionResult>

+caseAction(Action action) : TransientEffectExecutionResult

...

TransientEffectInterpeter : 

CoreSwitch<TransientEffectExecutionResult>

org.palladiosimulator.simulizar
...

org.palladiosimulator.simulizar.runtimestate

+setRuntimeStateModel(AbstractSimuLizarRuntimeState state)

<<interface>> IRuntimeStateAccessor

...

-InternalSwitch : CoreSwitch<Boolean>

...

-AsyncInterpretationProcess : SimuComSimProcess

+getExecutionResult() : EventResult

+getContext() : Optional<ExecutionContext>

+getExecutionResultAsBoolean() : boolean

TransientEffectExecutionResult

Figure 6.7.: Simplified excerpt of the class diagram overview of Transient Effect Interpreter
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Listing 6.3: Call to Transient Effect Interpreter by executeAsync EOperation

1 org.palladiosimulator.simulizar.action.interpreter.ActionRuntimeState.
getInterpreterBuilder(affectedRoleSet, getRepository()).isAsync(
asyncExecutionContext).addControllerCallVariableUsages(
controllerCallsVariableUsages).build().doSwitch(this);

return asyncExecutionContext;

Listing 6.2 issues the initial visit call to the Action by calling its doSwitchmethod. The inter-
preter realizes the visitor logic in the static nested class InternalSwitch. Once the Transient
Effect Interpreter has processed the call, it returns a TransientEffectExecutionResult. The
execute operation converts this result to a Boolean by calling getExecutionResultAsBoolean.

Listing 6.3 contains the asynchronous variant of Listing 6.2 that is executed when calling
executeAsync. The asynchronous variant of execute differs primarily in two ways. First, the
asynchronous execute sets the ExecutionContext to the passed context. This signals that
the interpreter should process the call asynchronously. Second, executeAsync returns the
ExecutionContext of the call instead of a Boolean. The returned ExecutionContext enables
adaptation mechanisms to wait for the completion of the asynchronous action. This allows
mechanisms to join a set of concurrently executed asynchronous actions. Internally, the
Transient Effect Interpreter processes the call in an asynchronously started simulation
process. AsyncInterpretationProcess implements this process.

6.4.3. Execution of AdaptationSteps

The Transient Effect Interpreter sequentially executes all of its nested AdaptationSteps

according to their order in its containment collection. It implements the interpreter
semantics introduced in Section 6.3. As part of the work conducted in the context of this
thesis, we refactored SimuLizar to execute the reconfiguration engines shown in Figure 6.6
in a separate simulation process. This allows reconfigurations to be delayed or interrupted
as part of the simulation. The Transient Effect Interpreter makes use of this to consider
the performance impact of reconfigurations.
The Transient Effect Interpreter visits the sequence of steps. The following sketches

how the interpreter executes the different types of steps.

BranchingAdaptationStep A BranchingAdaptationStep defines a set of adaptation behavior
transition alternatives. The interpreter sequentially iterates over the contained Guard-

edTransitions. The interpreter executes a behavior alternative if its conditions hold true.
It executes the first transition whose Boolean condition evaluates to true. The Boolean
condition is implemented as a QVTo query referenced by the GuardedTransition. The
interpreter continues with the execution of the NestedAdaptationBehavior contained in
the GuardedTransition. This leads the interpreter to execute every step in the NestedAdap-
tationBehavior. Once it has fully processed the behavior, the interpreter moves on to the
next step in the adaptationSteps set of the parent AbstractAdaptationBehavior.
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Figure 6.8.: Activity diagram of the Resource Demanding step execution.

127



6. Transient Effects

ResourceDemandingStep A ResourceDemandingStep defines the overhead incurred by
executing a subset of adaptation steps of an Action. The step includes calls to a set of
operation signatures of component instances. It represents each call to components in
the performance model as a ControllerCall. Figure 6.8 illustrates how the Transient Effect
Interpreter processes the step. The activity diagram uses the component instantiation call
InstantiateController from Section 6.2.7 as an example. First, the interpreter executes the
associated QVTo performance model completion. The completion adds the components
to the architectural performance model, which induce the performance effect modeled
by the ResourceDemandingStep. This results in an extended System and Allocation model.
The interpreter produces a Mapping as a result of the completion. The mapping consists
of ControllerMappings. Each contained ControllerMapping links a ControllerCall to the
provided role of a component, which the performance completion has introduced. Second,
the interpreter starts a simulated user call for each ControllerMapping element. The
simulated user executes the call represented by the ControllerCall. Finally, the Transient
Effect Interpreter continues with the next step in the adaptationSteps collection of its
parent behavior.

EnactAdaptationStep An EnactAdaptationStep transforms the architectural runtimemodel
of the analyzed software system from its current to the target state. To execute this type
of step, the Transient Effect Interpreter performs the QVTo model transformation ref-
erenced by the step. Subsequently, the interpreter executes the remaining steps in the
adaptationSteps of the parent behavior.

6.4.4. Reconfiguration Engine Support

The Adaptation Action metamodel defines the behavior of adaptation actions as a series
of steps with well-defined execution semantics. Section 6.3 presented the execution se-
mantics. The Transient Effect Interpreter implements these execution semantics. Actions
offer a set of executable EOperations that allow adaptation mechanisms to start adap-
tation actions. When called, an operation constructs an execution context, and defers
the execution of the action to the Transient Effect Interpreter. The chosen coupling of
Adaptation Action metamodel and Transient Effect Interpreter enables their integration
with existing simulation and model transformation logic. SimuLizar defines reconfigu-
rations as model transformations on the runtime model of the simulated system. The
model transformations may be implemented in different transformation languages. As
of writing this thesis, SimuLizar offers QVTo, Henshin [6] and Story Diagrams (SDs)
[60] reconfiguration engines. SimuLizar supports the addition of further reconfiguration
engines, e.g., engines that support different model transformation languages. Hence, this
section also discusses whether further popular model transformation languages support
the execution of EOperations as part of transformations.
In QVTo, EOperations can be called directly as part of any transformation. QVTo

thus natively supports the execution of actions as part of reconfiguration rules. We
extensively used instances of our Adaptation Action metamodel in reconfigurations, which
we implemented in QVTo. An example application of QVTo as the reconfiguration engine
is the validation presented in Section 7.4.
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QVT Relations (QVTr) allows for calls to black-box methods implemented in Java as
part of its enforce domain clause. The clause can specify a call to any Java method within
its implementedBy sub-clause. Using these language constructs, EOperations like execute
of the Action type can be called.

The SDs implementation outlined byDetten et al. [60] allow for the execution of arbitrary
code or statements via StatementNodes. Henshin can execute arbitrary Java code within its
AttributeConditions [6]. Intuitively, this also applies to the execution of the Java method
generated for the EOperations of Action. There are SimuLizar reconfiguration engines for
the SD and Henshin implementations.

Like QVTo, ATL Transformation Language (ATL) allows for direct calls to EOperations.
ATL code can issue calls to an EOperation in both to or do section of a rule. Thus, a potential
ATL reconfiguration engine would also support the execution of actions.

6.5. Assumptions and Limitations

The model and analysis presented in this chapter are based on a set of assumptions. The
following discusses these assumptions, alongside a set of limitations of our approach.

Analysis based on DES of self-adaptive software system. The analysis presented in Sec-
tion 6.3 and 6.4 builds upon the semantics of a DES for self-adaptive systems. The analysis
can not be integrated with analytical performance analysis approaches that focus on steady
state system analyses. An example of this analysis category is PCM2LQN by Koziolek [112].
Transient effects and the resulting behavior of the system in transient phases are essential
to the QoS of the system. The steady state assumption does not hold for scenarios in which
transient effects occur. Hence, our extended transient effects analysis is not compatible
with these analyses. We do not consider the incompatibility of our approach with analyses
based on the steady state assumption a significant limitation, as these analyses do not
support reasoning on QoS in transient phases. This makes these analyses inapplicable for
scenarios in which the transient behavior of the system is relevant.
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Figure 6.9.: Sketch of model extension with explicit Action instantiation.
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Use of EOperations to realize Action instantiation. The Adaptation Action metamodel de-
fines self-adaptation actions on a categorical, or type, level. Instances of the Action
type describe the effect of a self-adaptation action independent of a concrete software
architecture. Reconfiguration rules may instantiate Actions by calling one of its execute
EOperations with its instantiation parameters. This eases the use of Actions in reconfigu-
ration engines built upon all prevalent model transformation languages, as discussed in
Section 6.4.4. However, it might not be possible to leverage this integration mechanism
in every reconfiguration engine. This limitation can be addressed with the addition of
an instantiation model to the metamodel. Figure 6.9 sketches this solution. Instead of
calling the execute operation of Actions, actions would then be issued via the creation of
ActionInstances. The Transient Effect Interpreter would be triggered when an action is
added to the ExecutionQueue. The activation of the interpreter then could be realized via
the EMF listener infrastructure. In conclusion, we consider potential technical limitations
of the chosen approach for action instantiation marginal. All core concepts of our modeling
and analysis approach are compatible with the sketched generalized realization.

6.6. Summary

In this chapter we present our modeling and analysis approach for considering transient
effects in the analysis of self-adaptive software systems. The goal of the approach is to
improve the prediction accuracy of design time analyses of self-adaptive software systems.

Our Adaptation Action metamodel supports the definition of reusable self-adaptation
actions. It couples the specification of performance effect and reconfiguration outcome.
This allows a detailed consideration of tradeoffs between the benefits of reconfigurations
and their costs. The metamodel supports the modeling of power consumption and per-
formance overheads. This addresses Research Question 9. The metamodel describes an
adaptation action as a sequence of adaptation steps. It distinguishes between steps that
check conditions, describe the effect of actions on the system state, and which express the
performance effect. Action specifications can be reused in different reconfigurations, and
for different system analyses.

We formally defined the execution semantics of our Adaptation Action metamodel.
Building upon this formal specification, we discussed how the analysis of actions can be
incorporated in an existing simulative performance analysis (Research Question 10). We
integrated a prototype implementation of our analysis with Simulizar by Becker et al. [20].

The use of our action modeling language does not restrict software architects in their
approach towards specifying reconfiguration rules. Becker et al. [20] describe reconfigura-
tions by means of model transformations. We illustrated that our analysis is compatible
with a variety of model transformation languages, including the languages supported by
SimuLizar.

We applied our Adaptation Action metamodel in the CACTOS project to implement
composable adaptation action specifications for use in IaaS data center simulation [115, 196].
The metamodel facilitated the reuse of different data center management actions, i.e., for
the instantiation and horizontal scaling of different application types. The application to the
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simulation of complex IaaS Cloud scenarios illustrated the applicability and appropriateness
of our metamodel and analysis.

Section 7.4 evaluates the benefits of our approach by applying it to a horizontally scaling
IaaS application.
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7. Validation

This chapter presents the validation of our contributions towards a systematic considera-
tion of energy efficiency of software systems at design time. We conducted a set of case
studies to evaluate the four central contributions of this thesis:

C1: Design of a modeling language for the description of power consumption character-
istics of software systems

C2: Development of an approach for energy efficiency analysis at design time

C3: A method for the extraction of power models for use in design time predictions

C4: Development of a systematic modeling and analysis approach for considering tran-
sient effects in software quality analyses

The contributions aim to address the research questions presented in Section 1.4. We
aligned the validation to investigate whether our contributions answer the research ques-
tions. For this, we applied the GQM [15] method. Section 7.1 derives a GQM plan from
the research questions. Furthermore, it classifies the conducted case studies by the ques-
tions they address. The case studies cover static and self-adaptive enterprise software
systems, data center resource management and a set of Big Data workloads. A subset of
the presented case studies have been published as part of our papers [115, 196, 199, 200,
201].
The remainder of the chapter presents the case studies and results, grouped by the

main contribution they intend to validate. Section 7.2 presents a set of studies that
investigate the accuracy of architecture level energy efficiency predictions. Section 7.3
evaluates the applicability of the power model extraction method. Finally, Section 7.4
investigates whether the consideration of transient effects improves the accuracy of design
time predictions of self-adaptive systems. Section 7.5 subsumes the validation findings,
and outlines starting points of further potential validations.

7.1. Validation Goals and Overview

This section presents the validation goals. We used the GQM approach proposed by Basili
et al. [15] to validate our contributions. Section 2.7.1 outlined the fundamentals of the
GQM approach.
This section is structured as follows. Section 7.1.1 presents the GQM plan of our

validation. In Section 7.1.3, we classify each of the conducted case studies by the research
questions they answer. Additionally, we categorize the case studies by their validation
levels according to Böhme and Reussner [30]. Section 2.7.2 explains our view on the
different validation levels.
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7.1.1. GQM Plan

For each of the contribution we defined a validation goal in accordance with the GQM
approach outlined by Basili et al. [15]. The following presents the validation goals. We
organize the plan according to the organization of Research Questions (RQs) in Section 1.4.
Alongside each validation goal and question, we name the Research Questions (RQs) from
Section 1.4, which the goal and its questions aim to address. To improve the readability,
we restate the Research Questions (RQs) at the beginning of each section.

7.1.1.1. Modeling and Analysis of Software System Power Consumption Characteristics

Research Question 1. What is a good abstraction level for modeling power consumption

characteristics of software systems? We consider a model abstraction good if it

• produces accurate power consumption predictions,

• can be constructed from information available at design time,

• contains as little redundant information as possible with existing architectural modeling

languages and viewpoints.

Research Question 2. How can the power consumption of software systems be predicted

on an architectural level?

Research Question 3. How accurate are power consumption predictions performed on an

architectural level?

Research Question 4. How can we evaluate the effect of architectural design decisions on

energy efficiency?

Goal 1. Evaluate the prediction accuracy of our energy efficiency predictions for architecture-
level design time analyses.

Addressed RQs: 1, 2, 3, 4.

Question 1.1. Can our approach accurately predict the power consumption of
software systems on an architectural level?

Metric 1.1.1. Prediction accuracy as (percentage) difference of aggregated
measured and predicted power consumption for an observation period.

Addressed RQs: 1, 2, 3.

Question 1.2. Does our approach produce predictions that have a higher accuracy
than predictions from state of the art approaches?

Metric 1.2.1. Prediction accuracy as (percentage) difference of aggregated
measured and predicted power consumption for an observation period.

Addressed RQs: 1, 2, 3.

Question 1.3. Are the power consumption predictions accurate enough to evaluate
the effect of design decisions on energy efficiency?
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Metric 1.3.1. Aggregated energy consumption prediction accuracy calculated
as percentage difference of the predicted and measured energy consump-
tion.

Metric 1.3.2. Energy efficiency prediction accuracy calculated as percentage
difference of the predicted and measured effect of design decision on
energy consumption.
Energy efficiency is hereby defined as energy consumed per operation. As
the usage profile and throughput remains unchanged, energy efficiency can
be compared by directly comparing the aggregated power consumption
before and after the decisions have been applied.

Addressed RQs: 1, 4.

Goal 2. Validate the appropriateness of our power consumption model for describing the
power consumption characteristics of software systems.

Addressed RQs: 1, 2.

Question 2.1. Are the essential characteristics that determine the power consump-
tion of a software system reflected by our power consumption model?

Metric 2.1.1. Energy consumption prediction accuracy calculated as percent-
age difference of measured and predicted power consumption.

7.1.1.2. Extraction of Power Models

Research Question 5. How can the effort in deriving power models for architecture-level

power consumption analyses be reduced?

Research Question 6. What is the effect of considering different system level metrics as

input in power consumption analyses?

Research Question 7. How can software architects and system deployers be supported in

the selection of input metrics for energy efficiency analyses?

Goal 3. Validate the applicability of our approach for the automated construction of
power models based on automated systematic experiments.

Addressed RQs: 5, 6, 7.

Question 3.1. Does our automated power and system metric profiling approach
extract a representative system profile?

Metric 3.1.1. Energy consumption prediction accuracy as (percentage) differ-
ence of measured power consumption and power consumption predicted
by power models.

Metric 3.1.2. Two-Dimensional Kernel Density Estimation (KDE) over server
profile.

Addressed RQs: 5.
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Question 3.2. Does the combined profiling of system metrics improve the accuracy
of trained power models over their separate profiling?

Metric 3.2.1. Prediction error of power models trained on server profile from
full and separate profiling.

Addressed RQs: 5.

Question 3.3. Does our profiling approach produce more accurate power models
than state of the art?

Metric 3.3.1. Percentage difference of prediction error of powermodels trained
on data using our approach, and a state of the art approach.

Addressed RQs: 5.

Question 3.4. What is the influence of system metrics considered by power models
on their prediction accuracy?

Metric 3.4.1. Difference of prediction accuracy of

· power models that consider CPU and HDD,

· models that only consider CPU.

Metric 3.4.2. Difference of Pearson’s/Spearman’s correlation coefficient be-
tween CPU utilization and HDD throughput metrics.

Metric 3.4.3. Difference of prediction accuracy between aggregated CPU uti-
lization and multi core power models.

Addressed RQs: 6.

Question 3.5. Is it possible to estimate the impact of considered system metrics on
the prediction accuracy of power models?

Metric 3.5.1. Rank of power models in AIC-based ranking compared to pre-
diction accuracy ranking from measurements.

Addressed RQs: 7.

7.1.1.3. Transient Effects of Reconfigurations

Research Question 8. How do reconfigurations affect power consumption and per-

formance?

Research Question 9. What is an architecture-level description of reconfigurations

that describes the effect of reconfigurations on system metrics such as performance and

power consumption?

Research Question 10. How can we consider the effects of runtime reconfigurations

in software quality analyses at design time?

Research Question 11. Does the consideration of transient effects enable the (a)

detection and (b) solution of design problems in self-adaptive software systems?
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Goal 4. Validate the influence of transient effects on the accuracy of performance predic-
tions for architecture-level analyses of software systems.

Addressed RQs: 8, 9, 10, 11.

Question 4.1. Does the consideration of transient effects improve the prediction
accuracy of architecture-level analyses?

Metric 4.1.1. Percentage difference of prediction accuracy of design time
quality predictions with and without our approach.

Addressed RQs: 8, 9, 10.

Question 4.2. Does our approach enable the detection of design deficiencies of self-
adaptive software systems that would have otherwise remained undetected?

Metric 4.2.1. Percentage difference of prediction accuracy of design time
quality predictions with and without our approach

Metric 4.2.2. A requirement that is predicted

· to be violated by the baseline prediction is not violated at runtime, or

· not to be violated is violated at runtime.

The metric evaluates if the prediction extended by our approach correctly
predicts the violation, or fulfillment.

Addressed RQs: 8, 11.

Question 4.3. Does our approach enable the resolution of design deficiencies of
self-adaptive software systems?

Metric 4.3.1. Prediction accuracy of design time quality predictions with our
approach compared to measurements.

Metric 4.3.2. Our approach correctly predicts whether changes applied to the
software system have resolved a design deficiency.

Addressed RQs: 8, 11.

We implicitly validate the suitability and appropriateness of our modeling languages.
RQs 1 and 8 express these concerns. We demonstrate the appropriateness and applica-
bility of our Power Consumption metamodel in three ways. First, we demonstrate that
power consumption predictions performed using instances of the metamodel are accurate
enough to support architectural decisions. Second, our automated power model extraction
approach showcases that software architects can obtain these models with reasonable
effort. We finally discuss differences in expressiveness and modeling complexity between
our model and a state of the art modeling approach. We show the applicability of the
Adaptation Action metamodel (Research Question 8) by presenting how it can enable
software architects to make sound decisions. The validation does not address the gen-
eral appropriateness of Adaptation Action metamodel for use in design time modeling
and analysis of self-adaptive software systems. However, Section 6.2.7 demonstrates the
applicability of the metamodel for a set of adaptation actions. Section 7.5.1 additionally
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discusses the application of our modeling approach to the analysis of data center resource
management scenarios.
Research Question 5 is the only research question that is not implicitly or explicitly

addressed by our GQM plan. The RQ concerns a reduction of effort for the application of
our power consumption modeling and analysis approach. We did not conduct an empirical
study to evaluate whether our approach reduced the effort compared to the manual or semi-
manual construction of power models. Our power model extraction approach automates all
major steps involved in the construction of power models: profiling, learning or training,
and selection of power models. Hence, we consider the implementation of the approach to
answer RQ 5.

7.1.2. Case Study Systems

This section provides a brief summary of case study systems we used to validate the
contributions of this thesis. A more thorough description of the systems is provided in the
respective sections of this chapter.

· Media Store 2 [22] is a Java EE-based case study system that allows users to upload
and download music files. The used variant is the second release version of the
system.

· Spring PetClinic [159] is a community case study system for different framework
technologies from the Spring community. It realizes a simple web system for ap-
pointment management in a veterinary clinic via Spring framework technology.

· VMPlacement subsumes four case studies conducted in an IaaS data center testbed.
They have been performed as part of the European research project CACTOS [152].
The case studies employ different VM placement and migration algorithms to dis-
tribute VMs on the testbed.

· SPECjbb2015 is an industry standard Java benchmark “to evaluate the performance
and scalability of environments for Java business applicationsž [193]. SPECjbb2015
replicates user interactions with a web shop in a typical client server setting.

· HiBench [91] is a Big Data benchmark suite. It covers a diverse set of Big Data work-
loads implemented atop Hadoop and Spark. Individual workload implementations
cover the programming languages Java, Python, and Scala.

· VM Migration Bench is a VM migration benchmarking framework which we
implemented to measure power consumption during VM migration. It re-uses the
workload definitions of SERT [187] to stress the servers or the VM involved in the
migration.

· Scaling Media Store is a variant of the third release version of the Media Store ap-
plication. Compared to the second release, the third release improves the modularity
of components. Reussner et al. [170] use this release as a running example, and in a
set of presented performance and reliability prediction case studies. We extended
the baseline implementation by the capability to scale out dependent on load.
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7.1.3. Validation Coverage

This section discusses the coverage of Validation Goals and their corresponding Questions
by the conducted case studies. We classify the case studies with respect to the validation
level categories outlined by Böhme and Reussner [30].
This thesis does not focus on establishing a process for developing energy-efficient

software. Rather, it establishes a method for evaluating the energy efficiency of software
systems as part of existing model-driven development approaches, e.g., the Palladio process
[22]. It would be possible to conduct a validation that investigates the benefit of considering
energy efficiency as part of these existing approaches. However, the effort needed for
conducting a Level III validation is very high. Hence, we did not perform a Level III
validation as part of this work.

Table 7.1.: GQM Overview. The dot highlights if a case study covers a Question.
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1.2 • • • I
1.3 • • I

2 2.1 • • • • • I
3 3.1 • • • • I, II

3.2 • • I
3.3 • • I
3.4 • • • I, II
3.5 • • I

4 4.1 • I
4.2 • I
4.3 • I

Table 7.1 provides an overview of the case studies systems, with the goals and derived
questions they address. Per Question, the table notes the validation type.

Goal 1. The first goal aims at the validation of the prediction accuracy of our design time
energy efficiency predictions approach. Question 1.1 inquires the accuracy of design time
power consumption predictions. We evaluated the accuracy of the predictions for all three
case study systems. Sections 7.2.1 and 7.2.2 apply our design time power consumption
analysis to evaluate the energy efficiency of the Media Store software system, and the
PetClinic application. The VM placement case study presented in Section 7.2.3 investigated
the accuracy of the predictions in data center testbed that optimizes, and adapts, the
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placement of VMs over time. All input data used for the case studies has been obtained
via automated measurements. We reconstructed the architectural performance model of
PetClinic with the Performance Model eXtractor (PMX) [220]. The used power model was
automatically trained using our power model extraction approach. The PetClinic and VM
placement case studies constitute a level II validation as the significant part of input data
was collected automatically. We compared the accuracy of our approach against state of
the art for all three case study systems (Question 1.2). The two round-trip case studies
Media Store and PetClinic are level I validations of Question 1.3. Both case studies applied
our prediction to evaluate the effect of a design decision on energy efficiency. The case
studies compared the prediction results with measurements.

Goal 2. Goal 2 states that our modeling approach shall model all essential characteristics
that influence the power consumption on an appropriate level of abstraction. All case
studies but the Scaling Media Store used our Power Consumption metamodel to describe
the power consumption characteristics of the involved software systems. We consider the
application of our modeling approach a level I validation: Power consumption predictions
that used the models defined in our modeling language produced accurate predictions.
Chapter 3 matches our Power Consumption model against challenges regarding the
architectural modeling of power consumption, which we had identified. In the section we
show that our modeling language tackles these challenges. Thus, Chapter 3 constitutes an
appropriateness validation.

