
Edith Cowan University Edith Cowan University

Research Online Research Online

Theses: Doctorates and Masters Theses

2012

Strategies for the intelligent selection of components Strategies for the intelligent selection of components

Valerie Maxville

Follow this and additional works at: https://ro.ecu.edu.au/theses

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Maxville, V. (2012). Strategies for the intelligent selection of components. https://ro.ecu.edu.au/theses/
433

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses/433

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses?utm_source=ro.ecu.edu.au%2Ftheses%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ro.ecu.edu.au%2Ftheses%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses/433
https://ro.ecu.edu.au/theses/433

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose

of your own research or study.

The University does not authorize you to copy, communicate or

otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following:

 Copyright owners are entitled to take legal action against persons
who infringe their copyright.

 A reproduction of material that is protected by copyright may be a

copyright infringement. Where the reproduction of such material is

done without attribution of authorship, with false attribution of

authorship or the authorship is treated in a derogatory manner,

this may be a breach of the author’s moral rights contained in Part

IX of the Copyright Act 1968 (Cth).

 Courts have the power to impose a wide range of civil and criminal

sanctions for infringement of copyright, infringement of moral

rights and other offences under the Copyright Act 1968 (Cth).

Higher penalties may apply, and higher damages may be awarded,

for offences and infringements involving the conversion of material

into digital or electronic form.

Strategies for the Intelligent Selection

of Components

Thesis submitted by

Valerie Maxville, BSc (Hons)

for a Doctor of Philosophy Degree

in Software Engineering

EDITH COWAN UNIVERSITY

SCHOOL OF COMPUTER AND SECURITY SCIENCE

11th January, 2012

ii

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

iv

Declaration

DECLARATION

I certify that this thesis does not, to the best of my knowledge and belief:

(i) incorporate without acknowledgement any material previously submitted for a

degree or diploma in any institution of higher education;

(ii) contain any material previously published or written by another person except

where due reference is made in the text; or

(iii) contain any defamatory material.

I also grant permission for the Library at Edith Cowan University to make duplicate

copies of my thesis as required.

Valerie Maxville

11th January 2012

v

vi

List of Publications

Maxville V (2002) ‘Intelligent Selection of Components’, in ‘Young Researchers Work-

shop, 7th International Conference on Software Reuse: Methods, Techniques, and

Tools (ICSR-7)’

Maxville V, Armarego J and Lam C P (2003a) ‘The CdCT Process for Compo-

nent Selection and Evaluation’, in ‘Postgraduate Electrical Engineering and Com-

puting Symposium (PEECS)’

Maxville V, Lam C P and Armarego J (2003b) ‘Selecting Components: a Process

for Context-Driven Evaluation’, in ‘Asia-Pacific Software Engineering Conference

(APSEC)’, IEEE Computer Society, pp 456-465

Maxville V, Armarego J and Lam C P (2004a) ‘Assessment Methods for Compo-

nent Selection’, in ‘Postgraduate Electrical Engineering and Computing Symposium

(PEECS)’

Maxville V, Armarego J and Lam C P (2004b) ‘Learning to Select Software Com-

ponents’, in Maurer F and Ruhe G (eds) ‘International Conference on Software

Engineering and Knowledge Engineering (SEKE)’, pp 421-426

Maxville V, Lam C P and Armarego J (2004c) ‘Intelligent Component Selection’,

in ‘IEEE signature conference on Computer Software and Applications (COMP-

SAC)’, IEEE Computer Society, pp 244-249

Maxville V (2005) ‘Knowledge Representation for COTS Selection’, in ‘Postgraduate

Electrical Engineering and Computing Symposium (PEECS)’

Maxville V, Lam C P and Armarego J (2008) ‘Supporting component selection with

a suite of classifiers’, in ‘IEEE Congress on Evolutionary Computation (CEC)’, pp

3946-3953

Maxville V, Armarego J and Lam C P (2009) ‘Applying a reusable framework for

software selection’, IET Software, 3(5), pp 369-380

vii

viii

Abstract

It is becoming common to build applications as component-intensive systems - a mix-

ture of fresh code and existing components. For application developers the selection of

components to incorporate is key to overall system quality - so they want the ‘best’.

For each selection task, the application developer will define requirements for the ideal

component and use them to select the most suitable one. While many software selection

processes exist there is a lack of repeatable, usable, flexible, automated processes with

tool support. This investigation has focussed on finding and implementing strategies to

enhance the selection of software components. The study was built around four research

elements, targeting characterisation, process, strategies and evaluation.

A Post-positivist methodology was used with the Spiral Development Model struc-

turing the investigation. Data for the study is generated using a range of qualitative and

quantitative methods including a survey approach, a range of case studies and quasi-

experiments to focus on the specific tuning of tools and techniques. Evaluation and

review are integral to the SDM: a Goal-Question-Metric (GQM)-based approach was

applied to every Spiral.

A range of contributions were made over seven Spirals. Spiral 1 delivered a component

specification template, swvML, to support the selection process. There is no standard

for specifying components - a known template is a prerequisite for automated compo-

nent selection. In Spiral 2, the CdCE Process was formulated: created to be flexible,

repeatable and suited to automation and tool support. The Process has been evaluated

through case studies and is supported by tools and procedures developed as part of the

research study. In addition, a pattern for software selection was derived from the Pro-

cess, allowing the reuse of the generic approach, with an implementation tailored to the

organisational environment.

ix

Context was a central concept in the investigation implemented as non-functional se-

lection criteria in the shortlisting and as context-based tests in the evaluation. With the

specification template and process in place the focus turned to strategies for selection:

shortlisting using classifiers; enhanced data representation; evaluation of components

and interactive decision support. Each strategy delivered one or more novel contribu-

tions and addressed the research problem. The use of decision tree classifiers is novel in

component selection and avoids aggregation of results while providing an understandable

justification of decision. The metadata for a component repository has been integrated

with a knowledge base to allow greater use of the semantic possibilities of the selection

criteria. Candidate components are evaluated based on an automatically generated test

suite which is adapted to each candidate. Metrics for evaluation target functionality,

adaptation effort, test performance and context-based tests. The decision support tool,

ClassifierSuite, provides a visualisation of the selection criteria to allow analysis of the

criteria and shortlists. Real world data was used in case studies throughout the investi-

gation.

The work has potential to impact professional practice in the way software is charac-

terised, selected, and how evaluations are carried out. The decision support tool may be

applied to other data and decision visualisation tasks. Future work to address additional

repositories and wider trials will confirm the impact on component selection practice.

x

Acknowledgments

To my supervisors, Chiou Peng Lam and Jocelyn Armarego, for being so patient and supportive

of my journey. Thanks for providing a true master/apprentice experience that went way beyond

the research I was doing. Not just supervisors, you are mentors, role models, friends and really

great people.

To all the staff at Edith Cowan University and Murdoch University - the support has been

wonderful. Thanks to the students and colleagues who feigned interest and encouraged me.

To my boss, Andrew Rohl, for his good humour and acceptance of all those leave applications.

To my friends at iVEC, the IEEE WA Section and the ACS WA Branch - the gentle prods and

total absence of negativity were most appreciated.

And to my family and friends who never doubted and always offered to help. Especially to

Chrissy, Elaine and Jackie. Wow.

For my three little birds - my sweet children who don’t know a world where Mummy isn’t

doing a PhD. Yes, we can have a holiday, and a puppy, and sleepovers... a life!

And to my wonderful parents who have always given unconditional support to my education,

my career and my happiness.

I dedicate this PhD to my sweet Mother, you put more into my PhD than anyone - by taking

such loving care of my three kids for as long as your health allowed it. I wish you were here.

For Mum.

xi

xii

Contents

1 Introduction 1

1.1 Rationale . 1

1.2 Statement of Problem . 3

1.3 Delimitation and Limitations . 7

1.4 Theoretical Framework . 8

1.5 Definition of Terms . 11

1.6 Assumptions . 13

1.7 Research Approach . 14

1.8 Contributions . 14

1.9 Thesis Structure . 19

1.10 Summary . 20

2 Review of Literature 21

2.1 Background . 21

2.1.1 Software Development Process . 23

2.1.2 Software Reuse . 25

2.1.3 Component Based Software Engineering 34

2.1.4 CBSE in the Software Development Lifecycle 37

2.1.5 Issues in CBSE . 55

2.2 Component Selection . 56

2.2.1 Characterisation and Specification 57

2.2.2 Selection Processes . 58

2.2.3 Metrics for Evaluation . 63

2.2.4 Evaluation Methods . 65

xiii

2.2.5 Testing . 67

2.2.6 Quality . 69

2.2.7 Automation, Intelligence and Tool Support 72

2.3 Critique . 77

2.4 Summary . 80

3 Research Procedures 81

3.1 Methodology . 81

3.2 Approach . 92

3.2.1 The Spiral . 92

3.2.2 Research Elements and Spirals . 96

3.3 Context of Study . 97

3.4 Instrumentation . 98

3.5 Data Collection . 100

3.6 Treatment of Data . 101

3.7 Evaluation . 102

3.8 Spiral Summary . 104

3.9 Summary . 112

4 Specifying Components 113

4.1 Spiral 1 Overview . 114

4.2 Spiral 1 Context . 116

4.3 Spiral 1 Approach . 120

4.4 Spiral 1 Implementation . 123

4.5 Spiral 1 Evaluation . 127

4.6 Spiral 1 Review and Plan . 130

4.7 Post-Spiral Update . 131

4.7.1 Updated Schema Implementation 135

4.8 Summary . 137

5 The CdCE Process 139

5.1 Spiral 2 Overview . 140

5.2 Spiral 2 Context . 141

xiv

5.3 Approach to Component Selection . 143

5.4 Implementation of the CdCE Process . 145

5.4.1 Context-based Tests . 151

5.5 Results: Using the CdCE Process . 151

5.5.1 Calculator Case Study . 152

5.5.2 Case Study Observations . 157

5.6 Spiral 2 Evaluation . 158

5.6.1 Spiral Goals . 159

5.7 Spiral 2 Review and Plan . 162

5.8 Post-Spiral Update . 163

5.8.1 A Pattern for Component Selection 167

5.9 Summary . 169

6 Shortlisting Candidates 171

6.1 Spiral 3 Overview . 172

6.2 Spiral 3 Context . 174

6.3 Approach 1: Multicriteria Assessment . 178

6.3.1 Customisation of the Selection Process 179

6.3.2 Assessment of Candidates . 181

6.3.3 Comparison of Candidates . 183

6.3.4 Applying WSM and AHP . 184

6.3.5 Multicriteria Assessment Observations 186

6.4 Approach 2: Expert Systems . 187

6.4.1 Exploration of an Expert System Approach 187

6.4.2 Expert System Observations . 190

6.5 Approach 3: Machine Learning . 190

6.5.1 Applying Machine Learning . 191

6.5.2 Machine Learning Observations . 196

6.6 Evaluation of Approaches . 197

6.7 Spiral 3 Implementation . 197

6.7.1 Generation of Training Data . 198

6.7.2 Training the Classifier . 200

6.7.3 Classifying the Data . 204

xv

6.8 Spiral 3 Results . 205

6.9 Spiral 3 Evaluation . 206

6.9.1 Spiral 3 Goals . 207

6.10 Spiral 3 Review and Planning . 209

6.11 Post-Spiral Updates . 210

6.12 Summary . 211

7 Data Representation 213

7.1 Spiral 4 Overview . 214

7.2 Spiral 4 Context . 215

7.3 Spiral 4 Approach to Data Representation 217

7.3.1 Data Model . 220

7.3.2 Data Transformations . 224

7.4 Spiral 4 Implementation . 232

7.4.1 Transformation of Repository Data 234

7.4.2 Classifying the Data . 237

7.4.3 Supporting Code and Scripts . 238

7.5 Spiral 4 Results . 240

7.6 Spiral 4 Evaluation . 248

7.6.1 Spiral 4 Goals . 249

7.7 Spiral 4 Review and Planning . 252

7.8 Post-Spiral Update . 253

7.9 Summary . 253

8 Testing and Evaluating Candidates 255

8.1 Spiral 5 Overview . 257

8.1.1 Context . 258

8.2 Spiral 5 Metrics . 258

8.2.1 Background . 259

8.2.2 Approach . 259

8.2.3 Implementation . 261

8.3 Spiral 5 Test Generation . 262

8.3.1 Background . 263

xvi

8.3.2 Approach . 264

8.3.3 Implementation . 265

8.3.4 Example . 270

8.4 Spiral 5 Adaptation and Execution . 274

8.4.1 Background . 275

8.4.2 Approach . 275

8.4.3 Implementation . 281

8.5 Spiral 5 Ranking and Reporting . 286

8.5.1 Background . 286

8.5.2 Approach . 286

8.5.3 Implementation . 287

8.6 Spiral 5 Evaluation . 287

8.6.1 Spiral Goals . 288

8.7 Spiral 5 Review and Planning . 291

8.8 Summary . 291

9 The ClassifierSuite 293

9.1 Spiral 6 Overview . 294

9.2 Spiral 6 Context . 295

9.3 Spiral 6 Approach . 296

9.4 Spiral 6 Implementation . 297

9.4.1 The ClassifierSuite . 298

9.4.2 Scalability . 299

9.4.3 Interpreting the Data . 300

9.4.4 Properties of the Graph . 302

9.5 Spiral 6 Results: The ClassifierSuite in Action 303

9.5.1 Scientific Calculator . 304

9.5.2 Email Client . 308

9.5.3 XML Editor . 312

9.5.4 XML Editor with Date . 314

9.6 Spiral 6 Evaluation . 316

9.6.1 Spiral 6 Goals . 316

9.7 Spiral 6 Review and Plan . 319

xvii

9.8 Summary . 321

10 CdCE Process Results 323

10.1 Spiral 7 Overview . 323

10.2 Spiral 7 Context . 325

10.3 Spiral 7 Case Study . 326

10.3.1 Step 1 - Specification . 326

10.3.2 Step 2 - Shortlisting . 328

10.3.3 Step 3 - Generate Tests . 330

10.3.4 Step 4 - Adapt Tests . 333

10.3.5 Step 5 - Execute . 333

10.3.6 Step 6 - Evaluate . 336

10.3.7 Step 7 - Rank . 336

10.3.8 Step 8 - Report Results . 337

10.4 Spiral 7 Evaluation . 337

10.4.1 Spiral 7 Goals . 338

10.5 Spiral 7 Review and Plan . 339

10.6 Summary . 339

11 Contributions of the Study 341

11.1 Conclusions . 341

11.1.1 Conclusions Based on the Findings 342

11.1.2 Alternative Explanations . 345

11.1.3 Limitations of the Study . 346

11.1.4 Impact of Study . 347

11.2 Implications . 348

11.2.1 Implications for Professional Practice 353

11.2.2 Implications for Scholarly Understanding 354

11.2.3 Implications for Future Research Studies 354

11.3 Recommendations . 355

11.3.1 Recommendations for Further Research 355

11.3.2 Recommendations for Professional Practice 356

11.4 Conclusion . 358

xviii

Bibliography 361

A Glossary 379

B Code and Scripts 381

B.1 Scripts from Spiral 4 . 381

B.1.1 xml exp SEARCH . 381

B.1.2 process . 381

B.1.3 weka train . 383

B.1.4 grab predict . 385

xix

xx

List of Figures

1.1 Use Case Diagram . 5

1.2 Topic map . 10

1.3 Map of thesis showing relationship between Chapters and Spirals 19

2.1 Subroutine library use for EDSAC in 1949 (Computer History Museum,

2009) [@28 minutes] . 26

2.2 The source and modification axes, with sample items located for compar-

ison (Carney and Long, 2000) . 34

2.3 Vendor-Broker-Integrator model (Aoyama, 1998) 37

2.4 PECA process (Comella-Dorda et al, 2004) 38

2.5 A good CBS Process (Comella-Dorda et al, 2004) 38

2.6 The actual COTS process (Morisio and Tsoukiàs, 1997) 40

2.7 STACE framework (Kunda and Brooks, 1999) 41

2.8 STACE process (Kunda and Brooks, 1999) 41

2.9 PORE templates for iterative selection (Ncube and Maiden, 1999) 42

2.10 The global level considering cycles (dashed lines) (Burgues et al, 2002) . . 46

2.11 Techniques for Repairing Interface Mismatch (Wallnau et al, 1997) 48

2.12 COMPOSE process (Kotonya and Hutchinson, 2005) 52

2.13 Evolution of COTS selection practices (Mohamed et al, 2007a) 59

2.14 PORE route map (Ncube and Maiden, 1999) 60

2.15 CAP components, internal and external information-flow (Ochs et al, 2009) 61

2.16 CBD process modeled with the MAP (Sassi et al, 2004) 62

2.17 Comparing some representative methodologies dealing with COTS selec-

tion (Martinez, 2008) . 63

2.18 Research on software component certification timeline (Alvaro et al, 2005b) 70

xxi

2.19 The baseline estimation principle (Kontio, 1995) 74

2.20 Example of graphical interface to collect integrator’s data (Clark and

Clark, 2007) . 74

2.21 Status of the decision support system after two settings (Kotonya and

Hutchinson, 2005) . 75

2.22 Status of the decision support system after two settings (Neubauer and

Stummer, 2007) . 76

3.1 Positivism and Post-positivism . 84

3.2 Research design used in the study . 86

3.3 Spiral Development Model (Boehm, 1988) 88

3.4 GQM paradigm (DACS, 2011) . 90

3.5 Tree representation of Spiral development throughout the thesis (colour-

coded) . 97

4.1 Use cases for the component specification schema (those not in the scope

for this Spiral are greyed) . 115

4.2 Original class diagram for the component specification schema 121

4.3 Example of the swvML v1.0 template . 125

4.4 Example of XML file for Rascal software, rendered using the XSLT stylesheet

for greater readability . 126

4.5 Options for focus of the investigation . 131

4.6 Spiral 1 and later Spiral updates to specification 132

5.1 Use case diagram for component selection, highlighting the three use cases

focussed on in Spiral 2 . 141

5.2 The CdCE Process . 144

5.3 Example ideal specification of an XML Editor 147

5.4 State and initialization schemas . 152

5.5 Calculator context schema - CX probability 152

5.6 Updates to the CdCE Process in later Spirals 163

5.7 Iterations possible within the CdCE Process 166

xxii

6.1 Use cases for component selection, the focus of Spiral 3 (those not in the

scope for this Spiral are greyed) . 173

6.2 Example of Criteria Using the AHP . 181

6.3 Comparison of Aggregation Techniques (Normalised) 186

6.4 Decision table for Expert System Case Study 188

6.5 Example of reasoning for component selection 188

6.6 Output of Jess expert system . 189

6.7 Ideal Component Specification . 192

6.8 Decision tree for interplay dataset . 196

6.9 Generator permutations . 199

6.10 Weka GUI Interface: Preprocessing . 200

6.11 Weka GUI Interface: Classify . 201

6.12 Results of training the classifier (Part 1/2) 202

6.13 Results of training the classifier (Part 2/2) 203

6.14 Spiral 4 and later updates made to the Spiral outcomes 211

7.1 Use cases for component selection, the focus of Spiral 4 (those not in the

scope for this Spiral are greyed) . 214

7.2 Ideal specification, source data and the transformer application 218

7.3 Activity diagram for Step 2 . 219

7.4 Ideal specification Game Renderer/Browser in CdCE XML Format, high-

lighting attribute types . 222

7.5 Attribute Creation File in XML . 222

7.6 XML Ontology File . 223

7.7 Sample ARFF File . 224

7.8 Transforming Numeric Attributes . 228

7.9 Ontology entries for Operating System . 231

7.10 Training Data (Transformation 1) . 234

7.11 Transformation process . 235

7.12 Results of classification of the component data 238

7.13 Parameter file for ideal calculator case study 239

7.14 freshmeat source file . 240

7.15 freshmeat data in CdCE format . 241

xxiii

7.16 Ideal specification for Internet email application 242

7.17 Transformation 0 of freshmeat data to illustrate the raw data for the sce-

nario (with instances word-wrapped for formatting reasons) 242

7.18 Transformation 1 of freshmeat data . 243

7.19 Transformation 2 of freshmeat data . 244

7.20 Transformation 3 of freshmeat data . 244

7.21 Transformation 4 of freshmeat data . 245

7.22 Transformation 5 of freshmeat data . 245

7.23 Initial ideal specification . 247

7.24 Loosened ideal specification . 247

7.25 Representation of the different calculations for matches based on attribute

type . 248

7.26 Spiral 4 and later updates made to the Spiral outcomes 253

8.1 Steps implemented in Spiral 5, with out of focus steps greyed 256

8.2 Use cases for the testing and evaluation steps of the CdCE Process (those

not in the scope for this Spiral are greyed) 257

8.3 Distilled version of Example schema and operation 266

8.4 High level pseudocode for generating base test set 267

8.5 Class diagram for TestGen application . 267

8.6 High level pseudocode for generating context test sets 269

8.7 Test directive for calculator case study . 272

8.8 Abstract test specification for calculator case study 273

8.9 Options for adaptors . 276

8.10 Example of form for recording results of tests (Part 1/3) 283

8.11 Example of form for recording results of tests (Part 2/3) 284

8.12 Example of form for recording results of tests (Part 3/3) 285

9.1 Use cases for the ClassifierSuite, the focus of Spiral 6 (those not in the

scope for this Spiral are greyed) . 295

9.2 Graph representing a series of criteria sets, classifiers and subsequent short-

lists. {A, D} are mandatory and {B, C, E} are non-mandatory. 297

xxiv

9.3 Splitting the graph on criterion F. The complete graph is on the left,

with the dashed lines showing the ‘split’. By restricting to those sets that

include criterion F, the middle graph can be extracted. The remaining

sets (without F) are shown in the graph on the right. 301

9.4 Graph representation of criteria sets, highlighting criterion A 301

9.5 XML input file for ClassifierSuite (scientific calculator) 305

9.6 ClassifierSuite output for the scientific calculator scenario 306

9.7 Screenshot of comparison of impact of non-mandatory criteria. 307

9.8 ClassifierSuite output for the email client scenario 309

9.9 Screenshot of impact of non-mandatory criteria in email client scenario . . 310

9.10 ClassifierSuite output for the email client with drilldown on s10, s21, s24

and s34 . 310

9.11 ClassifierSuite output for the XML Editor 313

9.12 ClassifierSuite output for the XML editor with date scenario 315

10.1 Use cases for component selection, the focus of Spiral 7 (those not in the

scope for this Spiral are greyed) . 324

10.2 Initial ideal specification for case study . 327

10.4 Graph representation of case study shortlists. Date (G) is overlaid on the

graph. Left count = without date, right count = with date. 329

10.5 Test specification for XML editor case study 332

10.6 Form for recording results of tests (Page 1/2) 334

10.7 Form for recording results of tests (Page 2/2) 335

xxv

xxvi

List of Tables

1.1 Mapping of Research Elements to Spirals 6

1.2 Use Cases for Component-based development 8

2.1 Types of test design techniques (BCS, 2001) 50

2.2 Maintenance lessons for COTS-based systems (Reifer et al, 2004) 54

3.1 Research methodologies . 88

3.2 GQM Summary - Spiral 4 (extract) . 91

3.3 Stakeholders for project. 93

3.4 Risk assessment and strategies example from Spiral 1 95

3.5 Software applications and scripts developed during the investigation 99

3.6 Third party software tools and languages used 99

3.7 Data sources used . 101

3.8 GQM Summary - Spiral 4 . 103

3.9 Spiral Summary - Spirals 1 and 2 . 105

3.10 Spiral Summary - Spirals 3 and 4 . 107

3.11 Spiral Summary - Spirals 5 and 6 . 109

3.12 Spiral Summary - Spiral 7 . 111

4.1 Goals for Spiral 1 . 114

4.2 Win conditions for stakeholders (Spiral 1) 116

4.3 Comparison of selected attributes in schema standards. Text in a column

indicates the name used for that attribute in the standard. ‘DC’ is listed

where the standard uses the Dublin Core name and format for an attribute.118

4.4 Attributes and Types in swvML Schema (Part 1/2) 123

4.5 Attributes and Types in swvML Schema (Part 2/2) 124

xxvii

4.6 GQM Summary - Spiral 1 (Part 1/2) . 128

4.7 GQM Summary - Spiral 1 (Part 2/2) . 129

4.8 Attributes and types in swvML schema (Part 1/3) 135

4.9 Attributes and types in updated swvML schema (Part 2/3), new/changed items

in bold . 136

4.10 Attributes and types in swvML schema (Part 3/3) 136

5.1 Goals for Spiral 2 . 139

5.2 Win conditions for stakeholders (Spiral 2) . 142

5.3 Shortlisting results . 153

5.4 Shortlisting criteria . 154

5.5 Test cases for calculator case study . 155

5.6 Component metrics and ratings . 156

5.7 Results of component ranking . 157

5.8 GQM Summary - Spiral 2 (Part 1/2) . 159

5.9 GQM Summary - Spiral 2 (Part 2/2) . 160

5.10 CdCE Inputs and Outputs . 164

5.11 Pattern Definition: Context-driven Component Evaluation 168

6.1 Goals for Spiral 3 . 171

6.2 Win conditions for stakeholders (Spiral 3) 174

6.3 Generalised stages in component selection 175

6.4 Comparison of Traditional AI Techniques, adapted from Negnevitsky (2002).

Techniques that deal well with a feature are indicated with + symbols,

those which respond poorly have - symbols. ++ and – indicate stronger

or weaker performance. 176

6.5 Comparison of Hybrid AI Techniques (Maxville et al, 2004b) 177

6.6 Terminology . 179

6.7 Decision Matrix . 179

6.8 Saaty’s Scale of Relative Importance . 180

6.9 Saaty’s Judgement Matrix: Generating Relative Weighting of Criteria . . 180

6.10 Saaty’s Judgement Matrix: Assessing Candidates 182

6.11 Pairwise Comparisons Required . 182

xxviii

6.12 C4.5 Performance . 193

6.13 Neural Network Performance . 195

6.14 Generation of training data - inputs and outputs 198

6.15 Training the classifier - inputs and outputs 200

6.16 Classifying the data - inputs and outputs 204

6.17 Case study ideal specification . 205

6.18 Case study manual assessment . 205

6.19 GQM Summary - Spiral 3 . 208

7.1 Goals for Spiral 4 . 213

7.2 Win conditions for stakeholders (Spiral 4) 215

7.3 Data transformations . 217

7.4 CdCE Data Model . 221

7.5 Numeric Attribute Transformation . 227

7.6 Date Attribute Transformation . 229

7.7 FreeText Attribute Transformation . 229

7.8 LongText Attribute Transformation . 230

7.9 Distance matrix for maturity attribute . 230

7.10 Ontology Attribute Transformation . 231

7.11 Generation of Training Data . 232

7.12 Transformation of repository data . 234

7.13 freshmeat conversion . 236

7.14 Classifying the data . 237

7.15 Transformations used . 246

7.16 GQM Summary - Spiral 4 . 250

8.1 Goals for Spiral 5 . 255

8.2 Win conditions for stakeholders (Spiral 5) 258

8.3 Evaluation metrics - default definitions . 262

8.4 Relationship between schemas, tests and metrics 269

8.5 Raw adaptation data for shortlisted candidates 282

8.6 Example of scores against metrics for shortlisted candidates 282

8.7 GQM Summary - Spiral 5 (Part 1/2) . 289

xxix

8.8 GQM Summary - Spiral 5 (Part 2/2) . 290

9.1 Goals for Spiral 6 . 293

9.2 Win conditions for stakeholders (Spiral 6) 295

9.3 Selection criteria for Scientific Calculator 304

9.4 Selection criteria for Email Client . 308

9.5 Comparison of non-mandatory criteria for email client scenario 311

9.6 Selection criteria for the XML editor . 312

9.7 Comparison of non-mandatory criteria for XML editor scenario 314

9.8 Selection criteria for the XML editor with date 314

9.9 Comparison of non-mandatory criteria for XML editor scenario 315

9.10 GQM Summary - Spiral 6 (Part 1/2) . 317

9.11 GQM Summary - Spiral 6 (Part 2/2) . 318

10.1 Goals for Spiral 7 . 323

10.2 Win conditions for stakeholders (Spiral 7) 324

10.3 Instrumentation used (Spiral 7) - developed as part of this project 325

10.4 Selection criteria for the XML editor with date 326

10.5 Initial metrics for XML editor case study 328

10.6 Adaptation results for XML editor candidates 333

10.7 Raw test results for Candidate G . 335

10.8 Test results for shortlisted candidates . 335

10.9 Scores against metrics for shortlisted candidates 336

10.10Final values for evaluation metrics . 336

10.11GQM Summary - Spiral 7 . 338

xxx

Chapter 1

Introduction

This chapter introduces the research problem, providing an introduction to component

based software engineering (CBSE) and summarising the current issues. In brief, the

problem to be investigated is: can strategies be developed to support the selection of

software components? The approach taken explores four research elements using the

Spiral Development Method. Due to the nature of the problem, and the scope of the

research elements, a theoretical framework incorporating many domains has been used.

This is illustrated and described along with an overview of the terminology used in this

thesis, based on the relevant literature and working definitions for this research. The

contributions of the work are the result of the development of a specification template,

selection process and strategic tools to support the selection task.

1.1 Rationale

The driving force behind research in software engineering is to create more reliable sys-

tems in an estimable amount of time (IEEE, 1990). CBSE addresses this need by reusing

code that has been developed and tested previously, reducing the amount to be written

for a new system: it involves developing systems partially or completely from pre-existing

components (Bachmann et al, 2000). This investigation focusses on the selection of third

party components to be incorporated into component-intensive systems.

The potential benefits of CBSE are to reduce development and testing time, and

create more robust and easily modified systems (Lucredio et al, 2004). However, the

decision to use CBSE needs to be made early in the development of a system: it requires

a fundamental change in process (Comella-Dorda et al, 2004) as it can create additional

1

1.1. RATIONALE

constraints (e.g. choice of programming language or software architecture) and affects

the decomposition of the problem at design time.

There are currently a number of issues for developers building systems from compo-

nents. It may be difficult to find a component to match the exact needs of the system

under development (Brereton and Budgen, 2000). In addition, a component itself, while

having the required functionality, may not integrate well with the rest of the system

(Oberndorf et al, 2000). This may be due to a difference in control models, or be the

result of mismatches between the assumptions and provisions of the component and its

environment (Garlan et al, 1995). In addressing some of these issues, standard envi-

ronments (or frameworks) for components have been developed, and continue to evolve

(Garlan et al, 2009) through COM/CORBA to Service Oriented Architectures (SOA) and

web services. Broker web sites assist in the distribution and acquisition of components,

providing facilities for discovering and purchasing a variety of components (Christiansson

and Christiansson, 2004).

As availability of third party components becomes more widespread, developers need

to manage the selection of the ‘best’ component to meet the requirements of the target

system.

It is important to have structured and justifiable processes for the selection of exter-

nally produced software in order to maintain quality standards (Kotonya and Hutchinson,

2005). When selecting from a repository, this will be based on its supplied specification

(often through metadata) and some testing. To ensure that required standards are at-

tained and no weaknesses are added into the system, components need to be tested

both separately and in context (Weyuker, 1998). The selection process requires a facility

for comparison, where components are characterised using a common template (Cechich

et al, 2006). These descriptions should provide a mechanism to make maximum use of

the available data, including the semantic relationships between identifying elements of

the template.

Selection is a manual task in most cases. To allow these processes to scale, some level

of automation and tool support is required and strategies developed to add objectivity

to the tasks within the process (Ruhe, 2002). For an automated process, it is necessary

to both formalise the description of the components and to be able to describe the

requirements to facilitate the searching of repositories.

2

CHAPTER 1. INTRODUCTION

Kotonya and Hutchinson (2005) state that the selection process must be documented

as it includes key design decisions, while a repeatable process lets the application de-

veloper revisit the selection as the system evolves: vendors may update or withdraw

support for their products adding to the maintenance effort required to choose updated

or alternate software (Basili and Boehm, 2001).

There is evidence that component selection is hard and also holds potential for project

risk. To improve quality and documentation, a process is needed. The discussion in the

literature indicates a need for a repeatable, justifiable, structured approach to component

selection which can be automated.

1.2 Statement of Problem

Although there are many published processes for component selection (described in Sassi

et al (2003)), research indicates that they are not widely used in industry (Li et al,

2005). While selection of components has been shown to have the most impact on risk

in component-based development (CBD) (Port and Chen, 2004), developers are still

approaching the task in ad-hoc ways, with one difficulty being the acceptance of new

processes into an organisation. Rifkin (2003) advises taking a staged approach and

including flexibility within new processes to adapt to the local culture. In addition, there

should be a net gain to the developers for using a process: faster, easier, better results.

Thus processes must not only deliver these, they need to communicate the value to the

users (Rifkin, 2003).

As noted previously, one of the main issues with using third party components is

in integration, with mis-matches only becoming visible at execution time. Within the

evaluation, it is important to test the candidate components in the target context, as

any other testing does not show the potential problems (Weyuker, 1998). A complete

evaluation needs to include the functional (executable) and non-functional (contextual)

aspects of the component under test, since both are important in the choice of suitable

components (Beus-Dukic, 2000).

Addressing the issues identified in the literature, a CBSE selection process should

therefore be based on a standardised description of components available and a pro-

cess to facilitate comparison. Some parts of the selection process can be automated or

3

1.2. STATEMENT OF PROBLEM

accelerated, and others may benefit from offering decision support to the developer.

Component selection takes place in the context of a wider software development

project. Decisions made in this global context affect the requirements used in the se-

lection. For this investigation, the global context is abstracted to avoid unmanageable

co-optimisations. The selection criteria are assumed to have been determined in readiness

for the selection to begin.

This project develops a specification and process, then works with these to explore

strategies to assist selection. To provide a quality CBSE process requires repeatability,

transparency and metrics that allow valid comparisons to be made. To apply a CBSE

selection process to real world tasks, it is necessary to have automation and tool support

to allow scaling to large repositories and a range of candidates. Automation can also

provide artefacts that will allow the repeatability and reuse for system evolution.

The problem being addressed in this research is:

What strategies and techniques can be developed to support the selection of

third party software components?

To explore the research problem, a general form of selection process is modelled to

identify where strategies can be of benefit. At a conceptual level, the actors in the

selection process are: component developers, brokers, application developers and quality

assurance personnel. The first two actors provide components for development, while the

application developer evaluates them and incorporates the selected components into the

system under development. Quality assurance personnel are interested in the process:

documentation, justification and repeatability.

Use cases have been developed to increase understanding of the problem under re-

search (Figure 1.1). The initial use cases were used to identify key aspects of the context

for software selection to aid the development of the research elements.

The key use case is Select Component, involving the application developer. Other

use cases could be within or beyond the focus for the project depending on the aspect

of the selection chosen. While it is possible that the application developer can influence

the development of components (Morisio and Tsoukiàs, 1997), a disconnect between

the marketplace and the individual developer is assumed in this work. The research

problem is then to consider the application developer view of selecting components with

4

CHAPTER 1. INTRODUCTION

Figure 1.1: Use Case Diagram

an awareness of the importance of context and the reliance on discovery mechanisms.

The four research elements listed provide an overview of how the investigation has

been approached. Each is also further described below:

Research Element 1 Development or extension of a template for the specification of

components (RE1: Development of template)

Research Element 2 Development of a process for the selection of software compo-

nents (RE2: Development of selection process)

Research Element 3 Investigation of and implementation of strategies for the short-

listing and evaluation of suitable software components (RE3: Strategies)

Research Element 4 Evaluation of the effectiveness of the template, process and

strategies via case studies (RE4: Evaluation).

The Spiral Development Model (SDM) (Boehm, 1988) has been applied for the devel-

opment of strategies, their implementation, trial and evaluation. The Research Elements

5

1.2. STATEMENT OF PROBLEM

drive successive iterations (Spirals) of the overall investigation - the focus of each Spiral

moves through the four Research Elements. A mapping of Research Elements to Spirals

is provided in Table 1.1.

Spiral Topic Research
Elements

1 Specification 1 (4)
2 CdCE Process 2 (4)
3 Strategies I - Classification and iteration 3 (4)
4 Strategies II - Data representation and ontologies 3 (4)
5 Strategies III - Testing and evaluation 3 (4)
6 Strategies IV - Classifier suite 3 (4)
7 Case Study 4

Table 1.1: Mapping of Research Elements to Spirals

RE1 : Development of template. This element requires the consideration of

templates used in industry and the literature to provide a realistic and usable specification

of a component. Such a template needs to fit in with practice in Software Engineering and

CBSE. It also needs to consider the description of components as electronic resources,

drawing on standards used in information management. While much of the recorded

information can be considered metadata, this project is also concerned with component

behaviour. This requires the ability to describe the required functionality, clearly and

formally, ready for automated use in tools.

RE2 : Development of selection process. There are a growing number of com-

ponent and commercial off the shelf (COTS) selection processes in the literature. These

are considered with respect to the goals of this research: to develop a process that is intu-

itive, iterative, repeatable and suited to automation. Third party software components

are written for a specific context, and assessing their suitability must take the target

context into account.

RE3 : Strategies. The main aim of this project is the development and evaluation of

strategies for component selection. The specification and process developed in RE1 and

RE2 allow the exploration of strategies. When the project was proposed, the expectation

was that the strategy would include artificial intelligence and testing.

RE4 : Evaluation. Although evaluation is part of any research project, in this case,

evaluation throughout the investigation is given additional focus. As each Spiral of the

6

CHAPTER 1. INTRODUCTION

project builds upon the previous, it is important to evaluate each Spiral and associated

strategy before beginning the next iteration. Goals and win conditions follow key themes

throughout the evaluation, binding the outcomes into a coherent research element. A

final Spiral evaluates all strategies and solutions for the project as a whole to round out

RE4.

As the aim of this project is to develop strategies and techniques to support the

selection of third party software components, the research elements progressively focus

on aspects of these strategies and, through the application of SDM, are evaluated and

refined.

1.3 Delimitation and Limitations

This study developed strategies for working with commercial/public software compo-

nents. The limitations of the study relate to the information available about these. On

the level of individual items of software, inconsistent information may result in software

being deemed unacceptable on the basis of omissions in the documentation, rather than

suitability to the purpose. This is a real world issue, and illustrates the difficulties in-

volved in working with third party software documentation. It was also difficult to gain

access to data sources describing large collections of software.

The use cases for the overall selection process are a useful way to indicate the scope

of the project (see Figure 1.1). The first six use cases are in scope directly or indirectly

(see Table 1.2). Actors involved in these use cases are application developers and quality

assurance personnel. Use cases of interest, but outside of the scope of this project, are

those for developing and brokering components.

Delimitations were identified in an iterative manner, as the project progressed. To

allow focus on the component selection process itself, the global context has been gener-

alised. Thus the software project, development team and organisational aspects are not

taken into specific consideration – they are not the target of the strategies investigated.

The selection process expects the requirements for a specific context to have been defined

and available as an input to the selection process.

The target audience for the tools and strategies are expert users who are developing

CBSE applications. In view of the above limitations on data availability, Spirals 1 and

7

1.4. THEORETICAL FRAMEWORK

Use Case Actor(s) Relevance
Select Component Application Developer In scope
Revisit Selection Application Developer In scope
Reuse Tests Application Developer In scope
Adapt Process Application Developer In scope
Modify Schema Application Developer In scope
Assess Selection Quality Assurance Supported
Create Component Component Developer Out of scope
Register Component Component Developer Out of scope
Serve Component Broker Out of scope
Provide Search Facility Broker Out of scope

Table 1.2: Use Cases for Component-based development

2 worked with five repositories and a manual collation of data. As noted, the tools and

strategies that have been developed are aimed at software developers, and require more

than a novice understanding of the problem, software testing, eXtensible Markup Lan-

guage (XML) and the Z notation. XML is applied as it has become the data interchange

standard and is widely used for documenting electronic resources. Automation of test

generation required a description of the required component behaviour. Z notation was

selected on the basis of standardisation efforts, appropriate tool support, suitability to

the task and relevant knowledge within the project.

As the research scope is third party software, source code is not expected to be

available. The software testing was therefore restricted to black-box testing techniques.

After the completion of Spirals 1 and 2, further delimitations were identified. To avoid

manual compilation of data, repository owners were approached to provide datasets.

The commercial component broker sites used in the first spirals were not able to release

their data. freshmeat provides an interface to the metadata for over 41,000 projects

which suited the needs of the project’s case studies. This describes open-source software

applications, not specifically software components. As the selection approach can be

generalised to applications as well as third party components, the dataset was considered

adequate to show the validity of the strategies used.

1.4 Theoretical Framework

A range of research areas are used to understand and derive solutions to this research

problem. Understanding the problem and justifying the research is based on Software

8

CHAPTER 1. INTRODUCTION

Engineering literature and industry trends in reuse and CBSE. Of primary relevance are

the Software Engineering areas of CBSE, verification and validation of software systems,

document standards and formal methods. CBSE itself draws on software reuse within

Software Engineering and shares much with COTS software use.

The topic map (Figure 1.2) shows the relationships between the topics addressed by

this project. In the diagram, topics below the line are directly applied in the thesis,

and those above the line provide historical background. Connections between parent and

sub-topics are indicated as arrows. The fields of study relevant to the thesis are grouped

in vertical swim lanes: software engineering, information management and artificial intel-

ligence. Where more than one field includes a sub-topic, both are linked to the sub-topic.

These topics are now considered in terms of the research elements.

RE1 draws on existing component characterisations, knowledge management and

documentation standards to develop the component specification template. The intended

use of the template required consideration of testing and formal specifications to feed into

the test generation activity. The implementation of the template follows standards for

documentation (XML) and treats the specification of the component as a special type of

electronic resource.

With the template available, RE2 involves the development of a process that uses

the template. Existing processes for component evaluation and selection were considered,

along with their limitations and issues. Wider techniques from software engineering and

COTS selection are also relevant to the development of a usable process. For maximum

reuse through abstraction, pattern concepts can be applied to the selection process.

RE3 draws on a wide range of areas to develop strategies to assist component se-

lection. The component specification template makes use of formal methods for the

behavioural description of components (Z notation). Software testing techniques for

automated test generation and the inclusion of context (environment and usage) are ap-

plied in the testing strategy. These directly address CBSE issues. The CdCE1 Process

and tools are a knowledge based system where data representations, classification and

ontologies are used to support shortlisting and evaluation. The selection is assisted by

artificial intelligence techniques, which is extended to a classifier suite in later Spirals of

the project. Evaluation of components utilises verification and validation techniques to
1Context-driven Component Evaluation

9

1.4. THEORETICAL FRAMEWORK

Figure 1.2: Topic map

10

CHAPTER 1. INTRODUCTION

develop appropriate metrics.

The evaluation for RE4 is provided throughout the project by means of the review

sector of the SDM, addressing a consistent set of goals and win conditions. The case

study (Chapter 10) provides a means of exercising (and evaluating) all aspects of the

process, compiling the assessment knowledge from RE1, RE2 and RE3, combined with

new learning from the application of the full Process to a realistic problem.

The theoretical basis of the work is described in greater depth in the literature review

(Chapter 2).

1.5 Definition of Terms

This investigation centres on the selection of software components. Many definitions

exist for the term component. These may imply a certain level of documentation (e.g.

formal specification for in-house) or certification to provide a level of trust. To maximise

the applicability of this research, the definition used is intentionally broad:

Component: ‘A software component is a unit of composition with contractually speci-

fied interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third parties’ (Szyperski,

1998).

This work addresses third party components, those developed by external organisa-

tions as opposed to in-house components. Third party software is often referred to as

COTS software:

COTS: Commercial Off The Shelf - software that is developed externally and is available

to be acquired.

Many variations of ...OTS exist, and the terms COTS and components are often

interchanged. In this thesis open source software (OSS) is included when referring to

COTS, although they are not usually commercial products.

To enable discovery of components, they are registered in a repository. This may be

a list of software made available by the vendor, or an independent repository hosting

software from a range of developers. Component brokers are responsible for listing soft-

ware components in a repository. In the scope of this study, third party applications are

11

1.5. DEFINITION OF TERMS

treated as components2.

The strategies for software selection are the high level ideas for approaching the

research problem. These can be implemented as processes, procedures, applications and

specifications.

Two categories of people are considered in this work: actors and stakeholders. Actors

are defined as those involved in the selection process and are identified in the use case

diagram: component developer, component broker, application developer and quality

assurance. While stakeholders have a significant overlap with actors, they include addi-

tional people who have an interest in the outcomes of this study. The key stakeholders

considered for this work are:

Component Developer: Develops or modifies components for third party use.

Application Developer: Incorporates a component into a system, also referred to as

the User.

Component Broker: Provides access to components either commercially or as a ser-

vice.

Quality Assurance: Assesses the quality of the application development.

Academia: Concerned with the merits, methods and outcomes of the research project.

This work requires the characterisation of a component in terms of a component

specification. The characterisation is based on a set of attributes, with selection criteria

being the required values on those attributes. These are used for shortlisting candidates

and for specifying the required component. The requirements for the component are de-

scribed through the ideal component specification. The context of a component includes

information about the target environment (e.g. frameworks and standards). Key terms

in this selection activity are:

Attribute: An element in the characterisation of a component.

Selection criteria: Attributes and required values for suitability.

Shortlist: The set of candidate components matching the selection criteria.

Specification template: Definition of the attributes and related types in a specifica-

tion.
2Due to the use of the freshmeat repository

12

CHAPTER 1. INTRODUCTION

Component specification: Documentation that is included with a component to assist

the developer’s selection and integration of a component.

Ideal component: An application developer’s abstract requirements for a third party

component.

Ideal component specification: A concrete description of the ideal component en-

coded using the template developed during this project.

Candidate component: A component that has been shortlisted for evaluation against

an application developer’s requirements (via the ideal specification).

Target system: System into which a component is to be integrated.

Context: The environment of the component, described in the ideal component speci-

fication. Includes the target system, interfacing components and applications and

dependencies. Also includes development languages, frameworks and usage/risk

information for testing purposes.

The CdCE Process has been developed for component selection, defining eight Steps,

their inputs, outputs and internal procedures, and related techniques and tools. The

strategies are developed within and across the process steps. Components identified dur-

ing the filtering or shortlisting phase are candidate components. They are then evaluated

against criteria through static or dynamic methods. Given the results of the evaluation,

a ranking can take place to inform the final selection.

Further definitions are listed in the Glossary in Appendix A and stakeholders are

described in more detail in Table 3.3.

1.6 Assumptions

Assumptions made in this work relate primarily to the component marketplace. To

use the process, access to component repository data is required. Although there was

difficulty with gaining access to commercial data, it is likely that, in the long term,

repositories for third party components will make their data available. The repository

data used in this work is from an open source project site. Although it would not seem

to match the intentions of the work, the data made available was of a similar structure

to that used in commercial repositories. The dataset was also larger (by a factor of 3)

than the largest commercial repository.

13

1.7. RESEARCH APPROACH

The experimentation and case studies in this thesis were carried out by the researcher.

It is assumed that the experience level of the researcher is on par with the expert users

defined as the audience to the work.

1.7 Research Approach

The research methodology for the investigation is the Spiral Development Model (SDM)

(Boehm, 1988). The SDM is an iterative approach to developing solutions and is usually

applied to software development. Each Spiral includes four phases: determine objectives;

plan the next iteration; development and test and identify and resolve risks.

This investigation involved seven Spirals, each focussing on different elements of the

research problem and providing evaluation information for the project. Spiral 1 develops

a component specification to address RE1. In Spiral 2, the selection process is developed,

as required by RE2. Spirals 3-6 develop and implement strategies for RE3. Spiral 7 is

in the form of a case study to evaluate the process, strategies and techniques for RE4.

Data for the study is generated using a range of qualitative and quantitative methods.

For RE1, a survey approach is taken to developing the template. For RE2, a survey of

processes is used to develop the base CdCE Process, which is then applied to a manual

case study. A range of case studies were used in RE3, with quasi-experiments to focus

on the specific tuning of tools and techniques. A comprehensive case study is used in

Spiral 7 to give data for RE4. Evaluation and review are integral to the SDM and are

approached using a Goal-Question-Metric (GQM)-based approach (Basili, 1992), applied

to every Spiral. A more detailed description of the methodology is provided in Chapter

3.

1.8 Contributions

Specific issues in component selection were targeted across the study by a range of strate-

gies. These were outlined in the four research elements and their investigation has resulted

in the following key contributions of the study:

• Component specification template (C1)

• Repeatable, semi-automated process for component selection (C2)

14

CHAPTER 1. INTRODUCTION

• Support for context (C3)

• Use of classifiers for selection (C4)

• Data representation enhancements (C5)

• Testing and evaluation approach (C6)

• Classifier suite for decision support (C7)

• Pattern for software selection (C8)

• SDM as a research methodology (C9).

C1: swvML is a component specification template including functional,

non-functional and context information, enabling the automation of parts of

the selection process.

The CdCE specification template draws together aspects of characterisations from the

literature and those used in existing repositories. The swvML template includes functional

and non-functional attributes, including context-related information for the components.

A transformer from freshmeat to CdCE was developed to illustrate the conversion process

from other repositories, including thesaurus functionality for converting terms. The ideal

specification extends this component specification to include behavioural details defined

using Z notation. The specification thus has the information required to describe a

repository of software, to define the requirements for the ideal component, and to give

the basis for tests to be generated. The CdCE template and supporting tools form the

foundation for development of the CdCE Process, enabling the automation of selection

tasks.

Developed in Spiral 1, documented in Chapter 4.

C2: The CdCE Process is a repeatable, semi-automatic process with arte-

facts to support documentation, reuse and quality assurance.

The CdCE Process again draws on the literature to provide an original, straight-

forward approach to selection and evaluation of components. Tools have been developed

to automate activities within the process to enable the consideration of larger repos-

itories of software, optimising the use of developer’s time. There is an emphasis on

context-based assessment, using the ideal specification to drive the Process. The Pro-

cess includes strategies for refining the ideal specification, and a decision-support tool,

helping the user to get the best results from the available data. Through the automation

of the Process, artefacts are created that can be retained and reused in future searches.

15

1.8. CONTRIBUTIONS

This provides repeatability, supports revisitation of the selection for system evolution

or quality assurance and can be used as part of the rationale for selecting a particular

component.

Developed in Spiral 2, documented in Chapter 5.

C3: Context has been supported throughout the CdCE Process through

the attributes included in the specification and context-based testing.

Literature related to component testing highlighted the importance of context. To

support selection, non-functional attributes were included to allow matching of compo-

nents to the target context. In addition, context schemas in the formal specification

support the representation of directives for usage, performance, stress and reliability

testing. Four metrics have been developed to carry the results of the context-based tests.

Documented in Chapter 4 and Chapter 9.

C4: Machine learning classifiers are used for shortlisting in a novel appli-

cation of computational intelligence.

After consideration of the current techniques for comparing components, a different

approach was developed to avoid some of the issues with Weighted Sum Method (WSM)

and Analytical Hierarchy Process (AHP). Initially an expert system (Jess), classifier

(C4.5) and artificial neural network were trialled, with C4.5 chosen as it provides a

decision tree to justify the reasoning for the selections made. In a novel approach, the

training data is generated from the ideal specification and allows for supervised learning.

Training the system creates a predictive model which captures the ‘requirements’ of the

component and is a reusable artefact of the selection process. A key benefit of the

classifier approach is that each attribute is taken on its own merit and is not obscured

through aggregation. Applying classifiers to component selection is a novel approach

and this project indicates it can assist with filtering large number of components into a

manageable shortlist.

Developed in Spiral 3, documented in Chapter 6.

C5: Attributes in the specification are represented by five data-types, an

ontology, a distance matrix, and a range of matching transformations.

The tools and supporting files for the process have been developed to maximise the

use of given information. Five datatypes allow comparisons to be more attuned to the

data, including the semantic closeness of some terms as represented by an ontology. Five

16

CHAPTER 1. INTRODUCTION

transformations are provided to differentiate handling and give a stronger understanding

of the particular datatype. The variation within the transformations include:

• match/no match (boolean/DB query approach)

• loosening restrictions to include near misses

• distance measures for the closeness of terms

• keyword handling for long text fields

• abstraction via ontology.

This improves on existing techniques for searching repositories as most search inter-

faces will do a text-matching search on all or some of the information they hold. This

approach allows searching for a specific term against a specific attribute. The CdCE-

Transformer conversion process makes it possible to look at information from a variety

of brokers using one tool/interface with the data in a consistent format. The conversion

process includes a thesaurus to standardise terminology (e.g. the classifier will not miss

a match because the description uses ‘Win98’ instead of ‘Windows 98’).

The handling of missing data was also enhanced to provide predictable behaviour

based on user settings. Data representation enhancements through datatypes and on-

tologies, transformations and comparison operations have improved the performance of

the classifier (percentage of correct classifications). This has enhanced the relevance and

recall of shortlists and further demonstrated the applicability of the classifier approach.

Developed in Spiral 4, documented in Chapter 7.

C6: Evaluation is driven by nine metrics, the values coming from evaluat-

ing adaptation and functional and context-based test results.

The approach to testing and evaluation requires the generation of tests that can

provide a valid comparison - using the same tests on each component. Equivalence par-

titioning, based on the Z notation specification within the ideal specification, is used to

generate the test cases and substitute supplied test data into the abstract test cases.

These abstract tests are adapted to the candidates, which also produces input for cal-

culating metrics for functional fit and adaptation effort. These are the first four metrics

- functional fit (FFIT), functional excess (FEXS), adaptation effort (AEFT) and testing

fit (TFIT). The tests are provided as abstract XML and need to be ported to the local

harness/environment, then executed.

17

1.8. CONTRIBUTIONS

The results of the tests are evaluated to calculate the remaining five metrics where

appropriate - test result (TRES) along with the context metrics for performance, reliabil-

ity, stress and usage tests (CX_P, CX_R, CX_S, and CX_U respectively). The developer’s

preferences for these metrics are gathered from the ideal specification. Evaluation again

uses an alternative approach to aggregation and leads into the reporting of all results

based on the XML artefacts created in the CdCE Process. In the event the results are

not satisfactory, iteration is accommodated to refine the behavioural specification and/or

adjust expectations on the evaluation metrics. The automation within the Process, and

the ability to adapt to the available software, reduce the additional effort required for

iteration.

Using a single source of abstract tests is a novel approach to the dynamic evaluation

of components: it standardises the assessment and ensures it is firmly grounded in user

requirements.

Developed in Spiral 5, documented in Chapter 8.

C7: The ClassifierSuite is an interactive visualisation tool to support short-

listing and enhance decision-making.

As the shortlisting process has been automated, it is possible to create a graph of

the combinations of criteria by dropping one non-mandatory criterion at a time and the

shortlist that results from each set. This graph can be traversed to find an optimal

criteria set to identify a shortlist of components. The approach condenses the iteration,

removes some of the heuristics and subjectivity, and provides a better overall view of the

impact of including or excluding criteria.

The ClassifierSuite is an effective decision support tool which allows the application

developer to explore and analyse potential shortlists and make use of its features to

support decisions. This can make the shortlisting faster, more accurate and assists the

user in dealing with more complex and larger criteria sets.

Developed in Spiral 6, documented in Chapter 9.

C8: The CdCE Process is also a process pattern for software selection, with

flexibility for a range of instantiations.

The design of the CdCE Process was intended to provide flexibility and reuse. While

this is clearly possible at the task and system evolution level, the Process can also be

viewed as an implementation of a more abstract framework for selection. As a framework

18

CHAPTER 1. INTRODUCTION

it describes a three-phase process of filtering, evaluating and ranking items, which can

then be populated with tools and procedures for selecting software or other resources.

This pattern can then be used to provide consistency and repeatability in many tasks

that need to extract and select items from repositories.

Documented in Chapter 5.

C9: The investigation has applied the SDM as the research methodology.

As this project required the building of theory, strategy and tools, all of these could

be addressed within the SDM, rather than just the software development. This is a novel

application of the SDM, according to Barry Boehm3. The SDM has proven to be very

useful in staging the investigation, controlling risk and providing review and planning for

subsequent iterations.

Documented in Chapter 3.

1.9 Thesis Structure

Figure 1.3: Map of thesis showing relationship between Chapters and Spirals

3Personal communication at ICSE 2009, Vancouver, Canada

19

1.10. SUMMARY

Figure 1.3 provides an overview of the investigation and the structure of this docu-

ment. Chapter 2 is the review of literature. In Chapter 3, the research procedures are

discussed, closing with a summary of the Spirals of development throughout the investi-

gation. The project includes seven Spirals, six for development of strategies and a final

Spiral for a case study and evaluation. These Spirals map into seven ‘results’ chapters.

Each of the Spiral chapters includes a discussion of relevant theory and context, and

ends with a review and evaluation. All of these results are considered in Chapter 11 with

respect to the overall project goals.

1.10 Summary

This Chapter has provided the rationale for the investigation of the stated problem:

What strategies and techniques can be developed to support the selection of

third party software components?

Four research elements guide the project direction: template, process, strategies and

evaluation. The approach and techniques span the theory of software engineering, infor-

mation management and artificial intelligence. The overall theoretical basis for the work

is provided in Chapter 2.

The investigation has been structured using the Spiral Development Model, provid-

ing an iterative, adaptive and risk managed methodology. The novel use of the SDM is

one of the contributions of the project and is described in Chapter 3. In addition, the

component specification template, CdCE Process and process pattern provide a frame-

work for software selection and evaluation. A range of strategies have been successfully

implemented: classifiers for selection; enhanced data representation; support for context;

testing and evaluation techniques; and the ClassifierSuite for decision support. Each of

these represent a novel contribution of the investigation.

20

Chapter 2

Review of Literature

This investigation explores strategies for selecting software for systems incorporating

third party components. The use of artificial intelligence and knowledge management to

assist software engineers is a key thread through this review as it may provide guidance

in identifying potential strategies for the investigation.

In Section 2.1 the background and history of component based software engineering

(CBSE) is described, including its roots in software reuse. Following from this, Section

2.2 considers the selection and evaluation of components, drawing out the issues that

exist for component and application developers. Section 2.3 provides a critique of the

literature with respect to the issues raised and considering industry use of components.

Based on the critique, Section 2.4 describes the approach selected for the research project

described in this thesis. Although many processes for selection exist, uptake has been

low, which may impact on the quality of component based systems. This may be due

to a need for more intuitive, flexible approaches, with automation and tool support for

application developers.

2.1 Background

Software Engineering grew alongside hardware engineering for the early computers of

the 1950s (Boehm, 2006): the differences between software and hardware, particularly

maintenance and modification, became apparent soon afterward. The 1960s saw the

emergence of large, complex software systems that could not be approached by simply

scaling up existing methods of development. The subsequent problems with late delivery

of projects, and over budget, difficult to maintain, buggy systems were referred to as the

21

2.1. BACKGROUND

software crisis (Buxton et al, 1968). The NATO Software Engineering Conference in 1968

brought international experts together to discuss issues, and to consider techniques and

methods to solve this crisis. Dijkstra (1972) refers to the software crisis’ major cause as

the increase in power of the machines, ‘when we had a few weak computers, programming

became a mild problem, and now we have gigantic computers, programming has become

an equally gigantic problem’.

These early discussions drew a link between the software crisis and an increasing

demand for software, with the number of computers increasing 25-50% per year around

1968 (Buxton et al, 1968), eventually ‘slowing’ to just below doubling every five years

(Petska-Juliussen and Egil-Juliussen, 2009). However, this does not reduce demand for

software, as a variety of platforms have emerged including games consoles, mobile devices,

virtual machines, cloud computing and websites. Wirth (2008) states that mobile phones

have 100 times the power of the biggest computers of twenty years ago.

The increasing demands are not fully expressed by considering only the number of

computers. A jump in complexity occurred in the transition from batch to time-sharing

systems (Wirth, 2008). Scale has also increased in terms of the numbers of developers -

in 1958 a general purpose computer manufacturer employed 50 programmers, increasing

to 1000-2000 in 1968 (Buxton et al, 1968). In current day figures, companies such as

IBM have 398,4551 employees worldwide, 49,185 of whom are software developers in

the US (in 2008). Beyond the number of computers and size of companies, we have

an increase in the scale of software in multiple dimensions - including number of end-

users, variety of platforms, code size, parallelism and threading, developer team sizes and

geographic distribution of development teams (Maxville, 2009). These factors compound

the demands and complexity inherent in software development and indicate a continued

need to deal with the on-going software crisis through application and improvement of

software engineering. Dijsktra’s comment on the cause of the software crisis is just as

applicable today, keeping solutions out of the reach of the humble programmer. With

the crisis now passing forty years, it may be better to call it the software ‘reality’ or

‘challenge’.

The IEEE Computer Society defines software engineering as
1personal correspondence, 2010

22

CHAPTER 2. REVIEW OF LITERATURE

1. The application of a systematic, disciplined, quantifiable approach to the develop-

ment, operation, and maintenance of software; that is, the application of engineering

to software.

2. The study of approaches as in (1) (IEEE, 1990).

The useful results of forty years of software engineering experience and research are

summarised as the Software Engineering Body of Knowledge (SWEBOK) (Abran et al,

2004). A key contribution of SWEBOK is the clarification of language to assist commu-

nication, as many of the difficulties in Software Engineering are social (Weinberg, 1971).

SWEBOK language will be the convention throughout this discussion.

In reviewing what has taken place in the history of software engineering, it is impor-

tant to bear the context in mind. The concepts of Information Hiding (Parnas, 1972)

and Abstract Data Types (Liskov and Zilles, 1974) were vital to the construction of sys-

tems by large groups of people, and came at a time when data was ‘common’ and goto

statements were rife (Dijkstra, 1968). The changing computing environment impacted

on software, in the new challenges of shared systems over batch, in new languages, tools,

operating systems and hardware.

Brooks (1987) states that ‘the complexity of software is an essential property, not

an accidental one’. A solution to this essential complexity put forward by Brooks is the

‘Build versus Buy’ option where the economies of scale can allow vendors to increase

the quality of their software by spreading the cost among multiple users. The software

reuse approach also enables quick prototyping and assembly of systems on a platform

of middleware/API, making fast iteration and rework easier than with a fully developed

system. Reuse is discussed in more detail in Section 2.1.2.

2.1.1 Software Development Process

From the IEEE definition, the key to Software Engineering is a systematic approach,

or process, for software development, operation and maintenance. A process provides a

structure to which to attach techniques such as those in the SWEBOK Knowledge Areas,

as each project or organisation sees appropriate. Curtis provides a list of the goals and

benefits of modelling software processes (Curtis et al, 1992):

1. Ease of understanding and communication: requiring a process model containing

23

2.1. BACKGROUND

enough information for its representation. It formalises the process, thus providing

a basis for training.

2. Process management support and control: requiring a project-specific software pro-

cess and monitoring, management and co-ordination.

3. Provision for automated orientations for process performance: requiring an effective

software development environment, providing user orientations, instructions and

reference material.

4. Provision for automated execution support: requiring automated process parts, co-

operative work support, a compilation of metrics and process integrity assurance.

5. Process improvement support: requiring the reuse of well-defined and effective

software processes, the comparison of alternative processes and process development

support.

All of these are important to this study, with item 4 of particular interest.

Royce (1970) published one of the earliest process models to coordinate the develop-

ment of complex systems, commonly referred to as the Waterfall Model, which provides

an idealised progression of the development of a system. Royce’s paper indicated a dif-

ference with other fields of engineering by including iteration and feedback in his model.

More recent processes and methodologies have iteration as central, including the Spi-

ral Development Model of the 1980s and agile methodologies of the 2000s (Larman and

Basili, 2003). Iteration is recognition that the requirements for projects are not known

in advance, and that there can be a need to make changes based on the understand-

ing that emerges during a project. These adjustments help to match the system to the

user needs. However, iteration must be managed to converge towards a solution, which

can be assisted by making key decisions and recording any externalities early to reduce

the solution space. Although methodologies and development frameworks have value,

Brooks (1987) states that fostering great software designers will assist in addressing sys-

tem complexity. However, processes often indicate documents and artefacts which aid

the development and maintenance teams in understanding the project and decisions that

have been made.

24

CHAPTER 2. REVIEW OF LITERATURE

2.1.2 Software Reuse

One means of making the most of the precious resource of great designers is to reuse all,

or parts, of their work. Reuse can be opportunistic, or it can be planned for and carried

out with intent. In the early 1970s, Parnas wrote of the importance of modularisation and

information hiding, enabling design for software reuse when developing software systems

(Parnas, 1972). His paper provides examples of how two approaches to decomposing a

problem can make a significant difference to the ease with which the resulting system

can be updated, understood and reused.

Frakes and Terry (1996) surveys the metric and models for reuse, including cost/benefit,

maturity, amount, library metrics, failure models and reuse estimates, while Mili et al

(1999) propose a discipline of reuse. Developing code for reuse has been reported as

requiring 63% more time than one-off code development (Galorath and Evans, 2006).

Lampson (2004) states 1/2 to 2 times the effort for developing code with clear interfaces,

increasing to 3-5 times the effort for a reusable component.

The reuse of source or executable code is trivial and was accepted practice from the

earliest programmable computers. Grace Hopper reflected that the notebooks she and

her colleagues shared when working on the Harvard Mark 1 in 1944 were the beginning

of subroutines (Williams, 2004) and hence code reuse. Issues of errors in copying and in

the adjustment of values in the target context were noted by Hopper. Later, work on the

EDSAC (1949+) reused libraries of subroutines via punched tapes, boxed up and filed

in cabinets (Computer History Museum, 2009). These were mechanically copied into the

program at the required point (Subroutine Q2 in Figure 2.1) and a ‘comparator’ was used

to ensure the correctness of the copy. A library catalogue was used by the programming

committee to match the available subroutines to the requirements of the scientist.

Programming languages, such as C, have been created to include minimal functional-

ity, to be extended through reusable libraries of code (Frakes and Kang, 2005). Although

an obvious form of reuse, code reuse now applies to billions of software installations,

from operating systems and mobile phones to embedded systems in cars and washing

machines. The ubiquitous systems of today are reusing Million Lines of Code (MLOC),

with Windows Vista around 50 MLOC (Manes, 2007), Max OS X 10.4 84 MLOC (Jobs,

2006) and Debian 4.0 (full Linux distribution) 283 MLOC (Robles, 2005). Thus the

granularity of reuse can be from one to millions of lines of code.

25

2.1. BACKGROUND

(a) Specification for program including subroutine
Q2

(b) Box containing tape for subroutine Q2

Figure 2.1: Subroutine library use for EDSAC in 1949 (Computer History Museum,
2009) [@28 minutes]

Another view on code reuse is the risk of defects being spread across many machines.

With the estimated 1,338 million computers in the world in 2010 and a conservative 50

MLOC per machine, there are 67,000,000,000,000,000 reused lines of code in operating

systems alone in 2010, with approximately 60% of those being Windows XP2. Dijkstra

foresaw these risks in 1968: ‘The dissemination of knowledge is of obvious value - the

massive dissemination of error-loaded software is frightening’ (Buxton et al, 1968). The

more visible of these defects are vulnerabilities that may be exploited by hackers. An

early example is the CERT Advisory CA-1996-26 Denial-of-Service Attack via ping3

defect, affecting most operating systems. An advisory was issued on December 18, 1996,

requiring patches to operating systems worldwide to correct the problem.

Reusing Artefacts

Dimensions when considering reuse include types of artefact, audience, intent and devel-

oping for or with reuse. Trust and context are two of the key challenges in the reuse of

artefacts.

The concept of reuse is not restricted to code: it can also be applied through archi-

tecture, design and processes. Although this can be at an informal level, the discussion

here will be in terms of formalisation of reuse, in particular through patterns. A pattern
2Source: W3schools http://www.w3schools.com/browsers/browsers os.asp
3http://www.cert.org/advisories/CA-1996-26.html

26

CHAPTER 2. REVIEW OF LITERATURE

‘describes a problem which occurs over and over in our environment, and then describes

the core of the solution to that problem, in such a way that you can use this solution

a million times over, without ever doing it the same way twice’ (Alexander, 1977; p.

x). This definition comes from architecture and has found strong application in soft-

ware engineering. In Gamma et al (1995) the Gang of Four (GoF) provided software

design patterns as solutions to problems in context. ‘A design pattern systematically

names, motivates, and explains a general design that addresses a recurring design prob-

lem in object-oriented systems. It describes the problem, the solution, when to apply the

solution, and its consequences’ (Gamma et al, 1995; p. 360).

Alexander’s approach to patterns was to allow the ‘users’ to find the patterns, given

some basic building blocks. In a process, the blocks would be the key tasks, which can

then be arranged into a generic pattern, the implementation of which can vary. This

separates the pattern from its instantiation and allows for adaptation for all or part to

match the target environment or application. The patterns allow abstraction of processes

and the potential for reuse across application areas.

The documentation of patterns is described in Gamma et al (1995) and adherence

to this, or similar templates allows easier communication and comparison. Thus the

concept of patterns assists reuse beyond the artefact itself as it helps with communication,

describing the context to allow the assessment of the suitability of an artefact and in

defining requirements for artefacts. It also assists a pervasive reuse approach, consistent

throughout lifecycle, levels of abstraction and team members.

Architectural patterns in software engineering allow for reuse of the structure of

systems, including the widely applied layered, client-server and pipe and filter patterns

(Shaw and Garlan, 1996). Similarly, the use of patterns enables the reuse of designs

at a lower level of abstraction. Many design patterns have been published (Gamma

et al, 1995, Cunningham, 2010b) and provide a common language for developers and a

shorthand for specifications and evaluation of the resultant code.

Coplien et al (2005) defines process patterns as ‘the patterns of activity in an organ-

isation’, and are therefore closely related to organisational patterns. In all patterns, a

key aspect of the description is the context. An appreciation of context is required for

successful reuse of any artefact from processes to architecture, to designs and code - ‘at

the core to both [all] kinds of patterns is a solution to a problem in context’ (Gamma

27

2.1. BACKGROUND

et al, 1995; p. 3).

Discovery

Reuse can also be viewed in terms of who the artefacts will be provided for or by. This

correlates with the intent of the reuse. Individual programmers, or small groups, may ap-

ply opportunistic reuse. However, with support, an organisation may move to intentional

reuse where libraries and repositories are provided along with procedures and templates

for describing and specifying reusable artefacts (Prieto-Diaz, 1991). When developing

with reuse, a mechanism must be available to discover existing artefacts. These may

be previous design documents, architectural designs, test cases or test data, as well as

code. The initial focus of learning software organisations (LSO) was the development of

content management systems and other repositories to be searched or mined (Holz and

Melnik, 2004). The current focus is in maintenance and flexibility, which must be con-

sidered to avoid ‘experience cemeteries’ (Holz and Melnik, 2004) - a challenge shared by

all repositories. Prieto-Diaz (1991) explores the issues of describing reusable software to

allow searching of repositories. This and other repository literature is usually confined to

in-house reuse where standards can be set for documentation and source code is available

for analysis (Fidge, 2002, Rao and Sarma, 2003, Nakkrasae et al, 2004, Stylianou and

Andreou, 2007).

Searching through source code is unlikely to provide a match, particularly at the

design stage. There is a need to characterise or classify artefacts at a domain or prob-

lem level to assist discovery. In Prieto-Diaz (1991), the faceted classification approach

allows a variety of dimensions to be represented. More recently, the common approach

for repositories is to record metadata in a standardised form, usually XML documents

based on DTDs or Schemas. This is particularly helpful as it is compatible with HTML,

used for web development, and XML provides the structure for descriptive text. Public

repositories available for access and download of software include freshmeat4, Compo-

nentSource5 and TuCows6, and more recently the iPhone Appstore7. ComponentSource

quotes over 1,000,000 developers using its site worldwide8.
4http://freshmeat.net/
5http://www.componentsource.com/
6http://www.tucows.com/
7http://www.apple.com/iphone/iphone-3gs/app-store.html
8http://www.componentsource.com/

28

CHAPTER 2. REVIEW OF LITERATURE

Searching for software can utilise a generic search engine (e.g. Google9), or may take

advantage of an understanding of the fields describing aspects of the artefacts in the

repository. Faceted classification, SQL queries and ontologies are applied in repositories

to make greater use of the structure and semantics of the metadata (Prieto-Diaz, 1991,

Cechich et al, 2006). In Hemer (2003) the approach is to include a formal specification

for each artefact, to be able to search an in-house software repository at an abstract level

at design time. Repositories are part of a marketplace which is an additional level of

separation from in-house reuse. As a market it raises new issues as the code is often

executable-only, has licensing restrictions and may not be a perfect match for the target

system.

Reuse Marketplace

The market for reusable software was predicted by McIlroy (1968), at which time he

envisioned a software component subindustry. This would allow developers access to

product lines of black box component to assemble into software systems. Lampson (2004)

presented a keynote at ICSE10 putting forward an argument on the failure of McIlroy’s

vision for software components. Lampson states three reasons for the failure:

• There’s no business model

• Cost to understand and use components

• Components have a conflicting world view.

In the decade since his presentation, the marketplace, platforms and standards have

evolved through many advances including web services, grid computing, Service Oriented

Architecture (SOA), and open source software (OSS). This has led to a more conducive

environment for components and the following discussion may challenge the premise of

his talk - ‘Only the Giants Survive’.

As demand for new software escalates, software reuse is increasing productivity and

reducing cost, with over 99% of code executed at the US Department of Defense coming

from Commercial-Off-the-Shelf (COTS) products by the end of the 1990s (Basili and

Boehm, 2001). Those who had previously developed complete systems in-house began
9http://www.google.com/

10Presented at ICSE in 1999 and published in 2004

29

2.1. BACKGROUND

moving towards COTS-based development: as one example, at the University of Southern

California (USC-CSSE) projects were 28% COTS in 1997, but had increased to 60% by

2001 (Boehm et al, 2003). The primary reason given for this change was ‘the large

increase in the number of COTS products providing application functions’ (Boehm et al,

2003). The flipside of this observation is that there is a viable market not only for

standalone COTS but also for COTS to build into systems. While the change is not

perhaps the realisation of the ‘generic’ components of McIlroy, there is evidence of the

success of components.

With around 90%11 of the estimated 15 billion computers Windows-based, it can be

argued that the software marketplace began with the IBM-compatible PC. This provided

a hardware platform that could be cloned, to which a ‘standard’ operating system (MS-

DOS) could be loaded, opening up IBM compatible machines as a target for third party

software developers. Software development has been boosted across all platforms by

the provision of libraries, APIs and middleware, allowing developers to reuse common

functionality and concentrate on building the unique part of their application. The

distribution of applications built upon these APIs etc is an example of code reuse at

multiple levels, and often forces developers to align to patterns and architectures - thus

reusing more artefacts of previous software development.

Widespread reuse is made possible through well defined interfaces and standard op-

erating environments (SOE) including Microsoft Windows, Apple Mac OSX and Linux,

who combine to an estimated 99.5% of the market12. Virtual machines and browser-

based software also contribute to the standardisation of target platforms for developers.

The Internet and the World Wide Web have brought standards and protocols that can

be targeted, with approaches such as RESTful interfaces becoming popular. Integrated

Development Environments (IDEs) enable easy use of reusable libraries and classes, as

predicted by Brooks (1987). Large, enterprise level software systems have been devel-

oped, with site-specific tailoring taking place after purchase (e.g. SAP) (Comella-Dorda

et al, 2004). Another recent area of growth is the availability of portals and reposito-

ries, particularly in the OSS space. Distribution via the Internet, rather than through

shrink-wrapped products also increases the spread and reuse of software.
11http://en.atinternet.com/Resources/Surveys/Internet-user-equipment/Operating-systems-April-

2011/index-1-2-7-235.aspx.
12atinternet.com survey, based on browser visits to sites, thus doesn’t include servers.

30

CHAPTER 2. REVIEW OF LITERATURE

Users will always have a new and more complex set of problems ready to continue

the software challenge. Examples exist in the large scientific instruments being planned

and constructed which rely on Moore’s law to assume the availability of faster processors,

networks and larger data storage by the time they are commissioned. An example is the

Square Kilometer Array (SKA) radio telescope, which will have a processing requirement

of 30 petaflops/sec and data storage requirements of 18 petabytes per year (Quinn, 2009).

At the front end it will total 7 petabytes of data per sec requiring over an exaflop of

processing power per second. The SKA project is designed to use COTS hardware and

software, and much of the work will be in developing communications, processing and

visualisation software to meet the scale of data involved. COTS is considered to be

suitable as it is cheaper and faster than the custom solutions that radioastronomy has

used in the past, and much of the science research is moving to collaborative models

which require the interoperation of multiple systems around the world. Benholt (2007)

discusses the challenges of petascale computing and the opinion that the solution will

be based in the Common Component Architecture and promotion of standards for the

development of components.

An active and influential movement in the software market is the OSS community,

which advocates sharing code for wider reuse and has developed licences to allow for

copyright and to define how code can be extended and reused. Although OSS had been

considered to be quite different to COTS, it has been shown that developers working with

OSS software components generally do not modify the source code, effectively treating

them as COTS (Li et al, 2005). Some differences exist, particularly in licensing, but the

other commonly raised issues: the money factor, lack of support and reduced security,

are considered myths (Di Giacomo, 2005). OSS developers often target common soft-

ware needs, for example, the development of the LAMP stack, providing Linux, Apache,

MySQL and PHP (or Perl/Python) for a very common server platform (Lee and Ware,

2002). Systems are in place to prioritise the next developments in these and related

standards groups. Examples include the Internet Engineering Task Force which has a

Request For Comments (RFC) system to create new standards for the Internet13 and

the Bazaar14 approach described in Raymond (1997). In this investigation, we include

OSS and Government Off the Shelf (GOTS) software, and will be referring to all of these
13http://tools.ietf.org/html/rfc4677
14‘Bazaar’ as an alternative to the more traditional ‘Cathedral’ approach.

31

2.1. BACKGROUND

when discussing COTS - that is, any software developed by a third party (as opposed to

in-house).

As discussed, software is increasingly acquired, rather than custom made for in-house

use. In some cases, the choice of third party software is straight-forward; however, if

there are a range of options, a selection process will be needed.

COTS Selection

The software selection process can range from very information, to an elaborate, inten-

sive process, involving multiple assessors. Bak̊as et al (2007) surveyed processes used

to select enterprise resource planning (ERP) systems and found that analytic network

process (ANP), analytic hierarchy process (AHP), data envelopment analysis (DEA),

multi attribute decision making (MADM), and utility ranking methods (URM) were ap-

plied, along with critical success factors and Frameworks. These approaches are discussed

further in Section 2.2.2 since they also apply to Component Based Development (CBD).

However, the literature may not be representative of the way COTS software is se-

lected in industry settings. Robb and Susser (2000) surveyed foreign language instructors

on how they chose courseware and found that, although checklists were available in the

literature, only 25% of the software was reviewed against a checklist before purchase. For

those where the software was still in use at the time of the survey, 78% of respondent

indicated they were most influenced by ‘Recommendations of colleagues’ and only 50%

had made the primary decision based on a checklist. The paper indicates issues with

context and selector preferences when using checklists. The authors suggest that selec-

tion combines recommendations, testing and checklists in a thorough evaluation. Chau

(1995) focussed on software selection by owners and managers and found that owners

take a more strategic view, considering more factors, giving more weight to technical fac-

tors and consider all factors more seriously than managers. The authors suggest different

selection frameworks may be appropriate for different roles.

Two remaining issues that affect the uptake and success of reuse are trust and context.

The social aspect of trusting another person or organisation’s code can be a barrier to

reuse. The choice of software for email services or websites is an example where security is

of high concern and trust becomes a key factor in selection. A new option of organisational

email being provided in the cloud is challenge to trust, as it is not only the software, but

32

CHAPTER 2. REVIEW OF LITERATURE

also the hardware and all data which is put into the care of a third party.

At a more technical level, the context targeted for the reuse of an artefact must be

similar enough to avoid mismatches between the expected and provided environments.

This context could include the operating system, virtual machine, libraries, communica-

tion/network availability, hardware and may be version-specific on any of these. Many

of the items in the context match those that would be expected in the characterisation of

software. The metadata for COTS software is what an initial decision will be based on

and thus anything required for the successful running of the code should be represented

in the metadata for the artefacts and required by the repository. In the description of

a design pattern, this information would be listed under Problem, where the context

indicates when a pattern is applicable (Gamma et al, 1995).

Using COTS requires trust, particularly if not able to access the source code through

certification and testing and needs to overcome potential issues of mismatches in con-

text. Therefore, trust and context become more critical in Component-based Software

Engineering and will be discussed further in Section 2.2.6.

COTS and Components

The terms COTS and components are often interchanged. However it is important to

disambiguate the two terms. COTS-solutions differ from COTS-intensive systems in

that the former are often stand-alone systems which integrate with business processes

and can be loosely coupled to other software (Comella-Dorda et al, 2004). In COTS-

intensive systems, the COTS and in-house components of a system are assembled at

build or run-time to create a system. Component-based development of COTS-intensive

systems impacts on the software development process and we now discuss the differences

that need to be considered.

Design for reuse and design for CBSE require a different approach where, after the

analysis, the designer has to identify commonality across various applications. To create

reusable components or modules, each element needs to have a high level of independence

from the rest of the system and have a clear interface for collaboration (Schmid, 1999).

COTS systems may be bought as complete, standalone systems (e.g. a word pro-

cessor) or may be COTS components incorporated into larger systems to accommodate

part of the required functionality. COTS development can involve customisation, and

33

2.1. BACKGROUND

many packages have facilities for extending functionality and interfacing to other COTS

products. Carney and Long (2000) places COTS and MOTS15 as two axes of a matrix:

source and modifiability (Figure 2.2). The sources may include in-house, legacy, con-

tracted and commercial items. These may or may not be able to be modified internally

via customisation, parameterisation or not modifiable. Examples include SAP16 and

Talent217, large, generic finance and payroll systems which are customised for each site.

In-house developers then work on glue-code to interface with other information systems

(COTS or in-house).

Figure 2.2: The source and modification axes, with sample items located for comparison
(Carney and Long, 2000)

2.1.3 Component Based Software Engineering

Developing systems with a focus on composing existing parts is referred to as Component-

Based Software Engineering (CBSE) (Bachmann et al, 2000) - it is the application of best
15Modifiable Off the Shelf products
16http://www.sap.com/
17http://www.talent2.com/Products–Services/Payroll-solutions.html

34

CHAPTER 2. REVIEW OF LITERATURE

practices to developing Component-based Systems (CBS). The aim, when developing

these systems, is the economic construction of reliable software systems from trusted

components (Morris et al, 2001).

Some see reusable components as being any piece of code or design that can be reused

- at all stages of software development (Yacoub et al, 1999). In other cases, a minimum

component would refer to routines or classes provided in libraries that can be included

in new systems, and are integrated at compile or link time (Meyer, 1999). This type of

reuse has been available (and required) in languages such as C, C++ and Java for many

years. Meyer (1999) lists five levels of abstraction for components: functional, casual

grouping, data, cluster (framework) and system (e.g. COM/CORBA). At the other end

of the spectrum, a component may be defined as a stand-alone module which can be

hooked into a system by referencing the module’s public or external interface (Schmid,

1999). These components are integrated into the system at run-time. The developers

may or may not have access to the source code for each component they use (Bergner

et al, 1999, Udell, 1994), or may be able to pay extra to the vendor for the component

source18.

Independent of integration time and availability of source code for the component,

most definitions of the term agree that a component must be a replaceable unit and serve

a clear distinct function (Yacoub et al, 1999). Szyperski (1998) states that integral to the

specification of a component is the framework it is developed for, referring to frameworks

that provide communication and other services including CORBA and .NET.

Szyperski and Messerschmitt (2003) gives an update on his 1998 definition, stating

five criteria for components:

• Multiple-use

• Non-context-specific

• Composable with other components

• Encapsulated

• A unit of independent deployment and versioning.

Szyperski (1998) lists examples of early components including Netscape plugins,
18Offered by http://www.componentplanet.com/

35

2.1. BACKGROUND

Quicktime plugins, Terminate and Stay Resident (TSR) code and Visual Basic com-

ponents, along with many parts of operating systems (e.g. pipe/filter). There are many

definitions of components: an example of compiled definitions and related discussion is at

Cunningham (2010a). New technologies and philosophies for software development may

be included in the component space - including OSS, web services, cloud appliances and

specific programming languages. Challenges to the binary component definition come

from popular languages such as Python, where a scripting language can be used to de-

velop complete systems, and a range of components to extend them (e.g. Zope and the

Plone learning management system). Python developers are sharing code as packages19,

and as well as downloadable plugins for Plone20, Zope21 and other systems.

Other related developments are Grid Computing and SOA. Grid Computing has

primarily come from the eScience and eResearch communities to facilitate the sharing of

resources including supercomputers, data storage and large, shared scientific instruments

(Bote-Lorenzo et al, 2004). To facilitate this, a framework for communicating components

has been developed for interoperability across heterogenous environments (Malawski et al,

2007). With the addition of security and administration functionality, the Grid is moving

to Cloud Computing in commercial applications, with much of it built upon components.

The Amazon Elastic Compute Cloud (Amazon EC2) is one example22.

The SOA solution has grown on the Internet as an eCommerce solution, often aligned

to BPEL (Business Process Execution Language). In this case, the reused software sits in

a virtual component model, made up of black box components with well defined interfaces

and protocols. SOA differs from traditional CBSE as the third party components are

integrated at execution time through orchestration of web services, not as part of an

internally controlled assembly. The affinity between SOA and CBSE is strong and there

are groups working to bridge the two approaches, for example, bridging the Fractal

component model with the Service Component Architecture (SCA) (Collet et al, 2007).

Silaghi and Strohmeier (2003) propose a process that integrates CBSE, Separation of

Concerns, Model Driven Architecture and Aspect-oriented Programming, regarding each

as a layer of abstraction to pass through when developing a system.
19http://pypi.python.org/pypi
20http://plone.org/products
21http://old.zope.org/Products/all products
22http://aws.amazon.com/ec2/

36

CHAPTER 2. REVIEW OF LITERATURE

Figure 2.3: Vendor-Broker-Integrator model (Aoyama, 1998)

Aoyama (1998) wrote of a future of developers purchasing components from third

party vendors, modifying the code or interfacing the modules to create a complete sys-

tem. In that model (Figure 2.3) vendors, brokers and integrators are all part of the

process to develop systems for end users. Since then, component repositories such as

ComponentSource have appeared, while other software repositories, such as freshmeat

and SourceForge track software and projects which can include component development.

Some of the new architectures that support CBSE are CORBA, COM+, EJB, .NET,

Fractal and Web Services, with many providing the facility to replace a component while

the system is running. In this document, and throughout this project, we have used a

broad definition of component, as given by Szyperski (above, and explicitly stated in

Section 1.5) and including, but not targeting, Grid and SOA.

2.1.4 CBSE in the Software Development Lifecycle

Although many software processes exist, there is a fundamental change required to engi-

neer a system from COTS components in the ‘simultaneous exploration of system context

architecture and design and available software in the market’ (Comella-Dorda et al, 2004).

A COTS-based approach entails a carefully reasoned selection of potential components

through a comparison of options, features and tradeoffs, in the context of the system

under development. This is illustrated as the four stages in Figure 2.4 through which a

custom path is chosen, based on feedback on design, architecture and component avail-

ability.

37

2.1. BACKGROUND

Figure 2.4: PECA process (Comella-Dorda et al, 2004)

Figure 2.5: A good CBS Process (Comella-Dorda et al, 2004)

38

CHAPTER 2. REVIEW OF LITERATURE

As Comella-Dorda et al (2004) discuss, a conceptual CBS process has five steps:

1. Assess and Plan

2. Gather Information

3. Analyse

4. Negotiate

5. Construct.

The related figure (Figure 2.5) shows how component selection fits into the wider

software development process with the inner loop of COTS product evaluation and the

outer loop is the wider system development. CBD involves iteration and refinement

which eventually converge towards a solution. The developers will be creating glue code

to integrate the components, and core code to drive the system or add functionality not

provided by the components.

A number of processes have been published for CBD, particularly in the selection

of components. One benefit of a formalised process is that it can provide a framework

for documenting decisions: Kotonya and Hutchinson (2005) states this documentation is

necessary in preparation for the evolution of the system. The seminal paper in the area is

the description of OTSO (Off-The-Shelf-Option) (Kontio, 1995). OTSO was not specific

to components, and set the trend for early processes in the use of GQM and AHP to

define criteria, weightings and calculate the comparisons between components.

In Morisio and Tsoukiàs (1997), a process is described for COTS-based development

in the Software Engineering Laboratory (SEL) at NASA. From an analysis of previous

projects, a strawman process was defined which included four phases:

1. Requirements Analysis and COTS Identification

2. Design and COTS Selection

3. System Integration and Test

4. Technology Update and System Maintenance.

At the process level, the SEL process has parallel activities for COTS-specific and

non-COTS aspects of the development. Figure 2.6 shows an actual COTS development

process, showing the vendor’s continued involvement in the system development. More

commonly, a third party component is taken as-is, independent of the vendor.

39

2.1. BACKGROUND

Figure 2.6: The actual COTS process (Morisio and Tsoukiàs, 1997)

Kunda and Brooks (1999) stated four main issues in selection and evaluation of com-

ponents: lack of a well-defined process; problems with the definition of evaluation criteria;

the black box nature of components and rapid changes in the marketplace. They pro-

pose STACE (Social Technical Approach to COTS Software Evaluation) as a systematic

approach that can evaluate both COTS products and the underlying technology, using

socio-technical techniques to improve the software selection process (Figure 2.7). The

search for alternatives is conducted through market surveys, Internet search, product

publications and sales promotion and computer fairs and shows, with an implied screen-

ing process. The evaluation uses AHP and a process flowchart shows the main steps

involved (Figure 2.8).

40

CHAPTER 2. REVIEW OF LITERATURE

Figure 2.7: STACE framework (Kunda and Brooks, 1999)

Figure 2.8: STACE process (Kunda and Brooks, 1999)

41

2.1. BACKGROUND

Many processes have included iteration, including Comella-Dorda et al (2002), Kotonya

and Hutchinson (2005), to allow for adjustments to the requirements based on the avail-

able components. An iterative approach results in an increase in acquired requirements

while reducing the pool of potential components to a set of candidates. Ncube and

Maiden (1999) illustrate this refinement in Figure 2.9. As the selection process proceeds,

the template has more requirements and the number of products under consideration

decreases. The types and depth of tradeoffs depends on the number of potential compo-

nents. Where there are few to choose between, the developer may need to concede more,

whereas if there is a good range of components close to specification, the developer may

even need to tighten the requirements.

Figure 2.9: PORE templates for iterative selection (Ncube and Maiden, 1999)

Although there are a range of processes in the literature, a study in Norway has found

that most companies do not follow a formalised process for COTS selection. This echoes

the study on COTS selection, where only 25% used checklists (a basic formalisation

of software selection) (Robb and Susser, 2000) - indicating users/developers may not

be seeing the need for structure and traceability, or that it may not fit their workflow.

Navarrete et al (2005) considers a number of published CBD processes in terms of agility,

however finds that the suggestions to ‘improve agility in general, [but] may collide a bit

with particular [agile] principles’.

The discussion will now focus on the issues raised in CBSE, throughout the software

42

CHAPTER 2. REVIEW OF LITERATURE

development lifecycle (SDLC). These include: lack of uptake; lack of process; black box

challenges; and rapid change in the marketplace. There are five generic activity areas

which are seen in all software lifecycles: Requirements, Design, Construction, Testing and

Maintenance (Abran et al, 2004). Testing, or more broadly, verification and validation,

span the other activities. There are two overlapping lifecycles - one for the component

(component developer view) and one for the system under development (application

developer view). The focus is on the latter.

Requirements

The first phase in the SDLC includes high level decisions and requirements definition. In

Morisio and Tsoukiàs (1997), it is suggested that a level of COTS selection should take

place in this first phase. The developers need to consider the ‘make or buy’ decision,

which will require flexibility in requirements, and willingness to depend on vendor(s)

(Morisio and Tsoukiàs, 1997). In addition to the system requirements, there are some

COTS-specific requirements that need to be defined to facilitate component acquisition

(Comella-Dorda et al, 2004):

1. Architecture and interface constraints: e.g. middleware

2. Programmatic constraints: technical skill-base of team

3. Operational environments: maintenance of the system after launch

4. Stakeholder expectation: (e.g. users may see a different interface from external

components).

The requirements will need flexibility to allow for trade-offs (Morisio and Tsoukiàs,

1997). Comella-Dorda et al (2004) suggest denoting requirements as ‘hard’ or ‘nego-

tiable’. PORE (Ncube and Maiden, 1999) concentrates on the iteration and trade-offs

that progress a COTS project towards implementation, defined through templates (Fig-

ure 2.9). In COMPOSE (Kotonya and Hutchinson, 2005) the requirements are split into

functional and non-functional with functional becoming ‘services’ and the non-functional

becoming ‘constraints’. The non-functional constraints include what may be called ‘ili-

ties’ (Voas, 2001). Kotonya and Hutchinson (2005) note the possible interdependence of

these requirements, which may impact on selection.

43

2.1. BACKGROUND

Clark and Clark (2007) highlight cost and licensing as issues that affect the cost of

COTS-intensive development. Decisions are needed setting limits on costs and defining

the types of licences that will be acceptable. With some software the costs may not be

visible (e.g. advertising; vendor lock-in for pro versions; use of data by vendor) (Clark and

Clark, 2007). Licensing may be the trickiest part as the non commercial, no derivatives,

mix with open source, is an area of complex legalese for all users. Creative Commons23

(CC) licensing has been ratified in countries around the world - providing more stability

when incorporating CC software into a system. Developers need to be mindful of inclusion

of components that have licences restricting sales or profit of derivative code.

Tran and Lin (1999) discusses the difficulties of applying CBSE to projects that lack

stable requirements. In their experiment, they were open to using COTS for up to ten

building blocks within their system. They found issues with the tightly coupled circular

relationship between the product selection and system requirements definitions process.

The product sets changed three times in nine months, rippling through the rest of the

system. They provide six strategies to deal with the Cyclic requirements-product depen-

dencies problems: early evaluation and selection of COTS; capture product information

in each iteration to enable easy re-evaluation; separate product limitations from techni-

cal limitations; prioritise system requirements; subcontract vendors for key infrastructure

components; and document dependencies between requirements and components.

A number of approaches have been put forward to deal with the trade-off of require-

ments: loosening or tightening requirements in response to component availability and

wider system development. Ruhe et al (2003) apply the Quantitative Win-Win method,

while Kotonya and Hutchinson (2004) use viewpoints. Alves and Finkelstein (2002) has

a goal-driven approach, using two attributes: desirability and modifiability. Ncube and

Maiden (1999) uses parallel requirements and market research for a tightly scheduled

COTS selection. The PORE approach uses iteration, knowledge engineering, feature

analysis, MCDM and design rationale.

Key points: When working with components, decisions need to be taken early - some

that may typically be design decisions will happen during requirements. This is when

the component selection begins and must integrate with the wider system development.

Functional and non-functional criteria must be considered and there will need to be
23http://creativecommons.org/

44

CHAPTER 2. REVIEW OF LITERATURE

flexibility, to allow iteration as tradeoffs are considered.

Design

The Design phase adds detail to the requirements and is the main area of iteration in a

Component-based process, meeting back with the non-component development of the rest

of the system for possible adjustments. To prepare for acquisition, the requirements must

be transformed into measurable selection criteria. The characterisation of the desired

and the candidate components is key to this process to allow comparison, but currently

there is no standard for specifying a component (Christiansson and Christiansson, 2004).

In some processes the selection criteria are standardised (Yamamoto and Saeki, 2007),

whereas others will have custom requirements set up for each selection (e.g. elicited via

GQM for OTSO (Kontio, 1995)).

With a specification of the required component, the developer can search for potential

matches. In Mili et al (1992) and Mittermeir et al (2007) this is using a formal specifi-

cation on an in-house repository. For externally supplied components, repositories such

as ComponentSource24 can be searched. Each repository has its own schema for holding

the metadata for listings, most commonly in XML and/or accessible via a web portal

(Christiansson and Christiansson, 2004).

Evaluation of components can be static or dynamic, with static evaluation based

on specifications and documentation. Dynamic evaluation may require a test harness to

provide an environment for the component to be tested. This is testing for evaluation pur-

poses, and is separate to the integration testing done during implementation/integration.

Section 2.2 considers component selection in greater depth.

Selection of components may also have to consider more than whether the component

does what is required. For critical systems, developers would need to be assured that there

is on-going support from the vendor to patch problems with the software. Developers

would also need to decide whether the vendor is ‘safe’ in terms of being in existence to

support the product. Information technology is a volatile market, with regular closures,

mergers and buyouts of businesses. This may mean that management feels safer to

purchase from and depend on ‘stable’ vendors (e.g. Oracle and Microsoft), than smaller

companies who may be more innovative, but also more susceptible to market forces.
24http://www.componentsource.com/

45

2.1. BACKGROUND

Along with the focus on selection and integration of individual components, some

research is looking at assemblies of components and prediction of their performance.

Stafford and Wallnau (2001) suggests three interlocking questions: What system quality

attributes are developers interested in predicting?; What analysis techniques exist to

support reasoning about these quality attributes, and what component properties do

they require?; How are these component properties specified, measured, and certified?

Compositional reasoning requires information about the components to match the

properties that you want to predict. Predictable Assembly from Certifiable Components

(PACC) aims to demonstrate compositional reasoning without the need for full formal

specification and extending architectural analysis and component certification (Ivers and

Moreno, 2008). The work has two premises: system quality attributes are emergent

properties that adhere to patterns of interaction among components; and component

technology has mechanism for enforcing interaction patterns. Attribute-Based Architec-

tural Styles (ABAS) are used as the basis for defining the interaction patterns within the

architecture (Klein and Kazman, 1999).

Burgues et al (2002) proposes a process model for the combined selection of com-

ponents. For a vertical application, they consider four levels of requirements - external,

corporate, interaction and local. These are simplified in to local and global (not local)

scenarios to coordinate a cyclic (from PORE) evolution of the selection process (Figure

2.10). The authors are considering UML to provide the required formalism.

Figure 2.10: The global level considering cycles (dashed lines) (Burgues et al, 2002)

Key points: The shortlisting of candidates takes place during design. Evaluation

may be static, or may be dynamic and hands-on. More recent work is considering the

selection of assemblies of components.

46

CHAPTER 2. REVIEW OF LITERATURE

Construction

Once selection has taken place and the rest of the system has been built in parallel, the

components can be integrated into the system. Key to construction is the interoperabil-

ity of the involved components: the ability of two or more entities to communicate and

cooperate despite differences in their implementation language, their execution environ-

ment, or their model abstraction (Wegner, 1996). Vallecillo et al (2000) describes three

types of interoperability: signature, semantic and protocol. One of the issues they raise

is difficulty in checking the implementation against the specification due to the lack of

access to source code.

Rose (2000) provides a checklist for adapting and integrating COTS components to

ensure that all critical activities and decision are carried out in an effective manner.

Architecture has been mentioned as an early decision and the developers need to under-

stand the architecture, all included interfaces and the middleware involved (e.g. CORBA,

.NET) (Szyperski, 1998). Architectural mismatch is considered to be caused by different

assumptions components make about their environment (Garlan et al, 1995). The paper

advised that research was needed to better understand mismatch and the adaptation

that may address the problem.

One approach to dealing with this runtime mismatch is to add contracts to the inter-

actions between components (Watkins, 1998). The component itself is then empowered

to check that other components are calling it correctly, and the calling component can

verify that the results of the call are as expected. Eiffel (programming language) pro-

vides the facility for programming by contract in the source code itself (Meyer, 1997),

while Watkins implements the contracts in the (Interactive Data Language) IDL for

the components (Watkins, 1998). Component-oriented platforms typically use IDLs to

specify required and offered functionality (Bracciali et al, 2002). The IDL approach has

advantages, especially in that it does not alter the source code, which is unlikely to be

available.

Development using CBSE encounters rigidity in the components to be integrated

into the target system. In situations where a component is known to differ from its

requirements, a compromise can take place using glue code. This may result in changes

to the surrounding (calling) system, or modifications to the way the component interacts

with the system. A common way of resolving these issues is to use wrappers, bridges or

47

2.1. BACKGROUND

mediators as intermediaries (Bass et al, 1998). Figure 2.11 illustrates these techniques.

This approach saves on resources by not having to customise or rewrite the components.

However, it is best to minimise the use of these devices due to the overhead they may

add to the system. There is a tradeoff between the cost of customisation, against the

cost of developing the interfacing software and its effects on the system performance.

Figure 2.11: Techniques for Repairing Interface Mismatch (Wallnau et al, 1997)

Formalisation of approaches to customising code can improve consistency and main-

tainability. Xie and Zhang (2007) provides a framework for adaption of software com-

ponents and discusses two types of adaptation - component signature and component

function. Signature mismatch may be in the names or the types of the parameters -

this framework formally describes the replacement function to address these mismatches.

For functional mismatches, the strategy is to excise excess functionality, and for missing

functionality, to write or source additional code and compose the components to pro-

vide complete functionality. The composition may be sequential, parallel or alternative

(parallel with decision making).

Cubo et al (2007) refer to four levels of mismatch: signature, behavioural (message

order), service (non-functional) and semantic (functional), and indicate that most issues

occur at the behavioural level. Similarly, Min and Kim (2004) put forward four types

of smart adaptors: value range transformer; interface adaptor; functional transformer;

and workflow handlers. Brogi et al (2006) considers software adaptation as deploying a

48

CHAPTER 2. REVIEW OF LITERATURE

software component (adaptor) capable of acting as a component in the middle between

respective components to support successful interoperation. They provide a formalisation

of adaptor specifications and show how it can be applied to contract agreements, soft

adaptation and hard requirements. Formalisations that have been applied in adaptation

include lambda calculus (Bracciali et al, 2002), Calculus of Communicating Systems

(CCS) (Cubo et al, 2007) and Finite Automatons (Xie and Zhang, 2007).

Key points: When constructing component-based systems, mismatches between

components and the target system are common due to differences in context. Responses

to architectural and functional mismatch include glue code, formal adaptation models

and contracts.

Testing

Verification and validation of a project should be carried out over all stages. The com-

ponent developer will test the component during and after implementation - checking to

see that it matches its specification and that it executes correctly in at least one context.

The client must also test the component - firstly in isolation, then when integrated with

the target system.

With components, the testing process is made more complex by the variety of en-

vironments that a component may be expected to execute. Weyuker (1998) discusses

the problem of testing software components to take their context, or target operating

environment, into account. When testing a component for reuse in a new or changed

environment, it is important to prioritise testing based on expected usage. Research into

predictability of assemblies of components also highlights the increased importance being

given to the target context of the component (Crnkovic et al, 2003). Beyond unit, inte-

gration and system testing, organisations can carry out feature testing and load testing

(including performance, stability, stress and reliability testing). These more specialised

tests take the context of the component into account and will vary between applications

of the same component.

Third party components pose special difficulties in testing. Developers of components

and certification bodies may make use of white box testing techniques as they have access

to the component’s source code (Morris et al, 2001). However, application developers can

only expect an executable and associated documentation to work from. This dictates that

49

2.1. BACKGROUND

Black-box test techniques White box test techniques

Equivalence partitioning Branch/decision

Boundary value analysis Data flow

State transition Branch condition (combination)

Cause effect graphing Modified condition decision

Syntax testing Linear Code Sequence and Jump

Statement testing Random

Random

Table 2.1: Types of test design techniques (BCS, 2001)

component testing (from the user perspective) is limited to black-box techniques (Myers,

1979). An issue for component users is the amount of documentation available. Given

a specification of the required functionality and/or interfaces the testing can be based

on metadata (Orso et al, 2000), Unified Modelling Language (UML) (Yoon et al, 1999)

or Assertion Definition Language (ADL) (Sankar and Hayes, 1994). These can form the

basis for specification-based testing.

Test generation options are limited if only provided with interface descriptions. Parti-

tion information for input variables can aid in the selection of test data to exercise various

scenarios. Behavioural information can provide partitioning information and also assist

in developing meaningful sequences of method calls and some oracle functionality.

The British Computer Society provides a component testing standard, using compo-

nent to refer to the lowest level of independently testable software (BCS, 2001). Table

2.1 lists types of test design techniques and indicates whether they are black- or white-

box. BCS metrics for testing follow a general pattern of: number of successful tests

/ number of possible tests x 100%.

COTS components are delivered as black boxes, with no expectation for access to

source code. Bertolino (2007) lists the new challenges raised by CBD for testing: compo-

nents are generic to allow deployment, but must be re-tested in context; and the lack of

information provided to allow for testing by a third party. There are three views in com-

ponent testing and certification: component developers, application developers and third

party testing certification organisations (Councill, 1999). When considering the SWE-

BOK recognised testing areas, the component developer is responsible for unit, basic

integration and acceptance testing. Methods used by component developers can include

50

CHAPTER 2. REVIEW OF LITERATURE

white-box techniques as they have full access to the source code and design documents

to allow structural testing. For application developers and certification organisations,

the testing techniques are limited to black-box as it does not require knowledge of the

structure of the program (Cechich et al, 2003).

Application developers have two levels of testing to consider - evaluation of candidates

can involve testing, and the integration of components needs to be tested, including any

glue code or adaptations (Weyuker, 1998). Cortellessa et al (2008) focus on assemblies

of components as, even though individual components may be correct, the assemblies

need further testing as the combination may be incorrect. Briand et al (2006) list four

difficulties raised when carrying out Verification and Validation (V&V) on components:

heterogeneity of deployment platforms; limited test model; difficult definition of testing

adequacy criteria; and, generality of components.

Testing by application developers and third party assessors is dependent on the docu-

mentation shipped with the component. This may include a user manual, user reference

manual, interface specification and may include informal, formal or model-based descrip-

tions of the components (Gao et al, 2002). Components may also include mechanisms to

support checking, such as that provided through design by contract (Meyer, 1992).

Strategies for black-box testing include equivalence classes, error guessing and random

tests (Cechich et al, 2003). Gao et al (2002) adds fault-based testing to this list, while

Korel (1999) describes an interface probing approach. Requirements-based approaches

work from a model of the system which can be used to generate tests (Tahat, 2001).

Metadata is used by Cechich and Polo (2002) and Harrold et al (2001) to provide usage

data about a component to assist testing. Built-in-tests is another approach where the

component includes interfaces specifically for testing.

In the COMPOSE process, (Kotonya and Hutchinson, 2005), different types of testing

are used across development. These are indicated in Figure 2.12: COTS testing in the

Design phase, and subsystem assembly, regression testing and non-functional testing at

the Compose stage.

A key issue throughout component testing is that the context for development is

almost always different to the target context (Weyuker, 1998). This drew attention to

the need for testing in the target context. Bertolino (2007) lists composition testing

as a key challenge across all of software engineering. An aspect of this is addressed in

51

2.1. BACKGROUND

Figure 2.12: COMPOSE process (Kotonya and Hutchinson, 2005)

testing assemblies, however more is required for confirming that a component will behave

correctly. Voas (1998a) outlines these issues as expected and unexpected behaviour of

software.

Gao et al (2002) discusses component testability in terms of observability, traceability,

controllability and understandability. User understanding relies on the provided docu-

mentation, in turn affecting testability. Freedman (1991) refers to controllability as how

easy it is to control a program on its I/O, operations and behaviours. For components,

controllability has three aspects: behaviour control; feature customisation; and installa-

tion and deployment (Gao et al, 2002). Observability indicates how easy it is to observe

a program and the traceability is how the component allows tracking of the status of

component attributes and behaviour. All of these testability measures are impacted in a

COTS situation.

Another approach to making the components more usable and trustable is to provide

verification and certification of their functioning. This certification can be taken to

various levels, giving the component user some assurance that the component will work

as expected. Third parties may certify the software (Morris et al, 2001) or the certification

52

CHAPTER 2. REVIEW OF LITERATURE

may be of the vendor who developed the software (e.g. CMM and ISO).

Key points: Testing without source is difficult, with added complexity of context

and integration. Certification and testability have potential for increasing trust. More

detail on testing components is in Section 2.2.5 and Trust is discussed further in 2.2.6.

Maintenance

As software enters the maintenance phase, there needs to be a response to its evolu-

tion. In CBSE, the composition of software from different vendors creates dependencies

and compounds the traditional maintenance challenge. Maintenance can be classified

into four types: corrective (patches); adaptive (porting); perfective (enhancements); and

preventative (IEEE, 1990). A study conducted at Statoil found that maintenance effort

was 59% perfective, 26% adaptive and 14% preventative (Gupta et al, 2008). It is also

recognised that software evolves and is not just being maintained. Lehman’s Laws25

recognised this in 1974 - Law 1: continuing change, and Law 2: increasing complexity

(Lehman, 1979-1980).

According to the CeBASE initiative, the top 12 lessons on COTS-based systems

maintenance are as listed in Table 2.2. Clark and Clark (2007) list major sources of

added costs with COTS: evaluation of new releases; on-going vendor support; ripple

effect from upgrades; hardware upgrades; disabling new features; early maintenance;

market watch; continuous funding; and increase in costs as a function of the number of

third party components. Recognising the risks associated with maintaining COTS-based

systems, some options for risk mitigation are to request source code, categorise critical

and non-critical components (then focus effort on critical) and to design for change (Clark

and Clark, 2007).

Vigder (2006) suggests that system maintenance can be addressed at design time

by encapsulating product collaborations, controlling interfaces, controlling dependencies,

minimising coupling, using consistent failure handling, having a high level of visibility (of

behaviour) and minimising build and deployment effort. Larsson and Crnkovic (2001) use

dependency graphs to provide software configuration management for components. The

graphs facilitate maintenance by identifying differences between configurations. Nguyen

(2008) describes a formal model of the process of software update for CBS and a tool to
25These laws noted in 1974, related publication with 5 laws is in 1979, eventually there were 8 laws.

53

2.1. BACKGROUND

Lesson 1 The refresh and renewal process for COTS-based systems (CBS) needs to be
defined a priori and managed so COTS package updates can be synchronized

Lesson 2 COTS software capability and quality evaluation needs to be managed as a con-
tinuing task during the maintenance phase.

Lesson 3 The cost to maintain CBS often equals or exceeds that of developing custom
software.

Lesson 4 The most significant variables that influence the cost of CBS maintenance in-
clude the following (in priority order): Number of COTS packages that need to
be synchronized within a release; Technology refresh and renewal cycle times;
Maintenance workload for glue code and wrapper updates...

Lesson 5 Maintenance complexity (and costs) will increase exponentially as the number of
independent COTS packages integrated into a system increases.

Lesson 6 Significant time and effort must be spent up-front analyzing the impact of version
updates and new releases.

Lesson 7 Flexible CBS software licensing practices lead to improved performance, reliabil-
ity and expandability.

Lesson 8 Wrappers can be effectively used to protect a CBS from unintended negative
impacts of version upgrades.

Lesson 9 You may have to re-tailor COTS components with new releases to accommodate
new features and functionality.

Lesson 10 The Achilles’ heel of most COTS projects is the interface to legacy systems. They
fail over and over again.

Lesson 11 Out-sourced CBS applications that don’t require refreshed COTS components in
their contracts for delivered applications often have to live with obsolete COTS
products.

Lesson 12 When the error rates with COTS packages equal to or exceed those being expe-
rienced with other software, it is time to consider replacing the package.

Table 2.2: Maintenance lessons for COTS-based systems (Reifer et al, 2004)

keep track of their evolution.

In Kotonya and Hutchinson (2005), the focus in on the impact of change. COM-

POSE is architecture-centric CBD process and uses Component Architecture Description

Language (CADL) (Kotonya et al, 2001) to model components and architectures. The

mapping of requirements to services and constraints, and in turn to components, allows

the indirect impact of change to be revealed along with the direct impact of change to

connecting components and connectors.

Maintenance and the evolution of CBS are a challenge, requiring ongoing configura-

tion management and management of external dependencies. Selection of components

needs to tale the reliability of the vendors into consideration and manage the risks asso-

ciated with third party software.

Key points: There is a need to consider change and evolution and how they impact

on cost and the on-going need for revisiting component selection. Some are developing

approaches for estimating and minimising the impact of change.

54

CHAPTER 2. REVIEW OF LITERATURE

2.1.5 Issues in CBSE

Issues exist when reusing software in general, with additional issues arising when compos-

ing systems from reusable components. Reuse issues stem from: managing development

with reuse; approaching analysis and design to maximise reuse of artefacts; trust and

discovery. CBSE issues relate to the fact that the developer cannot assume any knowl-

edge of implementation for a third party component, which has an impact on testing. A

systematic approach is required to select for the available components. They may also

face difficulties integrating the component to fit smoothly with the rest of the system,

and responding as the system evolves.

From the literature discussed in the previous sections, a list of key issues in CBSE

can be compiled:

1. Availability of and sourcing components

2. Extra time required for development

3. Selecting the ‘best’ components

4. Trusting components

5. Testing a component

6. Integration problems

7. Vendor reliability & risk management

8. Configuration management & interdependencies.

In this study, the research explores those issues relating to item 3: selecting the best

components. Of secondary interest are sourcing and testing, items 1 and 5. In most

published processes, filtering for candidates is manual using sources such as: ‘market

surveys, Internet search, product publications and sales promotions, and computer fairs

and shows’, (Kontio, 1995, Kunda and Brooks, 2000). Over the decade since research

began in the area of component selection, the current practice is to undertake an Internet

search or ask an expert (Li et al, 2005) and evidence indicates that the use of published

processes is low, with only 19% of COTS projects using a formal decision-making method

(Li et al, 2005). While selection of components has been shown to have the most impact

on risk in CBD (Port and Chen, 2004), developers are still approaching it in ad-hoc ways.

In addition, the issues relating to component selection are considered, including avail-

ability and sourcing, and testing. The next Section works from these issues to identify

55

2.2. COMPONENT SELECTION

opportunities and positions.

2.2 Component Selection

Although components were promoted as simplifying and speeding up software develop-

ment, there are also intrinsic characteristics of CBSE which make component selection

difficult. Among them is the lack of a well-defined process and the lack of a specification

standard. Assessment for selection needs to include functional and non-functional crite-

ria, which rely on the specification standard, along with more hand-ons evaluation. The

black-box nature of the software restricts evaluation and testing to what can be inferred

from the published interfaces.

Some processes concentrate on the issue of how to assess ensembles of components

and how the group will interact as the complexity of systems increases. Another issue

is the selection is usually a time-consuming, manual process which restricts the number

of components evaluated (scalability) and may result in suitable software being missed.

Questions have also been raised about the suitability of techniques used for comparison

(Ncube and Dean, 2002). The manual selection process does not lend itself to repetition

as the system evolves and marketplaces change. It may be that the choice of components

impacts on other aspects of the system under development. This can result in Cyclic-

Requirement-Component Dependency (CRCD) where selection does not converge (Tran

and Lin, 1999).

When considering improvements to component selection, there are a range of potential

focus areas26. The characterisation and specification is needed for requirements definition

and matching, and for the discovery of candidates. In the pursuit of repeatability and

quality, and potential for automation, a defined process is required. Selection of the

best component is a combination of being able to discover potential candidates and the

evaluation techniques used within the selection process. Evaluation may be static, based

on specifications, or dynamic, via testing. The dynamic approach gives more information

on the suitability, particularly as context and mismatches may negatively impact on

expected performance in the target environment. In any reuse, there can be issues of

trust in the quality of the code built by others. By looking at supporting quality in
26In terms of the Topic Map (Figure 1.2), the discussion is within ”CBSE Issues”, and draws on the

wider theory of software engineering, information management and artificial intelligence

56

CHAPTER 2. REVIEW OF LITERATURE

CBSE, it may be possible to increase trust and uptake. Finally, the use of automation to

support selection is an additional way to encourage uptake. This is considered in Section

2.2.7, spanning AI, knowledge based approaches and tool support.

The focus in the next Section is the various aspects of component selection.

2.2.1 Characterisation and Specification

Descriptions of components are required to facilitate discovery and allow a shortlist of

possible matches to be created. This information can contribute to the evaluation of

the candidates; however further information is likely to be needed. In similar applica-

tions, the description of resources are standardised through schemas to hold metadata.

There is a long history of cataloguing information through standardised systems such as

MARC27 and Dublin Core28. However, there is no standard for the documentation of a

component. This creates difficulties when trying to compare components based on the

vendor’s ‘shipping information’. Vendor and repository information is based on an inter-

nally developed data model - complicating comparisons across repositories if the models

do not match.

A common discovery mechanism is the use of search engines on free text, such as

Google29. Cechich et al (2006) indicate that current shortlisting is based on unstructured

information on the web, which does not align well with complex selection criteria. If

given a list of components, this may mean the ones higher on a list are chosen. It is not a

trivial task to select the best component as there will always be differences between the

resultant components based on the programmer/designer’s view of the problem space.

Repositories such as Component Planet30 provides a search mechanism which sorts the

components in order of previous sales, and includes a customer rating system to assist

in selection of components. However, these orderings are based on the requirements of

other organisations and may not be useful or valid in the target context.

Early work in software reuse applied faceted classification to the characterisation of

software, to aid in-house retrieval (Prieto-Diaz, 1991). Although work continues on this
27MAchine-Readable Cataloging - http://www.loc.gov/marc
28http://dublincore.org/
29http://google.com/
30Site has since closed - http://www.componentplanet.com/

57

2.2. COMPONENT SELECTION

approach (Kaur and Goel, 2011), Cechich et al (2006) survey component characterisa-

tion and asserts that there is a move from faceted classification and taxonomies, towards

ontologies. They propose the need for standardisation of component identification, nota-

tion and frameworks. Since the early work of Frakes and Pole (1994), Sassi et al (2003)

include a survey of eight models, noting missing elements in each, including information

on vendor, functionality, non-functional attributes, cost, domain, architectural features.

Across all characterisations there was no information on dates for first and most recent

release, and change frequency.

Key points: From this discussion, gaps remain in the characterisation of compo-

nents, particularly in the lack of a standardised specification. To allow discovery to make

more complex, structured queries on knowledge bases, ontologies are being applied. On

a basic level, however, the data model - basic recorded information - is yet to be stan-

dardised.

2.2.2 Selection Processes

A defined process for selection is required for repeatability and is particularly important

if building strategies to improve selection. Mohamed et al (2007a) provides a diagram

(see Figure 2.13) of the evolution of selection practice, many of which will be described

in this Section.

One of the earliest formalisations of software selection was Off-The-Shelf-Option

(OTSO) (Kontio, 1995). This introduced the use of hierarchies of selection criteria elicited

using Goal/Question/Metric (GQM) (Basili et al, 1994) and evaluated using the Ana-

lytic Hierarchy Process (AHP) (Saaty, 1990), which was adopted in many subsequent

processes including STACE (Kunda and Brooks, 1999) and CAP (COTS Acquisition

Process) (Ochs et al, 2001). The AHP was developed by Saaty and is based on hierar-

chical decomposition, pairwise comparison and priority vector generation and synthesis

(Mohamadali and Garibaldi, 2009). In the Procurement-Oriented Requirements Engi-

neering (PORE) approach (Ncube and Maiden, 1999), an alternative evaluation method,

outranking, was described, with the authors later publishing a paper outlining the lim-

itations of the commonly used approaches, including AHP and Weighted Score Method

(WSM) (Ncube and Dean, 2002).

The PORE approach provides an overview in Figure 2.14 for a process developed

58

CHAPTER 2. REVIEW OF LITERATURE

Figure 2.13: Evolution of COTS selection practices (Mohamed et al, 2007a)

to respond to lessons learned in a UK Ministry of Defence project (Ncube and Maiden,

1999). Key attributes are: knowledge engineering techniques; feature analysis; MCDM

techniques; and design rationale techniques to record and aid the decision process. In

PORE, selection is an iterative process of rejection, reducing the list of candidates as

seen in Figure 2.9. COTS-Based Requirements Engineering (CRE) (Alves and Castro,

2001) focusses on systematic, repeatable requirements-driven COTS software selection

process. The method provides templates and guidelines for iterative rejection of candi-

dates (as in PORE). The CRE provides criteria targeted at non-functional requirements

and situation rules deal with conflicting requirements. Scores are generated by WSM,

with AHP suggested for more complex tasks.

The Evolutionary Process for Integrating COTS-Based Systems (EPIC) uses a risk-

based spiral development process as four spheres of influence are adjusted based on

available components (Albert and Brownsword, 2002). EPIC has four phases: inception,

elaboration, construction and translation. There are three process components in the

59

2.2. COMPONENT SELECTION

Figure 2.14: PORE route map (Ncube and Maiden, 1999)

COTS Acquisition Process (CAP) (Ochs et al, 2009): CAP Initialisation Component

(CAP-IC), CAP Execution Component (CAP-IC) and CAP Reuse Component (CAP-

IC) (Figure 2.15). This method uses over sixty metrics based on the ISO 9126 standard

for product quality, and is supported by expert interviews, literature reviews and applied

research activities. The developers of PECA list five evaluation mistakes affecting quality

and traceability: ‘inadequate level of effort; neglecting to re-evaluate new versions or re-

leases; use of ‘best of breed’ lists that do not reflect the characteristics of the system; lim-

ited stakeholder involvement; and, no hands-on experimentation’ (Comella-Dorda et al,

2002; p. 86). The four basic elements are: Planning the evaluation; Establishing the

criteria; Collecting the data; and, Analyzing the data (see Figure 2.4) which is a means

for evaluation and is not always executed in sequence. The process is open to respond to

new criteria, unexpected discoveries or the need for better data. PECA has three main

outputs: product dossier, evaluation record and summary/recommendation.

Kotonya and Hutchinson (2005) have developed a method with a cyclic process (Fig-

ure 2.12) which includes verification and negotiation in each cycle, allowing iteration

until a match is found. The shortest use of the Kotonya process would unroll to three

iterations: requirements, design and composition, but it is possible to have multiple visits

to each of the development tasks and revert to the previous task if needed.

60

CHAPTER 2. REVIEW OF LITERATURE

Figure 2.15: CAP components, internal and external information-flow (Ochs et al,
2009)

Once there is a range of components to match a given requirement, it then becomes an

issue to select the ‘best set’ of components for the task at hand. This may be optimised

for efficiency, security, ease of integration etc. Early work in this area included K-BACEE

- a system for selecting the best ensemble of components based on a weighting of their

performance against certain criteria (Seacord et al, 2001).

In Sassi et al (2004), the authors give an abstracted view of a number of CBSE

processes representing the tasks common to many processes to facilitate comparison. In

the diagram (Figure 2.16) the sources for discovering COTS are listed as the input to

‘Identify potential COTS’, which iterates to refine the search criteria. From there, arcs

representing selection methods move to the ‘Select on COTS’ action. From this state,

the component can be integrated by architectural framework or direct composition, or

the task may be abandoned. There may also be a need to return to select a different

component. Once integrated, checks can be conducted for errors, side effects or interface

propagation analysis. With this lens, it becomes clear that there is a common basic

process across the literature and that the differences are in the choices of arc to transition

between states.

Martinez (2008) carried out an analysis of COTS selection approaches, forming a

summary table (Figure 2.17). The comparison factors include whether the methodolo-

gies incorporate various dimensions: searching (SEARCH), characterisation (IDENT),

evaluation (EVAL), selecting single or multiple components (SNG/MLT), provide for

reuse (REUSE), can be tailored (TAILOR), have tool support (TS) and the roles that

61

2.2. COMPONENT SELECTION

Figure 2.16: CBD process modeled with the MAP (Sassi et al, 2004)

are considered (CVR: MW, QE, S, KK31). The assessment is that there is still a need

for: approaches with full coverage of dimensions; mechanisms for documenting COTS;

mechanisms for search and identification; and a mechanism for knowledge management

and reuse.

Key points: While there are a wide range of selection processes published since

1995, few have automation or support for reuse or for searching for components. Many

processes use the AHP or similar approaches. Most are complex to understand, and

it is difficult to see how they integrate with the wider development process, and the

organisation.
31MW = market watcher, QE = quality engineer, S = selector, KK = knowledge keeper

62

CHAPTER 2. REVIEW OF LITERATURE

Figure 2.17: Comparing some representative methodologies dealing with COTS selec-
tion (Martinez, 2008)

2.2.3 Metrics for Evaluation

Evaluation is driven by the requirements, with some processes including requirements elic-

itation (e.g. PORE). It is closely linked to the characterisation of the components, which

comes from the component developers and brokers, whereas the requirements are defined

by the application developer. Requirements can be divided into functional and non-

functional, referring to the behaviour and implementation in functional requirements and

attributes including trust, reliability, vendor history and security on the non-functional

side. The metrics used in selection processes may be unique to each selection task, or

there may be a template to use as part of the process. A common approach to moving

from requirements to metrics is to use the GQM approach (Basili et al, 1994). This gives

a customised hierarchy of criteria and metrics for each selection task.

Reusability metrics for black box components has similarities to those from object-

orientation, however they require a considerably different approach (Washizaki, 2003).

They define five metrics targeting enterprise Java Beans (EJB) which are combined into

and overall metric. (Gui and Scott, 2006) considers static measures of coupling targeted

at a Java component search engine, formalised in OCL (Object Constraint Language).

(Gill, 2004) presents an interface complexity metric based on interface signature, interface

constraints, interface packaging and configurations. Serban and Vesca (2007) provide

63

2.2. COMPONENT SELECTION

metrics for CBSD where the component assembly is represented as a directed graph of

dependencies. The CBC metric is the number of components with which a component

is coupled. From this, chains for depth dependence and breadth dependence can be

developed. Unfortunately, many of these metrics require source code for their calculation.

Thus, unless the code is provided by the developer or vendor, they cannot be assumed

for third party components.

Gill and Grover (2004) state that many traditional software metrics are inappropri-

ate for CBS as the focus should be on granularity and interoperability aspects. They

put forward granularity, adaptability, interoperability and interface complexity as more

useful metrics. Some metrics are limited in applicability due to the black box nature

of components and the variation in the structural complexity that is dependent on the

target context. Suggested metrics are: interface complexity, size, portability, integra-

tion complexity, test coverage, semantic complexity, reliability, functionality, customer

satisfaction, resource utilisation, cost, time-to-market and incremental delivery.

Sedigh-Ali et al (2001) provide some SE metrics for COTS-based systems, aiming

to quantify component quality. In addition to the traditional software metrics (Cost,

Quality, Reusability and Risk) COTS require integration complexity and performance to

be considered. Third party software creates new risks due to unpredictable quality and

this may affect performance, reliability, adaptability and ROI (Return on Investment)

(Sedigh-Ali et al, 2001). System-level metrics are in three categories: management;

requirements; and quality, while costs of resources to improve quality include appraisal,

prevention, internal failure and external failure costs.

ISO/IEC 9126 provides a framework for the evaluation of software quality, defining

six quality characteristics: functionality; reliability; usability; efficiency; maintainability;

and portability (InternationalStandardOrganization, June, 2001). The standard clarifies

quality terms to improve communication and reduce misunderstandings between producer

and supplier. Quality models for components have been put forward by Alvaro et al

(2005b) and by Andreou and Tziakouris (2007), both based on a modified ISO/IEC

9126.

The standard is also the basis for the Carvallo et al (2004) quality framework to

support COTS evaluation. They reuse existing quality models, have patterns for reuse

and tool support as part of the COSTUME method. In their later work (Carvallo and

64

CHAPTER 2. REVIEW OF LITERATURE

Franch, 2006) they propose extensions to the ISO/IEC 9126-1 quality model with non-

technical factors for COTS selection including supplier, cost and product categories,

subdivided into over 200 non-technical quality attributes (e.g. Product > Stability > Time

in Market). The metrics are arranged into a hierarchical tree-like structure which can

be used for identification of mismatches, potential risks, estimating budget and schedule

and analysing the viability of the project. Sharma et al (2008) surveyed quality models

for component and non-component systems and put forward a hierarchical approach

(demonstrated using AHP). In an industry application, Choi et al (2008) show the use

of a quality model for embedded software at Samsung.

Another focus is taken by Ding and Napier (2006) who provide a measurement frame-

work for risk in CBSD considering two stakeholders - the vendors and the customers.

They provide risk measurement tables for the vendor including marketing, management

and development categories, while the customer has application use, application man-

agement and competitive advantage risks.

McGregor et al (2003) put forward the Component Reliability measurement method

(CoRe) for empirical reliability measurements. The definition of CoRe includes probabil-

ity (% of correct executions), operational profile/context and duration. Each component

in the system plays a ‘role’ in the overall system tasks, which makes up the operational

profile. They create and execute a test suite for each role, then analyse it. CoRe is a

part of PECT.

Serban and Vesca (2007) models the component based system as a dependency graph,

then applies measures for coupling, depth dependence and breadth dependence.

Key points: There is no standard set of metrics related to evaluating components.

Some existing (pre-CBSE) metrics are not applicable, while more focus on vendor, reli-

ability, granularity, adaptability and performance are advised. In component selection,

some of these values would be supplied by the repository metadata, and some would be

generated through the results of the evaluation. Some gaps in vitality measures have

been shown.

2.2.4 Evaluation Methods

Given a set of attributes, the requirements and the values presented by a particular

component, the screening or shortlisting process needs to combine the data to create

65

2.2. COMPONENT SELECTION

a ranking or recommendation. Much of the literature uses the Weighted Sum Method

(WSM) to aggregate a value by summing attribute weights multiplied by their respective

values (Solberg and Dahl, 2001, Alves and Castro, 2001). Criticism of the WSM includes

the summing of differing types of data (e.g. cost plus memory plus quality), lack of

process for determining attribute weights and the inherent problem with the formula

losing dependency information between attributes (e.g. conflicts and co-requisites).

A commonly used alternative is the AHP, which includes a method for determining

weights and component scores against attributes (Kunda, 2003, Kontio, 1995, Ncube and

Maiden, 1999). These scores are based on pairwise comparisons, and thus use the same

‘units’, even when combining qualitative and quantitative data. Features of the AHP are

that it organises the criteria into a hierarchy (e.g. group quality attributes as subnodes

of the quality node) and that scores can be consistency checked. Disadvantages are the

number of pairwise comparisons (and therefore time) required and that the interplay

between the attributes is lost as the final aggregation is essentially the WSM formula. A

technical criticism of the AHP is the rank-reversal problem, which can be addressed by

using a multiplicative formula for aggregation (Triantaphyllou, 2001).

The common problems with WSM and AHP stem from the assumption that at-

tributes are independent, resulting in compensations in scores and ‘passing’ unworkable

combinations of values (e.g. .NET with Linux). Another option for COTS and compo-

nent selection is the outranking approach using the ELECTRE family of methods (Roy,

1991). These methods rank each candidate on each attribute and determine an outrank-

ing relationship to categorise attributes into those preferred and those non-preferred. As

with the AHP, comparisons are made between candidates on each attribute, removing

the issue of units and attribute types. Although it has been successfully used for software

evaluation (Anderson, 1989, Morisio and Tsoukiàs, 1997), there are issues with explain-

ing the reasoning for decisions and that a complete ranking may not be possible (Kunda,

2003).

Key points: A range of approaches have been considered in evaluation, many of

which are based on WSM and AHP. Other ranking mechanisms have been used, while

there are also options in computational intelligence to be explored.

66

CHAPTER 2. REVIEW OF LITERATURE

2.2.5 Testing

In Section 2.1.4, the approaches to component testing, and some of the challenges were

discussed. In this section the focus is on test generation for the evaluation of the com-

ponent. Regression testing is also discussed as it is relevant for evolution, and perhaps

when testing alternatives.

There are many approaches to test generation for components, depending on the in-

formation available to the tester. Bertolino (2007) lists three approaches: model-based,

random and search-based, while Gao et al (2002) puts forward usage, error and fault-

based testing. Cechich and Polo (2002) identifies equivalence-based, error guessing and

random testing as appropriate, Briand et al (2006) adds category partitioning, CSPE

(Constraints on Succeeding and Preceding Events) constraint-based, testing logical ex-

pressions, statechart and metadata. Within testing logical expressions, approaches in-

clude predicate coverage, combinatorial coverage (exhaustive), implicant coverage and

Prime Implicant Coverage (PIC). Briand notes that there can be issues with the level of

detail in statecharts and scaling techniques when they become large. In some cases, a

model or specification of the component can add to the testing options.

From a testing perspective, components can be characterised by their interfaces, op-

erations, events (external), context dependency relationships and content dependency

relationships (Wu et al, 2003). The relationships may be derived from UML diagrams

with context coming from collaboration, sequence and statechart diagrams and content

from collaboration and statechart diagrams. Cechich and Polo (2002) applies reverse

engineering of code and interface probing as two methods of enhancing black box under-

standing.

Aspects may be used to correlate to the services that sub-groups of components may

require from each other, for example user interface aspect (Grundy, 1999). In Cechich

and Polo (2002) test selection is based on mapping methods to one or more aspects

to provide a systematic approach for coverage of methods. This allows aspect specific

information, such as pre/post conditions to be considered across all methods in an aspect.

They note that once aspects are identified, traditional techniques for black-box testing

can be applied. Their example uses category-partition and metadata to produce test

frames. The approach can also be applied to integration testing.

Briand et al (2006) focus on the contractual specification of component interfaces.

67

2.2. COMPONENT SELECTION

The approach is to combine constraint types and predicate criteria into fourteen CSPE-

based test adequacy criteria. The user view is supported via required methods and

required constraints. They automate the generation of tests by representing constraints

in a graph, with the costs associated with each arc, then traverse the graph (using DRPP)

and compare cost based on size of the test suite in terms of number of methods executed.

Regression testing is ‘the selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system or component still

complies with its specified requirements.’ (IEEE 610.12). Zheng et al (2006) utilise

impact analysis for regression testing. The premise is to safely reduce the amount of

testing required when components change. I-BACCI takes old/new binaries and source

and tests for an application and generates the impact analysis. Firewall analysis (White

and Leung, 1992) helps limit the regression testing by only testing within the firewall

and running integration tests across the firewall. Their approach identifies changes,

then propagates them along the call graphs to identify affected glue code. Test cases

are then chosen for glue code. In Gao et al (2006), a systematic re-test method for

components is proposed. Four step process given for assessing change impact, using a

firewall approach. The approach provides automated black box selection for reuse and

test suite refreshment, based on extensive metadata to support models. Orso et al (2001)

have techniques to use metacontents for regression test selection in two ways - code-based

or specification-based. Control flow graphs are used with the new and old being compared

via synchronous traversal.

Bergner et al (1999) uses formal models for specification-based test generation for

component systems. Instances in the model include components, interfaces, connections,

relations and properties. The work is based on UML diagrams including state transition

diagrams, instance diagrams, sequence diagrams. Another useful activity is to support

test stub generation to represent the clients and servers for the component under test

(Rocha and Martins, 2008). The driver coordinates test executive in terms of inputs,

outputs and results. The researchers provide a static, model-based approach to stub

generation. They propose the use of activity diagrams which are: turned into a graph;

paths are selected; test cases specified; inputs identified; and test cases are implemented.

Hamlet (2007) discusses the potential value of a theory of composition of components

based on descriptions in a catalogue, then static assessments can be done. This work

68

CHAPTER 2. REVIEW OF LITERATURE

sets up foundation for testing theory and notes the difference between what a component

should do and what it does do.

Key points: Testing techniques for third party components are limited to black-box

techniques, often with little more than interface information. Some documentation may

be provided with each component and may give more options (e.g. specification-based

testing). Techniques for isolating which part of the system to test (e.g. firewall) may

also inform testing for component evaluation.

2.2.6 Quality

An underlying barrier to using third party components is a question of quality and

trust. Ratings are a mechanism for giving confidence. These may be informal from

individuals, or be the result of a more formal process. One path to a rating is through

quality-related metrics, such as those by Alvaro et al (2005b), Andreou and Tziakouris

(2007), Sharma et al (2008) and McGregor et al (2003). Other approaches are through

certification, contracts, self-testing components and availability of source code, to give a

level of guarantee of quality. Most of these rely on dynamic testing of components by

the developer, user or a third party organisation.

Software certification has many flavours. For some, it should be done by certifying

the organisation and its processes, implying a high quality product results from high

quality processes. This is advocated by users of the Capability Maturity Model (CMM)

developed by the SEI and in a more general sense, the ISO 9000 standard. Others see

this as a flawed argument and advocate that the product should still undergo full testing

before it can be certified. Voas (2000) puts forward a model for certification to take place

remotely, after deployment.

In 2000, SEI listed ‘lack of certified components’ as the third of four inhibitors to

adoption of component technology (Bass et al, 2000). Alvaro et al (2005b) cites literature

that certification as a precondition for CBSE to be adopted in the large. Certification can

be carried out by: developers (first party), users (second party) or an independent testing

lab (third party), according to Councill (1999). Voas (1998b) describes a certification

triangle for the three aspects that can be assessed - product, process or personnel.

Voas (2000) advocates separation of certification from software development. He

puts forward three techniques that focus on rare conditions from the system perspective;

69

2.2. COMPONENT SELECTION

desirable behaviour testing; abnormal testing; and fault injection.

A historical perspective on certification splits the field into two ages, as shown in

Figure 2.18. Prior to 2001, the focus of certification was on mathematical and and

test based models, whereas later work looks at predicting quality requirements (Alvaro

et al, 2005b). Wohlin and Runeson (1994) provide a usage model and usage profile to

carry out usage tests and provide a certification of reliability with a degree of confidence.

The Trusted Components Initiative (TCI) developed an approach using pre and post

conditions on APIs (Meyer, 2003). Voas (1998a) defined a certification framework using

black-box testing, system level fault-injection and operational system testing - to assess

the component and its behaviour in context.

Figure 2.18: Research on software component certification timeline (Alvaro et al, 2005b)

Entering the ‘second age’ of certification in 2000, the focus changed to include new

properties (Alvaro et al, 2005a). Woodman et al (2001) provided requirements appli-

cable to certification: accuracy, clarity, replaceability, interoperability, performance and

reliability. Two main directions for certification are formalism and component quality

models - which Meyer (2003) refers to as the high road and the low road.