Goal 3. In order to apply an analysis approach at design time, it must be feasible to acquire
all of its input data. Our power model extraction method addresses this requirement by
automating server profiling and power model training. Goal 3 targets the applicability of
the powermodel extractionmethod. From the goal, we derived four Questions. Question 3.1
addresses the representative character of the extracted system profile. We investigated
this question using the SPECjbb2015 and HiBench case studies. We evaluated whether
power models trained on the profile accurately predict the power consumption of the case
study systems. Question 3.2 concerns the accuracy of the combined profiling of system
metrics compared to their separate profiling. We compared the prediction accuracy of the
same power model types trained on a profile from combined profiling, and from separate
profiling. Question 3.4 targets the impact of additional metrics on prediction accuracy.
We reasoned on the effect of additional metrics by comparing the prediction accuracy of
power models that consider only CPU utilization against models that also take storage
metrics into account. We evaluated Questions 3.1, 3.2 and 3.4 by comparing predicted
and measured power consumption. We compared the measurements and predictions of
the power models for the SPECjbb and HiBench case study systems. According to the
classification by Böhme and Reussner [30], this qualifies as a level I validation.
The VM Migration Bench case study applied our power model extraction method to a

benchmarking environment for VM migration scenarios. Section 7.3.9 presents the results
of the case study. The case study investigated whether the power models produced by our
approach accurately predict the power consumption of VM migrations. This addresses
Question 3.1. The study focused on the accuracy of extracted power models. Additionally,
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it examined the accuracy of aggregated CPU utilization compared to multi core power
models. This concerns Question 3.4.
In Section 7.3.7, we address Question 3.3. We contrast the prediction accuracy of

power models, trained on a profile extracted using our approach, against power models
trained on a profile from a baseline state of the art approach. We realized the state of
the art approach using the same measurement and workload implementations. Böhme
and Reussner [30] note that a level III validation investigates the benefit of the evaluated
approach “over other competing approachesž. However, we did not empirically determine
and compare the difference in effort for identifying suitable workload definitions. This
would be needed to qualify the validation as a level II validation. A level II validation of the
compared approaches is a necessary prerequisite for a level III validation. In conclusion,
the comparison of both approaches only qualifies as a level I validation.

We explored Question 3.4 by comparing our AIC-based ranking of power models with
the relative prediction accuracy of power models for the SPECjbb2015 and HiBench case
studies. We compared the predicted accuracy of power models with their actual accuracy.
This covers a type I validation of Question 3.4.

Goal 4. We employed the Scaling Media Store case study in the validation of Goal 4. The
case study addresses Questions 4.1 to 4.3 via a comparison of predictions andmeasurements.
Our simulation tooling automatically performed the analysis of transient effects. However,
we manually used the prediction tooling, and defined the input instances of the Adaptation
Action metamodel. The case study thus constitutes a level I validation. It is not a level II
validation as it did not validate the practical applicability of our modeling approach.

7.2. Energy Efficiency Analysis

The case studies presented in this section address Goal 1 of the validation. The case
studies investigate Questions 1.1 to 1.3. Subject of our investigation are the two application
systems Media Store and PetClinic, and a set of IaaS scenarios recorded in a data center
testbed.
This section is structured as follows. Section 7.2.1 presents the results of the Media

Store case study. Section 7.2.2 discusses the PetClinic case study. The results of the IaaS
data center case study are outlined in Section 7.2.3.

7.2.1. Media Store

In this case study, we applied the PCA approach to evaluate the effect of a design decision
on energy efficiency for the Media Store application. As a basis, we investigated the
absolute power consumption prediction accuracy for different workloads. The presented
case study has been published in [200].
The Media Store application is a component-based reference application. Media Store

is a simple web-based media hosting application. It has been the subject of case studies
that investigated the applicability of Palladio [132], and the accuracy of its performance
predictions [22]. Various iterations of Media Store have been developed over time. The case
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study presented in this section used the version 2.01 predecessor of the most recent release
3.02 of the Media Store presented by Reussner et al. [170]. Media Store is implemented
atop the Java EE platform.

WebGUI MediaStore

Encoder

Water

marking
DB

AudioDB

Adapter

Packaging

IDownload

IEncode

IAudioDB

IPackaging
IWatermarking

IWebGUI

IDBAccess

presentation business logic persistence

Figure 7.1.: System diagram view of Media Store

Figure 7.1 shows the System diagram view on Media Store. The system adheres to the
three-tier architecture style. TheWebGUI component realizes the web GUI frontend of the
application. Via the GUI, users can upload and download music files. In the business logic
tier, the MediaStore component acts as a facade to the central business and persistence
layer components. When a music file is downloaded, it fetches the file from storage, and
re-encodes the file to the target audio quality by calling the encoding service of Encoder.
Afterwards, metadata is added to the music file by the Watermarking component. The
metadata is stored in a relational database represented by the DB component. These steps
are repeated for all music files requested by a user. If multiple files are requested, the files
are packaged before being sent to the user.

There are a set of alternative design decisions for Media Store. Reussner et al. [170] dis-
cuss a set of example design decisions for Media Store. One such design decision is the
choice of the Encoder component. The re-encoding of music files performed by the Encoder
component is the service with the highest resource intensity. We thus investigated re-
encoding as the part of the software architecture where energy efficiency could potentially
be improved. In its baseline implementation, Media Store re-encodes music files in the mp3
format via the LAME library. We identified the use of the Vorbis encoder implementation
libvorbis as a design alternative to the mp3 encoding of LAME. We selected comparable
audio quality settings for both encoders. LAME was configured to use a fixed bitrate of
192 kbit/s. We launched libvorbis with the -qscale:a 4 setting.

1https://svnserver.informatik.kit.edu/i43/svn/code/CaseStudies/MediaStore2/trunk/, re-
trieved 05.06.2017 with anonymous credentials.

2https://sdqweb.ipd.kit.edu/wiki/Media_Store, retrieved 05.06.2017.
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7.2.1.1. Evaluation Setup

We conducted the measurements on a Dell PowerEdge R815 server with four Opteron
6174 CPUs and 256 GB RAM as the target deployment environment. We deployed Media
Store on a Glassfish 3.1 application server running atop an Ubuntu 12.04 VM. The VM
was assigned 16 cores of the 48 availablephysical cores. The VM was deployed on the
XenServer 6.2 hypervisor running on the server. MySQL 5.5 was used as the realization of
the DB component. The compared versions of the LAME library were 3.99.3, and version
1.32 of libvorbis as distributed in the ffmpeg framework.

For power measurement, we utilized the IPMI interface of the PowerEdge server. IPMI
collects power measurements via a built-in power meter. Frequency, resolution and
accuracy of built-in power meters are lower compared to standalone, certified power
meters as used in the case studies presented in Sections 7.2.2 and 7.3. However, built-in
power meters do not need to be invasively connected to the server, consume less energy,
and take up significantly less space. The technical specifications of the server [163] do
not state the measurement frequency or accuracy of the server. Our measurements had
shown that all power measurements were rounded to multiples of ten. Furthermore, the
measurement frequency appeared to be lower than 1Hz.

Figure 7.2.: Resource-Demanding Service Effect Specification (RDSEFF) of the LAME im-
plementation of the Encoder component calibrated on the deployment envi-
ronment.

As preparation for the case study, we used a manually constructed PCM model of Media
Store. We re-calibrated the resource demands in the RDSEFFs of the central components
on our deployment environment in semi-automated measurements. We calibrated the
performance model with a single user workload, and collected the performance measure-
ments via perf4j. Figure 7.2 shows the calibrated RDSEFF of the LAME implementation of
the Encoder component. We based the RDSEFF estimation on the observation that the
encoding time linearly correlated with the file input size of the re-encoded music file. The
RDSEFF assigns the encoding a resource demand consumption of 4731 demand units per
kB of file size on the CPU of the R815 server with a single core processing rate of 2200.
For the calibration workload, the response time prediction error of the model was 0.05%.
We used a simple download usage scenario to evaluate power consumption, and energy
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efficiency of our application. Each usage scenario consists of a user downloading a random
song from Media Store.
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Figure 7.3.: Power consumption and per core power model based on microbenchmarking
with stress and lookbusy. The line represents the power model constructed
using the measurements for utilization levels from 1 to 16 cores.

We manually extracted the power model of the server. For this, we issued different load
levels to the server using the Linux microbenchmarks stress and lookbusy. In an initial step,
we profiled the server by varying the utilization of cores from 1 to 16 fully utilized cores.
Figure 7.3 depicts the resulting measurements. The power measurements for utilization
levels between single and 16 core utilization can be well described by a linear power model.
The figure depicts this power model Pmult:

Pmult(u) = 352.47 + 7.19u

For utilization levels below single core utilization, the power measurements strongly
deviate from the other measurements. Hence, we opted to construct a separate power
model for utilization levels between idle and full single core utilization. Figure 7.4 shows the
power measurements for this range, together with the power model Psingle that describes
consumption in this utilization range:

Psingle(u) = 8212.67x6 − 23872.19x5 + 25345x4 − 11469x3 + 1934.88x2 + 39.96x + 270.54.

We combined both power models to form a stepwise defined power model:

Pfull(u) =
{
Psingle(u) if u ≤ 1

Pmult(u) if 1 < u ≤ 16
, u ∈

[
0, 16

]
.
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Figure 7.4.: Power consumption for single core utilization levels extracted via lookbusy.
The line represents the power model constructed for the utilization levels
between idle and full single core utilization.

In this case study, we employed the SimuCom simulator [22] and SimuLizar to derive
performance predictions for the system under investigation. The performance predictions
served as input for PCA. We set the sampling interval for the power samples from PCA
to one second. Power consumption samples were collected with an interval around
1.4 to 3 seconds from the R815 server. We calculated the energy consumption in each
scenario using the measured and predicted power consumption samples. We derived
the energy consumption from the power samples by means of trapezoidal numerical
integration. We compared energy consumption between the predictions from simulations
and measurements using the following error formula:

Error = | EMeas−EPred
EMeas

|,

where EMeas is the measured and EPred the predicted energy consumption.

7.2.1.2. Power Consumption Model

Figure 7.5 depicts an excerpt of all relevant instances of viewpoints in our Power Con-
sumption metamodel. The Infrastructure view of our model only captures PSU and the
resource by which we model the power consumption of the server, the CPU. It references
the Resource Environment view of the PCM model that represents the server environment.
The figure only depicts model elements referenced in the Infrastructure view. Not depicted
is the DistributionPowerModelSpecification and the respective binding. The model uses a
passthrough distribution power model that models the PSU as lossless. We opted for this
modeling as we built the server power model using measurements that we had collected
at the power outlet of its PSU. Thus, the power model already implicitly considers any
potential PSU loss.
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Figure 7.5.: Excerpt of Power Consumption model instance for deployment environment
used in Media Store case study.
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We implemented the piecewise-defined power model Pfull as a black-box power model.
Thus, the specification contains the model as a model of type BlackBoxPowerModelSpeci-

fication. The fixed factors of the model correspond to the fixed factors of Pfull. The two
segments of the power model Psingle and Pmult can be specified via DeclarativeResourcePow-
erModelSpecifications. However, the Power Consumption model in its presented form does
not support the definition of piecewise-defined functions via native metamodel classes.
PieceWiseModel represents the power model type Pfull. It has nine parameters in total.
The FixedFactor instances represent these parameters. PieceWiseModel references the
MeasuredFactor u that quantifies the utilization of a resource like CPU. The Binding view
contains one FixedFactorValuePower instance per FixedFactor. The ResourcePowerBinding
with the name r815full instantiates the power model type Pfull for the specific server.

7.2.1.3. Prediction Accuracy

As a first step, we evaluated the absolute prediction accuracy of our PCA prediction
approach for the Media Store application. We analyzed the power consumption for the
Power Consumption model of the server. Our consumption analysis used system metrics
extracted from the SimuCom design time performance analysis of the Media Store PCM
model. For the single user calibration workloadW1 we determined an error of 0.17% for the
total energy consumption prediction. We increased the user load to evaluate the prediction
accuracy under higher load. The workloadW2 consisted of a closed workload with 16
users, where each user repeatedly downloads a random song from the Media Store. In
the case of increased workload we established an energy consumption prediction error of
5.47%. The average response time prediction error increased to 2.31%.

In addition to the closed workloads with a single, and 16 concurrent users, we investi-
gated the prediction accuracy of our approach for two open workload variantsW3 andW4.
In the first workloadW3, a new user arrived at the system every 16 seconds. The second
workloadW4 decreased the interarrival time to one second. The energy consumption
prediction error forW3 was 1.60%. The prediction error forW4 was 3.60%.

In order to evaluate whether PCA accurately predicts power consumption for varying
workloads, we employed the gradually increasing workloadW5.W5 starts with no active
users. Every 160 seconds the request rate increased by one additional user request per 16
seconds. After reaching a request rate of one request per second, the workload concluded.
SimuCom does not support the analysis of workloads patterns and trends. Hence, we
employed SimuLizar with its Usage Evolution extension [31] to simulate the increasing
workload W5. The Usage Evolution extension enables the modeling of variable user
interarrival times as piecewise defined mathematical functions over time [106]. The
absolute energy consumption error for the gradually increasing workloadW5 was 3.68%.

In summary, our approach produced accurate power consumption predictions for the
Media Store application. The absolute error of energy consumption predictions for five
different load intensities was no higher than 5.5%. Thus, we consider Question 1.3 positively
answered by the results of the case study.
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7.2.1.4. Comparison with State of the Art

We investigated the accuracy of our prediction approach compared to state of the art. Our
prediction approach uses instances of Power Consumption metamodel as input. The Pow-
er Consumption metamodel is more expressive than the modeling abstraction proposed
by the state of the art approach by Brunnert et al. [35]. The prediction approach of the
authors is restricted to linear power models. As the implementation of Brunnert et al.
was unavailable to us, we compared the prediction accuracy of the previously introduced
piecewise-defined power model Pfull and a simple linear power model Plinear to quantify
the benefit of our approach.

We trained the linear power model using linear regression to have an optimal R-squared
error on the training data. The training data was the same we used to train our piecewise-
defined power model.
The prediction error of Plinear reached 1.41% forW1, and 7.65% forW2. The error was

notably higher than the 0.17% forW1 and 5.47% forW2 of Pfull. This illustrates that the
consumption prediction accuracy can be increased by a noticeable margin when non-
linear power models are employed. Conclusively, our modeling and analysis approach
offers higher prediction accuracy over state of the art for the investigated workload and
application scenarios (Question 1.2).

7.2.1.5. Impact of Design Decision on Energy Efficiency

We investigated whether energy efficiency of the Media Store application could be im-
proved by using an alternate encoding. The goal was to validate whether our approach
accurately predicted the impact of design decisions on energy efficiency. We identified
Vorbis-based music encoding as an alternative to the mp3 encoding performed by the
baseline implementation. To reason on the effect of the design decision, we estimated the
resource demand of the Vorbis encoder. We estimated the resource demand based on a
set of calibration measurements for the libvorbis implementations. We performed these
measurements separate from the initial model calibration with mp3 encoding. Finally, we
modeled the Vorbis implementation of the Encoder component in the PCM component
Repository model.

We then used SimuCom (W1, . . . ,W4) and SimuLizar (W5) and PCA to predict the power
consumption for the alternative system. Then, we performed measurements to evaluate
the accuracy of the power consumption predictions. We ran measurement experiments
on the baseline LAME Encoder, and the Vorbis component variant. We deployed and
measured the energy consumption over time on the R815 server deployment environment.
We leveraged the workloadsW3,W4, andW5 to compare the energy efficiency for different
load intensities. Table 7.2 lists the results for each of the workloads. Table 7.3a contains
predictions and measurements forW3, Table 7.3b denotes the results forW4. In Table 7.3c,
measurements forW5 are listed. The encoder rows contain the energy consumed in Watt
hours (Whs) over a 30 minute experiment interval in the case ofW3 andW4. Measurements
and predictions forW5 cover just above 42 minutes. The Saved Energy row contains the
predicted and measured energy consumption for the two architecture variants. The saved
energy quantifies the effect of the design decision on energy efficiency, since the load
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Table 7.2.: Predicted and measured power consumption for mp3 and Vorbis encoder. Saved
energy quantifies the difference in consumption by using Vorbis instead of mp3
encoding.

(a) WorkloadW3 with interarrival time of 16s

Energy Consumption

Encoder Measured Predicted Error

LAME 173.77 Wh 171.00 Wh -1.60%
libvorbis 129.11 Wh 133.10 Wh +2.78%

Saved Energy 44.67 Wh 37.91 Wh -15.14%

(b) WorkloadW4 with interarrival time of 1s

Energy Consumption

Encoder Measured Predicted Error

LAME 215.30 Wh 223.06 Wh +3.60%
libvorbis 195.05 Wh 198.97 Wh +2.01%

Saved Energy 20.25 Wh 24.09 Wh +18.94%

(c) WorkloadW5 with increasing request rate

Energy Consumption

Encoder Measured Predicted Error

LAME 289.38 Wh 300.02 Wh +3.68%
libvorbis 267.82 Wh 274.50 Wh +2.50%

Saved Energy 21.56 Wh 25.52 Wh +18.34%

intensity has remained the same between both variants. It uses the metric ∆EE , which we
introduced in Definition 2.5. We determined the accuracy of energy efficiency predictions
as the measured and predicted improvement in energy efficiency. The relative prediction
error for all three workloads was below 19%.
The predictions indicated a potential reduction in energy consumption by employing

libvorbis compared to the LAME baseline. The predicted absolute reduction was 22.16% for
W3, 10.85% forW4, and 8.51% forW5. This closely matched the energy savings of 25.70%,
9.45%, and 7.45% we measured.
In conclusion, our PCA approach accurately predicted the impact of replacing mp3

with Vorbis encoding on the energy efficiency in the Media Store architecture. Hence, we
consider the results to positively answer Question 1.3.

7.2.2. Spring PetClinic

The following outlines the results of the application of the PCA approach to the PetClinic
community case study system. It presents the predicted and measured energy consumption
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and energy efficiency. The case study compared predictions and measurements for the
standard Spring Boot and microservices variant of PetClinic [159]. The case study consti-
tutes an end-to-end case study of our power model extraction and PCA approach. It applied
our automated power model extraction approach, in combination with a performance
model learning framework [220], to evaluate the accuracy of design time energy efficiency
predictions for automatically constructed models. The model learning framework [220]
extracts a PCM model instance from monitoring data. We combined the PCM model with
a power model we obtained using our power model extraction method. This supplied us
with all models required to perform energy consumption predictions.

7.2.2.1. Case Study System

Spring PetClinic [159] is a sample open source application developed by the Spring com-
munity. Its purpose is the experimentation and testing of Spring framework technology.
PetClinic models a simple Enterprise Resource Planning (ERP) scenario for a veterinary
clinic. Users interact with the application via a web frontend. The frontend offers services
for browsing and managing appointments, doctors and customers. There are different
variants of the PetClinic application for different development and technological variants
of Spring. PetClinic is commonly used to illustrate differences between the variants, and
showcase the use of new framework developments. Many authors, e.g. [50, 189, 191],
have applied PetClinic to validate SPE approaches. The Spring Boot PetClinic variant
showcases the use of lightweight deployment and delivery mechanisms introduced by
Spring Boot. A microservices variant [158] has been derived from the Spring Boot Pet-
Clinic. The microservices variant separates services for managing customers, vets, and
appointments. Furthermore, it introduces microservices pattern implementations from
Spring Cloud, e.g., circuit breaker and API gateway. We compared the power consumption
and energy efficiency of Spring Boot, and the microservices variant of PetClinic across
different workloads. This allowed us to evaluate whether the transition from the initial to
the microservices architecture affects the energy efficiency of PetClinic.

Spring Boot variant. Figure 7.6 depicts a simplified system diagram view of the Spring
Boot PetClinic variant. PetClinic follows the classic Model-View-Controller (MVC) design
pattern. The OwnerRepository and VetRepository components persist and provide access to
owner, veterinary and appointment data. Each of the components is configured to store
the data in an HSQLDB in-memory database instance. The ClinicService component serves
as a facade for the persistence layer components. Each of the components in the business
layer offers services to manage owner, veterinary and appointment information. The
presentation layer provides web access to the services of the components in the business
logic layer. The Spring Boot baseline implementation uses the Thymeleaf template engine
to realize the web frontend. In PetClinic Boot, all components, or modules, but HSQLDB
need to be deployed together.

Spring Cloudmicroservices variant. Figure 7.7 shows a simplified system diagram view
of the Spring PetClinic Cloud/microservices variant. Each of the depicted components
represents an independently deployable composite component. The variant separates
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Figure 7.6.: System diagram view of the PetClinic architecture of the Spring Boot variant.
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Figure 7.7.: Simplified system diagram view of the PetClinic microservices architecture.

the landing page in the dedicated Homepage component. Additionally, it separates the
appointment planning service VisitsService in a dedicated component. The APIGateway
component acts as a gateway to the back-end services. It uses the Netflix Zuul1 API
gateway implementation. The APIGateway component also provisions and delivers web
content to the users. The microservices-based PetClinic replaces the web content of the
baseline, which was built using Thymeleaf, with a NODE.JS front-end. Every service
separately organizes its persistence. We instantiated a HSQLDB instance for each service.

7.2.2.2. Evaluation Setup

We deployed both PetClinic variants on a PowerEdge R815 with four Opteron 6174 CPUs
and 256 GB RAM. The execution environment of PetClinic was an Ubuntu 14.04.5 LTS
VM with 40 virtual cores and 16 GB RAM. The VM ran atop a XenServer 7.0 hypervisor.
Power monitoring was conducted using a ZES Zimmer LMG95 power meter connected to
a dedicated notebook. We looped the electrical outlet of one of the two redundant PSUs of
the servers through our power meter. We disconnected the second PSUs to guarantee that
the full power draw of the server was captured by the power meter. An agent installed in
the PetClinic VM collected power measurement data and system metric measurements.
JMeter 3.0 was used as the load driver issuing user requests. We deployed JMeter on a
workstation PC equipped with an i7-7700 CPU and 32 GB RAM. The workstation was
connected to the R815 server via 1 Gbit/s Ethernet.
We deployed each of the services of the microservices variant in the same VM. While

the microservices variant supports the isolation of services in separate containers, we
opted to run them in separate Java VMs in the same user space.

1https://github.com/Netflix/zuul, retrieved 16.11.2017.
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We used PMX [220] to extract the performance models of PetClinic Boot, and PetClinic
Cloud. PMX extracts PCM instances from the monitoring traces of an application that
has been instrumented by Kieker [90]. To extract the power model for the evaluation, we
conducted an automated power model extraction using our systematic profiling approach.
Chapter 5 presents this approach. The profiling run was executed within the target
Ubuntu VM, in which we deployed the PetClinic instances. As Section 5.2.3 discussed, the
extraction approach ranks a set of power models based on their prediction accuracy. From
the power models detailed in Section 7.3 we restricted the set of considered power models
to power models that consider solely CPU utilization. This restriction is induced by the
fact that PMX only learns resource demands for the CPU. Power models that rely on HDD
metric predictions hence were ruled out.
In order to obtain a power model of the R815 server, we applied our power model

extraction approach. We employed the CPU workloads discussed in Section 7.3.3. As
target levels we used {0, 0.05, . . . , 1.0,∞}. We executed the profiling run in the same VM
as the PetClinic instances. The PetClinic instances were not running during the profiling.
We used a set of power models from literature as input to the model training. Section 7.3.2
provides an overview of the considered models. From the available models, we selected the
models which used CPU utilization as their only input metric. We employed the iterated
reweighted least squares regression as implemented by Rousseeuw et al. [177] to train
the power models. Our tooling calculated the AIC of each trained power model. From
the ranking, we selected the power model with the highest ranking. The selected power
model was:

PExp(u) = 254.488W + 310.121W · u0.395,

where u ∈ [0, 1] is the aggregated CPU utilization measured within the VM. The model
instantiates power model type 6 from Table 7.8.

For performance and power consumption predictions, we used SimuLizar coupled with
the Power Consumption Analyzer (PCA). We used a sampling rate of 1Hz, and sampling
window size of 1 time unit for the power consumption predictions. The predicted CPU
utilization was averaged over an interval of 10 seconds.

7.2.2.3. Evaluation Scenario

Visit a random

customer page

Visit main 

page

Visit vets 

page

Display all

owners 

Revisit same

customer page

Figure 7.8.: Activity diagram view of the browsing usage scenario behavior for PetClinic

In order to evaluate the energy efficiency of the application of the PetClinic application,
we defined a baseline usage scenario. We compared the measured and predicted energy
efficiency of both application variants for the same usage scenarios. The usage scenario
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describes a sequence of interactions of a user with the PetClinic system. Figure 7.8 depicts
the used scenario behavior. The scenario is a browsing workload which was derived from
the JMeter test plan foundwithin the repository [159]. Interactions that resulted in database
write operations were removed. This was done in order to factor out contention effects,
which resulted from database locking. Otherwise, much lower maximum throughput rates
could have been achieved. This would have limited the range of workload intensities for
which we could have explored the energy efficiency.