Aimed at mass-market software, the independent certification in this model is carried

out by Software Certification Laboratories (SCLs) which receive testing data from actual

users, providing access to higher numbers of test results using real world data. An

alternative, aimed at the smaller end of the market, is to ship test certificates with the

component (Morris et al, 2001). The application developer can then run and verify the

70

CHAPTER 2. REVIEW OF LITERATURE

results of the included tests against the component to make their own assessment. A

draw-back of certification is that it ignores the target context, testing the component in

isolation. Although, this provides confidence that a component meets its specification,

application developers will still need to thoroughly test the component in their specific

environment.

Bader et al (2003) attempt to identify aspects and features that can be classified as

trust attributes (list includes vendor reputation and customer loyalty). They note that

trust in components has a relationship to testability and is inversely related to risk. Also

noted is the difference between vendor and consumer views on trust and the importance

of non-functional attributes in building trust. Attributes identified include:

• Functional specification - perhaps extend design by contract

• Non-functional specification: NFR and QoS, dependency requirements, reputation,

support

• Degree of associated risk

• Time and usage history.

Bader et al (2003) suggests the publication of trustable components using wrappers

via brokers. This could then use a contract generator to build a usage contract for the

wrapped components. Wu et al (2003) are interested in performance-sensitive properties

to be stored in repositories for use in predictive models for a product. The use layered

queuing networks for behaviour prediction.

Taleghani (2007) is working on the use of software model checking to verify the prop-

erties of software. This allows the state-based search strategies for software verification

to be used as a reduced set for certification. Developers can supply a model, rather than

code for the certification process.

A survey of the state of the art in component quality evaluation has described it as

an immature area (Alvaro et al, 2005b). They later put forward a Certification Quality

Model (Alvaro et al, 2010) including four levels: characteristics > sub-characteristics >

attributes > metrics. Sub-characteristics are grouped into life-cycle and runtime with

additional information including technical and organisational information. The metrics

framework used is an implementation of GQM.

One of the issues when rating components is the overhead of compiling the ratings

71

2.2. COMPONENT SELECTION

and carrying out assessment. Recommender systems make use of collaborative filtering to

select items that may be of interest to a user. These are widely used in online repositories,

with Amazon being a leading example. Adding value to this, users of the system can

rate entries, which are aggregated and viewed by others. Massa and Avesani (2009) puts

forward a system where trust can be established through social interactions, then used

to select collaborations and services. This crowd-sourcing is widely used and accepted

for software selection in Appstore.

Key points: A range of approaches to quality in CBSE have been discussed, which

should, in turn, improve trust in the reuse of third party components. For some, quality

processes are the path to quality products; others have developed quality models to

provide metrics for assessment. A more direct and formal approach is the certification

of software products, requiring certification bodies, metrics/models and the request for

certification. In an era of crowd-sourcing, some repositories collect user ratings which

can be used as a quality indicator. Others build in self-testing and contracts to give

developers confidence.

2.2.7 Automation, Intelligence and Tool Support

Automated software engineering is inherently knowledge-centred (Pedrycz et al, 2011),

with two main camps in qualitative and quantitative approaches. A survey of mining soft-

ware engineering data discusses the transition from using qualitative data for verification,

to applying quantitative techniques to discover hidden information in data repositories

(Mendonca and Sunderhaft, 1999). Briand (2002) discusses how knowledge engineering

can support software engineering in the areas of: planning and monitoring; quality and

process; decision support and automation. Briand’s definition of knowledge engineering

encompasses the use of artificial intelligence, computational intelligence, knowledge bases,

data mining and machine learning. Mining techniques include classification trees, asso-

ciation discovery techniques, clustering techniques, artificial neural networks, optimised

set reduction, Bayesian belief networks, visualisation and visual data mining (Mendonca

and Sunderhaft, 1999).

Computational intelligence is a coherent and symbiotic collection of information tech-

nology including fuzzy sets (granular computing), neural networks and evolutionary com-

puting (Pedrycz et al, 2011). The authors provide examples of computational intelligence

72

CHAPTER 2. REVIEW OF LITERATURE

applications including fuzzy models of software processes; neural networks in data visual-

isation, and logical models of software quality. An emerging area is search-based software

engineering, which reformulates software engineering as a search problem through repre-

sentation of the problem, fitness functions for preferred solutions and a set of manipu-

lation options The data for search-based software engineering is made available through

recording metrics across processes (Harman et al, 2009).

The combination of the limitations of current methods for evaluation, improving

repository and discovery options and greater uptake of CBD, has led a drive for au-

tomated tool support to aid software selection. Ruhe (2002) compared ten selection

processes published up to 2003 and stated that none of them were ready to be included

in a decision support system. Key to automation is the characterisation of components,

pioneered by Prieto-Diaz (1991) and now more market-driven by metadata utilised by

repositories. This characterisation often includes substantial ontologies such as the Trove

in freshmeat (freshmeat, 2007). In many cases, software selection relies on a search en-

gine, some search terms and the user’s patience to trawl through results. This manual

process entrusts the search engine algorithm to order the results and then the users to

make a comparison based on their criteria, evaluation and intuition. However, for those

requiring quality in their software selection it is important to have objectivity, repeata-

bility and transparency in the selection process.

The major visual tools to support CSBE are composition environments and decision

support tools. SCARLET (Maiden et al, 2003) provides an integrated process support

for the selection process. The tool is integral to the SCARLET process to achieve four

decision making goals: acquire information; analyse information; use information for

decision; and reject non-compliant candidates. Voinea and Telea (2005) uses information

from a CVS to provide a visual interpretation of the evolution of a component-based

system.

Examples of visualisation related to CBSE is the baseline characteristics and values

in Figure 2.19, and the CLARiFi graph, which helps the user understand performance

against selection criteria (Figure 2.20). COMPOSE (Kotonya and Hutchinson, 2005) pro-

vides a visualisation to assist impact assessment for a particular change to a component

(Figure 2.21).

73

2.2. COMPONENT SELECTION

Figure 2.19: The baseline estimation principle (Kontio, 1995)

Figure 2.20: Example of graphical interface to collect integrator’s data (Clark and
Clark, 2007)

74

CHAPTER 2. REVIEW OF LITERATURE

The use of AI techniques for retrieving code and software artefacts from repositories

includes the application of rough-fuzzy sets (Rao and Sarma, 2003), neuro-fuzzy search

robots (Kuo et al, 1999), fuzzy-subtractive clustering (Nakkrasae et al, 2004) and entropy-

based fuzzy k-modes (Stylianou and Andreou, 2007). These help to sort the software into

clusters based on their descriptions.

Other work focuses on providing tool support for searching. Maracatu is a tool

for search and retrieval for software developers based on faceted information including

platform, component type and component model (Garcia et al, 2006). Brou (2005)

implements a search tool which utilises XML descriptions and XQuery to allow browsing

of a repository by field.

Figure 2.21: Status of the decision support system after two settings (Kotonya and
Hutchinson, 2005)

Andreou et al (2006) encodes components for classification in binary strings repre-

senting all characteristics of interest. A genetic algorithm is used to discover several

different classifiers, which can be used to match components with similar characteristics

up to a set threshold (e.g. 40%). The classifiers were tested on a generated dataset of

1000 components.

Mohamed et al (2007b) have developed the MiHOS tool for handling mismatches in

COTS selection. It provides a portfolio of qualified solutions and provides interactive

75

2.2. COMPONENT SELECTION

decision support. For criteria, the authors suggest OTSO or Incremental Quality Model

Construction (IQMC). Provides a measure of mismatch which can be focussed on a

specific attribute, for example security. Neubauer and Stummer (2007) modify OTSO,

replacing AHP with multi-objective decision support. The approach gives a visual tool

to allow the selective exploration of thresholds on criteria and their impact on the values

of other criteria in the remaining candidates. The thresholds can be seen in Figure 2.22

across six criteria.

Figure 2.22: Status of the decision support system after two settings (Neubauer and
Stummer, 2007)

Andreea Vescan and Grosan (2008) uses an evolutionary approach for multi-objective

view of component selection. Dependencies are handled by ensuring that all individuals

in the initial population satisfy them. Encoded as a string of requirements, they can be

applied to a set of components. They use a greedy algorithm and evolutionary techniques

on the ‘chromosome’. Lill et al (2005) developed the CoExSel to support trade-off analysis

between functionality, costs, reliability and time to market. Component searching is

based on matching individual requirements with those in repositories. Provides facility

for adding experience data to the component record. Uses formulae from the literature

for estimating costs, reliability and effort (time to market) and black box java classes

76

CHAPTER 2. REVIEW OF LITERATURE

and packages for evaluation.

One of the areas where computational intelligence has been applied is in the retrieval

of components from in-house and open source libraries. In some cases this requires

a formal specification to allow classification, for example Z notation and component

modelling technique (CMT) (Nakkrasae et al, 2004). Their reuse model is made up

of a repository of formal specifications of components and retrieval mechanisms based

on a component similarity value. Brou (2005) queries open source program libraries

using XML and UML descriptions. Doxygen software is used to generate information

on internal structure, which is possible with source-code available in OSS projects. A

domain thesaurus is used to create an XQuery request for retrieval.

Kuo et al (1999) note the issue of semantic vagueness and multiple interpretations in

software engineering decision making. They apply neuro-fuzzy models to create a search

robot for personalised software component retrieval. It relies on keyword translation

and supervised learning with user input. Fuzzy neural networks are used to provide an

adaptive thesaurus. Nakkrasae et al (2004) use a formal specification of components (Z

and CMT) to allow fuzzy subtractive clustering to group components in the repository.

They define a component as X = {S,F,B}, structural, functional and behavioural, each of

which is multidimensional. Rao and Sarma (2003) works on an in-house repository. They

use case-based reasoning on eight attributes with linguistic variables on each, one of which

is ‘specification’. The candidates are grouped into equivalence sets based on rough-fuzzy

membership values. Stylianou and Andreou (2007) use fifteen categories/attributes from

(Andreou et al, 2006) and look at part of the repository selected using entropy-based

clustering. These entries are clustered using a fuzzy k-modes algorithm.

Key points: There has been some work on tool support for component selection,

primarily around the use of AHP and visualising decisions. Computational intelligence

is being applied to the retrieval of components from libraries, however they are usually

in-house and source code-aware.

2.3 Critique

There have been a number of published processes for component based development,

and even more for selecting COTS and software components. There is no indication

77

2.3. CRITIQUE

that any of these have become preferred by industry. This is supported by the study

by Li et al (2005), which indicates that most companies do not use a formal process for

component selection. The question is then, why are they not being used and what needs

to change to increase uptake? It is well know that architectural mismatch has been an

emergent difficulty in CBSE (Garlan et al, 1995). Kotonya and Hutchinson (2005) state

that the nature of CBSE requires that the selection process be documented. In an area of

greater challenge than in-house non-component-based software engineering, a systematic

approach must be taken to software development - so to have no process is not an option.

The survey by Li et al (2005) indicates most companies are using traditional software

processes, with no adjustment for the use of OTS. The most common approaches for

discovery of COTS included: searching the Internet, taking customer suggestions (which

may be a constraint) and hands-on trials of a few candidates. It is difficult to say how

representative the sample is; however it seems feasible given other issues with component

selection. The exception to this may be where in-house processes are mandated by the

organisation, as in the case of SEL at NASA (Morisio and Tsoukiàs, 1997).

The Navarrete et al (2005) study indicates that the agility of published processes

is not high. As agile methodologies increase in popularity, this would flag a clash of

development approaches. Rifkin (2003) suggests that this in itself would cause problems

as the successful adoption of a new process depends on how well it fits with existing

procedures in the organisation.

There may also be a social aspect to this lack of uptake: developers are used to

searching the Internet for recommendations for many problems they face, and thus have

taken to a quick search and information from some trusted sources to short-cut through

a thorough selection process.

A further issue, or a related one, is the time it takes to go through a thorough, manual

process. In Kontio (1995), which is the basis for many selection processes, the selection

is manual, with a team of people each considering a volume of pairwise comparisons.

In Ruhe (2002) the author evaluates the readiness of ten published CBSE processes for

using Decision Support Systems (DSS). In essence, the processes are too manual to use,

and are not geared for automation and DSS.

Many of the selection processes allow for internal iteration as requirements and selec-

tion criteria are adjusted as the result of tradeoffs (Comella-Dorda et al, 2002, Kotonya

78

CHAPTER 2. REVIEW OF LITERATURE

and Hutchinson, 2005). Fewer of the papers refer to the need to return to the process

in the maintenance stage, with Reifer et al (2004) listing the maintenance lessons sur-

rounding COTS. While Kotonya and Hutchinson (2005) focus on the impact of change

in COTS systems, there is little support for the developer in the return to the selection

process.

Components are part of a culture of reuse of which repeatable, reusable processes are

a part. In Sassi et al (2003), a range of processes are taken through a mapping lens to

assist in selecting the right process for a given selection task. Processes will vary from

task to task as criteria change for each software acquisition. The most similar instances

of a process will be the original selection and any subsequent maintenance re-selection,

which has not been addressed in the literature.

Key to discovery and automation of tasks is a description of the requirements and

of the candidate components. In this case, industry leads with the schemas developed

to describe the software in their repositories (Christiansson and Christiansson, 2004).

Although there is no standard amongst the repositories, it is possible to gain an un-

derstanding of what industry and users consider valuable information when looking for

software. Characterisation has been discussed in the literature, and includes formalisa-

tion of descriptions for repositories in Nakkrasae et al (2004) which is suited for in-house

use, but unlikely to be adopted by industry.

There have been criticisms of the techniques used in component selection. Ncube and

Dean (2002) considers WSM and AHP and the reasons they are not advisable for the

aggregation of component scores. Although alternatives have been put forward, including

Outranking (Ncube and Dean, 2002) and mathematical programming (Neubauer and

Stummer, 2007), there is a danger of increasing complexity and reducing understanding

from the user perspective.

A key issue in CBSE is architectural mismatch (Garlan et al, 1995). This reinforces

the need for context in the shortlisting of components, while Weyuker (1998) argues that

all components should be tested, and tested in context.

Some work applying AI and automating processes has taken place. Of existing pro-

cesses, Ruhe (2002) would indicate they are not suited to automation, although that

is what is need for those selecting components. More can be done, particularly if the

underlying process is developed with AI and automation in mind. Understandability can

79

2.4. SUMMARY

also be improved with tools, with a few processes including some visualisations - again,

more can be done.

With consideration of the preceding discussion, the following aspects are considered

gaps in the component selection literature and practice:

• Lack of a standard specification

• Lack of uptake of existing processes

• Lack of support for system evolution (revisit selection process)

• Wide use of basic and possibly unsuitable techniques

• Need for context to be central

• Few tools for automation and decision support.

These will be the guiding issues for this study as the strategies are developed to support

component selection.

2.4 Summary

This chapter has reviewed the CBSE literature along with the literature considered rel-

evant to the research problem. The key issues that the investigation addresses are:

specification; suitability of process; support for evolution; alternatives to aggregation;

support for context; and, tool support. These align to the four Research Elements. The

following chapter discusses the methodology used to carry out the investigation.

80

Chapter 3

Research Procedures

This chapter outlines the approaches used to develop, implement and evaluate strate-

gies for software component selection. The four research elements under investigation

drive the choices described in this chapter. An outline of the philosophy, approach and

methodology is provided. The research takes an exploratory approach and employs a

mixed methodology which includes quantitative and qualitative research methods. An

adaptation of the Spiral Development Model provides the framework for the investiga-

tion including the development of the strategies for software component selection and

the implementation and evaluation of the solutions. The Spiral template used to plan

and guide the course of the work is given in Section 3.2, and is a contribution of the

investigation (C9).

The context of the research includes the component marketplace, literature and the

characteristics of the researcher. New and existing software used in the investigation is

the critical instrumentation for the work. Data collection and treatment are discussed to

describe the external data used in the project, and the processing and formats involved.

Evaluation of both the process and the product is undertaken at various levels of granu-

larity throughout the project: internal to each Spiral, at the end of each Spiral, and for

the overall investigation. A framework for this evaluation is described, and a summary of

the Spirals undertaken in this project is provided at the end of the chapter to illustrate

and preview the approach taken.

3.1 Methodology

All research is based on assumptions about reality, how it is perceived and understood.

81

3.1. METHODOLOGY

Scientific Philosophy: The investigation of questions that arise from reflection

upon science and scientific practice.1 is one approach to how we come to know about

the world.

Knox (2004) proposes a hierarchy of research needs in which the student must consider

all levels of the underlying philosophy, relevant paradigms, research methodology and

specific techniques used. Although there are patterns and traditions in the choice of

approach, each project must look at the applicable alternatives afresh.

For research at the doctoral level Knox suggests that critical analysis is required to

inform how the philosophy impacts on each element within the research process and the

relationships across the whole research process. Philosophy thus informs the researcher

through reflection upon their respective sciences and the paradigms existing within them.

As noted in Chapter 1, the problem being addressed in this research is:

What strategies and techniques can be developed to support the selection of

third party software components?

The four elements of this research build the specification and process, then focus on

strategies for selection and evaluation. They are listed in Chapter 1 and reiterated here:

• RE1: Development or extension of a template for the specification of components

• RE2: Development of a process for the selection of software components

• RE3: Investigation of and implementation of strategies for the shortlisting and

evaluation of suitable software components

• RE4: Evaluation of the effectiveness of the template, process and strategies via

case studies

The nature of the research question that underpins this work lies at a junction of

the disciplines of software engineering, computer science and information systems. Each

of these has evolved with some differentiation of axiology, methodology and ontology,

creating a complex environment for defining a specific philosophy or paradigm to explain

their particular environment. In light of these complexities, the approach, methodology

and methods for this study are informed by the following discussion of philosophy and

paradigms.
1http://www.answers.com/topic/philosophy-of-science

82

CHAPTER 3. RESEARCH PROCEDURES

A paradigm is the underlying assumptions and intellectual structure upon which re-

search and development in a field of inquiry is based (Kuhn, 1996). Since the publication

of Kuhn’s ‘The Structure of Scientific Revolutions’ in the 1960s, paradigm has been used

in science to refer to a theoretical framework - exemplars of how research is done in a

domain. Each paradigm is comprised of three parts, ontology, methodology, and axi-

ology (Kuhn, 1996). The ontology provides the language for the paradigm, the terms

for the objects and their relationships. Each paradigm has accepted methodologies and

techniques (such as experimentation within the scientific paradigm). Methodologies are

recognised ways to conduct a study within the paradigm, and are discussed in greater

depth later in this Chapter. The third component is the axiology, the rules for making

judgements and decisions within the paradigm. The axiology describes the value struc-

ture for the paradigm. This can be viewed along three dimensions: systemic, extrinsic

and intrinsic values (Hartman, 1969).

Research is carried out to help understand, explain and predict phenomena in the

Real World. Philosophies often used in scientific research are Positivism/Post-positivism,

Critical Theory, Pragmatism and Constructivism2 (Easterbrook et al, 2007). Multi-

disciplinary fields, such as computer science, software engineering and information sys-

tems are difficult to align to a single philosophy, with particular studies using a ‘best

fit’ to inform research methodologies. An alternative is to consider combined approaches

such as methodological pluralism or the use of methodologies from an ‘opposing’ philos-

ophy to add rigour or context (Knox, 2004). In mixed methods design, strategies from

different philosophies are used within a project to give a wider range of coverage and

fuller picture of the study than may otherwise be possible (Bonoma, 1985)

Positivism and Post-positivism have emerged in science and state that all knowledge

must be based on logical inference from a set of basic observable facts. The main dif-

ference between the two is the objectivity of the researcher to the study (Figure 3.1).

In Positivism (a.k.a. Realism), there is an assumption that an objective reality exists,

independent of the researcher (Crossan, 2003). Positivist research deals with measurable

behaviour and approaches a problem by breaking it down and understanding the parts.

For the positivist, empiricism - observation and measurement - are the core of scien-

tific research. The 1950s produced an alternative view to research, where all research is
2Constructivism and Interpretivism are considered interchangeable in some of the literature

83

3.1. METHODOLOGY

Figure 3.1: Positivism and Post-positivism

based on a view of the Real World. This Post-positivist (a.k.a. Anti-realist) movement

still believe in absolute truths, however all theories are provisional (Kuhn, 1996) as the

perception of reality is fallible. Falsification of theories is still considered valid, but for

the Post-positivist researcher all research must be considered in context. Observations

can be taken using multiple techniques to triangulate measurements, which may account

for errors and give greater confidence. Moving further from absolute truth, Interpre-

tivists consider all knowledge to be subjective and socially constructed, and rely on the

participants’ view of the situation (Creswell et al, 2003).

Each of computer science, software engineering and information systems has issues

identifying with specific paradigms, partly because each is an applied area of research.

Computer science aligns with the sciences and takes a positivist or post-positivist ap-

proach (Johnson and Onwuegbizue, 2004) with the expectation that researchers will

seek truth using the scientific method - exploring hypotheses through experimentation.

However, computer science can also be seen as a blend of science and engineering (Dodig-

Crnkovic, 2002) which is evidenced by the variation in faculty that computing schools are

placed in. Software engineering exacerbates the difficulty in classifying a discipline into

science or engineering in that a solved science problem becomes an engineering problem,

which may in turn become (or generate) science problems (Lázaro and Marcos, 2005).

The information systems aspect of software engineering might be expected to move away

from the science viewpoint. However, a survey of information systems journal papers

84

CHAPTER 3. RESEARCH PROCEDURES

from 1983-1998 found that 97% were considered positivist (Mingers, 2001). Paradoxi-

cally, Tichy (1997) reports that in computer science journals, around 50% of software

related articles had no empirical evidence for their claims. This confused state of affairs

is often attributed to computer science and software engineering being ‘young’ when

compared to traditional sciences. It may be that the real cause is the lack of flexibility

and applicability of the paradigms that are being applied. This may also contribute

to computer and information sciences recording the lowest PhD completion rates of all

study programs (after 10 years)3.

Although this study may resemble Post-positivism, it is important to also consider

whether a Pragmatic approach may fit better, aligning with a solution-oriented approach.

Creswell (2009) states that a Pragmatic approach is real world practice oriented, problem

centred and utilises a mixed methodology. This view is supported by Easterbrook et al

(2007) who states that pragmatists use any available methods to shed light on the issue

under study. Pragmatic views in science require little analysis of philosophy as the

researcher is free to choose a framework that best suits the outcome required, and this

drives the choices in the research methodology, strategies and outcomes. Pragmatism

supports pluralistic approaches: Creswell (2009) notes that several authors have utilised

pluralism in focusing attention on the research problem. While a Pragmatic approach

is partially able to capture the requirements of this research, the problem is complex,

requiring more than a straight forward problem-solution determination. Pragmatism

in this instance would reduce the ability of the researcher to show how the decisions,

artefacts and results found during the process of the study are as important as the

product of the study.

It could be argued that there is some alignment with the Easterbrook et. al. (2007)

definition of a Critical Theory view for this research question. He states that ‘research

is a political act’ and that it may be used to overcome societal obstacles. Thus, for

example, many users of software products are at the mercy of developers and producers

and would possibly be ‘emancipated’ through improved selection of third party software

components.

The research question fits best into a post-positivist view of science, as, although

there is subjectivity in interpretation of results and path of inquiry, the human factors
3http://www.phdcompletion.org/quantitative/book1 quant.asp

85

3.1. METHODOLOGY

are minor compared to the computation and data manipulation involved. There are

some aspects of the work that lean towards Interpretivism. In the beginning of the study

the researcher is not able to state in advance what will be learned. Knowledge will be

constructed as a response to information and processes that are encountered in a variety

of contexts, unknown at the beginning of the exercise. It requires the interpretation of

data produced over the course of the study, and utilisation of emergent ideas to inform

choices to progress the research. It is the focus of the research that puts the study as

post-positivist: it is the effectiveness of the selection strategies that will be evaluated, not

how they are chosen or accepted. The researcher remains open to techniques from other

philosophies, if they suit the area under consideration. Figure 3.2 provides a summary

of the philosophy and implications for framing the research that follows.

Figure 3.2: Research design used in the study

Having established that the study is not directly engineering a solution to a problem,

an approach is taken to ensuring that knowledge is progressively developed. This requires

establishment of discrete and disciplined points throughout the study where reflection

and review, evaluation and record keeping occur. The research approach is therefore

exploratory and not restricted to techniques that have been applied in a similar context.

This research models the component selection process and aims to assist and enhance

that process. The philosophy requires the researcher to interpret data with an expert ap-

proach to the problem: evaluating research elements for the development of strategies to

assist the selector (application developer). The researcher is intrinsic to the investigation

86

CHAPTER 3. RESEARCH PROCEDURES

and affects the directions and outcomes of the research.

Consideration of the project as a whole sees it as a progression of theory building

(process and strategies), implementation and evaluation, which define the project ap-

proach. The exploratory nature of the work requires iteration and refinement. Methods

such as grounded theory (Glaser and Strauss, 1967) are of interest as the data and ob-

servations drive the research as a theory is developed. Grounded theory is not applicable

in this project, as it requires that the researcher not drive or bias the work. However,

this investigation has drawn inspiration from grounded theory with respect to iterative

theory-building.

The use of systems development as a research methodology has been argued (Nuna-

maker et al, 1991, Hasan, 2003), particularly in the field of information systems. Nuna-

maker et al (1991) promotes systems development as one of four research strategies which

can provide an integrated, multi-method approach to information systems research. The

three complementary methods are: theory building, observation and experimentation.

Within systems development, Nunamaker lists five principal parts: constructing a con-

ceptual framework; developing a system architecture; analysing and designing the system;

building the system and experimenting, observing and evaluating the system. A more

contemporary view refers to parts three and five as prototyping and technology transfer,

and indicates that there is iteration and overlap in the process. The crucial element to

justifying systems development as a research method is the focus on knowledge creation

(Hasan, 2003), rather than the code as an end in itself.

While computing projects may have a well-defined path, to approach this research

problem in a planned way was considered high risk. The Spiral Development Method is a

software development methodology that structures iteration and monitors risks (Boehm,

1988). The SDM iterates through four sectors: Determine objectives; Identify and resolve

risks; Development and test and Plan the next iteration (Figure 3.3). With a conceptual

shift to broaden the ‘Development and test’ sector to activities including strategy build-

ing, case studies and experimentation, the SDM reveals its potential as a structure for

conducting research.

The SDM has been used to provide an incremental approach to knowledge building

through the development and implementation of strategies in this project. Each iteration

of the SDM is a well-defined cycle with consideration of stakeholders needs, alternatives,

87

3.1. METHODOLOGY

Figure 3.3: Spiral Development Model (Boehm, 1988)

Quantitative Quantitative or Qualitative
Qualitative

Experimentation Case Study Grounded theory
Quasi-experimentation Survey Phenomenological

Correlational Action Research Historical
Ex post facto Content analysis
Observation Ethnography

Developmental study

Table 3.1: Research methodologies

risks, validation and review of outputs. To provide information for some level of re-

peatability in this project, an exposition of the context of all decisions is required. The

spiral documentation allows the reader to see how ideas developed and the justification

for choices that were made.

Research methodologies are often classed as qualitative or quantitative (Leedy, 2002).

This relates to the type of data being investigated, and the goals of the research. A

summary of methods is given in Table 3.1.

Where a researcher is trying to explain or predict trends in data, or the behaviour

of a population, quantitative methods methods will be applied. These typically deal

88

CHAPTER 3. RESEARCH PROCEDURES

with numeric or structured data which can be processed via statistical techniques com-

patible with a Positivist philosophy. Experimentation is the most rigid of quantitative

approaches, where the known variables are controlled, and the variable(s) of interest

are systematically manipulated to assess their effect. The experiment is a repeatable

process to support or disprove a stated hypothesis. Where the variables cannot all be

controlled, less rigorous techniques, such as quasi-experimentation, can be used. Two

other techniques which can be quantitative or qualitative, depending on the data and

its treatment, are case studies and surveys. However, case studies consider a particular

problem in depth, and may not be open to generalisation.

Qualitative methods consider textual or complex data. They view the researcher as an

instrument that affects the outcomes of the research. The assumptions and influence the

researcher brings to the study must be declared. Qualitative research may involve survey

or observation of information sources across time (historical), media (content analysis)

or the community (ethnography). Guidelines for qualitative studies exist (Leedy, 2002),

all relying on the researcher to reflect, then assert the findings (in contrast to statistical

analysis). The results of the research are context sensitive, making it difficult to replicate

a study.

The literature on research methodology often considers qualitative and quantitative

research as opposites and implies that a particular philosophy, science or paradigm can

only utilise a particular group of methodologies. More recent discussions (Crossan, 2003,

Knox, 2004, Esteves and Porter, 2004) state that multi-method approaches can combine

qualitative and quantitative methods and add rigour through the triangulation of results.

For example, quasi-experimentation with human subjects can be reinforced by surveys

and interviews. This can provide better understanding of the experimental results, or

quantify the trends seen in the surveys.

In order to refine the approach it is essential to discover the affinities between the

research areas, philosophies and methodologies. As this study is in software engineering,

accepted techniques must be considered. As a science in a people-oriented domain, much

of the research to date has followed social science techniques, or put forward unquanti-

fied theories (Tichy, 1997). However, there is a movement towards increasing rigour in

software engineering through experimentation and empirical results (Kitchenham et al,

89

3.1. METHODOLOGY

2002, Wohlin et al, 2000). Assisting the move to quantitative approaches is benchmark-

ing (Sim et al, 2003), the development of metrics (Pfleeger, 2001), and the compilation of

historical information for research and process improvement. A widely applied method

for generating measurable data is the Goal/Question/Metric (GQM) approach (Basili

et al, 1994).

The GQM is an industry standard for creating metrics linked to goals. The approach

was originally developed for evaluation of defects in NASA projects, and was expanded

to a larger context (Basili et al, 1994). It is particularly useful for: understanding

and baselining an organisation’s software practices; guiding and monitoring software

processes; assessing new software engineering technologies; and evaluating and certifying

improvement activities (DACS, 2011).

Figure 3.4: GQM paradigm (DACS, 2011)

The measurement model for the GQM has three levels: conceptual (GOAL), oper-

ational (QUESTION) and quantitative (METRIC) as shown in Figure 3.4. The result

is a hierarchical structure starting with goals, which are elaborated into a number of

questions, which are themselves split into related metrics. The metrics can be objective

or subjective, and depend on the viewpoint from which they are taken.

The GQM lends itself to a wide variety of applications beyond software processes

and can be compared with the Balanced Scorecard approach for organisational strategy

(Buglione and Abran, 2000). The CBSE literature includes the application of GQM,

90

CHAPTER 3. RESEARCH PROCEDURES

SPIRAL 4 Purpose Evaluate Results
Issue effectiveness of
Object strategies for data representation
Context Spiral 4

Goal 4A Focus Quality: Enhance shortlisting for more accu-
rate results

Viewpoint Quality Assurance personnel
Q4A1 Has Spiral 4 improved results? YES
Q4A2 Are the updates well documented? YES
Q4A3 Is the process repeatable? YES

Table 3.2: GQM Summary - Spiral 4 (extract)

most often as the method for developing criteria and/or evaluating COTS or components

(established by (Kontio, 1995)).

One of the benefits of applying GQM is that it can be aligned with the SDM, with the

steps falling into Sectors of the Spiral. For each Research Element, the investigative ap-

proach, data considered and evaluation techniques vary. RE1 used a qualitative survey

of existing component characterisations. The process for selection (RE2) was developed

with a similar survey approach, and evaluated through a case study. With RE3 the

strategies and their effects were assessed via case studies including quasi-experimentation.

The case studies provided context to focussed exploration and evaluation of the potential

solutions. These quasi-experiments were the limit of the rigour in the project as the sub-

ject matter cannot be controlled to the level of true experimentation. The final Research

Element (RE4) reviews the entire project and is qualitative, with quantitative aspects

drawn from the use of GQM. This eclectic, multi-method approach was summarised in

Figure 3.2, which shows the entire investigation (RE1-RE4) and the research design

used.

An example for this project is given in Table 3.2. The purpose of Spiral 4 is to evaluate

the effectiveness of the strategies developed for data representation. This is indicated in

the header of the table, along with the context, which is ‘Spiral 4’. From there, the GQM

evaluation focuses on each of the goals. In this example, Goal 4A is targeting quality,

which is defined for this Spiral as ‘Enhance short-listing for more accurate results’. The

viewpoint used for the quality goal is that of quality assurance personnel. To allow

an assessment of the strategies in terms of quality, the goal is broken down into three

questions. Each response is used in the overall evaluation of the satisfaction of the goal.

91

3.2. APPROACH

3.2 Approach

This investigation has quality amongst its goals and thus aims to formalise the selection

process. Key to uptake of processes is their usability. The value added must be greater

than effort involved and automation through tool support can assist with this. From the

title of this thesis the use of strategies, enabled by the application of artificial intelligence

techniques, is fundamental to the work. At the same time, the aim is for the process,

tools and evaluation to be dynamic to adapt to changes in the user’s context. It is

also of value to consider the selection process at a more abstract level - allowing for

reuse through alternate implementation and application. To this end, the investigation

develops a pattern and an implementation for the selection process, following current

documentation standards. These ideals form the basis of the goals aimed for in this

investigation.

3.2.1 The Spiral

The Research Elements are addressed through the Spirals that make up the project. The

investigation began with the definition and commitment to the Research Elements. From

there, a series of cycles took place through analysis of information at hand; formulation

of strategies; their implementation; and review and planning. This iterative approach

was guided by the construct of the SDM.

A generic Spiral is now described, which is then instantiated in the respective Spiral

sections. The terminology used in each Spiral has been adapted to suit the research

context. Each Spiral follows a template made up of the four sectors and their component

parts: Objective Setting; Risk Assessment; Development and Validation; and Planning.

These map to the four sectors on the SDM diagram (Figure 3.3) with slight changes in

titles. The Spiral Summary (Section 3.8) describes all seven Spirals and includes tables

summarising the planning, implementation and review of the included activities.

The SDM template used in this study follows:

Sector 1: Objective Setting

The first sector defines the objectives for the current iteration. This involves the definition

of the problem(s) dealt with in the Spiral and instantiating the project goals for the

92

CHAPTER 3. RESEARCH PROCEDURES

current Spiral. The stakeholders involved in the Spiral are indicated, along with their

acceptance criteria. It forms the basis of the the later review and evaluation of the Spiral

outcomes.

Problem Definition: The Problem Definition details the task to be undertaken. It

includes any scope, limitations or assumptions particular to that task.

Goals: The goals of each Spiral represent the desired outcomes for the solution

developed for the problem. These goals are used for determining the approach taken, as

well as being the basis for the GQM evaluation at the Spiral and Project levels. The

project has six high-level goals: an attempt is made to honour these in each Spiral. These

are described in more detail under Evaluation in Section 3.7. At the Spiral level they are

instantiated and a more detailed and specific set of goals defined.

Stakeholders: The stakeholders identified throughout the project are described in

Table 3.3. This project is aimed at a real world need and is thus driven by the stake-

holder needs. In each Spiral, the Win conditions - acceptance criteria - are considered

for each stakeholder. The stakeholders for the entire project are the application devel-

opers, component developers, component brokers, quality assurance and academia. The

stakeholders are the drivers for the goals of each Spiral in the SDM.

Stakeholder Description
Application Developers The direct users of the results of this project are the appli-

cation developers. They will be assessing third party compo-
nents for their specific application and context, and will need
documentation to support their decisions.

Component Developers Marketability depends on their components being selected for
use by application developers. They will be looking for a fa-
cility that allows them to hook into this testing and ranking
process with minimal effort or change to their existing prod-
ucts.

Component Brokers As the enablers to component buying and selling, they are in-
terested in what they may be able to add to their user tools.
They may need to provide options for application developers
to download and test numbers of components before purchas-
ing, or allow testing to be carried out on their servers.

Quality Assurance Many organisations have auditing of processes to improve the
quality of their operations. We need to provide documentation
of the process and decisions to satisfy QA requirements.

Academia This is the main driver behind this research and the shape
it takes. Academic concerns affect time limitations, focus
on academic merit (as opposed to commercialism) and the
methodology used.

Table 3.3: Stakeholders for project.

93

3.2. APPROACH

Sector 2: Risk Assessment

The risk sector considers the problem being addressed and the context of the work. An

analysis of the risks that may arise is included, and the responses are detailed. In each

Spiral, the context includes the outputs of the previous Spiral, along with any preferred

approaches to attain Spiral goals.

Risks are defined and then assessed to help support later decisions in terms of risk

and context. A risk is defined as ‘the potential for realization of unwanted, negative

consequences of an event’ (Rowe, 1977). To be considered a risk, there must be: a

loss associated with it; uncertainty or chance involved; and/or, some choice involved

(Charette, 1989). Activities undertaken in risk management include identification, strat-

egy and planning, assessment, mitigation/avoidance, reporting and prediction (Karolak,

1996). It can be helpful to go through common risk factors when identifying risks. Fac-

tors may relate to: organisation, estimation, monitoring, development method, tools, risk

culture, usability, correctness, reliability or personnel (Karolak, 1996). Each risk is then

assessed for risk exposure. Myerson (1996) defines risk exposure as the probability of an

unsatisfactory outcome (UO) multiplied by the loss the UO would create.

For this project, the risk assessment is synthesised into tables identifying risks, prob-

abilities and strategies. An example (summary) is shown in Table 3.4. The various risk

factors are considered in the first column, resulting in a list of identified risks in the

second column. For each, the probability is estimated, shown in the third column. The

final column indicates strategies chosen for dealing with each risk (e.g. avoid, minimise,

contingency).

Each risk is then monitored to detect whether the strategies need to be applied. The

probabilities and effects are reviewed throughout the project. For each Spiral, there

are risk management tables following the described templates. This provides a level of

understanding of the task and prepares the way for the feasibility to be assessed.

As a result of the risk assessment, it is possible to make an informed assessment of

the feasibility of each planned task. Where there are risks, a decision is made as to how

to progress. This may include restricting scope for the Spiral or the project as a whole.

94

CHAPTER 3. RESEARCH PROCEDURES

Risk Type Risk Probability Action
Technology Issues with XML software Moderate Avoid: Survey and trial soft-

ware
People Lack of experience in XML High Minimise: Training and tuto-

rials
Organisational Change in funding and/or fa-

cilities
Low Contingency: None

Tools
Requirements Changes to requirements

causing rework
Moderate Avoid: Thorough research

Moderate Minimise: Data model to
handle change, use of version-
ing

Estimation Time required underesti-
mated

Moderate Contingency: Ask for expert
help

Table 3.4: Risk assessment and strategies example from Spiral 1

Sector 3: Development and Validation

Development of strategies, experimentation, coding and testing take place in this sector

as an iteration through procedures, data analysis and refinement. These tasks are typical

of a research project, and are an extension of the SDM. Once satisfied with the current

iteration, a trial is undertaken, usually in the form of a case study (in this project).

In some of the Spirals, all steps of Sector 3 were repeated one or more times in an

internal iteration. This provides the opportunity to continue a line of research to build

on observed results.

As this study is academic research, some changes have been made to the activities

and what is recorded for each Spiral. The following information and activities would

typically be given for a research project as a whole. In this case each Spiral is somewhat

independent, with varying emphasis on instrumentation, procedures, analysis, data and

trials. Thus, as part of development and validation, the following will be actioned and

documented:

Instrumentation: Tools and facilities required including inputs and processing,

along with justification of choices.

Specific Procedures: Procedures used in this sector are detailed for each Spiral.

They include surveys, quasi-experiments and case studies.

Data Analysis: The methods of data analysis are defined. This is used to determine

the effectiveness of the procedures.

95

3.2. APPROACH

Refinement: In some cases a selected option for problem solution does not work

as expected, or alternatives and enhancements become apparent during the analysis. At

this point the solution can be refined and the process iterates through Specific Proce-

dures, Data Analysis and Refinement until criteria are satisfied or greater problems are

identified.

Trial: Each deliverable of a Spiral is trialled and assessed. These may be manual

or automated trials, or a combination.

Data Collection: Data for trials is accessed from various sources, an existing case

study, real world data or simulated data.

Treatment of Data: Any processing of data is included in this section, including

that done using tools developed for the project.

Sector 4: Planning

With the investigations and trials complete a review process is undertaken to assess the

success of the work. Criteria from Sector 1 are used to evaluate the success of the Spiral.

The results of the evaluation are considered in the review of the Spiral, before planning

for the next Spiral. The two activities in Sector 4 are:

Evaluation: The assessment process is carried out using a GQM evaluation and qual-

itative assessment. Identified risks are also considered, including whether they occurred

and the impact of the event.

Review and Planning: Once the work is evaluated, it is time to consider the next

stage in the project, with reference to the outcomes of the current Spiral. This may

involve changes and enhancements to the current work.

3.2.2 Research Elements and Spirals

The following discussion outlines the flow of the project, which unfolded as each Spiral

was undertaken. The specification and process address the first two Research Elements

and provide a foundation for the strategies in the later Spirals (Table 1.1). RE3 was the

focus of Spirals 3-6. The final element, RE4, is addressed through a case study and the

reflection on the collected results of all the Spiral evaluations in the Conclusion.

In Spiral 1 the focus was on the specification of the component, which potentially

could enable or limit the strategies to come. The second Spiral developed the Process.

96

CHAPTER 3. RESEARCH PROCEDURES

Spiral 3 investigated ways to apply artificial intelligence to the selection activity, while

Spiral 4 made improvements by enhancing the representation of data. The CdCE Pro-

cess was completed in Spiral 5 where metrics, testing and evaluation were implemented.

Automation of aspects of the Process presented the opportunity to improve the represen-

tation of the choices through the ClassifierSuite in Spiral 6. Once the Process, procedures

and tools were in place, a final case study was undertaken, with the results of this and

all other Spirals feeding into the evaluation. How this contributes to the overall project

is shown in Figure 3.5, with different branches of the tree being built up over the course

of the investigation.

Figure 3.5: Tree representation of Spiral development throughout the thesis (colour-
coded)

3.3 Context of Study

This study has been carried out in the context of the third party software marketplace

from 2001-2011. The resultant system has been assessed using case studies to evaluate

the merits of the concept of providing such a tool to assist component selection. Facilities

used included Windows and Mac computers, a range of software tools and development

environments and Internet access. Sources of information and guidance were journals,

books, websites, conferences and academic and industry contacts.

97

3.4. INSTRUMENTATION

As this is a Post-positivist study, researchers are considered part of the context -

contributing a perspective to the design and analysis of the work. The researcher has an

undergraduate degree in computer science with industry experience in database, Internet

technologies and maintenance of large third party information systems. The researcher

has also lectured in Software Engineering, providing a strong theoretical basis and per-

haps shifting from a Computer Science perspective. Teaching areas in software engineer-

ing included formal methods using Z notation, software design and metrics. Later in the

project the researcher took on a research role in grid computing for data mining, and

subsequently in eResearch and supercomputing research and education.

3.4 Instrumentation

The nature of this investigation has required the implementation and use of many software

applications and tools. A number of Java applications have been written for this project,

along with scripts for linking them together. Most of the programs developed in Java

as pipe/filter applications to be run in batch mode. The ClassifierSuite is an interactive

program, also developed in Java and utilising the Abstract Windowing Toolkit(AWT)4

for the user interface. The programs and scripts are summarised in Table 3.5. Third

party class libraries were used in many of these programs, particularly for the handling

of XML data. In addition, other third party software and applications were used as

the development environment for coding the in-house software and for assessing and

checking results. These are listed in Table 3.6. The Weka application has been used

during development and is integral in the implementation of the CdCE Process.

Common throughout the project is the use of XML5 and Z notation (Spivey, 1992).

XML allows for the interchange of structured data in a machine-independent way. It is

the de facto standard for data exchange. Z notation is a formal specification language

able to describe component behaviour and interfaces in an abstract manner.

While the researcher is a part of the context, she is also an instrument used in the

study. The researcher came to the project with programming, software engineering,

statistics and web design skills. Through the course of the project, additional skills in

XML processing and proficiency with tools (e.g. Weka) have been developed.

4http://download.oracle.com/javase/1.4.2/docs/api/java/awt/package-summary.html
5http://www.w3.org/XML/

98

CHAPTER 3. RESEARCH PROCEDURES

Item Description Spiral
XML schema Schema to describe ideal and candidate components 1 to 7
XSLT scripts Scripts to reformat the XML files and make them more

readable for the user
4 to 7

Intelligent Java program developed to read in XML ideal specifica-
tion and output training data in Weka’s ARFF format

3 to 7

CdCETransformer Java program developed to read in XML ideal spec-
ification and real world data and output the data in
required format

4 to 7

FM2CdCE Java program developed to read in XML real world data
(freshmeat) and output the data in CdCE XML format

4 to 7

Trove2CdCE Filter to take in freshmeat Trove and generate the XML
file for the ontology

4

TestGen Java program developed to take in the technical speci-
fication (Z notation) and generate a test suite based on
equivalence classes

5 to 7

ClassifierSuite Java program to visualise and explore results of running
multiple classifiers to see the impact of criteria choices

6 and 7

Bash shell scripts Scripts written in Bash Shell to automate the process-
ing of data and the collation of results

4 to 7

Table 3.5: Software applications and scripts developed during the investigation

Item Description Spiral
XML eXtensible Markup Language 1 to 7
Z notation Formal specification language 1 to 7
XMLSpy XML editor and validator 1 to 3
Jess Expert System Expert system allowing the definition of rules and

the evaluation of data
3

Java 2 SDK Virtual machine for running Java programs 3 to 7
Borland JBuilder Software development environment for Java 3 to 4
XMLWriter XML editor and validator 3 to 6
Weka Machine Learning Java implementation of machine learning algo-

rithms
3 to 7

Table 3.6: Third party software tools and languages used

99

3.5. DATA COLLECTION

3.5 Data Collection

In Spiral 2, the data was collected manually from the ComponentSource6, Tucows7 and

Flashline8 software repositories. Manual collection involved accessing the website for the

repository and using the search facility provided to locate and then compile a list of

candidates. This not only provided data on the candidates for software selection, but

also on the data models used and the search/selection tools provided by the sites.

For Spiral 3 onwards, it was necessary to have access to full metadata records for one

or more repositories to work on automation and scaling of the CdCE Process. While a

component repository would have been preferred, this was not possible9. The freshmeat

repository of open source software projects was considered adequate for demonstrating

and developing the selection process and tools.

freshmeat provided access to the XML metadata for their repository, along with a

formal description of the data model. Another option was to simulate a component

repository by developing multiple in-house components. This was at odds with the

‘real world’ intent of the project, and could potentially cause problems with objectivity.

Access was also available for the SourceForge10 repository, but required too much time

to understand the PostgreSQL database and compile it into a flat table.

freshmeat has facility for access to the repository via RDF files11. Two exports of

the data were taken two years apart, the first with 33,262 entries and the second with

41,885. Of principal interest was the file fm-projects.rdf which included full information

for all projects. In addition, the fm-trove.rdf file included the repository’s comprehensive

ontology - the Trove. It was decided to align to the freshmeat Trove as the ontology for

this project, rather than developing a new, and likely less complete, ontology.

External sources of data are listed in Table 3.7. Each Spiral chapter (Chapters 4

onwards) includes information on the data processing specific to it. Data representation

and associated processing is the focus of Spiral 4, with the details recorded in Chapter 7.
6http://www.componentsource.com/
7http://www.tucows.com/
8Flashline was bought out by BEA Systems, to become part of their Aqualogic SOA stack. BEA has

since been acquired by Oracle
9ComponentSource refused access to their data for commercial reasons. Tucows focuses on shareware

applications rather than components. For these reasons an alternative repository was needed
10http://sourceforge.net/
11URL to full repository is http://freshmeat.net/backend/fm-projects.rdf.bz2 although they are moving

to a new API which will replace this

100

CHAPTER 3. RESEARCH PROCEDURES

Item Description Spiral
Component Source Website supporting component development and bro-

kerage
2

Tucows Website repository for commercial software 2
Flashline Website repository for commercial component broker-

age (now part of Component Source)
2

SourceForge Website hosting open source projects 2 to 3
Freshmeat Website hosting open source projects 3 to 7

Table 3.7: Data sources used

3.6 Treatment of Data

The format and storage for the data throughout the project has used XML (primarily),

RDF, ARFF and text files. XML is the format of choice for the project as it is machine

readable and the standard for interoperability. RDF is the standard used by freshmeat,

and is built on XML and XML DTD. To better present the XML files, a suite of XSLT

scripts were developed. For example, the testing phase (Chapter 8) includes XML files

for recording the results of tests. As the tests were executed manually, the XML was

converted to a web page using XSLT.

Weka can accept ARFF files for input and outputs the results as text files. The ARFF

input files were generated by two of the Java applications written for the project: Intelli-

gent and CdCETransformer. Intelligent generates the training data while CdCETransformer

takes the data from the freshmeat repository (in CdCE format) and outputs it in ARFF

to match the training data. As the automation of the experiment increased, these Weka

output files were post-processed by a Bash Shell script and collated into existing XML

data files to create summaries and shortlists.

A transformation was required to enable the freshmeat data to be used with the

CdCE tools. This was done via the FM2CdCE filter, written in Java, and outputting an

XML file. A similar process took place for the Trove via Trove2CdCE, generating an XML

file. More information on the transformation process is included in Spiral 4 (Chapter 7).

Since the tools were developed to implement the strategies under investigation in this

project, they are described further in the appropriate chapters.

101

3.7. EVALUATION

3.7 Evaluation

The work in this project has been reviewed and evaluated throughout, most directly

through case studies and quasi-experiments embedded in each Spiral. Tables holding

information that relates to evaluation of the research project are indicated by double

lines on the borders.

A review took place at the end of each Spiral before planning the next package of work.

This involved an assessment of the stakeholder Win conditions; applying the GQM; and

undertaking the review and planning sector for each Spiral. An external level of review

was facilitated through peers - in presentations and papers published.

As noted, a review of each Spiral has been carried out based on GQM. This allows a

structured approach to the evaluation across each and all Spirals. Use of GQM results

in a hierarchy of evaluation criteria rooted in the project (or Spiral) goals. Figure 3.4

provides an example of a section of a GQM tree.

Each Spiral of the investigation in the thesis includes an evaluation based on six

criteria of interest throughout the work. These underlying themes have influenced the

decision making: quality, usability, intelligence, innovation, dynamics and reuse.

Quality: The overall goal in software engineering is to improve quality in software.

This criterion is included to ensure that each spiral of the investigation has a commitment

to quality - through the use of standards, development of processes and choice of solutions.

Usability: The researcher has a strong view that software engineering must provide

useful, applicable solutions to real world problems. In this project, automation and AI

techniques are to be applied to enhance the selectors’ understanding of the decisions they

are making and they can be easily applied (through the automated approaches) to larger

datasets.

Intelligence: This refers to the application of AI techniques and automation to

enhance the CdCE Process. This may be through the development of tools or by the use

of standards to make the application of AI easier. For example, the XML specification

is machine readable which makes it easier to develop code to utilise AI techniques.

Innovation: As a PhD thesis and as a useful research project, innovation is always

required. This is through the development of new strategies and tools or by applying

existing techniques in novel ways.

Dynamics: As an approach with real world applicability, the investigation needs to

102

CHAPTER 3. RESEARCH PROCEDURES

SPIRAL 4 Purpose Evaluate Results
Issue effectiveness of
Object strategies for data representation
Context Spiral 4

Goal 4A Focus Quality: Enhance shortlisting for more accu-
rate results

Viewpoint Quality Assurance personnel
Q4A1 Has Spiral 4 improved results? YES
Q4A2 Are the updates well documented? YES
Q4A3 Is the process repeatable? YES

Goal 4B Focus Usability: Provide tools and knowledge base for
users

Viewpoint Application developer
Goal 4C Focus Intelligence: Apply ontologies and knowledge

management to shortlisting
Viewpoint Application developer

Goal 4D Focus Innovation: Include knowledge management
and missing data treatment

Viewpoint Academia
Goal 4E Focus Dynamics: Allow for update and substitution

of knowledge base
Viewpoint Application developer

Goal 4F Focus Reuse: Where possible make use of existing
code and artefacts

Viewpoint Application developer

Table 3.8: GQM Summary - Spiral 4

provide flexibility and accommodate change. This change may be through the ability to

modify aspects of the CdCE Process (how it is implemented) or in the user’s need to be

able to revisit and revise selection tasks as their system evolves.

Reuse: A common theme in software engineering is reuse - particularly in CBSE.

Reuse can also include methodologies, patterns and tests. Throughout this project there

is a drive for reuse in its many flavours.

In terms of the GQM model, goals are further described in terms of their purpose,

issue, object, context and viewpoint (Basili et al, 1994). The purpose in applying GQM

in this project is to evaluate the effectiveness of the work in each Spiral. The object

for each evaluation is how it has addressed the problem definition for the Spiral under

evaluation, in the context of that Spiral. The focus is the respective goal category. Each

of the goals has been assigned a stakeholder to indicate the viewpoint used - quality is

taken from the quality assurance view, innovation from the academia view and the others

are viewed as the application developer. This is summarised in the top section of Table

103

3.8. SPIRAL SUMMARY

3.8.

Each of the goals is interpreted into a more contextualised goal at each of the Spiral

evaluations. For example, the goals for Spiral 4 are listed in Table 3.8. This is then

split into a series of questions, as shown for Goal 4A. The questions are answered with

reference to the evidence from the project. In most cases this will be a subjective result

- an indication of whether evidence shows the item was addressed. For this reason,

metrics are not listed in the evaluation. With this information from each Spiral, and

consideration of the project as a whole, a thorough evaluation is possible. Chapters for

Spirals 1 to 4 include a ‘Post-Spiral Update’, where the related work in later Spirals is

discussed, indicating how it affects the products and contributions for that Spiral.

3.8 Spiral Summary

The SDM has been used in this project, not only for software development, but also for

structuring the approach to implementing and evaluating strategies. As such, this flow

has influenced the choices made in the project and is key to understanding the overall

outcomes.

The four tables that follow summarise Spirals 1-7 according to the format used by

Boehm et al (2003). Stakeholders across all Spirals have varying levels of direct interest

in the outcomes.

Spiral 1

Table 3.9 summarises Spirals 1 and 2. Spiral 1 aims to develop a component specification

on which to base the rest of the investigation. Key aims are to adhere to specification

standards. The specification was developed through review of existing schema and stan-

dards and the application of the alpha version schema to sample components. This work

was carried out in 2001, with revisions to the schema as later Spirals required them. De-

cisions such as the use of XML and alignment to Dublin Core are still valid at the time

of writing. This part of the project was presented at the Young Researchers Workshop

at the International Conference on Software Reuse (ICSR 2002) (Maxville, 2002) and

discussed with Dr Ruben Prieto-Diaz, A/Prof. Bill Frakes and Prof. Bertrand Meyer at

that conference. These discussions influenced and reinforced the work.

104

CHAPTER 3. RESEARCH PROCEDURES

Spiral 1 - Specification Spiral 2 - Process
Stakeholders Brokers, Schema Developers and indirectly

Component Developers, Application Devel-
opers and Quality Assurance

Application Developers, Quality Assurance
and indirectly Component Developers, Bro-
kers and Schema Developers

Objectives, Con-
straints and Pri-
orities

Characterise components utilising stan-
dards; consider existing schemas used in in-
dustry (Dublin Core); prepare for the au-
tomation requirement need for process

Develop an intuitive, iterative, repeatable
process suited to automation; must utilise
or enhance specification from Spiral 1; in-
clude future testing in context

Alternatives Use existing schema Use existing schema or undertake ad-hoc
selection

Evaluation Risks Incompatibility with common standards;
new community standard supersedes this
work

Lack of access to datasets; a new standard
process is accepted by industry; process is
too prescriptive and complex to be used

Risks Addressed Maximise compatibility; detach process
from specification - make it replacable

Secured access to datasets early in spiral

Risk Resolution Compatibility confirmed, process and
strategies to be replaceable

Generic process so strategies can be exper-
imented with; utilised a range of datasets
through their front-end interface

Product
Elaboration

Create XML specification for component
with adherence to standards

Define steps in process for software se-
lection; use specification to describes two
types of component - ideal and candidate

Process
Elaboration

Research existing academic and industry
standards for component characterisation,
map between models

Survey existing processes in the literature
and informal survey of developers - looking
for essence of selection process

Verification and
Validation

XML validators; Sample COTS/ Compo-
nent descriptions; peer review at ICSR
(Maxville, 2002)

Case study of manual application of pro-
cess; peer review at APSEC (Maxville et al,
2003b)

Commitment Use specification for rest of project, revise
as needed

Process is basic framework to allow exper-
imentation on strategies for the rest of the
project; revise if required

More Info Chapter 4 Chapter 5

Table 3.9: Spiral Summary - Spirals 1 and 2

Spiral 2

The focus for Spiral 2 was on developing an intuitive, iterative, repeatable process for

selection that would be suited to automation. Existing processes were considered, along

with informal interviews with local software developers on the processes they used. The

CdCE Process was developed to include most aspects of existing processes, along with

test generation and evaluation. At this point, the Process supported context-based eval-

uation through the use of metadata and testing the candidates in the target environment

(context). The CdCE12 Process was trialled through manual application of the process

to a selection task. This work was published and presented at the Asia-Pacific Software

Engineering Conference (APSEC) (Maxville et al, 2003b) and benefitted from feedback

received at the conference.

The CdCE Process was successful in the case study and trials and became the foun-

dation of the rest of the investigation. Particularly useful was the separation of steps

in the process via static XML files. This provided self-documentation, but also enforced
12Previously referred to as CdCT - Context-driven Component Testing

105

3.8. SPIRAL SUMMARY

the decoupling of steps. Through low coupling, changes made to implement the AI and

automation strategies were less likely to ripple throughout the previous work.

Spiral 3

With the specification and process defined, the focus turned to developing strategies

to apply within this selection framework. Spirals 3 and 4 are summarised in Table

3.10. Two broad strategies were considered: automated test generation and support

for shortlisting. In Spiral 3 the shortlisting strategies were explored including issues in

filtering and evaluation, specifically:

• Problems with suitability of evaluation techniques (Ncube and Dean, 2002)

• Lack of automation or suitability to be automated (Ruhe, 2002)

• Issues with adoption of processes (Li et al, 2006).

In particular, the evaluation techniques used in the literature often used WSM or

AHP, which present issues associated with aggregation and assumptions of independence,

as discussed by Ncube and Dean (2002). It can also be extremely time-consuming to work

through all the pairwise comparisons required.

A wide literature review of potential AI techniques was undertaken, which initially

indicated that expert systems were appropriate. Trials with Jess (Friedman-Hill, 2008)

were successful, but required manual generation of rules. One issue for the project was

that every selection task was different, so there was no long term learning option between

subsequent selection tasks. Sample training and test data was developed and tested with

the Weka Machine Learning application (Weka) (Hall et al, 2009) application and two

of its tools: an Artificial Neural Network (ANN) and the C4.5 classifier. Tests with

the ANN indicated that it needed a two-layer network to be able to distinguish when

there was an interplay of criteria. Comparative trials took place within a case study

and showed similar performance (in error percentage) between C4.5 and ANN. C4.5 was

selected as it output rules which could be interpreted by people, as opposed to the black

box of the ANN.

The training and test data was generated from the ideal specification in a manner sim-

ilar to test case generation. Different aspects of Spiral 3 were published and presented at

the International Conference on Software Engineering & Knowledge Engineering (SEKE)

106

CHAPTER 3. RESEARCH PROCEDURES

Spiral 3 - Shortlisting Spiral 4 - Data Representation
Stakeholders Application Developers, Quality Assurance

and indirectly Component Developers and
Brokers

Application Developers, Quality Assurance
and indirectly Component Developers and
Brokers

Objectives, Con-
straints and Pri-
orities

Focus on shortlisting; main options AI,
testing and iteration; context considered
key; implementation of initial strategies -
AI and iteration

Enhance shortlisting via improved data
representation; apply techniques to real
world dataset; implement ontology

Alternatives Expert systems, neural networks, Analytic
Hierarchy Process (AHP), WSM

Stay with existing (text/boolean) compar-
isons; choose different dataset; develop own
ontology

Evaluation Risks Poor choice of AI; access to data; integra-
tion issues; complexity of implementation

Lack of access to datasets; enhancements
not effective; integration issues - ripple ef-
fect

Risks Addressed Literature review for AI selection + exper-
imentation and exploration; datasets de-
fined early; all experimentation within one
step of process

Early requests for data; research into tech-
niques for data representation; continue
with independence of applications

Risk Resolution Experimentation and exploration of AI op-
tions led to C4.5; Secured local copies of
dataset from freshmeat backend; minimised
impact of changes to other part of process
through defined interfaces and parameter
files

freshmeat worked well, but not Compo-
nentSource or SourceForge; gradual explo-
ration through transformations 1-5; effec-
tive pipe-filter with static input files con-
tains ripple effect

Product
Elaboration

”Intelligent” - reads in an XML ideal spec-
ification and exports training and test data
in ARFF format for Weka

”Intelligent” - revised; Transformer - con-
version of data to bring into format for
Weka; scripts for automation

Process
Elaboration

Looking for a way to set up rules for decid-
ing on shortlisted components - how best
to generate human-understandable rules to
automate decision process; defined require-
ments for AI tools and surveyed widely for
suitability

Many iterations of data representation and
missing data handling

Verification and
Validation

Tested suitability through made datasets;
small tests and comparisons on manually
generated dataset; peer review at SEKE
(Maxville et al, 2004b) and COMPSAC
(Maxville et al, 2004c)

Thorough experimentation on various
transformations, ideal specifications and
real dataset; comparison with previous
results; case study presentation and paper
at PEECS (Maxville, 2005)

Commitment Proof of concept worked - could improve
data representation and semantics; need a
larger dataset

Transformation 5 found to provide best re-
call/relevance, will use for all future tests;
shortlisting complete, now looking at other
parts of process

More Info Chapter 6 Chapter 7

Table 3.10: Spiral Summary - Spirals 3 and 4

(Maxville et al, 2004b) and the IEEE International Computer Software and Applications

Conference (COMPSAC) (Maxville et al, 2004c). Identified issues were: the loss of in-

formation from the component metadata which could have been used; and, inadequate

handling of missing data in the freshmeat dataset.

Spiral 4

Spiral 4 concentrated on data representation as a result of the review of Spiral 3. The

solution at this point was equivalent to an SQL query providing a Boolean output of

match/no match. As much richer information was available, Spiral 4 aimed to exploit this.

Another issue was the handling of missing data (fields within records) in the repository.

107

3.8. SPIRAL SUMMARY

A parameter was added to allow the user to choose which value was used for missing

(default is -999) and whether to interpret a missing value as a match, partial match or

non-match. While the default is non-match, the facility to set various options allowed

exploration of how missing data was handled.

In Spiral 3 the attributes were numeric, date, text and descriptive text (longText).

The text-based fields were of most interest and fell into two clear categories: those that

could have standardised values (ontology), and those that were less predictable (free-

Text). FreeText entries include the software name and the developer name. Ontology

attributes are based on a restricted vocabulary which uses a thesaurus to standardise

terms. The terms are organised into hierarchies for each criterion to represent the rela-

tionships between the terms. LongText entries are fuller descriptions which are dealt with

using information retrieval techniques such as removal of stop words and punctuation,

and calculations based on recall/relevance calculations.

Each attribute type (class) has its own method for assessing the closeness of a match,

implemented via polymorphism in Java. Five ‘transformations’ were developed and com-

pared, beginning with the basic T1 (boolean as in Spiral 3) through to T5 (ontology

with levels). Within each transformation (T1, T2, T3, T4, T5) is a facility to include an

increased amount of information from the original dataset. Trials and then a case study

were able to differentiate between the transformations, with T5 exhibiting the highest

recall and relevance. This work was summarised in a paper and presentation at the Post-

graduate Electrical Engineering & Computing Symposium (PEECS) (Maxville, 2005).

As a result of this work in data representation, T5 and the default missing data handling

are used for all subsequent work.

Spiral 5

Table 3.11 summarises Spirals 5 and 6. With strategies in place for shortlisting, Spiral 5

focussed on fleshing out the remainder of the steps in the CdCE Process. Metrics had been

determined in earlier work, so the implementation of the steps aligns to them: Functional

Fit (FFIT), Functional Excess (FEXS), Adaptation Effort (AEFT), Testing Fit (TFIT) and

Test Result (TRES). The main strategy in this Spiral was the implementation of the test

generator, based on the behavioural specification. The Z specification is parsed to find

interfaces and type information. The test generator uses this information to generate a

108

CHAPTER 3. RESEARCH PROCEDURES

Spiral 5 - Evaluation Spiral 6 - ClassifierSuite
Stakeholders Application Developers, Quality Assurance

and indirectly Component Developers and
Brokers

Application Developers, Quality Assurance
and indirectly Component Developers and
Brokers

Objectives, Con-
straints and Pri-
orities

Implement automated tools to support
steps 4-8; context-based testing from be-
havioural specification

Provide support for selection process;
model on manual approach found helpful
during case studies

Alternatives Static evaluation; other forms of test gen-
eration/ranking

Halt development at Spiral 5; try statistical
selection support - e.g. PCA

Evaluation Risks Poor choice of test generation technique; in-
tegration/ripple effect

GUI more difficult than expected; tool not
helpful; integration issues - ripple effect;
time required for this additional task

Risks Addressed Basic testing approach used; continue with
independence of applications

Iterative development on key functionality
first; continue with independence of appli-
cations; set time limit on development

Risk Resolution Able to implement basic test generator;
reused classifier for evaluation; XML for
links between steps

Able to make functional application with
key viewing tools to explore data; indepen-
dent from rest of process and tools; devel-
opment and case study complete within set
time

Product
Elaboration

TestGen - test generation tool; XML
schemas and XSLT; scripts for automation

ClassifierSuite - tool for assisting selection
of shortlist; guidelines for use

Process
Elaboration

Outlined overall approach; worked through
each step with emphasis on user view of
process

Defined useful tools from researcher expe-
rience; three test sets for comparison

Verification and
Validation

Thorough experimentation; full case study;
described as pattern for software selection
in peer reviewed IET Software (Maxville
et al, 2009)

Thorough experimentation; full case study;
peer review at IEEE CEC (Maxville et al,
2008)

Commitment Implementation of evaluation allowed for
full proof of concept on CdCE process; pat-
tern for software selection

Useful tool to assist selection; key for using
process on larger datasets; possible appli-
cation for other selection visualisation

More Info Chapter 8 Chapter 9

Table 3.11: Spiral Summary - Spirals 5 and 6

test suite based on equivalence partitions. Equivalence classes can be the default (for

common variable types) or user defined. Users can also link in real data to generate test

cases.

A key aim of the project was to include context in the testing and evaluation. This

is done via the context schemas in the Z Specification. The schemas allow the base

functionality testing to be extended by adding test to target usage (CX_U), stress (CX_S),

reliability (CX_R) and performance (CX_P). It also allowed for sequences to be included.

When testing was expected to be the focus of the project, the aim was to include

oracle functionality from the Z specification. It was realised that the evaluation could

be effective if built from a basic behavioural specification: the user defined interfaces;

partitions on types; and sample data. A full Z specification to oracle level was considered

a barrier to uptake, but can be addressed in future work.

109

3.8. SPIRAL SUMMARY

Spiral 6

Spiral 6 aimed to provide a tool to assist in the selection of criteria for the shortlist. With

automation, all combinations of criteria choices are able to be evaluated and all results

considered. This was set up in the scripts supporting the investigation and used to get

a fuller understanding of the results. The researcher had developed diagrams to extract

key information from the results and to help support decisions made in the case studies.

In some cases two quite different sets of criteria could be combined into a shortlist, which

had not been an outcome when working manually through the criteria.

The ClassifierSuite tool renders the results across the power set of the selection crite-

ria (e.g. {{A,B,C},{A,B},{A,C},{B,C},{A},{B},{C},{}} unioned with the mandatory

criteria). The developer can then include/exclude a criterion, or click through on the

results of a set of criteria to see the raw XML. Methods to derive various statistics, to

annotate the graph and to save/print add to the usefulness of the tool.

The risk with Spiral 6 was the additional time required. The researcher considered

the tool to be very important for supporting selection and enforced a strict deadline for

its development. The resulting trials on three existing case studies were published and

presented at the IEEE Congress on Evolutionary Computation (CEC) (Maxville et al,

2008).

Spiral 7

In Spiral 7, the evaluation for the full project was the focus, as required for RE4. Some

evaluation had already taken place through the final sector of each of the Spirals. Spiral

7 was constrained to the work that had taken place in the previous Spirals - a case study

to review the effectiveness of the strategies that have been implemented. The Spiral is

summarised in Table 3.12. Working through real world application of the strategies was

specified in RE4, also constraining the alternative approaches available for this Spiral.

Within the constraints, it would have been possible to apply a piecewise evaluation of the

strategies, or to utilise external evaluation. The piecewise approach was not taken as it

had already been applied in the previous Spirals. One or more external evaluators would

have been a preferred approach, however time and administrative limitations made that

impractical.

In this Spiral, the major risk was around the selection of the scenario for the case

110

CHAPTER 3. RESEARCH PROCEDURES

Spiral 7 - Project Evaluation
Stakeholders Application Developers, Component Developers and Academia
Objectives, Constraints
and Priorities

Evaluation of the Process through a case study. Constrained to using the
freshmeat data and the CdCE Process as developed in previous Spirals

Alternatives Options include alternative scenarios, piece-wise evaluation rather than as a
whole, use of external testers

Evaluation Risks Problems with chosen scenario - not exercising all Steps, poor candidates in
shortlist

Risks Addressed Have alternative scenarios available if required
Risk Resolution Selected case study scenario (emailer) did result in an unsatisfactory shortlist

- none of the programs called be installed and executed. XML editor scenario
brought in as a replacement

Product Elaboration N/A
Process Elaboration Followed CdCE Process as documented
Verification and Validation Complete case study, GQM; peer review IET Software (Maxville, 2009)
Commitment Satisfied with case study as providing a good representation of the CdCE

Process
More Info Chapter 10

Table 3.12: Spiral Summary - Spiral 7

study. From Spiral 3 onwards, the major scenario for case studies was the ‘emailer’. This

had worked well in the shortlisting efforts and was mature in terms of Z specification

and usage models. However, when the shortlisted candidates were downloaded, it was

found that they were all poorly supported and could not be installed. Some of the issue

was the open nature of the repository projects - there is no insurance that they will be

maintained, and most were in a neglected state. The scenario itself may have added to

the issue, as the combination of C++ and emailer may have been an unlikely choice. A

number of alternative scenarios were followed through to ensure that strong candidates

would be available for evaluation. The result was that the XML editor scenario was used

in the case study.

With the scenario hurdle resolved, the case study was undertaken and the Process

and tools worked well. The switch to a completely new scenario and working through all

the steps occurred more quickly than expected: the fresh selection task and the panic of

having the worst risk take place probably worked together for this result. The case study

met all of the requirements and gave a good representation of the project. The Spiral

then moved to the collation and reflection on each of the Spirals and the investigation as

a whole.

This section has provided a short overview of Spiral 1 to 7. Further details on each

of Spirals 1-6 are found in Chapters 4 to 8, with Spiral 7 in Chapters 9 and 10.

111

3.9. SUMMARY

3.9 Summary

This chapter outlined the perspective taken for addressing the research problem. The

investigation has systematically addressed each of the research elements, utilising the

SDM to provide structure to an exploratory, Post-positivist study. The SDM supports the

regular review and reflection required to manage risk where each iteration is dependent

on the results of the previous work. The GQM has been applied to add rigour and

consistency to the evaluation. This chapter included the Spiral template and summary

information for each of the Spirals. The chapters that follow expand on each of the

Spirals and their outcomes.

112

Chapter 4

Specifying Components

The first Spiral of the investigation addresses RE1 - characterising and specifying com-

ponents. A structured, machine-readable specification is key to automating parts of the

selection process. As a basis for the specification template, background research was con-

ducted on general resource description and data representation. Software and component

specifications developed by others were also reviewed. Data modelling was approached

using object-oriented techniques.

The key product of this Spiral is the specification template: SoftWare Verifica-

tion Markup Language (swvML) is an XML schema which includes functional and non-

functional attributes to describe software components. This same schema is used to

describe both the ideal component (requirements) and each component in the repository

of component data. This specification template adheres to XML Schema and Dublin

Core1 standards and has been integrated into the CdCE tools developed in this investi-

gation. In later Spirals, the schema has been used to support automation of the selection

process and to hold transformed software project data from a repository.

For the specification, there have been some key goals, which are given in Table 4.1.

The specification template is a key part of the investigation’s approach to the quality

goal, which will form the basis of later strategies to support software selection. These

strategies will utilise the template to allow automation via machine intelligence. Real

world examples are considered in line with the usability goal. The template will include

a balance of reuse and innovation, and allow for change and extension as required

(dynamics).

The background and implementation of Spiral 1 follows. After the evaluation and
1http://dublincore.org/

113

4.1. SPIRAL 1 OVERVIEW

SPIRAL 1 GOALS
Quality Produce a specification template to facilitate quality CBSE development
Usability Include real world needs in the development of the specification
Intelligence Provide a specification that can facilitate intelligence and automation
Innovation Consider novel approaches to the specification
Dynamics Allow for change and the extension of the specification
Reuse Where possible make use of existing code and artefacts

Table 4.1: Goals for Spiral 1

planning for the Spiral, Section 4.7 outlines the updates to the specification template

that took place in subsequent Spirals.

4.1 Spiral 1 Overview

This Spiral focusses on RE1, developing or extending a template for the specification

(characterisation) of components. The investigation extends into the closely related ar-

eas of COTS specification and the description of electronic resources. While in-house

specifications are considered, they tend to utilise a white-box level of knowledge, and

may not apply in the black-box context of components.

The swvML schema is intended to be comprehensive, making it applicable in various

phases of component distribution and use. The fields included in the data model for the

schema reflect the requirements of the stakeholders in each phase. Initially the needs of

the component developers are considered - informing potential buyers of the features of

their software. The XML instance document provides information through which the ap-

plication developer can shortlist candidate components. A facility for searching through

component documentation (XML instance documents) may be provided by a component

broker, usually via a web-based repository. Existing XML schemas for components have

been developed by brokers to assist in the automation of adding component information

to their catalogues. The swvML schema aims to be used beyond component discovery

- assisting with technical specification, testing and comparison for selection of compo-

nents. It is also open to extension and reuse by application developers. Use cases for the

expected applications of the schema and instance documents follow.

The use cases identified for the overall investigation are shown in Figure 4.1, those

not greyed indicate the use cases related to Spiral 1. Component developers (Register

Component) are interested in communicating the functionality of their software, along

114

CHAPTER 4. SPECIFYING COMPONENTS

Figure 4.1: Use cases for the component specification schema (those not in the scope
for this Spiral are greyed)

with languages used, compatibilities and dependencies. They also need to provide contact

and administrative details, along with documentation. Application developers (Select

Component) are also interested in these attributes, but will need an interface to allow

for discovery of suitable software, and tools to assist with shortlisting and evaluating

candidates. Component brokers (Store Component, Serve Component and Provide

Search) require a stable schema for which to build tools, and perhaps allow automated

conversion to an internal schema for their brokerage. Reuse is important for reducing

effort for developers and can aid in standardisation, so a balance is required between

generic and specific in the template implementation. The application developer may

want to use all or part of the template to build new schemas (Modify Schema). This

discussion shows that the specification has information of interest to all of the users, with

supporting documentation as an aid to brokers and schema developers.

The stakeholders’ interests in the specification of components varies based on their

usage of the template. The identified stakeholders are included in Table 4.2. Application

developers benefit from the standardisation of the information on components to aid

the selection and integration process. They may also add to the template for their own

115

4.2. SPIRAL 1 CONTEXT

Stakeholder Win Conditions
Application Developers Specification includes all information required for decision making

Adheres to standards
Usability of template and tools (e.g. XSLT)
Well documented and extensible

Component Developers Clear documentation of how to use
Includes items specific to their developed product

Component Brokers Adheres to standards
Objectivity of included information

Quality Assurance Well documented
Able to be validated

Academia Adheres to standards
Model is well designed
Inclusions and omissions are justified
Survey is representative
Peer reviewed

Table 4.2: Win conditions for stakeholders (Spiral 1)

purposes. Developers of components may use a specification standard as a guide to

documenting their products, rather than having to decide what to include case by case.

Brokers may extend the template to include ratings and other evaluations done on site,

as at Component Source2.

When using the specification in industry, QA personnel need to have documentation

of the specification to audit the conformance of data to the schema. From the academic

perspective, the specification standard adds to the existing literature, as does the survey

of existing specifications.

4.2 Spiral 1 Context

The background information utilised in the development of this specification template

has come from four main areas:

• Resource description

• Data representation

• Software specification

• Component characterisation (functional and non-functional).
2http://www.componentsource.com/

116

CHAPTER 4. SPECIFYING COMPONENTS

According to the topic map introduced in Chapter1 (Figure 1.2), along with the goals

for Spiral 1 (Table 4.1), it can be seen that areas used in this phase are central to the topic

map, drawing on views from multiple disciplines. This Spiral captures and formulates a

pathway of study using conclusions drawn from the review of literature (Chapter 2).

Resource description

A number of standards exist for providing information about electronic resources. These

standards, along with existing schemata for software components, have been considered

when developing the swvML schema. Although standards and implementation are usually

closely tied, they can be considered independently.

Dublin Core is a standard developed to facilitate the discovery of electronic resources

over the Internet. Development of Dublin Core began in 1995 and aimed for simplicity

and to ensure an international consensus on its contents and structure. Many other

standard templates are built upon Dublin Core, including AGLS3, EdNA4 and IMS5 (see

Table 4.3). Dublin Core fields referenced in these schemata are indicated by ‘DC’: fields

with no equivalent are blank, otherwise the local schema name is given. In keeping with

the idea of interoperability, the swvML schema uses many of the Dublin Core fields where

their intention is similar to the requirements for component specification. This is mainly

in the identification and contact sections of the component description.

Electronic resource description and metadata are most commonly held in XML doc-

uments. The intention when developing XML was to provide a class of data objects

to support content such as: ‘industry-specific markup, vendor-neutral data exchange,

media-independent publishing, one-on-one marketing, workflow management in collab-

orative authoring environments, and the processing of Web documents by intelligent

clients. It is also expected to find use in certain metadata applications.’ (Cover, 2011).

According to Hunter (2003), XML is the ‘de facto standard for representing metadata

descriptions of resources on the Internet’.

XML lends itself to sharing and reuse of templates, which can be utilised to build a

schema as well as make it available for others to build upon. Investigation of XML Schema

documentation led to examples of methods for implementing currency descriptions in
3Australian Government Locator Service http://www.agls.gov.au/
4Education Network Australia http://www.edna.edu.au/edna/go/resources/metadata/edna metadata profile
5IMS Global Learning Consortium http://www.imsproject.org/metadata/

117

4.2. SPIRAL 1 CONTEXT

Item Dublin Core AGLS EdNA IMS
Identification
Name title DC DC DC
Date subtypes DC DC DC
Version version
Language language DC DC language
Location identifier DC DC location
Description
Function description DC DC DC
Detail
Type subject categories
Category
Domain
Audience audience
Contact
Author creator DC DC DC
Vendor publisher DC DC DC
Support contributor DC DC agent
CorporateName subtypes DC DC DC

Table 4.3: Comparison of selected attributes in schema standards. Text in a column
indicates the name used for that attribute in the standard. ‘DC’ is listed where the
standard uses the Dublin Core name and format for an attribute.

XML, and for implementing type libraries (XML). Both of these approaches were adopted

in the swvML schema, for the pricing information and for the structure of the various

levels in the schema specification.

Data representation

There are a number of different categories of attributes in the specification. Some are

ordinal, where the values have an inherent order and can be compared (e.g. price, date).

Others are textual (e.g. company name) and do not lend themselves to manipulation

or reasoning. When an attribute is text based and gives a long or short description,

other text processing can be applied. This includes keyword searching and generation of

ranking measures for relevance of the text to the given search terms.

Faceted classification of software was considered as a possible method for categorising

the subject areas of individual components. The classification is developed on a number

of categories, allowing for more useful information to assist application developers when

searching for components (Prieto-Diaz, 1991). These categories can include the program

118

CHAPTER 4. SPECIFYING COMPONENTS

size and complexity, quality of documentation, programming language and ratings from

users. Using faceted classification would have resulted in a single attribute encoding a

number of component attributes. However, the complexity of creating a classification

system, encoding and ordering was prohibitive. An alternative became available with

the uptake and implementation of ontologies, making it possible to adopt existing clas-

sification schemes. The reuse of an existing classification scheme would align one of the

goals of the project, and a survey of available knowledge bases is required to see if a

suitable one is available.

Software specification

Recording specifications can be done with varying levels of formality. When an informal

approach is used, ambiguity is more likely and it can be difficult to automate the under-

standing and processing of information. With a more formal approach, the specification

will be less ambiguous but there may be issues with readability and learning of the no-

tation used. As the aim of the functional specification is to allow for automated test

generation, a formal approach is needed. Options for automated test generation from

specifications include semi-formal UML diagrams (Yoon et al, 1999), Z notation (Stocks

and Carrington, 1993), Vienna Development Method (VDM) (Dick and Faivre, 1993),

and others. Each of these can be represented in XML, while literature exists for test

generation from each. Z notation has advantages in the standardisation of the language,

active development of tools for its use and prior familiarity of those involved in this

project.

Component characterisation

In the time this project has been in progress, software repositories have become common

to the point of being part of the general population’s vocabulary (e.g. the Apple App-

Store). Some of these specialise in components, and have characterised components with

practical data models and XML, similar to the swvML schema. Another common aspect

of describing components considers non-functional assessment or certification. Some in-

house repositories use formal methods to describe components and aid searching and

matching (Fidge, 2002, Rao and Sarma, 2003, Nakkrasae et al, 2004, Stylianou and An-

dreou, 2007). These were used by the developers (during development) and are available

119

4.3. SPIRAL 1 APPROACH

for use in the repository. Although formal specification is used for components in this

project, this is only for the description of the ideal component (functional requirements),

the expected data for a repository entry is more basic: the context and interface meta-

data. Characterisation is also discussed in Section 2.2.1.

4.3 Spiral 1 Approach

As the initial Spiral of the development, Spiral 1 had no existing artefacts on which

to build. The work to be done is based on literature, industry applications of similar

type and preferences of the research program. At the time of the first Spiral, XML

was gaining popularity as an interchange format for the description of documents and

electronic resources. Dublin Core was becoming standardised and utilised widely, along

with other standards.

The component specification template was derived from surveying existing work, in-

dustry usage (not just components), document standards and the research aims and

delimitations. A compiled list of all component attributes was developed and consoli-

dated. Each attribute was considered for inclusion. This was then modelled in UML

(Figure 4.2) to abstract the concepts, identify gaps, and crystallise the expected usage.

The resulting data model was compared with existing document templates to create a

mapping between common attributes in order to add any that were missing. The UML

was converted to XML schemas following conventions in the XML and document stan-

dards communities and concepts of modularity and reuse.

The motivation for developing a schema to describe components is to assist in the

distribution and discovery of components available electronically. The tasks of finding

components, and of making information about components available, is simplified by

having a standard format for describing the component. This schema provides a structure

for component specification, including contact information and technical details. By

using a documentation standard, component developers will not need to modify their

documentation for each brokerage site, and prospective component users will know what

information they can expect to find when selecting candidate components. The added

benefit is that some aspects of component discovery and selection can be automated with

a machine-readable component description.

120

CHAPTER 4. SPECIFYING COMPONENTS

Figure 4.2: Original class diagram for the component specification schema

This schema has been developed to be put forward as a possible standard for compo-

nent specifications. The approach has been to survey existing specifications and expected

requirements to determine what should be in the specification. Object-oriented develop-

ment techniques have been applied to assist in viewing the ‘big picture’ and the template

is documented using W3C standards as a model.

Guidelines considered in the approach to the specification included: adhering to exist-

ing standards; matching attributes to user needs; including context and behaviour; and,

supporting classification schemes (implemented in Spiral 4). These address the overall

goals of reuse, usability, intelligence and dynamics.

121

4.3. SPIRAL 1 APPROACH

Adhering to Existing Standards

The schema is designed to make use of existing standards for electronic resource docu-

mentation where possible. This adherence to standards makes it possible to seamlessly

include information specific to software components, while maintaining a standard (e.g.

Dublin Core) across the organisation’s information stores.

Once a list had been compiled from component broker sites and papers, related at-

tributes were grouped into six categories: identification, description, contact, commercial,

technical and authentication. Because components can be viewed as electronic resources,

the specification extends Dublin Core. Twelve of the attributes refer to Dublin Core.

The specification is detailed in Tables 4.4 to 4.5.

Matching Attributes to User Needs

Use cases were developed for the specification to identify the many ways that the template

may be used (Figure 4.1). It was important to make the attributes comprehensive, pro-

viding a component with an accompanying document that includes information needed

for various stages of its life.

Object-oriented techniques were used to model the data, with an awareness that

the implementation may not be object-oriented. Use case diagrams provide a model

from which to consider the perspective for the various users (actors). The original class

diagram for the component specification is in Figure 4.2. This was the data model as at

the end of Spiral 1.

Including Context and Behaviour

The context of the component refers to the environment in which it operates, with devel-

opment context unlikely to be the same as the target context. This information is held

in the technical section of the schema, along with the behavioural specification. Context

is highly important when assessing the suitability of a component and the amount of

coding required for adaptation into a new context. Context comes into play at two main

points of the selection process: when shortlisting the candidate components, and when

testing and evaluating the candidates. In Spiral 1 we need to consider both of these, with

the details for testing and evaluation to come in later Spirals.

122

CHAPTER 4. SPECIFYING COMPONENTS

The target context for a component includes the operating system, framework, re-

lated components and development language. These are included in the technical

section of the template. Additional non-functional information may include certification

and authentication. The support for behaviour is through attributes for interface in-

formation, again within the technical part of the template. This allows each interface

to be recorded, including inputs, outputs and errors.

4.4 Spiral 1 Implementation

Tables 4.4 to 4.5 list the fields and contents for the swvML data model. The data model

includes fields to meet the basic requirements of Dublin Core.

Item Description Type Schemes Min Max

Occurs Occurs

Identification complex

Title name of the component xs:string 1 1

Date date released xs:string ISO8601 1 1

Version current version number xs:string 1 1

Language component language (en) xs:string RFC1766 0 1

Source URI to access component xs:string URI 1 1

Description complex

Description function of the component xs:string 1 1

Detail detailed description of fn xs:string 0 1

Type LIST 0 *

Category LIST 0 *

Domain LIST 0 *

Audience intended market xs:string 0 1

Contact complex

Creator developers of component xs:string 1 *

Publisher distributors of component xs:string 1 *

Support support providers xs:string 0 *

CorporateName full company name xs:string 1 1

Address for each entity xs:string 1 *

Street street address xs:string 1 1

City city xs:string 1 1

State state xs:string 1 1

PostCode postcode xs:string 1 1

Email email address xs:string URI 0 1

Fax fax number xs:string 0 1

Phone telephone number xs:string 0 1

URL URL for org. web site xs:string URI 0 1

Table 4.4: Attributes and Types in swvML Schema (Part 1/2)

123

4.4. SPIRAL 1 IMPLEMENTATION

Item Description Type Schemes Min Max

Occurs Occurs

Commercial complex 0 1

Price price and currency type xs:string 0 *

Licence licence covered by price xs:string 0 *

Demos URL of demo s/w xs:string URI 0 1

Support level of support provided xs:string 0 1

Legals URL for copyright info xs:string URI 0 1

Documentation URL for documentation xs:string URI 0 1

SourceCode is source code available xs:string 0 *

SourcePrice price for source code xs:string 0 *

Technical complex

TechDescription technical description xs:string 0 1

DevLanguage development language xs:string 0 1

Software Framework software framework xs:string 0 1

Operating System operating system xs:string 0 1

Hardware xs:string IMT 0 1

Platform h/w platform xs:string 0 *

Processor processor requirements xs:string 0 *

RAM RAM requirements xs:string 0 1

DiskSpace disk space requirements xs:string 0 1

Links xs:string 0 1

Containers xs:string 0 *

Compatibility xs:string 0 *

Relation Related components xs:string 0 *

Extensibility xs:string 0 *

Reference 3rd party reference 0 1

ID reference ID xs:string 0 1

Organisation organisation holding refs xs:string 0 1

Authentication authentication information complex 0 1

Testing testing info xs:string 0 *

Level level attained xs:string 0 1

Organisation testing organisation xs:string 0 1

Certification certification information xs:string 0 *

Level level attained xs:string 0 1

Organisation certification organisation xs:string 0 1

Development Status status of component (beta) enum 0 1

Table 4.5: Attributes and Types in swvML Schema (Part 2/2)

124

CHAPTER 4. SPECIFYING COMPONENTS

<?xml version="1.0"?>

<?xml:stylesheet type="text/xsl" href="swvML_ap.xsl"?>

<Description

xmlns="http://eng.murdoch.edu.au/~valerie/swvMLap/1.0/"

xmlns:dc="http://purl.org/dc/elements/1.0/"

xmlns:swv="http://eng.murdoch.edu.au/~valerie/swvML/1.0/"

about="http://eng.murdoch.edu.au/~valerie/swvML/1.0/">

<dc:title>Title of software</dc:title>

<swv:version>version</swv:version>

<swv:devStatus>beta</swv:devStatus>

<dc:creator>creator</dc:creator>

<dc:subject subjectScheme="SFC">subject categories</dc:subject>

<dc:description>description</dc:description>

<swv:detail>detailed description</swv:detail>

<dc:publisher>publisher/vendor</dc:publisher>

<swv:support>support contact</swv:support>

<dc:date>date</dc:date>

<dc:type>type</dc:type>

<dc:format>format</dc:format>

<dc:identifier identifierScheme="URI">http://eng.murdoch.edu.au/~valerie/swvMLap/1.0/

</dc:identifier>

<dc:source>source</dc:source>

<dc:language>en</dc:language>

<dc:relation>relation</dc:relation>

<dc:rights>http://eng.murdoch.edu.au/~valerie/swvMLap/copyright.html</dc:rights>

<swv:licence>freeware</swv:licence>

<swv:demo>source</swv:demo>

<swv:documentation>http://eng.murdoch.edu.au/~valerie/swvMLap/doc.html

</swv:documentation>

<swv:sourceCode>available</swv:sourceCode>

<swv:technical>

<swv:techDescription>This is the place to enter a more detailed and technical

description of the software component. It could contain information about

algorithms used, data structures and anything else that may help the programmer.

</swv:techDescription>

<swv:devLanguage>devLanguage</swv:devLanguage>

<swv:framework>framework</swv:framework>

<swv:standard>standard</swv:standard>

<swv:operatingSystem>operatingSystem</swv:operatingSystem>

<swv:systemRequirements>

<swv:platform>platform</swv:platform>

<swv:processor>processor</swv:processor>

<swv:memory>memory</swv:memory>

<swv:diskSpace>4KB</swv:diskSpace>

</swv:systemRequirements>

<swv:interface>

<swv:name>name</swv:name>

<swv:function>function</swv:function>

<swv:input>input</swv:input>

<swv:output>output</swv:output>

<swv:error>

<swv:errorName>errorName</swv:errorName>

<swv:errorDescription>errorDescription</swv:errorDescription>

</swv:error>

<swv:error>

<swv:errorName>errorName2</swv:errorName>

<swv:errorDescription>errorDescription2</swv:errorDescription>

</swv:error>

</swv:interface>

</swv:technical>

</Description>

</xml>

Figure 4.3: Example of the swvML v1.0 template

125

4.4. SPIRAL 1 IMPLEMENTATION

Other fields use type schemas from existing schema standards/conventions. The data

modelling used class diagrams, which were matched in the multi-level XML implementa-

tion. The class diagram in Figure 4.2 shows the relationship between the different levels

of the schema. For maximal reuse there are type schemata to define the types to be

reused, and may later be replaced by industry standards (e.g. currency). From there,

the complex data types are built to be included in the tree version of the swvML schema.

Alternatively, a flat schema could draw its data types directly from the type files.

To extend the schema, it can be referenced and an application schema drawn from

it. Prior to extension, a data modelling activity should take place to find the best fit

for new attributes. In some cases there may be an existing standard for a type of field

(e.g. ISO 8601 for Date), and they should be used where possible. In addition, the XSLT

stylesheet should be extended to include the new fields.

Figure 4.4: Example of XML file for Rascal software, rendered using the XSLT
stylesheet for greater readability

126

CHAPTER 4. SPECIFYING COMPONENTS

Some attributes are required and can only appear once, indicated by Min Occurs

and Max Occurs of 1. Where an attribute is not required, Min Occurs is equal to

0. Attributes which can have multiple appearances in the XML document are indicated

with a * for Max Occurs.

Figure 4.3 is a sample specification using the Spiral 1 schema (swvML v1.0). The

indenting of attributes indicates the respective levels within the data model, with most

elements appearing as sub-elements of a main element.

XSLT stylesheets can be used to transform XML in a variety of ways. For swvML, a

stylesheet takes the raw XML file and renders it to make it a more readable HTML page

(Figure 4.4). Similar stylesheets are available for most XML files created for this project.

4.5 Spiral 1 Evaluation

The focus of Spiral 1 was the development of a specification template, approached through

a survey of literature and practice, which informed the data model. This was then used

as the basis for the swvML schema for characterising components - the main contribution

of Spiral 1 (C1).

The evaluation for this Spiral is based on the Spiral goals (Table 4.1) and the stake-

holder Win conditions (Table 4.2). Many of the Win conditions relate to adherence to

standards, which includes the use of XML and alignment to Dublin Core. The discussion

has highlighted the survey of existing schemas that was used to ensure the inclusion of

attributes relevant to all stakeholders, and the justification for each. Included attributes

are objective and where a subjective attribute is included, it must show its source (e.g.

user ratings from a particular repository). Documentation for the specification is in-

cluded in this Chapter, including the data model as a class diagram and a discussion

of how the model can be extended. XML editors and validators were used to ensure

that the XML Schema adhered to these standards and that the related XML documents

would be compatible with tools for handling XML. The final stakeholder win condition is

the peer review of the work, which has been accomplished through faculty presentations,

presenting the work in post-graduate symposia and submission to the Young Researchers

Workshop at the International Conference of Software Reuse (ICSR) (Maxville, 2002).

127

4.5. SPIRAL 1 EVALUATION

SPIRAL 1 Purpose Evaluate
Issue effectiveness of
Object the developed component specification
Context Spiral 1 Result

Goal 1A Focus Quality: Produce a specification template to facilitate
quality CBSE development

Viewpoint Quality Assurance personnel
Q1A1 Does the specification align to and apply standards? YES
Q1A2 Is the specification well documented? YES

Goal 1B Focus Usability: Include real world needs in the development
of the specification

Viewpoint Application developer
Q1B1 Does the specification include attributes from reposito-

ries?
YES

Q1B2 Does the specification include the attributes required
for assessing components?

YES

Q1B3 Has the work been tested on real-world examples? YES
Goal 1C Focus Intelligence: Provide a specification that can facilitate

intelligence and automation
Viewpoint Application developer
Q1C1 Is the specification machine readable and structured? YES

Table 4.6: GQM Summary - Spiral 1 (Part 1/2)

Spiral Goals

The responses to the Questions on the Spiral goals indicates that the Spiral has been

successful in its aims. In the case of the question on innovation, the response was the

goal had been partially addressed, which is indicative of the small scope for innovation

in the specification.

The following discussion refers to the goals and questions summarised in Tables 4.6

and 4.7. Each goal is included as a heading followed by the discussion relating to the

questions within that goal.

Quality

The specification was developed using XML schema and has been validated to check that

it conforms to the standard. The template also adheres to the Dublin Core standard

for describing electronic resources. The specification has a separate design document,

including use cases, class diagrams for the data model and a full description of fields.

128

CHAPTER 4. SPECIFYING COMPONENTS

SPIRAL 1 Purpose Evaluate
Issue effectiveness of
Object the developed component specification
Context Spiral 1 Results

Goal 1D Focus Innovation: Consider novel approaches to the specifica-
tion

Viewpoint Academia
Q1D1 Have innovations been developed? PART

Goal 1E Focus Dynamics: Allow for change and the extension of the
specification

Viewpoint Application developer
Q1E1 Is the specification extensible? YES

Goal 1F Focus Reuse: Where possible make use of existing code and
artefacts

Viewpoint Application developer
Q1F1 Has the work reused external resources? YES

Table 4.7: GQM Summary - Spiral 1 (Part 2/2)

Usability

Component and software repositories were reviewed to ensure that developer needs were

represented. The specification includes all attributes that are commonly available for

searching repositories. Assessment will require more information than the basic search

query on a repository. In some selection/evaluation processes, the evaluation is carried

out using customised criteria, often through the use of GQM (Basili et al, 1994). For this

study, the schema will be fixed, with the behavioural specification recorded within the

ideal specification to hold the more specific information. Subsequent Spirals demonstrate

the use of the specification applied to the assessment of software and the attributes were

considered appropriate.

The specification was applied to a number of examples to assess its applicability and

to test the schema.

Intelligence

XML was selected as the format for the project based on its ability to structure textual

data in a machine-readable format. This is critical for the automation of the selection

process.

129

4.6. SPIRAL 1 REVIEW AND PLAN

Innovation

Although there is not a lot of scope for innovation, the specification brings together

academic and industry characterisations. The use of the Z specification is novel in the

area of component characterisation. The formal specification focusses on interfaces and

required behaviour, which is only required in the ideal specification - not in candidates.

Dynamics

The XML Schema is easily extended by adding fields, which would retain compatibility

with swvML. Changes to the fields would need to be reflected in their handling in any

tools that are created. The data model can be used to ensure that changes fit with the

current schema in terms of where the attributes are grouped to make the documents

easier to read.

Reuse

At the field level, Dublin Core and W3C standards were used. The XML document and

schema is reuse in itself. Also third party XML validators and editors were applied.

4.6 Spiral 1 Review and Plan

The work has performed well with respect to stakeholder Win conditions and evaluation

against Spiral goals. The problem description was to develop a structured, machine-

readable specification for components. This has been achieved. As well as international

conferences, a further (peer) review took place through participation in a post-graduate

symposium.

The commitment is that a selection process could now be built on the foundation

provided by the specification. The specification is geared towards automation and appli-

cation of selection strategies in the course of this investigation.

Planning for Spiral 2 required a decision about what aspect of the ‘process’ to focus

on. Figure 4.5 summarises the options that were considered. To explain the direction

taken in terms of the diagram, the horizontal bars at the bottom of the diagram indicate

the type of matching that can take place. The focus for shortlisting is on the desired

component (ideal) specification, which could be compared to the published information

130

CHAPTER 4. SPECIFYING COMPONENTS

Figure 4.5: Options for focus of the investigation

available for components in repositories (‘candidates’, shown in red). Given a shortlist

of candidates, the preferred approach is to evaluate the performance of the executables

for each candidate with respect to the ideal component specification.

Factors behind the decision include reducing risk, and increasing interest and the

perceived value of outcomes (researcher’s perspective). It was at this point the focus

changed from the planned test generation investigation and into the CdCE Process6.

Spiral 2 began with a commitment to develop or reuse a process, working with the

specification from Spiral 1. Strategies would be attached to it in subsequent Spirals.

4.7 Post-Spiral Update

Although Spiral 1 was dedicated to developing a specification template (RE1), it is

not the only Spiral to impact on the specification. Dashed outline boxes on Figure 4.6

indicates the updates to the specification subsequent to Spiral 1.

In Spiral 3, the swvML specification was used in the generation of training data for the
6Previously called the Context-driven Component Testing (CdCT) Process

131

4.7. POST-SPIRAL UPDATE

Figure 4.6: Spiral 1 and later Spiral updates to specification

machine learning classifier (C4.5). Through this, a flat schema (rather than hierarchical)

was adopted as the default schema to simplify and scale processing of the XML files.

As a result of the review of Spiral 3, Spiral 4 attached five data types to the attributes

to improve data representation. Prior to this there had been four data types, which were

superceded. Further experimentation in Spiral 4 added ontologies and distance matrices

to provide a knowledge base to support the schema.

Additional changes were made to the schema in Spiral 5 to accommodate the evalua-

tion and ranking strategies. Specifically, the Z specification within the techDescription

element was fully defined and attributes were added for the evaluation metrics. A sum-

mary of these updates follows.

Hierarchical to Flat Schema

Experience with processing data from a large repository (over 41,000 items) in Spiral 3

indicated that the flat version of the schema was more appropriate for the case studies.

132

CHAPTER 4. SPECIFYING COMPONENTS

The developed programs needed to parse the XML document to access the content. This

may be done as a stream of information, or the entire file can be read into a Document

Object Model (DOM). For large files this can cause memory problems. Also, in this

case, the large XML of repository metadata is actually representing 41,000 smaller items

(components) which is the level at which the tools need to work. The flat structure

allowed the use of a SAX parser7 and filters instead of loading the entire document tree

as a DOM. For this to be possible, all attribute names have to be unique and not rely

on the position in the tree to differentiate between duplicates. This also aligns to the

Dublin Core approach which prefers flat schemas so they can be read without too much

knowledge of the XML document structure.

Even in a flat schema, the abstract data model is the same, with any changes from

the original implemented through extensions and enhancements. The final version of

the template is described in Section 4.7.1 of this Chapter. The changes after Spiral 1

relate to the use of ontologies instead of faceted classification and the inclusion of the

Z specification. Some renaming of fields also took place. Future requirements were also

considered, for example there are attributes related to the certification and testing of soft-

ware components. So, although the related data was not available for this investigation,

certification and authentication are attributes in the specification.

Formal Specification

In Spiral 1 interfaces and static evaluation of components were considered sufficient for

the project. As the CdCE Process developed (Spiral 2), it was decided to use dynamic

evaluation (testing) and the specification was changed to include behavioural information.

This change was in the ideal specification for requirements, while interface information

could still be included as before. The behavioural specification was used to manually

generate tests until Spiral 5, where some specifics of the representation were clarified

and a test generation tool developed. The intent had been to explore the use of the

behavioural specification to provide more complex test generation (based on a formal

specification) and test oracle functionality. This is regarded as future work and the test

generation is currently based on interfaces and equivalence classes.

Development of the CdCE Process clarified the requirements for the technical and
7Simple API for XML allows the XML files to be treated as a series of events (tags/attributes) and

the developer is free to interpret them

133

4.7. POST-SPIRAL UPDATE

behavioural specification of components, resulting in the inclusion of a Z specification

in the model. The techDescription field is used to store the Z specification. UML,

interface and other specification information could also be held under techDescription.

Spiral 5 moved the focus to the behavioural specification and resulted in clarification of

how the Z specification was stored and processed.

In the schema template, the definitions of the contents of the techDescription have

changed. While the tags are not affected by the change, the internal content is. The

techDescription after Spiral 5 includes the Z specification, coded in the LATEX standard.

This provides interface, partition and context information for the test generation.

Supporting Ontologies and Classification Schemes

The evaluation and reflection after Spiral 3 indicates that results could be improved if

the data representation was enhanced. It was clear that more could be extracted from

the data if classifications or ontologies were used for the terminology included in each

attribute. Numeric and date values would also benefit from more tailored treatment.

Spiral 4 introduced ontologies to the dataset along with transforming software to regulate

the incoming data.

Although this had more impact on the tools developed for processing the data, it

required a tightening of the definitions of the attributes and the values they could hold.

Much of the ontology is based on the freshmeat Open-Source repository and related trove

categories.

Metrics

Spiral 5 focussed on the details of the evaluation. For this, nine new attributes were

added to the schema for the evaluation metrics. All of them are numeric, with values

ranging between 0 and 10. The value in the ideal specification will indicate the optimal

value, and preferred range (e.g. optimal 10, range 7-10).

The candidates are evaluated in Steps 4 - 6, populating the metrics of interest. The

application developer indicates their required values through the ideal specification and

these are used to rank the candidates in Step 7 of the CdCE Process.

134

CHAPTER 4. SPECIFYING COMPONENTS

4.7.1 Updated Schema Implementation

The following discussion of the implementation refers to the final version of the spec-

ification template. Tables 4.8 to 4.10 list the fields and contents for the final swvML

schema.

The table indicates groupings of attributes to indicate type. Unlike the initial version,

the groupings do not correspond to complex attributes (containing sub-attributes).

While this flat version of the schema is in keeping with the Dublin Core style of

schema development, the choice of flat or hierarchical schema when developing instance

documents is left to the preferences of each organisation. Software reading schema data

directly will need to address the two versions of the schema, or may pre-process the data

through XSLT.

As part of the enhancements in Spiral 4, types of attributes in the specification

have been expanded, and tools were provided along with a knowledge base for ontology

attributes.

Item Description Type Schemes Min Max
Occurs Occurs

Identification

title name of the component xs:string DC 1 1
version current version number xs:string 1 1
date date released xs:string DC & 1 1

ISO8601
language component language (en) xs:string DC & 0 1

RFC1766
publisher publishers of component address DC 1 *
identifier publisher identifier xs:string DC 1 1
source URI to access component xs:string URI 1 *

Description

description function of the component xs:string DC 1 1
detail more detailed description xs:string 0 1
type xs:string DC 0 *
format xs:string DC 0 *
subject classification/category xs:string 0 *

Commercial 0 1

price price and currency type xs:string 0 *
licence licence covered by price xs:string 0 *
rights URL for copyright info xs:string DC;URI 0 1
demos URL of demo s/w xs:string URI 0 1
supportLevel level of support provided xs:string 0 1
documentation URL for documentation xs:string URI 0 1
sourceCode source code access info xs:string 0 *

Table 4.8: Attributes and types in swvML schema (Part 1/3)

135

4.7. POST-SPIRAL UPDATE

Item Description Type Schemes Min Max
Occurs Occurs

Technical

technical technical description xs:string 0 1
devStatus development status enum 0 1
devLanguage development language xs:string 0 1
operatingSystem operating system xs:string 0 1
framework software framework xs:string 0 1
standard standards adhered to xs:string 0 *
platform h/w platform xs:string 0 *
processor processor requirements xs:string 0 *
memory RAM requirements xs:string 0 1
diskSpace disk space requirements xs:string 0 1
relation related software xs:string DC 0 *
rel id xs:string 0 *
rel type xs:string 0 *
rel source xs:string 0 *
rel version xs:string 0 *
rel value xs:string 0 *

Metrics

FFIT Functional fit xs:string 0 1
FEXS Functional excess xs:string 0 1
AEFT Adaptation effort xs:string 0 1
TFIT Testing fit xs:string 0 1
TRES Test result xs:string 0 1
CX P Performance testing xs:string 0 1
CX R Reliability testing xs:string 0 1
CX S Stress testing xs:string 0 1
CX U Usage testing xs:string 0 1

Table 4.9: Attributes and types in updated swvML schema (Part 2/3), new/changed items in
bold

Item Description Type Schemes Min Max
Occurs Occurs

Contact

Creator developers of component address DC 1 *
Support support providers address 0 *

Address 0 1

Street street address xs:string 1 1
City city xs:string 1 1
State state xs:string 1 1
PostCode postcode xs:string 1 1
Email email address xs:string URI 0 1
Fax fax number xs:string 0 1
Phone telephone number xs:string 0 1
URL URL for org. web site xs:string URI 0 1

Certification 0 1

testing testing info xs:string 0 *
t level level attained xs:string 0 1
t organisation testing organisation xs:string 0 1
certification certification information xs:string 0 *
c level level attained xs:string 0 1
c organisation certification organisation xs:string 0 1

Table 4.10: Attributes and types in swvML schema (Part 3/3)

136

CHAPTER 4. SPECIFYING COMPONENTS

4.8 Summary

This Chapter has described the investigation of RE1: the development of a component

specification template, along with some of the rationale for the decisions that were made

in Spiral 1 of the investigation. To position the schema, use cases were developed and

the stakeholders perspective became a key influence on the type of data required. Since

components are viewed as electronic resources, the specification aligns with a widely used

standard, Dublin Core. The schema is implemented as an XML Schema, and provides a

predominately flat XML schema, which adheres to Dublin Core policy and simplifies the

processing of very large files.

This schema is expected to evolve, although care has been taken to include informa-

tion felt to be important to all stakeholders in the component based software development

community. Extending the schema is simple through XML and schema developers are

encouraged to help identify fields that may be brought into the schema standard in the

future.

The evaluation of the specification indicates that it has satisfied the stakeholder re-

quirements. The specification is central to the selection process which is developed and

explored in the following Spirals. As such, it has evolved, as described in Section 4.7. The

contributions discussed in this Chapter are the development of the specification template

(C1) and the inclusion of context in the specification (C3), both of which show their

value in later Spirals.

The following Chapter explores RE2, the development of the process for component

selection. Spiral 2 builds on the specification from Spiral 1 and creates a process to

provide scope for automation and intelligence.

137

4.8. SUMMARY

138

Chapter 5

The CdCE Process

This Chapter describes the investigations of Spiral 2 and the development of a process

for software selection. As noted in Chapter 2, while other selection processes exist in

the literature, they did not match the needs of this investigation. For this project, the

requirement was to have a process amenable to automation, as discussed in Chapter 1.

RE2 involves the development of a component selection process. The desired quali-

ties for the process are that it be intuitive, iterative, repeatable and suited to automation.

Addressing one of the issues with component and COTS selection, the CdCE Process aims

to be structured and repeatable. To allow scaling of the process to larger numbers of ap-

plications, tool support and automation are imperative. Central to the CdCE assessment

is testing of the software to be more certain its behaviour matches the specification.

The goals for Spiral 2 are listed in Table 5.1. The aim of this Spiral was the devel-

opment of a structured process for selecting and evaluating components. An eight-step

process was developed to support context-driven component evaluation. The Process was

trialled manually on a software selection task. Each Step within the Process is defined

by its inputs and outputs, and the task required. This allows flexibility for exploring

SPIRAL 2 GOALS
Quality Produce a structured, repeatable process for selecting and evaluating com-

ponents
Usability Consider existing processes and organisational requirements, provide tools

and automation
Intelligence Identify areas where machine intelligence and automation can be applied
Innovation Consider novel approaches to the process
Dynamics Allow for dynamic assessment with context
Reuse Where possible make use of existing code and artefacts

Table 5.1: Goals for Spiral 2

139

5.1. SPIRAL 2 OVERVIEW

strategies by changing the strategies and implementation independently of the rest of the

Process.

Following the review and evaluation of this Spiral of work, a summary of the post-

Spiral updates is given. The CdCE Process is the basis for work in later Spirals and has

been successfully used in a number of case studies. In each Spiral, the focus was on one

or more Steps of the Process, providing an instantiation of the Step through tools and

more detailed procedures.

As a product developed across this investigation, the CdCE Process is repeatable

and traceable, with tool support and the application of machine learning techniques to

assist the user. The complete process is contribution C2 of this research. The level of

automation provided helps the selection process scale to a larger number of candidates

and enhances the information available to the application developer. A focus for the

Process has been to allow for the target context to be considered throughout the selection

process, which supports contribution C3. This Spiral flags the support for context, which

is actioned in later Spirals. An additional contribution (C8) is that the Process can also

be used as a pattern for software selection, allowing for alternate instantiations to suit

the problem at hand.

5.1 Spiral 2 Overview

As preparation for Spiral 2, the actors involved in the selection process are considered.

The requirements for the CdCE Process relate most specifically to application developers

and quality assurance officers. The use cases are shown in Figure 5.1. The Process targets

three of the use cases: Select Component; Assess Selection and Adapt Process. Appli-

cation developers are interested in the entire process, as well as the option of using part

of it, or substituting in a local technique, such as a different formalisation of behaviour

for test generation. Quality assurance assessments can benefit from the artefacts of the

process. Traceability of decision-making is a key value-add of the Process. Beyond the

use cases, we can consider the application developer revisiting the selection task as the

system evolves. The artefacts from the process can be used in maintenance tasks, such

as reusing tests or adaptation models.

The main issues for stakeholders are the usefulness of the Process, how it affects

140

CHAPTER 5. THE CDCE PROCESS

Figure 5.1: Use case diagram for component selection, highlighting the three use cases
focussed on in Spiral 2

their operations and the academic merit. Application developers need to know that the

Process will be of benefit to them over no Process, in that it adds value (e.g. easier, wider

selection and better results). Component developers are interested in how the assessment

is done, and how this affects the way they specify their components. Brokers want to

know how the process will fit in with their repositories as well as what information will be

needed and when. Quality assurance personnel will need the process to be well-structured

and documented, with all decision-making recorded and justified. The requirements for

academia concern the validity of results, breadth of the survey and some peer review of

the work. The stakeholder evaluation criteria are provided in Table 5.2.

5.2 Spiral 2 Context

This chapter outlines the CdCE Process and how it was developed. The literature and

existing processes for component and COTS selection are now considered. Details on

shortlisting and testing within the CdCE Process and their justification are in subsequent

chapters.

141

5.2. SPIRAL 2 CONTEXT

Stakeholder Win Conditions
Application Developers Intuitive process.

Justifiable results.
Low overhead to use process.

Component Developers Know how their component is assessed and compared.
Component Brokers How to integrate with the repository.

What information is required and when.
Quality Assurance Documentation provided for decisions.
Academia Inclusions and omissions are justified.

Survey is representative.
Peer reviewed.
Intuitive, iterative, repeatable and suited to automation.

Table 5.2: Win conditions for stakeholders (Spiral 2)

An early decision spanning Spirals 1 and 2 was the type of criteria used in the eval-

uation. At the time the work was done, it was common to choose functional criteria,

with a more recent trend towards supporting non-functional criteria (Beus-Dukic, 2000).

Authors including Weyuker (1998) and Shaw and Garlan (1996) indicated the impor-

tance of context in testing and in integration of software components. With this in mind,

context was included as a key aspect of the approach to selection. Context was initially

considered an aid to component testing. This same contextual information can also be

used as non-functional assessment criteria, particularly for shortlisting. As a result, the

Process was expected to use functional and non-functional criteria in the evaluation.

Another influence of the Weyuker paper on decisions in this investigation is in the

choice of static or dynamic evaluation. The author put forward that testing needed to

be done in context to provide a true indication of performance. An extension of this idea

is that without testing in context, the evaluation cannot provide a complete assessment.

There has been a trend to third party certification and testing of COTS (Voas, 2000)

in the software engineering community. Although this had value in improving trust in

COTS, it did not assess the software in the target context (Morris et al, 2001). Testing

of the candidates was considered essential to the CdCE Process to determine suitability

for the system under development. The process was refined to include testing as the

primary method of evaluation. The decision to require dynamic evaluation was in line

with Weyuker (1998) and reflected in the original name of the Process ‘Context-driven

Component Testing’.

142

CHAPTER 5. THE CDCE PROCESS

5.3 Approach to Component Selection

The specification template developed in Spiral 1 is the basis for the selection process.

The investigation considered existing processes through literature searches, looking for a

process that met the goals of the project. There was also a requirement to utilise testing

in context as part of the process. It was decided to create a new selection process as

the review of literature did not identify a process that met the project criteria. The aim

was to create a high-level process in order for it to remain generic enough to be widely

applicable.

The first stage in developing the process was to define the scope, in terms of the

parts of the selection process to include. From the literature, the high level stages are:

1) screening and 2) analysis (Cechich et al, 2003). A survey of existing techniques was

carried out, and is summarised in Section 2.2 the literature review. This survey was

combined with a walkthrough of an informal selection process to provide an intuitive

perspective. The initial result was a five step process including specification, shortlisting

(screening), evaluation (analysis), ranking and reporting. This was expanded to eight

steps to allow for test generation and execution, and to separate the steps of the process

to facilitate the development of strategies.

The eight steps in the CdCE Process can be seen in Figure 5.2, and is described

in detail in Section 5.4. There are two points in the process where evaluations take

place. The first is at the shortlisting stage (Step 2) and the second at the ranking

stage (Step 7). Common techniques for evaluation use Weighted Sum Method (WSM)

or AHP to aggregate the scores (Alves and Finkelstein, 2002). Ncube and Dean (2002)

highlight issues with these approaches, including the assumption of independence between

attributes, mixing of units of measure and the meaning of output values. An aim of this

project has been to find an alternative to aggregation techniques for assessment. This is

explored in Spiral 3 (Chapter 6).

Throughout the process, XML documents are used for inputs and outputs of each Step

to provide transparency and documentation of results. These files also make it possible

to replace steps in the process with alternatives that may be dictated by organisational

standards. For example, a UML based specification and test generation setup could be

used, or the process could be interfaced with workflow or QA software. For evolving

systems, it would be advisable to use version control to track the changing parameters

143

5.3. APPROACH TO COMPONENT SELECTION

Figure 5.2: The CdCE Process

to the process over time.

Although one aim of the CdCE project was to provide a defined process, there is a

need for flexibility as the selection task is intrinsically iterative. In the event there are

unsatisfactory results, the specification can be refined and the task in question re-run.

This may occur if there are too many or too few candidates or if unexpected results are

returned from the particular choice of criteria.

For the CdCE Process, experts (application developers) define the ideal specification

and thresholds (required values) on acceptance of results. They would also be involved

in deciding to alter the ideal specification in response to the shortlist and when overall

144

CHAPTER 5. THE CDCE PROCESS

results are satisfactory. While the testing steps require expertise, the Process encourages

automation and reduces effort through the automated generation of test cases. This deals

with issues of scale in terms of the number of candidates, the size of the repositories and

with evolving systems and the revisiting of the selection process.

The evaluation and acquisition takes place in a parallel process to the remainder of

the development for a component-intensive system. The selection feeds back into the

development which may then feed back into the acquisition (Tran and Lin, 1999).

5.4 Implementation of the CdCE Process

Existing processes were surveyed for potential suitability to use in this project. These

were abstracted into a bare bones, intuitive process - the basic steps required in all

selection tasks. An activity diagram was developed to define sequencing and interactions

between steps, and was then refined through the combination of approaches. Refinement

of the process was informed by manual application to small case studies, resulting in the

concepts of ‘ideal component’ to define the requirements, and ‘candidate components’

which are shortlisted components from the total pool. Context-related information was

added into the formal specification within the ideal specification to support the testing

of software.

There are eight steps in the CdCE Process illustrated in Figure 5.2. An overview of

each step follows, with the rest of this Section describing each step in more detail.

Step 1 : Specify ideal component The desired component is described using a spec-

ification template (swvML).

Step 2 : Shortlist candidates The shortlisting step takes the ideal component speci-

fication and compares it to component information in repositories.

Step 3 : Generate test cases The ideal specification is used to generate tests to be

applied to all the components. These are based on the interfaces and behaviour

that are required.

Step 4 : Adapt tests Given the shortlist of candidate components from Step 2 and

the tests generated in Step 3, the tests are adapted ready to be run against each of

the candidates.

145

5.4. IMPLEMENTATION OF THE CDCE PROCESS

Step 5 : Execute tests Using an appropriate testing environment, all of the tests are

executed for each candidate, and their performance is recorded.

Step 6 : Evaluate tests This Step takes the execution results from Step 5 and com-

piles them into an evaluation against a set of metrics.

Step 7 : Rank components Information from the preceding steps is combined to de-

termine a ranking or comparison of the components.

Step 8 : Report results A report is generated to provide reasons for the decisions

made and give information to assist with adapting the component to the target

application.

To describe the CdCE Process in more detail, the inputs and outputs of each step are

defined. These are in XML with stylesheets to allow viewing independently of the CdCE

Process tools. The implementation of the steps in terms of tools and specific procedures

took place in later Spirals, and is summarised in Section 5.8. The following description

of inputs and outputs of each Step represent the Process at the end of Spiral 2.

CdCE Step 1 - Specify Ideal Component

This Step involves the task of defining the requirements for a third party component.

The specification of the requirements is supported by the XML schema template from

Spiral 1 with the behaviour described in a Z specification. The inputs and outputs of

Step 1 follow:

Input 1.1 : Desired attribute values: The ideal component specification includes in-

formation on as many required attributes as possible, using the swvML data model

as a guide for elicitation.

Input 1.2 : Priority of attributes: Each attribute is be marked with its level of pri-

ority. These are the hard and soft requirements for the selection. The assignment

of priorities builds on the information given from Input 1.1.

Input 1.3 : Relationships between attributes: Particular combinations of attribute

values may affect the suitability of a component. This input provides a way to

record these dependencies, conflicts and interactions.

146

CHAPTER 5. THE CDCE PROCESS

Input 1.4 : Formal specification: Information about the desired component behaviour

will assist the test generation process and help increase the context used in the as-

sessment of the component. The formal specification does not need to be complete;

it may be limited to the interfaces provided by the component. Application devel-

opers can determine the most critical interfaces and functionality for the software

and provide a specification for only those functions.

Output 1.1 : Ideal Specification: The above inputs are put together into the spec-

ification format to produce an ideal component specification in XML. A sample

specification is included in Figure 5.3.

<?xml version="1.0"?>

<Description xmlns="http://www.scis.ecu.edu.au/swvML/1.0/"

xmlns:dc="http://purl.org/dc/elements/1.0/"

xmlns:swv="http://www.scis.ecu.edu.au/swvML/1.0/" >

<dc:description type="mandatory">XML editor</dc:description>

<dc:detail type="mandatory">XML editor</dc:detail>

<swv:licence type="mandatory">GNU General Public License (GPL)</swv:licence>

<swv:devStatus type="mandatory">6 - Mature</swv:devStatus>

<dc:date type="mandatory" min="01-01-2005" max="31-12-2007">31-12-2007</dc:date>

<swv:technical>

<swv:devLanguage type="mandatory">Java</swv:devLanguage>

<swv:operatingSystem type="mandatory">Linux</swv:operatingSystem>

<swv:systemRequirements>

<swv:memory type="mandatory" min="15" max="50">20</swv:memory>

<swv:diskSpace type="mandatory" min="30" max="50">40</swv:diskSpace>

</swv:systemRequirements>

<swv:Zspec>

...

</swv:Zspec>

</swv:technical>

</Description>

</xml>

Figure 5.3: Example ideal specification of an XML Editor

CdCE Step 2 - Shortlist Candidates

In this Step the ideal specification is used to filter the repository information to create

a shortlist of candidate components. This may be a manual task, or an automated

approach can be taken. If the shortlist is not satisfactory, the specification can be refined

and the shortlisting repeated. A summary of the inputs and outputs for Step 2 are given

below.

Input 2.1 : Ideal component specification: This XML specification is an output

from Step 1 (Output 1.1).

147

5.4. IMPLEMENTATION OF THE CDCE PROCESS

Input 2.2 : Component repository information: This may be a list of component

repositories and COTS brokers for manual searching, or an input file in an auto-

mated system. The choice of repositories for consideration is documented through

this item. Any processing or transformation of data should also be documented.

Output 2.1 : Selected candidates The shortlisting process outputs a list of candi-

dates and their known information in swvML format.

Output 2.2 : Analysis of repository data: It is possible that the shortlisting pro-

cess can be improved by incorporating information about the available compo-

nents. In some cases a field is missing in every record, or other mismatches may

occur across the repository. This may mean tightening or loosening criteria, shifting

ranges for numeric values or incorporating information from clustering the data.

The shortlisting process advocates an overall analysis of the repository data with

respect to the ideal component to inform the user.

Output 2.3 : Update to ideal specification: If there are changes to be made to the

ideal specification, these updates are sent back to Step 1 to be incorporated before

another shortlisting. The changes may include adding or removing criteria, or to

alter a value (e.g. memory required). This would not be altering the formal speci-

fication, and don’t affect Step 3 of the process (which relies on the Z specification).

CdCE Step 3 - Generate Test Cases

In this Step the formal specification of the component is used to create abstract test cases.

Creating test cases that are ‘abstract’ provide a consistent basis for testing components.

These can then be adapted for each component to create the actual tests. The abstract

tests can include context-based tests that take usage profiles and critical functionality into

account. Chapter 8 provides more details on the generation of test cases, as developed

in Spiral 5.

Input 3.1 : Ideal specification: The specification is an output from Step 1 (Output

1.1). In Step 3 the formal specification and context schemas (in Z notation) are

used to show the desired behaviour for test generation and the testing priorities.

148

CHAPTER 5. THE CDCE PROCESS

Output 3.1 : Abstract test specifications: Using the specification, a set of tests is

developed, manually or via an automated test generation process.

CdCE Step 4 - Adapt Tests

The tests generated in Step 3 are ready to be adapted to the interfaces provided by the

candidate components. In this step the adaptation model is defined for each candidate

to provide a transformation between the abstract tests (and therefore the target system)

and the individual candidates.

Input 4.1 : Abstract test cases: These abstract test specifications are an output from

Step 3 (Output 3.1).

Input 4.2 : Candidate interfaces: Information about the interfaces provided by each

candidate is required for the adaptation. This involves the downloading of the

actual components and/or documentation as interface information is not generally

held in the component metadata.

Output 4.1 : Adapted tests: Tests for each candidate component, are stored in a

format (e.g. XML) to suit the test environment.

Output 4.2 : Adaptation models: Information on how to adapt the components to

suit the target system are recorded. These models are stored as XML and can

assist the integration of the selected component.

CdCE Step 5 - Execute Tests

The tests are in XML format to allow transformation to particular harnesses. No specific

test harness is dictated in order to allow flexibility for local needs such as platform,

programming language and other factors. Alternatively, the tests may be run manually.

The inputs and outputs for this Step are given below.

Input 5.1 : Adapted tests: Adapted tests were an output from Step 4 (Output 4.1).

Input 5.2 : Candidate executables: Each candidate or a demo version will need to

be downloaded and installed.

Output 5.1 : Test results: Full results of tests for each component are stored in XML.

149

5.4. IMPLEMENTATION OF THE CDCE PROCESS

CdCE Step 6 - Evaluate Tests

This step takes the XML documents containing the test results and collates them us-

ing metrics to form a picture of each component’s performance. Details of the metrics

and evaluation are provided in Chapter 8, including the XML files for recording this

information.

Input 6.1 : Test results: Test results output from Step 5 (Output 5.1).

Output 6.1 : Evaluation metric scores: The metrics for evaluation indicate the per-

formance against tests and are compiled for each component. These allow the

comparison between components to be undertaken.

CdCE Step 7 - Rank Components

In Step 7, the metrics collected for the candidates are used to inform their ranking. Many

options for ranking such as WSM, AHP or Outranking can be considered. The CdCE

approach to ranking is described in Chapter 8. From a generic viewpoint, there will need

to be metrics and results, and a ranked list will be output from this Step.

Input 7.1 : Evaluation metric scores: These results of the testing are an output

from Step 6 (Output 6.1).

Input 7.2 : Ideal metrics: The thresholds for each of the metrics are recorded in the

ideal specification.

Output 7.1 : Ranked components: The ideal specification relating to the evaluation

metrics is used to rank the components. This output provides a ranked list of

components.

CdCE Step 8 - Report Results

In this Step all information harvested for and generated by the CdCE Process is collated

and a report and recommendation produced.

Input 8.1 : Ranked list of components: This ranking is an output from Step 7 (Out-

put 7.1).

150

CHAPTER 5. THE CDCE PROCESS

Input 8.2 : XML documents generated during the selection process: From pre-

vious Steps, Outputs 1.1, 2.1, 2.2, 2.3, 3.1, 4.1, 4.2, 5.1, 6.1 and 7.1.

Output 8.1 : Report: The rankings from Step 7 and selected information from earlier

steps are collated in the report. It includes an executive summary, index, ideal spec-

ification(s), component information, reasoning, comparison matrix, and adaptation

models.

5.4.1 Context-based Tests

Third party components have been developed in a particular environment, and will have

undergone testing for that environment and expected usage. To increase confidence

of a suitable component being chosen, it is important to consider not only the target

environment, but also the requirements for performance and reliability and how the

component will be used and stressed. The concept of providing a representation for

these tests emerged during the Process development in Spiral 2. The approach was to

encode the information for the tests in Z schemas, consistent with the Z specification

for generating the base tests. Original schema names were CX values, CX probability,

CX sequence, CX frequency, CX response, CX critical and CX environment (Maxville

et al, 2003b). These were modified and instantiated in Spiral 5, which is discussed in

Chapter 8.

5.5 Results: Using the CdCE Process

The purpose of this case study was to explore the feasibility of the CdCE Process. In

this Spiral, the process was applied manually to provide proof of concept for the selection

process; it was applied to a real world problem to identify issues associated with each step

and the specifications, strategies and metrics required. The scenario is the selection of a

component to provide scientific calculation functionality for a target system. The system

provides the interface for the user to enter the information to set up the calculation, with

the calculator component carrying out back-end calculations.

151

5.5. RESULTS: USING THE CDCE PROCESS

5.5.1 Calculator Case Study

Step 1 : Specification of Ideal Component

Crucial to the selection process is the clear definition of the required component. This is

done by providing a description of the ideal component, including context information.

This includes the platform, programming language (desirable), memory usage (disk and

RAM), required functionality and usage information. Figure 5.4 shows the Z schemas

for the state and initialisation of the ideal component, and are based on published spec-

ifications for a simple calculator and generic trees (Barden et al, 1994).

Figure 5.4: State and initialization schemas

Mandatory operations are included in the specification and are indicators of the re-

quired interfaces. Additional information about the behaviour of the component is used

for test generation, without implying that the candidate components have to use the

same internal logic.

The application developer may have usage profiles or other information to guide test

generation towards important functionality or input values. This information is recorded

in predefined context schemas that are understood by the test generator. An example

is given in Figure 5.5, where the most common mathematical operation is known to

be addition. Usage based tests can then be generated with 80% (0.8) of the test cases

focussing on addition operations.

Figure 5.5: Calculator context schema - CX probability

152

CHAPTER 5. THE CDCE PROCESS

Step 2 : Shortlisting and Specification of Candidates

The selection process was carried out manually, but enacted using well-defined selection

rules to simulate an automated process. The targeted maximum number of candidates

is 7 plus or minus 2 for the manual shortlisting process (Miller, 1956). Automation

will allow for these limits to be increased or removed, with the user having the option

to set the number of candidate components returned. The shortlisting process gives

the application developer a structured and repeatable approach to sourcing components.

This saves time, allows for a wider search for candidates (through eventual automation)

and clear, traceable reasoning for selections made. The ideal specification (and changes

made to it) are artefacts that can be used for documentation and for future selection

tasks as the system evolves.

Site Total Available First Second Third Final
Code Entries Pass Pass Pass Pass

I 8000+ components 2 1/2 1/1 1/1
II 533 components 2 0/2 - -
III 12,212 projects 113 16/113 7/16 7/7
IV 36725 projects 173 36/173 4/36 4/4
V 30,000+ titles 67 11/67 3/11 0/3

Total 8̃7,500 listings 357 64/357 16/64 12/16

Table 5.3: Shortlisting results

The initial task was to select repositories to search for components. Five web sites

were chosen, each offering access to software descriptions and implementations. Two of

the sites were specifically component brokers, two were foundries for open source projects

and one offered a large selection of freeware and share-ware applications. The criteria for

each pass of the selection process are taken from the ideal component metadata, focusing

on the description and the environment/platform requirements. The first pass identified

any software that included ‘calculator’ in the description. This very broad criterion gave

an indication of the number of possibilities the search would need to consider. A total

of 357 software possibilities were returned for the five sites. The process then uses any

criterion of the ideal component specification to reduce the number of values returned.

Table 5.3 shows the number of possibilities remaining after each of the passes, described

below. The sweep criteria for each pass are given in Table 5.4.

The criteria for the second pass focused on ways to easily rule out a large propor-

tion of the components based on metadata in the ideal and available components. The

153

5.5. RESULTS: USING THE CDCE PROCESS

Code Selection Criteria
A Description includes ‘scientific’
B Is a ‘calculator application or component’
C Not specific to X11 (or GTK/Gnome/KDE/Motif)
D Not a specific calculator emulator
E Environment is (Windows or O/S independent)
F Has description
X Has scientific functionality (not just basic arithmetic functions)
Y Has a programmable interface (not just mouse/GUI)
Z Has files released/can access web pages

Table 5.4: Shortlisting criteria

second pass used criteria A-F to reduce the possibilities from 357 to 64. The third pass

introduced criteria X-Z and also found some additional software that failed A-F upon

further investigation. This resulted in sixteen matches. The final pass came as a result of

gathering information to fully specify the candidates in CdCE format. The information

uncovered in down-loading and reviewing the software and its documentation exposed

three possibilities that failed the selection criteria already used. There were also four

duplicates (across repositories), resulting in nine candidate components to fully specify

and take through the evaluation process.

Step 3 : Test Generation

The generation of tests for the selection and evaluation process is based on the Z specifi-

cation for the ideal component and its context, and current strategies as described earlier.

The approach followed is similar to Dick and Faivre (1993) and Hall and Hierons (1991),

where specifications are transformed to disjunctive normal form, from which operations

are generated to represent each partition of the input space.

For this case study, the tests were generated manually. The four categories of test

cases target the functional areas: memory sequences, mode sequences, expression se-

quences and expression+memory sequences. These were based on the variables in the Z

state schema and provide full coverage of the ideal component operations. Each variable

had two partitions - valid and invalid, resulting in the pairs of test cases (e.g. 1 and 1a in

Table 5.5). These tests served to provide a quick assessment of the available functionality.

Values from each partition were then substituted through a random test data generation

process.

154

CHAPTER 5. THE CDCE PROCESS

Name Valid and invalid cases
Memory (1) inputExpr(valid) >> storeMemory >> clear >> recallMemory
Memory (1a) inputExpr(invalid) >> storeMemory >> clear >> recallMemory
Mode (2) setMode(valid) >> getMode()
Mode (2a) setMode(invalid) >> getMode()
Expr (3) inputExpr(valid) >> evaluate()
Expr (3a) inputExpr(invalid) >> evaluate()
Expr2 (4) inputExpr(valid) >> storeMemory >> inputExpr(valid) >>

recallMemory >> evaluate()
Expr2 (4a) inputExpr(valid) >> storeMemory >> inputExpr(invalid) >>

recallMemory >> evaluate()

Table 5.5: Test cases for calculator case study

Step 4 : Test Adaptation

Test adaptation is carried out by combining the test sets from Step 3 with the adaptations

from Step 2. The result is a set of tests for each candidate component that exercises

identical functionality and data for consistency across all components. The adaptations

in this case were syntactical - there is a clear mapping between the generated tests and

the actual transcript.Test adaptation was carried out manually in this case study.

Step 5 : Test Execution

The tests were run manually against each of the components. The possible results were

pass, fail or not applicable (where the functionality was not present). The test suite did

not expose any failures, where the functionality was available in the component. The

shortlisted candidates passed all of the tests.

Step 6 : Evaluation of Results

This Step converts the raw test execution results, selection criteria and adaptation infor-

mation to create a picture of each candidate’s suitability. The test execution results were

converted into a score indicating the performance of the component against functional and

usage based testing (number tests passed/number tests in total). The selection process

also provided useful information about the component’s suitability, based on comparison

with the ideal component specification. Another facet affecting the suitability of a com-

ponent is the effort required to adapt the component to its target system. These pieces

of information from Steps 2 and 5 were collated for each component, ready for ranking

in Step 7.

155

5.5. RESULTS: USING THE CDCE PROCESS

Metric Result Score (s) Conversion
Rating /10

% Features available 75% 7 s 7
Excess Features (categories) 12 10 10-s 0

% Interfaces needing adaptation 100% 10 10-s 0
Maturity (years since first release) 1 1 2x s 2

Maturity (stability) 4 (Beta) 4 2x s 8
Cost free 0 10-s 10

Test results 75% 7 s 7
Simple Total 34/70

Simple Percentage 49%

Table 5.6: Component metrics and ratings

An example of the case study results for a particular component is given in Table

5.6. Following the approach of Solberg and Dahl (2001), the rating for each metric is a

conversion from the raw results to a value in the 0-10 range (s). Higher ratings indicate

component features are more suited to requirements. A simple indicator of the overall

performance of the candidate component is given by summing the ratings or calculating

the percentage of rating points achieved.

Step 7 : Ranking of Candidates

Given the ratings for each component against each metric, it is possible to compare and

rank the components. By default, the CdCE Process considers all metrics equally. There is

a facility to add weightings to each metric to suit a particular project, or an organisation’s

quality or standards requirements. For example, an organisation may decide that the risk

of immature/unstable software or of excess functionality is of high importance. It would

then add a weighting to these metrics to increase their effect on the rankings. A cutoff

value may also be used for high priority metrics, disqualifying the candidate from the

rankings. A simple weighted score sum (Solberg and Dahl, 2001) is used to determine

the result for each component:

result = w1 ∗ s1 + w2 ∗ s2 + w3 ∗ s3 + ... + w7 ∗ s7

A number of combinations of weightings were investigated. Table 5.7 shows how the

overall scores for three components are affected by varying the weightings of the metrics.

In this case, C3 consistently achieves the highest scores.

156

CHAPTER 5. THE CDCE PROCESS

Weighting Pattern C2 C3 C9
Default - all metrics equal 33 44 34

Tests have triple value, all else = 1 37 64 48
Features has triple value, all else = 1 37 64 48

Adaptation has triple value, all else = 1 33 44 34
Maturity has triple value, all else = 1 57 64 54

Risk factors tripled, all else = 1 71 72 54
(maturity, adaptation and excess features)

Table 5.7: Results of component ranking

Step 8 : Report on Results

Once the candidates have been ranked, the resulting information is presented as a report

on the process and advice on the most suitable component(s) for the problem being

addressed. The report includes features and shortcomings of the component(s), and the

adaptation required to integrate the component into the target system. It can also provide

information on the shortlisting process and criteria used for selecting candidates. It serves

as the justification of the choice of component for inclusion in the system documentation.