PetClinic Cloud groups information retrieval for front-end services by the different back-
end services. The Representational State Transfer (REST) requests sent by the interactive
front-end user web pages do not match those of the Spring Boot baseline. Thus, we
implemented a JMeter test plan that conforms to the interfaces of the PetClinic Cloud
services. The test plan contains the same user interactions as the baseline plan.
The scenario behavior was executed in an open workload usage scenario. We varied

the interarrival rate between users to evaluate the power consumption of the system at
different load levels.

7.2.2.4. Power Consumption Model

Figure 7.9 shows the Power Consumption model instance of the evaluation environment
of PetClinic. The model represents the used power model PExp(u) as a declarative resource
power model. The topology structure represented in the Infrastructure view is the same
as in the Media Store case study, since the study used the same server.

7.2.2.5. Prediction Accuracy

This section discusses the predicted and measured energy consumption for each of the
two PetClinic variants.

Table 7.4.: Total energy consumption for different user scenario behavior rates for PetClinic
system. Energy consumption in Wh over an interval of 30 minutes.

Workload in User Scenario
Behaviors per Second

Measured in Wh Predicted in Wh Error in %

296 193.78 193.13 0.34%
715 217.00 221.37 2.01%
963 228.61 233.18 2.13%
1377 247.14 250.78 1.48%

Table 7.4 provides an overview of measured and predicted energy consumption at
different throughput rates. Our predictions obtained via PCA coupled with SimuLizar
achieved an absolute error of at most 2.13% for all considered workloads. Due to the high
accuracy of power consumption predictions, energy efficiency predictions are naturally
also accurate. Figure 7.10 depicts the predicted and measured energy efficiency of the
application as energy consumed per transaction over the observed interval. The workload
was picked to reflect a large range of utilization levels. The noted User Scenario Behaviors
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Figure 7.9.: Excerpt of Power Consumption model instance for deployment environment
used in PetClinic case study.
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Figure 7.10.: Power consumption per completed User Scenario Behavior for the Spring
Boot baseline.
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Table 7.5.: Total energy consumption for different user scenario behavior rates for PetClinic
Microservice system variant. Energy Consumption in Wh over an interval of
30 minutes.

Workload in User Scenario
Behaviors per Second

Measured in Wh Predicted in Wh Error in %

294 179.00 188.50 5.31%
710 217.87 214.72 1.45%
960 228.49 226.31 0.96%
1361 247.88 242.11 2.34%

per seconds rates were the actual measured throughput rates when executing a specific
target user workload. Measurements for the rate 296 were, e.g., performed for an intended
target rate of 300. The predicted energy efficiency closely matched the measured energy
efficiency.

As one would expect, the energy efficiency increased for higher transaction rates. A
major reason is the fact that the static power consumption is spread among more requests.
Another reason is the power consumption behavior of the server for higher utilization
levels. The extracted power model PExp(u) estimates the consumption at different load
levels. The power model is strictly concave on [0, 1]. This implies that the marginal power
consumption of the server decreases at higher utilization levels. Thus, an increase in
throughput increases the energy efficiency. This holds as long as an increase in load does
not lead to a violation of another quality goal.

Figure 7.11.: Power consumption per completed User Scenario Behavior for Microservice
system variant
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Table 7.6.: Prediction error of PExp(u) compared with linear power model PLinear(u) for the
microservices-based PetClinic. Error in %. Positive errors correspond to an
overestimation, negative an underestimation.

Workload in User Scenario
Behaviors per Second

PExp(u) PLinear(u)

294 +5.31% +7.89%
710 −1.45% −4.08%
960 −0.96% −4.19%
1361 −2.34% −4.99%

Table 7.5 lists the measured and predicted energy consumption for the microservices
variant of PetClinic. Over all predictions, the highest error is 5.31%. The predictions closely
match the measured results for the microservices variant. The energy consumption per
User Behavior Scenario of the microservices variant only marginally deviates from the
standard PetClinic variant. This shows that the overhead introduced by the separation of
functionality into microservices was limited. The energy consumed per user transaction
shown in Figure 7.11 also reflects this.

The energy consumption analysis of PCA accurately predicted the energy consumption
of the PetClinic microservices variant. The results from the PetClinic case study indicate
that our analysis offers high accuracy (Question 1.1). The high absolute accuracy for
both PetClinic variants enabled us to reason on the effect of refactoring PetClinic into a
microservices based architecture. We identified no significant impact of the refactorings
on energy efficiency. The results thus affirm Question 1.3. Our model extraction approach
managed to train and identify an accurate power model. Therefore, the results positively
answer Question 3.1.

7.2.2.6. Comparison with State of the Art

We investigated Question 1.2 using the microservices-based PetClinic variant. The ap-
proach by Brunnert et al. [35] is the only state of the art approach that supports architecture-
level reasoning on the energy consumption of software systems. We replicated their
prediction method by using a linear power model, as the implementation by Brunnert
et al. was not available to us. We leveraged the same training data and regression technique
to train PLinear(u) as for PExp(u). The training resulted in:

PLinear(u) = 364.604 + 227.87 · u,

where u ∈ [0, 1] is the aggregated CPU utilization measured within the PetClinic VM.
Table 7.6 lists the prediction error of PExp(u) and the linear power model PLinear(u) for the

microservices variant of PetClinic. PExp(u) outperformed the linear across all throughput
rates. The linear power model overestimated power consumption at low throughput rates,
and underestimated consumption at high rates. This is indicated by the plus/minus sign.
It was hence not possible to improve the accuracy by adjusting the linear model by a
fixed factor: This adjustment would have either increased the accuracy at low utilization
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levels at the cost of an increased error at high utilization levels, or the other way around.
The results show that the use of power models beyond linear models can improve the
prediction accuracy. They positively answer Question 1.2 for the Petclinic microservices
variant.

7.2.3. Virtual Machine Placement in Data Centers

The central goal of our PCA approach is to enable the design time energy efficiency
analysis of software systems on an architectural level. Aside from its use in architectural
design, power consumption predictions can aid data center operators in decision making
for their infrastructure. Example decisions in the context of IaaS data centers are the
choice of resource management algorithms. Resource management algorithms aim to
improve, e.g., the mapping of VMs to servers. The algorithms perform this with respect to
the algorithm heuristics or optimization criteria. This section discusses the application of
PCA in the validation and evaluation of resource management algorithms for data centers.
It addresses Question 1.2 and Question 1.1 for a self-adaptive software system.

The CACTOS project [152] developed an integrated approach for monitoring, optimiza-
tion, and simulation of IaaS data centers. The implementation of the integrated approach
consisted of two complementary toolkits. The CACTOS Runtime Toolkit integrates moni-
toring and autonomic resource management of data centers. The framework continuously
improves the configuration and resource allocation at runtime. It uses resource man-
agement algorithms to identify reconfiguration plans that improve QoS according to the
algorithm heuristics. The CACTOS Prediction Toolkit enables what-if analyses for data
center sizing, and the configuration and selection of resource management algorithms. In
Stier et al. [196] we provide an overview of the central features of the Prediction Toolkit.

The CACTOS Prediction Toolkit includes an IaaS data center simulator. The simulator
uses PCA to perform power consumption predictions. The simulator builds upon SimuLizar
and our Transient Effect Interpreter extension. The toolkit supports an in-the-loop cou-
pling of resource management algorithms with the simulator. Unlike existing Cloud
simulators, the toolkit can include these algorithms in its simulation-based evaluation
without modification. It does not require optimization algorithms to be re-implemented
against simulator specific APIs. The simulator continuously calls the configured resource
management algorithms to improve the mapping between VMs and server resources. The
integration of simulator and resource management algorithms matches the integration
in the Runtime Toolkit. A data center managed by CACTOS constitutes a self-adaptive
software system, as it continuously aims to improve QoS by performing adaptation actions
such as VM migrations.

The CACTOS tooling uses a specialized metamodel to represent data centers. Instances
of the metamodel serve as a runtime model. Compared to PCM, the metamodel contains
additional information needed for the management of virtualized data centers, such as
further hardware information, and a representation of VMs as first class entities. The
Prediction Toolkit continuously synchronizes the CACTOS runtime model with the PCM
and SimuLizar models. We presented the integration method applied to couple simula-
tion and optimization in [197]. The power consumption characteristics representation in
the CACTOS metamodel was developed based on the Power Consumption model. Sec-
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tion 3.2.5.2 outlines the CACTOS integration of the central modeling concepts. As part
of the simulation, CactoSim maps the power consumption characteristics to an instance
of the Power Consumption model. SimuLizar then executes PCA on the target Power
Consumption metamodel instance.

7.2.3.1. Evaluation Setup

The case studies presented in this section were conducted as part of the CACTOS project.
The studies were carried out in a data center testbed built using commodity hardware.
The testbed was managed using the OpenStack [151] Cloud platform, enhanced with the
CACTOS Runtime Toolkit. The CACTOS Runtime Toolkit determines initial placement
locations for VMs. Additionally, it continuously optimizes themapping of VMs to resources,
e.g., by performing VM migrations.

In total, four scenarios were evaluated. The four scenarios and the results were published
in [196]. The first three scenarios covered a setup with eight servers. Power measurements
were collected using IPMI. Power measurements could be collected from six out of the eight
servers. The other two servers lacked power meters. The fourth scenario was conducted
using six servers. From the six servers, power measurements could be collected from
the four servers. In each scenario, a load driver submitted a set of VMs to the Cloud
middleware. The VMs ran scientific computing workloads. Each VM executed a Molpro
[221] scientific computing job after it had booted. Molpro is a framework for quantum
chemistry computations. Molpro jobs adhere to run-to-completion semantics. The load
driver submitted the Molpro VMs over time. Each set of submitted jobs was designed to
follow typical daily submission patterns at the High Performance Computing Center at
Ulm University. The workload mix covered Molpro jobs with short and long run times.
Jobs with short run times lasted up to two hours. Long running jobs covered up to eight
hours.
We predicted the power consumption of the testbed using CPU-based power models.

In the first scenario, we used linear power models to predict the power consumption of
servers. We trained the power models on historic measurements that were collected for all
servers, which the scenario covered. In the other three scenarios, we used a mix of linear,
cubic polynomial, and exponential power model types. The exponential power model type
was:

P(u) = a · (1 − e−u) · b.

Initially, we had used linear power models to predict the power consumption in all four
scenarios. We were able to reduce the prediction error through the use of the previously
mentioned non-linear models. This illustrates the increased prediction accuracy of our
approach compared to state of the art predictions (Question 1.2).
We queried historic power and load measurements from a monitoring database that

recorded measurements from the testbed. As the power measurements strongly varied
for each recorded CPU load level, we aggregated the measurements for each load level
in {0, 0.01, . . . , 1} using the median function. The aggregated input values served as the
training set of the regression. We applied the iterated reweighted least squares regression
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as implemented by Rousseeuw et al. [177] to train the power models. Section 5.3 provides
further details on this power model extraction from historical measurements.

We performed a simulation of a specific workload mix, and optimization configuration
based on historical load data. We reconstructed black-box VM models from the load data
stored in the monitoring database. The black-box modeling concept we employed to
describe VM load is described in [115]. In order to minimize the effect of variations in VM
behavior on the predictions, we compared the simulation results against the historical
run from which the load models were constructed. We only considered VMs that were
successfully deployed on the testbed. This was done as information on VMs with failed
deployments were not recorded.
We determined the total energy consumption of simulation runs and measurements

using numerical integration. We employed the Gauss-Kronrod quadrature formula to
calculate the total energy consumption from the measured and predicted power samples.
In our predictions, we only compared the measured and predicted energy consumption of
the servers with power meters.

7.2.3.2. Evaluation Scenarios

This section provides details on the conducted experiments. No VMs were running at the
start of each experiment scenario.

Scenario 1 The first scenario encompasses 26 VM submissions to a data center testbed
setup which consisted of eight servers. Six of these eight servers had a power meter, from
which we could collect measurements. No power measurements were available for the
other two servers. The experiment covered just below one and a half hours. We used
consolidation algorithms for VM placement and migration. The algorithms consolidated
the VMs based on their RAM requirements. The project deliverable [117] describes the
RAM-based consolidation algorithms.

Scenario 2 The second scenario contained 15 VM starts. It lasted for approximately eight
and a half hours. In this scenario, both VM placement and optimization of the Runtime
Toolkit were configured to use load balancing algorithms. The algorithms target an even
distribution of used RAM across all servers based on the RAM requirements of VMs. A
description of the algorithm is available in [117].

Scenario 3 The third scenario covered the same basic experiment configuration as Sce-
nario 1, but with an extended experiment time of eight hours and 46 minutes. The number
of VM starts was reduced to 19. We used the same VM consolidation algorithms as in
Scenario 1.

Scenario 4 The last scenario consisted of 37 VM starts. It covered an interval of approxi-
mately 26 hours. The scenario used the same consolidation algorithms for VM placement
and optimization as Scenario 2. Unlike the eight servers used in the first two scenarios,
the third scenario used six servers.
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Table 7.7.: Total energy consumption for the three evaluated scenarios. Energy Consump-
tion in Wh. Prediction error in %.

Scenario Duration Measured Predicted Error

1 75min 1 783Wh 1 661Wh 6.85%
2 514min 5 443Wh 5 464Wh 0.39%
3 526min 5 238Wh 5 609Wh 7.08%
4 1561min 13 558Wh 12 826Wh 5.40%

7.2.3.3. Experiment Results

This section discusses the prediction accuracy we achieved when applying PCA to the
power consumption prediction of a self-adaptive IaaS data center.

Table 7.7 lists the measured and predicted energy consumption for each scenario. In the
first scenario, the prediction error was 6.85%. The prediction error in scenario 2 reached a
low 0.39%.

Scenario 3 had the highest prediction error 7.08%. We attribute the high prediction error
to an overestimation of CPU utilization in one of the servers that was equipped with a
power meter. The simulation model did not contain one VM that was actually running on
the testbed. In the run, this VM was initially placed on a server without a power meter.
Later, the VM was consolidated to a server with a power meter. This migration did not
happen in simulation. Consequently, the server with a power meter continued to have
spare resources in simulation. This led to the placement of a highly active VM on the
server, since the resource management algorithm were configured to consolidate VMs on
as few servers as possible. . In the measured run, the VM was placed on a server without
a power meter due to RAM limits. The VM increased the power consumption of one of
the monitored servers in simulation. Byrne et al. [43] provide an extensive discussion of
the deviation. Even though the missing measurement data led to a major deviation in
simulation, the aggregate energy consumption prediction was accurate.

In the fourth scenario, which covered over 24 hours, the prediction reached 5.40%.
Our PCA approach accurately predicted the power consumption of the data center

testbed across all four scenarios. Hence, we conclude that the results positively answer
Question 1.1.

7.2.3.4. Limitations

We achieved a high prediction accuracy despite the following limitations regarding the
quality of input data, and our test setup:

· Resolution and accuracy of measurement data. The monitoring database col-
lected power consumption measurement data with a resolution of ten seconds. CPU
utilization measurements were also only available with a resolution of ten seconds.
The low measurement resolution hindered the construction of accurate performance
and power models. The monitoring tooling collected power consumption measure-
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ments from power meters built into the server PSUs. The use of built-in power
meters limited the measurement accuracy.

We observed a large variation of power consumption measurements for the same
load level. Our model learning addressed this by averaging over all measurements
of each load level. Nevertheless, we consider the fluctuations to have had an impact
on prediction accuracy.

· Missing measurement data. In the third scenario utilization measurements from
one of the VMs were missing due to a monitoring failure. This led to inaccura-
cies in the reconstructed behavior model for simulation. The resulting prediction
inaccuracies of CPU utilization reduced the energy consumption prediction accuracy.

· Lack of a representative range of measurement data covered by historical

data. Most servers reached at most an overall CPU utilization of 20% for time frame,
in which measurement data were available. This made it difficult to train power
models that were representative of the power consumption behavior of the servers
outside of the observed utilization range.

· Missing power meters in a subset of servers. Two of the servers lacked a power
meter in all three scenarios. Power consumption resulting from the activity of VMs
that were allocated on these servers could not be considered. Consequently, we
could only reason on power consumption for the remaining servers. In Scenario 3
this introduced a noticeable error in the simulation predictions.

7.3. Automated Extraction of Power Models

This section investigates the appropriateness of the power model extraction method as
stated in Goal 2. The evaluation addresses the validation questions 3.1 through 3.5. Parts
of the validation results were initially published in [201].
The main power model extraction case study involved three central steps. First, we

executed the profiling approach presented in Section 5.2 for a server. Second, we trained
a set of power models on the resulting profile. Finally, we evaluated the accuracy of the
power models for a set of workloads. We reasoned on the utility of the AIC-based power
model ranking approach via a comparison of measured and predicted accuracy.

This section is structured as follows. Section 7.3.1 introduces the setup of the profiling
for the case study. Section 7.3.2 gives an overview of power models used as in input for
the profiling and model training. Section 7.3.4 discusses the server profile produced by our
profiling approach. Section 7.3.5 introduces the case study systems used to evaluate the
accuracy of power models. In Section 7.3.6 we investigate the prediction error of power
models for the case study systems. Section 7.3.7 compares our approach with a state of the
art approach. Section 7.3.8 discusses the application of the AIC-based ranking of power
models to the system under investigation. In Section 7.3.9 we present a complementary
case study that evaluates the prediction accuracy of the extracted models for VMmigration
scenarios.
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7.3.1. Profiling Setup

The server under investigation for the evaluation of the profiling approach was a Pow-
erEdge R815 with four Opteron 6174 CPUs, 256 GB RAM, and six 900 GB 10, 000 RPM
Serial Attached SCSI (SAS) HDDs. The six HDDs were connected to an internal storage
RAID. The profiling framework and evaluation workloads were executed in Ubuntu 14.04
VMs. Each VM had 48 virtual cores and was running atop XenServer 6.5. Only one VM
was running at any given time during the profiling and measurement. The profiling VM
was assigned 64 GB of RAM.

Power measurements were conducted using a ZES Zimmer LMG95 power meter. We
connected the power meter to the electrical outlet of one of the two redundant PSUs of
the servers. We disconnected the other PSUs to guarantee that the power meter captured
the full power draw of the server. Power meter measurement data was collected using
a dedicated notebook. The notebook ran SPEC PTDaemon [192], which polled power
measurements from the power meter. A monitoring utility collected all system metric
and power measurements. We implemented the utility upon the technical foundation of
SIGAR [143] and Metrics [139].

Our server profiling uses an input configuration. The configuration determines the set
of workloads, and the set and range of system metrics that should be considered by the
profiling. We configured the profiling as follows. We included CPU utilizationucpu, storage
write throughput tpwrite, and storage read throughput tpread in the profiling metrics. Our
profiling framework only actively steered one of the two storage metrics at any point in
time. The framework monitored the other storage metric during that time. We configured
the profiling framework to perform the calibration of the workload intensity over 80 or 90
seconds. We set the measurement phase to last 60 seconds. The calibration phase was 90
seconds for all workloads involving XMLvalidate, and 80 seconds for all other workloads.

7.3.2. Metric Selection and Considered Power Model Types

We selected ucpu, tpwrite, and tpread as candidate metrics for the power model training,
since they can be predicted with Palladio simulators [18, 22, 92] and available extensions
[148]. Modeling storage systems requires additional effort, as the work by Huber et al. [92]
and Noorshams et al. [148] demonstrates. If we are able to accurately predict the power
consumption and performance of a software system without explicit consideration of
storage, this option is the more desirable option. The reason lies in the lower effort required
to create PCM models that solely consider CPU.
As outlined in Section 5.2, the power profiling performs the profiling and training of

the server under investigation for a set of power model types specified by the user. Each
power model type subsumes a set of power models that predict the power consumption of
a server using a set of system metrics.
Prior to the evaluation, we had collected power model types that supported system

level metrics for CPU and HDD. For these models, we limited the used metrics to ucpu,
and optionally tpwrite, tpread, or all three metrics. Table 7.8 provides an overview of the
identified power models. The only model not explicitly stated in literature is model 6. We
derived model 6 from model 5 by eliminating its linear component.
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Table 7.8.: Overview of considered power models. M is the set of considered metrics. The
referenced papers propose or apply the listed power model.

No. Power Model Considered Metrics

1 P = c0 +
∑

m∈M cmum OS-level system metrics [35, 65, 82, 104,
135, 172], or only CPU utilization [69, 231]

2 P = c0 +
∑

m∈M (
∑lmax

l=1 clum
l ) OS-level system metrics [135],

or only CPU utilization [231]

3 P = c0 +
∑

m∈M
∑lmax

l=1 (eum + cluml ) OS-level system metrics [135]

4 P = c1 · e−(
ucpu−c2

α1
)2 CPU utilization [231]

5 P = c0 + c1ucpu + c2u
α
cpu CPU utilization [69, 172]

6 P = c0 + c1u
α
cpu CPU utilization

7.3.3. Workload Selection and Definition of Profiling Ranges

We selected the workloads SequentialWrite, RandomWrite, XMLvalidate, CryptoAES, Com-

press and SOR from Server Efficiency Rating Tool (SERT) to profile the server under
investigation. SequentialWrite performs sets of sequential disk writes, while RandomWrite

randomly writes to disk. XMLvalidate stresses the CPU by performing XML document
validations. SOR numerically solves differential equations. Compress (de-)compresses data.
Further details on the used workloads are available in [187].
We formed workload mixes from the considered individual workloads by forming the

cross product of workloads that stress the CPU (ucpu), and workloads which mainly use the
HDD (tpwrite). Table 7.9 lists the combined workloads with the target levels per workload
combination. In total, the run of the combined workload took approximately 38 hours. We
did not control tpread via a separate workload. We only passively monitored and recorded
tpread. We defined the target level ranges of tpwrite based on simple throughput tests using
utilities like the Linux command line tool hdparm. By slightly varying tpwrite target levels
across the workload mixes, we were able to cover a larger range of throughput levels. The
profiling framework formed the target load levels as the cross product of the ucpu and
tpwrite levels of workloads 1 through 4. The listed load level 850 000 matches ∞, as it is
higher than the achievable throughput rates for tpwrite. It could have been omitted from
the workload level definition as it practically resulted in a repeat of the ∞ target level.
Since measurements can be filtered prior to power model training, we deemed that the
repeat definition did not impair the representativeness of our measurements.

7.3.4. Discussion of the Server Profile

We used the workload mixes discussed in Section 7.3.3 to profile the server under investi-
gation. This produced a server profile for use in the model training step.
Figure 7.12 visualizes the server profile as a scatter plot. The scatter plot shows the

combined measurements collected when profiling the system under investigation using
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Figure 7.12.: Scatter plot of power measurements (vertical axis) drawn over measurements
of considered system metrics. The horizontal axis represents CPU utilization,
the diagonal axis write throughput. The color of dots in the plot illustrates
the read throughput.
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7. Validation

Table 7.9.: Workload mixes with used target level per steered system metric. The cross
product of target values form the target measurement tuples. Workload mixes
marked with (⋆) have an additional target level (∞,∞).

No. Workload (combination) Controlled Metrics Target Level Ranges

(1) SequentialWrite tpwrite {0, 6 000, 25 000, 40 000, 60 000,
100 000, 850 000,∞}

and XMLvalidate ucpu ×{0, 0.05, 0.10, 0.15, . . . , 1.0,∞}

(2) RandomWrite tpwrite {0, 6 000, 25 000, 40 000, 60 000,
100 000, 850 000,∞}

and XMLvalidate ucpu ×{0, 0.05, 0.10, 0.15, . . . , 1.0}

(3) SequentialWrite tpwrite {10 000, 20 000, . . . , 120 000}
and CryptoAES (⋆) ucpu ×{0.05, 0.10, 0.15, . . . , 1.0}

(4) RandomWrite tpwrite {6 000, 12 000, . . . , 72 000}
and CryptoAES (⋆) ucpu ×{0.05, 0.10, 0.15, . . . , 1.0}

(5), (6), Compress, XMLvalidate,
ucpu {0, 0.05, 0.10, . . . , 1.00,∞}(7), (8) SOR, CryptoAES

the workload mixes listed in Table 7.9. The plot indicates that power consumption strongly
correlates with CPU utilization. A relation between consumption and storage throughput
is not apparent.

We applied Pearson’s and Spearman’s correlation coefficients to investigate the degree
to which measurements of different system metrics and power consumption correlate.
Section 2.7.4 introduced the foundations of the correlation coefficients. CPU utilization and
power consumption had a Pearson’s correlation coefficient value of 0.95, which indicated
a strong positive correlation of CPU utilization and power consumption. This confirmed
and is consistent with the well-established observation that CPU utilization and power
consumption strongly correlate. For write throughput and power consumption, Pearson’s
correlation coefficient produced a value of 0.06. Read throughput and power consumption
had a correlation value of 0.03. The Spearman’s correlation coefficient values for CPU
utilization, read and write throughput were 0.95, 0.06, and 0.10. Hence, we could infer that
CPU utilization by far had the strongest correlation with power consumption. Storage
throughput and power consumption appeared to have a weak correlation with power
consumption. When we reduced the set of measurements to the measurements with idle
CPU load, power consumption and write throughput had a Spearman’s correlation value
of 0.76. Power consumption and read throughput had a correlation of 0.58. This indicated
that storage activity increased the power consumption. However, the effect of CPU activity
was much stronger. This can be seen in the weak correlation of power consumption and
storage activity for the full profile.

A comparison of power consumption of storage intensive workloads with CPU intensive
workloads explained the weak correlation values of storage throughput for the whole
data set. More than 99% of the power measurements of runs where ucpu was not explicitly
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7.3. Automated Extraction of Power Models

stressed fell in the interval [269.64, 375.21]. Over 99% of the measurements collected
for workloads that stressed ucpu fell into the interval [284.88, 607.37]. This indicates
that the correlation of total power consumption and I/O is much smaller than power
consumption and CPU. Consequently, I/O does not appear to strongly correlate with total
power consumption when analyzing the full data set.

7.3.5. Prediction Accuracy Evaluation for the Case Study Systems

We used the HiBench benchmarking suite [91] version 5.01 and SPECjbb2015 [193] to
evaluate the accuracy of our power model extraction approach. HiBench consists of a
set of Hadoop benchmarks. The benchmarks contained in HiBench cover a set of typical
Big Data application workloads and microbenchmarks. We categorized the encompassed
benchmarks into the three categories I/O-intensive, CPU-intensive and idle. We considered
workloads I/O-intensive if they contained phases in which tpwrite or tpread increased well
above idle throughput rates. We identified K-means, TeraSort, DFSIOe, Page Rank, and
Nutch Indexing as I/O intensive workloads. We distinguished Sleep from the remaining
workloads as it does not perform any actual work. We categorized all other workloads as
CPU-intensive. This subsumed Sort,Word Count, Join, Aggregation, and Scan. SPECjbb2015
is a benchmark application that aims to evaluate the performance of a system environ-
ment for business applications implemented in Java. Its application workload is modeled
after transactions in a “world-wide supermarket IT infrastructurež [193]. SPECjbb2015
determines the throughput of the deployment environment by continuously increasing
the user load issued to the application.
The evaluation setup matches the profiling setup. The only difference was the RAM

sizing of VMs in which we executed the evaluation VMs. The SPECjbb2015 VM operated
with 32 GB RAM, while the HiBench VM had 16 GB RAM.

7.3.6. Prediction Error of Trained Models

In order to reason on the actual accuracy of the models, we evaluated the prediction
accuracy of the power models listed in Table 7.8 for the case study applications. For
this, we ran the case study application benchmarks. We executed each benchmark eight
times. During the execution of each benchmark, we collected both power and system
metric measurements. We used the system metric measurements collected during the
run as input to the power models. This gave us power consumption predictions for all
sampled points in time during the run of each application workload. Next, we performed
numerical integration on the predicted and measured power consumption samples. This
produced energy consumption estimates on the basis of the predicted (EPred) and measured
energy consumption (EMeas). Finally, we compared the predicted with the measured
energy consumption, and determined the Mean Absolute Error (MAE) over all eight runs
as | EMeas−EPred

EMeas
|. The tooling we used in the evaluation is available online via2.

1https://github.com/intel-hadoop/HiBench/tree/175ad8771fdeebfc637bd4ad3c09a23df3c9cc50, re-
trieved 16.11.2017.

2https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Profiler, retrieved 16.11.2017.
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Initially, we trained the power models using the full server profile discussed in Sec-
tion 7.3.4. The profiling framework had obtained the full server profile by profiling the
server under investigation for all target levels listed in Table 7.9. To assess the benefit of
using a server profile obtained via combined profiling of CPU and HDD over a separate
profiling, we compared the accuracy of power models from combined with the accuracy
from separate profiling. In order to reduce the influence of measurement variations in-
troduced by reruns, we extracted the profile from the existing profile. The server profile
from separate profiling only contained measurements from runs that individually stressed
either CPU or HDD. This corresponded to the subset of profiling runs from all target levels
shown in Table 7.9, where either ucpu or tpwrite targeted zero.

Surprisingly, the models trained on the profile from separate profiling had a smaller or
similar prediction compared to the models trained on the full profile. The error rates of the
models trained on the full profile can be found in Appendix A. The prediction error results
thus negatively answer Question 3.2 for the system under investigation. One explanation
for the lower accuracy of models trained the on the server profile from the combined
profiling is the high number of measurements in the profile, where at least one of the
observed metrics reached high measurement values. Since the used regression approach
minimized the error for the full training set, this could have over-emphasized high model
accuracy for high utilization levels. This is hinted at by the large difference in prediction
error between combined and separate profiling for workloads with low utilization, e.g.
Sleep. The power models from combined profiling had prediction errors of up to 28.6% for
Sleep, while the highest error of the models from separate profiling was 15.7%. Another
reason for the missing improvement in prediction accuracy is that none of the models
listed in Table 7.8 have interactions among system metric variables. Interactions refer to
a simultaneous effect of two variables on the result, e.g., u · tpwrite. The model training
could not train the models to consider potential interactions as the models lacked such
interactions. The following focuses on the results from separate profiling as the prediction
error of the resulting power models was lower than the error from separate profiling.

Tables 7.10 and 7.11 contain the prediction errors from separate profiling for the evalu-
ation workloads. Power models of types 4, 5 and 6 were the most consistently accurate
power models. They achieved a median error of less than 2.3%. The power models of
type 1 and 3 with l = 1 were inaccurate for utilization levels close to idle, e.g. for the
Sleep workload. All power models reached prediction errors lower than 5.9% across all
workloads except for Sleep.

As noted in Section 7.3.5, the following workloads were particularly I/O-intensive: Word
Count, TeraSort, Page Rank, K-means and Nutch Indexing. Model 3 with l = 3 and the
metrics ucpu, uread, uwrite was the best performing power model that considered storage
metrics. The predictions from model 3 had an error that was up to 1.5% lower than the
error of the CPU-only models. Workloads that performed little to no I/O did not benefit
from considering storage metrics. For most of the other workloads, model 5 outperformed
the models that considered storage metrics.

Overall, power models that only considered CPU utilization had a high accuracy. They
were outperformed only for Nutch Indexing and TeraSort by power models that explicitly
consider tpwrite or tpread. In summary, we were able to accurately predict the power
consumption of the server under investigation without the consideration of storage metrics.
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Table 7.10.: Prediction error per power model and workload type, errors in percent. Power
models 1ś3.
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Table 7.11.: Prediction error per power model and workload type, errors in percent. Power
models 4ś6.
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Performance models of software systems deployed on the server under investigation only
need to explicitly model storage if it has a decisive impact on performance. We thus
concluded regarding Question 3.4 that there is limited benefit in using power models
that consider the HDD system metrics tpwrite or tpread for the server environment under
investigation.

7.3.7. Comparison with State of the Art

This section presents a comparison of our approach with the state of the art approach
for server profiling. It assessed whether our approach improved the accuracy over state
of the art approaches for our server under investigation. This concerns Question 3.3.
We identified the approaches by [65] and [58] as representative state of the art profiling
approaches. As we did not find an implementation of either approaches [58, 65], we
replicated the behavior of the approaches on the basis of our measurement tooling. The
implementation of the state of the art approach passively monitors a set of workloads, and
collects power measurements and system metrics. We implemented this by monitoring an
execution of SERT. We configured SERT to execute the same individual workloads as the
run of our profiling. Section 7.3.3 outlined the used workloads.
We compared the representativeness of the three samples using their KDE. KDE esti-

mates the density function of a data distribution, as Section 2.7.3 explained. Figure 7.13a
shows the two-dimensional KDE over the dimensions CPU utilization and write through-
put for the SERT run. The plots contain 200 grid points per dimension. We adjusted the
scale of the density values to a logarithmic scale to make the plots easier to compare.
Values of 0 on the scale are equivalent to a KDE of 1, -20 to a KDE of 0, and 5 are equivalent
to a KDE of 150. Comparing the KDE of the SERT run to the separate profiling variant of
our approach shown in Figure 7.13b illustrates that a passive monitoring of SERT does not
fully cover the range of measurements for storage. The measurements collected during
the state of the art profiling run contained only few measurements for tpwrite that were
higher than 20MB/s. This contrasts the maximum write rates of up to 150MB/s we had
measured with our systematic profiling approach. In conclusion, we deduce that our
profiling approach produced a server profile that better covered the domain of considered
system metrics than state of the art profiling.
Figure 7.13c contains the KDE plot from the combined, or simultaneous profiling.

The plot illustrates that our method also manages to extract server profiles that covers
the combined domain of multiple system metrics. Section 7.3.6 had outlined that the
simultaneous profiling did not improve the accuracy of trained power models. However,
the simultaneous profiling can potentially improve the accuracy for system metrics whose
values interact on the total power consumption.

Question 3.3 brings up the point whether our approach produced more accurate power
models than state of the art. We trained the same power models discussed in Section 7.3.2
with the measurements collected during the standard SERT run to investigate this question.
We investigated if the passive monitoring of a state of the art profiling approach produced
a training set that was sufficient for training power models that consider both CPU and
storage metrics. The accuracy of power models that were only trained on measured power
consumption and CPU utilization, ucpu, was high when trained on the resulting profile.
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arated CPU and storage profiling
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(c) Profile extracted using our approach, simulta-
neous CPU and storage profiling

Figure 7.13.: Two-Dimensional Kernel Density Estimation (KDE) of CPU utilization and
write throughput with 200 grid points per dimension. The scale of the density
values is adjusted to a logarithmic scale.
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However, the accuracy of models that considered tpwrite, or tpread suffered. Power models
2 and 3 withM = {ucpu,uread,uwrite} had a prediction error of over 7000%. We attributed
the high prediction error to the sparseness of the profile that resulted from the passive
monitoring of SERT. The profile does not cover the full range of measurements that can
be monitored for realistic workloads. Consequently, the power models were over-fitted
to a non-representative sample. This caused the low prediction accuracy of the models
trained on the sample.
The results positively answer Question 3.3. Single metric power models from our

approach are at least as accurate as models from state of the art power model extraction
approaches. Our profiling approach results in multi-metric power models with notably
higher accuracy than from state of the art.

7.3.8. Model Selection

The goal of our method is to automate the construction of power models suited for use
in design time predictions. Since the target workload is not fully known at design time,
it is not possible to select a power model based on its actual accuracy for the target
workload. Aside from the challenge of model selection, it would be beneficial to the user
of the approach if she could judge the impact of metric selection on prediction accuracy
(Question 3.5). Section 5.2.3 proposed a ranking of power models based on their AIC
value to address both challenges. The ranking aims at eliminating system metrics that fail
to improve power consumption prediction accuracy for the server under investigation.
Furthermore, the ranking is intended to help select a power model that likely has a high
accuracy.
We evaluated the accuracy of the AIC ranking as follows. First, we calculated the AIC

as part of the initial model training on the basis of the input server profile. Second, we
compared the ranking with the prediction error for the validation workloads.
Creating an unequivocal ranking of power models using their measured prediction

error over all case study workloads listed in Section 7.3.5 was not possible. 17 of the 25
power models were Pareto optimal, meaning that there was no other power model that
performed at least as well across all workloads. We hence evaluated if each model that
placed high in the ∆AIC ranking also had a competitive accuracy across the case study
systems.
The ranking of power models from their difference in AIC (∆AIC) placed the power

models 6 and 5 first and second, respectively. Both power models only consider the CPU
metric ucpu. Power model 3 with l = 3 and M = {ucpu,uread,uwrite} placed third. It was
the highest placing power model that considered HDD system metrics. Consequently, all
power models that had tpwrite or tpread as input variables were outperformed by CPU-only
power models 5. According to our approach, we could conclude that the consideration of
the storage metrics likely would not increase the prediction accuracy for the server under
investigation. The prediction error results of the power models for the case study systems
confirmed this. Power models that consider tpwrite or tpread had a higher prediction error
than models parametrized solely by ucpu for all but two workloads.

Power models 5 and 6 were among the most consistently accurate power models. Power
model 5 achieved a median prediction error of 2.3%, and a maximum prediction error
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of 4.7%, which can be seen in Tables 7.10 and 7.11. Power model 6 reached a median
prediction error of 1.7%, and a maximum prediction error of 5.2%. All three models had an
error no higher than 5.9% for all workloads.

The comparison of ∆AIC ranking and relative prediction error across the case study sys-
tems showed that the ranking approach can give helpful guidance to users of our approach
in selecting an accurate power model. The evaluation positively answers Question 3.5 as
we were able to reason on the influence of selected metrics on prediction accuracy using
the ranking.

7.3.9. Accuracy of Power Models in VMMigration Scenarios

This section presents the results of our VMMigration Bench case study. The study validated
whether our approach for power model extraction enables accurate power consumption
predictions for VM migrations. We investigate VM migrations as a central adaptation
action used in autonomic data center resource management. The case study compares
predictions from power models, which were extracted using our approach, with measured
energy consumption. The study concerns Questions 3.1 and 3.4.
This section is structured as follows. Section 7.3.9 discusses the scenarios we investi-

gated in the presented case study. Section 7.3.9.2 provides an overview of the evaluation
setup. Section 7.3.9.3 applies our power model extraction approach to predict the en-
ergy consumption when a collocated workload stresses the hosts during VM migration.
Section 7.3.9.4 investigates scenarios where the workload ran inside the migrated VM.
Section 7.3.9.5 investigates whether the use of multi-core metrics improved prediction
accuracy for the considered scenarios. Section 7.3.9.6 summarizes our findings.

7.3.9.1. Evaluation Scenarios

Our evaluation investigated the power consumption during VM migration. It considered a
set of scenario with two hosts S1 and S2. Each scenario alternated between live migrations
from S1 to S2, and S2 to S1. Each iteration migrated the same VM. During migration, a
load driver ran a workload at a predefined load level. The simultaneous execution of
VM migrations and other workloads enabled us to observe interactions between power
consumption and system performance. We repeated each migration at least three times
per load level. The experiment results cover two variations of the baseline experiment
scenario.

Section 7.3.9.3 presents the results for the first scenario variant, in which S1 ran the load
driver. It covers the cases where the VM migrates

· from an idle server to a server which is stressed to a specific load level (S2 to S1),

· from a server which is stressed to a specific load level to an idle server (S1 to S2).

Sections 7.3.9.4 and 7.3.9.5 discusses the second scenario variant. In the second variant,
the migrated VM ran a workload at the predefined load level. We investigated this scenario,
as the level of VM activity influences the convergence behavior and execution time of the
VM migration algorithm.

174



7.3. Automated Extraction of Power Models

7.3.9.2. Evaluation Setup

This section discusses the case study workloads, execution environment and power model
extraction setup. We conclude with the accuracy metrics that we applied to evaluate the
prediction accuracy of the trained power models.

VM Migration Bench VM Migration Bench is a benchmarking framework we built for
evaluating the power consumption of reconfiguration actions in virtualized, IaaS envi-
ronments. The framework enables the measurement of power consumption and system
level metrics during the execution of adaptation actions. The framework consists of an
experiment driver, a load driver, and a monitoring utility.

The experiment driver orchestrates the experiment execution. It triggers a set of virtu-
alization actions on the libvirt Java API. An experiment subsumes the execution of one or
multiple virtualization actions. The experiment driver coordinates the collection of power
and system metric measurements with multiple instances of the monitoring utility, which
was presented in Section 7.3.1. We deployed the experiment driver on S1.

The load driver extends the server profiling load driver described in Section 5.4.1. This
enables a reuse of existing SERT [187] worklet definitions to stress the servers, or the VMs
involved in a reconfiguration action. The load driver builds on the technical foundation of
our profiling framework. Prior to a set of VMmigrations at a load level, the workload driver
calibrates the workload intensity of a configured workload to reach a target utilization
level.
In the scenarios discussed in Section 7.3.9.3, the load driver was deployed on S1. Sec-

tions 7.3.9.4 and 7.3.9.5 outline the results for scenarios where the load driver ran inside
the migrated VM. Our migration experiments used SOR and SORT from the standard set
of worklets provided by SERT as workloads. The workload driver ran one of the two
workloads in both scenario variants.

Execution Environment We used two ProLiant DL160 Gen9 servers for our experiments.
Each server had an Intel Xeon E5-2640 v3 CPU, 32 GB RAM, and a 500 GB 7200 RPM
HDD. The following refers to the servers as S1 and S2. Both servers were connected via
1Gbit/s LAN. We collected the measurements using the monitoring utility described in
Section 7.3.1. It obtained all measurements, including power consumption measurements,
with a sampling rate of 1/s. S1 was running Debian 8.7, S2 was running Debian 8.6.

All migrated VMs were constructed from a Debian 8.7 image. Each VM ran atop the
KVM 2.1.2 hypervisor. The VMs had 4 GB of RAM, and 16 GB of storage. The storage of a
VM was persisted on the server which currently hosted the VM. We employed pre-copy,
peer-to-peer live migration, where the storage was copied between the migration source
and target.

Power Model Extraction We applied our power model extraction method in order to get
models that predict the power consumption of S1 based on system metrics. We did not
repeat the profiling for S2, as its hardware components were identical to S1.
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We selected the workloads XMLvalidate, SOR, and CryptoAES from SERT to profile
S1. We restricted the target metrics to ucpu in order to reduce the execution time of the
profiling run. . We set the target levels of each workload to {0, 0.05, . . . , 1.0}.
We used the power model types listed in Table 7.8 as input to the model training and

selection. From these models, we considered the two power models with the highest AIC
in our accuracy evaluation. Additionally, we evaluated the accuracy of a power model that
we trained using non-parametric MARS [71] regression.

Prediction Accuracy Evaluation Per load level Lu , we calculated the prediction accuracy
M(L) of every models as:

M(Lp) =
∑

l∈Lp Epredicted(l) − Emeasured(l)
Epredicted(l) , where p ∈ {0, 0.05, . . . , 1.0}.

Hereby, l ∈ Lu are the individual migrations executed at load level Lu . E is the energy
consumed during migration. We calculated Emeasured(l) by means of numerical integration
on the power consumption samples recorded during migration. We determined Epredicted(l)
as the numerical integral of the power model samples. We obtained the samples by
evaluating a power model for each set of system level performance metric measurements.

7.3.9.3. Workload Collocation on Host

This section discusses the prediction accuracy of the extracted power models when a
collocated workload stresses S1 during VM migration.
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Figure 7.14.: Power consumption prediction error for SOR workload executed on S1. Mea-
surements collected on S1. Migration from S2 to S1. Each set of three error
bars represents the prediction error at a load level u ∈ {0, 0.05, . . . , 1.0}.

Figures 7.14 and 7.15 display the power consumption prediction error we determined
for S1 when it ran the SOR workload outside of the migrated VM. Power models P5 and P6
refer to the power models 5 and 6 listed in Table 7.8. Figure 7.14 shows the prediction error
for the VM migrations from S2 to S1. When VM migration targeted S1, all three models
predicted the power consumption accurately for load levels of up to 0.9. This can be seen
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in Figure 7.14. For utilization levels higher than 0.95, the MARS model had an average
prediction error just above 10%. The predictions from the two highest ranking models P5
and P6 reach an error of over 20%.
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Figure 7.15.: Power consumption prediction error for SOR workload executed on S1. Mea-
surements collected on S1. Migration from S1 to S2.

Figure 7.15 shows the error for migrations from S1 to S2. Overall, the models performed
slightly worse compared to the power consumption predictions for the opposite migration
direction. In the load range below 0.35, error rates reached prediction errors of up to 22%.
Low prediction accuracies for this utilization range were not limited to only the three
discussed models. All power models listed in Table 7.8 underestimated the energy con-
sumption by over 20%. Once the server reached the maximum load level 1, only the MARS
model achieved acceptable prediction errors. The other power models underestimated the
energy consumption by over 30%.
In conclusion, the MARS model performed the most consistently across different load

levels. It predicted the power consumption of systems performing VM migrations with an
error of 2.7% to 10.9% when migrating from S2to S1. When the migration was issued from
S1 to S2, the error was between 2.0% and 21.6%.

7.3.9.4. Workload Execution in Migrated VM

The experiments outlined in the prior section left the migrated VM idle. The load of the
server originated from a workload which ran collocated to the VM. We conducted a set
of experiments in order to validate whether our extracted power models were accurate
when predicting the power consumption of VMs that actively ran workloads during the
live migration. This section discusses experiments in which the VM executed a workload
during VM migration. As part of the experiment setup we deployed our workload driver
inside the migrated VM.
Prior to each set of VM migrations, the load driver calibrated the workload such that

it reached the target load threshold inside of the VM. A VM was designated four virtual
cores. The host system had sixteen available logical cores. Our experiment setup varied
the VM internal load between 0 and 100% in intervals of 5%. A VM internal utilization of

177



7. Validation

100% resulted in an approximate system-wide average utilization of 100% · 4
16 = 25%. Thus,

the experiments covered system-wide CPU utilization levels between 0 and 25%.
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Figure 7.16.: Power consumption prediction error for SOR workload executed in migrated
VM. Measurements collected on S1. Migration from S2 to S1.

We reused the server profiling results from Section 7.3.9.3 in order to derive a representa-
tive consumption profile. The profiling ran on the hypervisor level outside of the migrated
VM. The power models extracted from this profiling predict the energy consumption on
S1 from hypervisor, system level metrics, e.g., aggregate CPU utilization. Our predictions
treat the VM like any other system process, which utilizes the CPU. Figure 7.16 shows
the prediction error for the SOR workload, and VM migrations from S2 to S1. All three
depicted models predicted the total energy consumption with an error of 3% to 7%.
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Figure 7.17.: Power consumption prediction error for SOR workload executed in migrated
VM. Measurements collected on S1. Migration from S1 to S2.

When we used the power models to predict the consumption for migrations from S1 to
S2, the prediction error of all models was lower than 10% for VM internal load levels below
95%. Figure 7.17 shows the corresponding error bar plot. Once the SOR workload fully
utilized all available virtual cores, the measured energy consumption was more than 27%
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higher than predicted by any of the three models. The likely source of this discrepancy
was a dynamic frequency increase of the S1 CPU: Once a set of individual cores reach full
utilization, the CPU dynamically increases the frequency of these cores. This results in an
increased power consumption. Our profiling did not systematically stress individual CPU
cores. Thus, models trained on the profile can not reflect power consumption increases
that result from frequency scaling of individual cores.
We investigated whether accurate power consumption models can be built for S1 that

abstract from the CPU frequency. This required a server profiling run where we stressed
individual cores of the server. We achieved this by conducting a profiling run in which the
workload driver was deployed inside the VM.
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Figure 7.18.: Power consumption prediction error for SORworkload executed in VM. Power
models from VM internal profiling. Measurements collected on S1. Migration
from S2 to S1.

We trained all considered models on the resulting profile. The AIC ranking predicted
that P3 with l = 2, and P6 had the highest likelihood to be accurate. Additionally, we
included a MARS model trained on the profile. Figure 7.18 shows the prediction error of
VM migrations from S2 to S1. Prediction errors of all models remained below 7%.

The prediction error was significantly higher at most load levels when the active VM
was migrated from S1 to S2. Figure 7.19 shows this in contrast to Figure 7.18. None of the
power models clearly outperformed the other considered models. The MARS model was
highly accurate for utilization levels outside of 0.8 to 0.95. P3 and P6 with l = 2 were more
accurate for most utilization levels but the maximum level 1.

The prediction error for the VM internal run of the SORT workload followed a similar
distribution of error rates to the SOR error rates. The range of utilization levels shifted
when we moved from VM internal to external profiling. Figure 7.20 depicts the error rates
of SORT from internal profiling. Compared to the external profiling, we did not see a clear
improvement across the full utilization range. The models extracted from internal profiling
underpredicted power consumption. Conversely, the models from external profiling
overpredicted the power consumption. We deduced that power models which were trained
purely using the aggregate utilization did not accurately predict power consumption for
utilization levels at which the processor dynamically scaled its frequency.
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Figure 7.19.: Power consumption prediction error for SOR workload executed in VM.
Models from VM internal profiling. Measurements collected on S1. Migration
from S1 to S2.
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Figure 7.20.: Power consumption prediction error for SOR workload executed in VM.
Models from VM internal profiling. Measurements collected on S1. Migration
from S1 to S2.
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7.3.9.5. Prediction Accuracy of Multi-Core Power Models

The scenario investigated in the previous section ran a workload inside the migrated VM.
When the VM approached full utilization of the four virtual VM CPUs, the prediction
error of otherwise accurate power models surged to values above 30%. We attributed this
increase to the dynamical frequency scaling of the CPU.
Previously, we relied on the aggregate CPU utilization to predict power consumption.