5.5.2 Case Study Observations

This trial of the CdCE Process indicated that it could be used manually to undertake

a real world selection process. Items highlighted as needing clearer definition include:

a method for comparison/ranking; metrics for evaluation; test generation technique(s);

adaptation models; and supporting XML schemata and XSLT transformations. Also

highlighted was the impact of scoring method and weighting across the selection criteria.

The shortlisting process exposed wide variation among repositories in terms of total

software titles, candidates returned and the documentation provided. These differences

should be recorded in a knowledge base to allow them to be taken advantage of. For

example, Site IV ordered the results by project activity. This meant that after the

first 44 projects, the usual reason for failing the third pass was that there were no files

available for the project. By taking the activity metric into account, it would have been

possible to reduce the shortlisting effort by 75%. Sites I-IV had significant amounts of

information about each piece of software. Site V had little documentation and meant

that the developer web site had to be accessed for each possibility in the third pass.

In terms of usefulness for discovering components, Sites I and II are targeted to

the component market, and tend to be better documented. Unfortunately they did not

157

5.6. SPIRAL 2 EVALUATION

have many components matching the case study criteria. Sites III and IV are aimed at

encouraging open source development. Their projects may not be stable, but there are

good options for reuse as interfaces are accessible. There are a large number of projects,

varying in maturity and level of documentation. Site V mainly provides standalone

applications, so little information about integrating the software is available. The site

does offer a large number of titles and the available software may prove suitable for

integration into other component-based systems.

5.6 Spiral 2 Evaluation

The second Spiral of the investigation addressed RE2 in developing a process for com-

ponent selection. To evaluate the Spiral, the stakeholder Win conditions (Table 5.2) and

Spiral goals (Table 5.1) are now discussed. This evaluation is based on the work of Spiral

2, although very relevant work took place in Spirals 3 to 6. That work, and its impact,

will be discussed in Section 5.8.

One issue with existing processes for component selection is a lack of uptake (Li

et al, 2006) which may be improved by providing simpler processes: better indicating the

benefits or flexibility to integrate with existing work practices. This Process, developed

with consideration of these issues, is adaptable to allow for alternative implementations

of Steps to match the local development environment.

The Win conditions for application developers are to have an intuitive process with

justification and low overheads. The Process itself was developed to take the basic steps

of a generic selection process. It is able to be followed manually, while also providing

options for automation. At each Step, documentation is created which can later be used

to justify the selection. This is also a win condition for quality assurance. The final win

condition for the application developers is that the Process has low overheads, with the

main overhead for using the Process at Spiral 2 in providing the ideal specification. As

this is a formalisation of defining the requirements, the overhead can be considered low.

Component developers are able to see clearly how their components are assessed

through the Process and the use of the ideal specification. The Process requires infor-

mation from repositories at the shortlisting stage (Step 2) and in the downloading of

executables and documentation at Step 4. Brokers can assist integration of selection

158

CHAPTER 5. THE CDCE PROCESS

processes by providing search facilities with the required fields and/or XML (or similar)

output of the repository data. Also of interest to brokers is that fully-functional versions

of the software would need to be provided for evaluation.

The academic Win conditions include the need for a justifiable, repeatable process,

which has already been discussed. In addition, the low coupling on Steps and the use of

XML for documentation, inputs and outputs will assist automation. The structure of the

CdCE Process has been developed with reference to processes described in the literature

and includes the phases of filter, evaluate and selection. The outcomes of this Spiral

were peer reviewed and presented at the Asia-Pacific Software Engineering Conference

(APSEC) (Maxville et al, 2003b) and at the Postgraduate Electrical Engineering and

Computing Symposium (PEECS) (Maxville et al, 2003a).

The preceding review supports the view that the stakeholder Win conditions have

been met.

5.6.1 Spiral Goals

SPIRAL 2 Purpose Evaluate Result
Issue effectiveness of
Object the developed selection process
Context Spiral 2

Goal 2A Focus Quality: Produce a structured, repeatable process for
selecting and evaluating components

Viewpoint Quality Assurance personnel
Q2A1 Is the process defined according to accepted standards? YES

Goal 2B Focus Usability: Consider existing processes and organisa-
tional requirements, provide tools and automation

Viewpoint Application developer
Q2B1 Can the process interface with organisa-

tional/development processes?
PART

Q2B2 Is the process easy to understand and use? YES
Q2B3 Has been tested on real world examples? PART

Goal 2C Focus Intelligence: Identify areas where intelligence and au-
tomation can be applied

Viewpoint Application developer
Q2C1 Have areas for automation been identified? YES

Table 5.8: GQM Summary - Spiral 2 (Part 1/2)

The following discussion refers to the goals listed in Tables 5.8 and 5.9. Each goal is

included as a heading followed by a discussion relating to that goal. Many of the goals

were further addressed by work in later Spirals.

159

5.6. SPIRAL 2 EVALUATION

SPIRAL 2 Purpose Evaluate Result
Issue effectiveness of
Object the developed selection process
Context Spiral 2

Goal 2D Focus Innovation: Consider novel approaches to the process
Viewpoint Academia
Q2D1 Is there anything novel in the process? YES

Goal 2E Focus Dynamics: Allow for dynamic assessment with context
Viewpoint Application developer
Q2E1 Does the process allow for iteration? YES
Q2E2 Context is included in the selection? YES

Goal 2F Focus Reuse: Where possible make use of existing code and
artefacts

Viewpoint Application developer
Q2F1 Has the work reused external resources? PART

Table 5.9: GQM Summary - Spiral 2 (Part 2/2)

Quality

The outcomes of this Spiral adhere to current standards for documenting processes, with

the CdCE Process drawn as a UML activity diagram. The description includes input

and outputs for each Step. Further details on the implementation of the Steps and the

strategies that have been developed are in subsequent chapters.

Usability

An example of the process integrating with the system is shown in Section 5.3. To better

address this question, the process would need to be trialled in development environments,

which was out of the scope of this project.

The Process is defined in an easily understood form - the activity diagram - and a top-

level understanding is easily attainable. The Process can be used manually to encourage

better structure for selection, or with automation to allow for larger repositories and

more complete documentation.

The initial cases worked through were real world examples, with manual data col-

lection from a variety of sites. The case study in Section 5.5 shows the process applied

to assessing real software from public repositories. For full satisfaction of this question,

the Process would need to be trialled in a software development environment. Thus it is

considered to be partially satisfied.

160

CHAPTER 5. THE CDCE PROCESS

Intelligence

The areas identified for automated support include: 1) automated documentation in

XML between steps, 2) automated test generation, 3) an automated test oracle and 4)

automation to support selection based on a set of criteria. These were expected to be

able to include some machine intelligence as an outcome of future Spirals.

Innovation

The Process includes the basic steps for a dynamic evaluation of components. These

generic steps allow for flexibility to explore various strategies and implementations in

this project. It also allows localisation of the Process to match and evolve with organisa-

tional standards and contexts. This detachment from any particular implementation is

novel and is distinct from the decision support approach to choosing a selection process

described in Mohamed et al (2007b).

The Process separates the test generation from the shortlisting. The tests are gener-

ated from the requirements, allowing testing to be truly comparative as the tests are then

adapted and executed for all candidates. The functional specification is encapsulated in

the Z specification, which also provides the contextual information for testing. Together,

the approach to test generation and the use of Z notation is novel in the component

selection literature.

The concept of the ideal specification is also novel. It provides a standardised form

to record the requirements, based on the work of Spiral 1. The schema can be used for

describing all components of interest and the requirements for the selection.

Dynamics

As the selection process is interdependent with the wider software development, and

with the suitability of available candidates, it is important to be able to adapt to each of

these inputs. At the wider process level, the repeatability of the CdCE Process supports

revisiting the selection task within a project. The manual case study utilised a procedure

of progressively adding selection criteria to filter for candidates. This iteration allowed

the selector the flexibility to respond to the available candidates, which may not fully

match the ideal specification. It is also possible to re-specify the requirements after

shortlisting, which is indicated by the loop back between Step 2 and Step 1.

161

5.7. SPIRAL 2 REVIEW AND PLAN

Context is included in the selection on a number of levels. Firstly it is included

through many of the non-functional attributes in the ideal specification. Context is also

represented in the tests, not only in the context schemas but also in the requirement

for testing in the local environment - preferably the target context. A third level of

localisation is the adaptability of the process to local organisational needs and tools.

Reuse

The process was influenced by existing processes, but did not reuse any process as a

whole. However, there is some (internal) reuse through the specification template being

utilised for a range of tasks throughout the Process.

5.7 Spiral 2 Review and Plan

An evaluation of this Spiral’s outcomes gave positive results against all of the stakeholder

Win conditions. The activity diagram and areas for automation were identified and met

project requirements for usability, context awareness and simplicity. In particular, the

process is repeatable and self-documenting through the XML linkages between steps.

The GQM evaluation was positive on all questions, with only two areas rated as partially

satisfied. However, Q2B1 (usability) would need the Process to be trialled in an organi-

sational setting to be answered with confidence. This is beyond the scope of this project

and may be considered in future work. Q2F1 (reuse) was also not completely satisfied,

due to the creation of yet another selection process, where it had been hoped that an

existing one could be used. However, the need for a process for this project indicates a

gap in the literature which the CdCE Process addresses.

The work from Spiral 2 has undergone external review through conference papers and

in an internal Faculty presentation. The contribution of this Spiral is the Process itself,

particularly in the repeatability and self-documentation supported. The suitability for

automation sets it apart from most selection processes, which are not ready for intelligent

support (Ruhe, 2002).

Moving forward to planning for Spiral 3, the researcher identified parts of the Process

to target for automation based on the manual use of the Process in Spiral 2. This resulted

in a commitment to investigate test generation and filtering/shortlisting in subsequent

162

CHAPTER 5. THE CDCE PROCESS

Spirals.

5.8 Post-Spiral Update

Figure 5.6: Updates to the CdCE Process in later Spirals

The preceding Sections detail and review the work carried out in Spiral 2. Later

Spirals have incrementally instantiated, extended and altered the CdCE Process as shown

in Figure 5.6. This took place during the exploration of RE3 in Spirals 3 to 6. Impact

on the Process was greatest in Spiral 3 (shortlisting approach), Spiral 5 (implementation

of testing and evaluation) and Spiral 6 (support for shortlisting through ClassifierSuite)

The final version of the CdCE Process will now be described, and is applied to a case

study in Spiral 7 (Chapter 10). The final version of the inputs and outputs of all of the

Steps are given in Table 5.10.

As the updates have impacted on every Step of the Process, they are now described

on a Step by Step level.

163

5.8. POST-SPIRAL UPDATE

Step Inputs Outputs
Step 1 Desired attribute values Ideal specification (XML)

Priority of attributes
Relationships between attributes
Formal specification of behaviour in Z
notation

Step 2 Ideal specification (XML) Selected candidates (XML)
Component repository information
(XML)

Analysis of component data

Update to ideal component specification
(if applicable)

Step 3 Ideal specification (XML: Zspec) Abstract test cases (XML)
Step 4 Abstract test cases (XML) Adaptation models

Candidate interfaces Adapted tests (XML)
Step 5 Adapted tests (XML) Test results (XML)

Candidate executables
Step 6 Test results (XML) Evaluation metric scores (XML)
Step 7 Evaluation metric scores (XML) Ranked/ordered list of components

(XML)
Ideal metrics (XML)

Step 8 Ranked list of components Report
XML documents generated during the se-
lection process

Table 5.10: CdCE Inputs and Outputs

Step 1

There has been no conceptual change to Step 1, however the detail of the XML Schema

describing the components and ideal component has changed. This includes the imple-

mentation of improved data representation and ontologies and is discussed in Section 4.7.

The Schema was extended to include evaluation metrics developed in Spiral 5, which are

described in Section 8.2.

Step 2

The shortlisting or filtering for a shortlist was targeted for automation. In Spiral 3, initial

work considered using the Weighted Sum Method (WSM) or the Analytical Hierarchy

Process (AHP) which were reported as widely used (Ncube and Dean, 2002). Limita-

tions of these techniques led to investigation of alternatives, including Artificial Neural

Networks and classifiers. This exploration is described in Chapter 6 and resulted in the

adoption of machine learning classifiers for the shortlisting task.

The Process has strong support for iteration. In Spiral 6, an approach was taken

to flatten the iteration through the selection criteria by creating a suite of classifiers

164

CHAPTER 5. THE CDCE PROCESS

to provided the results of using all combinations of criteria from the ideal specification.

While the ClassifierSuite does not remove the need to iterate back to Step 1, it does

capitalise on the automation of the filtering and assists the developer in choosing among

the given selection criteria when a trade-off is required. Full details of the ClassifierSuite

are given in Chapter 9.

Step 3

Spiral 2 included the decision to generate abstract test cases from the specification.

The test generation itself was implemented in Spiral 5, and did not diverge from the

expectations of Spiral 2. Some redefinition of the context-based testing (from Z schemas)

was carried out to match the evaluation metrics developed in Spiral 5 (Section 8.2).

Step 4

The description of adaptation in Spiral 2 was quite high level. The expectation for

an automated process for adaptation was not possible within time and resources. This

resulted in a manual adaptation process being adopted in Spiral 5 (Section 8.4).

Step 5

The execution of tests was envisioned as utilising automation. As each testing environ-

ment is different, it was decided in Spiral 5 to automatically generate tests and to leave

the execution of them to the user. The tests themselves are recorded in XML to simplify

their use in a test harness or other automated environment.

Step 6

Evaluation of tests is a step turning raw results into a set of compiled results. In Spiral

5 the specifics of the metrics were determined, guiding how the raw results populate

indicators of performance in base and contextual tests. These are detailed in Section 8.2.

Step 7

As with shortlisting in Step 2, the ranking of components was considered for new strate-

gies and approaches. During Spiral 2, AHP and WSM were under consideration. Having

developed the classifier approach for shortlisting in Spiral 3, the same approach could

165

5.8. POST-SPIRAL UPDATE

Figure 5.7: Iterations possible within the CdCE Process

be applied to ranking based on the evaluation metrics. These metrics are extensible and

interchangeable, however those used in this project align to the testing approach and the

compiling of results from Step 6.

Step 8

The reporting of results was always considered to be a compilation of the documents

from all steps of the Process. In the final version of the Process, this included the inputs

and outputs from all Steps (XML presented through XSLT), along with descriptions of

internal decisions, such as the choice of criteria and the shortlist using the ClassifierSuite

in Step 2.

166

CHAPTER 5. THE CDCE PROCESS

Iteration

The initial version of the CdCE Process has one point of iteration in the activity diagram

(Figure 5.2). The CdCE Process includes four iteration zones for the tuning of param-

eters. The first is between specification and shortlisting (Steps 1-2), the second from

specification to testing (Steps 1-6) and the third in ranking (Step 7). A fourth iteration

is to repeat the entire process with modified criteria. Iteration is included to improve

results and, as each change is documented, does not break the goals of structure and

repeatability. The refinement of the specification for the shortlisting is expected to oc-

cur on most selection tasks. All of these iteration options can be seen on the expanded

Process diagram (Figure 5.7).

5.8.1 A Pattern for Component Selection

Over the course of the investigation, the CdCE Process was made flexible to allow the

exploration of specific techniques at various phases of the selection. This generic approach

makes it possible to consider the high level Process as a pattern for component (and more

general) software selection. In instantiating the pattern, users may adopt the CdCE

techniques, create their own techniques or use a blend of the two.

This description of the CdCE Pattern for Component Selection (see Table 5.11) uses

the template provided by Gnatz et al (2002). Following the related theory for living

software development processes, this description is at the meta-model level (Gnatz et al,

2002), with the CdCE Process itself at the ‘model’ level.

167

5.8. POST-SPIRAL UPDATE

Name: Context-driven Component Evaluation

Also Known As: N/A

Author: Valerie Maxville

Intent: As reuse of third party software increases, developers face the task of selecting
between alternatives. This process provides a systematic, intuitive approach to
the selection task.

Problem: The scenario is that the project requires one or more third party software items.
These may be standalone applications or software components to form part of
the final system.

Context: The selection should begin in the requirements or design phases. For
component-intensive systems, the pattern can be used in tandem with the rest
of the system development. Developers will need to have information on the re-
quirements (ideal component specification) and access to a software repository.

Solution: Eight Step Process:

Step 1 : Specify ideal component: The desired component is described using
XML and Z notation. Any priorities between attributes should be included as
well as relationships between attributes.
Step 2 : Shortlist candidates: The shortlisting step takes the ideal component
specification and compares it to component information on repository websites.
Step 3 : Generate test cases: The behavioural specification in Z notation is
used to generate tests to be applied to all the components. These are based on
the interfaces and behaviour that are required.
Step 4 : Adapt tests: Given the shortlist of candidate components from Step 2
and the tests generated in Step 3, the tests are adapted ready to be run against
each of the candidates.
Step 5 : Execute tests: Using an appropriate testing environment, all of the
tests are executed for each candidate, and their performance is recorded.
Step 6 : Evaluate tests: This step takes the execution results from Step 5 and
provides an evaluation against a set of metrics, ready for inclusion in the ranking
classification.
Step 7 : Rank components: Information from the preceding steps is combined
to determine a ranking or comparison of the components.
Step 8 : Report results: A report is generated to provide reasons for the deci-
sions made and give information to assist with adapting the component to the
target application.

Consequences: The pattern provides an intuitive approach to selection which was developed to
be open to automation and tool support.

Known Uses: The pattern is instantiated as the CdCE Process. The Process includes a spec-
ification template, tool support and process guidelines and has been applied in
case studies. The Process is also able to be applied manually.

See Also:

Table 5.11: Pattern Definition: Context-driven Component Evaluation

168

CHAPTER 5. THE CDCE PROCESS

5.9 Summary

This Chapter followed the development of the CdCE Process, initially through the work

in Spiral 2 and with updates in the later Spirals fleshing out the detail of the Process.

As a final product, the CdCE Process is structured and repeatable, with support for

automation and self-documentation. Context is a repeating theme in the Process, which

is supported through non-functional selection criteria, testing in the target environment

and context-based tests. The Process developed met required criteria for stakeholders

and review, either within Spiral 2 or in setting the path towards their implementation in

later Spirals.

Contributions from Spiral 2 and the CdCE Process include: the definition of struc-

tured, repeatable process for software selection; the provision for context-based evalua-

tion; and the pattern for software selection as described in Section 5.8.1.

In the next Chapter, Spiral 3 focusses on the shortlisting process. This considers

existing techniques for comparison and their benefits and short-comings. A key goal is to

increase the number of components that can be assessed through the use of automation.

169

5.9. SUMMARY

170

Chapter 6

Shortlisting Candidates

This Chapter describes the approach taken for shortlisting or screening the components.

This is the first Spiral to address RE3 - the development of strategies and techniques

for software component selection. Spiral 2 identified some areas of the CdCE Process to

target in future Spirals, with shortlisting (Step 2) being the first one addressed.

Spiral 3 aimed to find an approach to provide automation for the selection pro-

cess. A number of techniques were considered, including weighted sum method (WSM),

Analytical Hierarchy Process (AHP), expert systems, artificial neural networks and ma-

chine learning classifiers. Experimental case studies led to the selection of C4.5 classi-

fier as it outputs a decision tree. The Weka implementation provides an engine to the

classification-based shortlisting approach that has been developed. This novel applica-

tion of decision tree classifiers, and the supporting tools and procedures, is a contribution

of the study (C4).

The goals for Spiral 3 are listed in Table 6.1. Key points were that the shortlisting

be structured and repeatable (quality). Iteration and flexibility had been identified

as important in Spiral 2 and the approach needed to minimise the effort involved in

supporting the dynamics of selection. Automation and ease of use (usability) were to

SPIRAL 3 GOALS
Quality Produce a structured, repeatable process for shortlisting components
Usability The shortlisting process must be automated and understandable
Intelligence Apply machine intelligence techniques and strategies to shortlisting
Innovation Consider a wide range of options for shortlisting to find a novel solution
Dynamics Allow for change and iteration
Reuse Where possible make use of existing code and artefacts

Table 6.1: Goals for Spiral 3

171

6.1. SPIRAL 3 OVERVIEW

be provided, with the expectation that machine intelligence techniques would form part

of the solution. A range of techniques were under consideration with the expectation

that this could be an area of innovation in the project. It was expected that an existing

machine learning techniques could be applied in a novel way (reuse). These goals are

revisited in the evaluation at the end of the Chapter.

6.1 Spiral 3 Overview

Spiral 3 addresses aspects of RE3: to select, implement and evaluate strategies to assist

in component selection, based on the specification and process from Spirals 1 and 2.

Specifically, Spiral 3 looks at the shortlisting of candidates. The focus from the user per-

spective are the Select Component, Adapt Process, Revisit Selection and Assess

Selection use cases (Figure 6.1). This involves two actors, the application developer

and the quality assurers. The application developer wants an effective mechanism for

shortlisting within the CdCE Process. It should also be possible to repeat the shortlisting

easily, whether within the initial system development, or as the system evolves. From

a quality assurance perspective, the shortlisting needs to provide documentation and

justification to support decisions.

Candidate screening (shortlisting) involves querying component brokers and repos-

itories to seek out likely matches to requirements. Shortlisting uses a subset of the

selection criteria, commonly the description, functionality, development language, com-

ponent framework and platform. Most Internet repositories, such as Component Source,

hold this information in easily accessible metadata. When using in-house repositories it

is possible to use more knowledge of the documentation standards and even search to

match on formal specifications (Atkinson, 1997).

Some of the problems identified with existing component selection techniques include

issues with assumed independence of criteria, and the need to understand and simulate

the reasoning used by experts when undertaking a manual selection. In an intuitive

assessment, an expert gradually builds a picture of a components performance. This

could be regarded as a simple checklist, but more likely the expert is mentally balancing

up the positive and negative attributes of a component. An example would be that

the developer has used software from a particular vendor in the past. This will colour

172

CHAPTER 6. SHORTLISTING CANDIDATES

Figure 6.1: Use cases for component selection, the focus of Spiral 3 (those not in the
scope for this Spiral are greyed)

their perception for assessing attributes such as trust, reliability, risk and maintenance.

Unfortunately the intuitive assessment is limited in the number of candidates that can

be considered, is not repeatable, and unlikely to be well documented.

The original CdCE approach (Spiral 2) to screening used a heuristic search, driven

from the ideal specification. The search process goal was to determine a shortlist of

components within a numeric range (e.g. 3-10 candidates). The heuristic search works in

a series of passes, adding criteria and reducing the list of components on each pass. If it

is found that mandatory criteria are causing too few candidates to survive a pass, those

criteria can be loosened, or it can be reported that there are no components available.

This Spiral includes a series of investigations and evaluations of strategies and tools

applicable to shortlisting. These are presented in Sections 6.3 to 6.5, along with the dis-

cussion of their suitability to the investigation. A discussion across the three approaches

in Section 6.6 with the decision taken to make use of the C4.5 classifier for shortlisting.

A case study was undertaken and analysed to identify ways to improve performance in

terms of selection outcomes.

The evaluation criteria for the stakeholders are given in Table 6.2. When looking at

173

6.2. SPIRAL 3 CONTEXT

Stakeholder Win Conditions
Application Developers Strategies are beneficial.

Justifiable results.
Low overhead to use strategies.

Component Developers Know how their component is assessed and compared.
Component Brokers How to integrate with the repository.

What information is required and when.
Quality Assurance Documentation and justification of decisions.
Academia Validity of strategies.

Effectiveness of strategies.
Peer reviewed.
Flexible and extensible.

Table 6.2: Win conditions for stakeholders (Spiral 3)

shortlisting strategies, the application developers want them to be beneficial, with low

overheads in the effort required. There should also be information available to allow

the justification of results. Brokers and component developers are interested in how

their components are assessed, and what information is required from the repository and

when. Quality assurance needs to be able to track the process and have documentation

of each step and decision. From the academic perspective, the strategies must be valid

and effective. Peer review is important, as is the extensibility of the implementation, to

allow for further research in the area.

6.2 Spiral 3 Context

The component selection task begins by defining the selection criteria. Most published

selection approaches include a component model to describe the criteria or attributes

to be used in the assessment. This is often implemented as a hierarchy to improve

understandability. For example, the COTS characterisation model in Sassi et al (2003)

groups the attributes into behavioural, architectural, quality of service, technical and

usage categories. A discussion of component models is also given. Other schemes develop

a custom hierarchy for the specific problem (Kontio, 1995, Ochs et al, 2009). The relative

importance of the criteria must be determined if weightings are to be applied in the

evaluation. These may be customised using a structured approach such as AHP (Saaty,

1990, Ochs et al, 2009). An assessment of each component against the criteria is then

carried out, often as a manual process. Given the scores for all components on all criteria,

a recommendation or ranking can then be determined. This often involves the aggregation

174

CHAPTER 6. SHORTLISTING CANDIDATES

Stage Output CdCE Process
Specification Criteria Step 1

Customisation Weights Step 1
Screening Candidates Step 2

Assessment Scores Step 6
Comparison Overall Scores Step 7

Recommendation Ranking Step 8

Table 6.3: Generalised stages in component selection

of results using the WSM or the AHP (Saaty, 1990). In other cases, techniques such as

Outranking are applied, as in Morisio and Tsoukiàs (1997).

The information gathering through the selection process is summarised in Table

6.3, including the mapping to generalised stages and to the CdCE Process. Shortlist-

ing/screening can be seen as mini iteration of the overall selection process. The key dif-

ference is the number of products evaluated, and the depth of information used in the eval-

uation. Thus this chapter considers ‘evaluation’ techniques within screening/shortlisting.

In 2002, a paper by Ncube (Ncube and Dean, 2002) challenged the existing evaluation

approaches used in component selection. Key issues were the use of WSM, AHP and

similar tools. One criticism was in the aggregation of the scores across criteria (WSM)

‘did it make sense to average across unrelated criteria?’ For example, if the price of

the software scored 4/10 and the user interface 20/30, averaging the scores would give

5.3333/10. By generating a number from the aggregation, much information was lost

and the user may read more into the difference between results that is valid (is 5.3333/10

really much better than 5/10?). While the AHP was considered an improvement to

WSM, it includes an assumption that all criteria are independent, which does not hold

for component selection. Another issue with the AHP is the time required to evaluate the

pairwise comparisons between each component on every criterion. Ruhe (2002) argued

that automation was needed to reduce the expert’s time required to evaluate components

and support quality decision making.

Some selection research began to use AI techniques to address issues with assessing

components, in particular the inherent problems with aggregating results. Neuro-fuzzy

(Kuo et al, 1999) and Rough fuzzy sets (Rao and Sarma, 2003) have been used to deal

with imprecision and uncertainty in component assessment, while overcoming some over-

heads of determining the original fuzzy sets. Most techniques are more applicable to

175

6.2. SPIRAL 3 CONTEXT

in-house repositories where the documentation of components can be standardised and

detailed. For example, one paper described a repository with up to 1320 attributes for

each component (Nakkrasae et al, 2004). This project is concerned with selecting third

party components sourced from a range of repositories. Therefore there is a very large

number of components to screen and information about them may be basic. This leads

to an interest in AI to carry out both coarse screening and more in-depth analysis of the

technical features of candidate components. The overheads for using the AI technique

must be low as each selection process will have new requirements and is thus a new

problem.

AI is a field that provides a range of techniques for representing and processing

knowledge. When selecting an AI technique, it is important to consider the features that

are needed, and which are more critical to the particular problem. In the component

selection problem, the aim is to classify the components as being acceptable or rejected.

Adjustable thresholds can be used to include or exclude more candidates, providing

flexibility where criteria may have been too restrictive or lenient. When working with

metadata from online repositories there may be incomplete data, so a tool with some

tolerance for missing or uncertain data is preferred.

Artificial

Feature Expert Fuzzy Neural Genetic C4.5

Systems Systems Networks Algorithms

Knowledge + ++ – - +

representation

Uncertainty tolerance + ++ ++ ++ -

Imprecision tolerance – ++ ++ ++ –

Adaptability – - ++ ++ ++

Learning ability – – ++ ++ ++

Explanation ability ++ ++ – - ++

Knowledge discovery – - ++ + +

and data mining

Maintainability – + ++ + ++

Table 6.4: Comparison of Traditional AI Techniques, adapted from Negnevitsky (2002).
Techniques that deal well with a feature are indicated with + symbols, those which
respond poorly have - symbols. ++ and – indicate stronger or weaker performance.

Tables 6.4 and 6.5 show how traditional and hybrid AI systems perform against

eight criteria, all of which may be considered important for the automated selection

176

CHAPTER 6. SHORTLISTING CANDIDATES

of components. For example, artificial neural networks (ANN) and genetic algorithms

(Table 6.4) show strength (++) in dealing with uncertainty and imprecision. However

they are not so strong on knowledge representation and explanation ability (-). Expert

systems and fuzzy systems are stronger on knowledge representation and explanation,

with weaknesses around adaptability and maintainability. The C4.5 classifier rates well

in learning, providing an explanation and maintenance, and less well in uncertainty and

imprecision. The hybrid approaches in Table 6.5 aim to address these weaknesses.

Feature Neural Expert Neuro-fuzzy Evol. Neural Fuzzy Evol.

Systems Systems Networks Systems

Knowledge + ++ – ++

representation

Uncertainty tolerance ++ ++ ++ ++

Imprecision tolerance ++ ++ ++ ++

Adaptability ++ ++ ++ +

Learning ability ++ ++ ++ +

Explanation ability ++ ++ – ++

Knowledge discovery – - ++ +

and data mining

Maintainability ++ ++ ++ +

Table 6.5: Comparison of Hybrid AI Techniques (Maxville et al, 2004b)

Knowledge representation is important to component selection as it must utilise the

metadata supplied by vendors and brokers, and communicate the results to users. As

the information comes from diverse sources, there may be missing and uncertain data.

While the selection criteria for components can be considered ‘a match’ or ‘not a match’,

the facility to deal with imprecision may be more useful when looking at how well a

description meets the user’s needs (e.g. is the cost of the component close to the required

cost).

An automated assessment is unlikely to be trusted unless it can explain the reasoning

behind decisions. From Table 6.4, the traditional AI systems that perform well on ex-

planation ability rate poorly on adaptability, learning and maintenance. This may lead

to a trade off where the reasoning can be explained, but the expert must invest time to

develop and tune rules - reducing the advantage of using AI. Neural-expert or neuro-fuzzy

systems (Table 6.5) may overcome this, assuming data is available to train the neural

network. An AI technique capable of knowledge discovery would be advantageous as it

177

6.3. APPROACH 1: MULTICRITERIA ASSESSMENT

may allow future data mining and self-update. Although not one of the criteria in the

comparison tables, the ability to represent the interplay between attributes is another

desirable feature. Common techniques for selecting components use weighted sums of

scores against the selection criteria, losing the relationships between criteria and values.

An expert system, fuzzy system or neural network would be capable of encoding these

dependencies.

The perfect AI technique for component selection would ideally rate well in all of the

above categories. Given the information in the tables, and the discussion, neural-expert

systems and neuro-fuzzy systems may give the best balance between understandability

(knowledge/explanation) and flexibility (adaptability/learning/maintenance). This in-

vestigation initially considered expert systems, moved on to a comparison of C4.5 and

ANN and chose to use the C4.5 decision tree classifier. As can be seen in Table 6.4, C4.5

rates well in all features except uncertainty and imprecision tolerance. Exploration of

the application of new technology, such as those in Table 6.5, to component selection has

potential as future work for this line of research.

A deeper discussion of the exploration of approaches to shortlisting follows. Three

sections consider the trials with: multicriteria assessment; expert systems and machine

learning, followed by a section to discuss and reflect on the trials.

6.3 Approach 1: Multicriteria Assessment

Evaluation of components can be viewed as a Multi-Criteria Analysis (MCA) problem,

forming a recommendation from a candidate’s performance against a set of (weighted)

criteria. This is intuitively what component selection involves, and is the premise for

aggregation-based approaches. The terminology of MCA: criteria, alternatives, weights

and scores, is given in Table 6.6. The relative importance of criteria are recorded as

weights, impacting the influence of the criteria during aggregation of the results. A

decision matrix (Table 6.7) is completed to record all results for each candidate for each

criterion. This results in an m x n matrix, where there are m criteria and n candidates

(alternatives). An overall score or ranking is calculated combining the score and weight

for each criterion according to a formula.

As an example, a WSM method will calculate the overall score for a candidate by

178

CHAPTER 6. SHORTLISTING CANDIDATES

multiplying the Score for each Criterion by the Weight and summing them together.

This is the approach used in Alves and Castro (2001), calculated in Microsoft Excel.

The formula for WSM is:

Term Description

Criteria (Cj)
The category being assessed, e.g.
cost, development language.

Alternatives (Ai)
Alternatives being assessed, in our
case the candidate components.

Weight (wj)
A multiplier to increase or decrease
the effect of individual criteria on
the overall score.

Score (sij)
The actual value given to a
component against a particular
criterion.

Table 6.6: Terminology

Criteria C1 C2 ... Cn

Weights (w1) (w2) ... (wn)
Alternatives

A1 s11 s12 ... s1n

A2 s21 s22 ... s2n

...
Am sm1 sm2 ... smn

Table 6.7: Decision Matrix

6.3.1 Customisation of the Selection Process

The selection process should be customised for each selection task by adjusting the

weightings or priorities on each of the criteria, even if using a standardised specification.

Weightings may be informed by intuition, previous experience, organisational guidelines,

or apply a systematic approach such as the AHP (Saaty, 1990). Criteria weightings

provide a mechanism to include the context of the selection task in the evaluation. For

a given selection task, priority can be given to functionality, cost, risk factors through

weightings on the related criteria. Emphasis and priority of criteria may vary between

organisations, projects and components within a project.

179

6.3. APPROACH 1: MULTICRITERIA ASSESSMENT

The AHP approach to determining weightings requires a pairwise comparison of each

of the criteria (m), creating an m x m matrix for all of the criteria being assessed.

The pairwise comparison helps decision-makers to focus their attention on two criteria

at a time, with the implication that this provides more accurate comparative weights

(Saaty, 1990). The values used in the pairwise comparison come from a Scale of Relative

Importance, with each criterion assessed relative to each of the other criteria. Saaty’s

scale is shown in Table 6.8, while Lootsma (1999) has an alternative, nonlinear scale.

Table 6.9 gives an example of the Saaty or Judgement Matrix for calculating weights for

criteria. Importance values are shown for C1 and C2. The Saaty Matrix is also used for

generating values in the assessment stage.

Intensity of Definition
Importance

1 Equally important
3 Weakly more important
5 Essentially or strongly more important
7 Demonstrated importance
9 Absolutely more important

2,4,6,8 Intermediate values

Reciprocals
The counter-relationship is the
reciprocal of the decided relationship
between two alternatives.

Table 6.8: Saaty’s Scale of Relative Importance

Criteria C1 C2 ... Cm

C1 1 p12 (5) ... p1n

C2 p21 (1/5) 1 ... p2n

... 1 ...
Cm pm1 pm2 ... 1

Table 6.9: Saaty’s Judgement Matrix: Generating Relative Weighting of Criteria

To provide a weighting for each criterion, we need to reduce the m x m matrix to a

vector. Saaty’s work advocates using the right principal eigenvector of the Judgement

Matrix. It has also been approached as an error minimisation problem (Triantaphyllou,

1995). A simpler calculation of the weighting applies the normalised geometric mean as

an approximation to finding the eigenvector. The AHP includes a Consistency Index: a

calculation to give an indication of whether the scores are consistent within the matrix.

A poor consistency result would indicate a revision of the importance values assigned to

180

CHAPTER 6. SHORTLISTING CANDIDATES

each pair of criteria is required.

Figure 6.2: Example of Criteria Using the AHP

Another feature of the AHP is that it supports the organisation of criteria into a

hierarchy (Figure 6.2). The weightings of sub-criteria must sum to one, with each subtree

going through the same pairwise process as the top level criteria. In a real world situation,

this may involve a large number of criteria on each level.

Determining weightings with the AHP approach may be a significant improvement

over other techniques (or no technique). Alternatively, independent techniques may then

be used for assessment and aggregation. In the COTS Acquisition Process (CAP) (Ochs

et al, 2009) a ‘Tailor and Weight Taxonomy’ is used to organise the selection criteria,

then the AHP is applied to customise the weightings on each criterion.

6.3.2 Assessment of Candidates

The assessment process requires a value for each candidate for each criterion. There are

various ways of deciding on these values. One approach is the selection of a value from

a scale or range. Guidelines can be provided to ensure consistency in grading between

reviewers and across candidates. This would be the approach when using WSM.

An alternative is to apply the AHP approach, where a comparison is made between

each pair of candidates for each of the criteria. The Judgement Matrix is used (as in

181

6.3. APPROACH 1: MULTICRITERIA ASSESSMENT

customising the weightings), but in this case each criterion has its own matrix, with

candidates listed in the rows and columns.

An example calculation to assess Vendor Reliability is given in Table 6.10 for three

components. The calculation of the geometric mean and normalisation is also shown.

The result is a priority vector across the three candidates of (C1=0.1963, C2=0.6571,

C3=0.1466).

Vendor
Reliability

Component1 Component2 Component3

Component1 1 1/5 2
Component2 5 1 3
Component3 1/2 1/3 1

Component1 = cube root (1 * 1/5 * 2) = 0.7368
Component2 = cube root (5 * 1 * 3) = 2.4662

Component3 = cube root (1/2 * 1/3 * 1) = 0.5503
divide through by (0.7368 + 2.4662 + 0.5503 = 3.7533)

gives Priority vector
(C1, C2, C3) = (0.1963, 0.6571, 0.1466)

Table 6.10: Saaty’s Judgement Matrix: Assessing Candidates

Criteria
Alternatives

10 20 50

2 55 210 1275
10 495 1090 3475
20 1945 3990 10725
50 12295 24690 62475
100 49545 99190 248725

Comparisons = n(n-1)/2 + n[m(m-1)/2]

Table 6.11: Pairwise Comparisons Required

Using pairwise comparisons helps to break a complex comparison into approachable

small steps. There is a disadvantage as the number of comparisons increases quickly

with larger numbers of criteria and alternatives. These comparisons are manual and

often require teams or groups of people to each contribute their evaluations. If working

with three alternatives and two criteria, six comparisons would be required; with ten

alternatives and twenty criteria there are 1090 comparisons. In Table 6.11, the impact

of the number of elements and criteria on the total number of comparisons is shown.

Techniques for dealing with this blow-out include a duality approach (Triantaphyllou,

2001) or incomplete judgement matrices (Harker, 1987).

182

CHAPTER 6. SHORTLISTING CANDIDATES

6.3.3 Comparison of Candidates

After all the scores/values have been collected, a comparison between components can

be made. An aggregation-based approach will have a completed decision matrix contain-

ing the candidate components and their associated scores against each criterion. MCA

techniques then combine all the data together to provide an overall score or ranking for

each candidate.

The simplest MCA involves the direct analysis of the completed matrix to provide

information about dominance of particular candidates. A dominant candidate performs

at least as well as all others on all criteria, and better than the others on at least one

criterion. Dominance analysis can be used to identify bias in criteria or to partition

the candidates for more detailed analysis. More sophisticated MCA techniques use dif-

ferent approaches to evaluate data in the decision matrix. The main categories are:

Multi-Attribute Utility Theory (MAUT); Outranking Methods; and, Mathematical Pro-

gramming (Ncube and Dean, 2002).

MAUT techniques determine ordering of alternatives based on the decision-maker’s

preferences. They assume independence between criteria, which is not always true in com-

ponent selection. MAUT includes Multi-Criteria Analysis Decision Making (MCDM),

where an overall score is aggregated from criteria, weights and alternatives (e.g. WSM,

AHP). Outranking techniques aim to find a subset or shortlist of candidates based on

pairwise comparisons to determine the better performer. Concordance and discordance

thresholds are defined and calculations across criteria for each candidate are used to de-

termine if an alternative is in or out of the shortlist. Outranking is applied to software

selection in Morisio and Tsoukiàs (1997). Mathematical programming techniques aim

to identify alternatives that are closest to the ideal solution using some measure of dis-

tance. The measure takes into account the candidate’s score on each criterion and the

weighting attached to that criterion to create a function across all the criteria. Neubauer

and Stummer (2007) use mathematical programming for multi-objective combinatorial

optimisation, making it possible for users to interactively explore the solution space until

they find the most appealing solution.

MCDM is the most commonly used technique in component selection, particularly

the WSM and the AHP. As an exploration of the component selection process, WSM

and AHP were trialled, with results in the following section. The alternative MAUT

183

6.3. APPROACH 1: MULTICRITERIA ASSESSMENT

techniques above were not trialled as they do not progress the CdCE Process towards

automation or artificial intelligence.

6.3.4 Applying WSM and AHP

This investigation within Spiral 3 considers the WSM and AHP and variants. As the

common approaches found in the literature, they were initially considered for the CdCE

Process. Criticism of their applicability (e.g. Ncube and Dean (2002)) and experience of

their application influenced the move to find alternative approaches.

The WSM is an intuitive and straight-forward approach, where values are combined

by multiplying the weight for each criterion by the component’s score and the sum of

the weighted values becomes the overall result. To validly use this approach, the scores

should be numerical, comparative and expressed in the same unit. In its favour is the

simplicity of the calculation. Limitations of the WSM are that it does not assist the user

in determining the weighting of the metrics and the criteria are treated as independent

(Kontio, 1995). An additional theoretical issue is the summing of values with varying

units of measurement. It is possible, but not correct, to sum scores in units of cost ($),

maturity (years), and reliability (scale 1-10), for example. The assessment methodology

can account for these differences by converting to a common scale (Solberg and Dahl,

2001).

The AHP deals well with qualitative data and provides facility for creating a hier-

archy of criteria. It includes support for the determination of criteria and weightings,

as well as the aggregation of the completed matrix. The approach is based on pairwise

comparisons: firstly to determine the weightings for the criteria, then to provide values

for the candidates against the criteria. The procedure for generating the weights and

values is described in Sections 6.3.1 and 6.3.2. The overall calculation in AHP is similar

to the WSM, with an additional calculation to normalise the columns in the decision

matrix.

Issues with the AHP include the growth of the number of comparisons required for

determining scores and the ‘rank-reversal’ problem. Comparisons increase quickly as the

number of candidates and criteria increase. The rank-reversal problem can occur when

the candidates (alternatives) under consideration are changed. In some situations, a new

candidate can reverse the rankings of two unrelated candidates (Triantaphyllou, 2001).

184

CHAPTER 6. SHORTLISTING CANDIDATES

Triantaphyllou (2001) suggests the Multiplicative AHP as a solution to this issue, using

the following equation:

The WSM, the AHP and the Multiplicative AHP have been applied to an existing

data set (selecting calculator software) to investigate the effort required and comparative

results. Figure 6.3 provides a chart of the aggregated results from the second case study,

including raw scores (before the weights were applied). The techniques used for each bar

on the chart (in order) were:

• WSM without weights

• WSM with weights from the AHP

• AHP without weights

• AHP standard

• AHP using multiplicative formula.

It was found that there was a large effort involved when determining the raw AHP

scores for each of the criteria, and the individual comparisons were less intuitive than

allocating a value from an appropriate scale. The weights determined using the AHP

were applied in a WSM calculation for comparison. An interesting result was that the

weighting for cost was less than 3%, making it the least important criterion in this case

study (i.e. cost would be sacrificed ahead of all other criteria). The true importance

of cost was identified by going through the AHP process and comparing cost against

each of the other attributes. The customisation process provided a way of making an

objective decision. The comparison of attributes such as cost versus functionality or cost

versus operating system showed that cost was consistently less important than the other

attributes. Intuition and business decisions may allocate a much higher importance to

price/cost.

Although there is variation in the scores in Figure 6.3 from each of the techniques,

there was a similar overall ordering. The standard AHP, WSM with AHP weights and

Multiplicative AHP gave almost the same rankings, with the middle candidates differing

in standard AHP (C5 and C9 interchanged). This would indicate that the WSM may be

adequate if using an aggregation approach, assuming a well-defined method of scoring,

185

6.3. APPROACH 1: MULTICRITERIA ASSESSMENT

and that scaling and weights are sufficient. Using the AHP for determining weights for

a WSM approach may be a good compromise. The AHP has considerable overhead in

terms of time. If an organisation is prepared to follow the method and devote expert

time, it is the preferred aggregation option.

Figure 6.3: Comparison of Aggregation Techniques (Normalised)

6.3.5 Multicriteria Assessment Observations

This comparison of approaches finds no clear recommendation for aggregation-based

techniques. The AHP provides a method for both determining weights and assessing

candidates, and deals well with qualitative and quantitative data. However, it also re-

quires considerable effort to carry out pairwise comparisons of each component on each

criterion. The WSM is criticised for not providing a method for assessing weights. It

is also often misused to aggregate data of varying types, resulting in values with little

meaning, and potential to bias and mislead the user. To use the WSM safely, there should

186

CHAPTER 6. SHORTLISTING CANDIDATES

be: guidelines for scoring; the conversion of scores to a uniform scale; and a reasoned

approach to the allocation of weights. The AHP approach to customising weights can be

utilised with the WSM. The final decision is made on the basis of the amount of time and

expertise the organisation has available. For a quick decision with low risk, the WSM

may be adequate. In a more critical situation it would be justified to use the AHP.

Less common techniques, such as outranking and mathematical programming address

some of the issues with WSM and the AHP. However, they still work with a level of

information loss where the scores against criteria are simple numbers. They also leave

little room for the application of AI or knowledge-based techniques.

6.4 Approach 2: Expert Systems

The discussion of AI techniques in Table 6.4 highlighted the knowledge and explanation

ability of expert systems. In response to some of the issues raised with multicriteria

assessment approaches, the inclusion of knowledge, and the potential to clearly explain

the logic of a decision was worthy of investigation.

An expert system is made up a series of rules which trigger under certain inputs,

providing a path through the rules to any point in the decision-making process.

Similar to the previous approaches, an expert system approach requires customisation

to the problem at hand. As a first step, the rules for accepting or rejecting a component

must be determined, based on the selection criteria. These may be provided in a pre-

determined order, with consideration for any dependencies or priorities among criteria.

These rules will then be applied to all candidates.

6.4.1 Exploration of an Expert System Approach

This work considered a simple selection problem, using the Jess expert system (Friedman-

Hill, 2008). Jess provides a flexible interface that can be extended through Java programs,

which has potential to be used for automating our process. The first stage assigned a

mandatory or desirable classification to each of the attributes in the ideal specification

(Description, Platform and Cost). A matrix was used to determine any dependencies

between attributes (Figure 6.4). An example is that the cost factor for a component will

be increased if the component does not match the required platform. This information

187

6.4. APPROACH 2: EXPERT SYSTEMS

was used to create a flowchart for the screening and was translated into rules for Jess.

Figure 6.5 gives an example of a flowchart with three attributes for assessing components.

In this example, the observed values for a component are assigned letters as follows:

• Description: (A) Acceptable (N) Not Acceptable

• Platform: (M) Match (C) Close (N) No match

• Cost: (F) Free (R) Reasonable (H) High.

Figure 6.4: Decision table for Expert System Case Study

Figure 6.5: Example of reasoning for component selection

188

CHAPTER 6. SHORTLISTING CANDIDATES

The description attribute is mandatory, while the platform and cost attributes do

not require an exact match to the requirements. This gives priority to the component

exhibiting a match on the description. The flowchart also shows the relationship between

platform and cost, and in this case, free software is not acceptable. Generating rules is

not a simple task, and would require an easy to use interface for recording priorities and

dependencies from which to generate rules.

The sample output is generated from the implementation of the flowchart in Figure

6.5 in Jess. The output (Figure 6.6) shows rules being triggered to activate the nodes

corresponding to the flowchart. The first example is accepted, while the second is re-

jected due to the cost. The reasoning for the decision is clearly outlined. If there were

missing values, the Accept/Reject nodes would not be activated, and may be viewed as

an intermediate result (‘soft’ reject).

Figure 6.6: Output of Jess expert system

The customisation stage of the expert system approach is responsible for the assess-

ment of components. The base result is a simple accept/reject status. One measure that

may be used for ranking results is to look at the reasoning for each candidate to get

an indication of how many rules were triggered. For example, in Figure 6.6, a rejected

candidate may have matched none of the rules, or it may have matched up to three of the

rules. If three rules are matched, the candidate may be deemed closer to being accepted

than one with two rules.

In more complex examples, there would be far more criteria and nodes on the flowchart.

This may result in rules being triggered that do not directly take the candidate through to

189

6.5. APPROACH 3: MACHINE LEARNING

being accepted (or rejected). For example, the shortest accept path may require six rules

to be triggered. One accepted component may trigger more rules than another accepted

component, which may indicate that more triggered rules implies a better match. Thus

the comparison of accepted components could use the total or excess facts to generate a

ranking. This implies that all rules are equal, which raises issues as that is unlikely to

be the case.

The expert system approach gives the reasoning behind a selection or rejection, and

can highlight issues in the rules themselves. The recommendation may state that better

results could be returned if changes were made to the rules and the process rerun. For

example, there could be missing data, or customisation may be too loose or too restrictive.

6.4.2 Expert System Observations

Expert systems were considered, where a rating or classification could be determined

via a knowledge base of rules. The ability to capture the reasoning used when assessing

components and provide reasoning for decisions is a valuable benefit of using expert

systems: the mass of information used is not reduced to a number. The difficulty with

expert systems is in determining the rules for assessment. In a component selection

situation, each selection task will have different rules. The overhead of developing rules

for each project may prohibit the use of expert systems. Where there may be repetition

of the selection process, the time required for creation of rules for an expert system would

pay off over time.

6.5 Approach 3: Machine Learning

Previous exploration of approaches were found wanting in terms of loss of knowledge

and potential for automation. The expert system was able to take data about criteria in

its native form, and apply rules suiting that data, showing the potential of an approach

exhibiting knowledge representation and explanation ability. Unfortunately, the rules

need to be manually created and cover all possibilities to produce meaningful results.

Considering other approaches in Table 6.4 and the experience from the expert system,

an improved result may come from a technique with learning ability and maintainability.

These include ANN, genetic algorithms and C4.5 (decision tree classifiers). Another

190

CHAPTER 6. SHORTLISTING CANDIDATES

lesson from using the expert system was that the selection task could be considered a

classification problem - accept/reject. This led the investigation in the direction of ANN

and C4.5. It also applied the concept of mandatory and preferred criteria, which was

considered when loosening criteria in the case study in Spiral 2.

With both ANN and C4.5, a predictive model is used to classify the data. This

model is the result of training the network or classifier on a real or created dataset. The

predictive model can then be used on test data to assign a class to each instance in the

dataset. If the test data is not part of the training dataset, it is considered ‘unseen’,

which is preferred to avoid biased results. If the training data includes the class for each

instance, this can be used for supervised learning, the approach used for this study.

To explore the potential of machine learning for selection of components, another

exploratory case study was undertaken. The two machine learning techniques were avail-

able through the Weka application (Hall et al, 2009), which is used in the following case

study.

6.5.1 Applying Machine Learning

The scenario for this case study is the selection of a component to provide scientific

calculator functionality. As it is an exploratory case study, the selection criteria are

simple. Four of the criteria are mandatory and six are preferred. Attributes not in those

categories remain as the default priority other. Adjustable thresholds were assigned to

require four out of four mandatory and three out of six of the preferred criteria for a

component to be accepted. The ideal component specification is given in Figure 6.7.

Training Data

When working with classifiers, data is required to train the predictive model. In some

scenarios, this would be historical data. As each selection task is quite different in terms

of criteria, history from the previous tasks are not helpful in this case. Instead, training

data is used to capture the characteristics of interest. The approach of using the ideal

specification to create the training data developed from this perspective.

The two classifiers were trained on the same data, generated from the ideal specifi-

cation. The data generator was developed to create a data distribution that captures

the complexity of the criteria used in the assessment, while avoiding an internal bias.

191

6.5. APPROACH 3: MACHINE LEARNING

Figure 6.7: Ideal Component Specification

More detail on the training data generation is in Section 6.7.1. Each training dataset is

validated using Weka’s implementation of 10-fold cross-validation, with those used in this

case study scoring over 96%. The data generator application automates the labelling of

the data into output classes, allowing the use of supervised learning techniques to train

the classifiers1.

Early tests with data generation showed that the classifier was highly sensitive to

the distribution of the data2. If too high a proportion of the instances were rejected

(e.g. 82%), then the classifier created an overpruned model that rejected all instances.

The neural network did not oversimplify the classification, but also saw performance

improvements with the regenerated training data.

The data is generated using a technique similar to boundary value analysis in test

case generation (Myers, 1979). The focus is on including discriminating values close to

the border between acceptance and rejection. Incremental experiments provided useful

feedback on the distribution of data required for the classifiers to learn patterns with the

greatest (or least) (such as identifying mandatory and other) attributes. Validation and
1Supervised learning relies on a manual labelling of the training data for the system to learn the

patterns for each classification. Unsupervised learning works with the patterns formed within the training
data and attempts to group them into clusters. Data falling inside a cluster can them be labelled according
the closest cluster.

2An alternative approach to dealing with imbalance in the distribution of data is the use of cost
matrices. This would have the side effect of lowering the overall performance of the classifier and is
therefore not appropriate for this work.

192

CHAPTER 6. SHORTLISTING CANDIDATES

training results indicated that this approach gives adequate results, but has potential for

improvement.

C4.5

The most widely used decision tree classifier is the C4.5 algorithm (Quinlan, 1993).

C4.5 generates a tree incorporating all instances within the dataset and their associated

classifications. The algorithm groups the data to allow ‘pruning’ to create a smaller,

more manageable decision tree. When working with the generated training sets, the

trees were overpruned as the input data matched the real world distribution of data

(a low percentage of acceptable instances) and the tree became a simple ‘reject all’.

Improvements to the training dataset were rewarded with a larger and more detailed

tree. The decision tree for the case study dataset has 147 nodes, including 74 leaves

(classification points).

Table 6.12 presents the results for the C4.5 classifier against the case study training

and test sets (both unseen). The results for the training dataset included twelve mis-

classifications out of 2736 (below 0.5% error rate). These errors were all in situations

where the mandatory requirements were met and the assessment of the preferable criteria

failed. Additional improvements to the generator algorithm may be developed to resolve

these problems and move closer to 100% correct classification.

Dataset % Correctly Total
Classified Instances

Training 99.5614% 2736
10-fold Cross-validation 96.3085% 2736
Unseen Dataset 1 100% 96
Unseen Dataset 2 98.1183% 744

Table 6.12: C4.5 Performance

Unseen data (not used for training) was then processed to further evaluate the clas-

sifier. The datasets represent all combinations of attribute values that are acceptable

(Unseen Dataset 1) and those that should be rejected (Unseen Dataset 2). Attributes

that do not affect the decision (other) are randomised. Both datasets were classified

with an acceptable level of accuracy. Unseen data will generally have more classification

errors than the training data. Dataset 1 performed better than the training due to the

193

6.5. APPROACH 3: MACHINE LEARNING

distribution of the values and the size of the dataset. The training sets are focussed

on the combinations close to acceptance/rejection, whereas many of the combinations in

the unseen datasets were clearly in one of these classes (e.g. reject with no matches of

mandatory attributes).

Artificial Neural Network

The concept of a neural network classifier is to simulate the neurons of the human brain,

organised into interconnected layers. In Weka’s implementation, a backwards propagation

algorithm updates the weights that connect the neurons and reinforce those that result

in a correct classification.

Many parameters are available to tune an ANN. An empirical approach was used to

explore the effect of the parameters on the classification of the case study data. The

default parameters were: 500 epochs; a learning rate of 0.3; the momentum value of 0.2;

and a network with 18 nodes in the hidden layer. Sensitivity analysis indicated that

changing the number of epochs had little effect on the classification: the network had

converged before 250 epochs. Applying a learning rate of 0.1 gave poor results with the

test sets, while each of 0.2, 0.3 and 0.4 had similar results. Increasing the momentum

produced a downward trend in performance, although all of the training results were

above 98%.

There are an infinite number of possible configurations of an ANN. A network with

two nodes in a hidden layer is sufficient for most problems (Abbass and Sarker, 2001).

This was used as the baseline and a variety of configurations was explored. Sensitivity

analysis between sample data and the network configuration indicated that a network

with eighteen nodes in a single hidden layer was suitable. This provided similar perfor-

mance to a ten node hidden layer and was over 10% better at classifying the training

data than a two node configuration. There is potential for further exploration of the

configuration as networks with two hidden layers also performed well (10,5 nodes and

10,2 nodes) and may be more suitable when working with more complex selection tasks.

Table 6.13 gives results for the eighteen node, single hidden layer ANN. The model

correctly classified over 99.5% of the instances in the dataset. Investigation of the mis-

classified instances showed that they were on the boundaries of the ranges for numeric

values. For example, a value of $14 for price may have been classed as ‘accept’, when it

194

CHAPTER 6. SHORTLISTING CANDIDATES

should strictly have been rejected as being below $15. All errors found in classification

resulted from similar borderline cases. Modification of the data generator algorithm may

reduce these errors. The classification of unseen datasets produced good results, with

potential for improvement.

Dataset % Correctly Total
Classified Instances

Training 99.5249% 2736
10-fold Cross-validation 96.6009% 2736
Unseen Dataset 1 90.625% 96
Unseen Dataset 2 90.3274% 744

Table 6.13: Neural Network Performance

Interplay

One of the issues in aggregation-based approaches is the assumed independence of criteria.

This is seen as a limitation, with a high likelihood that at least some criteria will be

related in component selection tasks. An investigation of the potential for supporting

the representation of interplay was undertaken in the machine learning experiments.

In a simple example of interplay, three interrelated attributes were considered: devel-

opment language, framework and operating system. The scenario is that an organisation

has expertise in Java, C++ and C#, ActiveX, Enterprise JavaBeans (EJB) and accept-

able platforms are Windows and Linux. Certain combinations of the three attributes

will be preferred, for example, (Java, EJB, Linux) and (C#, ActiveX, Windows). Com-

binations to avoid would include (‘all’, ActiveX, Linux) and (C#, EJB, ‘all’). In a more

realistic situation, a particular stack of software may be supported, or there may be three

supported stacks. In this case, the software dependencies would need all of the stack,

with unsupported mixed stacks/version being undesirable.

The training data for this scenario is given an output class ranging from 0 (not

acceptable) to 5 (recommended). Using this data to generate C4.5 and ANN classifiers

resulted in 100% correct classification of the data for both techniques. 10-fold cross-

validation on the data was also 100%. The resulting C4.5 decision tree (Figure 6.8)

shows the reasoning used by the classifier to allocate a ‘score’ to each component based

on the attribute values. The different treatment of the attribute in each branch of the

195

6.5. APPROACH 3: MACHINE LEARNING

tree is the key to the correct assessment of the attribute interplay. In an aggregation

based approach, a component with conflicting attribute values would still score highly

as each attribute is independently valid. For example (Java, EJB, Linux) would score

(5,5,5)=15/15 as would the inadvisable (C#, EJB, Linux). Weightings on the attributes

could not differentiate these results.

Figure 6.8: Decision tree for interplay dataset

6.5.2 Machine Learning Observations

This work developed a technique for training machine learning classifiers in selecting soft-

ware components for development projects. The training data is generated from an ideal

specification of the required component, using an XML Schema as a generalised template.

Using the XML Schema and the instance document for the ideal component, the data

generator creates an internal model of the component. The training data is automatically

labelled into classes, overcoming one of the difficulties with supervised learning. Case

study results for both classifiers gave a high degree of accuracy in identifying suitable

components. A similar percentage of components were classified incorrectly (by ANN

and C4.5) during training, although there was no overlap in the instances that caused

confusion. Improvements to the generator algorithm should correct most, if not all of

these classification problems. Both classifiers performed well when classifying unseen

data (over 98% and 90%). This indicates the classifiers are able to correctly identify suit-

able components with high accuracy, based on the ideal specification of the component.

Results of over 96% in 10-fold cross-validation of the training data gives confidence that

196

CHAPTER 6. SHORTLISTING CANDIDATES

the data itself did not bias the training of the classifiers.

The investigation into the generation of classifiers to recognise attribute interplay

were also successful. A small study was carried out to ensure that the classifiers are

capable of dealing with this more complex combination of data. Both C4.5 and ANN

correctly classified all instances in the data.

6.6 Evaluation of Approaches

At this point, five approaches to assessing components had been investigated. These were

considered in terms of the desire for automation, and the inclusion of knowledge-based

and intelligent techniques. Aggregation and multicriteria analysis were considered valu-

able in some scenarios, however they did not match the direction that was required for

this project. The range of AI approaches was considered. An expert system approach

showed potential, particularly in the representation of knowledge and understandability

of results. Unfortunately, the effort involved in the development and maintenance of

rules for the expert system made it unsuitable for this investigation. A change of fo-

cus to learning ability and ease of maintenance led to machine learning techniques for

classifying data. An approach for generating training data was developed, and allowed

the trial of two classifiers, C4.5 and an ANN. Both gave good results when classifying

unseen data, with little difference in accuracy. The decision tree produced by C4.5 can

provide reasoning for decisions that are made, allowing confidence and trust in the rec-

ommendations. For this reason, C4.5 was chosen as the approach for the remainder of

the investigation.

6.7 Spiral 3 Implementation

The implementation of the C4.5 decision tree classifier approach to component selection

extends the exploratory work described in Section 6.5. The approach begins with the

ideal specification, with additional information on the mandatory/preferred status of the

attributes and the thresholds on the number of preferred required for an acceptable can-

didate. This is used to generate training and test data using a new program, Intelligent.

The training data is used with Weka and C4.5 (J48 implementation) to create a predic-

tive model of the selection, to match the ideal specification. This model can then be

197

6.7. SPIRAL 3 IMPLEMENTATION

used on the repository data to classify the components and generate a shortlist. The

ideal specification, the training data and the predictive model are all artefacts that help

document the shortlisting process and can be reused if repeating the selection task.

More detail on the implementation of the shortlisting approach is provided in the

following sections.

6.7.1 Generation of Training Data

Inputs Outputs

ideal component specification (CdCE XML) training data set (ARFF)
thresholds for attribute priority test data set(s) (ARFF)

Table 6.14: Generation of training data - inputs and outputs

The first step towards classifying the components is to create a training dataset for

the classifier. This takes the ideal specification and the thresholds as inputs (Table 6.14).

The output from the generation is training and test data sets.

The training data generator (Intelligent) output is determined by the number of at-

tributes and which combinations of values will be acceptable, based on the ideal specifica-

tion. The attributes are classified as being ‘mandatory’, ‘preferred’ or ‘other’. Mandatory

attributes must all be met for the candidate to be accepted. The user provides a thresh-

old for each group to indicate the proportion of those attributes that must be matched.

For example, the threshold on mandatory would be 1.0 (all required) and for preferred it

may be 0.5 (at least half of the attribute values must be satisfied). The ‘other’ attributes

do not affect the assessment. This provides three equivalence classes for the data gen-

eration. Test generation uses equivalence classes to reduce the number of test cases by

having one value represent the whole class of values. For training the system, equivalence

classes are used to enumerate the combinations of attribute values inside and between

classes, and the corresponding classification for that component.

The generation of the training data is based on permuting the attributes through

all possible values. At this stage, the attributes can be matched or not matched, repre-

sented by ‘Y’ and ‘N’. The permutations are made by grouping the attributes by priority

(mandatory/preferred). The thresholds (0-1) are converted to be the number of matching

attributes required for that priority group. An example would be that 3 of 3 mandatory

attributes must be matched and 2 from 4 of the preferred. The generator then cycles

198

CHAPTER 6. SHORTLISTING CANDIDATES

through all acceptable permutations of attribute values, attaching the label ‘accept’ as the

‘result’ class. The same cycling is done for all permutations that should be rejected. For

the previous example, with seven attributes, the 23 permutations generated are shown

in Figure 6.9. To go through all permutations would need 128 instances.

Y,Y,Y,Y,Y,Y,Y,accept

Y,Y,Y,N,Y,Y,Y,accept

Y,Y,Y,Y,N,Y,Y,accept

Y,Y,Y,Y,Y,N,Y,accept

Y,Y,Y,Y,Y,Y,N,accept

Y,Y,Y,N,N,Y,Y,accept

Y,Y,Y,N,Y,N,Y,accept

Y,Y,Y,N,Y,Y,N,accept

Y,Y,Y,Y,N,N,Y,accept

Y,Y,Y,Y,N,Y,N,accept

Y,Y,Y,Y,Y,N,N,accept

Y,Y,Y,N,N,N,Y,reject

Y,Y,Y,N,N,Y,N,reject

Y,Y,Y,N,Y,N,N,reject

Y,Y,Y,Y,N,N,N,reject

Y,Y,Y,N,N,N,N,reject

N,Y,Y,Y,Y,Y,Y,reject

Y,N,Y,Y,Y,Y,Y,reject

Y,Y,N,Y,Y,Y,Y,reject

N,N,Y,Y,Y,Y,Y,reject

N,Y,N,Y,Y,Y,Y,reject

Y,N,N,Y,Y,Y,Y,reject

N,N,N,Y,Y,Y,Y,reject

Figure 6.9: Generator permutations

For supervised learning, the last attribute denotes the classification of the entry, in

this case result=accept/reject. The generated training data is grouped into lessons. The

initial lessons focus on acceptable attribute values, then the values leading to rejection.

Parameters on the generation can adjust the number and size of lessons. The lessons focus

on the patterns of attribute values that are near the border of acceptable/unacceptable.

Random selection of training data would almost certainly result in all candidates being

classified as rejected. Our solution is to apply Boundary Value Analysis (BVA) tech-

niques. Training data is selected that sits close to the boundary between acceptance and

rejection, along with some more straight-forward entries. This has prevented the classifier

from over-simplifying its decision tree and allows us to work with relatively small training

sets. In a small example, the optimisation of the training set seems insignificant, however

with 37 attributes, the number of permutations with just two values (Y/N) would be 237

= 137,438,953,472.

199

6.7. SPIRAL 3 IMPLEMENTATION

6.7.2 Training the Classifier

Inputs Outputs

training data set (ARFF) predictive model
test data set (ARFF)
classifier type and parameters

Table 6.15: Training the classifier - inputs and outputs

Given the training and test datasets (see Table 6.7.2), it is possible to run Weka to

generate the predictive model for the classification. The inputs are the training and test

data sets, along with the parameters for classifier type and options (these are detailed in

Table 7.11). The output from the training is the predictive model.

Figure 6.10: Weka GUI Interface: Preprocessing

When using the GUI interface to Weka, the Explorer tool is selected. This starts up

the Weka Knowledge Explorer which provides access to tools for classification, clustering

and association rules. The first tab is for preprocessing the data (see Figure 6.10)3. This

is where the training data file is loaded. During the load, the headers, attribute types and
3Screenshots are from an older version of Weka as the GUI has not been required since these initial

investigations

200

CHAPTER 6. SHORTLISTING CANDIDATES

file structure are checked. Clicking on any of the attributes brings up a histogram of the

number of values in each category, with colours representing the different output classes.

This functionality helps in exploring the entire dataset for issues such as widespread

missing data on a particular field.

Figure 6.11: Weka GUI Interface: Classify

The Classify tab (Figure 6.11) is used to select a classifier, in this case J48 (for a C4.5

clone), input parameters (default: -C 0.25 -M 2) and whether to use cross validation.

Input parameter C relates to the confidence factor on pruning the tree: the default of

0.25 is used. Parameter M sets the minimum number of objects in a leaf node, where 2

is the default. Default parameters were found to give the required results, and are not

changed. The results of the classification are shown in the Classifier Output window. A

shortened version of this output is given in Figures 6.12 and 6.13.

Reading through the output (Figure 6.12), the first items listed are the classifier used

and the parameters. It then shows the relation, a description of the data taken from

the first line of the ARFF file. The number of instances (data points) is given, followed

by the number of attributes and their labels. In this case the mode is 10-fold cross

201

6.7. SPIRAL 3 IMPLEMENTATION

=== Run information ===

Scheme: weka.classifiers.trees.j48.J48 -C 0.25 -M 2

Relation: component_training_data/Tue-Aug-17-23:59:21-WST-2004

Instances: 3618

Attributes: 11

dc:description

dc:publisher

dc:date

swv:licence

swv:devStatus

swv:devLanguage

swv:operatingSystem

swv:memory

swv:diskSpace

swv:price

result

Test mode: 10-fold cross-validation

Figure 6.12: Results of training the classifier (Part 1/2)

validation, as selected in Figure 6.11.

Cross validation is a method for predicting the fit of a model by splitting the sample

into training and validation data. The model is created based on the training data and

then tested on unseen data for validation. Using unseen data helps identify overfitting to

the training set. Stratified cross validation endeavours to select sets of data to preserve

the mean response value (or to have a similar distribution of nominal attributes). Taking

this a step further, 10-fold cross validation splits the data into ten subsamples. In the first

pass, nine of these are used for training the model and the other is used for validation.

This is rotated through all the subsamples. The validation results are combined to

provide the overall statistics. 10-fold cross validation is widely used (Witten et al, 2011)

and the stratified form is used in all training in this project.