We extended the considered set of metrics by per-thread CPU utilization to investigate
potential increases in accuracy,

We used the following power models to predict the power consumption:

· P1 from Table 7.8,

· a modified P1,common with cma
= cmb

for allma,mb ∈ M ,

· a MARS regression model PMARS trained using the same configuration as previously,

· and max{PMARS,pidle}, where pidle is the idle power consumption of the server.

The power models used the extended set of metricsufull,ucore0, . . . ,ucore15 . Eachucore0 refers
to the per-hyperthread utilization of the CPU. We trained the models on the combined
profile from workload profiling executions conducted on S1and from VM internal profiling.
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Figure 7.21.: Power consumption prediction error for SOR workload executed in VM. Er-
rors of multi-core models that result from the combination of VM internal
and hypervisor level profiling. The measurements were collected on S1. Mi-
gration from S2 to S1. P1 Common refers to P1,common. Mars Model, min is
max{PMARS,pidle}.

Figure 7.21 lists the power consumption prediction error for VM migrations from S2to
S1. The utilization levels note the targeted aggregate VM internal CPU utilization. P1 is not
displayed and discussed further, as it reached errors of up to 80%. The error rates of the
per-core power models are similar to the error rates of models solely based on aggregate
CPU utilization, c.f., Figure 7.16.
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Figure 7.22.: Power consumption prediction error for SORworkload executed in VM. Multi-
core power models from combined profiling. Measurements collected on S1.
Migration from S1 to S2.

More interesting are the differences, or lack thereof, for migrations from S1 to S2. As
we used pre-copy live migration, the workload running in the VM stressed S1 until the
migration completed. The prediction error shown in Figure 7.22 is similarly distributed to
the prediction error achieved with the external models (Figure 7.17). This indicates that
the use of multi-core metrics did not improve the prediction error. It even resulted in an
average error increase. The MARS model performed poorly due to overfitting. Individual
power consumption predictions from the model fell well below the idle power consumption
of S1. Thus, we introduced the idle power consumption as a lower limit to the MARS
model. This is the max{PMARS,pidle} model. Figures 7.21 and 7.22 list the model as MARS

model, min. At peak utilization, the introduction of a lower bound reduced the prediction
error by an absolute value of 5%.

7.3.9.6. Summary

In this section, we applied our profiling approach to extract power models for predicting
power consumption in different VM migration scenarios. We used robust non-linear
regression and MARS as model learning techniques. We evaluated the prediction accuracy
of the models at different load levels. Both collocated workloads, and workloads executed
in the migrated VM were considered. Our experiments showed that we could accurately
predict the total energy consumption induced during VM migration. At all load levels, the
best performing model achieved an average prediction error below 11%.
All multi-core CPU power models performed worse when the workload was executed

inside of the VM. At VM internal target load levels below 0.95, the error was comparable to
collocated execution. The power consumption prediction accuracy dropped significantly
once the VM internal target utilization reached 0.95. We attribute this to an increase in
power consumption due to DVFS.

We explored two alternatives to address the high consumption prediction error at high
VM internal utilization. First, we performed a targeted profiling of a subset of physical
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cores. Second, we extended the range of considered system metrics by per-core CPU
utilization. Neither approaches fully addressed the drop in prediction accuracy when a
workload caused high load on select cores.

Frequency-based power models could increase the prediction accuracy when the CPU
scales frequency of a subset of cores. We did not investigate these models due to the
following reason. To the best of our knowledge, no performance model has been proposed
that accurately predicts the frequency scaling implemented by modern processors. Further
work needs to be spent to create models that predict the effect of proprietary performance
and power management features like Intel Turbo Boost.

In summary, the case study shows that our model extraction approach produces power
models which accurately predict the energy consumption of VM migrations at most load
levels. When the virtual CPUs of the migrated VM reach load levels in the region of 100%,
the prediction error approaches values in the region of 30%. With this limitation, the results
positively answer Question 3.1 for the investigated server environment. Section 7.3.9.5
compared power models built using aggregate CPU utilization models with models that
distinguished per-core CPU utilization. The results indicated that the consideration of
per-core utilization does not significantly improve prediction accuracy (Question 3.4).

7.4. Transient Effect Analysis

This section investigates to which extent the consideration of transient effects in software
performance analyses improves the prediction accuracy of design time analyses for self-
adaptive software systems. It presents the results of a case study which we conducted
to validate the transient effect modeling approach outlined in Chapter 6. The validation
targets Goal 4 of this thesis. The case study results have been published in [199]. As the
evaluated case study system we used a Media Store application enhanced with horizontal
scaling capabilities. We explored Question 4.1 by comparing the accuracy of predictions
of the SimuLizar baseline with SimuLizar extended by our approach. Additionally, we
investigated the benefit of considering transient effects for design time decision-making
(Questions 4.2 and 4.3).

7.4.1. Case Study System

Media Store is a component-based reference application [170]. Section 7.2.1 introduced
a prior Media Store iteration. Media Store allows users to download and upload music
files. When downloading, users can choose between different encoding bit rates. Music
files are only stored in their original bit rate. Upon download, they are re-encoded to the
target bit rate, if the rate differs. Re-encoding is the most computationally intensive service
offered by the Media Store system. A high number of concurrent encoding requests can
quickly cause contention in the system. In order to address this potential bottleneck, we
extended the Media Store architecture by a rule-based Horizontal Scaler component. This
component leverages horizontal scaling to adjust the resources available for re-encoding.
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The Media Store variant used in this case study extends the most recent Media Store
release 3.01. Reussner et al. [170] provide further details on the Media Store case study
system. Section 7.2.1 had presented a case study that evaluated Question 4.2 for the
previous version 2.0 of Media Store.
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Figure 7.23.: System diagram view of horizontally scaling Media Store variant.

Figure 7.23 shows a simplified view on the system architecture of the horizontally
scaling Media Store. The Horizontal Scaler component delegates re-encoding requests to
all available Reencoder instances. If the conditions for a scale-out are met, the Horizontal
Scaler triggers the instantiation of another Reencoder instance. Once the instance is
available, the Horizontal Scaler starts distributing requests to it. The Horizontal Scaler
evenly distributes re-encoding requests among all available instances. We implemented
horizontal scaling using VM scaling techniques as found in IaaS platforms. Each Reencoder

instance deploys onto a separate VM. All other components are deployed on a shared VM.
We formulated the requirement that the average response time of the re-encoding

component shall not surpass 120 seconds. In order to achieve this requirement, we
designed a set of scale-out conditions. The Horizontal Scaler starts a scale-out when the
following conditions are met:

1. The average response time of the re-encoding service over the last five minutes is at
least twice as high as the average response time.

2. At least five minutes have passed since the last scale-out action has been started.

3. All previous scale-outs have been completed.

4. There are less than n active Reencoder instances.

1https://sdqweb.ipd.kit.edu/wiki/Media_Store, retrieved 05.06.2017.
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Rule 1 causes a scale-out when the response time increases. Rules 2 and 3 are intended
to prevent an overeager scale-out on small increases of load. Further scale-outs may only
occur after a time interval has passed, which is long enough to observe the intended effect
of the scale-out. Rule 4 limits the number of Reencoder instances.

7.4.2. Experiment Setup

We implemented the horizontal scaling functionality of Media Store on the OpenStack
[151] Cloud middleware platform. We refactored the Reencoder component to a standalone
REST service. We prepared a bootable VM template to host the Reencoder instances. Every
Reencoding subsystem was deployed on an individual Glassfish 4.1 server instance. All
other components shared a common Glassfish 4.1 instance. We realized horizontal scaling
of the Reencoder realized as the creation and bootup of a VM that instantiated the VM
template. The re-encoding service automatically becomes available after the bootup of a
new Reencoder VM.

We implemented the outlined horizontal scaling mechanism in simulation to validate its
effect on QoS prior to its implementation and execution. We used the existing manually
created Media Store PCM model as the starting point of the model-based analysis of our
system. We refactored the PCM model to the horizontally scalable architecture depicted
in Figure 7.23. We defined the horizontal scaling rules in simulation as a QVTo model-to-
model transformation. The simulation executes these rules via the QVTo Reconfiguration
Engine component of SimuLizar. To consider transient effects, we used a definition of a
scale-out action which we derived from the action outlined in Section 6.2.7.1. We calibrated
the resource demands of the PCMmodel using a single user workload. Without contention,
re-encoding requests took 26 seconds on average. Section 6.2.7.1 introduced the scale-out
action modeling we employed in our design time evaluation. The action execution depends
upon a parameter that models the VM boot duration. We determined the input scale-out
duration model parameter over a set of more than ten Reencoder VM bootups.
A private IaaS OpenStack setup served as the measurement environment of the case

study. We set up OpenStack to deploy all VMs on a Dell PowerEdge R815 server with four
Opteron 6174 CPUs. The server ran a XenServer hypervisor. All component instances but
the Reencoder instances shared a two core VM with four GB of RAM. The Reencoder VMs
were assigned two GB of RAM. All VMs used CentOS 6.6.

We used a PC running JMeter 2.11 as the load driver to issue re-encoding requests. The
PC was equipped with an i7-2620M and 8 GB of RAM. 1 GBit LAN connected the PC to the
OpenStack setup. Prior to each experiment, we ran a warmup workload over ten minutes
with an inter-arrival time of 29 seconds between re-encoding requests.

Per scenario, we ran ten measurement runs and 100 simulations for both simulator
variants. We compared measurements and simulation using the moving window average
response time over five minutes. We contrasted the results from measurements and
simulations via box plots. The end of the box plot whiskers are within 1.5 times the
interquartile range (IQR). In addition, we calculated the error distribution of response
times of simulation predictions compared to measurements. We calculated the distribution
as the errors on the cross product of measurement and simulation runs. This gave us
10 · 100 = 1000 error samples.
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7.4.3. Evaluation Scenarios

In the following we provide an overview of two scenarios we used to investigate the
accuracy and efficiency of our approach for considering transient effects in software
performance analyses.

Scenario 1 The first scenario investigated the effect of considering transient effects for a
simple two-server scale-out. Its intent was to isolate the effect on response time prediction
accuracy for a single server scale scale-out. We thus set the maximum number of Reencoder
instances n to 2. The experiment scenario covered 30 minutes. The inter-arrival time
between user requests was 29 seconds for the first interval with a length of 10 minutes. In
the last 20 minutes, it decreased to 15 seconds. As the average re-encoding response time
was 16 seconds, requests started to overlap in the last two thirds of an experiment run.
Scenario 1 focused on Question 4.1.

Table 7.12.: Workload used in scenario 2.

Interval 1 2 3 4 5

Length (in min.) 10 10 10 10 10
Inter-arrival Time (in s) 29 15 10 15 29

Scenario 2 We designed the second scenario to evaluate to which extent the horizontally
scaling Media Store with the designed scalability rules was able to fulfill our maximum
response time requirement. The scenario decreased the inter-arrival rate in two steps.
After this, the inter-arrival iteratively returned to its initial time of of 29 seconds. Table 7.12
lists the inter-arrival time per interval of the workload. In order to handle the increased
load, we set the maximum allowed number of active Reencoder VMs to n = 5. Scenario 2
aims to address Questions 4.1 and 4.2. We had designed the scenario to evaluate to which
extent potential inaccuracies of response time predictions affected our ability to identify
design deficiencies (Question 4.2).

7.4.4. Experiment Results

This section presents the experiment results for scenarios 1 and 2.

7.4.4.1. Scenario 1: Two-Server Scale-Out

The box plots in Figure 7.24 illustrates the response time distribution from measurement,
SimuLizar baseline, and SimuLizar extended by our approach. We opted to investigate the
maximum response time, as the maximum response time correlates with the maximum
degree of contention observed in the system. The median maximum response time over the
ten measurement runs was 137.17 seconds. Our approach predicted the maximum response
time with much greater accuracy than the SimuLizar baseline. SimuLizar extended with our
approach produced a median response time of 141.53 seconds. The baseline underestimated
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Figure 7.24.: Comparison of RTs from measurements and simulation for scenario 1. The
simulation results cover the SimuLizar baseline and our extended approach.
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the maximum response time. It resulted in a median of 122.18 seconds. The mean response
time distribution shows a similar improvement in accuracy of our extended approach over
the baseline. Median, lower and upper quartile of the extended approach match well with
the measurements. The baseline predictions deviate significantly from the predictions.

We partitioned the scenario into three intervals of ten minutes each. This partitioning
allowed us to differentiate between stable and transient phases. In the first and second
interval, the extended and baseline SimuLizar produced identical predictions. Both were
identical because the constant inter-arrival time of 29 seconds in the first interval did
not necessitate a scale-out. The lower row of Figure 7.24 contains box plots of the mean
response time in the second and third interval. In the second interval, the baseline
predictions scatter much more strongly. This is illustrated by the lower box plot whisker
extending beyond 80 seconds. The median value of the baseline is also far less accurate
than the value of our extended approach.

Table 7.13.: Response time prediction error per interval for scenario 1. The error distribu-
tion was derived from the cross product comparison of 10 measurement runs
and 100 simulation runs.

Interval
Median Error Mean Error Estd. Std. Dev.

Baseline Extended Baseline Extended Baseline Extended

1 2.3% 2.3% 2.7% 2.7% 0.8% 0.8%
2 14.6% 5.4% 15.5% 6.2% 9.8% 4.5%
3 36.1% 33.7% 37.3% 42.8% 24.5% 38.8%

Total 22.5% 16.5% 22.7% 20.1% 14.1% 16.2%

We explored the differences of aggregate metrics in each interval. Table 7.13 lists
aggregate prediction error metrics for the first scenario. The table notes median, mean,
and the estimated standard deviation over three experiment intervals of ten minutes length.
The error distribution results confirm our observation that the extended approach is more
accurate for the first scenario. In total, our approach reduced the median prediction error
from 22.5% to 16.5%. The only marginally higher error metric value of our approach is
the mean error in the third interval. We deem this deviation to be negligible, since related
work has indicated that mean value analysis is strongly affected by outliers [34, 125].

Figure 7.25 illustrates the effect the consideration of transient effect had on the response
time distribution over time. The figure displays the moving average response time over
time of the simulation, baseline, extended, and measured median runs. The median runs are
the runs that produced the median response times, which we previously noted. The bars
at the bottom show the scale-out time as a bar between start and completion time. Both
baseline and extended runs progressed identically up until and during the first scale-out.
The moving average window response times of the baseline simulation quickly recovered
from the increase in workload after ten minutes. After approximately 18 minutes, the
response time started to decrease. The maximum moving window average was 111.9
seconds. This did not match the median measured run, where the maximum response time
reached 131.6 seconds after 21.5 minutes. We attributed the difference between measured
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and baseline simulation to the missing consideration of the scale-out execution time. In
the baseline simulation, the additional Reencoder instance was available immediately once
the system issued the scale-out action. Consequently, the second Reencoder instance could
immediately process incoming re-encoding requests. The simulation extended with our
approach followed the measured response time curve more closely. Response times from
the extended simulation surpassed the measurements with a maximum response time of
139.7 seconds. The response time started to recover around the 21 minutes mark.

In the simulated median run the scale-out took 76 seconds, compared to the measured
78 seconds. Even after the additional instance had become available, the response time did
not immediately recover in the measured and extended simulation runs. We attribute this
prolonged rise in response time to contention. The user load was almost doubled at ten
minutes. Due to the execution time of scale-out, additional resources to process further
requests only became available after the scale-out had finished. During the wait time,
incoming requests filled up the single Reencoder instance. The tail of high response times
was much longer in reality than in the baseline simulation, since the scale-out execution
time prolonged the build-up of contention.
We conclude from the results that the consideration of transient effects increases the

accuracy of performance predictions for the single server scale-out scenario of Media
Store (Question 4.1).

7.4.4.2. Scenario 2: Scale-Out with Multiple Reencoder Instances

In the second scenario, we investigated the effect of our approach on prediction accuracy
for the horizontally scaling Media Store with a higher peak workload and number of
Reencoder instances. We evaluated whether the system would be able to meet the response
time requirement that Section 7.4.1 introduced. The requirement stated that the average
response time of the re-encoding component should not surpass 120 seconds.
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Figure 7.26.: Aggregated response times frommeasurements and simulation for experiment
B.
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Accuracy Evaluation Figure 7.26 shows aggregate metrics of the response time distribu-
tion of the second scenario runs. Comparing maximum and mean response times from
measurements, extended, and the baseline simulation, we see that the aggregate response
time metrics of the extended simulation matched the measurements much more closely.
The median of the maximum response times of the baseline simulation was 109.2 sec-
onds. The median of the extended simulation and measured runs was 132.8 and 135.8,
respectively.
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Figure 7.27.: Comparison of response times from measurements and simulation for experi-
ment B in intervals 2 to 5 from consecutive intervals of 10 minutes.

The average response time distributions per interval depicted in Figure 7.27 show a
consistent improvement in prediction accuracy in intervals 2 and 3. The response time
distribution of baseline and extended was identical in interval 1, as the first scale-out
occurred after ten minutes in all simulation runs. In intervals 4 and 5 we could only
observe a marginal difference in distribution between measurement and simulation runs.

Table 7.14 lists the aggregate error statistics per interval of the second experiment. Our
extended approach managed to reduce the median error from 14.0% to 9.8% from the
simulation baseline. In the second interval, the prediction error went from 19.1% down to
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Table 7.14.: Response time prediction error per interval for experiment B. The error rate
was calculated by comparing 10 measurement runs and 100 simulation runs.

Interval
Median Error Mean Error Estd. Std. Dev.

Baseline Extended Baseline Extended Baseline Extended

1 1.5% 1.5% 1.5% 1.5% 0.1% 0.1%
2 19.1% 4.6% 20.1% 5.6% 10.4% 4.3%
3 23.0% 23.1% 25.2% 32.5% 18.8% 31.1%
4 13.8% 13.1% 19.6% 25.4% 18.6% 47.5%
5 3.6% 2.4% 5.8% 4.7% 9.8% 5.0%

Total 14.0% 9.8% 14.6% 13.1% 7.9% 15.3%

4.9%. In intervals 3 and 4 the mean prediction error of the extended simulation was higher
than the error of the extended simulation. We traced the higher error to a number of
response time outliers in the mean response times of the extended simulation. Figure 7.27
depicts the outliers as points. All other error metrics values, including the median error in
intervals 3 and 4, were lower for the extended simulation. Small deviations in intervals 3
and 4 finally had a greater impact on the prediction error due to the low response time
values in these intervals.

Figure 7.28 shows the running average response time runs of the response times medians
for the second scenario. The bars in the lower half display scale-out start and and finish
times as a bar. The baseline simulation had predicted three scale-outs to be executed, as
can be seen by the three bars. In the measurement run, the rules led to four scale-outs.
The extended run matched the four scale-outs. Over one hundred simulation runs, the
baseline had predicted 3.46 scale-outs per run on average. Using our extended approach,
3.79 scale-outs were executed per simulation run. The average over the ten measurement
runs was 3.9. We thus concluded that the consideration of transient effects enabled us to
predict the number of Reencoder instances with greater accuracy. The maximum number
of instances used is an important factor in determining the resources that are required to
run the system.
In summary, our approach improved the response time prediction accuracy in the

second scenario. Our approach additionally enabled us to predict the maximum number
of Reencoder instances more accurately. The results thus positively Question 4.1.

Identification of DesignDeficiencies We recall the requirement stated in Section 7.4.1. The
requirement postulated that the running average response time over five minutes of the
re-encoding service shall not surpass 120 seconds. The measurements for scenarios 1
and 2 showed that the horizontal scaling rules we had defined did not manage to meet
this requirement. The maximum running average response time reached response times
of over 125 seconds in more than 75% of the measurement runs. However, the baseline
simulation had predicted that the system would manage to meet the requirement in over
75% of the runs. Using our extended approach that considered the scale-out execution
times, we were able to correctly predict the requirement violation. More than 75% of
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Figure 7.28.: Average response times from measurements and simulation for scenario 2.
Each dot represents a moving window average at the given time calculated
over the last �ve minutes. The three bars at the bottom show the scale-out
durations as colored bars that span the interval between the scale-out start
and completion.
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the maximum response times over all simulation runs were higher than 125 seconds.
Figure 7.26 illustrates this.

Regarding Question 4.2, we conclude that the increased accuracy allowed us to detect a
design deficiency that would have otherwise remained undetected.

Resolutionof IdentifiedDesignDeficiencies Our approach for considering transient effects
in software performance analyses showed that the scale-out rules presented in Section 7.4.1
did not manage to uphold the required maximum response time of 120 seconds. This was
confirmed by the measurements we performed for the Media Store implementation.
In order to improve the scaling rules to maintain the response time requirement, we

applied SimuLizar extended by our approach. We iteratively refined the scale-out rules
via simulations. This led to the following modified scale-out rules. Changes to the rules
are highlighted. The design rationale of the changes was to scale the number of instances
more proactively.

1. The average response time of the re-encoding service over the last three minutes is
at least 30 seconds.

2. At least three minutes have passed since the last scale-out action has been started.

3. All previous scale-outs have been completed.

4. There are less than n active Reencoding instances.
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Figure 7.29.: Aggregated response times frommeasurements and simulation for the refined
scale-out rule.

The simulation results indicated that the modified scale-out rules would likely manage
to meet the response time requirement. Figure 7.29 illustrates this. Over 75% of simulation
runs reached maximum response times that were lower than 120 seconds.

Due to the lower threshold response time defined in rule 1, and the smaller aggregation
interval of rules 1 and 2, the system reacted more quickly to response time increases. The
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Figure 7.30.: Comparison of response times from measurements and simulation for the
refined scale-out rule.
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earlier scale-out start times significantly reduced the response time in transient phases.
Due to the early scale-out, contention did not build up as quickly as in the previous
system iteration. The median of the average response times in interval 2 in simulation
was lowered from just below 120 to less than 80 seconds. as Figures 7.27 and 7.30 illustrate.
The prediction results indicated that our system would be able to maintain a maximum
moving average response time of 120.
We validated our findings from the simulation-based analysis against measurements.

For this, we applied the changes to the rules to the implementation of our scale-out
rules. Figure 7.30 displays box plots of the predictions and measurements. We compared
ten measurement runs of the implementations with one hundred simulation runs. The
measurements closely matched the predictions. Over 75% of measurement runs reached
maximum running average response times that were lower than 120 seconds. The predicted
mean of the running average response time was 4.2% higher than the measured value.
The consideration of transient effects using our approach enabled us to resolve de-

ficiencies in the design of the scale-out rules. Overall, the results answer Question 4.3
positively.

7.5. Discussion of Results

This chapter presented the validation of architecture-level modeling and analysis approach
for predicting the energy efficiency of static and self-adaptive systems. The case studies
show that our modeling language provides suitable input for accurate architecture-level
energy efficiency predictions. We demonstrated that our power model extraction method
produced power models with a high accuracy for a large set of Big Data and enterprise
workloads. Furthermore, a study illustrated the benefit and showed the accuracy of our
modeling approach for considering transient effects in design time simulations. The
following summarizes the findings related to the identified validation questions.

7.5.1. Goal Fulfillment

This section summarizes to which extent the validation case studies addressed the goals
stated in our GQM plan.

Goal 1. Our power consumption prediction accurately predicted the power consumption
of two component-based software systems, and a set of IaaS data center resource manage-
ment scenarios. Throughout all case studies, the absolute power consumption prediction
error remained below 7.08%. The prediction accuracy was high enough to evaluate the
impact of architectural design decisions on energy efficiency, as shown in Section 7.2.1.5.
The accuracy of our predictions was higher than the state of the art approach by Brunnert
et al. [35], or matched it if the same linear power model type was used.

Goal 2. The appropriateness of the modeling abstraction concerns all of the intended use
cases of our Power Consumption model. Consequently, all case studies that involve our
model contributed towards this validation goal. The case studies presented in Section 7.2
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showed that the modeling abstraction is detailed enough to produce accurate power
consumption predictions. Section 7.2.3 illustrated that our model supports the modeling
of model data center environments with a suitable degree of abstraction. The Power
Consumption model integrates power models to capture the consumption characteristics
of computing resources in relation to their activity.