With processing complete, the model is available, in this case the pruned C4.5 tree

generated by the classifier for the data (Figure 6.13, shortened to fit page). The accuracy

of the model is assessed by running the three data sets through the model: the training

data and two unseen sets - Test1 and Test2. Test1 includes all ‘acceptable’ permutations

of attribute values as data points, while Test2 is made up of ‘reject’ permutations. This

allowed for clearer diagnosis of issues in the training data generation and the subsequent

predictive model. The remainder of this Section uses the training data set for illustration.

202

CHAPTER 6. SHORTLISTING CANDIDATES

=== Classifier model (full training set) ===

J48 pruned tree

swv:operatingSystem = true

| dc:description = true

| | swv:devLanguage = true

| | | swv:devStatus = true

<--- snip --->

| dc:description = false: reject (42.0)

| dc:description = -999: reject (42.0)

swv:operatingSystem = false: reject (134.0)

swv:operatingSystem = -999: reject (118.0)

Number of Leaves : 151

Size of the tree : 226

Time taken to build model: 0.24 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 3430 94.8038 %

Incorrectly Classified Instances 188 5.1962 %

Kappa statistic 0.8655

Mean absolute error 0.0623

Root mean squared error 0.2076

Relative absolute error 16.1287 %

Root relative squared error 47.2611 %

Total Number of Instances 3618

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

0.964 0.098 0.965 0.964 0.965 accept

0.902 0.036 0.9 0.902 0.901 reject

=== Confusion Matrix ===

a b <-- classified as

2578 95 | a = accept

93 852 | b = reject

Figure 6.13: Results of training the classifier (Part 2/2)

203

6.7. SPIRAL 3 IMPLEMENTATION

The classifier in this example is assigning data points to one of two groups: a = accept,

b = reject. Correctly accepted values are True Positives (TP) and correctly rejected are

True Negatives (TN). The aim is to minimise incorrectly accepted False Positives (FP)

and incorrectly rejected False Negatives (FN). In relation to the confusion matrix from

Figure 6.13, these map to the following values:

=== Confusion Matrix ===

a b <-- classified as

TP = 2578 FN = 95 | a = accept

FP = 93 TN = 852 | b = reject

These results indicate a poor performance in classification, although it shows 94% of

instances were correctly classified under stratified cross-validation. The number of False

Negatives and False Positives shows the impact of unclear classification, which may be

addressed through improvements in the data representation.

6.7.3 Classifying the Data

Inputs Outputs

real data set (ARFF) classified real data
predictive model
classifier type and parameters

Table 6.16: Classifying the data - inputs and outputs

Previous steps have provided a predictive model as input to this final stage, to be

used with Weka, C4.5 (J48) and a set of parameters (see Table 6.16). The repository data

then needs to be transformed into the format required by Weka to match the training

and test data sets. At this time, a manual transformation was carried out to create an

ARFF file with the matching number and type of attributes. The class for all entries

was set to ‘reject’. When the predictive model was run against this repository dataset,

any acceptable candidates show up as their class does not match what is in the input

file. These instances can then be matched to the source component, which is added to

the shortlist.

204

CHAPTER 6. SHORTLISTING CANDIDATES

6.8 Spiral 3 Results

In this case study a manual selection exercise is revisited, updating it to use machine

learning. The scenario for the case study is the selection of a software component to

provide scientific calculator functionality. The attributes used in the case study are

shown in Table 6.17. Potential component information was taken from four online sites.

These had been assessed previously with a manual application of the CdCE Process,

summarised in Table 6.18.

Attribute Type Importance Values

Description Multi-String Mandatory Scientific Calculator
Development Status String Mandatory Mature
Licence String Preferred GPL
Price Numeric Preferred $0-$75
Development Language Multi-String Preferred Java/C++
Operating System Multi-String Mandatory Linux
Memory Numeric Preferred 5-70Mb
Disk Space Numeric Preferred 10-90Mb

Table 6.17: Case study ideal specification

Site Number of Entries Number of Candidates

I 8,000+ 1
II 12,000+ 7
III 36,000+ 4
IV 30,000+ 0

Total 86,000+ 9 (3 duplicates)

Table 6.18: Case study manual assessment

For this study, three of the attributes are mandatory and five are preferred, with the

remaining attributes categorised as other. A threshold of 0.5 was selected, which rounds

down to two out of five preferred attributes for acceptance. Thus acceptable instances

will have a match (Y) on all three mandatory attributes, and match between two and

five of the preferred attributes. If the threshold was 0.6, between three and five preferred

attributes would need to be matched.

It is then input into Weka’s implementation of the C4.5 classifier which outputs a

decision tree-based predictive model. Weka also provides an analysis of the resulting

tree’s performance against the training and test data. The derived decision tree matched

the model of the candidate selection criteria and when applied to the training data,

correctly classified 100% entries. Another test of the classifier was run against simulated

data and correctly classified all the components and selected 27 out of 2000 components

205

6.9. SPIRAL 3 EVALUATION

as potential candidates.

The predictive model was applied to real component data where it identified 17 suit-

able components for the 578 that were considered. Although the four repositories offered

over 86,000 entries, a subset of those matching the search criterion ‘calculator’ was used

as manual conversion of all entries to XML was impractical. Incorrect results were given

for less than 7% of the data, in situations where values for attributes were missing. Clas-

sification involving instances with missing values is one of the limitations of C4.5. If it

has not seen a particular value for an attribute, it will still try to classify the instance ac-

cording to its decision tree, with unpredictable results. In our data, missing information

was replaced with ‘-’ for text attributes and -1 or 1000 for numeric attributes. There is

more that can be done to address missing data, including the substitution of average or

default values for missing values, which is future work for this project.

At this point, the user can consider updating or tuning the ideal specification. Using

the facilities provided by Weka, it is possible to look at the component data as individual

attributes or as groups of attributes. Statistical information about individual attributes

helps to adjust ranges for numeric values. Clustering tools help us to find components

that have a similar profile to our ideal specification. The ideal specification may then

be adjusted, the classifier retrained for a new predictive model, and the component data

reclassified to get a tighter match on suitable components.

6.9 Spiral 3 Evaluation

Spiral 3 investigated strategies to support shortlisting as part of RE3. Approaches

trialled included WSM, AHP, expert systems, ANN and C4.5. On consideration of each

approach, it was decided to work with C4.5. Further experiments were able to show

the effectiveness of using the classifier, along with indications of what future work was

required to improve performance in terms of relevance and recall.

The Spiral can be evaluated with respect to the stakeholder Win conditions. For the

application developer, all strategies had benefits. However for the purposes of this project,

utilising a C4.5 classifier is considered the most beneficial in that it produces a decision

tree which can be used to justify results. This is also useful for quality assurance. The

classifier has been used through the Weka GUI, which also can be run from the command

206

CHAPTER 6. SHORTLISTING CANDIDATES

line to simplify interaction. This use of Weka and utilising the ideal specification for

inputs of requirements information results in low overheads for the user.

Component developers and brokers would be able to see what information is required

for their components to compete for selection, and can see how the selection process is

implemented. Academic stakeholders can consider the trials and discussion of approaches

in determining their validity and effectiveness. The work in Spiral 3 was reviewed through

publication at SEKE (Maxville et al, 2004b), COMPSAC (Maxville et al, 2004c) and the

Postgraduate Electrical Engineering & Computing Symposium (PEECS) (Maxville et al,

2004a). The use of five techniques for shortlisting in this Spiral supports the premise of

flexibility in the CdCE Process. While each technique could have had further extensions,

in this investigation it is C4.5 that will be further explored. From the discussion above,

Win conditions have been satisfied for Spiral 3.

6.9.1 Spiral 3 Goals

The following discussion refers to the goals listed in Table 6.19.

Quality

The shortlisting task is described step by step in Section 7.4. Each stage has well-defined

inputs and outputs.

Given the requirements as inputs for Step 2, the process can be repeated, manually

or through re-running the tools provided. This was a key aim for the shortlisting as it is

likely to be revisited for iteration within a selection task or during system evolution.

Usability

The inputs and outputs for the shortlisting are easy to understand. One of the reasons

that C4.5 was chosen was for its human readable decision tree. Building the training

data and transforming the repository are a bit more complex, but do not need to be

understood in detail to use the shortlisting process. One of the reasons that the user does

not need deep understanding of the classification is the provision of scripts. Automation

is provided in the processing of the data and the scripts for running the various utilities.

These input and output XML files, which are the interfaces between the tools, as well as

providing much of the documentation of the process.

207

6.9. SPIRAL 3 EVALUATION

SPIRAL 3 Purpose Evaluate Results
Issue effectiveness of
Object strategies for shortlisting
Context Spiral 3

Goal 3A Focus Quality: Produce a structured, repeatable process for
shortlisting components

Viewpoint Quality Assurance personnel
Q3A1 Is the shortlisting task well defined? YES
Q3A3 Is the process repeatable? YES

Goal 3B Focus Usability: The shortlisting process must be automated
and understandable

Viewpoint Application developer
Q3B1 Is the shortlisting easy for the user to understand? YES
Q3B2 Does the shortlisting include automation? YES
Q3B3 Has the work been tested on real world examples? YES

Goal 3C Focus Intelligence: Apply intelligent techniques and strate-
gies to shortlisting

Viewpoint Application developer
Q3C1 Have intelligent strategies been utilised? YES

Goal 3D Focus Innovation: Consider a wide range of options for
shortlisting to find a novel solution

Viewpoint Academia
Q3D1 Were a range of options considered? YES
Q3D2 Have innovations been developed? YES

Goal 3E Focus Dynamics: Allow for change and iteration
Viewpoint Application developer
Q3E1 Does the shortlisting allow for iteration? YES
Q3E2 Does the shortlisting allow for change? YES

Goal 3F Focus Reuse: Where possible make use of existing code and
artefacts

Viewpoint Application developer
Q3F1 Has the work reused external resources? YES

Table 6.19: GQM Summary - Spiral 3

The initial data was collected manually, harvested from real world repository data.

Once the tools and approaches pass development tests on small datasets, small case

studies are used to evaluate and proof work.

Intelligence

Artificial intelligence techniques have been considered the focus of this Spiral. These

included the Jess expert system, artificial neural networks (ANN) and the C4.5 classifier.

The C4.5 machine learning classifier was considered the best fit for this approach to

component selection, with the training data for the classifier generated from the ideal

specification.

208

CHAPTER 6. SHORTLISTING CANDIDATES

Innovation

The search for an intelligent solution began with a literature review of potential tech-

niques (Tables 6.4 and 6.5). The initial choice was to use an expert system, investigated

through the Jess tool. Results were acceptable, but there was an issue in the manual cre-

ation of rules. The approachability of rules was still preferred, particularly when other

solution were bringing back the issue of aggregation. Generation of the training data

from the ideal specification opened up options and C4.5 and ANN were trialled, with

C4.5 being selected for its decision tree as compared to the ANN black box.

The innovations are in the use of C4.5 in generating a predictive model for component

selection, and in the generation of training data from the ideal specification to allow

supervised learning.

Dynamics

The shortlisting supports iteration through the automation of selection, giving faster

results across a larger set of candidates. The application developer can consider the

results and quickly explore options by adjusting the criteria.

Changes in the requirements can be accommodated easily in a similar way to iteration.

It is also possible to select different options in Weka, or adapt the training data for another

tool.

Reuse

New reuse in this Spiral was the Jess Expert System and the Weka machine learning

environment. Scripts were written to support the work, but there was little application

development for this Spiral.

6.10 Spiral 3 Review and Planning

This Spiral is the first of four which address Research Element 3: strategies for the

evaluation of software components and how an intelligent approach can be taken. Spiral

3 considered various approaches, including the AHP. The key points were to have an

automated, repeatable, justifiable approach that retained the information and detail of

209

6.11. POST-SPIRAL UPDATES

the software under evaluation. Contributions of the work are in the novel use of a classifier

and the mechanism for training the classifier for component selection.

The discussion in this Chapter documents a key decision in the project - the use of

C4.5 classifier for shortlisting. This is a novel approach and the fourth contribution of the

research (C4). Although it was considered the preferred technique for subsequent inves-

tigation, some issues have been identified. The first is that the current implementation

loses much of the information in the ideal specification and is providing the equivalent of

a simple database query (match/no match). This could be enhanced through better data

representation. Another issue has been in the high rate of missing data in some fields

in online repositories. These have created some unpredictable results, which indicates

that better handling of missing data is required. A third enhancement would be greater

automation for the experiments and, in turn, the selection process as a whole. At the end

of Spiral 3, the plan for Spiral 4 is to improve data representation, missing data handling

and to increase automation.

6.11 Post-Spiral Updates

The work in Spiral 3 is most impacted by Spirals 4 and 6 (see Figure 7.26). In Spiral 4,

changes are made to the data representation, affecting the attributes and their handling.

This, in turn, requires changes to the training (and test) data generator. Also in Spiral

4, the repository data was sourced from freshmeat as an RDF file, then converted into

CdCE format (swvML schema). Using real world data creates issues with incomplete

entries and specific handling of missing data has been implemented. The Spiral 4 version

of the shortlisting has been automated via scripts and uses the command line version of

Weka.

In Spiral 6 (Chapter 9) this automation led to the development of the ClassifierSuite.

The suite is a decision support tool, providing a graphical view of the process of selecting

attributes for the shortlist. This impacts the selection by taking the mandatory and

preferred criteria and showing the user all permutations of loosening the selection set.

The user can then consider 16, 32 or more different sets (and resulting shortlists) instead

of being limited to a few.

210

CHAPTER 6. SHORTLISTING CANDIDATES

Figure 6.14: Spiral 4 and later updates made to the Spiral outcomes

6.12 Summary

This chapter has presented the work of Spiral 3, focusing on techniques for shortlisting as

part of RE3. The goals for the Spiral were to implement a usable, effective shortlisting

approach which could provide documentation to justify the selections made. Within

the Spiral, a number of techniques were explored including WSM, AHP, expert systems,

ANN and C4.5. The decision was made to choose C4.5 as the approach to selection for

the CdCE Process.

The contribution of this Spiral, and its later updates, is a novel shortlisting approach.

The approach takes the ideal specification and uses it to generate training data for the

C4.5 classifier. The resulting predictive model is used to classify components from a

repository to create a shortlist. The shortlist is then used for the rest of the CdCE

Process. C4.5 provides a decision tree which gives a human-understandable justification

of the selections that were made. Evaluation of shortlisting with C4.5 identified areas

211

6.12. SUMMARY

which could be improved: data representation, missing data handling and automation.

The commitment was made to address these issues in Spiral 4.

The following chapter presents the work of Spiral 4. This continues the exploration

of RE3 and the approach to shortlisting in the CdCE Process.

212

Chapter 7

Data Representation

This Chapter presents the work of Spiral 4, concentrating on enhancing the data rep-

resentation used for the shortlisting. As part of the overall investigation, Spiral 4 is

targeting RE3, strategies to assist component selection. The Spiral extends and refines

the approach taken in Spiral 3, where a machine learning classifier is used for filtering

candidate components.

The main aim of the Spiral is to improve the data representation for the selection

process. A range of transformations is used to take advantage of specific characteristics

of the base attribute types. A suite of tools and procedures has been developed to

provide automation of this part of the CdCE Process. The result is improved relevance

and recall in the shortlisted candidates. The contribution of this Spiral is the enhanced

data representation, integrated with the Process and supported by tools.

The goals for Spiral 4 are noted in Table 7.1. The primary goal of this Spiral is

enhanced data representation (quality). To make this usable, there will be tools and an

underlying knowledge base (usability). The intelligence goal is to be realised through

the use of ontologies and knowledge management, combined with the classifier approach

from Spiral 3. Existing code and artefacts will be used where possible (reuse), and

SPIRAL 4 GOALS
Quality Enhance shortlisting for more accurate results
Usability Provide tools and knowledge base for users
Intelligence Apply ontologies and knowledge management to shortlisting
Innovation Include innovative knowledge management and missing data treatment
Dynamics Allow for update and substitution of knowledge base
Reuse Where possible make use of existing code and artefacts

Table 7.1: Goals for Spiral 4

213

7.1. SPIRAL 4 OVERVIEW

be easily updated and interchanged (dynamics). The solutions developed are expected

to include innovation in the combination of classification and knowledge management.

These are revisited in the evaluation at the end of the Chapter.

7.1 Spiral 4 Overview

The problem being approached in this Spiral is to improve results and be able to get more

out of the data via knowledge management techniques. Following successful work with

the classifier, this Spiral deals with extending and refining the shortlisting strategies. A

requirement of this work is to take the raw data from component and COTS repositories

and use them in Step 2 of the CdCE selection process.

Figure 7.1: Use cases for component selection, the focus of Spiral 4 (those not in the
scope for this Spiral are greyed)

There are two actors involved in Spiral 4: application developers and quality assurers

(Figure 7.1). The use cases of interest are Select Component, Assess Selection

and Modify Schema. Application developers will make use of the data representation

through the ideal specification and on any parameters or settings required for using the

related tools. They would also assess the external repositories to utilise in the selection

214

CHAPTER 7. DATA REPRESENTATION

Stakeholder Win Conditions
Application Developers Strategies are beneficial.

Justifiable results.
Low overhead to use strategies.
More than database queries.

Component Developers Know how their component is assessed and compared.
Component Brokers How to integrate with the repository.

What information is required and when.
May affect their templates and use of ontologies.

Quality Assurance Documentation of results and decision-making process.
Academia Choice of data representations.

Handling of data.
Peer reviewed.
Flexible and extensible.

Table 7.2: Win conditions for stakeholders (Spiral 4)

task. In an assessment of a completed selection process, quality assurers will need to

understand the impact of the data representation and the options provided. If a change

is made to the underlying schema, the application developer needs to consider the impact

and how to ensure it fits with the data representation approach adopted.

The stakeholder Win conditions for this Spiral are listed in Table 7.2. Application

developers will need to see that the strategies can be beneficial to them, and enhance the

process. They will also need to see the difference between these techniques and standard

database queries. Quality assurers need to know that the knowledge management tech-

niques are providing the correct information and the results can be justified. Component

developers and brokers will be interested in how the assessment will be impacted by the

enhanced data representation. It may affect how and where they list their software in

repositories. From the academic perspective, the handling of the data and the choice of

data representation must be valid. Peer review is again important, as is the extensibility

of the implementation.

7.2 Spiral 4 Context

The first step is to use the ideal specification to generate training data, then use this

data to train the classifier. As the datasets are created, a variety of data transformations

is available for representing the values for each attribute.

The shortlisting of candidates can draw on literature for similar tasks and also on

the broader fields of searching, classification and knowledge management. In many areas

215

7.2. SPIRAL 4 CONTEXT

an individual is in a situation of trying to find items matching a set of criteria. Perhaps

the most common applications of shortlisting are web search engines. In these general-

purpose search engines, unstructured text documents are matched/ranked according to

search criteria. Algorithms for text searching continue to be improved; however at a

basic level the relevance of a document is rated by whether all the search terms appear

and by counting the number of occurrences of each term (Sparck Jones, 1972, Wu et al,

2008). Engines, such as Google, combine the relevance of a page (based on its internal

content) with ‘pagerank’, an indicator of the importance of a page determined by the

number of inward links (Page et al, 1999). The indexing and searching of text pre-

dates search engines, therefore Information Management and Library Science techniques

such as distance calculations (Lee et al, 1993), stopwords (Luhn, 1960), word stemming

(Lovins, 1968), classification (Sparck Jones, 1970) and ontologies (Masterman, 1957) are

also applicable.

There are other ways to represent data than unstructured text. In particular, the

component metadata in this project includes dates and numeric values, along with terms

that have inherent relationships and structure. In these situations, classification schemes

and ontologies can be applied to encode semantic relationships and can enhance match-

ing. Large ontologies exist for research areas, such as the Protein Ontology1, as well as

organisational ones such as freshmeat troves.

Another source of theory for search and selection are the related fields of data mining

and machine learning. Machine learning is a sub-area of AI which aims to find and

classify patterns in text and images. Data mining techniques are often applied in machine

learning for discovering patterns in large datasets, an increasing issue as the amount of

stored data increases (Benôıt, 2002).

Moving from text searching to machine learning and data mining, issues arise with

the representation of data. It is possible to transform data between types (Table 7.3) and

to refine the representation of the ‘match’ between required and observed values. This

assumes expertise and often an intuition of where patterns will lie. It also benefits from

attribute analysis to cull attributes that are unlikely to have a bearing on the result and

could cloud the results. Encoding can create new attributes or a sequence of values or

events can be encoded in one attribute.
1Protein Ontology Project: http://proteinontology.org.au/

216

CHAPTER 7. DATA REPRESENTATION

Input Data Output Data
Numeric Scaled numeric

Nominal
Date Numeric
Nominal Numeric
Text (short) Nominal (Boolean)

Numeric
Nominal
Text (short)

Text (long) Surrogate
Auxiliary

Table 7.3: Data transformations

In the specific area of component and COTS selection, basic filtering is supplied by

repositories to search the metadata for each item. These vary from a flat search of all

fields, to some which allow the fixing of an attribute to a value (freshmeat, 2007). Com-

ponent Source categorises their components into domains and values for the attributes.

This provides the equivalent of an SQL query on a number of fields and a Boolean result

of the comparison.

In most cases the components are given a score against each of the selection criteria

and weights applied to each before a weighted sum is calculated. This was discussed

in Section 6.3. Central in that discussion are the limitations of using WSM and AHP

for component selection (Ncube and Dean, 2002), a key driver for the exploration of

alternative evaluation approaches in this study.

7.3 Spiral 4 Approach to Data Representation

Based on the work in Spiral 3, the approach is to take the ideal specification and gen-

erate training data to create a predictive model for shortlisting. The repository data is

transformed to CdCE format for compatibility. Another transformation of the repository

information takes place using the ideal specification, creating data ready for classifica-

tion. The classifier is then used on the transformed data, resulting in each instance being

assigned to a class (accept/reject) which provides the shortlist of candidates.

The CdCE data model (swvML) is based on the Spiral 1 investigation of character-

isation: describing resources; useful information for component selection; and, common

information provided by repositories. As discussed in Chapter 4, the CdCE data model

217

7.3. SPIRAL 4 APPROACH TO DATA REPRESENTATION

is described in an XML schema with instances of the schema able to describe single or

multiple components. While the CdCE Process and tools have been developed around

this data model, the option to use a different model has been maintained throughout the

project. This allows an organisation to substitute their own data model.

Each repository also has its own data model and format for providing data. For

example, freshmeat has 38 attributes in a DTD with the data supplied as RDF files.

SourceForge provides a copy of its relational database or free text summary files. To be

able to automatically process COTS information it needs to be in a form that can be

interpreted with consistency. Field mappings and an ontology are used to transform data

from the various sources into the CdCE data model. The freshmeat repository is built

on an ontology ‘trove’ and this has been used as a starting point for the CdCE ontology.

Figure 7.2: Ideal specification, source data and the transformer application

Figure 7.2 shows the contributions of the ideal specification, source data, transformer

and the resulting ARFF output ready for classification using the Weka Data Mining

Software. The ideal specification supplies the required values and the priority level for

each attributes. The component data is provided in an XML file which will include

the values for each attribute for each of the components. The transformer application

takes these two inputs and creates an ARFF file. Each line in the file corresponds to a

particular component, with comma separated entries to represent each attribute value

218

CHAPTER 7. DATA REPRESENTATION

on that component.

The conversion process has been implemented as a series of filters using the SAX2

parser. XSLT would have been appropriate for a simple transformation; however SAX

allows more complex conversions, including the use of ontologies to map data values.

Another alternative would have been to use a parser to build a DOM tree of XML

documents. The reasons for choosing to use the SAX parser were:

• Ability to work with very large files, e.g. the freshmeat data file is over 118Mb

• Simple implementation of transformation between XML documents

• The ability to input and output from various file formats and databases using the

same program structure as for XML files

• Simplification of repetitive processing using UNIX pipes and filters and scripts.

Figure 7.3: Activity diagram for Step 2

The activity diagram in Figure 7.3 shows the approach taken to generating training

data and to converting the repository data. On the left branch, the repository data
2http://download.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/SAXParser.html

219

7.3. SPIRAL 4 APPROACH TO DATA REPRESENTATION

is converted into CdCE format. This includes working with a thesaurus (part of the

ontology) to standardise the terminology used. In experiments the repository data has

been held in CdCE format, however in practice it would need to be refreshed to give

a new snapshot of the available components. The right branch shows the generation of

training data from the ideal specification, which is then used to train the classifier.

The second part of the processing takes the CdCE version of the data and converts it

with the same transformation as that used for the training data. The transformed data is

run through the trained classifier, resulting in a shortlist of components. This list is then

analysed to determine if the number of candidates is in the right range, and if they are

a good match to requirements. If the list is acceptable, the user moves to Step 4 of the

process, otherwise the ideal specification can be refined by iterating to Step 1. Chapter

8 describes the ClassifierSuite tool to assist the selection of criteria for shortlisting.

7.3.1 Data Model

The choice of attributes for component selection has been discussed and defined in Chap-

ter 4. When implementing the data processing for the component information, more

specific information was needed on the types of data held in the attributes. To give

maximum information the conversion to CdCE format retains as much of the raw infor-

mation as possible. For example, the long text description of the component is kept intact

and a number of transformations suited to textual data are provided. With other text

fields, such as operating systems, there are clear semantic relationships between terms

(e.g. Java and J2ME, Windows and Win2000) which may form a hierarchy . These are

classified as ontology fields and their transformation can make use of a knowledge base

of related terms.

The CdCE data model has attributes of varying types, given in Table 7.4. There are

numeric attributes for the price, memory required and disk space required. A date at-

tribute is used for the release date. Attributes including descriptive text are categorised

as longText and are brought into the CdCE data model unchanged. These attributes

include the description, detail and technical description. Other text attributes include

terms that represent values, or have relationships between values (also includes enumer-

ated numeric attributes), referred to as ontology attributes. In these cases an extendable

220

CHAPTER 7. DATA REPRESENTATION

ontology is used to hold all values and map them to the CdCE representation. The on-

tology is also used to compare values in the selection process. The third group of text

attributes has more variance and little scope for processing or comparison. These are

freeText attributes and are stored unchanged.

Attribute Base type Attribute Base type

Title FreeText Rel Id FreeText
Version FreeText Rel Value FreeText
Creator FreeText Rights FreeText
Subject Ontology Licence Ontology
Description LongText Demo FreeText
Detail LongText Documentation FreeText
Publisher FreeText sourceCode Ontology
Support FreeText SupportLevel FreeText
devStatus Ontology Zspec LongText
Date Date techDescription LongText
Type Ontology devLanguage Ontology
Format Ontology Framework Ontology
Identifier FreeText Standard Ontology
Source FreeText operatingSystem Ontology
Language Ontology Platform Ontology
Relation FreeText Processor Ontology
Rel Type Ontology Memory Numeric
Rel Source FreeText diskSpace Numeric
Rel Version FreeText Price Numeric

Table 7.4: CdCE Data Model

Ideal Specification

The ideal specification is read in after the list of attributes is created as a component

template. A sample ideal specification for a game renderer and/or browser is shown

in Figure 7.4. The ideal specification includes values for each required attribute and

indicates the attribute’s priority (mandatory, preferred or other). numeric and date

attributes can have minimum and maximum values, as well as the optimal value. For

example, the preferred price in this case is between $25 and $50, with an optimum of $40.

freeText and ontology tags are taken as entered, while the value in longText fields are

interpreted as keywords for matching throughout the descriptive text.

Attribute Creation

An XML file is used to provide extra information about the attributes (Figure 7.5). This

is mainly to allow the attribute type to be easily determined, creating an object to match

the base type of each attribute as part of the component object. It is also the connection

221

7.3. SPIRAL 4 APPROACH TO DATA REPRESENTATION

<?xml version="1.0"?>

<Description xmlns="http://www.scis.ecu.edu.au/swvML/1.0/"

xmlns:dc="http://purl.org/dc/elements/1.0/"

xmlns:swv="http://www.scis.ecu.edu.au/swvML/1.0/" >

<dc:description type="mandatory">game renderer browser</dc:description> <====== longText

<swv:detail type="mandatory">game renderer browser</swv:detail>

<dc:publisher>Freshmeat</dc:publisher> <====== freeText

<swv:devStatus type="mandatory">mature</swv:devStatus>

<swv:licence type="preferred">GNU General Public License (GPL)</swv:licence>

<swv:price type="preferred" min="25" max="50">40</swv:price> <====== numeric

<swv:technical>

<swv:devLanguage type="preferred">Java</swv:devLanguage> <====== ontology

<swv:devLanguage>C++</swv:devLanguage>

<swv:operatingSystem type="mandatory">Linux</swv:operatingSystem>

<swv:systemRequirements>

<swv:memory type="preferred" min="15" max="50">20</swv:memory>

<swv:diskSpace type="preferred" min="30" max="50">40</swv:diskSpace>

</swv:systemRequirements>

</swv:technical>

<dc:date type="preferred" min="2002-01-01" max="2004-01-01">2003-10-10</dc:date> <=== date

</Description>

</xml>

Figure 7.4: Ideal specification Game Renderer/Browser in CdCE XML Format, high-
lighting attribute types

<attributes>

...

<attribute>

<name>creator</name>

<tag>dc:creator</tag>

<type>freeText</type>

</attribute>

<attribute>

<name>subject</name>

<tag>swv:subject</tag>

<type>ontology</type>

</attribute>

...

</attributes>

Figure 7.5: Attribute Creation File in XML

between the subsequent tools that have been developed and the specific data model being

used. As this file is read in, a list of attributes is created with the tags used as indices.

To substitute a different schema with the same attribute types, the user would change

the reference to this file and supply their attribute file.

Ontology

The ontology is stored as an XML file with six attributes for each ontology entry, referred

to as a discriminator. One of the main purposes of the ontology is to provide a mapping

between equivalent terms, for example: Windows 98, W98 and Win98. A portion of

222

CHAPTER 7. DATA REPRESENTATION

<ontology>

...

<descriminator>

<id>9</id>

<name>Development Status :: 3 - Alpha</name>

<mapsTo>3 - Alpha</mapsTo>

<parent_id>6</parent_id>

<root_id>6</root_id>

<field>devStatus</field>

</descriminator>

<descriminator>

<id>10</id>

<name>Development Status :: 4 - Beta</name>

<mapsTo>4 - Beta</mapsTo>

<parent_id>6</parent_id>

<root_id>6</root_id>

<field>devStatus</field>

</descriminator>

...

</ontology>

Figure 7.6: XML Ontology File

the ontology referring to project maturity/development status is displayed in Figure 7.6.

This functionality uses the <name> value as the observed description and replaces it with

the text given in the <mapsTo> tags. The <parent_id> and <root_id> fields help to

create a hierarchy of related terms. As there may be some overlap in the terms used in

various attributes, the <field> tag is included to match the ontology entry to the CdCE

tag.

The OntologyCheck program tries to match an observed value against the <name>

value for the matching <field>. If no match exists, a segment of XML is produced to

use as a template for adding an entry for that value. Thus in the preprocessing stage,

the ontology is used to ensure that any terminology from the source has been included

and that it has all information required for comparisons.

Once the data is converted to CdCE format and the terms used are included in the

ontology, the component data can be compared and analysed. All programs have been

written in Java and make use of object-oriented techniques. One that is particularly

relevant is polymorphism, where the five attribute types are implemented as objects

with methods including: comparing their values with the ideal value for that attribute;

and, giving a response in a number of formats.

223

7.3. SPIRAL 4 APPROACH TO DATA REPRESENTATION

7.3.2 Data Transformations

Even though the source data have been converted into CdCE format, they are still

not in a format that can be processed by machine learning tools. Weka provides an

implementation of a wide range of machine learning algorithms and requires the input

in specific formats. For this work the format chosen is ARFF. ARFF files are text files

with a strict structure and can take two types of attribute, real and multi-value. Figure

7.7 includes part of an ARFF file.

@relation component_training_data/Tue-Aug-03-20:46:49-WST-2004

@attribute dc:description {true,false,-999}

@attribute swv:detail {true,false,-999}

@attribute dc:publisher {true,false,-999}

@attribute dc:date {true,false,-999}

@attribute swv:licence {true,false,-999}

@attribute swv:devStatus {true,false,-999}

@attribute swv:devLanguage {true,false,-999}

@attribute swv:operatingSystem {true,false,-999}

@attribute swv:memory {true,false,-999}

@attribute swv:diskSpace {true,false,-999}

@attribute swv:price {true,false,-999}

@attribute result {accept,reject}

@data

false,false,true,false,true,-999,-999,-999,false,-999,-999,accept

false,false,true,true,true,-999,-999,-999,-999,-999,-999,accept

false,false,true,false,false,-999,-999,-999,false,-999,-999,accept

false,false,true,false,true,-999,-999,-999,false,-999,-999,accept

false,false,true,false,false,-999,-999,-999,false,-999,-999,accept

false,false,true,true,false,-999,-999,-999,-999,-999,-999,accept

false,false,true,true,true,-999,-999,-999,-999,-999,-999,accept

Figure 7.7: Sample ARFF File

The ARFF file structure begins with a header indicated by the relation declaration,

which is useful for identifying the task and parameters being used. This is followed

by a list of attributes, which are the columns/fields which will be given for each data

point. Attributes are listed in order to match the data and indicate the datatype. In

this project, two datatypes have been used: nominal and numeric. Nominal attributes

require a list of all possible values to be included in the braces e.g. {true, false, -999}.

Weka also includes string and date type attributes. The data declaration indicates that

the rest of the file will be comma separated values (csv), each line representing a different

datapoint.

Thus any data to be processed through Weka needs to be converted in strict types

and, if not numeric, needs to have a finite number of values. This particularly affects

224

CHAPTER 7. DATA REPRESENTATION

freeText and longText attributes. Weka also includes clustering and association rules

algorithms that require their input data to be in a particular format, which can be used

if the various attribute types are converted to suit the processing requirements.

Independent of the requirements of Weka, an examination of a variety of ways to

represent the data was undertaken to determine how the representation affects the ability

to give an overall picture of a component’s suitability. Spiral 3 of this project gave

results as matching or not matching the requirements (from the ideal specification).

Other representations are to use a number of values (e.g. true, false and borderline) or

to represent the comparison as a number. In the literature there are two real options

for input data for analysis tools, numeric and multi-valued text - which needs to be

considered when targeting these tools as part of a process.

Missing Data

An issue that users have little control over is missing data values in the repository dataset.

Due to differences in data models, there can be up to 100% of data points missing a

particular attribute value. An example from the freshmeat dataset is price. The Open

Source nature of freshmeat results in no equivalent attribute for price. Iteration to refine

the ideal specification allows us to deal with these types of issues. Missing data is not

uncommon in commercial repositories (Yoon et al, 1999), and having to deal with missing

values makes our dataset more realistic and tests the robustness of our approach when

faced with such issues.

Previous work in this project had problems with the representation and handling

of missing values, described in Chapter 6. The ARFF format requires a valid value in

each field (attribute) and it was considered preferable to have a predictable response to

missing data. For example, in missing numeric values, -1 and -100 were trialled. Both

were problematic as a requirement for a value being <50 would evaluate to true, while

>50 would be false - whereas either both should be true, or both false. A particular

problem with using -1 to represent missing values is that it was so close to the (possibly)

acceptable value 0, that it gave regular false positive results.

Methods for dealing with missing data include ignoring/deleting data points, replac-

ing the missing value with a symbol, replacing the value with the mean or mode (often

225

7.3. SPIRAL 4 APPROACH TO DATA REPRESENTATION

with restriction to similar data points), replacing with a predicted value (e.g. via clus-

tering) or to use or modify an algorithm to deal with the missing data (Batista and

Monard, 2003, Grzymala-Busse and Hu, 2001).3 Missing values are frequently indicated

by out of range entries, such as negative numbers in numeric fields (Witten et al, 2011).

For example, -999 is unlikely to be a valid value for any fields in the CdCE data model.

After consideration of the attribute and their likely values, -999 was chosen as the miss-

ing value and the classifier trained accordingly. When the classifier was not specifically

trained on missing values, there were unexpected results to a -999 in the test data (e.g.

apparently random classification). Specific handling of missing values was added to the

training data, based on a parameter to allow the missing value to be taken as a match,

a mismatch or borderline. This resulted in consistent classification results. -999 is also

used to represent missing string/text values in textual fields.

Transformation

To allow for systematic experimentation, a set of equivalent transformations was devel-

oped across the five attribute types. They begin with a two-value (Boolean) result as to

whether the observed value matched the required - Transformation 1 (T1) {true, false}.

As values close to matching may be preferred over those that are complete mismatches,

Transformation 2 (T2) introduces a third value to represent borderline cases {true, false,

border}. A numeric result is generated for the comparison as Transformation 3 (T3),

with a 4th transformation, T4, for those attributes that lend themselves to more than

one calculation. Transformation 5 (T5) allows levels and abstraction of concepts when

dealing with ontology attributes.4 The details of each of the transformations is described

below in terms of each attribute type.

Not every attribute will be specified in the ideal specification. Unspecified attributes

may be ignored or there is a facility for a default value to be substituted. The transfor-

mations include a default output that has been chosen for unspecified attributes as they

do not have a value in the ideal specification to which to be compared. This is flexible

and may be switched off and on via parameters. These alternate outputs are indicated in
3Data cleansing could also be used to insert values into attributes, based on the given data and

associations between attributes. That approach has not been adopted in this work.
4An additional transformation (T0) is included in the code to output the raw data (‘LongText’ is

output for LongText attributes for practical reasons). This is for development purposes and not intended
for input into a classifier.

226

CHAPTER 7. DATA REPRESENTATION

the ‘Specified’ and ‘Unspecified’ columns in the tables that follow. For text based fields,

all comparisons are done on the text after converting it to lowercase. Thus matches are

not sensitive to the case in the original data.

The selected transformation is applied to all attributes. The programs also have

facility for the transformation to be defined at the individual attribute level, requiring

alteration of the initialisation sections of the code.

Numeric Attributes

Any scaling or unit conversions have taken place during the conversion of the data to

CdCE, so a comparison of numeric values is a combination of the observed value and the

optimal, minimum and maximum values from the ideal specification. Table 7.5 describes

the output of each numeric attribute transformation, based on the transformation type,

the values being compared, and whether the attribute is in the ideal specification.

Trans. Specified Not Specified Output Type

T1 if (minimum < value < maximum) false (true,false,-999)
then = true
else = false

T2 if (minimum < value < maximum) false (true, false, border, -999)
then = true
else if ((min - delta1) < value < (maximum
+ delta2)) then = border
else = false

T3 if (minimum < value < maximum) then =
1
else if ((min - delta1) < value < (maximum
+ delta2)) then = f(min, max, value)
else = 0 false real

T4 as in Trans. 3 as in Trans. 3 as in Trans. 3
T5 as in Trans. 3 as in Trans. 3 as in Trans. 3

Table 7.5: Numeric Attribute Transformation

Table 7.5 and Figure 7.8 show the difference between the numeric attribute trans-

formations. In T1, the result is true or false, depending on whether the observed value

is within the min - max range. In T2 the border areas are calculated using the dis-

tance between the optimal and minimum and maximum values. These are represented

in the table as delta1, optimal-minimum, and delta2, maximum-optimal. The borders are

indicated in the Figure as the areas between min b and min, and max and max b.

In the T2 transformation, a result is true if within the specified range, border if in the

border areas, and false otherwise. In T3, the result is 1 if within the specified range, and

227

7.3. SPIRAL 4 APPROACH TO DATA REPRESENTATION

0 if beyond the border areas. If the value falls within the border areas, and outside of

the specified range, the result will be a number between 0 and 1. For numeric attributes,

T4 and T5 are the same as T3, summarised in Table 7.5.

Figure 7.8: Transforming Numeric Attributes

Date Attributes

As date attributes can be required to be within a range of two dates, they are processed

in the same way as numeric values. Although they are stored internally as dates, the

transformations output them as multi-value or numeric. T2 and T3 use the same tech-

nique for calculating the delta values as for the numeric attributes. T4 and T5 are the

same as T3, as shown in Table 7.6.

FreeText Attributes

freeText attributes have a limited range of comparisons available. T1 uses basic string

comparisons and gives a boolean result. It is possible that the value has more information

than expected (e.g. ‘Sun Microsystems’ where the ideal specification value is ‘Sun’). In

that situation T2 would class the result of the comparison as a borderline match as a

substring can be found. The third comparison is a technique to generate a numeric result

representing the similarity between two text strings. The values in each position in the

strings is compared and the number of matches counted.

228

CHAPTER 7. DATA REPRESENTATION

Trans. Specified Not Specified Output Type

T1 if (minimum < value < maximum) then =
true

false (true,false,-999)

else = false
T2 if (minimum < value < maximum) then =

true
false (true, false, border, -999)

else if ((min - delta1) < value < (maximum
+ delta2)) then = border
else = false

T3 if (minimum < value < maximum) then =
1 else = 0

false real

else if ((min - delta1) < value < (maximum
+ delta2)) then = f(min, max, value)
else = 0

T4 as in Trans. 3 as in Trans. 3 as in Trans. 3
T5 as in Trans. 3 as in Trans. 3 as in Trans. 3

Table 7.6: Date Attribute Transformation

Trans. Specified Not Specified Output Type

T1 if matched = true else false false (true,false,-999)
T2 if matched = true else = false false (true, false, border, -999)

else if substring matched = border
else = false

T3 #matching letters/#letters in shorter
word

0 real

T4 as in Trans. 3 as in Trans. 3 as in Trans. 3
T5 as in Trans. 3 as in Trans. 3 as in Trans. 3

Table 7.7: FreeText Attribute Transformation

The matching process stops with the shorter of the two strings.5

For freeText attributes, T4 and T5 are the same as T3. The freeText transforma-

tions are summarised in Table 7.7.

LongText Attributes

longText attributes are an unrestricted description which is internally converted into

a list of keywords and counts. An extendable list of stop words is included which are

ignored by the keyword counting process. The ideal specification includes a list of required

keywords for longText attributes. T1 will return ‘true’ if all of the keywords have at least

one occurrence, ‘false’ otherwise. To extend this, T2 returns ‘true’ if all the keywords

are matched, ‘false’ if none are matched, and is borderline if some of the keywords

are matched. Missing 1 of 4 keywords is thus the same as missing 3 of 4. T3 gives

more information about the closeness of the match by returning the number of keywords
5There may be better or alternative techniques to give a more meaningful measure of similarity, but

these were not followed through on as there was a low expected value in terms of results.

229

7.3. SPIRAL 4 APPROACH TO DATA REPRESENTATION

Trans. Specified Not Specified Output Type

T1 if all matched = true else false false (true,false,-999)
T2 if all matched = true false (true, false, border, -999)

else if some matched = border
else = false

T3 # keywords matched/# keywords re-
quired

0 real

T4 # keywords matches/# keywords in text 0 real
T5 as in Trans. 3 as in Trans. 3 as in Trans. 3

Table 7.8: LongText Attribute Transformation

Want Plan Pre- Alpha Beta Prod’n Mature
Have Alpha /Stable
Planning 10 8 6 4 2 0
Pre-Alpha 10 10 8 6 4 2
Alpha 10 10 10 8 6 4
Beta 10 10 10 10 8 6
Prod/Stable 10 10 10 10 10 8
Mature 10 10 10 10 10 10

Table 7.9: Distance matrix for maturity attribute

matched, divided by the total number of keywords required. So a full match = 10, 3 from

4 is 7.5 and 1 from 4 is 2.5 (scaled from 0-10). Continuing the numeric representation

of the keyword match, T4 takes the length of the passage of text into account, so takes

a count of all the matches, divided by the total number of keywords in the text. For

longText attributes, T5 is the same as T3. All transformations for longText are listed

in Table 7.8.

Ontology Attributes

ontology attributes are treated in the same way as freeText attributes for T1. As the

ontology attributes have been mapped to the consistent representation of concepts, they

are more likely to match than freeText. T2 and T3 make use of the ontology knowledge

base to determine the similarity of terms. T2 will be able to match similar concepts

and return a ‘true’ result if they are closely related. If there is some relation between

the concepts, a ‘border’ result will be given, while unrelated or conflicting concepts will

return ‘false’. The third transformation calculates the distance between the ideal and

observed terms and will return 10 if they are very close, and 0 if distant, and a value

between 0 and 10 if they are in the middle ground. This calculation is facilitated by a

distance matrix, stored in XML. Each value for each attribute is listed on the axes for

230

CHAPTER 7. DATA REPRESENTATION

Trans. Specified Not Specified Output Type

T1 if matched = true else = false false (true,false,-999)
T2 if very close in ontology = true false (true, false, border, -999)

else if nearby in ontology = border
else = false

T3 ontology calculation of distance (0-10)
within ontology

0 real

T4 as in Trans. 3 as in Trans. 3 as in Trans. 3
T5 if level <= ideal level then value same as spec. (‘list of all ontology values

at that level’, -999)
else parent(value,level)

Table 7.10: Ontology Attribute Transformation

Figure 7.9: Ontology entries for Operating System

the matrix. The distances are filled in by expert opinion and can be localised or updated

by substituting a matrix file. An example is the development status, shown in Table 7.9.

In this case, if the requirement is for at least Beta, then Production, Stable or Beta

would match. The core reduces as the observed value moves further from the required

range. For ontology attributes, T4 is the same as T3 to allow the observation of impact

of T4 for longText. All ontology transformations are in Table 7.10.

Problems can occur in training the classifier if there are a large number of possible

values for a particular attribute. For example, the Operating Systems part of the ontology

has 31 entries (Figure 7.9). There are nine children at the first level, with only two of

them branching to further levels. When viewing and processing data, a restriction of the

hierarchy to a level (e.g. level 2) may be a better indicator of the suitability of a piece

231

7.4. SPIRAL 4 IMPLEMENTATION

of software. The system offers the flexibility to set a cut-off level, so the user can choose

to use the entire tree, or prune it to a specified level. This approach is applied to all

ontology attributes. Thus using T5 will prune the tree to a level (depth) and replace any

values with their direct ancestor at the required level. For example, in Figure 7.9 a level

3 cut-off would replace Win98 with 9x/ME and NetBSD with BSD.

7.4 Spiral 4 Implementation

The generation and transformation software has been developed as a series of Java ap-

plications. Each of these uses the SAX parser to read XML data files. The ideal spec-

ification, attribute information, ontology and transformed component data are held in

XML files. Files for processing by Weka (training, test and repository data) are stored

in ARFF format.

Inputs Outputs

ideal component specification (CdCE XML) training data set (ARFF)
attribute information (XML) test data set(s) (ARFF)
thresholds for attribute priority
MISSING value representation (default -999)
SKIP_UNSPECIFIED directive
TRANSCODE (and level if applicable)

Table 7.11: Generation of Training Data

The generation of training data has been updated for the new data representation.

The underlying work is the same, with input parameters and outputs shown in Table 7.11.

New parameters to the generator are the missing value, skip directive and transformation

code. The MISSING value string can be specified to any user value. The default used in

this work is ‘-999’ as it can be interpreted as a real or as a string - allowing consistent

missing value replacement across all attributes and transformations. Not all attributes

are required for all classification tasks. The SKIP_UNSPECIFIED directive is used to toggle

whether to include attributes that are not in the ideal specification, or to skip them. The

final parameter is the TRANSCODE. This value should be an integer, currently ranging

from 1-5. The data transformations matching each transformation were described in

Section 7.3.2. For transformations utilising the ontology (i.e. T5), a level should also

be specified. The default level is 2, and the value is ignored if other transformations are

used.

The training data generation begins similarly to that described in Chapter 6, with

232

CHAPTER 7. DATA REPRESENTATION

a permutation of Y/N values on the attributes in the ideal specification. This is the

first pass of training generation. To match the transformations for each attribute, the

generator must consider the attribute type and all possible values on that attribute.

The second pass in the generation of the data is to substitute values in place of the

Y/N placeholders. This step needs to take into account the TRANSCODE value and the

ideal specification to determine valid (matching) or invalid (not matching) values. For T1,

there is a simple substitution of true for Y and false for N. This creates a strict matching

of attributes against criteria. The experiments were run with all missing values set as not

matching, so in all transformations, ‘-999’ (MISSING) can be substituted for N. In T2, the

criteria are loosened to allow the ‘borderline’ cases to be accepted, thus true and border

are substituted for Y and false and -999 for N. T3 involves converting all of the data

to numeric values. The generator can determine these values from the ideal specification

and can then substitute acceptable numeric values for Y and unacceptable values (and

-999) for N. T4 is similar, with differences in the values used for some attribute types.

Values for T5 are more closely matched to the raw data. ontology attributes are the

focus of this transformation, with all other attributes treated as in T3. T5 works on a

manageable subset of the ontology for each attribute. This can be split into acceptable

and unacceptable values according to the ideal specification. Using these two groups of

values, the generator can substitute values for Y and N. More detail on the transformations

is in Section 7.3.2.

Using the transformation information, the generator can output an ARFF header

to include the attribute names, types and all possible values. This is followed by the

training data which retains the label (accept/reject) from the first pass of the generation.

An example of training data which uses T1, skips unspecified attributes and has -999 as

the missing value is in Figure 7.10.

233

7.4. SPIRAL 4 IMPLEMENTATION

@relation component_training_data/Tue-Aug-24-16:49:40-WST-2004

@attribute dc:description {true,false,-999}

@attribute dc:publisher {true,false,-999}

@attribute dc:date {true,false,-999}

@attribute swv:licence {true,false,-999}

@attribute swv:devStatus {true,false,-999}

@attribute swv:devLanguage {true,false,-999}

@attribute swv:operatingSystem {true,false,-999}

@attribute swv:memory {true,false,-999}

@attribute swv:diskSpace {true,false,-999}

@attribute swv:price {true,false,-999}

@attribute result {accept,reject}

@data

false,true,false,true,true,-999,false,-999,-999,-999,accept

false,true,false,true,false,false,-999,-999,-999,-999,accept

false,true,false,false,false,false,true,-999,-999,-999,accept

false,true,false,true,-999,-999,-999,-999,-999,-999,accept

false,true,false,false,-999,-999,-999,-999,-999,-999,accept

false,true,false,false,-999,-999,-999,-999,-999,-999,accept

false,true,false,true,true,false,false,-999,-999,-999,accept

false,true,false,true,-999,-999,-999,-999,-999,-999,accept

false,true,false,false,-999,-999,-999,-999,-999,-999,accept

false,true,false,true,-999,-999,-999,-999,-999,-999,accept

false,true,false,true,-999,-999,-999,-999,-999,-999,accept

Figure 7.10: Training Data (Transformation 1)

7.4.1 Transformation of Repository Data

Inputs Outputs

repository data (original form) repository data (CdCE XML)
ontology (XML) repository data (ARFF)

Table 7.12: Transformation of repository data

Table 7.12 and Figure 7.11 show the main elements in the transformation process.

This begins with the data file at the tag/attribute level using a datasource specific pro-

gram, in this case FM2CdCE. A first pass is run to check that the values observed within

the ontology attributes exist in the CdCE ontology. If not, the user is given templates to

add new terms to the ontology. The updated ontology and the converted data file are run

through CdCEOntology to convert the ontology attributes using the mappings described

in the ontology. Maintenance of the ontology is currently a manual process. Once the

ontology mappings are complete, the data can then be transformed based on the ideal

specification values.

234

CHAPTER 7. DATA REPRESENTATION

Figure 7.11: Transformation process

Conversion to CdCE

Each conversion from data source to CdCE is written as a separate program coded as

a SAX filter. The initial step is to get the full data model for the data source and

investigate any conventions they have for recording details.

Table 7.13 shows the mapping between tags in the freshmeat RDF file and the CdCE

output file. Although many of the omitted fields hold interesting information, they are

unlikely to be available from other sources. Where there are multiple fields from which to

choose an attribute, the logic used for the conversion is shown in the right hand column

of the table. For example, there are at least four date fields in the freshmeat file for each

piece of software. The logic to choose the date to use in the CdCE transformation is:

if no latest_release_date then

date = date_added

else

date = latest_release_date

The date_updated was a candidate for use as the ‘date’; however it is triggered when

comments are added to freshmeat project records. This is not useful when looking for an

indication of the most recent update to the software, but may help to indicate activity

or vitality of the project.

235

7.4. SPIRAL 4 IMPLEMENTATION

freshmeat CdCE
- Publisher = Freshmeat
project id Identifier = project id
date added If no latest release date date = date added Else date = latest release date
date updated omitted
projectname short If no projectname full title = projectname short Else title = projectname full
projectname full omitted
desc short description = desc short
desc full detail = desc full
vitality score omitted
vitality percent omitted
vitality rank omitted
popularity score omitted
popularity percent omitted
popularity rank omitted
rating omitted
rating count omitted
rating rank omitted
subscriptions omitted
branch name omitted
url homepage omitted
url tgz omitted
url changelog omitted
url rpm omitted
url deb omitted
url bz2 omitted
url cvs omitted
url list omitted
url zip omitted
url osx omitted
url bsdport omitted
url purchase omitted
url mirror omitted
url demo Demo = url demo
url project page Support = url project page

Creator = url project page Source = url project page
license Licence = license
latest release **Not a repeated field
latest release version Version = latest release version
latest release id omitted
latest release date See ‘date’
screenshot thumb omitted
descriminators (trove id*) Dev status, licence, O/S, prog lang and topic all linked through trove ids
trove id Link through to:

Development Status,
Platform = Environment (dependencies),
Operating System,
Licence,
Framework = network environment,
Programming Language,
Subject = Topic ,
Language = translations

dependencies (dependency*) Multiple dependencies allowed
dependency project id Relation.id = dependency project id
dependency branch id omitted
dependency release id Relation.version = dependency release id
dependency project title Relation.value = dependency project title
- Relation.source = Freshmeat
dependency(type) Relation.rel type = dependency(type)

Table 7.13: freshmeat conversion

236

CHAPTER 7. DATA REPRESENTATION

7.4.2 Classifying the Data

Inputs Outputs

repository data (ARFF) shortlist from repository data (XML)
classifier model (Weka binary .mod)

Table 7.14: Classifying the data

At this point the training data has been used to create the predictive model of the

selection task. This is stored as a Weka binary model with a .mod extension. Weka can

now be run with the same parameters as used in training the model, adding the model

file and the repository data file as inputs. The parameters for classifying the data are

given in Table 7.14. The output of this run is the dataset annotated with the class that

the model predicted for each component. As all instances in the repository data file have

‘reject’ in the output class, entries showing that ‘reject’ was not the correct class are

put onto the shortlist. In the example shown in Figure 7.12, one entry out of 41885 is

rejected - which would provide a shortlist with one entry.

The command used for classifying the data is:

java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.J48 \

-l model.mod-T $REAL

The raw output from Weka is post-processed to create a new XML file holding the

shortlisted component information.

237

7.4. SPIRAL 4 IMPLEMENTATION

=== Classifier model (full training set) ===

J48 pruned tree

dc:description <= 4: reject (9900.0)

dc:description > 4

| swv:detail <= 4: reject (2970.0)

| swv:detail > 4

| | swv:devLanguage = Ada: reject (30.0)

| | swv:devLanguage = APL: reject (30.0)

<--- snip --->

| | swv:devLanguage = Zope: reject (33.0)

| | swv:devLanguage = error: reject (33.0)

| | swv:devLanguage = -999: reject (66.0)

Number of Leaves : 138

Size of the tree : 144

=== Error on test data ===

Correctly Classified Instances 41884 99.9976 %

Incorrectly Classified Instances 1 0.0024 %

Kappa statistic 0

Mean absolute error 0

Root mean squared error 0.0049

Total Number of Instances 41885

=== Confusion Matrix ===

a b <-- classified as

0 0 | a = accept

1 41884 | b = reject

{Experiment run: calc_2Jan08t5s23_2008-12-31_21_01}

Figure 7.12: Results of classification of the component data

7.4.3 Supporting Code and Scripts

The code developed across Spirals 3 and 4 is held in CdCETransformer and Intelligent -

two Java applications. Both require xmlwriter and xerces classes for handling XML. The

parameters for both programs are held in XML files, such as the one shown in Figure 7.13.

The file provides settings for transformations, missing data handling, skip unspecified

setting and gives filenames for the ontology, attribute list and the ideal specification.

The output of CdCETransformer and Intelligent write to files and to standard out

(the screen) and standard error (defaults to the screen). These are both captured using

redirections on the command line. CdCETransformer provides the component repository

data in ARFF and Intelligent creates the training and test data files in ARFF. The

names of the files output from CdCETransformer and Intelligent include information on

the parameters and time it was run.

238

CHAPTER 7. DATA REPRESENTATION

<PARAMETERS>

<TEMPLATE>CdCETemplate.xml</TEMPLATE>

<FILE_BASE>fm_projects06</FILE_BASE>

<IDEAL_SPEC>ideal_calc_2Jan08t5s23.xml</IDEAL_SPEC>

<VERSION>calc_2Jan08t5s23</VERSION>

<TRANSCODE>5</TRANSCODE>

<ONTOLOGY_LEVEL>2</ONTOLOGY_LEVEL>

<SKIP_UNSPECIFIED>true</SKIP_UNSPECIFIED>

<MISSING>-999</MISSING>

</PARAMETERS>

Figure 7.13: Parameter file for ideal calculator case study

In Spiral 3, Weka was used in interactive mode, through the GUI interface. A series

of scripts have been developed to facilitate the testing and experimentation with the

shortlisting tools (see Appendix B). These allow multiple sets of parameters and/or

ideal specifications to be processed in one command. They also ensure that each run has

all the input and output files bundled into identifiable directories.

The first script, xml exp search, runs a set of related scenarios, based on a common

prefix entered at the command line. A scenario will have an ideal specification and a

matching parameter file. For each scenario, a second script, process, is called. This script

creates directories and stores files which are at risk of being overwritten. The script then

runs Intelligent and CdCETransformer to create the training, test and component data files

for the scenario. The training and classification of component data is carried out using

the weka train script. The output of weka train is a series of output files from processing

the training, test and component input files. The last step of the process script moves

the scenario files into the created directory, restores the saved files and deletes temporary

directories.

After all of the scenarios have run through in the process script, a final script,

grab predict, is called to take the output files and create XML shortlist files for each

of the scenarios. It also counts the number of matches in each scenario as a guide for

the user. Using these scripts, the user can consider a range of ideal specifications in a

systematic manner, rather than picking those they expect to give good results. This

may lead to unexpected choices which result in shortlists that are more suitable to the

selection task.

239

7.5. SPIRAL 4 RESULTS

7.5 Spiral 4 Results

Output of Transformations

To illustrate the data transformation process a sample file of COTS data is followed as

it is processed using transformations T1-T5. The process begins with the source data in

freshmeat RDF format (Figure 7.14). Table 7.13 details the mapping of tags and values

from freshmeat to CdCE. After running the source file through the FM2CdCE filter, the

same data is represented in CdCE format (Figure 7.15). The most involved conversions

are those of the <trove> elements. They use the ontology to map the <trove_id> to an

ontology element which indicates the tags and values to be added to the CdCE file.

<?xml version="1.0" encoding="ISO-8859-1"?>

<project-listing>

<project>

<project_id>2</project_id>

<date_added>2000-07-23 16:44:50</date_added>

<date_updated>2003-12-17 19:04:05</date_updated>

<projectname_short>0verkill</projectname_short>

<projectname_full>0verkill</projectname_full>

<desc_short>A bloody action 2D deathmatch game in ASCII art.</desc_short>

<desc_full>0verkill is a client-server 2D deathmatch-like game ... editor.</desc_full>

<vitality_score>15.70</vitality_score>

<vitality_percent>0.01</vitality_percent>

<vitality_rank>6312</vitality_rank>

<popularity_score>870.70</popularity_score>

<popularity_percent>2.03</popularity_percent>

<popularity_rank>1865</popularity_rank>

<rating>7.69</rating>

<rating_count>12</rating_count>

<rating_rank>237</rating_rank>

<subscriptions>14</subscriptions>

<branch_name>Default</branch_name>

<--- snip --->

<url_demo></url_demo>

<license>GNU General Public License (GPL)</license>

<latest_release>

<latest_release_version>0.16</latest_release_version>

<latest_release_id>64935</latest_release_id>

<latest_release_date>2001-12-16 08:52:36</latest_release_date>

</latest_release>

<screenshot_thumb>http://images.freshmeat.net/screenshots/2_thumb.jpg</screenshot_thumb>

<descriminators>

<trove_id>15</trove_id>

<trove_id>82</trove_id>

<--- snip --->

<trove_id>2</trove_id>

</descriminators>

<dependencies>

</dependencies>

</project>

...

</project-listing>

Figure 7.14: freshmeat source file

240

CHAPTER 7. DATA REPRESENTATION

<?xml version="1.0"?>

<swv:components

xmlns="http://scis.ecu.edu.au/research/PhD/vmaxvill/swvMLap/1.0/"

xmlns:dc="http://purl.org/dc" >

<swv:component>

<dc:publisher>Freshmeat</dc:publisher>

<dc:identifier>2</dc:identifier>

<dc:description>A bloody action 2D deathmatch game in ASCII art.</dc:description>

<swv:detail>0verkill is a client-server 2D deathmatch-like game

in ASCII art. It supports free connecting/disconnecting during the game, and

runs well on modem lines. Graphics are in 16-color ASCII art with elaborate hero

animations. 0verkill features 4 different weapons, grenades, invisibility, and armor.

The package also contains reaperbot clients, a simple graphics editor, and a level

editor.</swv:detail>

<dc:creator>http://freshmeat.net/projects/0verkill/</dc:creator>

<dc:source>http://freshmeat.net/projects/0verkill/</dc:source>

<swv:support>http://freshmeat.net/projects/0verkill/</swv:support>

<swv:demo></swv:demo>

<swv:licence>GNU General Public License (GPL)</swv:licence>

<swv:version>0.16</swv:version>

<swv:licence>GNU General Public License (GPL)</swv:licence>

<swv:subject>First Person Shooters</swv:subject>

<swv:standard>Console (Text Based)</swv:standard>

<swv:standard>X11 Applications</swv:standard>

<swv:operatingSystem>OS/2</swv:operatingSystem>

<swv:operatingSystem>Windows</swv:operatingSystem>

<swv:operatingSystem>Windows 95/98/ME</swv:operatingSystem>

<swv:operatingSystem>Windows NT/2000/XP</swv:operatingSystem>

<swv:operatingSystem>POSIX</swv:operatingSystem>

<swv:operatingSystem>FreeBSD</swv:operatingSystem>

<swv:operatingSystem>IRIX</swv:operatingSystem>

<swv:operatingSystem>Linux</swv:operatingSystem>

<swv:operatingSystem>Other</swv:operatingSystem>

<swv:operatingSystem>SunOS/Solaris</swv:operatingSystem>

<swv:subject>Arcade</swv:subject>

<swv:devStatus>5 - Production/Stable</swv:devStatus>

<swv:operatingSystem>HP-UX</swv:operatingSystem>

<swv:subject>Games/Entertainment</swv:subject>

<audience>End Users/Desktop</audience>

<dc:date>2001-12-16 08:52:36</dc:date>

<dc:title>0verkill</dc:title>

</swv:component>

...

</swv:components>

Figure 7.15: freshmeat data in CdCE format

Transforming the file ready for classification is done by combining the information in

the ideal specification with the observed values for each component on each attribute.

Figure 7.16 shows the ideal specification used for this example. The details of the trans-

formations for each attribute type are in Section 7.3.2. T0 (Figure 7.17) is intended to

assist in understanding the data and is not valid ARFF. LongText attributes are substi-

tuted with ‘LongText’ while all other attributes pass through their basic text or numeric

representation.

241

7.5. SPIRAL 4 RESULTS

<?xml version="1.0"?>

<Description xmlns="http://www.scis.ecu.edu.au/swvML/1.0/"

xmlns:dc="http://purl.org/dc/elements/1.0/" xmlns:swv="http://www.scis.ecu.edu.au/swvML/1.0/">

<dc:description type="mandatory">Internet email application</dc:description>

<swv:detail type="mandatory">Internet email application</swv:detail>

<dc:publisher>Freshmeat</dc:publisher>

<swv:devStatus type="mandatory">5 - Production/Stable</swv:devStatus>

<swv:licence type="preferred">GNU General Public License (GPL)</swv:licence>

<swv:price type="preferred" min="25" max="50">40</swv:price>

<swv:technical>

<swv:devLanguage type="preferred">Java</swv:devLanguage>

<swv:devLanguage>C++</swv:devLanguage>

<swv:operatingSystem type="mandatory">Linux</swv:operatingSystem>

<swv:systemRequirements>

<swv:memory type="preferred" min="15" max="50">20</swv:memory>

<swv:diskSpace type="preferred" min="30" max="50">40</swv:diskSpace>

</swv:systemRequirements>

<Zspec> ... </Zspec>

</swv:technical>

<dc:date type="preferred" min="2002-01-01" max="2004-01-01">2003-10-10</dc:date>

</Description>

</xml>

Figure 7.16: Ideal specification for Internet email application

@relation component_training_data/Fri-Aug-13-15:24:06-WST-2004

@attribute dc:description {longText,-999}

@attribute swv:detail {longText,-999}

@attribute dc:publisher {freeText,-999}

@attribute dc:date real

@attribute swv:licence {ontology,-999}

@attribute swv:devStatus {ontology,-999}

@attribute swv:devLanguage {ontology,-999}

@attribute swv:operatingSystem {ontology,-999}

@attribute swv:memory real

@attribute swv:diskSpace real

@attribute swv:price real

@attribute result {accept,reject}

@data

longText,longText,Freshmeat,2001-12-16,GNU General Public License (GPL),

5 - Production/Stable,-999,OS/2,-999,-999,-999,accept

longText,longText,Freshmeat,2003-5-30,GNU General Public License (GPL),

4 - Beta,C,-999,-999,-999,-999,accept

...

Figure 7.17: Transformation 0 of freshmeat data to illustrate the raw data for the
scenario (with instances word-wrapped for formatting reasons)

242

CHAPTER 7. DATA REPRESENTATION

T1 (Figure 7.18) provides a Boolean result of matching each attribute value with the

ideal specification for that attribute. All possible values (including ‘missing’) must be

listed in the ARFF header, unless the attribute is numeric. T2 (Figure 7.19) adds a third

value to the output allowing for less strict comparisons between observed and required

values. This allows the classifier the option of treating near misses differently to extreme

values.

@relation component_training_data/Fri-Aug-13-15:30:13-WST-2004

@attribute dc:description {true,false,-999}

@attribute swv:detail {true,false,-999}

@attribute dc:publisher {true,false,-999}

@attribute dc:date {true,false,-999}

@attribute swv:licence {true,false,-999}

@attribute swv:devStatus {true,false,-999}

@attribute swv:devLanguage {true,false,-999}

@attribute swv:operatingSystem {true,false,-999}

@attribute swv:memory {true,false,-999}

@attribute swv:diskSpace {true,false,-999}

@attribute swv:price {true,false,-999}

@attribute result {accept,reject}

@data

false,false,true,false,true,true,-999,false,-999,-999,-999,accept

false,false,true,false,true,false,false,-999,-999,-999,-999,accept

false,false,true,false,false,false,false,true,-999,-999,-999,accept

false,false,true,false,true,-999,-999,-999,-999,-999,-999,accept

false,false,true,false,false,-999,-999,-999,-999,-999,-999,accept

false,false,true,false,false,-999,-999,-999,-999,-999,-999,accept

false,false,true,false,true,true,false,false,-999,-999,-999,accept

...

Figure 7.18: Transformation 1 of freshmeat data

T3 and T4 (Figures 7.20 and 7.21) use numeric values to represent the closeness

of a match. The final example is the output for T5 (Figure 7.22), where the ontology

attributes: operatingSystem, developmentLanguage and developmentStatus, show

the results of the abstraction of the included information to the second level. Not all

ontology attributes have a tree hierarchy, but this facility has been shown to improve

returned results as compared to T1 to T4.

It is clear that there are many missing values (-999) in this data set. This is indicative

of real world data issues and will result in smaller than expected shortlists if any of those

attributes are considered mandatory.

243

7.5. SPIRAL 4 RESULTS

@relation component_training_data/Fri-Aug-13-15:40:45-WST-2004

@attribute dc:description {true,false,border,-999}

@attribute swv:detail {true,false,border,-999}

@attribute dc:publisher {true,false,subString,-999}

@attribute dc:date {true,false,border,-999}

@attribute swv:licence {true,false,border,-999}

@attribute swv:devStatus {true,false,border,-999}

@attribute swv:devLanguage {true,false,border,-999}

@attribute swv:operatingSystem {true,false,border,-999}

@attribute swv:memory {true,false,border,-999}

@attribute swv:diskSpace {true,false,border,-999}

@attribute swv:price {true,false,border,-999}

@attribute result {accept,reject}

@data

border,false,true,border,true,true,-999,false,-999,-999,-999,accept

false,false,true,border,true,false,false,-999,-999,-999,-999,accept

false,border,true,border,false,false,false,true,-999,-999,-999,accept

false,false,true,border,true,-999,-999,-999,-999,-999,-999,accept

border,border,true,false,false,-999,-999,-999,-999,-999,-999,accept

false,false,true,border,false,-999,-999,-999,-999,-999,-999,accept

false,false,true,border,true,true,false,false,-999,-999,-999,accept

...