Our Power Consumption metamodel offers higher expressiveness compared to state of
the art architecture-level prediction [35] and eco-cost estimation [182] approaches. State
of the art models assume a linear relationship between system utilization and power con-
sumption. Our model enables the modeling of complex non-linear relationships between
system metrics and power consumption. A novel feature supported by our language is the
flexible modeling of conversion losses incurred by the power distribution infrastructure.

The increased expressiveness compared to state of the art poses no additional restrictions
or requirements for the application of our model. The use of sophisticated non-linear
power models is optional. It is possible to use a subset of the model features to construct
purely linear power models as done by Brunnert et al. [35]. Section 3.2 used linear power
models as a running example to discuss central concepts of the Power Consumption
metamodel.
The power model extraction method presented in this thesis supports the automated

learning of power models. This eases the identification and application of non-linear
power models. The high degree of automation in the construction of model instances
makes the use of power models with higher accuracy feasible for use at design time.

Goal 3. Wewere able to show that our power model extraction method produces accurate
power models. The extracted power models accurately predicted the power consumption
of a set of Big Data and enterprise applications. The model with the highest AIC score
had a maximum energy consumption prediction error of 5.2%. The PetClinic case study
illustrated the end to end applicability of our model extraction, and our energy efficiency
prediction approach. The model with the highest AIC ranking produced power consump-
tion predictions with an error of less than 3%. Power consumption predictions performed
using the recommended model were accurate for all aforementioned applications and
workloads. This demonstrated that our method enabled us to accurately predict the power
consumption of a wide range of server workloads without prior knowledge of the target
workload.

We applied the power model extraction method to evaluate the accuracy of resulting
models for scenarios involving VM migrations. The resulting models accurately pre-
dicted the energy consumed during VM migration, except for high load levels. Further
work is needed to construct accurate performance and power models of systems that use
proprietary DVFS techniques.

Goal 4. We applied our modeling and analysis approach for considering transient effects
in design time analyses to a horizontally scaling Media Store case study system. The results
indicated that the consideration of transient effects improves the prediction accuracy of
software performance analyses. Our approach allowed us to resolve a design deficiency
for the system under investigation that would have otherwise remained unnoticed.
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The CACTOS project used the presented Adaptation Action metamodel to model self-
adaptation actions in a self-adaptive IaaS data center. Our SimuLizar transient effects
analysis extension supported the analysis of all adaptation actions covered by the CACTOS
framework [43, 115]. The case study discussed in Section 7.2.3 leveraged this implemen-
tation. The energy consumption prediction error was below 7.08% for all scenarios of
the data center resource management case study. The application in the CACTOS project
and its tooling illustrates that the metamodel enables the modeling of realistic, complex
adaptation actions.

7.5.2. Future Work

An area of future work is a further validation of interactions between power consumption
and reconfigurations. With regards to server-based systems, preliminary studies we
conducted indicated that the most significant portion of additional power consumption
caused by VM migrations can be derived from their transient effects on performance.
The only exceptions we had identified are the startup and shutdown of servers. Servers
consume powerwhile booting, or shutting down. Performancemetrics can not bemeasured
while the respective operating system API is not yet available. Our model supports the
modeling of performance independent power consumption via power state transitions,
outlined in Section 3.2.2. Krach [114] showed the need for state-based power consumption
modeling for mobile devices. The author used a previous iteration of the models presented
in Chapter 3. Our work addressed the requirements identified by Krach [114] with an
explicit modeling of power states and transitions. The state-based modeling in this thesis
could be re-applied to mobile systems. This would evaluate by which degree the introduced
model extensions improve the prediction accuracy for mobile systems.
An intrinsic limitation of our approach is its dependence on the accuracy of the input

performance metric predictions, which performance analyses provide. Throughout all case
studies, we were able to accurately predict the power consumption of the systems under
investigation. Even when the performance models of the system were coarse grained
(Section 7.2.3), or derived from an average case resource demand estimation (Section 7.2.2),
our approach produced power consumption predictions that were sufficiently accurate
for architecture-level decision making. The VM migration case study showcased the need
for accurate performance and power models of multi-core systems which use proprietary
DVFS techniques. We did not explicitly model the proprietary DVFS features of the server
under investigation. While our power models accurately predicted energy consumption at
all other load levels, their accuracy was low for high load on a small number of cores.
The validation did not empirically validate the usability of our approach with a user

study. The presented case studies illustrate the applicability of our approach to evaluate the
energy efficiency of software systems, and the impact of reconfigurations on performance.
The core parts of the Power Consumption models construction, and the energy efficiency
analysis are automated. Due to the high degree of automation, we deemed that a user
study would provide little additional insights on the applicability of our approach. For
the Adaptation Action metamodel, an empirical user study could answer to what extent a
coupled specification of adaptation effect on system state and behavior reduces the effort
for modeling self-adaptive software systems.
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This section describes work related to the contributions of this thesis. It contrasts our work
with approaches from different research areas. We identified five areas that are closely
related to our work. Each of the following sections discusses approaches from one of the
areas. Section 8.1 outlines power consumption modeling and estimation approaches. They
are closely related to our Power Consumption metamodel and PCA prediction approaches.
Section 8.2 focuses on approaches for power model extraction. The wider field of Green
Software Engineering research is investigated in Section 8.3. In Section 8.4, we survey
the area of energy efficiency benchmarks and classification. We distinguish between
power model extraction and benchmarking, as extraction is concerned with the creation of
predictive models, while the other approaches classify and compare the energy efficiency
of servers. Cloud simulator research is a field related to both our power consumption
prediction approach and themodeling and analysis of transient effects. Section 8.5 contrasts
our work with modeling and prediction methods from Cloud simulation. Section 8.6
investigates related work in the area of self-adaptive systems modeling and analysis.
Section 8.7 contrasts our Adaptation Action metamodel from other performance model
completion approaches.

8.1. Power Consumption Modeling and Estimation

This section assesses differences and commonalities of our power modeling approach and
consumption analysis PCA with related work. Section 8.1.1 contrasts our design time
prediction approach with runtime methods. Section 8.1.2 compares our work with other
energy consumption approaches aimed at the design time power or energy consumption
estimation. Section 8.1.3 discusses methods that support the implementation of energy
efficient software systems. They either guide software developers through a code level
power consumption estimation, or offer reusable programming constructs that improve
energy efficiency.

8.1.1. Runtime Power Estimation

Runtime power estimation aims at the estimation of power consumption in an operational
software system. Runtime estimation methods support reasoning on power consumption
of servers that are not, or not permanently, equipped with power measurement equipment.
They use measurable system metrics such as CPU utilization as input variables of a
consumption estimation model.
In data center environments, runtime power estimation techniques enable data center

operators to evaluate power consumption on a per-server basis. Automated optimization
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frameworks may use power estimates as the basis of adaptation decisions, which aim to
increase energy efficiency. Runtime power estimation techniques can leverage all low
level performance counters that can be measured in a system [28, 58]. If the availability
of power estimations is time critical, e.g., as part of a power capping mechanism, the
computational complexity of the estimation technique may be restricted.

Noureddine et al. [149] present a framework for runtime power estimation. The authors’
approach leverages system level metrics to estimate the power consumption of software
systems. Their framework estimates the power consumption per software component. It
derives the estimate from the fraction of work that each software component causes on a
hardware component. The framework estimates the power consumption of the hardware
based on the equation that correlates power consumption with the frequency and voltage
of a processor [160]. While the consideration of frequency and voltage in the power
models allows estimating the effects of DVFS, it disregards the effect of utilization on
power consumption when voltage and frequency are constant.
Seo et al. [185] outline a framework for runtime energy consumption estimation of

Java applications. Their framework relies on a bookkeeping energy model as introduced
in Definition 2.1 of Section 2.1. The authors assign each bytecode operation with an
energy consumption, which results from its execution. Their approach derives the energy
consumption of a Java program over time as the sum of all calls performed in the time
frame. Seo et al. accumulate the program consumption with consumption estimates for
communication overhead and static server consumption.
As part of the EU project Fit4Green Basmadjian et al. [16] developed a runtime power

consumption prediction approach for data center environments. Basmadjian et al. propose
to predict the power consumption of each server in a data center as a sum of the power
consumption of CPUs, memory, Hard Disk Drives (HDDs), network, and a constant factor.
The authors use linear power models to predict the power consumption of CPU, memory
and HDD resources. Basmadjian et al. use utilization measurements gathered on the
actual infrastructure to parametrize these power models. This produces consumption
estimates on the level of individual resources, servers, and the full data center. Basmadjian
et al. only evaluated the precision of their runtime power models for a single server
running a synthetic workload. The authors managed to maintain error rates below 10%
in their experiments. However, it is not clear how precise the models are for varying
workload intensities since the synthetic workload applies a constant load to the system.
In addition, it remains uncertain whether the proposed distinction between individual
resources improves the accuracy over a linear power that is purely based on the CPU
utilization. The authors only vary CPU load and memory usage in their experiments. Since
the memory usage is scaled up with the CPU load, the benefit of having separate power
models for CPU and memory is uncertain.

8.1.2. Design Time Power Estimation

The goal of design time power estimation techniques is the support of a systematic
consideration of power consumption as part of software design.

Brunnert et al. [35] present an approach based on Palladio that targets capacity planning
in data centers for enterprise applications. In order to evaluate the energy consumption
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of servers, the authors couple a linear power model with the PCM. Brunnert et al. [35]
intrusively extend the Resource Environment of PCM with linear power consumption
factors per processing resource. Their modeling approach does not support different power
model types. It neglects power distribution characteristics. The authors uses the linearity of
their power model to reason on the total energy consumption of the software system under
evaluation. Brunnert et al. [35] estimate the energy consumption as the result of the linear
power model parametrized with the average CPU and HDD utilization, multiplied with the
total time. Their approach hence relies on an average case analysis. The prediction method
lacks support for the evaluation of power consumption at individual points in time. It is
impossible to use the approach to evaluate power consumption over time. Consequently,
reasoning on peak power consumption, and consumption in a specific time interval is not
supported. Brunnert et al. focuses on static software systems. In contrast to our work, the
authors do not address power consumption prediction for self-adaptive software systems.
Their approach also lacks support for the evaluation of power consumption under usage
trends, i.e., changes in the number and behavior of users over time.
Seo et al. [184] analyze the impact of architectural communication styles on power

consumption. Considered styles are, e.g., client-server and publish-subscribe. An energy
bookkeeping model forms the foundation of their analysis. Seo et al. assume each remote
call to consume a specific amount of energy. Seo et al. do not investigate how internal
component behavior affects energy consumption. The authors assume the energy con-
sumption of components to be mostly unaffected by the communication style. In order to
predict the energy consumption of components, Seo et al. rely on their bytecode-based
estimation discussed in Section 8.1.1.

Another architectural energy consumption estimation approach that uses bookkeeping
energy models is outlined by Meedeniya et al. [136]. The intended area of application of
their work is embedded systems. The authors do not distinguish between hardware and
software components. Rather, Meedeniya et al. consider system components that integrate
software and hardware. In contrast to Seo et al. [184], Meedeniya et al. do not differentiate
between energy consumption of individual calls. The authors assume that any call to the
same component consumes the same amount of energy. Their model uses an average
estimate to model energy consumption caused by communication. Meedeniya et al. [136]
model static energy consumption on a per-component basis.

PowerPerfCenter [5] is an application performance simulator that supports the consider-
ation of power management mechanisms. The authors rely on a probabilistic workload
and system description language. Compared to PCM, the language models the system on
a lower level. The introduction of programming constructs like for statements moves the
models closer to a performance prototyping language. Users can simulate the effect of
frequency scaling mechanisms as implemented by the Linux frequency scaling governors.
PowerPerfCenter predicts the power consumption using a piecewise defined linear power
model. It predicts the power consumption at each frequency level f as a fraction u of the
power consumption at f under full load u = 1. Other power model types are not explored.

Bunse and Höpfner [39] discuss a model-based power estimation approach for embedded
systems. The approach builds upon the MARMOT [38] method. MARMOT extends the
KobrA method [11] to the embedded software systems domain. MARMOT and KobrA
structure the development of component-based software systems. They employ three
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orthogonal viewpoints to specify different aspects of a software system. The viewpoints
are the structural, functional and behavioral viewpoint. Different UML diagram types
realize each viewpoint.

MARMOT leverages PSMs to describe the power consumption of embedded systems.
Each PSMmodels the power consumption of an embedded component. The PSM is specific
to the combination of hardware and the software components that are deployed on it
[39]. Additionally, all services provided by the components are annotated with energy
consumption estimates which are not included in the PSM model. MARMOT estimates
the consumption of methods by evaluating UML timing diagrams. For this, it accumulates
the energy consumption from state transitions, service calls and the consumption in the
states during a modeled interaction.

It remains unclear under which conditions the energy consumption caused by a service
is included in the PSM, and when it should be described with service consumption annota-
tions. This lacking separation of application and power consumption modeling makes it
difficult to reuse the power models to compare different architectural design decisions.
For example, it is challenging to estimate how the choice of a different component imple-
mentation would affect the energy consumption of a software system: Both the PSM and
the annotation model may include parts of the consumption that results from calls to the
initially chosen component.

8.1.3. Implementation Time Methods

Zimmermann [232] presents an approach for an emulation-based evaluation and optimiza-
tion of embedded systems energy efficiency. The author uses PSMs, in combination with
a bookkeeping power model to model the power consumption of embedded hardware
resources. The bookkeeping model specifies the consumption of individual hardware
instructions. Zimmermann emulates the implemented software to estimate its energy
consumption. The emulation serves as the foundation of a configuration optimization
that varies the parameters of dynamic power management mechanisms. In comparison to
our work, Zimmermann focuses on single, embedded systems. The emulation requires
the full application implementation as input for the emulation-based analysis. Potentially,
changes have to be applied to the implementation to make it compatible to the interfaces
of the emulator. The approach thus can only be applied to optimize existing embedded
applications on the implementation level. The prediction method by the author requires a
highly accurate power state simulation and modeling to produce accurate results.

Wilke [223] estimates the energy consumption of specific application usage scenarios us-
ing bookkeeping energy models. The author annotates user activities with their estimated
contribution to energy consumption. His bookkeeping model characterizes the energy
consumption of activities dependent on the system state in which they are performed. The
thesis [223] provides example bookkeeping energy models but does not investigate their
accuracy for the given systems. Wilke infers the energy consumption of user activities.
His model assumes that the energy consumed by a call does not depend on the level of
system activity. This is inaccurate for most modern server systems since they showcase a
non-linear relation between energy consumption and utilization level [58, 172].
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Li et al. [128] outline a measurement-based approach for estimating the contribution
of individual source code lines to the total power consumption. Their approach targets
the consumption estimation for mobile applications. The authors use heuristics based
on bookkeeping power models to break down the total device consumption to individual
source code lines. The heuristics aim to consider parallel program execution and tail states
in the per-line source code consumption estimates. The validation applies the method
to a set of Android applications. Their heuristics could be transferred for use with our
architecture-level design time analysis. The heuristics could be used to contribute the
energy consumption to individual services or actions in an RDSEFF. The power measure-
ments and application level monitoring of a runtime system would be substituted with
power consumption and performance analysis results from Palladio and our PCA.

8.2. Power Model Extraction

Composable Highly Accurate OS-based power models (CHAOS) by Davis et al. [58] is a
method for the automated extraction of power models based on system level performance
counters. CHAOS passively monitors a set of workload runs. This contrasts the profiling
approach from our power model extraction method, which actively steers the load to
reach specific load levels. CHAOS selects a set of relevant hardware performance counters
using a feature reduction algorithm. The feature reduction algorithm runs during the
profiling. CHAOS relies on the availability of a large number of low level performance
counters. This makes their profiling approach difficult to to apply to the extraction of
power models for use in design time analyses. In order to validate their approach, Davis
et al. [58] evaluate the accuracy of a set of power models. The power models include linear
power models, piecewise linear power models, quadratic power models and a model which
the authors refer to as a switching power model. The latter model defines power models
per p-state of the system. Davis et al. train the models on the features selected by CHAOS.
The authors conclude that the consideration of storage metrics significantly improves
prediction accuracy compared to power models that only consider CPU utilization and
fixed consumption factors. Our experiments did not confirm this observation for our
profiling approach.
Mantis [65] is a power consumption profiling framework. Mantis runs individual

synthetic workloads [141] at different load levels. Mantis uses a specific workload per
system component. Example components are CPU, storage, and network. Unlike our
profiling approach, Mantis lacks support for hybrid workloads, i.e., workloads that stress
multiple resources at the same time.
GreenOracle [52] extracts energy models for Android applications using systematic

experiments. The energy models use system call traces and CPU utilization as independent
input variables for a predictive runtime power model. GreenOracle trains the power model
on measurement data collected from device profiling. It executes a set of test cases on
multiple versions of different applications. Finally, it trains the energy models on the
collected measurements. The proposed approach does not systematically vary load. Thus,
the produced profile may not provide represent the full measurement range of independent
variables.
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Kansal et al. [104] outline a model for VM metering that estimates the contribution of
individual VMs to the total power consumption of a server. Instead of training a server
wide power model, Kansal et al. train power models that estimate the per-VM consumption.
The constructed model is a helpful foundation of VM pricing models. It is questionable
how accurate the model is compared to full-system power models. The authors note
that the total server power consumption of their evaluation server follows a non-linear
trend. Their composed per-VM power model, however, assumes that each VM linearly
contributes to the total consumption. This in turn results in a composed linear power
model for the full server. The limitations of VM power model construction by Kansal
et al. [104] make VM power models difficult to apply at design time. The authors train
each VM power model after the VM has been instantiated. The per-VM power model
parameters strongly depend on the server and the components deployed in the VM. This
makes the VM power models difficult to apply to new VM configurations, i.e., due to the
redeployment of components on another VM.

8.3. Green Software Engineering

Green Software Engineering subsumes all methods that aim to quantify or improve the
ecological footprint of software. Most common, energy consumption is used to quantify
the ecological footprint.

There are different sub-fields of Green Software Engineering. The subsequent sections
outline related approaches in each of the sub-fields. Section 8.3.1 discusses approaches
that quantify the impact of design decisions made during software evolution on energy
efficiency. Section 8.3.2 presents methods that aim to detect and resolve design deficien-
cies which negatively affect energy efficiency. In Section 8.1.2, we introduced different
design time power estimation approaches. These approaches can also be categorized as
Green Software Engineering methods. Section 8.3.3 complements the prior section with a
discussion of Software Eco-Cost Model (SECoMo). SECoMo supports the modeling of the
ecological footprint with metrics otherr than energy consumption, e.g., greenhouse gas
emissions.

8.3.1. Repository Mining and Comparison of Energy Consumption across

Software Releases

Software repository mining approaches aim to identify trends and patterns throughout
software evolution from the commit history of a source code Version Control System
(VCS). They have been applied to identify changes that influence the energy efficiency of
software systems. Hindle [87] proposes a method to compare the energy consumption of
different software versions. The approach aims at the identification of changes in power
consumption due to source code changes. Hindle et al. [89] apply the method to compare
the power consumption characteristics across different versions of Android projects hosted
on GitHub. Their GreenMiner approach uses an automated testbed to measure the energy
consumption of different user interactions across mobile application software releases.
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Hasan et al. [81] apply GreenMiner to compare the power consumption of different Java
collection libraries for Android. In a first step, the authors evaluate the power consumed
while performing a set of collections-based microbenchmarks. Second, they investigate the
effect the replacement of collections libraries had on a set of small-scale case study systems.
Their experimental investigation on one Android-based device provides an interesting
state-of-the-art insight into the efficiency of different collections implementations. It is
unclear to what extent the results can be generalized to other execution environments, e.g.,
enterprise servers. Furthermore, future implementation changes in the libraries require a
re-evaluation.

Moura et al. [144] perform a thorough analysis of commits on GitHub that targeted an
energy consumption reduction. Some of the commits also consider tradeoffs with other
quality dimensions, such as performance. Moura et al. do not experimentally evaluate
whether the commits actually effectively reduced energy consumption.

Jagroep et al. [100] propose a method to compare energy consumption across different
releases of a software product. Their approach aims to promote awareness for the effect
of design decisions on energy consumption during soware evolution. The authors collect
and compare measurements of the same usage scenarios for different versions of the
software system. Compared to our predictive approach, the approach by Jagroep et al.
can not be used at design time as it relies on the availability of the full implementation
of the software system under analysis. In their consecutive work, Jagroep et al. [101]
outline a question catalog which supports software architects in the identification of
potential energy efficiency improvements. These improvements target both architectural
and implementation decisions. Jagroep et al. apply their profiling method [100] to evaluate
the effect of decisions on energy consumption.

8.3.2. Detection and Resolution of Design Deficiencies

Procaccianti et al. [165] compile a set of design decision categories that aim to increase
energy efficiency. The categories are energy monitoring, self-adaptation, and Cloud
federation. Energy monitoring design decisions intend to inform software architects of the
effects of her decisions on energy efficiency. Self-adaptation and cloud federation design
decisions integrate self-adaptation mechanisms with a software system. They enable the
adaptation and exchange of services on the basis of specified quality goals, e.g., energy
efficiency. Procaccianti et al. do not provide a model for, or experimental evidence of the
effect of the presented design decisions on energy efficiency. In later work, Procaccianti
et al. [164] experimentally evaluate the effect of two best practices on energy efficiency.

Reimann and Aßmann [169] propose a generic method for the identification and resolu-
tion of model smells to improve connected functional and non-functional qualities. The
authors apply their approach to remove a Java code smell which affects energy consump-
tion. Reimann and Aßmann employ quality analyses to assess the effect of refactorings
on QoS attributes. The refactoring approach treats each quality analysis as a black box.
It would be possible to couple our energy consumption analysis with the refactoring
approach to assess the effect of software architecture refactorings on energy efficiency.
Gottschalk et al. [74] present an approach for the detection and resolution of energy

code smells in Android apps. The approach relies on a measurement-based evaluation of
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refactorings. Thus, it can not be applied in early design stages. The authors provide no
details on the degree of automation supported by their approach. A combination of their
work with an automated measurement approach, e.g., GreenMiner [89], is conceivable.

The SEEDS framework [131] optimizes the configuration of an implemented software
system in order to decrease its energy consumption. As input, the framework uses the
implementation, a definition of potential variation points, and a description of the de-
ployment environment. The framework aims to identify an optimal configuration by
estimating the consumption of each configuration. Manotas et al. [131] note that the
consumption estimation of each configuration could be derived from measurements on the
deployment environment, hardware and software co-simulation, or higher level energy
consumption estimation models. An example of an estimation model referenced by the
authors is the model by Noureddine et al. [149], which we discussed in Section 8.1.1. The
prototypical implementation of the SEEDS framework varies the used Java collections,
and measures the effect on energy consumption by profiling the resulting implementation
variant. The meta-heuristics based energy optimization approach of SEEDS could be
applied at design time by combining our energy consumption model and analysis with
the existing architecture optimization framework PerOpteryx [111]. This would enable
an automated selection of optimal architectures at design time with respect to energy
consumption and further QoS characteristics.

8.3.3. SECoMo Estimation Model

This section discusses an estimation model that enables the estimation of the ecological
footprint of an application. Section 8.1.2, presented different design time power estimation
approaches. The discussed approaches also employ estimation models. In contrast to
SECoMo, they focus on the estimation of energy consumption as the only eco-cost metric.

The Software Eco-Cost Model (SECoMo) by Schulze [182] enables users, software ar-
chitects, and operators to estimate the eco-cost of a software system. Schulze defines
ecological cost as “any factor influencing the ecological footprint arising in an attempt
to reach a certain goalž. The cost may expressed in terms of energy consumption, green-
house gas emission, or a monetary value. SECoMo assigns eco-costs to different types of
interactions with the software system. Users and architects of a system can estimate the
effect of different types of interactions on eco-costs using metrics. Example interactions
are the use of a service or access to stored data. SECoMo considers the usage, deployment
context, and provided functionality as factors that impact eco-costs of a system. It uses
the KobrA method [11] to capture these factors in UML models.

The descriptive approach by Schulze complements the prescriptive GreenSLAs [10].
GreenSLAs define the acceptable eco-costs of service calls. GreenSLAs can be used as a
basis of service matching, or selection. Additionally, SECoMo effectively complements
energy consumption prediction approaches, as the one presented in this thesis. Its metrics
can be applied to energy consumption estimations. This empowers software software
architects to reason on the ecological footprint, e.g., of a specific user group. Section 9.4.2
discusses the combined use of our approach and SECoMo.
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8.4. Energy Efficiency Benchmarks and Classification

This section differentiates our work on power model extraction and energy efficiency
analysis from related work in the benchmarking and classification domain. Benchmarking
frameworks evaluate the energy efficiency of deployment environments for predefined
workload sets or types. Classification frameworks monitor and rate the efficiency of a
software system. Unlike benchmarking, classification evaluates operational systems and
user load.