Figure 7.19: Transformation 2 of freshmeat data

@relation component_training_data/Fri-Aug-13-15:50:12-WST-2004

@attribute dc:description real

@attribute swv:detail real

@attribute dc:publisher real

@attribute dc:date real

@attribute swv:licence real

@attribute swv:devStatus real

@attribute swv:devLanguage real

@attribute swv:operatingSystem real

@attribute swv:memory real

@attribute swv:diskSpace real

@attribute swv:price real

@attribute result {accept,reject}

@data

10,0,10,5,10,10,-999,0,-999,-999,-999,accept

0,0,10,5,10,0,0,-999,-999,-999,-999,accept

0,5,10,5,0,0,0,10,-999,-999,-999,accept

0,0,10,5,10,-999,-999,-999,-999,-999,-999,accept

5,5,10,0,0,-999,-999,-999,-999,-999,-999,accept

0,0,10,5,0,-999,-999,-999,-999,-999,-999,accept

0,0,10,5,10,10,0,0,-999,-999,-999,accept

...

Figure 7.20: Transformation 3 of freshmeat data

244

CHAPTER 7. DATA REPRESENTATION

@attribute swv:detail real

@attribute dc:publisher real

@attribute dc:date real

@attribute swv:licence real

@attribute swv:devStatus real

@attribute swv:devLanguage real

@attribute swv:operatingSystem real

@attribute swv:memory real

@attribute swv:diskSpace real

@attribute swv:price real

@attribute result {accept,reject}

@data

50,0,10,5,10,10,-999,0,-999,-999,-999,accept

0,0,10,5,10,0,0,-999,-999,-999,-999,accept

0,33,10,5,0,0,0,10,-999,-999,-999,accept

0,0,10,5,10,-999,-999,-999,-999,-999,-999,accept

25,33,10,0,0,-999,-999,-999,-999,-999,-999,accept

...

Figure 7.21: Transformation 4 of freshmeat data

@relation component_real_data/Thu_Jan_01_10:52:52_WST_2009

@attribute dc:description real

@attribute swv:detail real

@attribute swv:licence {Affero_General_Public_License,Aladdin_Free_Public_License_(AFPL),Apple_

Public_Source_License_(APSL),Copyback_License,DFSG_approved,Eclipse_Public_License,Eiffel_

Forum_License_(EFL),Free_For_Educational_Use,Free_For_Home_Use,Free_for_non-

commercial_use,Free_To_Use_But_Restricted,Freely_Distributable,Freeware,Netscape_Public_

License_(NPL),Nokia_Open_Source_License_(NOKOS),Academic_Free_License_(AFL),Adaptive_

Public_License_(APL),Artistic_License,BSD_License_(original),BSD_License_(revised),Common_

Development_and_Distribution_License_(CDDL),Common_Public_License,GNAT_Modified_GPL_

(GMGPL),GNU_Free_Documentation_License_(FDL),GNU_General_Public_License_(GPL),GNU_

Lesser_General_Public_License_(LGPL),Guile_license,IBM_Public_License,MIT/X_Consortium_

License,MITRE_Collaborative_Virtual_Workspace_License_(CVW),Mozilla_Public_License_(MPL),

Open_Software_License,Perl_License,Python_License,Q_Public_License_(QPL),Ricoh_Source_Code_

Public_License,SUN_Public_License,W3C_License,zlib/libpng_

License,OSI_Approved,Other/Proprietary_License,Other/Proprietary_License_with_Free_Trial,

Other/Proprietary_License_with_Source,Public_Domain,Shareware,SUN_Binary_Code_License,

SUN_Community_Source_License,The_Apache_License,The_Apache_License_2.0,The_CeCILL_

License,The_Clarified_Artistic_License,The_Latex_Project_Public_License_(LPPL),The_Open_Content_

License,The_PHP_License,Voxel_Public_License_(VPL),WTFPL,Zope_Public_License_(ZPL),error,-999}

@attribute swv:devStatus {1_-_Planning_(disabled_category),2_-_Pre-Alpha,3_-_Alpha,

4_-_Beta,5_-_Production/Stable,6_-_Mature,error,-999}

@attribute swv:devLanguage {Ada,APL,ASP,Assembly,Awk,Basic,C,C#,C++,Clipper,Cold_Fusion,Common_

Lisp,Delphi,Dylan,Eiffel,Emacs-Lisp,Erlang,Euler,Euphoria,Forth,Fortran,Gambas,Groovy,Haskell,J2ME,

Java,JavaScript,Lisp,Logo,Lua,ML,Modula,Object_Pascal,Objective_C,OCaml,Other,Other_Scripting_

Engines,Pascal,Perl,PHP,Pike,PL/SQL,Pliant,PROGRESS,Prolog,Python,REALbasic,Rebol,Rexx,Ruby,

Scheme,Simula,Smalltalk,SQL,Tcl,Bash,TCSH,Unix_Shell,Visual_Basic,XBasic,YACC,Zope,error,-999}

@attribute swv:operatingSystem {BeOS,MacOS,MacOS_X,MS-DOS,Windows,Microsoft,OS_

Independent,OS/2,Other_OS,PalmOS,AIX,BSD,GNU/Hurd,HP-UX,IRIX,Linux,Other,QNX,SCO,

SunOS/Solaris,POSIX,SymbianOS,Unix,error,-999}

@attribute result {accept,reject}

@data

0,2,GNU_General_Public_License_(GPL),5_-_Production/Stable,-999,OS/2,reject

0,0,GNU_Lesser_General_Public_License_(LGPL),4_-_Beta,C,Linux,reject

0,0,GNU_General_Public_License_(GPL),-999,-999,-999,reject

0,0,Other/Proprietary_License_with_Free_Trial,-999,-999,-999,reject

0,0,Free_for_non-commercial_use,-999,-999,-999,reject

...

Figure 7.22: Transformation 5 of freshmeat data

245

7.5. SPIRAL 4 RESULTS

Comparison of Transformations

Development of the transformations was an iterative/exploratory process. The hypothesis

was that each successive transformation would improve recall and relevance. A range of

scenarios were used as cases for testing the transformations. The following results are

representative of the results seen across the scenarios and come from the emailer software

scenario.

Trans. # matches Description
T1 1 Simple match on value or range, equivalent to original work

Maxville et al (2004b)
T2 - As above, with a loosening to include ‘close’ values as acceptable
T3 2 Converts the comparison to a similarity score between 0 and 10.
T4 - Similar to T3, but uses a different calculation for longText
T5 5 Same as T3, but ontology attributes can be abstracted

Table 7.15: Transformations used

The case study scenario is to source email software, written in Java, to run on a

Linux platform. There are a total of nine attributes specified, given in the ideal specifi-

cation (Figure 7.23). The results of using transformations T1, T3 and T5 are compared.

The first iteration produced no matches, due to missing data in the OSS repository

(e.g. price). Iteration 2 uses a loosened ideal specification, and produced one match.

Attributes removed in iteration 2 were price, memory and diskSpace. A third itera-

tion was undertaken, as this was not a large enough shortlist. On iteration 3 the ideal

specification in Figure 7.24 was used and produced five candidates.

At this point there were five items to choose between with some overlap in what

each transformation identified. The original XML specification for each of these items

shows that T5 found five good possibilities, most of which were missed by T1 and T3.

T1 matched one item, and T3 found two. As the only difference between T3 and T5 is

ontology abstraction, this supports the use of ontologies as a way to enhance the selection

process. T1 is equivalent to a database search and clearly misses many suitable items.

246

CHAPTER 7. DATA REPRESENTATION

<?xml version="1.0"?>

<Description xmlns="http://www.scis.ecu.edu.au/swvML/"

xmlns:dc="http://purl.org/dc/elements/1.0/"

xmlns:swv="http://www.scis.ecu.edu.au/swvML/" >

<dc:detail type="mandatory">Internet email</dc:detail>

<swv:devStatus type="mandatory">5 - Production/Stable

</swv:devStatus>

<swv:licence type="mandatory">GNU General Public License

(GPL)</swv:licence>

<swv:price type="mandatory" min="25" max="50">40

</swv:price>

<swv:technical>

<swv:devLanguage type="mandatory">Java</swv:devLanguage>

<swv:operatingSystem type="mandatory">Linux

</swv:operatingSystem>

<swv:systemRequirements>

<swv:memory type="mandatory" min="15" max="50">20

</swv:memory>

<swv:diskSpace type="mandatory" min="30" max="50">40

</swv:diskSpace>

</swv:systemRequirements>

</swv:technical>

<dc:date type="mandatory" min="2003-01-01"

max="2005-03-01">2005-01-10</dc:date>

</Description>

Figure 7.23: Initial ideal specification

<?xml version="1.0"?>

<Description xmlns="http://www.scis.ecu.edu.au/swvML/"

xmlns:dc="http://purl.org/dc/elements/1.0/"

xmlns:swv="http://www.scis.ecu.edu.au/swvML/" >

<dc:detail type="mandatory">Internet email</dc:detail>

<swv:devStatus type="mandatory">5 - Production/Stable

</swv:devStatus>

<swv:licence type="mandatory">GNU General Public License

(GPL)</swv:licence>

<swv:technical>

<swv:devLanguage type="mandatory">Java</swv:devLanguage>

<swv:operatingSystem type="mandatory">Linux

</swv:operatingSystem>

</swv:technical>

<dc:date type="mandatory" min="2003-01-01"

max="2005-03-01">2005-01-10</dc:date>

</Description>

Figure 7.24: Loosened ideal specification

247

7.6. SPIRAL 4 EVALUATION

7.6 Spiral 4 Evaluation

Beginning with the application developers, the Win conditions are to see benefit of the

strategies, justifiable results and low overheads. Although the processing involved in the

CdCE shortlisting is complex, this is not what the user sees. From a user perspective,

they need to create the ideal specification and consider the choice of transformation. At

this point there has been improvement in terms of usability through the provision of

scripts and post-processing of the data. In all cases, the files produced provide full docu-

mentation of the rules applied to generate the shortlists, an issue for both the application

developers and for quality assurance.

Figure 7.25: Representation of the different calculations for matches based on attribute
type

A condition on Spiral 4 is that the approach provide more than a ‘database query’.

Figure 7.25 shows the various types of comparisons made, depending on the attribute

type. These include the formulae for numeric and date attributes, and keyword match-

ing for longText. ontology attributes utilise the ontology, the thesaurus, a distance

matrix (in some cases) and level abstraction. Each of these helps to draw out maximum

information based on the attribute type.

The description of the shortlisting provides information for developers and brokers

248

CHAPTER 7. DATA REPRESENTATION

to understand how their products are filtered by the Process, and may see more benefit

in giving complete metadata. For the brokers, it is clear that openness about their

internal schemata and providing back-end access to the metadata is a way to improve

their interaction with automated tools.

From the academic perspective, the discussion in this Chapter has justified the data

representation used, and the refinement process that was undertaken. The flexibility of

the shortlisting and tools has been exercised during the development as most aspects have

evolved. Interfaces between the programs developed are all XML, ARFF (Weka input)

or text (Weka output) using a pipe/filter model for processing. This provides flexibility

and performance.

The work in Spiral 4 was published in PEECS (Maxville, 2005) and, through its

inclusion in all later publications, has received multiple peer reviews. From the discussion

above, the Win conditions have been satisfied for Spiral 4.

7.6.1 Spiral 4 Goals

The following discussion refers to the goals and questions listed in Table 7.16. A discus-

sion of the performance of the work with respect to the questions is provided under each

goal heading.

Quality

Comparisons between the five transformations indicate better recall and relevance in T3

and T5 over T1, which is equivalent to the representation used in Spiral 3. Section

7.5 provided an example of the transformations and how each performed on the same

data. The handling of missing data has improved training accuracy and eliminated

the false positives introduced by the way missing values were handled in Spiral 3. Clear

descriptions of all the transformations and the missing data handling have been provided,

along with information on the related ontology and distance matrix. Scripts have been

developed to handle all processing, including a convention for unique naming of results

and storing all files from each run. This ensures all key data is available for analysis and

re-running if required.

249

7.6. SPIRAL 4 EVALUATION

SPIRAL 4 Purpose Evaluate Results
Issue effectiveness of
Object strategies for data representation
Context Spiral 4

Goal 4A Focus Quality: Enhance shortlisting for more accurate re-
sults

Viewpoint Quality Assurance personnel
Q4A1 Has Spiral 4 improved results? YES
Q4A2 Are the updates well documented? YES
Q4A3 Is the process repeatable? YES

Goal 4B Focus Usability: Provide tools and knowledge base for users
Viewpoint Application developer
Q4B1 Is the shortlisting easy for the user to understand? YES
Q4B2 Has the work been tested on real world examples? YES

Goal 4C Focus Intelligence: Apply ontologies and knowledge manage-
ment to shortlisting

Viewpoint Application developer
Q4C1 Has an ontology been used? YES
Q4C2 Has knowledge management been used? YES
Q4C2 Has missing data been handled? YES

Goal 4D Focus Innovation: Include innovative knowledge manage-
ment and missing data treatment

Viewpoint Academia
Q4D1 Have innovations been developed? PART

Goal 4E Focus Dynamics: Allow for update and substitution of
knowledge base

Viewpoint Application developer
Q4E1 Can alternative knowledge bases be used? YES
Q4E2 Can the knowledge base be easily updated or modified? YES

Goal 4F Focus Reuse: Where possible make use of existing code and
artefacts

Viewpoint Application developer
Q4F1 Has the work reused external resources? YES

Table 7.16: GQM Summary - Spiral 4

250

CHAPTER 7. DATA REPRESENTATION

Usability

As with Spiral 3, the user is insulated from the complexity of the software. From the

user perspective, there is the ideal specification, the parameters for missing data, ontology

levels and transformation (or use defaults) and the output shortlist in XML. As the user

is an application developer, some familiarity with scripts, parameters and XML is likely.

The shortlisting in Spiral 4 uses the freshmeat dataset, with an initial load of 33,262

projects, later updated to 41,886 projects. After initial testing of the modifications, all

work was carried out in case study mode - utilising real world scenarios.

Intelligence

The freshmeat trove was adopted as the ontology for this project. It includes nine

categories which in five cases form a hierarchy (e.g. OperatingSystem). The ontology

implementation is described in Section 7.3.1.

The representation of data has been enhanced by the re-alignment of attribute types

into numeric, date, freeText, longText and ontology. A corresponding set of compar-

ison routines were developed to apply the appropriate transformations based on attribute

type. These transformations can be selected as parameters to explore and select the most

appropriate.

Missing data is handled by substituting the value -999 for all attribute types. This

value can be changed as a parameter. The benefit of using the missing value is that the

classifier can be trained to respond to it appropriately. The user can choose for this to

be as a match, a mismatch or a borderline case.

Innovation

Each of the approaches applied in Spiral 4 is based on existing techniques. However, the

combination of approaches into such a system is novel. The data representation builds

on the novel work from the previous spiral.

Dynamics

To use a different knowledge base (ontology) it needs to be supplied in XML to match

the structure of the provided ontology file. This structure is displayed in Figure 7.6.

251

7.7. SPIRAL 4 REVIEW AND PLANNING

The XML files for ontology and distance metric can be updated easily using a text

editor. As described in Section 7.3.1, new entries can be added to the ontology by

adding a block of XML and linking to the existing data. While specific tools for this

manual updating have not been developed, the OntologyCheck tool outputs blocks of

pre-populated XML to assist with updates to the ontology.

Reuse

The freshmeat project list and trove are used as the repository and ontology, respectively.

Most of the code developed for Spiral 3 was able to be easily reused for Spiral 4 as

a result of the use of object-orientation, pipe/filter architecture and external files for

input/output.

7.7 Spiral 4 Review and Planning

This Chapter addresses data representation as dealt with in Spiral 4. The Win conditions

were satisfied by the strategies applied to the shortlist of candidates. The GQM was

positive for all questions except that Question Q4D1 (innovation) was not fully satisfied

as the AI techniques were not innovative in themselves. However, this application of

existing techniques is regarded as a positive in Q4F1 (reuse).

The approaches in Spiral 4 were peer reviewed for the PEECS Symposium (Maxville,

2005).

Future work would include the conversion of additional repositories. During this

Spiral, some time was spent trying to work with SourceForge. The SourceForge repository

has been provided in two forms: a relational database and a text file. The text file is

a summary of the projects and does not include some of the useful data to be seen on

the SourceForge site. The PostgreSQL database is over 12Gb, which brought its own

issues to handle file size. Unfortunately, the data model for the SourceForge database

was difficult to work with so this task was abandoned.

Planning for Spiral 5 turned to the test generation and the remaining steps of the

CdCE Process. A commitment was made to continue with the classifier-based approach

and for T5 (Level 2) as the most effective of the five transformations.

252

CHAPTER 7. DATA REPRESENTATION

7.8 Post-Spiral Update

Figure 7.26: Spiral 4 and later updates made to the Spiral outcomes

Figure 7.26 provides context for topics addressed in Spirals throughout the investi-

gation. The solid border groups aspects of the investigation which were the target of,

or resulted from, Spiral 4. The dashed outline box on Spiral 5 indicates the updates to

the data representation subsequent to Spiral 4. This was principally the side effects of

the testing and evaluation approaches developed in Spiral 5. Work on the evaluation

fleshed out the metrics and related attributes in the specification, resulting in minor

changes to the specification and the related files from this Spiral. Scripts and workflow

for generating and applying the classifier were reused for ranking in Spiral 5.

7.9 Summary

This chapter has provided a description of Spiral 4, focussing on data representation and

the development and evaluation of five transformations on five base attribute types. It has

253

7.9. SUMMARY

discussed what was aimed to be achieved, and the approaches used. The implementation

was illustrated with examples of running the tools that have been developed. Results and

strategies were evaluated and found to be effective and met stakeholder Win conditions.

The project will now build on this work through the evaluation and testing in Spiral 5

(Chapter 8).

Key contributions of Spiral 4 were the integrated and automated use of a range of data

representations to improve recall and relevance in shortlisting. The approach provides

flexibility in the application of the transformations and in the handling of missing data.

The data representation is driven through five datatypes, keeping to simple and type-

appropriate comparisons. In text-based fields, the transformations increasingly make use

of deeper information including a supporting knowledge base (ontology) and distance

matrix for comparisons.

254

Chapter 8

Testing and Evaluating

Candidates

This chapter discusses the approach used for the functional evaluation and ranking of

shortlisted candidates in the CdCE Process. Steps 1 and 2 have been the focus of the

investigation thus far (see Figure 8.1). The scope of this Spiral is Steps 3-8. The evalu-

ation takes place in Steps 3 to 6 and includes the generation, adaptation and execution

of tests based on the ideal specification. In Steps 7 and 8, the results are used to rank

the candidates according to metrics included in the ideal specification in order to report

on the complete CdCE evaluation.

There are multiple products of this Spiral. The first is in the evaluation metrics,

their definition and application. A second product is the process, tools and supporting

documentation for test generation from Z specification. Adaptation and execution depend

on the testing environment, and are left to the user to implement. Finally, the ranking

is implemented via the reuse of the classifier approach used for Step 2. This work is the

basis for contribution C6, a metrics-driven evaluation featuring context-based testing.

The goals for Spiral 5 are given in Table 8.1. As with the overall Process, this Spiral

SPIRAL 5 GOALS
Quality Provide structured, repeatable approach to testing and evaluation, drawing

on literature
Usability Provide tools to suit user needs and automate testing and evaluation
Intelligence Use AI and knowledge management for testing and evaluation
Innovation Consider novel approaches to testing and evaluation
Dynamics Provide flexibility for testing and evaluation
Reuse Where possible make use of existing code and artefacts

Table 8.1: Goals for Spiral 5

255

Figure 8.1: Steps implemented in Spiral 5, with out of focus steps greyed

aims to support quality through a formal, structured approach and allows flexibility

for selection tasks and local conventions (dynamics). Tool support for the repetitious

aspects of the Process will be developed to aid usability. Where possible, machine

intelligence will be applied in Steps 3 to 8, utilising artificial intelligence and knowledge-

based techniques. A balance between reuse of existing and creating new software is

required, with novelty around new strategies, building from existing theory and software

(innovation). These goals are revisited in the Spiral evaluation described in Section 8.6.

This chapter is structured with separate sections grouping related items that have

been implemented:

• Section 8.2: Metrics (Step 3)

• Section 8.3: Test Generation (Step 3)

• Section 8.4: Adaptation and Execution (Steps 4-6)

• Section 8.5: Ranking and Reporting (Steps 7-8).

After providing the overview to Spiral 5, the Approach, Implementation and Examples

256

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

(results) are covered for the four subtopics. The implementations for Steps 3-8 of the

CdCE Process are then evaluated and reviewed in the final sections. The evaluation is as

a whole, with attention given to each subtopic.

8.1 Spiral 5 Overview

In this Spiral, the focus is on the testing and evaluation of the candidates. The use cases

addressed in this Spiral are: Select Component, Revisit Selection, Reuse Tests

and Assess Selection (Figure 8.2). Application developers will use the products of this

Spiral for initial selection of components, and if repeating the selection, as the target

system evolves. There is also the possibility of reusing the tests and adaptation in other

parts of the system development, for example, integration and regression testing. As

in the other Spirals, there is an awareness of the information required for assessing the

quality of the development process, and that should be automatically generated.

Figure 8.2: Use cases for the testing and evaluation steps of the CdCE Process (those
not in the scope for this Spiral are greyed)

Considering the stakeholder view of this Spiral, the application developers require

that the approach to testing and evaluation match their needs and be robust and easy

to use. Academia require valid testing and evaluation approach, with a strong basis on

existing testing theory. The stakeholder evaluation criteria are provided in the table of

257

8.2. SPIRAL 5 METRICS

Win conditions (Table 8.2).

Stakeholder Win Conditions
Application Developers Test generation matches specification.

Automation is effective.
Evaluation produces suitable candidates.

Component Developers Know how their component is assessed and compared.
Academia Test generation techniques are valid.

Assessment criteria are relevant.

Table 8.2: Win conditions for stakeholders (Spiral 5)

8.1.1 Context

This Spiral extends the specification, Process, strategies and tools that have been de-

veloped in Spirals 1 to 4. Demonstration of the use of evaluation and reporting used a

range of repositories, providing project metadata and access to associated executables

for testing. The case study scenario is the selection of a calculator component which has

been used throughout the investigation to trial ideas.

The following Sections group the concepts relevant to Steps 3 to 8 of the CdCE Process,

then discuss the approach, implementation and examples of each. The first grouping is

metrics, which are used to drive the evaluation and are a common thread throughout

these Steps. The second focus is test generation, where the Z specification is used to

create a suite of tests. Once the tests are available and a short-list of candidates has

been determined, the tests can be adapted to each of the candidates and executed in

the target context. This is explained in the adaptation and execution section. The final

concept discussed is the approach to ranking and reporting of results.

8.2 Spiral 5 Metrics

For this project, the metrics for the functional evaluation of the candidates need to be

broadly applicable to a general software problem - targeting areas affecting quality and fit

of a third party component. Some of the metrics could be discovered through static means

(functional fit) while others require execution of the program, such as performance against

a given test suite. The requirement for this work is that the contextual suitability will

also be assessed. When shortlisting candidates, context referred to the non-functional

requirements relating to the target environment (e.g. operating system, framework).

258

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

For testing purposes in this investigation, context refers to the specific requirements on

functionality, performance, reliability, stress or usage. Metrics are required to provide a

score for each area to be included in the overall evaluation of the software to the current

selection task.

8.2.1 Background

Metrics for this work are driven by the type of information of interest when assessing the

‘fit’ of a component. Given the ideal specification as a basis for comparison, the metrics

are limited to what it enables. In preparation for test generation, the ideal specification

has a high level Z specification to use as a test directive. This includes, at least, the

operations and their parameters/types. The metrics can then be based on the required

interfaces compared with those offered by the candidate component. The matching and

excess functionality can be calculated based on these interfaces. Consideration of the

type of mismatch, if any, can provide an indicator of the effort required to adapt the

candidate component.

8.2.2 Approach

This project uses the SWEBOK to guide the choice of metrics (Abran et al, 2004). The

formal specification for the software (ideal specification) is intended as a definition of

the required functionality. With an executable component, the functional fit could be

evaluated on the match of required and available interfaces. For an application, the

interface measures can be abstracted to the functions provided by the software under

test. It is also important to measure excess functionality, as it presents a risk in the reuse

of code (Sorensen, 2004). Two metrics are used to represent functional fit and functional

excess in the Process, FFIT and FEXS:

FFIT: The measure of the interfaces provided compared to the interfaces required in

the ideal specification

FEXS: The measure of the interfaces provided that are not required, compared to the

interfaces required in the ideal specification.

In the case of an imperfect match, the effort required to adapt the interfaces needs to

be quantified and included in the overall evaluation. The measure may vary depending

259

8.2. SPIRAL 5 METRICS

on the selection task and must include an indication of the quantity and complexity of

the adaptation. The adaptation process is discussed in Section 8.4. The metric indicating

the effort for adaptation on each candidate is AEFT:

AEFT: The measure of the effort needed to adapt the interfaces offered to satisfy those

required in the ideal specification.

To provide evaluation options for testing, the metrics consider the fit of the tests to

the candidate - which may be different to FFIT. This allows the separation of whether

tests have failed, or have not been able to be applied. Thus there are two metrics for the

(base) testing results, TFIT and TRES:

TFIT: The measure of the tests that are able to be run compared to the number of tests

in the test suite

TRES: The measure of the tests passed compared to the number of tests in the test

suite.

Continuing with the dynamic evaluation, contextual tests also need to be executed

and results quantified. To this end, the SWEBOK is used to consider the various types

of testing that are relevant to this work: those relating to this part of the software

development lifecycle are performance, reliability, stress and usage.

To measure the performance or response time for parts of the code, the CX_P metric

is provided. In addition, there may be a need to test the reliability of the functions which

are most critical in the target context, or to stress test certain functionality. The CX_R

and CX_S metrics accommodate these two types of testing. In usage-based testing, a

model of the expected usage guides the testing and thus more tests are executed against

popular parts of the code/application (CX_U). The specification for all of these context-

based tests is defined in Z notation, described in Section 8.3.3. As the tests are based

on a subset of the original functional tests, the TFIT metric is considered sufficient to

indicate the contextual testing fit for each candidate. The working definitions for the

four context metrics are:

CX P: The measure of the performance-based tests passed compared to the number of

performance-based tests in the test suite

260

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

CX R: The measure of the reliability-based tests passed compared to the number of

reliability-based tests in the test suite

CX S: The measure of the stress-based tests passed compared to the number of stress-

based tests in the test suite

CX U: The measure of the usage-based tests passed compared to the number of usage-

based tests in the test suite.

Other relevant types of testing are regression and integration. As the aim is to have

a test harness or environment modelling the target environment, all of the tests could be

reused for integration testing. The reusability of the tests allows them to be re-run in

future maintenance or re-selection tasks, which provides an added benefit in regression

testing.

8.2.3 Implementation

The metrics identified in the previous section have been defined at an abstract level. To

include them in the CdCE Process, they need to be more formally defined, and as they

are quantifying the performance of the candidates, there needs to be a scale. In the

implementation of the transformations for the selection classifier, an arbitrary scale of

{0..10} was adopted in a ‘normalising’ of results (Solberg and Dahl, 2001). This scale is

also used for the metrics to give consistency and make results easier to understand.

Table 8.3 shows the default definitions for metrics in the CdCE Process. These may

be redefined to suit a particular selection task and are based on the general pattern for test

metrics drawn from Myers (1979) where metric = number tests passed / total number

tests.

The Process user should document any changes to these metrics. As an example,

when evaluating applications instead of components, the interface adaptation is not ap-

propriate. Instead, the effort required to access, install and get the application running,

can be assessed out of 10 and used for the AEFT score. Alternatively, component brokers

and developers may be interested in the impact that ease of installation has on the eval-

uation process, as this was an issue in the case studies in this investigation and reflected

poorly on affected software.

261

8.3. SPIRAL 5 TEST GENERATION

Metric Calculation

FFIT Functional fit # interfaces matched / # interfaces required

FEXS Functional excess # interfaces matched / # interfaces in component

AEFT Adaptation effort # interfaces adapted / # interfaces required

TFIT Testing fit # tests possible / # test cases

TRES Test result # tests passed / # test cases

CX_P Performance testing # performance tests passed / # performance test cases

CX_R Reliability testing # reliability tests passed / # reliability test cases

CX_S Stress testing # stress tests passed / # stress test cases

CX_U Usage testing # usage tests passed / # usage test cases

Table 8.3: Evaluation metrics - default definitions

Each of the metrics is entered via the ideal specification, or omitted if not required in

the current selection task. They are implemented as numeric attributes and thus need an

optimal value and a min/max range to be used in Step 7. The nine metrics were added to

the CdCE schema (swvML, see Table 4.9) and correspondingly into the input/parameter

files for the classifier related applications.

8.3 Spiral 5 Test Generation

With the metrics for evaluation in place, the test generation supplies the tests to provide

values for the metrics. Five of the metrics are derived from the test results: TRES, CX_P,

CX_R, CX_S and CX_U. TRES considers the complete set of generated tests, where the other

metrics are the result of focussing the tests on specific operations (methods/functions)

and values.

Many aspects of the testing were decided prior to Spiral 5, or result indirectly from

earlier decisions. The ideal specification utilises a Z specification to define interfaces,

types and some of the logic for the software under test. A full formal specification of

the required software is not required, instead a directive is used to indicate the required

functionality. In addition, as third party components are being sought, there is no access

to the component source code, restricting the choice of testing techniques. This limited

view of the components under evaluation reinforces the applicability of black-box testing,

requiring a less detailed specification. If test oracle functionality is desired, a more

complete specification would be warranted. The specification also needs to be able to

represent the context testing to feed into the associated metrics. Therefore it needs to

allow for performance, reliability, stress and usage testing.

262

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

The test generation for this project is based on applying existing techniques, rather

than creating a novel testing solution. The test generator needs to take the behavioural

specification and create abstract test cases ready to apply to each of the candidates.

These will be represented in XML.

8.3.1 Background

The approaches to automated testing using Z notation have three main strategies: to

use Z directly for specification and test generation; to start with another model (e.g.

finite state machine (FSM)) and convert to Z; or to specify with Z, then convert to a

state machine for test case generation. Techniques are applied across Z and other model

(state) based specification languages (e.g. VDM) and if the Z specification is converted to

a state machine, FSM and graph theory-based techniques can be applied. This approach

to test generation was first discussed by Hall and Hierons (1991), and applied to VDM by

Dick and Faivre (1993) and to Z by Stocks and Carrington (1993). Their work extended

the category-partition approach by developing a framework that defined the test and test

suites structures using Z.

Helke et al (1997) generate tests from the Disjunctive Normal Form (DNF) represen-

tation of a Z specification, then encode it with Isabelle/HOL to show how existing test

generation techniques can make use of a state-of-the-art theorem prover. Carrington et al

(1998) continued their research to take Object-Z specifications and generate a state ma-

chine using the Dick and Faivre approach. They then choose test sequences and encode

these as testgraphs (subsets of the original state machine) which can be fed into their

Classbench testing tool. Later work in this area by Burton (2000) transforms statecharts

and reactive components to Z, and then automates partitioning, test generation and the

creation of test scripts for Ada applications.

Burton adopts fault-based testing approaches as input to test generation (along with

partitioning). Horcher and Mikk (1996) provide guidelines for inserting partition infor-

mation into a specification based on the input variable types. The enhanced specification

is then converted to DNF for tests to be generated. The evaluation of test results is facil-

itated using a schema compiler to generate executable code from the Z, which provides

test oracle functionality.

Another approach to test generation with Z is to combine the DNF partitioning and

263

8.3. SPIRAL 5 TEST GENERATION

the classification-tree method (Singh et al, 1997) in order to improve on the unstructured

test cases generated by DNF partitioning. A classification-tree creates a hierarchy of the

input domain, allowing the inputs to be ordered in terms of precedence. The combination

of the classification tree and the DNF representation of the specification results in refined

test cases which are the conjugation of the tree test values and the DNF operations.

In a boundary testing approach Legeard et al (2002) combine Z and B specifications

to test every operation of a system at every boundary state. They calculate boundary

goals from the pre and post predicates in the formal model, and then use their BZ-TT

tool to simulate the execution of the specification to find a sequence to exercise each

boundary goal. The output of the simulation is a test pattern file which is converted into

executable test scripts.

Chang et al (2000) look at incorporating usage profiles into their test generation. They

convert an Object-Z specification into an Enhanced State Transition Diagram (ESTD).

The state model is used to derive the operation scenarios, as in the FSM approaches

above, but in their approach, each transition can be given a weighting to simulate usage

patterns.

The techniques that have been described for test generation are only an indication

of the options available given a Z specification and inform the approach taken in this

project, and potential future work.

8.3.2 Approach

Given a full Z specification, any of the test generation approaches in the previous section

could be applied. However, as the specification in the CdCE Process is less detailed, this

affects the choice of approach. For this investigation, the strategy is to use Z directly for

test generation (i.e. not converting to another model). As type and partition information

are available, it is possible to use the category-partition approach. If this exhaustive

approach became impractical, information could be added to the specification to indicate

restrictions on partitions and allow a DNF approach. However, the restriction of testing

to expected and valid combinations of values may reduce the effectiveness of the testing

as unexpected and/or invalid combinations may expose errors.

A common task in testing is to go through a sequence of operations where the output

state of an operation becomes the input state for the next operation. This may be for

264

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

usage based tests, or to initialise the software into the required state for valid testing of

certain functions. For example, a banking system would require transactions to occur

prior to being able to test functionality relating to exceeding daily transaction limits.

Another example is needing to enter an incorrect password three times to test password

lock-out mechanisms.

As the rest of the specification has been represented in Z, the context based tests are

also declared using Z notation. A schema matching each of the CX metrics is used to

extend the base tests. Thus the CX_P metric is generated from the results of the tests

based on the CX performance schema. Sequences of operations are commonly used in

testing and are represented by CX sequence. These sequences can be referred to in the

other four CX schemas and thus be included in the test suite.

An approach of interest is usage profiles (Chang et al, 2000). Although not applying

that approach in this work, usage data has been collected for some of the case studies

with consideration of how they might be included in the testing. The context schemas

allow for sequences to be defined according to usage, and test data to reflect expected

types of data (for example, in email software a sequence might be made up of: checkMail,

openMessage, forwardMessage, sendMessage).

8.3.3 Implementation

The behavioural specification is modelled in Z Notation and has tools to allow au-

tomated processing of the specification for test generation. The specifications them-

selves are encoded as XML using the LATEX standard, which can be viewed in LATEX

as graphical Z schemas. The specification is included in the ideal specification within

<techDescription><Zspec> tags. Five Z schemas are used to represent the behavioural

context: CX performance, CX reliability, CX stress, CX usage, CX sequence and CX env-

ironment1.

The specification is distilled to draw out key information used in test generation. The

parts of the specification that are filtered from the Z specification are: types, partitions,

states, operations and variables (changed and unchanged). These are held in a simple
1Earlier documents used slightly different names and focii for these schemas (Maxville et al, 2003b).

CX values is now in the ideal specification under separate tags and CX environment may be developed
in the future to model the environment of the software under test.

265

8.3. SPIRAL 5 TEST GENERATION

text file which is parsed into a Java program. The Specification object collates the types,

partitions and states along with the operation schemas for each interface. A combinatorial

approach is then used to apply each partition to each type for each operation schema,

which is output as an XML file. Pseudocode for base test generation is given in Figure

8.4. Although it is given as nested iteration, the final implementation utilises recursion.

To illustrate, given a Z schema, Example, and an operation on that schema, Op1, the

following definitions can be distilled to give the information in Figure 8.3:
Z notation:

STATE Example

STATE Example var1 Type1

STATE Example var2 Type2

%

% Operations

OPERATION Op1

OPERATION Op1 state Example

OPERATION Op1 IMPORT inOne Type1 inTwo Type1

OPERATION Op1 changedState var1

Figure 8.3: Distilled version of Example schema and operation

The distilled information is read into TestGen, which generates the tests according

to the pseudocode in Figure 8.4. Values can then be assigned for each partition, either

manually, or through a list or link in the ideal specification. This provides the full

functional test suite which serves as the base test set.

Currently the test directive is a text file distilled from the Z specification. While it is

for internal use, it could easily be converted into XML - which would make it more robust,

but less readable by humans. The distiller and test generator, TestGen are implemented

266

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

Base test set generation:

For each operation (O_i)

For each parameter (P1_i)

For each partition (P2)

Output test case (O, P1, P2)

Figure 8.4: High level pseudocode for generating base test set

in Java and operate as filters. The class diagram for TestGen is given in Figure 8.5.

Objects in the program match to the key items: specification, made up of state schema

and operation state schemata. The state schema has a variable list, with each variable

of a particular type, and each type containing partitions. In addition, operation state

schemata can have import and export variables.

Figure 8.5: Class diagram for TestGen application

Context

For context testing, the CX schemas are used to target tests drawn from the base set

for additional testing. The first of these is CX performance, which results in a value

for CX_P. In this schema, operations and sequences pass the performance tests if they

267

8.3. SPIRAL 5 TEST GENERATION

complete within the required time. The time unit is declared and the schema maps

operations to their respective required times.

To provide reliability testing, the CX reliability schema lists operations which will

be tested more rigourously. Inclusion in the list will imply a doubling of testing, which

can be increased using an integer for multiplying the amount of additional testing (2

= double). Similarly, additional focus can be put on specific partitions within the CX

tests. CX_R is the number of these tests that are passed, divided by the total number of

reliability tests.

Stress testing is based on repeatedly calling operations at a given rate (use definition).

The CX stress schema maps operations or sequences of operations to a rate that indicates

how often it will be called in a unit of time (seconds).

While usage-based testing is similar to reliability, it is driven by the expected usage of

the software. This may be the operations, the sequences of operations and/or the values

(through the partitions).

268

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

Schema Base Tests CX Sequence Tests Partitions Metric

Base Specification all - all TRES

CX Performance selected selected selected CX_P

CX Reliability selected selected selected CX_R

CX Stress selected selected selected CX_S

CX Usage selected selected selected CX_U

Table 8.4: Relationship between schemas, tests and metrics

Test sequences may be implemented as a series of operations. This is future work for
the automated system. In Z, sequences of operations could be encoded as:

Seq1 = Op1(3, 4)� Op2(5)� Op3(6)

Context test set generation:

For each context schema (CX_i)

For each operation (O_i)

Apply operation weighting (O_i,w)

For each parameter (P1_i)

Apply parameter weighting (P1_i,w)

For each partition (P2_i)

Apply partition weighting (P2_i,w)

Output test case (O_i, P1_i, P2_i)

Figure 8.6: High level pseudocode for generating context test sets

Context tests are in addition to the base tests, and will repeat some of the base tests

to focus on operations, partitions and sequences. The context tests each use similar

algorithms, as shown in Figure 8.6. The total number of tests will be the sum of the base

tests, plus the number of tests selected for each of the context schemas (see Table 8.4).

269

8.3. SPIRAL 5 TEST GENERATION

8.3.4 Example

In this example, the scenario is the selection of a calculator component to include in an
application. There is one type of data, the BigReal, with five partitions: positive, nega-
tive, zero, large positive and large negative. Additional partitions could be SMALLPOS
and SMALLNEG, but they are not used in this example.

Types

[BigReal]

Partitions

BigReal ::= POS | NEG | ZERO | LARGEPOS | LARGENEG

The state schema for a full calculator specification is shown in FullCalculator below,

and adapted from Barden et al (1994). The full calculator is modelled in detail, including

memory, error, mode and an expression tree for complex calculations.

This example scenario uses a reduced specification of a calculator to focus on the

operations and their impact on the state variable: current. Memory is also included as a

state variable, but has not been affected in the operations given in this specification.
Schema

In this case the application developer is interested in the operations CalcAdd, CalcMultiply, CalcDi-

vide, CalcSine and CalcPower. In each operation schema, inOne? and inTwo? refer to input variables.

Current’ and memory’ indicate the values of the state variables after the operation. ∆Calculator

indicates there will be a change in state (current, memory) during the operation.

270

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

This completes the specification used in the functional testing for this example. A second version

of each operation can be defined to allow a sequence of calculations to update the current value. These

have one less input variable, with InOne? replaced by current, and inTwo by inOne.

The specification is distilled and transformed into the test directive in Figure 8.7. The directive

271

8.3. SPIRAL 5 TEST GENERATION

retains the types, partitions, state schema and operations. It begins with the BigReal types and the

partitions for that type. Then the state and associated variables (memory and current) are declared.

Following the state are the calculator operations that are of interest: addition, multiplication, division,

sine and power. The import parameters represent the interface for each operation, altering the state

variable, current, with the result of the calculation. The test directive is parsed into the TestGen program

according to the class diagram in Figure 8.5.

% Types

TYPE bigReal

%

% Partitions

PARTITION bigReal POS 30 1000 4.94065645841246544E-324

PARTITION bigReal NEG -30 -1000 -4.94065645841246544E-324

PARTITION bigReal ZERO 0

PARTITION bigReal LARGEPOS 4E38 1.76769313486231570E308

PARTITION bigReal LARGENEG -4E38 -1.76769313486231570E308

%

% States

STATE Calculator

STATE Calculator memory bigReal

STATE Calculator current bigReal

%

% Operations

OPERATION CalcAdd

OPERATION CalcAdd state Calculator

OPERATION CalcAdd IMPORT inOne bigReal inTwo bigReal

OPERATION CalcAdd changedState current

OPERATION CalcMultiply

OPERATION CalcMultiply state Calculator

OPERATION CalcMultiply IMPORT inOne bigReal inTwo bigReal

OPERATION CalcMultiply changedState current

OPERATION CalcDivide

OPERATION CalcDivide state Calculator

OPERATION CalcDivide IMPORT inOne bigReal inTwo bigReal

OPERATION CalcDivide changedState current

OPERATION CalcSine

OPERATION CalcSine state Calculator

OPERATION CalcSine IMPORT inOne bigReal

OPERATION CalcSine changedState current

OPERATION CalcPower

OPERATION CalcPower state Calculator

OPERATION CalcPower IMPORT inONe bigReal inTwo bigReal

OPERATION CalcPower changedState current

Figure 8.7: Test directive for calculator case study

An extract from the resulting base test set is shown in Figure 8.8. The tests are grouped by operation.

The involved variables are listed in the <Variable> tags, including an identifier, name and type. Each

test case has an ID, and a partition allocated for each variable, based on its type.

272

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE TestSuite SYSTEM "testsuite.dtd">

<?xml-stylesheet type="text/xsl" href="testsuite.xsl"?>

<TestSuite name="myTest">

<Op name="CalcAdd">

<Variable varNo="1" name="inONe" type="bigReal"\>

<Variable varNo="2" name="inTwo" type="bigReal"\>

<TestCase id="1">

<value varNo="1">POS</value>

<value varNo="2">POS</value>

</TestCase>

<TestCase id="2">

<value varNo="1">POS</value>

<value varNo="2">NEG</value>

</TestCase>

<TestCase id="3">

<value varNo="1">POS</value>

<value varNo="2">ZERO</value>

</TestCase>

<--- snip --->

<TestCase id="25">

<value varNo="1">LARGENEG</value>

<value varNo="2">LARGENEG</value>

</TestCase>

</Op>

<Op name="CalcMultiply">

<--- snip --->

<TestCase id="25">

<value varNo="1">LARGENEG</value>

<value varNo="2">LARGENEG</value>

</TestCase>

</Op>

</TestSuite>

</xml>

Figure 8.8: Abstract test specification for calculator case study

Context-based Tests

For context testing, the CX schemas are used to target tests drawn from the base set for additional

testing.

273

8.4. SPIRAL 5 ADAPTATION AND EXECUTION

In the calculator example, test sequences could be a series of additional operations, for example

adding four numbers as 3 + 4 + 5 + 6. In Z, this could be encoded as:

CalcAddFourNumbers = CalcAdd(3, 4)� CalcAddCurrent(5)� CalcAddCurrent(6)

Each of the variables is a BigReal, thus for CalcAddFourNumbers there will be 54

base tests, whereas CalcAddPower will have 53:

CalcAddPower = CalcAdd(3, 4)� CalcPowerCurrent(5)

8.4 Spiral 5 Adaptation and Execution

This Section describes the approach to Steps 4-6 of the CdCE Process - where the eval-

uation takes place. There are two main outcomes of the adaptation Step (4): prepare

the abstract tests to be executed against specific candidates; assess fit of candidates and

quantify the cost/effort involved in adapting the candidate to the target environment.

The first outcome feeds into test execution and evaluation while the second provides

values for FFIT, FEXS, AEFT and TFIT.

The adaption takes the information provided for the candidate and matches it to

274

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

the required interfaces/functionality. For a component, adaptation will involve bridging

interfaces, while for an application, the key aspects will be installation and matching

functionality.

In Step 5 the adapted tests are executed against each of the candidates. This step

applies the tests from Step 3 and records results ready to be used to generate the TRES

and CX metrics, as appropriate. For this, the results will need to be entered into an XML

file. The output of Step 5 is a series of XML files, each holding one candidate’s results

against the test suite at a pass/fail level. In Step 6, the results are collated and values

for all the evaluation metrics populated. This Step is thus a mechanical compilation of

results with some potential for interpretation or scaling of results across candidates.

8.4.1 Background

The adaptation step recognises that there is a likelihood of mismatch between the required

and observed interfaces (functionality) of the candidate components (applications). These

can be considered in three categories:

• not offered

• offered (may need adaptation)

• excess to requirements.

The offered group includes those interfaces that do not match and need adaptation.

Xie and Zhang (2007) provides a framework for adaption of software components with two

types of adaptation - component signature and component function. Signature mismatch

refers to the names or the types of the parameters, which must be adapted for the calls

to be successful.

8.4.2 Approach

Through the other steps of the CdCE Process, the goal has been to avoid aggregation of

values. The reason for this has been that the values are often incompatible or do not

make sense to aggregate, and underlying data may also be lost or obscured. For Step

4 to 6, aggregation of the fit, adaptation and test results into metrics was considered

valid. To an extent it supports the understandability of the results, particularly if large

numbers of test cases were involved. The alternative was to have one criterion per test

275

8.4. SPIRAL 5 ADAPTATION AND EXECUTION

case, which was considered unmanageable. If the raw information is required for decision

making, it is easily retrieved from the XML files output from Step 5.

In preparation for automated test adaptation, and for metrics calculation, those fol-

lowing adaptation model has been developed in Z notation. The model shows that these

can be defined in Z, which will be compatible with the test generation specification and

implementation.

The adaptation of interfaces is defined through a series of options depending on how

they vary from the ideal component’s interfaces: it could be as simple as a method name,

or more complex - mismatched types, alternate decomposition into methods etc. The

first two types of mismatch, method name and type mismatch, require signature adaption

in the terms of Xie and Zhang (2007). Decomposition mismatch requires functional

adaptation in Xie terms.

The following mismatches will now be considered, with a Z description of the model

that could be used:

• Method name

• Type mismatch

• Decomposition

• Missing interface

• Synchronous/Asynchronous.

Figure 8.9: Options for adaptors

276

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

The adaptors can be written/implemented as filters on the call (F1) and on the

return (F2) of the method call, or as a replacement to the method call (F3) (see Figure

8.9). Both options are looked at for the adaptors that follow.

Method Name

• Want: public int meth a (arg1:int; arg2:int)

• Have: public int meth b (arg3:int; arg4:int)

• meth b has arguments of same number and type as meth a, and has the same return

type

• The adaptor needs to re-call meth b with meth a’s arguments.

Filter Option

The input filter takes the incoming arguments for meth a and equates them to outputs

variables which will become the input to meth b. The result from meth b is passed

through to meth a. Schema calculus ties the operations together, piping the input/output

variables between them.

meth a == F1� meth b� F2

277

8.4. SPIRAL 5 ADAPTATION AND EXECUTION

Replacement Option

The adaptor absorbs the interface to meth b and equates the meth a variables to

those of meth b, then ‘calls’ meth b.

meth a == F3

Type Mismatch

• Want: public int meth a (arg1:int; arg2:int)

• Have: public int meth b1 (arg3:my type;arg4:int) and public my type meth b2

(arg3:int; arg4:int)

• meth b1 and meth b2 have arguments of same number but different types to meth a

• The adaptor needs to change the types of the variables between the meth a and

the meth b calls.

Filter Option (b1: argument type change)

The input filter takes the incoming arguments for meth a and equates them to outputs

variables which will become the input to meth b1. A type change operation is carried

278

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

out on arg1. The result from meth b1 is passed through to meth a. Schema calculus ties

the operations together, piping the input/output variables between them.

meth a == F5� meth b1� F2

Filter Option (b2: return type change)

The input filter takes the incoming arguments for meth a and equates them to outputs

variables which will become the input to meth b2. The result from meth b2 is passed

through to meth a. A type change operation is carried out on res2. Schema calculus ties

the operations together, piping the input/output variables between them.

meth a == F1� meth b2� F6

279

8.4. SPIRAL 5 ADAPTATION AND EXECUTION

Decomposition

• Want: public int meth a (arg1:int; arg2:int)

• Have: public void meth c (arg3:int; arg4:int) and public int meth d()

• meth c has arguments to set up the state of the component

• meth d is an accessor method to get the result of the required operation.

Filter Option

The input filter takes the incoming arguments for meth a and equates them to outputs

variables which will become the input to meth c. The result from meth d are passed

through to meth a. Schema calculus ties the operations together, piping the input/output

variables between them.

meth a == F1� meth c; meth d� F2

Replacement Option

The adaptor absorbs the interface to meth c and meth d and equates the meth a

280

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

variables to those of meth c. It ‘calls’ meth c, then meth d, using the results of meth d.

meth a == F4

Missing Interface

• Want: public int meth a (arg1:int; arg2:int)

• Have: nothing

In this case, the test cases cannot be translated. The null will indicate that test cases,

or steps within them, need to be skipped for a particular component.

meth a == NULL

Synchronous/Asynchronous

Included for completeness in terms of types of adaptation. The mismatch in synchronous

and asynchronous methods has not been addressed.

8.4.3 Implementation

Although the understanding and theory for adaptation has been developed, it was decided

to use a manual approach to the task. Full implementation of the adaptation theory

would not have been possible in the time available. However, the model does help with

the understanding of the types of mismatch, and how they should impact on selection.

Using a manual approach, basic information required for determining the metrics for

Step 4 are the interfaces required, the interfaces offered and the tests. These need to be

scaled in the range of 0..10 for the metrics FFIT, FEXS, AEFT and TFIT, with consideration

for spreading the field and differentiating the most suitable candidates from the least.

281

8.4. SPIRAL 5 ADAPTATION AND EXECUTION

The same approach can be taken with applications, at a less formal level. For example,

an email application would have functions for composing, sending, reply, forward, delete,

check and viewing mail. The adaptation effort can be used to indicate the installation

effort, or another measure appropriate to the selection task. Usability is a candidate

- where the adaptation is in the user learning the software. The measure needs to be

defined for future reference and then FFIT, FEXS and TFIT can be calculated based on

the functionality offered by each candidate (based on operations in Z specification). At

the end of Step 4, the adaptation for each candidate is documented.

At this point the definitions of each metric are applied as described in Section 8.2.

Step 4 has contributed to FFIT, FEXS, AEFT and TFIT with raw values shown in Table

8.5. The results from Step 5 provide the raw values to calculate TRES, CX_U, CX_P, CX_S

and CX_R. An example of the collated metrics at the end of Step 6 is given in Table 8.6.

Candidate Required Offered Excess FEXS FFIT AEFT
BasicCalc 5 4 0 1 3 0

RevPolishCalc 5 9 4 5 5 6
ScientificCalc 5 9 4 5 5 5

BasicRevPolCalc 5 4 0 1 3 3

Table 8.5: Raw adaptation data for shortlisted candidates

Candidate FFIT FEXS AEFT TFIT TRES CX U
A 6 10 8 3 2 4
B 8 10 10 3 0 0
C 4 6 10 3 3 5
D 10 6 4 10 10 10
E 8 10 8 9 5 8
F 10 6 4 10 10 10
G 8 10 4 9 5 10
H 0 0 0 0 0 0

Table 8.6: Example of scores against metrics for shortlisted candidates

The XML test suite files provide the potential for automation of the test process.

However, the testing and adaptation for this project has remained manual as it is not the

overall focus of the project. To assist the testing, an XSLT transform has been written to

provide a more readable representation of the test cases and results for each candidate.

The resulting forms are used as guides for the testing process. The forms are illustrated

in Figures 8.10 to 8.12. Once these are calculated, they are inserted into the XML file

and into fields in the shortlist file.

The test results are then compiled into the metrics TRES and CX* in Step 6.

282

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

Figure 8.10: Example of form for recording results of tests (Part 1/3)

283

8.4. SPIRAL 5 ADAPTATION AND EXECUTION

Figure 8.11: Example of form for recording results of tests (Part 2/3)

284

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

Figure 8.12: Example of form for recording results of tests (Part 3/3)

285

8.5. SPIRAL 5 RANKING AND REPORTING

8.5 Spiral 5 Ranking and Reporting

At this point the results of the testing (metrics) will be compared with those provided as

required thresholds in the ideal specification. The ranking is equivalent to the shortlisting

done in Step 2 and has similar scope for iteration. The shortlisting approach is described

in Chapter 5. The output of this step is the ranked list of candidates and supporting

XML files.

Given the ranked list from Step 7, the XML files from each step can be compiled to

provide a report on the overall selection process.

8.5.1 Background

As in Step 2, the task in this step would often be approached by aggregating values using

WSM or similar approaches. While the issue with incompatible datatypes is not present

in this case, the semantics of what the metrics represent still make the WSM or averaging

of results inappropriate (for example (TRES + FFIT)/2 has no real meaning). Following

the logic used in Step 2, and the goal of reuse, the classifier is selected as the approach

for Step 7. Completing the selection process (Step 8) involves presenting all information

and artefacts used. These have been created and recorded throughout.

8.5.2 Approach

The metrics in use correspond with the tests that have been undertaken. The application

developer decides on values between 0 and 10 for each of the metrics. As there is potential

for the ideal values of the metrics to be too strong or weak, iteration and updating ideal

metric values is allowed for. Unlike Step 2, the tuning would be to revise the ideal

values/ranges, as opposed to removing criteria. For example, the initial values for the

metrics may be {FFIT=8, FEXS=8, AEFT=6, TFIT=6, TRES=10, CX_U=8}. After running

the classifier, it may be found that no candidate reaches the required values. The user can

consider the metrics and related tests and measures to adjust. In this case, good results

on the required functionality is prioritised and the other metrics relaxed. A second run

using {FFIT=8, FEXS=6, AEFT=5, TFIT=6, TRES=8, CX_U=8}may provide better ranking

results; if not, the values can be adjusted again.

The tools and approach for this step are identical to those of Step 2 with the addition

286

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

of the metric attributes into the XML files.

As all of the files are in XML, the reports are easily converted into browsable web

pages and links to files using XSLT. Throughout the Process, filenames and directories

have included identifying information, including project, date and transformation used,

making all of the backend files easily discoverable. This is useful for finding the files for

justification and reuse.

8.5.3 Implementation

In Step 7, the results have been collated and are ready to be used to rank/select the

components. The required values for the metrics for the selection are included in the

ideal specification. These are used to train a new classifier, using the same sequence of

scripts and tools as in Step 2. The training data is generated using the processE script,

which calls CdCETransformer and Intelligent. processE then runs Weka (J48) to train the

C4.5 classifier and create a predictive model. The XML for each of the candidates is then

processed using the script grab predictE to filter the results and indicate the matching

candidates. Both processE and grab predictE are trimmed down versions of the original

scripts process and grab predict from Spiral 4 (see Appendix B).

At this point, the application developer will consider the results. If they are satisfied

with the number and quality of selected candidates, they move to Step 8. Otherwise, the

developer can reconsider the metrics to be more or less strict, then rerun the classification

sequence. Once a decision is made, the report is available as a collation of files and

associated XSLT for readability.

8.6 Spiral 5 Evaluation

The product of Spiral 5 is the instantiation of Steps 3 to 8 in a series of representations,

scripts and tools. A representation was provided for metrics, behaviour, context, adap-

tation and evaluation documentation. Scripts and tools have been developed to support

test generation and ranking.

The ideal specification used in the CdCE Process evaluates the candidates on both

functional and non-functional criteria. Within the functional criteria, it also includes

static and dynamic evaluation. The focus of this chapter is the static evaluation which is

287

8.6. SPIRAL 5 EVALUATION

included in the CdCE specification as four numeric attributes. These static attributes:

FFIT, FEXS, AEFT and TFIT, are manually evaluated (at this time). The dynamic metrics

are also numeric attributes, but require the execution of the candidate based on the

behavioural specification.

The initial evaluation is with respect to the win conditions from Table 8.2. From the

preceding discussion, the main automation is in the test generation. This has been able

to apply equivalence class partitioning to a Z specification and provide sets of tests for a

range of specifications. In each of these cases, thorough manual checking has confirmed

that the tests do match the specification and that the resulting tests are valid. The case

study in Chapter 9 applies the test generation and evaluation to the selection of an XML

editor. The relevance of the metrics are supported by the very suitable candidates found

in that case study. As in previous Spirals, the component developers are interested in

how their component is assessed and compared, which is made clear for the CdCE Process.

In consideration of the win conditions, the Spiral has been successful.

8.6.1 Spiral Goals

The following discussion refers to the goals listed in Tables 8.7 and 8.8 and provides a

summary of the achievements of Spiral 5.

Quality

Each step is described in detail including the inputs, outputs, instrumentation and in-

ternal procedures (Q5A1). Most of the steps include a level of automation where the

results can be easily repeated (Q5A2). For those that require manual effort, documenta-

tion is facilitated to help any retracing of steps that may be required. The only section

which may give different results is in the test generation - where test data may be ran-

domly allocated within an equivalence class on subsequent runs. The metrics were drawn

from SWEBOK, selecting those that are relevant to this point of software development

(Q5A3). More background on this is in Section 7.3.1.

Usability

The steps involved in testing and evaluation are clearly described (Q5B1). Support for

the tasks involved is provided through automated tools and forms for recording results.

288

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

SPIRAL 5 Purpose Evaluate
Issue effectiveness of
Object strategies for testing and evaluation
Context Spiral 5 Result

Goal 5A Focus Quality: Provide structured, repeatable approach to
testing and evaluation, drawing on literature

Viewpoint Quality Assurance personnel
Q5A1 Are the updates well documented? YES
Q5A2 Is the process repeatable? YES
Q5A3 Are the metrics appropriate? YES

Goal 5B Focus Usability: Provide tools to suit user needs and auto-
mate testing and evaluation

Viewpoint Application developer
Q5B1 Is the testing and evaluation easy for the user to un-

derstand?
YES

Q5B2 Has the work been tested on real world examples? YES
Q5B3 Has tool support and automation been provided? YES

Goal 5C Focus Intelligence: Use AI and knowledge management for
testing and evaluation

Viewpoint Application developer
Q5C1 Have any intelligent approaches been used? YES

Table 8.7: GQM Summary - Spiral 5 (Part 1/2)

A number of case studies have been used to inform the development of Steps 3-8 and

the process as a whole is take through a complete case study in Chapter 9 (Q5B2).

Automation is provided in the generation of tests and in the ranking of results (Q5B3).

Throughout the steps, XML documents and transformations are provided to support

documentation.

Intelligence

With respect to Q5C1, Step 7 reuses the classifier approach from Step 2. In this case, the

attributes of interest are the metrics, so any tuning of results (iteration) involves changing

the thresholds on the metrics. The test generation uses equivalence class partitioning,

drawn from the behavioural specification in Z notation. This uses a basic approach of

permutation of partitions across each interface.

Innovation

One novel aspect of the testing is that one set of tests is applied across all candidates

(Q5D1). This represents the functional requirements for the selection task. The second

novel aspect is the use of context schemas to allow for usage, performance and reliability

289

8.6. SPIRAL 5 EVALUATION

SPIRAL 5 Purpose Evaluate
Issue effectiveness of
Object strategies for testing and evaluation
Context Spiral 5 Result

Goal 5D Focus Innovation: Consider novel approaches to testing and
evaluation

Viewpoint Academia
Q5D1 Have innovations been developed for testing? YES
Q5D2 Have innovations been developed for evaluation? YES

Goal 5E Focus Dynamics: Provide flexibility for testing and evalua-
tion

Viewpoint Application developer
Q5E1 Is it possible to modify the process for testing and eval-

uation?
YES

Q5E2 Is it possible to update or modify the implementation
and tools for testing and evaluation?

YES

Q5E3 Is there support for iteration in the testing and evalu-
ation?

YES

Goal 5F Focus Reuse: Where possible make use of existing code and
artefacts

Viewpoint Application developer
Q5F1 Has the work reused external resources? YES

Table 8.8: GQM Summary - Spiral 5 (Part 2/2)

testing, with reference to the other schemas in the specification. Metrics have been

developed based on the literature and the focus on context and testing in the CdCE

Process (Q5D2). The classifier is utilised in the ranking of the candidates - avoiding

aggregation-based approaches.

Dynamics

The CdCE Process provides independent steps which can be modified to suit organisa-

tional requirements (Q5E1). All aspects of the testing and evaluation have scope for

modification (Q5E2). Localised changes would need to align to expectations for inputs

and outputs between steps. Aspects considered for exchange include: specification lan-

guage; test case generation; use of a test harness; and, alternative ranking techniques.

Iteration may be required in testing and evaluation to modify the behavioural spec-

ification or the requirements for the evaluation metrics (Q5E3). Strictly, the metrics

should iterate from Step 7 back to Step 1, but in practice the iteration can occur within

Step 7 and update the ideal specification later. If issues are found with the behavioural

specification, the iteration would go back to Step 1, then through Step 2 to regenerate

290

CHAPTER 8. TESTING AND EVALUATING CANDIDATES

test. In this case, it would be expected that much rework can be avoided by reusing the

documentation from the initial run. For example, changing the evaluation metrics would

not change the membership of shortlist of candidates, so the adaptation models should

be reusable.

Reuse

This work reuses the LATEX Z implementations and the C4.5 classifier implemented as

J48 in the Weka data mining software (Q5F1).

8.7 Spiral 5 Review and Planning

Spiral 5 covered a range of tasks through Steps 3-8 of the CdCE Process. Manual use of the

Process had informed the approaches taken. The Steps of the CdCE Process addressed in

this Spiral included test generation, adaptation, execution, collation of results, ranking

and reporting. The depth of coverage for each of these tasks had to be managed to

fit time and project constraints. As drivers to the evaluation, the metrics were defined

and matched the project focus on testing and context. Stakeholder win conditions were

all satisfied. Responses to Spiral goal questions for the work were also all positive,

particularly in the document and dynamics goal areas.

External review of this work came through publication of the complete Process in IET

Software (Maxville et al, 2009). Contributions for the Spiral include the single source for

abstract tests, allowing for a standardised comparison across all candidates.

When the Spiral began, it was envisaged this was to be the final ‘strategy’ (RE3)

Spiral - the project would then implement a full case study. However, during the review,

the researcher was confident that a decision support tool could be developed quickly and

would add value. Commitment was given to evaluation and testing as described in this

Chapter, and to a short Spiral to develop an emergent visualisation and exploration tool

- the ClassifierSuite.

8.8 Summary

This chapter covered Spiral 5, the implementation of the evaluation steps of the CdCE

Process. Key outcomes have been the development of a series of metrics for functional

291

8.8. SUMMARY

fit, adaptation and testing (with context). The evaluation is driven by the results of the

adaptation and testing. Tests are generated from a Z specification, providing a common

set of tests for all candidates. These are adapted as needed, providing information on fit,

excess functionality and adaptation effort. The results are collated into metrics which

inform the ranking, which utilises a classifier and iteration to tune the evaluation if

required. Although some parts of the Process remain manual, there is a structured,

supported process which can aid repeatability and transparency of component selection.

With the evaluation approach in place, Chapter 9 describes the development of a tool to

support criteria selection in the CdCE Process.

292

Chapter 9

The ClassifierSuite

In this chapter a revised approach to shortlisting is presented, as explored in Spiral 6.

In Chapter 6 the shortlisting approach was introduced using classifiers and iteration to

refine the ideal specification to determine a satisfactory shortlist. That approach required

a decision to be made on each iteration applying knowledge and/or intuition. In the new

ClassifierSuite approach, the user-defined mandatory and non-mandatory criteria are used

with the CdCE software to generate a suite of classifiers for all possible combinations

of the criteria. These are used to create a corresponding set of shortlists. Using the

graphical user interface of the ClassifierSuite tool, it is possible to interactively explore

the impact of each of the criteria on the shortlists and make more informed choices.

The user can then consider more combinations of criteria as the tool makes it easier to

understand a larger range of options.

Table 9.1 lists the goals for the Spiral 6. There is potential for two levels of quality

improvement, one in the understanding of the options available, and the other in the

ability to consider a wider range of options - the aim being to have the ‘best’ shortlist

in the context of the requirements. Spiral 6 is driven by the user perspective, and a

SPIRAL 6 GOALS
Quality Provide tool support to allow user to have a better understanding of their

choices and make more informed decisions
Usability Assist user in making decisions by providing visualisation of information and

tool support
Intelligence Transform the outputs of the classifiers into a form more easily understood
Innovation Provide an information rich interface to assist decision making
Dynamics Allow user to explore the impact of changing parameters at a high level, but

also drill-down to detail
Reuse Where possible make use of existing code and artefacts

Table 9.1: Goals for Spiral 6

293

9.1. SPIRAL 6 OVERVIEW

diagrammatic view of the sets of criteria helps in reasoning about choices. This improved

usability can be further enhanced by the provision of supporting analysis tools for the

user. The tool can help pull together the value provided by the application of machine

learning by simplifying the understanding of the outputs of the classifiers, focussing more

on the criteria and the shortlists - which is the user perspective (intelligence). The

tool, and its interface, build on novel contributions, giving potential for innovation in

the provision of support for the selection process. As an iterative and dynamic process,

the tool support for the selection process needs to be flexible and responsive to the user

needs. While the tool is a new piece of work, the code and approach should reuse existing

resources where possible.

The chapter begins with a discussion of the objectives for the ClassifierSuite and its

place in the CdCE Process, then looks at the conceptual side of the suite. Examples of the

ClassifierSuite tool being used in four different selection scenarios follow, before a review

of the work carried out in this spiral.

9.1 Spiral 6 Overview

Spirals 3-5 had developed procedures and tools to automate the CdCE Process as part

of RE3. There was an emerging need to help the user manage and understand the

increasing amount of data (candidates and sets of criteria) able to be considered as a

result of automation. In this Spiral the aim is to plan and implement a visualisation

and exploration tool for the shortlisting data, along with procedures and guidelines for

its use. This makes an additional contribution on RE3 to improve the portrayal and

exploration of the selection information made available in the shortlisting phase of the

CdCE Process (Step 2). Considering the actors in the selection process, the relevant use

cases (Figure 9.1) are Select Component, Revisit Selection and Assess Selection.

All can be made easier for the application developer, both in carrying out the task and

complying with quality requirements.

The stakeholder evaluation criteria are provided in the table of Win conditions (Table

9.2). In this Spiral, the application developers are interested in a tool that helps them to

select the criteria set to improve the shortlist. For quality assurance the tools and related

procedures must include documentation and be repeatable. Academia require that the

294

CHAPTER 9. THE CLASSIFIERSUITE

Figure 9.1: Use cases for the ClassifierSuite, the focus of Spiral 6 (those not in the scope
for this Spiral are greyed)

approach consider and use, or add to, existing literature.

9.2 Spiral 6 Context

Spirals 3 and 4 implemented strategies to support the shortlisting of candidates. The

tools developed in the previous Spirals automated the generation of shortlists based on

the ideal specification (user requirements) and the C4.5 classifier. With use of the tools,

the bottleneck became the trading off between criteria to get the ‘best set’ of candidates

with respect to the ideal specification. The tools and scripts from previous Spirals make

Stakeholder Win Conditions
Application Developers Tool makes decisions easier

Allows more selection scenarios
Academia Representation techniques are valid

Approach has novelty and draws on literature
Quality Assurance Allows documentation and justification of decisions

Recall and relevance are enhanced

Table 9.2: Win conditions for stakeholders (Spiral 6)

295

9.3. SPIRAL 6 APPROACH

it trivial to run extra sets of criteria, so it is possible to generate all possible sets. A new

problem needing solution was how to take in the amount of data that could be generated.

The preferred approach was to provide a visualisation and exploration tool to help the

application developer compare the various choices for selection criteria.

The ideas for this work grew organically from diagrams the researcher used to help

understand and validate the data from previous shortlisting tasks. When considering

formalising the approach, similar ‘lattices’ were found in the literature in other domains

(Ganter and Wille, 1997, Chen and Yao, 2008). The combination of proven usefulness for

manual work, and external validation in the literature indicated a low risk in adopting

this approach and including it in the CdCE Process tools.