8.4.1. Benchmarks

JouleSort [173] is a benchmark that evaluates energy efficiency (EE) of software systems.
It quantifies EE as the energy consumption that a software system consumes to sort a
data set of a specified input size. Algorithm engineers and system architects use JouleSort
as a tool to compare the practical efficiency of sorting algorithms in specific execution
environments. TPC-Energy [209] complements existing TPC benchmarks, like TPC-W,
with a measurement method and metric for EE. Its EE metric is a ratio of total energy
consumed over all considered performance measurement intervals, and the number of
completed transactions. SPECpower_ssj [119] is an energy efficiency benchmark for
enterprise servers. The SPECpower_ssj workload simulates user interactions with a
warehouse management system. User requests may arrive at the system at varying rates.
The benchmark determines energy efficiency as the ratio of user request throughput and
power consumption. SPECpower_ssj measures EE at different throughput levels, which it
derives from the maximum measured throughput on a server.
Unlike our estimation approach, benchmarks require the full implementation of the

software system under analysis to quantify EE. The benchmarks do not evaluate energy
consumption at different load levels. Thus, power consumption and system metric mea-
surements collected during the benchmarks may fail to cover a representative set of
measurements. This makes the standalone benchmarks unsuitable for server profiling.
SERT [29, 187, 188] is a framework for classifying server energy efficiency across a

range of workload types. SERT defines energy efficiency as an aggregated metric over the
energy efficiency of multiple worklets run at different load levels. A load level is defined
as a factor u ∈ [0, 1]. For each load level, SERT defines energy efficiency (EE) as follows:

Definition 8.1 (Energy Efficiency per SERT Load Level). The energy efficiency at a load

level tpu = u · tpmax, and u ∈ [0, 1] is

EEtpu =
Normalized Performance
Power Consumption , where

tpmax is the maximum throughput that is reached for the worklet on the server under investi-

gation. EEtpu is the efficiency when the workload is executed with the share tpu is a share of

maximum throughput.

SERT aggregates the EE at different load levels into a metric for a specific application
type. It performs this aggregation using the geometric mean. SERT refers to the types
of applications as worklets. From the worklet scores, SERT calculates a total server EE

207



8. Related Work

metric. The metric weights workloads depending on the type of workload it issues. The
weighting stresses the scores of CPU intensive worklets over memory intensive, and
storage intensive worklets. An example worklet is SSJ, which simulates a web shop.
SPECpower_ssj [119] also uses this workload. SERT quantifies EE as a ratio of throughput
and energy consumption. It does not consider other performance metrics, e.g., the response
time distribution at different throughput levels.

SERT rates the EE of a server in relation to the EE of a baseline server for a specific set
of workloads. Out of scope of SERT are the prediction or estimation of power consumption
for workloads outside this set. Additionally, SERT does not target the extraction of power
models. We employed the technical foundation of SERT to implement our systematic
power model extraction approach, as Section 5.4.1 discussed. This enabled us to reuse the
existing SERT workload definitions to create representative enterprise server workloads.

8.4.2. Profiling of Existing Applications

Energy efficiency benchmarks evaluate the energy efficiency of an execution environment
using a set of workloads. The execution environment may be, e.g., an enterprise server.
Benchmarks enable the comparison of energy efficiency across different environments on
the basis of the executed workloads. The interpretation of benchmark results for specific
real scenarios is challenging. Profiling approaches avoid this challenging interpretation.
They evaluate the power consumption of full-stack software system configurations in-
stead of benchmarking workloads. Profiling approaches provide software engineers and
operators with the exact power consumption characteristics of a running software system,
including actual user load. Profiling frameworks thus can only be applied if:

· the software implementation and deployment environment are available, and

· the environment can be instrumented with dedicated measurement equipment.

PowerPack [72] characterizes the power consumption of distributed applications. It
supports reasoning on the influence of application phases on power consumption of
individual hardware components. PowerPack passively monitors existing applications
to gain insights on their power consumption over time. This differs from our profiling
approach, which aims to produce a representative server consumption profile for a variety
of workloads.

Alonso et al. [3] present a profiling framework for parallel High Performance Computing
(HPC) applications. The framework offers interfaces to commercial and custom power
monitoring equipment. It supports the recording of software and system level metrics.
The authors apply the framework to validate a power model for task-parallel applications.
The work by Alonso et al. could be combined with our profiling framework to support a
broader range of power meters. Particularly, their implementation could be leveraged to
integrate power meters that monitor the individual consumption of server components.
JouleUnit [224] is a power consumption profiling framework. Like PowerPack [72], it

supports distributed measurement and workload execution. JouleUnit specifically has
been designed to support the profiling of a variety of systems, including cyber-physical
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systems. Wilke et al. [224] illustrate the applicability of their approach for Android appli-
cations and a robotics platform.

Performance counter Event Trigger (PET) [180] is a framework that supports the emula-
tion of complex distributed workloads using a recorded performance counter profile. PET
aims to replicate the observed profile by running a combined set of small workloads that
trigger the observed counters. As PET assumes transactional workloads, its emulation
method could be integrated with our profiling approach. This would enable the power
consumption profiling of workloads that emulate large distributed applications.

8.5. Cloud Simulators

CloudComputing offers “on-demand [. . .] access to a shared pool of configurable computing
resources [. . .] that can be rapidly provisioned and released with minimal management
effortž [137]. Cloud simulators have been developed to support large scale experiments for
Cloud scenarios without the costly provisioning of actual servers. The central goal metrics
of Cloud simulator evaluations relate to the operational data center efficiency. Hence, the
simulators cover metrics relevant to Cloud operators, e.g., resource utilization and energy
efficiency. Unlike architectural analyses, the application models of Cloud simulators offer
no abstraction compared to the application implementation [150], or model applications
purely in terms of the load issued over time [45, 118].
DCworms by Kurowski et al. [118] is a framework for simulating the performance

and energy consumption of distributed computing infrastructures. It builds upon GSSIM

by Bąk et al. [12]. The performance model of both DCworms and GSSIM is limited to
non-interactive HPC tasks. Each modeled HPC task issues a set of sequentially processed
resource demands on CPU, storage devices, and network. While this abstraction is suitable
for modeling the performance of sequentially processed HPC applications, it does not fit
user-facing distributed enterprise applications. DCworms and GSSIM provide predictions
for the energy consumption of applications. They perform their predictions using power
models derived from system metrics (c.f. Section 2.1). Kurowski et al. [118] evaluate the
accuracy of static and linear power models, as well as an application-specific non-linear
power model for a set of HPC benchmarks. The authors state that their framework supports
the addition of further power models as simulation plugins.
CloudSim by Calheiros et al. [45] is a performance and energy consumption simulator

for Cloud environments. CloudSim simulates the dynamic deployment and migration of
VMs. Calheiros et al. employ linear power models to predict the energy consumption of
cloud-based systems. Later versions of CloudSim extend the range of supported power
models, e.g., by piecewise defined linear power models [24]. The main simulation entity of
CloudSim are VMs. Unlike DCworms [118] and GSSIM [12], CloudSim does not perform
its predictions for a set of VMs that are executed in isolation. In CloudSim, collocated VMs
mutually impact their performance.
The behavior of applications simulated by CloudSim can be defined in Java code. The

implementation-centric performance approach chosen by Calheiros et al. [45] theoretically
allows to model application behavior of arbitrary complexity. However, it also lacks the
abstractness and generality of component-based architectural performance models such
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as Palladio [22]. In CloudSim, applications and services are not modeled as a sequence of
actions and service calls to different components. Applications running in each virtual
machine do not communicate with the services running in other VMs. Another drawback
of CloudSim is its lack of an explicit usage or workload model. Fluctuations in the user
demands need to be manually mapped to changing resource demands of a VM. Piraghaj et
al. [157] extend CloudSim to support the modeling and simulation of containers. Piraghaj
et al. treat containers as another virtualization layer. Behavior and power consumption
modeling are unaffected by the added layer.

CloudSim approximates the transient effect of VM migrations as a fixed, linear overhead
on CPU utilization [24]. The migration duration is estimated as the memory size of the
VM divided by the available network bandwidth. This is inaccurate for pre-copy live
migrations, where the migration duration depends its memory page dirty rate.
The Cloud simulator iCanCloud [150] requires users to implement Cloud simulations

against a low level programming API. Instead of performing actual operating system or
cloud platform calls, application developers may issue calls to the simulator API. Due to
this high level of detail, iCanCloud is not suited for the evaluation of large scenarios, and
scenarios where information on executed workloads is limited. Castañé et al. [48] extend
iCanCloud with an energy consumption model. Castañé et al. distinguish operational
states of hardware components, e.g., CPU and memory. The authors propose a specific
energy model per device. Each power model predicts the energy consumption using
system metrics and device states. In its current state, iCanCloud does not support VM
migrations or other reconfigurations.
Vondra and Šedivý [218] present a queueing network-based Cloud simulator. The

authors specifically constructed the simulator for the analysis of auto-scaling algorithms.
The simulator only analyzes steady states that are reached after scale outs or scale ins have
been executed. Unlike our work, the simulator lacks support for the analysis of transient
phases. The authors focus on performance metrics, e.g., utilization and request latency.
Energy efficiency is out of scope of their work.

8.6. Modeling and Analysis of Self-Adaptive Software Systems

In this section, we contrast our approaches for the modeling and analysis of energy-
conscious self-adaptive software systems, and modeling and analysis of transient effects
with related work. Section 8.6.1 discusses runtime models and analyses that enable an
efficient operation of software systems. Section 8.6.2 outlines analyses that predict the
quality of self-adaptive software systems at design time. In Section 8.6.3 we delineate
related work that models the performance and energy consumption of VM migrations.

8.6.1. Runtime Models and Analyses

SOFA 2.0 by Bures et al. [41] explicitly models adaptation points. The authors argue
that runtime adaptations should be reflected in the architectural design to prevent “an
uncontrolled modification of the architecturež [41]. SOFA 2.0 reflects adaptation points as
services offered by Controller components. The Controller components are woven into all
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components, to which the adaptation points of a Controller apply. Adaptations that do
not directly affect an existing component, e.g., the launch of a new component instance,
cannot be described using this modeling approach.

Stitch [51] is a Domain Specific Language (DSL) for the specification of reconfiguration
mechanisms based on the S/T/A approach. Section 2.4.2 introduced the S/T/A approach.
Stitch assigns each tactic with its expected adaptation cost. It defines a fixed delay after
which the intended effect of a strategy or tactic should have been observed. Cámara
et al. [46] and Moreno et al. [142] extend Stitch to proactively adapt the system to changes
in the system environment, e.g., increasing user demand. Their approach assumes a fixed
execution time for adaptation rules. The delay-based model [46, 51, 142] is inadequate as
input for performance predictions when the execution time of adaptations depends on
transient effects.

Rosa et al. [174] enrich component specifications with an adaptation point model. The
authors define adaptation costs in multiple dimensions per component. They acknowledge
that adaptations may result in different transient effects depending on resource utilization.
The adaptation cost are a constant overhead added to, or a factor times the current
utilization. The adaptation point model only supports the specification of upper bound
adaptation delays.

Descartes [93] is a proactive adaptation approach. Descartes represents the current
system state as an instance of DML. DML encompasses an adaptation point model, and
a monitoring data model. It uses architecture-level performance predictions to identify
future performance bottlenecks at runtime. Descartes triggers adaptation mechanisms
once it has identified one or multiple performance bottlenecks. These mechanisms may
derive an adaptation plan, which aims to resolve the bottlenecks. Descartes evaluates the
result of the plan using architectural performance analysis. The analysis disregards the
transient phase. Instead, it evaluates the expected system performance after the plan has
been executed. DML does not model reconfiguration cost.

Götz [75] proposes a model-based runtime adaptation framework for single-user soft-
ware systems [75, p. 168]. Its aim is to find optimal system configurations based on
predefined QoS requirements. The optimization method uses the runtime models to rea-
son on QoS characteristics of a software system. Götz presents a behavior model for a
state-based description of hardware. The author illustrates how this model can be applied
to create PSMs. Their runtime optimization framework uses predefined PSMs as input to
a DES-based analysis. The simulator estimates the energy consumption for an expected
user request.

The expressiveness of the energy model and the accuracy of the simulator-based pre-
dictions by Götz [75] is lower than our approach. In addition to PSM models, our Power
Consumption metamodel supports the modeling of power distribution infrastructure char-
acteristics and system metric-based power models. Our approach thereby can differentiate
the dynamic power consumption in each state. An advantage of the simplified modeling
and simulation over our approach is that it is easier and faster to determine QoS predictions
of different system configurations. This is important in the scope of the work by Götz [75],
since their framework continuously analyzes a system for potential runtime optimizations.
The work [75] lacks a quantitative evaluation of the presented approach.
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Bunse and Höpfner [39] propose to integrate an energy management component with
a software system. The energy management component aims to increase the energy
efficiency of the system by adapting its configuration to changes in user behavior or
different execution environments. The authors [40] apply this principle to enable an
application to dynamically select the most energy efficient sorting algorithm from a set
of available algorithms. The energy management component determines an optimal
configuration based on a set of power models that estimate the energy consumption
dependent on application and system metrics. These power models are specific to each
potential application configuration and deployment environment. The authors manually
construct the power models by profiling the sorting algorithm implementations on a
specific deployment environment. The models presented in [40] only consider the size of
the sorted collection as an input factor.

8.6.2. Architecture-Level Design Time Analyses

Architecture-level design time analyses of self-adaptive software systems evaluate the
quality of these systems at design time. They enable software architects in the selection,
configuration and design of runtime adaptation mechanisms.

D-KLAPER by Grassi et al. [77] is an approach for model-based design time analysis of
self-adaptive software systems. Unlike SimuLizar, D-KLAPER only considers adaptations
that affect the composition and deployment of components. A further difference is that
D-KLAPER does not support the analysis of reconfigurations, which trigger as a result of
variations in monitored QoS characteristics. Instead, reconfigurations execute randomly
according to specified stochastic models. All possible configuration states must be proac-
tively known and specified by the architect. This is infeasible for adaptation mechanisms
that only implicitly state the results of adaptations. D-KLAPER supports the specification
of resource demands that are caused by reconfigurations. Each reconfiguration defines a
transition between two specific states. This contrasts our transient effect model, which
supports the modeling of transient effects independent of specific state transitions.
SLAstic.SIM [133] enables simulation-based design time analyses of self-adaptive soft-

ware systems. It analyzes self adaptation mechanisms specified using the SLAstic self-
adaptation framework. PCM serves as the architecture model used to describe the system
under analysis. The simulator SLAstic.SIM does not consider transient effects. Reconfigu-
rations immediately transition the system from the initial to the target state.

8.6.3. Performance and Energy Models of VMMigrations

VM migrations are an important type of adaptation action in virtualized data center
environments. The performance and energy consumption modeling of VM migrations has
been extensively investigated in the Cloud and SPE research community.
Alansari and Bordbar [2] outline an approach for modeling the performance impact

of VM migrations. Colored Petri Nets serve as the foundation of their modeling. Their
performance model does not consider migration time or performance impact of VM
migrations. The authors estimate migration times in a subsequent simulation results
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analysis. Thus, their approach does not allow for a consideration of transient effects which
affect VM migrations, or result from them.
Akoush et al. [1] investigate factors that impact performance of live migrations. The

authors propose two simulative models that estimate the remaining migration time of a
VM using runtime performance measurements. Strunk [206] extends the model by Akoush
et al. with an energy model. Their model uses a linear power model to estimate the energy
consumption based on network bandwidth and VM size.
Maio et al. [129] estimate the energy consumption of VM migrations. The presented

model estimates the energy consumption proportional to the performance overhead of the
migration. The model calculates the full system power consumption using a linear power
model.

8.7. Performance Model Completions

Performance completions [228] enrich software models with performance specifications.
Performance completions may also enhance existing performance models with detailed
performance information, e.g., platform specific resource demands. This closes “the gap
between available high-level models and required low level detailsž [80].
Happe et al. [80] apply the concept of performance completions to PCM. The authors

introduce parameters to the completions. This allows the consideration of different plat-
forms in a single completion. Platform specific characteristics are mapped to parameters.
The authors apply their approach to support a lightweight, reusable specification of
communication middleware overhead.
Lehrig et al. [126] integrate the completion concept with an approach which enables

architects to reuse architectural knowledge. Examples for architectural knowledge are a
reusable specification of architectural tactics, e.g., vertical scaling. Lehrig et al. annotate
PCM with these specifications. The annotation-based approach reduces the analysis effort
for architects, and enables a lightweight exploration of alternative tactics and application
frameworks.

Our approach for the consideration of transient effects in design time analyses employs
parametric model completions, which describe the performance effect of reconfigurations.
The previously discusses approaches by Happe et al. [80] and Lehrig et al. [126] enhance
PCM architecture models prior to an analysis. This requires knowledge in which parts of
the system the completions should be applied. In contrast, we employ the completions
concept to enhance architecture models during an analysis. This allows us to apply
performance completions to parts of the system which are not part of the initial system
configuration.
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9. Integration with Existing Software

Engineering Processes

This chapter discusses how our contributions can be used as part of existing software
engineering methods and processes.

9.1. Using Energy Efficiency Modeling and Analysis with

Palladio

Section 2.5.4 introduced the workflow for the quality analysis with Palladio. Our approach
extends this workflow with modeling and analysis of power and energy consumption
characteristics. The Power Consumption metamodel represents these characteristics. PCA
uses instances of the model to reason on power and energy consumption.
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Figure 9.1.: Palladio quality analysis workflow extended with modeling activities and
artifacts of our power consumption modeling and analysis approach. Figure
based on [170, p. 213]. New parts are highlighted in bold.

Figure 9.1 depicts the extended Palladio quality analysis workflow. In addition to
her existing duties, the system deployer is responsible for providing a description of
the power consumption characteristics of the deployment environment. For this, the
deployer describes the power distribution infrastructure and connected servers using the
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Infrastructure viewpoint of our Power Consumption metamodel. The deployer can either
use power model catalogs, or derive the power models from systematic experiments or
historical measurements. Section 3.3 and Chapter 5 discussed the construction or retrieval
of power models. Infrastructure distribution losses can be modeled based on vendor
specification, or estimates from literature, e.g., as presented in [13].

The deployer may provide different Resource Environment and Allocation models. She
thereby enables reasoning on the effect of alternative allocation strategies and hardware
selection on energy efficiency and other QoS characteristics. The deployer has to provide an
Infrastructure model for each alternative Resource Environment model. The Infrastructure
model annotates the environment with its consumption characteristics. If no power models
are available for the target deployment environment, the deployer can apply our power
model extraction method to obtain the power models.

Multiple alternative Infrastructure models can be provided for the same Resource Envi-
ronment model. This supports the exploration of alternative distribution infrastructures,
and infrastructure sizing decisions.
It is possible to split off the tasks related to power consumption modeling from the

system deployer role. In this case, a system operator can take on these tasks.
The software architect integrates the additional models in the Architecture Information

Integration. The architect can leverage the Power Consumption metamodel and Power
Consumption Analyzer (PCA) consumption analysis if the business requirements

· include power consumption, energy consumption and efficiency goals, or

· aim at a reduction of operational costs while maintaining other QoS requirements.

The architect can use substitute power models of similar deployment environments if no
power models are available for the environment under investigation.

In Quality Analysis, the software architect can evaluate power consumption over time,
the aggregate energy consumption, and energy efficiency using our PCA. Depending on
the type of system, the architect may choose different performance analysis methods to
derive the prediction input for PCA. Section 4.3 discussed the alternative simulation-based
methods.

9.2. Engineering Energy-Conscious Self-Adaptive Systems

with SimuLizar

SimuLizar extends the role of the software architect to cover the selection and design
of self-adaptation mechanisms. Becker [17] refers to the architect as the self-adaptive

system architect due to the added range of design responsibilities. We discussed these
responsibilities in Section 2.5.2. We extended SimuLizar to support the specification of
energy-conscious adaptation mechanisms. These mechanisms adapt the system to meet
quality goals related to energy consumption.

The self-adaptive system architect has to perform the following additional tasks evaluate
the efficiency and effectiveness of energy-conscious self-adaptation mechanisms:
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· Specify power and energy consumption Monitors. Adaptation mechanisms
specified in SimuLizar rely upon system measurements to determine if adaptations
should be performed. The architect or system deployer have to specify points in
the Infrastructure model where power and consumption measurements should be
collected. They define measuring points, measurement frequency and interval in
the Monitor model.

· Integrate or implement energy-conscious adaptation mechanisms. The self-
adaptive software systems architect implements energy-conscious adaptation mech-
anisms as in-place model transformations on PCM. The transformations derive
adaptation decisions based on the measurements which are collected as specified in
the Monitors.

· Specify transient effects of adaptations. If the execution of adaptations induces
a significant overhead, the architect can apply our Adaptation Action metamodel to
consider the resulting transient effects.

· Evaluate effect of adaptationmechanisms onQoS. The architect has to validate
that the self-adaptive system under investigation meets the quality demands derived
from the business requirements. This includes constraints on peak power and
aggregate energy consumption. The constraints can stem from business concerns
like the price of power, or availability of renewable energy sources. Additionally,
the architect can validate if the power distribution infrastructure meets the peak
power consumption of the software system.

The architect has to adjust the design or renegotiate the business requirements if
the energy-conscious self-adaptive system under investigation violates any of the QoS
requirements. This matches the respective activity in the baseline Palladio quality analysis
workflow, which we presented in Section 2.5.4.

9.3. Integration with Software Development Approaches

Our approach extends the Palladio approach for the quality-aware development of com-
ponent-based software systems. Palladio is not a proprietary modeling process. Rather,
it complements existing development approaches with systematic, light-weight quality
analyses based on the PCM architecture modeling language. Software architects can apply
Palladio to avoid costly re-implementations due to unsatisfactory QoS of the developed
system. Reussner et al. [170, pp. 217-223] discuss how Palladio can be integrated with
different development processes. The authors outline the compatibility of Palladio with
the most common development processes. These processes include:

· Iterative, incremental, and evolutionary processes,

· sequential process models (“waterfall-likež),

· iterative process models,
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· agile development approaches.

Our modeling approach extends Palladio to consider power consumption, energy con-
sumption, and energy efficiency. The modeling workflow of Palladio remains unchanged,
barring the extensions we introduced in Section 2.5.4. Hence, we consider our approach to
be compatible with these development processes and approaches.
In iterative or agile development, the Power Consumption metamodel instance of the

system under development can be refined based on the identified resource requirements.
The resource requirements depend on the QoS goals which the software architect derives
from business requirements. Additional information on the deployment environment
from later iterations informs the modeling of the power distribution characteristics. The
architect can incorporate more accurate power models based on the information. This
results in a higher accuracy of energy consumption and energy efficiency predictions in
later iterations.

The consideration of energy-related quality metrics in early design phases reduces the
risk of QoS violations in sequential development processes. Initial models and estimates
tend to be inaccurate in forward engineering. It thus makes sense to update the Power
Consumption metamodel specification in later development phases. This can help inform
decisions made in later phases, e.g., the choice of runtime management policies to reduce
the energy consumption of idle servers.

9.4. Combination with Green Software Engineering

Approaches

This section discusses how our modeling and analysis approach can be integrated with
existing Green Software Engineering approaches. It describes how the approaches com-
plement each other in increasing the energy efficiency of software systems and promoting
energy-awareness among developers, operators, and management.

9.4.1. GREENSOFT Model

TheGREENSOFTModel is a well-known reference model that captures and guides “software
developers, administrators, and software users in creating, maintaining and using software
in a more sustainable wayž [146]. The GREENSOFT Model encompasses the whole life-
cycle of a software system. This includes development, usage, and end of life. In these
stages, the model distinguishes first-, second- and third-order effects of software on
sustainability. A first-order impact results from the construction and use software systems.
It includes the energy consumed by servers, or environmental waste from server production.
Second- and third-order impacts are short and long term effects like the prioritization of
sustainability as a goal of a software development organization.

The GREENSOFT Model identifies the lack of a software tool “that allows the estimation
of energy consumption in [. . .] early design stagesž [146]. The authors hence recommend
the use of utilization metrics from software performance prediction approaches as an
energy efficiency indicator.
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9.4. Combination with Green Software Engineering Approaches

Our design time prediction approach closes the gap identified by Naumann et al. It
enables reasoning on the first-order impacts throughout the development and usage phase
of design decisions on infrastructure sizing, energy consumption, and energy efficiency.
In turn, second- and third-order effects may be induced due to a heightened awareness of
interactions between software design and energy efficiency.

9.4.2. Software Eco-Cost Model (SECoMo)

SECoMo by Schulze [182] is an approach formodeling the eco-cost of a software system.We
differentiated our contributions from SECoMo in Section 8.3.3. Our approach and SECoMo
both aim to enable a systematic engineering of energy efficient software systems. The
approaches, however, focus on different roles and associated activities in the software
development process. The following discusses how both approaches can be integrated and
used complementary to each other.

SECoMoas prescriptivemodel for design and implementation. SECoMo covers descriptive
and prescriptive aspects associated with eco-costs. An implementation of a system can
be checked against SECoMo estimates from early design estimates. Large differences
between early estimates and implementation indicate a poor estimation accuracy or a
lackluster implementation. Large differences hence can be used as a trigger to review the
implementation architecture. As SECoMo associates each service call with its effect on
energy consumption, it is possible to trace the mismatch between implementation and
prediction down to individual calls.

SECoMo as a heuristic for hotspot and blame analyses. SECoMo estimates total energy
consumption based on the estimated contribution of individual calls to the total consump-
tion. SECoMo thus supports the evaluation of individual contributions for user groups,
components, etc., to the overall energy consumption. When applied on the predictions
from PCA, SECoMo can be leveraged to perform an architectural energy consumption
hotspot analysis similar to Brüseke et al. [36]. Instead of UML entities, the consumption
contributions could be mapped to PCM. This would enable the software architect to iden-
tify potential areas of improvement in the architectural design. A continuous evaluation of
energy consumption throughout development using SECoMo enables software architects
to validate if their design decisions had the intended effect on energy efficiency. The
development feedback from SECoMo can inform future decisions of the architect during
software evolution and agile development.

Use of Power Consumption metamodel and PCA to calibrate SECoMo. SECoMo relies on
measurements or expert knowledge to obtain the eco-cost estimations. Schulze [182]
discuss software and hardware power meters as alternative sources of energy measure-
ments for the calibration of the eco-cost models. These measurement-based calibration
approaches rely on the availability of a (prototype) implementation. This makes the
SECoMo calibration difficult to apply in early design phases if no “previously developed
software from the same domain is already availablež [182, p. 271]. Our PCA analysis
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approach supports the analysis of energy consumption in early design stages. It produces
predictions based on an architecture model and an instance of our Power Consumption
metamodel.
It is possible to estimate the contribution of individual service calls to the total en-

ergy consumption by applying the per-call energy estimation technique of JouleUnit
method [224] to our predictions. JouleUnit estimates the contribution of individual service
calls to the total energy consumption of a system. Our approach thereby could be used to
calibrate the SECoMo models from an architectural description of the software system.

SECoMo as the basis of a pricing model. SECoMo accumulates the estimated total con-
sumption from the estimated energy consumption of individual calls. The consumption
caused by individual users can be derived from this. Using SECoMo, it is possible to
construct pricing models which bill users of a system proportional to their contribution
to the energy consumption. Business model experts and management can consider the
per-user consumption predictions in business model design. When applied the predictions
from PCA, the cost estimates from SECoMo can ease coordination of software architects,
business model experts and management in early design stages.

9.5. Consideration of Transient Effects in Self-Adaptive

Systems Design with SimuLizar

This thesis contributes the Adaptation Action metamodel that supports the systematic
consideration of transient effects in design time quality analyses. Section 6.2.6 described a
process for the definition of Adaptation Action model instances. This section discusses
how this process integrates with the engineering processes of Palladio and SimuLizar.
The self-adaptive systems architect collaborates with developers of reconfiguration

middleware components to define instances of the metamodel. The component developers
provide a specification of reconfiguration middleware components as an instance of
PCM components. The components describe the performance effect of the adaptation
action execution. The middleware component developers also provide a specification
of adaptation action parameters, and action effects on the system configuration. The
component developers, together with the software architect, describe the adaptation
behavior as an instance of our Adaptation Action metamodel.
A self-adaptive systems architect can consider transient effects of reconfigurations by

integrating the modeled adaptation actions into her adaptation mechanism specifications.
For this, the architect inserts the adaptation actions into their mechanism specifications as
Section 6.4.2 outlined.
We designed the Adaptation Action metamodel to support the reusable, composable

specification of adaptations. The performance models contain performance effect speci-
fications as RDSEFFs. The resource demand estimates in the RDSEFFs can, however, be
specific to a set of execution platforms. In this case, the component developer or system
deployer can adapt the specification with platform specific resource demand estimates.
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This chapter concludes the thesis. It consists of the following sections: Section 10.1
summarizes the presented contributions. Section 10.2 discusses benefits of our approach.
Section 10.3 gives an overview of assumptions and limitations. Section 10.4 outlines
potential directions for future work.

10.1. Summary

Our thesis presented an adaptation-aware approach for the systematic consideration of
energy efficiency for software systems at design time. It provided four central contributions.
In combination with their validation, they address the Research Questions (RQs) that we
discussed in Section 1.4. The central contributions are:

C1: Design of a modeling language for the description of power consumption

characteristics of software systems. Our Power Consumption metamodel en-
ables the modeling of the power consumption characteristics of software systems.
Instances of the metamodel hierarchically structure the consumption characteristics
of servers and power distribution infrastructure. We found this structuring to be
a good abstraction for modeling the consumption characteristics of servers and
power distribution infrastructure (RQ 1). The designed metamodel enables accurate
consumption predictions (RQ 2), as we demonstrated in a set of case studies.

Our metamodel has a higher expressiveness than state of the art modeling languages.
The use of its extended modeling capabilities is optional. The Power Consumption
metamodel still supports simple power consumption characterizations when a fea-
ture subset is used. A strict layered structuring of the metamodel eases the reuse of
consumption specifications for different deployment environments.

C2: Development of an approach for energy efficiency analysis at design time.

The developed approach predicts the power consumption using an architecture-level
description of the software system. The analysis uses an instance of an architecture
modeling language, e.g., PCM, in combination with a Power Consumption me-
tamodel instance as input models. Our analysis leverages existing performance
analysis methods to evaluate the effect of design decisions on energy efficiency.
Even though the power consumption modeling abstracts from application specific
details, the prediction results are sufficiently accurate to evaluate the effect of
architectural design decisions on energy efficiency (RQ 4). The analysis supports the
evaluation of energy efficiency for static and self-adaptive software systems. For self-
adaptive systems, the analysis considers the effects of power management policies
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and adaptation mechanisms that indirectly affect energy efficiency. Examples of this
are the use of alternative VM migration policies.

C3: A method for the extraction of power models for use in design time predic-

tions. A central part of the extraction method is an automated server profiling
approach. The approach performs representative power consumption and perfor-
mance measurements on a server. The automated server profiling significantly
reduces the effort required for the manual profiling of server power consumption
(RQ 5). The profiling employs different workload types to stress the server. It mea-
sures power consumption at different load levels. A representative server profile
consisting of power and system metrics results from the profiling. We train a set of
power models on this profile.

An AIC-based ranking orders the trained model according to their expected power
consumption prediction accuracy. Our validation confirmed that we were able to
reason on the effect of system metrics on prediction accuracy using this ranking
(RQ 7). The user of our method can select a power model based on its expected
accuracy and the required input metrics of the power model. Thereby, the user can
rule out input metrics which fail to improve the prediction accuracy.

We found the use of system-level CPU utilization to be sufficient as input to archi-
tecture level power consumption predictions for server environments. The con-
sideration of other metrics, e.g., HDD read and write throughput, only marginally
increased the prediction accuracy (RQ 6).

C4: Development of a systematic modeling and analysis approach for consider-

ing transient effects in software quality analyses. We introduced the Adap-
tation Action metamodel for the coupled specification of adaptation actions and
their transient effect. The metamodel enables the modeling of inter-dependencies
between adaptation actions, performance and power consumption (RQ 9). Instances
of the metamodel capture the performance and adaptation effect depending on a set
of input parameters. Self-adaptive software system architects can reuse adaptation
action specifications across different architectural models.

We developed an analysis that supports the consideration of transient effects that uses
instances of the Adaptation Action metamodel as input. The analysis builds upon a
formalization of adaptation action execution semantics, which we introduced in this
thesis. The formalization of execution semantics and their implementation address
Research Question 10. We coupled the analysis with the existing SimuLizar analysis
for self-adaptive software systems. We illustrated the application of adaptation
action specifications by an architect in the specification of adaptation mechanisms,
and outlined a process for the modeling of new adaptation actions.

We validated our contributions in a set of case studies. We structured the validation
according to the GQMmethod. The validation showed that our architecture-level modeling
and prediction approach produces accurate power and energy consumption predictions
(RQ 3). The absolute prediction error was less than 5.5% for the two investigated enterprise
applications across a variety of usage scenarios. The validation accuracy was high enough
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to qualitatively and quantitatively assess the effect of a design decision on energy efficiency
(RQ 4). Four data center management scenarios illustrated the benefits of our power
consumption modeling and prediction approach for self-adaptive software systems. Our
approach predicted the total energy consumption with an error no higher than 7.08%,
despite a set of limitations regarding the quality of input data.
We demonstrated the appropriateness of our Power Consumption metamodel in a

comparison with state of the art modeling languages. Our metamodel offers a higher
expressiveness and accuracy than state of the art architecture level energy consumption
models. The Power Consumption metamodel supports a more flexible and lightweight
specification of power models compared to the power modeling abstraction of Cloud
simulators.
Three case studies showed a significant increase in prediction accuracy over the only

existing state of the art architecture-level energy consumption modeling and prediction
approach [35]. The use of modeling constructs with a higher expressiveness is optional.
Software architects and system deployers can use a subset of the metamodel features,
e.g., when simple linear power models are sufficiently accurate. The strict layering of
the Power Consumption metamodel eases an iterative refinement of its instances. In
later development stages, initial models based on expert estimates can be replaced with a
description of the actual target deployment environment.

The validation applied our power model extraction method to a variety of Big Data and
enterprise applications. Its model training produced power models with a high prediction
accuracy. The power models were at least as accurate as state of the art for power models
built solely using CPU utilization. Our approach produced significantly more accurate
power models than state of the art when multiple system metrics were considered, e.g.,
CPU utilization, HDD read and write throughput. The AIC-based power model ranking
was consistent with the ranking based on measured accuracy.

We validated our approach for considering transient effects using a horizontally scaling
media hosting application. Our measurements demonstrated that the transient effects of
the scale-out adaptation action had a large impact on user response times (RQ 8). The
validation showed that the use of our approach for considering transient effects in design
time quality analyses significantly improved the prediction accuracy for the investigated
self-adaptive software system. The increased accuracy enabled us to identify a design
deficiency that would have remained undetected. This confirmed Research Question 11
for the system under investigation.
Our Adaptation Action metamodel was employed in the CACTOS project to model

the diverse set of adaptation actions supported by its autonomic data center resource
management framework [115, 196]. This illustrated the applicability and appropriateness
of the Adaptation Action metamodel to describe complex adaptation logic.

10.2. Benefits

The contributions of this thesis enable software architects to systematically consider
energy efficiency in the design of static and self-adaptive software systems. The benefits
of our approach are as follows.
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Using our prediction approach, software architects can evaluate the impact of design
decisions on energy efficiency from early design phases. The specification of power con-
sumption characteristics with our approach only concerns the deployment environment.
Component developers do not need to model the effect of service calls on energy consump-
tion. Our approach avoids redundant behavior specifications by using an architecture
level performance model as input to our prediction approach. This simplifies the adoption
of energy efficiency as a quality concern in architectural design and analysis workflows.

We extended Simulizar to support the design and selection of energy-conscious adapta-
tion mechanisms. Energy-conscious adaptation mechanisms dynamically adjust the state
and amount of available servers to improve energy efficiency, while maintaining other
quality goals. The simulation-based evaluation of adaptation mechanisms helps to avoid
costly and time consuming experimentation in a real data center testbed.

The advantages of our approach extend beyond design time into system planning and
operation. System operators and architects are able to evaluate the effect of adaptation
mechanism selection and configuration on energy consumption, and trade-offs with other
quality dimensions.

System deployers and operators can use our approach for infrastructure sizing decisions.
This helps avoid the costly acquisition and operation of inefficient or oversized server and
power distribution infrastructure. Deployment environment resource planning thereby
can be founded on the requirements of the target system architecture and the expected
workload mix. This goes beyond the state of the art, where resource planning relies on
operator experience and rough estimates to plan the power distribution infrastructure.

Software architects and system deployers benefit from the high degree of automation of
our power model extraction method. They can choose from a set of workload definitions
and relevant system metrics to conduct server profiling. The server profiling is decoupled
from power model learning. This enables the refinement of the power model used to
describe the server consumption characteristics. System deployers can choose from a set
of standard model learning techniques to construct power models for use in design time
predictions, e.g., non-linear regression orMultivariate Adaptive Regression Splines (MARS).
The proposed AIC-based model selection method relieves the users from a trial-and-error
selection of a power model from a set of candidates.

Self-adaptive systems architects and engineers profit from the increased prediction
accuracy, which results from our transient effects modeling and prediction approach.
The consideration of transient effects enables architects to identify situations where the
execution of superfluous adaptations reduces energy efficiency or performance, instead
of increasing it. The design of our Adaptation Action metamodel promotes reuse of
adaptation action specifications. Once an adaptation action has been specified, it can be
reused in different self-adaptation mechanisms. The actions are composable by design.
Software architects can integrate them into the adaptation execution logic of adaptation
frameworks, e.g., S/T/A-based frameworks like Descartes. This eases the evaluation of
adaptation frameworks and mechanisms at design time.
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10.3. Assumptions and Limitations

This thesis discussed assumptions and limitations of the contributions in the respective
sections. Section 3.3 outlined assumptions and limitations of our Power Consumption
metamodel. Section 4.5 presented assumptions and limitations of our design time power
consumption analysis approach. In Section 5.5 we discussed these concerns for the power
model extraction method. Section 6.5 described assumptions and limitations of our model-
ing language and analysis for considering transient effects in design time quality analyses.
This section summarizes the central assumptions and substantiates why we deem them
reasonable.

Availability of architecture performancemodel. Our architecture-level power and energy
consumption analysis relies on architecture performance models in combination with
instances of the Power Consumption metamodel as input to its predictions. The consump-
tion analysis leverages existing performance analyses to predict system level performance
metrics, e.g., CPU utilization or HDD throughput. It derives its consumption predictions
from these system metric predictions. The description of formal architecture performance
models like PCM requires a higher modeling effort than informal architecture models,
which purely document existing or planned components and their interfaces. According
to Reussner et al. [170, p. 197], the effort for performance model construction is justified if
there are high risks connected to the quality of the developed software system. This is the
case if the uncertainty regarding the effect of design decisions on system quality is large,
or if the system needs to meet SLAs.
While it would be possible to predict energy consumption in isolation of performance

theoretically, we consider both qualities to be closely connected. The energy consumption
of a software system usually can be minimized by using a minimal number of servers.
Software architects interested in increasing energy efficiency have to ensure that the
software architecture still satisfies performance requirements. We thus consider the
availability of an architecture performance model not only to be a prerequisite for the
application of our approach but also for meaningful architectural trade-offs between energy
efficiency and performance.

Availability of server power consumption characteristics description or access to measure-

ment infrastructure. Instances of our Power Consumption metamodel describe the con-
sumption characteristics of software systems. Information on the consumption character-
istics of the servers in a deployment environment need to be available in order to construct
the instances. Our power model extraction method can be applied to construct server
power models if the target deployment environment and power measurement infrastruc-
ture are available. The final deployment environment may not be available or fully known
in early design phases. In this case, substitute power models from similar hardware can
be used. It is possible to derive power models from the publicly available SPEC SERT
results [68] if no power models of comparable servers are available [181]. The SERT results
quantify server energy efficiency at different load levels. The substitute models can be
refined as additional information on the deployment environment becomes available. We
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consider this assumption to have a weak effect on the applicability of our approach due to
the variety of alternative methods by which the server consumption characteristics can be
obtained.

Limited influence of hidden device states. The power consumption modeling and analysis
approach presented in this thesis builds on the assumption that the power consumption
of software systems correlates with a set of measurable system metrics. Example system
metrics are CPU utilization or HDD throughput. The measurable system metrics can
be insufficient to accurately predict the power consumption based on them. A common
source of this shortcoming is the presence of hidden device states [135]. Hidden device
states are power saving states which are not explicitly documented, and can not be
monitored. An example of such hidden states is the proprietary DVFS mechanism Intel
Turbo Boost [135]. Our modeling and analysis can be leveraged to model the behavior
of DVFS mechanisms and other power management policies. We assume the central
conditions of power management to be known.
The missing knowledge of proprietary power management mechanism behavior is a

limitation that is not specific to our approach. We identified the reconstruction of power
management behavior models as an area for future work. Section 10.4 discusses this in
greater detail. Once a behavior model is available, it can be integrated into the system
model using our PSM-based power models and the model-based analysis interfaces for
energy-conscious adaptation mechanisms.

Transient effect model semantics based on DES. The model semantics of our Adaptation
Action metamodel for describing the transient effects of adaptation actions are specific to
DES-based software simulators. All existing architecture level quality analyses and Cloud
simulators that support the analysis of transient phases, which we identified in our survey
of related work, are based on DES. Section 8.6 provided an overview of the state of the
art in this area. As our transient effect analysis approach is compatible with all existing
analysis methods, we consider this a weak limitation.

10.4. Future Work

We have identified a number of areas and topics for future work in the scope of the work
which led to this thesis.

AutomatedextractionofAdaptationPerformanceModels. Our Adaptation Actionmetamo-
del enables architects to consider transient effects in software quality analyses. This thesis
presents a manual process for the modeling of adaptation actions. The software architect
or adaptation middleware component developer has to provide a coupled description
of the adaptation outcome and the performance effect of the adaptation execution. The
adaptation outcome is described as a sequence of AdaptationSteps and embedded in-
place model transformations. Its modeling is a straightforward task for the adaptation
middleware developer. Conversely, the adaptation performance modeling requires in-
depth knowledge of the interdependencies between adaptation action execution, system
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performance and current load. We manually constructed the Adaptation Performance
Model for horizontal scaling in an IaaS Cloud, which we presented in the validation.
Existing methods for automated load testing and performance model extraction could
be applied to automate the Adaptation Performance Model construction and training for
adaptation middleware components.

Predictivemodels forproprietaryperformanceandpowermanagementmechanisms. Mod-
ern multi-core CPUs use integrated power and performance management mechanisms to
offer different power-performance trade-offs. Intel Turbo Boost is a widespread example of
this. It supports the temporary increase in performance of a subset of cores in exchange for
higher power consumption. Our experimental evaluation of energy consumption during
VM migration indicated that Turbo Boost has a significant impact on power consump-
tion for workloads that heavily utilize a subset of cores. There is a gap in performance
and power modeling techniques for multi-core CPUs that reflect proprietary power and
performance mechanisms. The construction of descriptive models for these mechanisms
is an interesting direction for future work. The use of unsupervised machine learning
techniques, such as rule-based machine learning, could be a potential starting point. These
techniques could be applied to construct an approximate model of proprietary performance
and power management mechanisms.

Reduced power profiling measurement time. The server profiling method presented in
this thesis supports the flexible definition of target system metric levels. By default, we
used the combined domain of all considered system metrics to derive the profiling levels.
The profiling effort increases exponentially with the number of profiled system metrics
when this simple definition strategy is used. The profiling collects measurement data
over a fixed measurement interval at each load level, even when the measurement values
are stable. Adaptive measurement strategies could be developed to reduce the number of
profiling runs and measurement time.

Evaluationof concepts fordifferentdomains. This thesis introduced a systematic approach
for the energy efficiency evaluation of static and self-adaptive software systems. We fo-
cused on the energy efficiency of enterprise systems and data center environments. While
we consider our modeling abstraction to be domain independent, its applicability to other
domains has to be investigated in future work. Krach [114] applied an earlier version of
our approach in the context of mobile computing. In the scope of the work by Krach we
identified a set of necessary extensions to support accurate predictions in the mobile com-
puting domain. These extensions include state-based power models and the consideration
of power management mechanisms. A re-evaluation of the extended approach to the
mobile computing domain is worthwhile. The evaluation of Cloud offloading decisions on
the energy efficiency of the full system consisting of mobile device and Cloud backend
would be an interesting extension to the evaluation scenario investigated by Krach.

Power consumption prediction of General-Purpose computing on Graphics Processing
Units (GPGPU) is becoming increasingly relevant with the emerging adoption of blockchain
and machine learning techniques in enterprise systems. Performance and energy efficiency
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of these techniques benefits massively from the use of GPGPU. Architecture-level perfor-
mance modeling techniques are yet to incorporate GPGPUs with sufficient abstraction
and accuracy [226]. Our power consumption modeling and analysis approach could be
evaluated for systems involving GPGPU, once the challenges associated with GPGPU
performance modeling have been tackled. The survey by Bridges et al. [32] can serve as a
reference point for GPU power modeling techniques that could be incorporated into our
approach.

Validation for large case study systems. Additional validation of our approach for large
case study systems is desirable. The application to further systems could help identify
potential areas for improvements of our approach, and aid in the identification of future
research. As part of the work, the model extraction tooling could be refined, e.g., to support
the automated extraction of PSM transition states that capture the power consumed during
server boot-ups and shutdowns.

Integration with runtime predictionmethods. Self-adaptive software systems adapt their
structure and deployment, as well as functionality to meet quality requirements under
changing environmental conditions. Approaches, e.g., Descartes [93], leverage architec-
tural performance models to evaluate alternative adaptation tactics during runtime. Our
modeling and power consumption prediction method could be integrated with a runtime
adaptation approach. The integration would enable the approach to proactively evaluate
the effect of adaptation tactics on energy efficiency. Aside from a potential cost reduction,
the runtime prediction could be used as part of data center demand response [222]. Data
center demand response enables a flexible management of data center load based on
available total or renewable energy. Our approach could be used to predict the expected
data center energy consumption for an expected load.
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Acronyms

AC Alternating Current.

ACPI Advanced Configuration and Power Interface.

ADL Architecture Description Language.

AIC Akaike’s Information Criterion.

ATL ATL Transformation Language.

CHAOS Composable Highly Accurate OS-based power models.

DC Direct Current.

DES Discrete Event Simulation.

DLIM Descartes Load Intensity Model.

DML Descartes Modeling Language.

DSL Domain Specific Language.

DVFS Dynamic Voltage and Frequency Scaling.

eco-cost ecological cost.

EDP2 Experiment Data Persistency & Presentation.

EE energy efficiency.

EMF Eclipse Modeling Framework.

EMOF Essential Meta-Object Facility.

ERP Enterprise Resource Planning.

EWMA exponentially moving weighted average.

FCFS first come, first served.

FSM Finite State Machine.

GPGPU General-Purpose computing on Graphics Processing Units.
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Acronyms

GQM Goal Question Metric.

HDD Hard Disk Drive.

HPC High Performance Computing.

HRM Hardware Resource Modeling.

IaaS Infrastructure as a Service.

IPMI Intelligent Platform Management Interface.

IQR interquartile range.

KDE Kernel Density Estimation.

MAE Mean Absolute Error.

MAPE-K Monitor, Analyze, Plan, Execute, Knowledge.

MARS Multivariate Adaptive Regression Splines.

MVC Model-View-Controller.

PCA Power Consumption Analyzer.

PCM Palladio Component Model.

PDU Power Distribution Unit.

PET Performance counter Event Trigger.

PMX Performance Model eXtractor.

PRM Palladio Runtime Measurement Model.

PSM Power State Machine.

PSU Power Supply Unit.

PUE Power Usage Effectiveness.

QoS Quality of Service.

QuAL Quality Analysis Lab.

QVTo Operational QVT.

QVTr QVT Relations.

RDSEFF Resource-Demanding Service Effect Specification.
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Acronyms

REST Representational State Transfer.

RQ Research Question.

RT response time.

S/T/A Strategies, Tactics, Action.

SAS Serial Attached SCSI.

SD Story Diagram.

SECoMo Software Eco-Cost Model.

SEFF Service Effect Specification.

SERT Server Efficiency Rating Tool.

SLA Service Level Agreement.

SMM Structured Metric Metamodel.

SPE Software Performance Engineering.

SPUE Server Power Usage Effectiveness.

StoEx Stochastic Expressions.

TCO Total Cost of Ownership.

UML Unified Modeling Language.

UPS Uninterruptible Power Systems.

UUID Universally Unique Identifier.

VCS Version Control System.

VM Virtual Machine.

Wh Watt hour.
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A. Prediction Error per Power Model for Combined Profiling

Table A.1.: Prediction error per power model and workload type, errors in percent. Power
models 1ś3 trained on combined profiling measurements.
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Table A.2.: Prediction error per power model and workload type, errors in percent. Power
models 4ś6 trained on combined profiling measurements.
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