9.3 Spiral 6 Approach

The ideal specification is used to generate a classifier for shortlisting in Step 2 of the

CdCE Process. The converted repository data is classified and if the resultant shortlist

is unsatisfactory, the user iterates to Step 1 to refine (loosen, tighten, alter) the ideal

specification. The first pass of the shortlisting uses the full specification to allow tuning

of the selection criteria, particularly those that may lock out all candidates. The Weka

system can be used to view the statistics across the input data set to pick out issues and

create a meaningful base ideal specification1, which is referred to as S10 (Set 0, level 1).

From this ideal specification the mandatory and non-mandatory criteria are identified by

the user, with the non-mandatory criteria providing flexibility. As the refining process has

been automated, compiling additional shortlists is quick and easy. A graph can be built

representing all of the possible combinations of criteria by dropping one non-mandatory

criterion at a time (Figure 9.2) and providing a count of the candidates that result from

each set. The naming convention for the sets is ‘S+level+set#’, with ‘set#’ starting at

1. The criteria used in each set are indicated by the letters in the corresponding box.

For example Set S22 in the Figure includes criteria {A,B,D,E}.

The graph can be traversed to help find an optimal criteria set to identify a shortlist

of components. This approach condenses the iteration process, and removes some of the

heuristics and subjectivity: providing a better overall view of the impact of including or
1If the base specification is too restrictive, many criteria will need to be dropped before any matching

candidates are returned. Criteria with high levels of missing data can be identified through Weka.

296

CHAPTER 9. THE CLASSIFIERSUITE

Figure 9.2: Graph representing a series of criteria sets, classifiers and subsequent short-
lists. {A, D} are mandatory and {B, C, E} are non-mandatory.

excluding specific criteria.

9.4 Spiral 6 Implementation

At this point the project has a strong set of software and scripts which will be utilised in

this Spiral. The applications written to date have been command line and script driven.

This work was aimed at presenting an improved interface, which brings in a different

element of programming. ClassifierSuite is a Java program with an interactive interface

developed using AWT. Additional scripts were developed to take the existing outputs

of the shortlisting and create an XML file as input for ClassifierSuite. New scripts were

created to post-process the existing output files to provide summary data. In addition,

some change in naming files and folders was necessary to make it possible to drill-down

into the shortlists.

The software was designed and implemented to include a graphical display, saving

and printing of images and text and GUI interaction. The first pass of implementation

drew the graph of the sets and the connections between them. This was validated against

graphs containing 8, 16 and 32 sets (3 non-mandatory criteria = 23 = 8 sets), although

larger graphs can be accommodated. With the criteria sets drawn, the next iteration

within this Spiral was to allow the user to select, trace and compare criteria choices.

297

9.4. SPIRAL 6 IMPLEMENTATION

More discussion of the implementation and a discussion of some key points follows.

9.4.1 The ClassifierSuite

When considering the shortlisting step, the CdCE Process has allowed for iteration be-

tween the specification of the ideal component and the shortlisting of candidates to tune

the specification by loosening or tightening the criteria. In practice, the first iteration has

used the most strict set of criteria with loosening occurring iteratively to find a suitable

shortlist. This led to an effective process but was subjective in the choice of the next

criterion to loosen. As the tools for generating the classifiers and extracting the shortlists

had been automated in Spirals 3 and 4, a more exhaustive approach was considered. This

would allow all possible sets of criteria to be determined and the shortlists made available

to the user. By creating a series of ideal specifications, a series - or suite - of classifiers

can be generated using scripts. This can, in turn, be used to classify the items in the

repository dataset and filter them into the respective shortlists.

During the specification step, the user can flag certain criteria as mandatory (e.g.

the description or the development language). Holding these criteria fixed, they can

progressively loosen the criteria by dropping one criterion at a time out of the selection

set. For example, with the criteria {A, B, C, D, E} a mandatory set may be {A, D} and

the non-mandatory set {B, C, E}. The resulting possible sets of criteria are:

{ABCDE},

{ABCD}, {ABDE}, {ACDE},

{ABD}, {ACD}, {ADE},

{AD}

This can be represented as a graph, as shown in Figure 9.2. Each node represents

a selection set and each edge the removal of one of the criteria. After the respective

classifiers have processed the repository data, the user can then view the graph marked

up with the number of items in each shortlist and the respective criteria to help to select

one or more sets for their shortlist. The metadata from the software repository is available

for each candidate on each shortlist which can be viewed to help the user’s decision.

In terms of the processing of the repository data, in the past it has taken many

iterations to create a satisfactory shortlist, with many sets of criteria untried. In the new

298

CHAPTER 9. THE CLASSIFIERSUITE

approach, the user can get an overall picture of the variations, drill down as required

and still have that option of returning to the specification to make changes before a

second iteration. The scenarios in Section 9.5 show the application of the new approach

to variety of selection tasks using a real world repository.

9.4.2 Scalability

The height of the graph is dependent on the number of non-mandatory criteria. Each

level of the tree progressively removes one criterion from the set, starting with the full

set at the top of the graph and finishing with the mandatory set at the bottom. The

number of sets and classifiers in each level of the graph is:

M = set of mandatory elements

N = set of non−mandatory elements

Number of mandatory elements = m

Number of non−mandatory elements = n

Graph height = n + 1

(
n
0

)
× {m1, . . . , mm} ∪ {n1, . . . , nn}(

n
1

)
× {m1, . . . , mm} ∪ {N \ {nj, nk} • nj, nk ∈ N:

......j = 1 . . . n, k = 1 . . . n, j 6= k}

...(
n

n−1

)
× {m1, . . . , mm} ∪ {nk ∈ N: k = 1 . . . n}(

n
n

)
× {m1, . . . , mm}

Number of classifiers/sets required = 2n

Note that the number of mandatory elements (criteria), m, does not affect the size of

the graph. Considering the criteria in Figure 9.2, the number of mandatory elements (m)

is 2: {A,D}, with 3 (n) non-mandatory {B,C,E}. The height of the graph is n+1 = 4. The

number of items at each level increases by a power of two, then reduces symmetrically.

The total number of sets required in the example is 23 = 8 sets. Inclusion of a large

number of non-mandatory criteria could lead to combinatorial explosion - doubling with

299

9.4. SPIRAL 6 IMPLEMENTATION

each additional criterion.

The time taken to generate classifiers and shortlists is affected by the attribute types

and the selected transformation (described in Section 6.3.5). This is related to the number

of values possible for each attribute, which ranges from 2-3 to over 100. The CdCE tools

are currently written in Java and are not optimised, and the complete processing took an

average of two minutes per set on a 2 GHz Pentium with 767 Mb RAM. The generation

of the classifiers is the most time-consuming part and can run in the background while

the user carries on with other tasks. The classification of the repository data takes less

than a minute. In practise, limitations on increasing the size of the graph may be more

in relation to the user’s ability to interpret it than in the processing time required.

9.4.3 Interpreting the Data

There are many possible ways to represent the data effectively for the user to be able to

have a more intuitive view of the possible shortlists. The approach for the ClassifierSuite

is to list the criteria included in the set, represented by letters (e.g. A-E), along with the

number of items in the shortlist for that set, then view these sets in a 2-D graph. This

works well for a small graph such as the one in Figure 9.2. Where the number of non-

mandatory items goes above four or five, the graph may become difficult to interpret.

One way to reduce graph size is to split it on a well-understood criterion (e.g. date

updated - criterion F in Figure 9.3). There are now two graphs, one with the criterion

and one without. As the order of all other criteria are the same across each graph, the

user can compare within and across the graphs and criteria. The user can then consider

which criteria are important with, and in the absence of, the split criterion.

Another approach is to highlight nodes with criteria of interest. In the case study,

criterion A was of particular interest as it caused dramatic changes in shortlist sizes.

Figure 9.4 highlights the sets/nodes that include criterion A, and the edge which links

to the equivalent node without A.

300

CHAPTER 9. THE CLASSIFIERSUITE

Figure 9.3: Splitting the graph on criterion F. The complete graph is on the left, with
the dashed lines showing the ‘split’. By restricting to those sets that include criterion
F, the middle graph can be extracted. The remaining sets (without F) are shown in the
graph on the right.

Figure 9.4: Graph representation of criteria sets, highlighting criterion A

301

9.4. SPIRAL 6 IMPLEMENTATION

The difference between the numbers returned in the shortlists with and without A in

Figure 9.4 are listed below:

{A, B, C, D, E, F} = 4 . . . {B, C, D, E, F} = 7 (diff = 7− 4 = 3)

{A, B, C, D, E} = 1 . . . {B, C, D, E} = 6 (diff = 6− 1 = 5)

{A, B, C, E, F} = 10 . . . {B, C, E, F} = 24 (diff = 14)

{A, B, D, E, F} = 4 . . . {B, D, E, F} = 10 (diff = 6)

{A, B, C, E} = 13 . . . {B, C, E} = 27 (diff = 14)

{A, B, D, E} = 4 . . . {B, D, E} = 14 (diff = 10)

{A, B, E, F} = 10 . . . {B, E, F} = 23 (diff = 13)

{A, B, E} = 12 . . . {B, E} = 37 (diff = 25)

These patterns of differences are significant in the choice of criteria. To determine if

a criterion is blocking (bad) or filtering (helpful), we need to drill down into the shortlist.

An example from the email client case study (Section 9.5.2) showed that, while the

description (B) was significant, more investigation was needed to identify if the impact

was positive or negative. As the criteria also included detail (detailed description - C)

it could be that: the attributes were redundant; one of them was rarely matched; both

were required; or one was needed and not the other. Drilling into the shortlists revealed

that those with ‘description’ in the criteria were almost entirely relevant, while those that

did not include ‘description’ were almost completely irrelevant. This knowledge gave the

additional benefit of adding another criterion to the mandatory set, halving the graph

size. Awareness of such patterns are always of value, with different impacts depending

on the data.

9.4.4 Properties of the Graph

Intuitively, and through working with the ClassifierSuite and its graphical representation,

there are properties which can help the user understand the selection data. It should

be noted that the classifiers are not always 100% accurate2, so there are times that

the properties will not hold, or that there may be an underlying issue which becomes

apparent when viewing the suite as a whole:

Property 1 - Increasing shortlist size

2e.g. 96% accuracy, on a large dataset can result in mis-classifications. This is more common on
Transformation 5 (T5.

302

CHAPTER 9. THE CLASSIFIERSUITE

The number of items in a shortlist for a set at level L will always be greater than

those of the connected sets at level L-1.

Property 2 - Descendants of shortlists are subsets

The items in the shortlist for a set at level L will include the items from the connected

sets at level L-1.

Property 3 - Impact of criteria

Given a particular criterion, A, an indication of its impact on the selection task can

be calculated by comparing the number of items in each set that includes A, with its

complementary set which excludes A.

These properties can aid the user in having an intuitive feel on decision making. For

example, moving up through the levels results in smaller (or equal) shortlists, moving

down will give larger (or equal) shortlists (Property 1). Following connected branches

will give sets that have a high level of overlap (Property 2). An approach to getting

coverage of possibilities is to choose shortlists on less connected branches of the graph.

Finally, the impact information (Property 3) can assist in understanding of the impact

of each criterion in that scenario and repository.

9.5 Spiral 6 Results: The ClassifierSuite in Action

This section considers the following scenarios that have been used as case studies during

the development of the CdCE Process:

1. Scientific calculator

2. Email client

3. XML editor

4. XML editor with date.

These examples revisit Step 2 of the process using the ClassifierSuite instead of relying

on iteration, which was used in scenarios 1 and 2 previously. In each case there has been

an initial iteration which removed problematic criteria3 and mandatory/non-mandatory

criteria have been identified4.
3Problematic criteria are those that have a large proportion of missing data or are never matched.
4The case studies use T5 with the level of abstraction set to 2 - where the ontology tree is pruned to

2 levels deep.

303

9.5. SPIRAL 6 RESULTS: THE CLASSIFIERSUITE IN ACTION

9.5.1 Scientific Calculator

This case study explores the selection of a component to provide scientific calculation

functionality to a target system. The system provides the interface for the user to en-

ter the information to set up the calculation, with the calculator component carrying

out back-end calculations. Context information recorded in the ideal specification in-

cludes the platform, programming language (desirable), memory usage (disk and RAM),

required functionality and context information.

Criteria Description Value Mandatory
A Description Calculator Y
B Detail Scientific Calculator N
C Development Language Java Y
D Operating System Linux N
E Development Status 5 - Production N

Table 9.3: Selection criteria for Scientific Calculator

This scenario was used as proof of concept for the manual application of the CdCE

Process as described in Chapter 5. As a small criteria set (Table 9.3), it can help to

introduce the ClassifierSuite. The ClassifierSuite takes an XML input file composed from

the output of running scripts to generate the suite of classifiers. As shown in Figure 9.5,

the XML file includes information describing the selection criteria, along with details for

each set of criteria.

When ClassifierSuite is run, the XML input file is given as a command line argument.

The interface for the ClassifierSuite is shown in Figure 9.6. Users can see the criteria,

output 2-D and text versions of the graph, highlight and compare criteria, drill-down

into the respective shortlists, draw on the canvas, print and save the image. In Figure

9.6 criterion B is highlighted (boxes shown in red). Another way of investigating the

non-mandatory criteria is to select them for comparison. The output of comparing the

three non-mandatory criteria {B,D,E} respectively is shown in Figure 9.7. This has been

approached by considering the relative impact of the criteria.

The differences between the numbers returned by each of the criteria sets are listed

below. Differences are calculated by taking connected sets and comparing the number

of items in the set with and without a specific criterion, e.g. B and B’ (without B).

Following through the graph on each criterion, the differences in order of their level in

304

CHAPTER 9. THE CLASSIFIERSUITE

<xml>

<classifier_suite>

<!-- Criteria -->

<criteria length="5" nonMandatory="3">

<crit name="A" desc="description" value="calculator"/>

<crit name="B" desc="detail" value="scientific calculator"/>

<crit name="C" desc="devLanguage" value="Java"/>

<crit name="D" desc="operatingSystem" value="Linux"/>

<crit name="E" desc="devStatus" value="5 - Production/Stable"/>

</criteria>

<rootNode name="s10"></rootNode>

<set name="s10">

<directory>C:_valerie\dev\FMfilter\calc_2008\calc_2Jan08t5s10_2008-01-03_01_22</directory>

<filename>shortlist.xml</filename>

<setCrit>ABCDE</setCrit>

<count>1</count>

<connects>s21</connects>

<connects>s22</connects>

<connects>s23</connects>

<level>1</level>

</set>

....

<set name="s41">

<directory>C:_valerie\dev\FMfilter\calc_2008\calc_2Jan08t5s41_2008-01-03_01_45</directory>

<filename>shortlist.xml</filename>

<setCrit>AC</setCrit>

<count>14</count>

<level>4</level>

</set>

</classifier_suite>

</xml>

Figure 9.5: XML input file for ClassifierSuite (scientific calculator)

the graph (L1-L3) are:

B : 5, 10, 6, 12 ... Derived from : L1 = 5; L2 = 10, 6; L3 = 12

D : 0, 5, 1, 7...L1 = 0; L2 = 5, 1; L3 = 7

E : 0, 1, 13...L1 = 0; L2 = 1, 1; L3 = 3

It is clear from these differences that the highest impact is criterion B, then D then E.

A high-impact criterion can either be eliminating useful items or helping to create a more

relevant shortlist. Using the drill-down facility, it is possible to look at the shortlists for

each of the sets to determine if the criteria are having a positive or a negative effect on

the relevance of the shortlist. Although it would normally be impractical to drill down

on all of the shortlists (only a sample would be looked at) in this case all shortlists can

be investigated for relevance.

305

9.5. SPIRAL 6 RESULTS: THE CLASSIFIERSUITE IN ACTION

Figure 9.6: ClassifierSuite output for the scientific calculator scenario

306

CHAPTER 9. THE CLASSIFIERSUITE

Figure 9.7: Screenshot of comparison of impact of non-mandatory criteria.

For each set, the full shortlist was manually evaluated as to whether each item was

suitable enough to work with:

s10 : ABCDE− 1 relevant item / 1 item in the set

s21 : ACDE− 3/6

s22 : ABCE− 1/1 (same shortlist as s10 and s23)

s23 : ABCD− 1/1 (same shortlist as s10 and s22)

s31 : ACE− 3/11

s32 : ACD− 4/7

s33 : ABC− 2/2

s41 : AC− 5/14

Drilling down on set s335 gives two very relevant items on the shortlist, whereas s41

gives five good options from fourteen (36% relevance). This implies that the shortlist
5s33 is equivalent to S33 - there is no significance to any change in case on the set names.

307

9.5. SPIRAL 6 RESULTS: THE CLASSIFIERSUITE IN ACTION

with the highest relevance is s336. Recall is also important as some relevant items may

not be in the returned set7. Considering all of the sets, five items have been identified,

although there may be more in the repository. In this discussion, the total number of

relevant items is assumed to be five. For recall, set s41 has five items that are relevant,

out of a shortlist of 14, giving 100% recall and 35.7% relevance. User knowledge and

the scenario at hand can be used to help guide the choice of criteria, supported by the

ClassifierSuite.

For this scenario, s33 is considered to be the preferred criteria set/shortlist. If needing

to be more selective, shortlist s22 or s23 could be used, following the edge to the sets with

one criterion difference. Using the suite of classifiers and the ClassifierSuite tool resulted

in a different set of criteria being selected s33 = {Description = ‘calculator’, Detail =

‘scientific calculator’ and devLanguage = ‘Java’} compared to the manual approach,

which ended with only the mandatory criteria s41 = {Description = ‘calculator’ and

devLanguage = ‘Java’}. Using the ClassifierSuite has resulted in a tighter set of selection

criteria and a greater understanding of the impact of each criterion.

9.5.2 Email Client

Much of the development and refinement of the CdCE Process and tools were carried out

using the email client scenario. This scenario is the search for an email client written

in C++ under a GPL licence. Development status should be at production level with

Linux as the target platform. The mandatory criteria are the detailed description and

the operating system. The selection criteria are summarised in Table 9.4

Criteria Description Value Mandatory
A Description email client N
B Detail email client Y
C Licence GNU General Purpose

License (GPL)
N

D Development Status 5 - Production N
E Development Language C++ Y
F Operating System Linux N

Table 9.4: Selection criteria for Email Client
6relevance = number of relevant items / number items returned.
7recall = number of relevant items returned/ total number relevant items in dataset.

308

CHAPTER 9. THE CLASSIFIERSUITE

Assigning letters to the criteria, {B,E} are mandatory, with {A,C,D,F} non-mandatory.

This results in a suite of 16 criteria sets and corresponding classifiers.

Figure 9.8: ClassifierSuite output for the email client scenario

Using the ClassifierSuite tool, the graph in Figure 9.8 is generated. Running a com-

parison (Figure 9.9), {A} shows up as high-impact, making a difference to shortlist sizes

of approximately 4-fold, averaging around 25 items. Drilling down using the tool on sets

s21 (3/3) and s33 (4/22), it appears that criterion A is necessary for relevant results -

possibly because the terms ‘email client’ are often used in the description of software that

is not an email client itself.

309

9.5. SPIRAL 6 RESULTS: THE CLASSIFIERSUITE IN ACTION

Figure 9.9: Screenshot of impact of non-mandatory criteria in email client scenario

Figure 9.10: ClassifierSuite output for the email client with drilldown on s10, s21, s24
and s34

310

CHAPTER 9. THE CLASSIFIERSUITE

The next interesting aspect of this dataset is that sets s10, s21, s24 and s34 give

identical counts. Drilling down on the four shortlists as shown in Figure 9.10 confirms

that the sets are the same. There are also some results in the data that go against the

properties listed in Section 9.4.4. Sets s36 and s42 (circled in Figure 9.8) have higher

shortlist sizes than their descendants. Investigation into log files shows that the classifiers

for each of these sets has a lower percentage correctly classified than the others, although

it is rated at 98%. The issue occurs when shortlists include multiple ontology criteria

with large numbers of possible values.

Criteria L1 L2 L2 L2 L3 L3 L3 L4
A 3 3 6 3 6 3 27 7
A’ 25 22 26 47 26 27 87 33
C 3 6 25 3 26 27 47 87
C’ 3 6 22 3 26 7 27 33
D 3 3 25 3 22 3 47 27
D’ 6 6 26 27 26 7 87 33
F 3 3 6 25 6 26 22 26
F’ 3 3 27 47 7 87 27 33

Table 9.5: Comparison of non-mandatory criteria for email client scenario

Analysis of the shortlist data can provide an exhaustive view of impacts across all

criteria (Table 9.5). Each column represents a set at one of the levels of the graph (L1-

L4) and the two values for each criterion (e.g. A = included and A’ = not included) are

the number of candidates in each resulting shortlist. The table confirms criterion A as

having the most impact. In four cases, C has no impact (indicated in italics), and F has

no impact in two cases.

This analysis could be done on a more intuitive level; however looking at the criteria

through their impact calculations gives a guide that mandatory criteria {B,E} plus one

or both of {A,D} should define the shortlist.

This scenario was intended to be the subject of the final case study. When the

shortlisted software was downloaded, it was found almost all of them were neglected

projects and not able to be installed. This indicates that date or maturity need to be

focussed on with the freshmeat dataset. A contributing factor may be that email software

is not often written in C++.

311

9.5. SPIRAL 6 RESULTS: THE CLASSIFIERSUITE IN ACTION

9.5.3 XML Editor

The scenario for this case study is the acquisition of software for editing and validating

XML documents8. In this selection task there are six criteria, with two mandatory and

four non-mandatory, resulting in sixteen sets in the suite. The selection criteria are

summarised in Table 9.6. Both description (A) and Detail (B) are ‘XML editor’. Other

requirements are GNU GPL licence (C); Java for the development language (E); and, to

be written for a Linux platform (F). Note that the maturity requirement (D) has been

increased to ‘Mature’ for this scenario.

Criteria Description Value Mandatory
A Description XML editor N
B Detail XML editor Y
C Licence GNU General Purpose

License (GPL)
N

D Development Status 6 - Mature N
E Development Language Java Y
F Operating System Linux N

Table 9.6: Selection criteria for the XML editor

Viewing the graph in Figure 9.11, this set conforms to the properties in Section 9.4.4.

The impacts for each of the non-mandatory criteria are shown in Table 9.7. Criterion F

exhibits a low impact - with no impact in 3 cases. The highest impact is with criteria

A and D, with C having slightly less impact. Although the impact statistics are helpful,

the meaning of the criteria must also be considered. For example, this can explain the

low impact of ‘Linux’ in this case as Java is a cross-platform language.

s21, s22 or s23 are options for selection. Drilling down into the respective shortlists

would be the advised approach to finding the most appropriate criteria. Using this

approach gives the confidence that all candidates have been assessed via the same criteria

and are thus equivalent. Searching manually may not provide such objectivity.

The criteria are in the same order and priorities (mandatory) are the same for the

XML editor and the email client. This gives an opportunity to compare the impact of

the various criteria. The overall numbers of candidates are similar in both scenarios.

Criterion C has more impact with the email client scenario than with the XML editor
8The XML case study is the basis of the full case study in Chapter 10.

312

CHAPTER 9. THE CLASSIFIERSUITE

(note smaller differences in C and C’ in Table 9.7). Using a higher level of development

status has had some impact and adjusting this value is a possible way to tune the results

in either of the scenarios. Criterion A has high impact across all levels in the email

client scenario; its impact is 2-fold with the XML editor. For the email client, using both

description and detail is required for the candidates to be email software, rather than

just relying on the description.

Figure 9.11: ClassifierSuite output for the XML Editor

313

9.5. SPIRAL 6 RESULTS: THE CLASSIFIERSUITE IN ACTION

Criteria L1 L2 L2 L2 L3 L3 L3 L4
A 1 4 11 1 10 4 13 12
A’ 7 10 24 7 23 14 27 37
C 1 11 7 1 24 13 7 27
C’ 4 10 10 4 23 12 14 37
D 1 4 7 1 10 4 7 14
D’ 11 10 24 13 23 12 27 37
F 1 4 11 7 10 24 10 23
F’ 1 4 13 7 12 27 14 37

Table 9.7: Comparison of non-mandatory criteria for XML editor scenario

9.5.4 XML Editor with Date

This scenario involves seven criteria, two mandatory and five non-mandatory. It adds

the date to the list of criteria as the email client scenario has shown that project age and

development status are good indicators of whether an item can be downloaded and run.

The criteria for this case are in Table 9.8.

Criteria Description Value Mandatory
A Description XML editor N
B Detail XML editor Y
C Licence GNU General Purpose License N
D Development Status 6 - Mature N
E Development Language Java Y
F Operating System Linux N
G Date 1/1/05 N

Table 9.8: Selection criteria for the XML editor with date

This increases the number of sets and classifiers to 32 and generates a more complex

graph. The set can be broken into two on a selected criterion to reduce complexity (as in

Figure 9.3). In this exercise the graph will be kept whole (Figure 9.12) as the tool makes

it easier to manage a 32 set graph. Highlighting criterion G can reveal the difference

between the XML editor with and without date. The highlight and comparison features

have increased usefulness at this scale to make the graph easier to read. In this case, the

comparisons result in the values in Table 9.9. Criteria C and F do not have high impact

in this scenario. Drill-down is required to see the underlying shortlists and understand

the impact of criterion A.

314

CHAPTER 9. THE CLASSIFIERSUITE

Figure 9.12: ClassifierSuite output for the XML editor with date scenario

Crit. L1 L2 L2 L2 L2 L3 L3 L3 L3 L3 L3 L4 L4 L4 L4 L5
A 0 1 2 0 1 2 1 4 4 11 1 4 10 4 13 12
A’ 6 7 12 5 7 11 11 13 10 24 7 19 23 14 27 37
C 0 2 6 0 1 12 4 5 11 7 1 13 24 13 7 27
C’ 1 2 7 1 4 11 4 11 10 10 4 19 23 12 14 37
D 0 1 6 0 1 7 1 5 4 7 1 11 10 4 7 14
D’ 2 2 12 4 11 11 4 13 10 24 13 19 23 12 27 37
F 0 1 2 6 1 2 12 7 4 11 7 11 10 24 10 23
F’ 0 1 4 5 1 4 13 11 4 13 7 19 12 27 14 37
G 0 1 2 6 0 2 12 7 1 4 5 4 13 11 11 19
G’ 1 4 11 7 1 10 24 10 4 13 7 12 27 14 23 37

Table 9.9: Comparison of non-mandatory criteria for XML editor scenario

315

9.6. SPIRAL 6 EVALUATION

From the data, criteria D and G seem to have similar impact. Drilling down shows

that they are outputting quite different shortlists. As the email client scenario met

difficulty with long dormant projects, having either of these variables is some insurance

that the respective projects/software are usable and maintained. This scenario highlights

the needs for and value of tools to support the selection of criteria for shortlists where

there are larger numbers of criteria. The XML editor case study is discussed further in

Chapter 10.

9.6 Spiral 6 Evaluation

The evaluation for Spiral 6 draws on the Win conditions in Table 9.2 and the Spiral goals

in Table 9.1. The stakeholder Win conditions relate to the usefulness of the tool and the

documentation it provides. From the application developer perspective, the tool allows a

larger number of sets to be considered, and helps the user to reduce this number to make

it more manageable. The case studies support the idea that the ClassifierSuite improves

recall and relevance. In most cases using the ClassifierSuite results in different sets being

selected then those in the manual process, even though the same sets could have been

chosen. The ClassifierSuite makes options visible that may not have been considered.

Although similar representations can be found for other applications (Ganter and Wille,

1997, Chen and Yao, 2008), supporting the validity of the ClassifierSuite, the technique is

novel when applied to component selection. The tool not only assists the understanding

of the data, it also provides a number of functions to help document and justify the

decision-making process.

9.6.1 Spiral 6 Goals

The following discussion refers to the goals listed in Tables 9.10 and 9.11.

Quality

Guidelines for the use of the ClassifierSuite are provided including properties and inter-

pretation tips. The ClassifierSuite works from an XML file, indexing existing files, and is

run as a standalone Java application.

The rendering of the graph of the sets is fixed to the underlying classifier data.

316

CHAPTER 9. THE CLASSIFIERSUITE

SPIRAL 6 Purpose Evaluate Results
Issue effectiveness of
Object strategies to support decision-making in the

shortlisting task
Context Spiral 6

Goal 6A Focus Quality: Provide tool support to allow user to have
a better understanding of their choices and make more
informed decisions

Viewpoint Quality Assurance personnel
Q6A1 Is the ClassifierSuite well documented? YES
Q6A2 Is the process repeatable? YES
Q6A3 Does the Suite aid understanding of data? YES

Goal 6B Focus Usability: Assist user in making decisions by provid-
ing visualisation of information and tool support

Viewpoint Application developer
Q6B1 Is the ClassifierSuite and procedures easy for the user

to understand?
YES

Q6B2 Has the work been tested on real world examples? YES
Q6B3 Has visual tool support and automation been provided? YES

Goal 6C Focus Intelligence: Give the user the combined value of
all AI applied in previous spirals, with minimal over-
head/complexity

Viewpoint Application developer
Q6C1 Does the ClassifierSuite reduce effort for the user? YES
Q6C2 Does the ClassifierSuite enhance the use of AI from the

rest of the CdCE Process?
YES

Table 9.10: GQM Summary - Spiral 6 (Part 1/2)

The user has control of the selection criteria and analysis of the set, which can also be

duplicated.

The researcher found diagrams similar to that produced via the ClassifierSuite were

necessary for understanding the interaction between criteria. The ClassifierSuite extends

this with facility for hiding criteria and for assessing the impact of criteria. Without the

tool, this level of understanding would take hours, not minutes.

Usability

The ClassifierSuite is a standalone tool which provides a simple GUI to assist understand-

ing of the data for shortlisting. The interface loads the data and has a combination of

checkboxes and buttons for invoking functions. It also includes the attribute and value

for each criterion; double-clicking on a set in the graph brings up the XML shortlist for

that set.

After initial testing, the ClassifierSuite was applied to a series of existing case study

317

9.6. SPIRAL 6 EVALUATION

SPIRAL 6 Purpose Evaluate Results
Issue effectiveness of
Object strategies to support decision-making in the

shortlisting task
Context Spiral 6

Goal 6D Focus Innovation: Provide an information rich interface to
assist decision making

Viewpoint Academia
Q6D1 Have innovations been developed for visualising the se-

lection choices?
YES

Q6D2 Is the interface informationally rich? YES
Goal 6E Focus Dynamics: Allow user to explore the impact of chang-

ing parameters at a high level, but also drill-down to
detail

Viewpoint Application developer
Q6E1 Does the ClassifierSuite allow for exploration of choices

and their impact?
YES

Q6E2 Can the user drill-down to complete information? YES
Goal 6F Focus Reuse: Where possible make use of existing code and

artefacts
Viewpoint Application developer
Q6F1 Has the work reused external resources? YES

Table 9.11: GQM Summary - Spiral 6 (Part 2/2)

data. These case studies originated as manual and tool-supported shortlisting tasks for

the project.

The ClassifierSuite provides an effective visual tool to represent the sets generated dur-

ing shortlisting. The tool automates comparisons and scenario checking for combinations

of criteria.

Intelligence

Prior to the ClassifierSuite, exploration of the effects of changing selection criteria was

manual. If the selection criteria were satisfactory from the start, then the ClassifierSuite

would not reduce effort. However, if there is need for considering different options,

particularly with large numbers of non-mandatory criteria, the ClassifierSuite will reduce

effort.

Without the ClassifierSuite, the user is less likely to go through labour intensive sweeps

of different sets of criteria. With the tool, the user is more likely to work with more sets

of data, as it does not add much effort and can potentially show up more suitable results.

318

CHAPTER 9. THE CLASSIFIERSUITE

Innovation

Although the lattice visualisation is intuitive and seen in diagrams in other application

areas, the additional functions are novel. Options such as highlighting criteria, running

comparisons and the drill-down facility are task specific and only generated as ideas after

the tools was developed.

The interface provides an abstract version of the shortlisting data which can be ex-

plored and manipulated. The user can also move from the abstraction to detail using the

drill-down mechanism.

Dynamics

A key aim for the tool was to aid selection and impact assessment as this was found to be

difficult and time consuming. The tool not only provides the visual support, it can give

text output and the user can annotate the diagram and save it as part of the selection

documentation.

The user can click on any set to bring up a text window containing the corresponding

shortlist in XML. Multiple shortlists can be viewed simultaneously for easier comparison.

Reuse

The source data for the trials came from the previous case studies. XML manipulation

code was reused from previous tool development. The Java code for print/save was

adapted from the Internet.

9.7 Spiral 6 Review and Plan

Evaluation of the Spiral provided positive responses for both Win conditions and GQM

evaluation. Advantages of using the ClassifierSuite include increased understanding of

the options for varying the selection criteria, the low overhead of generating the criteria

sets, classifiers and shortlists and the ability to make selection more visual and easier for

the user to explore. While the previous approach of iterative refinement in Step 2 was of

benefit, it was subjective in the choice of criteria to loosen/tighten. It also risked missing

criteria sets of interest unless an exhaustive iteration of all permutations was undertaken.

319

9.7. SPIRAL 6 REVIEW AND PLAN

Two main issues exist, the number of classifiers (and processing) required and the

complexity of the data being interpreted. The size of the suite is dependent on the

number of non-mandatory criteria, with the graph size equal to 2n. There could be many

improvements to the code for processing the data, which has been written in strict object-

oriented Java. Where Transformation 5 (T5) is used, the run times are significantly

longer, averaging 2 minutes per criteria set - 30 minutes for four non-mandatory criteria

and one hour for five non-mandatory criteria. Scope exists for optimisation of the code

for shorter run times, so the processing time is not considered a barrier.

An approach to dealing with large graphs is to divide the graph for interpretation

and to isolate criteria which may be able to be removed or shifted to ‘mandatory’. Each

reduction in the size of the non-mandatory set halves the size of the graph (and process-

ing time and complexity). The ClassifierSuite can assist in reducing subjective choices

and improving awareness of a solution space which was already of the given size, but

previously had no tools to assist the user to make decisions.

The ClassifierSuite has automated and added functionality when compared to manual

graph generation. The application provides text and graphical views, as well as high-

lighting, comparing and drawing on the graph. This enhances the value of the approach

and is extensible for adding new features and visualisation choices.

By viewing the criteria, shortlist size and drilling down in to the metadata for can-

didates on the shortlists, the user can see the impact of their choice of selection criteria

and be more confident in the resulting shortlist. This empowers the user and gives more

dimension to the data they base their decisions on, as well as making the process less

subjective.

This Spiral provided an important gain in usability for the CdCE Process and may

have applications in other selection situations. The ClassifierSuite was conceived as a

result of the possibilities that present themselves once a process is automated and the

scale of the data is removed from exploring scenarios. The outcomes of this Spiral were

accepted in a paper for the IEEE Congress on Evolutionary Computation (CEC) in June

2008 (Maxville et al, 2008).

This completed the strategy development for the Process. Future work can be flagged

to include other repositories9. The investigation of strategies is thus complete and the
9An attempt was made to use the SourceForge repository, however, technical issues with recreating

the PostGres database and then extracting a flat file from all of the tables.

320

CHAPTER 9. THE CLASSIFIERSUITE

commitment is to applying the Process to a final case study.

9.8 Summary

This chapter described the ClassifierSuite approach to selecting software. The automation

of classifier generation and the use of the ClassifierSuite tool make it possible for users

to visualise and explore the criteria and shortlists. Four examples were given of the

ClassifierSuite in use, highlighting different functionality and analysis features that the

tool provides for the user. The ClassifierSuite and tool support allows for a more informed

selection process and better understanding of the interactions and impact between criteria

in a given repository.

The contribution of this Spiral is the ClassifierSuite tool for decision support (C7), and

the process information guiding its use. The tool makes it possible to explore and analyse

potential shortlists, which can improve efficiency and makes it possible to consider larger

criteria sets.

With the completion of the development Spirals, the next stage of the investigation

is a case study. The next Chapter presents the CdCE Process case study, the focus of

Spiral 7.

321

9.8. SUMMARY

322

Chapter 10

CdCE Process Results

The CdCE Process provides a framework for the evaluation of third party components and

software. This chapter examines the results of using the process. During development, a

number of case studies were utilised: these have been presented in previous chapters and

published for peer review. As a final case study, another real world selection problem is

explored - sourcing an XML editor - in order to apply the complete CdCE Process and

tools.

The goals of this final Spiral are listed in Table 10.1. To meet the goals, the case

study needs to exercise all parts of the Process (quality). Taking a real world scenario for

evaluation allows the researcher to view the Process from the user perspective. Usability

and low effort are the desired outcomes.

10.1 Spiral 7 Overview

In this Spiral, the software, process, specification and dataset are applied to a full case

study. The scenario needs to be selected to ensure that all aspects of the process can be

exercised, so some pre-work was required to select a strong case study - the XML Editor.

SPIRAL 7 GOALS
Quality Exercise the whole process in the case study, evaluate according to industry

standards
Usability Evaluate the process and tools in terms of real world requirements
Intelligence N/A
Innovation N/A
Dynamics N/A
Reuse N/A

Table 10.1: Goals for Spiral 7

323

10.1. SPIRAL 7 OVERVIEW

The use cases in this Spiral are Select Component (application developer) and Assess

Selection (quality assurance) (Figure 10.1).

Figure 10.1: Use cases for component selection, the focus of Spiral 7 (those not in the
scope for this Spiral are greyed)

As stakeholders in this Spiral, the application developers would want to see that

the case study problem is relevant to their assessment problems and that the benefit

of the whole approach is clear. Academia also requires a representative problem, along

with useful criteria and the identification of issues and further work. For component

developers, this Spiral provides a full picture of how their software may be shortlisted

Stakeholder Win Conditions
Application Developers Strategies are beneficial

Representative problem
Component Developers Know how their component is assessed and compared
Academia Representative problem

Assessment criteria
Peer reviewed
Issues and further work

Table 10.2: Win conditions for stakeholders (Spiral 7)

324

CHAPTER 10. CDCE PROCESS RESULTS

and then evaluated. This information may be used to target improvements in metadata

and documentation for potentially increased uptake of their product. The stakeholder

evaluation criteria are provided in the table of Win conditions (Table 10.2).

10.2 Spiral 7 Context

The CdCE Process (Figure 5.2) has been developed over six Spirals, culminating in this

case study Spiral for evaluation. The case study will draw on the freshmeat repository

as the source of candidates for selection.

No new risks or instruments are introduced in this Spiral. The instruments used

are listed in Table 10.3, representing the final tool suite developed to support the CdCE

Process. In the table, ‘Bash shell scripts’ includes all automation scripts developed for

training, shortlisting and working with the ClassifierSuite. The software has been run

under Cygwin, on CentOS running under VMware on a MacbookPro and through the

Mac OS X terminal. The work that follows is primarily carried out under CentOS.

Item Description
XML schema Schema to describe ideal and candidate components
XSLT scripts Scripts to reformat the XML files and make them more readable for

the user
Intelligent Java program developed to read in XML ideal specification and output

training data in Weka’s ARFF format
CdCETransformer Java program developed to read in XML ideal specification and real

world data and output the data in Weka’s ARFF format
FM2CdCE Java program developed to read in XML real world data (freshmeat)

and output the data in CdCE XML format
TestGen Java program developed to take in the technical specification (Z no-

tation) and generate a test suite based on equivalence classes and
boundary value analysis

ClassifierSuite Java program to visualise and explore results of running multiple clas-
sifiers to see the impact of criteria choices

Bash shell scripts Scripts written in Bash Shell to automate the processing of data and
the collation of results

Table 10.3: Instrumentation used (Spiral 7) - developed as part of this project

In parallel to the execution path, there is a trail of documents, most of them XML.

Some of the documents are parameter files, some are the input data (ideal, repository and

ontology files) and the output data. All output files have an associated XSLT template

to allow formatted viewing through a compatible browser. The final file format used is

325

10.3. SPIRAL 7 CASE STUDY

ARFF input for Weka, which gives a text file as output (captured stdout).

All aspects of the Process have been evaluated prior to this case study, thus the risk in

this Spiral is mainly in the choice of case study. In the first instance, there was a problem

with that choice. When taking the Emailer further through the Process, difficulties arose

in the download and installation of the software. In most cases it was not possible to

successfully run the downloaded software, which may have always been faulty or had

aged to a point of not being usable. This situation forced the development of a new

scenario - the XML Editor, which is described in this chapter.

10.3 Spiral 7 Case Study

The scenario for this case study is the sourcing of software for XML editing and validation.

The target environment is a Linux platform and the preferred language is Java. Previous

case studies with the freshmeat repository have shown that maturity and date of last

update are critical in finding runnable applications. This case study looks for production

level projects and a 2005 cutoff on last update. It also requires a GPL licence and will

start with the search terms, ‘XML editor’, included in both description and detail. The

mandatory criteria are detail and development language. Table 10.4 summarises the

criteria for this case study.

Criteria Description Value
A Description XML editor
B Detail XML editor
C Licence GNU General Purpose

License (GPL)
D Development Status 6 - Mature
E Development Language Java
F Operating System Linux
G Date 1/1/05

Table 10.4: Selection criteria for the XML editor with date

10.3.1 Step 1 - Specification

The scenario description defines much of the ideal specification. Also added are non-

functional requirements for price, disk space and memory. The XML in Figure 10.2 shows

326

CHAPTER 10. CDCE PROCESS RESULTS

<?xml version="1.0"?>

<Description xmlns="http://www.scis.ecu.edu.au/swvML/1.0/"

xmlns:dc="http://purl.org/dc/elements/1.0/"

xmlns:swv="http://www.scis.ecu.edu.au/swvML/1.0/" >

<dc:description type="mandatory">XML editor</dc:description>

<dc:detail type="mandatory">XML editor</dc:detail>

<swv:licence type="mandatory">GNU General Public License (GPL)</swv:licence>

<swv:devStatus type="mandatory">6 - Mature</swv:devStatus>

<dc:date type="mandatory" min="01-01-2005" max="31-12-2007">31-12-2007</dc:date>

<swv:technical>

<swv:devLanguage type="mandatory">Java</swv:devLanguage>

<swv:operatingSystem type="mandatory">Linux</swv:operatingSystem>

<swv:systemRequirements>

<swv:memory type="mandatory" min="15" max="50">20</swv:memory>

<swv:diskSpace type="mandatory" min="30" max="50">40</swv:diskSpace>

</swv:systemRequirements>

</swv:technical>

</Description>

</xml>

Figure 10.2: Initial ideal specification for case study

this non-functional side of the ideal specification which will be used for shortlisting.

Next to be defined is the behaviour and functionality required. This could be very

detailed if fully specifying an XML editor, but as the selection task only needs specific

external behaviour, the formal specification will include operation schemas to:

• Load a document

• Check well-formedness

• Validate against a DTD

• Validate against a schema

• Transform XML document via XSLT.

The formal specification in Z notation is in Section 10.3.3. Each item of functionality is

modelled as a Z operation schema. For each of the operations, the input variables are

defined, with types that include the partitions we are interested in testing. For example,

the validate against DTD schema operation may have three partitions on the input file

type: no errors; error in file; error with DTD reference. Each of these can have one or

more input files for test data. The product of the number of partitions on each of the

types determines the number of combinations being tested, and thus the number of test

cases. As each of the operations in this case study only has one input variable, there are

a total of twelve test cases. Each test case can be rerun with different data, so in reality

more than twelve tests are likely to be run.

327

10.3. SPIRAL 7 CASE STUDY

With the required behaviour defined, the ideal specification is completed by stating

the functional fit and test performance. As with the non-functional attributes, these

criteria can be loosened, depending on the actual results. There are nine metrics for

evaluation: FFIT, FEXS, AEFT, TFIT, TRES, CX_P, CX_R, CX_S and CX_U which are scored

out of 10 (see Section 8.2 for more detail on metrics). These user-defined values are

shown in Table 10.5.

Metric FFIT FEXS AEFT TFIT TRES CX U
Value 8 8 6 6 10 8

Table 10.5: Initial metrics for XML editor case study

These thresholds on the metrics require high performance in most areas. On func-

tionality, near full compliance (FFIT = 8) is required with little excess functionality (FEXS

= 8). There can be some amount of work to install the software and adapt the tests, so

AEFT is 6/10. The testing fit (TFIT = 6) is somewhat dependent on functional fit (FFIT),

but where the tests do run, all must be passed (TRES = 10). The functionality that will

be most used (CX_U = 8) will require will need to pass 80% of tests.

10.3.2 Step 2 - Shortlisting

To begin the shortlisting, the full, most restrictive ideal specification is used with all

attributes set to mandatory. Data transformation T5 is selected from the available

transformations as previous investigations have indicated it provides improved short-

lists through the use of distance measures and ontologies for abstraction of some text

attributes.

The initial ideal specification is used to generate training data for the classifier. This

provides input to Weka and a C4.5 classifier is saved as a predictive model. The repository

data is transformed based on the ideal specification and the selected transformation (T5).

The transformed input file is run through the classifier, resulting in an empty shortlist.

Analysis via the Weka statistical tools shows that there is a high level of missing data on

the memory and diskSpace attributes. These are removed from the ideal specification

328

CHAPTER 10. CDCE PROCESS RESULTS

and two criteria are flagged as mandatory - detail and devLanguage (Java was specified

in this scenario).

At this point the automated tools developed for the CdCE Process are used to generate

a suite of classifiers for the combinations of sets of criteria. In the graph (Figure 10.4)

the date criterion is overlaid as a second value in each node. The level 1 node (S10)

has only one item in its shortlist. As the aim is to gain the highest relevance of results

while not having too many candidates on the shortlist, the next level is examined, which

involves loosening criteria. In levels 2 and 3, there are a few set counts below ten, which

is manageable. By level 4 the relevance of candidates is reduced, so the focus is on the

higher levels (1-3).

Figure 10.4: Graph representation of case study shortlists. Date (G) is overlaid on the
graph. Left count = without date, right count = with date.

By drilling down to the metadata it was found that the description criterion is

critical to relevance of results and should be mandatory. This allows the removal of

eight nodes: S23, S32, S33, S36, S42, S43, S44 and S51 from the graph to be considered.

Two nodes: S21 and S34 are identical, which also helps to reduce options. Choosing

S21 without date puts four items on the list. Previous case studies with the freshmeat

329

10.3. SPIRAL 7 CASE STUDY

dataset have shown that date and devStatus are important for good projects. As date

is not in the set S21, a second set of criteria with date will be selected. Nodes with this

criterion are targeted along with as many other criteria as possible (the right number of

the graph). S22-date1 and S24-date have 2 and 0 items respectively, which is less than

would be preferable2. The choice is then between S31-date and S35-date. As S31-date

is closely related to S21+date, S35-date is selected to give more variety, adding four

items. Two four-item shortlists are accepted - S21-date, S35+date, giving a total of eight

candidates with these changes.

10.3.3 Step 3 - Generate Tests

In Step 1 the functional requirements were defined in Z notation. This is not a complete
specification as its role is to drive the test case generation. This test directive is given in
Z below:

INfile ::= fileName

XMLfile ::= notWellFormed | wellFormed

DTDvalidation ::= notValidDTD | notFoundDTD | validDTD

SCHEMAvalidation ::= notValidSCHEMA | notFoundSCHEMA | validSCHEMA

XSLTfile ::= noTrans | transError | transOK

BOOLEAN ::= true | false

1S22-date refers to set S22 without the date criterion included {A,B,C,E,F}, S21+date is S21 with
the date criterion included {A,B,D,E,F,G}.

2As the researcher has experienced low quality software from this repository, the aim was for five to
ten candidates on the shortlist.

330

CHAPTER 10. CDCE PROCESS RESULTS

To prepare the Z specification for the test generator, the specification is distilled to

extract the required information.

The distilled specification is loaded into the test case generator software, TestGen. The

331

10.3. SPIRAL 7 CASE STUDY

resulting tests are based on partition information in the Z specification and matching test

data can also be pulled in from the specification.

The test cases are listed in XML in Figure 10.5. To make the recording of results

consistent, there is an XSLT transformation which converts the XML test cases into

HTML forms to record results for each candidate. Page one of the form records the

software ID, title, tester name and test date. From there the tests for each interface

are listed, with the variables to be used for each parameter, as generated by TestGen.

The final page summarises the tests and is where TRES and TFIT are calculated. That

completes the base functional tests.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE TestSuite SYSTEM "testsuite.dtd">

<?xml-stylesheet type="text/xsl" href="testsuite.xsl"?>

<TestSuite name="myTest">

<Op name="LoadFile">

<Variable varNo="1" name="NEWfile" type="INfile"/>

<TestCase id="1">

<Value varNo="1">fileName</Value>

</TestCase>

</Op>

<Op name="IsWellFormed">

<Variable varNo="1" name="NEWxmlFile" type="XMLfile"/>

<TestCase id="1">

<Value varNo="1">notWellFormed</Value>

</TestCase>

<TestCase id="2">

<Value varNo="1">wellFormed</Value>

</TestCase>

</Op>

<Op name="IsValidDTD">

<Variable varNo="1" name="NEWxmlFile" type="DTDvalidation"/>

<TestCase id="1">

<Value varNo="1">notValidDTD</Value>

</TestCase>

<TestCase id="2">

<Value varNo="1">notFoundDTD</Value>

</TestCase>

<TestCase id="3">

<Value varNo="1">validDTD</Value>

</TestCase>

</Op>

<--- snip --->

</TestSuite>

</xml>

Figure 10.5: Test specification for XML editor case study

There are also context based tests. In this study they are usage tests in the CX_U

schema. These tests allow greater emphasis to be put on the functionality that will be

used most (e.g. validating a file against a DTD) in this case study.

332

CHAPTER 10. CDCE PROCESS RESULTS

10.3.4 Step 4 - Adapt Tests

The abstract tests generated are then ready to be adapted to each of the shortlisted

candidates. The adaptation stage includes downloading and installing each candidate.

In a component selection scenario, this would require a test harness. For this project

the candidates are manually installed and tested. The adaptation effort metric, AEFT,

is based on the difficulty encountered when installing and working with the software to

a point that the tests can be run. The eight shortlisted candidates had various issues

which impacted their rating.

Table 10.6 lists the candidates, their scores out of ten and a comment on the difficul-

ties/ease of use. The target environment was CentOS running in VMware on a MacBook

Pro. Where the install failed, the installation was attempted in Cygwin running on a

Windows XP Thinkpad. Third option was Windows XP, then Mac OS X. Each failed

attempt impacted negatively on the AEFT score by 2 points. Where quite an effort was

required, the comment states that it ‘eventually worked’ in the target environment.

Candidate AEFT Comment
A 8 Fixable problem when installing in target environment
B 10 Installed easily according to instructions
C 10 Installed easily according to instructions
D 4 Installer problems in CentOS and Cygwin, eventually worked

on Windows XP
E 8 Did not run under CentOS, worked with Cygwin on PC
F 4 Installer problems in CentOS and Cygwin, eventually worked

on Windows XP
G 4 Installer problems in CentOS and Cygwin, eventually worked

on Windows XP
H 0 Commercial software - originally open source, no trial version

available

Table 10.6: Adaptation results for XML editor candidates

10.3.5 Step 5 - Execute

The test cases from Step 3 included sample data for each partition. These were varia-

tions on the test case XML file with errors inserted to test correct functioning of well-

formedness, validation and transformation. The results for Candidate G are shown in

Table 10.7 which passed six of the twelve tests and failed three (IsValidDTD). An abbre-

viated version of the test results form for Candidate G is given in Figures 10.6 to 10.7. As

333

10.3. SPIRAL 7 CASE STUDY

Candidate G had no functionality for the XSLT transformation, the three related tests

were skipped (Transform).

Table 10.8 includes the results summaries for all of the candidates. The NumSkipped

column provides valuable information for assessing actual functionality. The candidates

fall into three categories: full or near-full functionality (D,E,F,G), minimal functionality

(A,B,C) and not assessed (H). Candidate H could not be installed, thus there are only

results for seven of the candidates. In the number of tests passed column the same

candidates perform well. The test results are used to generate the metrics TFIT, TRES

and CX_U in Table 10.8.

Figure 10.6: Form for recording results of tests (Page 1/2)

334

CHAPTER 10. CDCE PROCESS RESULTS

Figure 10.7: Form for recording results of tests (Page 2/2)

Operation NumTests NumSkipped NumPassed
LoadFile 1 0 1
IsWellFormed 2 0 2
IsValidDTD 3 0 0
IsValidSchema 3 0 3
Transform 3 3 0

Table 10.7: Raw test results for Candidate G

Cand. NumTests NumSkipped NumPassed TFIT TRES CX U
A 12 9 2 3 2 4
B 12 9 0 3 0 0
C 12 9 3 3 3 5
D 12 0 12 10 10 10
E 12 3 5 9 5 8
F 12 0 12 10 10 10
G 12 3 6 9 5 10
H 0 12 0 0 0 0

Table 10.8: Test results for shortlisted candidates

335

10.3. SPIRAL 7 CASE STUDY

10.3.6 Step 6 - Evaluate

At this point the metrics for each of the candidates can be collated. Table 10.9 lists the

eight candidates and their results against each of the metrics. These results are added

into the XML file for all the shortlisted candidates in preparation for Step 7. The columns

for FFIT, TFIT and TRES would theoretically match if the documented functionality was

usable and performed correctly. It may be the nature of the repository, but there are

marked variations in these three metrics, except for Candidates D and F.

Candidate FFIT FEXS AEFT TFIT TRES CX U
A 6 10 8 3 2 4
B 8 10 10 3 0 0
C 4 6 10 3 3 5
D 10 6 4 10 10 10
E 8 10 8 9 5 8
F 10 6 4 10 10 10
G 8 10 4 9 5 10
H 0 0 0 0 0 0

Table 10.9: Scores against metrics for shortlisted candidates

10.3.7 Step 7 - Rank

The metrics from the evaluation are numeric from 0-10, but there is no common unit

to allow them to be meaningfully aggregated. To decide on the ranking, a classifier

is used, as described in Section 8.5. For Step 7, the classifier focusses on the metrics

attributes and using the ideal ranges for each as specified by the user in Step 1 as initial

values for the six metrics (first row of Table 10.10). This new classifier is trained and

the candidates are classified. On the first pass, none of the candidates meet the ideal

specification. Unlike Step 2 of the process, where criteria were included/excluded, this

time the loosening is done by changing the acceptable ranges. This approach could also

be used to loosen criteria in Step 2, where appropriate. The final values used for this

case study are given in the bottom row of Table 10.10.

Metric FFIT FEXS AEFT TFIT TRES CX U
Initial Value 8 8 6 6 10 8
Final Value 8 6 5 6 8 8

Table 10.10: Final values for evaluation metrics

336

CHAPTER 10. CDCE PROCESS RESULTS

After the second pass, there are two clear recommendations - Candidates D and F.

Beyond these two there are two more that would be next best ranked - Candidates E and

G. The other four performed poorly and would not be recommended. An issue with the

top two is their licensing. Both programs are from the same company, one released under

an academic licence and the other as commercial. Where licensing restrictions exclude

the top two, Candidates E and G should be considered.

10.3.8 Step 8 - Report Results

To provide a record of the selection process, all artefacts and input files are archived,

along with versions of the ideal specification, test cases, shortlists, decision trees, test

results, evaluation and ranking discussion.

The total time taken for this case study was fourteen hours, including computation

time. Specification for the XML editor took four hours, with another three hours re-

quired for the shortlisting step (computation time and analysis using the ClassifierSuite.

Developing the Z specification, XML files for test data and generating the tests took

two hours. Once this was complete, the software was installed and the adaptation effort

recorded. The forms created by the test generation were used to record the performance

of the software, with Steps 4-8 taking around five hours.

10.4 Spiral 7 Evaluation

This Spiral provides input to RE4, where the Process and strategies are to be evaluated.

The stakeholder Win conditions were listed in Table 10.2. For both the application

developer and academia, the choice of problem needed to be representative. There are

two ways to look at this - did it represent a realistic problem, and did it exercise the

Process to show its value? The answer in both cases is yes. Application developers

are interested in whether the strategies developed throughout the investigation would

be beneficial to them. The researcher believes that the range of strategies, tools and

solutions has value as a suite, but also as individual ideas to transfer into a different

environment. The case study showcases the final version of the evaluation and this can

inform component developers who have an interest in how their software is assessed.

Returning to the academic perspective, the focus turns to assessment criteria, peer

337

10.4. SPIRAL 7 EVALUATION

SPIRAL 7 Purpose Evaluate Results
Issue effectiveness of
Object case study and evaluation
Context Spiral 7

Goal 7A Focus Quality: Exercise the whole process in the case study,
evaluate according to industry standards

Viewpoint Quality Assurance personnel
Q7A1 Does the case study exercise the entire process? YES
Q7A2 Does the evaluation use an industry standard? YES

Goal 7B Focus Usability: Evaluate the process and tools in terms of
real world requirements

Viewpoint Application developer
Q7B1 Has the evaluation worked with real world data? YES
Q7B2 Has the work been tested on real world examples? YES

Table 10.11: GQM Summary - Spiral 7

review, issues and future work. In terms of assessment criteria, all Spirals have been

assessed through real world application, then matching against Win conditions and GQM

assessment. This is a thorough and appropriate evaluation. All Spirals have also been

exposed to peer review, including the outcomes of this keystone case study (Maxville

et al, 2009). Issues and future work will be discussed in Section 10.5 and again in the

Conclusion. It is considered that the Win conditions for Spiral 7 have all been satisfied.

10.4.1 Spiral 7 Goals

For this Spiral, there are two goals that are relevant: quality and usability.

Quality

The XML Editor case study provided eight strong candidates to exercise the shortlisting

and ClassifierSuite. A behavioural specification was developed along with XML files

for test data to represent each equivalence class. From this the testing and evaluation

provided a thorough comparison and showed the complete process in action. As with all

Spirals in this investigation, the GQM approach has been used to evaluate the outcomes.

Usability

Throughout all Spirals the investigation has been based on real world data. Along with

the data real world scenarios have been used for the case studies: in this case the scenario

was the selection of an XML editor. In going through the selection process, the researcher

338

CHAPTER 10. CDCE PROCESS RESULTS

found that many of the tasks within selection had been made much easier through the

selection strategies and tools that had been developed. The self-documentation of the

Process provided all the resources required to discuss the selection scenario in this Chap-

ter.

10.5 Spiral 7 Review and Plan

The case study has satisfied all of the requirements for stakeholder Win conditions and

the GQM. The results were externally reviewed through publication in IET Software

(Maxville et al, 2009). The main contribution of this Spiral is the synthesis of the

strategies and procedures across the investigation. It switches the focus from strategy

development and implementation to the user experience of the Process. This keystone

case study completes the project and feeds into the conclusions in Chapter 10.

10.6 Summary

This Chapter explored the XML Editor case study to exercise all strategies, tools and

procedures in the CdCE Process. As the seventh and final Spiral, it brings together the

cumulative contributions across all six preceding Spirals, showing that they can work

together to address the initial research problem.

The initial scenario for the case study met with difficulties due to poor quality of

the shortlisted candidates. This provided lessons in the software quality and vitality of

open source projects in the selected repository. It also became clear that installation and

execution were required to assess a candidate, as top candidates based on metadata did

not always translate to top results overall.

The revised scenario of the XML Editor allowed a fresh dataset to be used. The

Emailer scenario had been explored in previous Spirals. The final case study provided an

unknown selection task and the timings involved were thus representative of a real-world

selection scenario.

The full case study allowed the researcher the opportunity to experience the Process

from the user perspective. This included the global context of defining the requirements

and relevant criteria for a new selection task. The value of strategies and tools became

apparent, while remaining manual tasks could be considered in terms of keeping them

339

10.6. SUMMARY

manual or automating them as future work. It also helped identify implications and

recommendations which are discussed in the following chapter: Contributions of the

Study.

340

Chapter 11

Contributions of the Study

This thesis has presented the investigation of strategies for the intelligent selection of

components. The work has explored four Research Elements across seven Spirals of

activity. Each Spiral chapter includes an evaluation in terms of the six goals set for

the investigation. In this Chapter, the conclusions, implications and recommendations

resulting from the entire study will be discussed.

11.1 Conclusions

The problem addressed in this thesis is:

What strategies and techniques can be developed to support the selection of

third party software components?

The focus has been the development of fundamental strategies to enable the intelligent

selection of suitable components from all available components. This was approached

through the Spirals, with each focussing on one or more Research Element. The findings

from each bundle of work were reviewed within each Spiral, and the conclusions based

on the findings follow. There may be alternative explanations for these findings, which

are discussed in Section 11.1.2. In some aspects of the investigation, the ideal approach

was not possible. These limitations on the study are outlined in Section 11.1.3. Based

on the conclusions, explanations and limitations, Section 11.1.4 addresses the impact of

the study.

341

11.1. CONCLUSIONS

11.1.1 Conclusions Based on the Findings

The study considered four Research Elements as outlined in Chapter 1. The investigation

and resulting conclusions are now viewed in turn.

Research Element 1

Development or extension of a template for the specification of

components (RE1)

The template for characterising components was the focus of Spiral 1 of the investi-

gation. The approach taken allows the template to be the driver of the selection process,

as well as the transformation format for repositories. The template conforms with the

Dublin Core standard for describing electronic resources. The specification template has

been successfully applied and enhanced throughout the investigation, enabling evaluation

of candidates on functional and non-functional criteria. The use of XML and XSLT for

the template and other documents throughout the CdCE Process has provided consis-

tency, flexibility and transparency by encoding the data model in the de-facto standard

for data interchange.

Conclusion 1: The template was able to successfully characterise components for use

in the CdCE Process.

Documented in Chapter 4.

Research Element 2

Development of a process for the selection of software components

(RE2)

Spiral 2 of the study centred on the development of a process for the selection of

software components. This was an initial, manual version of the CdCE Process which was

implemented, automated and applied through Spirals 3-7. The three-phase approach of

shortlisting, evaluating and ranking proved appropriate with the addition of feedback

loops/iteration for tuning the ideal specification in response to the results presented.

After applying it on a variety of case studies, it has shown itself to be generally applicable.

342

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

Conclusion 2: The CdCE Process provided a structured, repeatable process for selection

and evaluation of software and was able to be applied across a range of case studies.

Documented in Chapter 5 and applied in Chapters 5 to 10.

The approach taken also aimed to provide a pattern for selection in a more general

sense. Aspects of the Process can be replaced or exchanged, a task made easier through

the clarity of the XML files for input and output.

Conclusion 3: The investigation has developed a reusable framework for selection, and

shown its instantiation for software selection in the CdCE Process.

Documented in Chapter 5, Section 8.

Research Element 3

Investigation of and implementation of strategies for the shortlist-

ing and evaluation of suitable software components (RE3)

With the specification and Process in place, the study changed focus to the develop-

ment of strategies to apply intelligence and automation to improve quality and scaling.

Although other AI approaches were considered, the C4.5 machine learning classifier was

selected as most appropriate based on its transparent representation of decisions via the

resulting decision tree, the high accuracy of results and training ability.

Conclusion 4: The C4.5 classifier was effective in classifying the list of components

and creating a shortlist.

Documented in Chapter 6.

Enhancements to the data representation were investigated and implemented in Spiral

4. These were selected in the review of Spiral 3 as the next strategies to explore. The

new work included re-defining attribute types, developing a range of transformations

to better utilise the data, implementing ontologies and abstraction and formalising the

handling of missing data. Comparative studies were undertaken and showed that these

enhancements improved recall and relevance.

Conclusion 5: Enhancements to the representation of data improved the recall and

relevance of shortlists.

Documented in Chapter 7.

343

11.1. CONCLUSIONS

With the procedure and tool support for shortlisting well-advanced, Spiral 5 con-

sidered the evaluation and ranking phases of the Process (Steps 3 to 8). Metrics were

developed to represent the results of the static and dynamic evaluation. A formal spec-

ification in Z was used to encode the desired behaviour and provide a test directive to

the abstract test generator. A single test suite was prepared for all candidates to allow

a better comparison than developing tests for each candidate separately. An adaptation

model was developed to enable the customisation of the abstract tests for each candi-

date. The information from adaptation and testing were collated into metrics. A second

classifier was trained and used to rank the candidates.

Conclusion 6: Abstract test case generation from behavioural specifications provide a

meaningful comparison of candidates.

Documented in Chapter 8, Section 3.

Conclusion 7: Metrics for evaluation were an effective representation of performance

against requirements.

Documented in Chapter 8, Section 2.

Conclusion 8: The C4.5 classifier was effective in ranking of candidates.

Documented in Chapter 8, Section 5.

A key driver of the study was to make the Process usable and scalable. In Spiral

6 the ClassifierSuite added an improved approach to selecting criteria and understand-

ing the impact of decisions. In the original (manual) approach, the collation of values

against criteria limited search functionality and restricted the number of items that were

considered. Through the use of the classifier, the full repository could be assessed and

the enhanced data representation took the recall and relevance above that of database

queries. The query or criteria set is tuned to create a shortlist through iteration, which

had typically been 4-6 sets in case studies. The ClassifierSuite allows the consideration

of all possible sets in a graphical format with tool support. This may identify sets that

would not have been considered along a heuristic path of exploration. The suite also

provides a mechanism to justify the choices of sets of criteria.

Conclusion 9: The ClassifierSuite is an effective decision support tool.

Documented in Chapter 9.

344

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

Research Element 4

Evaluation of the effectiveness of the template, process and strate-

gies via case studies (RE4)

The final Spiral addressed RE4 to evaluate the Process through application to a case

study which comes with the evaluation of each Spiral to allow a complete evaluation in

terms of overall project goals. The outcomes of the Spirals performed well against all six

goals and in terms of peer review.

Conclusion 10: The outcomes of the tasks addressed in the Spirals achieved the goals

set for the project.

Documented in Chapter 10, and in the evaluations in Chapters 4 to 9.

11.1.2 Alternative Explanations

This investigation was carried out by the researcher, including all experiments and case

studies. In some cases a scenario was revisited to assess the value of a new or different

strategy. These strategies were expected to improve outcomes (e.g. T5 improved on T3)

and the results supported this for automated over manual. It is also possible that the

increased familiarity with the scenarios resulted in improved results. In the case of the

transformations, the scripts used to generate the shortlists were identical and thus any

biases were restricted to the calculation of relevance and recall. The researcher identified

the relevant projects on the repository as a whole, which allowed an objective view of

which shortlists had best recall and relevance.

Familiarity may have affected the comparison between manual and automated ap-

proaches to shortlisting, including the use of the ClassifierSuite. Although not specifically

or intentionally dealt with, it is less likely to have caused problems as the experiments and

case studies were often separated by a long time interval. This would have diminished the

effect of researcher familiarity with the scenarios. In addition, the ‘email client’ scenario

used for most of the investigation had to be replaced. This was due to low quality in the

candidates on the shortlist, where few were able to be installed and executed. A new

case study, the ‘XML editor’, was developed, resulting in completely new shortlists and

removing any familiarity bias.

345

11.1. CONCLUSIONS

In the testing and evaluation, a range of metrics were calculated. In the case studies

these metrics effectively differentiated between functionally suitable and unsuitable soft-

ware. An alternative explanation is that a subset of the metrics would have been enough

to make a decision. The complete set of metrics are FFIT, FEXS, AEFT, TFIT, TRES, CX_P,

CX_R, CX_S and CX_U (see Table 8.3).

The metrics were designed to be comprehensive - to give all information the developer

may need. It is possible that one or a subset of the metrics are sufficient for the evaluation.

A likely candidate would be metric TRES, which to some extent combines functional fit,

testing fit and implies that the adaptation effort is not insurmountable. It does not

incorporate FEXS, but would give some clue to the context (CX) metrics. A larger

number of case studies could be analysed to see if there is a key metric(s). If so, the

metric set could be reduced. At this point, more metrics are preferred as they allow for

greater visibility of the performance of the evaluation.

11.1.3 Limitations of the Study

The limitations of the study relate to: social context; the dataset used; and, internal-

only usage and evaluation of the Process, products and procedures. It was decided to

assume a generic global context as a delimitation of the study. This allowed the focus

to be on the selection task from the point of having the requirements for the desired

component available. The social and project context is a point of variation, however, the

provision of a structured, repeatable process is a step towards insulating selection from

these contextual aspects.

As mentioned in Chapter 6 the freshmeat repository is populated by projects, the

majority of them standalone applications. This research has aimed to work with real

world data whenever possible. The manual case study (Spiral 2) had accessed Tucows,

Component Source, Flashline and SourceForge and through this developed an awareness

of the richness of metadata they held. Unfortunately, the leading component repository,

Component Source, could not approve access direct to full metadata for their listings.

Other component repositories were considered, but none had significant numbers of com-

ponents registered. This led to a trade-off between the value of real world application

data over a synthesised dataset with specifically developed components to evaluate. The

decision was made to work with a larger dataset which was openly available at freshmeat

346

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

(33,262 projects at the time) and to focus on shortlisting. Much of the work in Spirals

3 and 4 required metadata describing potential candidates for shortlisting. As a result

the evaluation and testing was made more general to deal with applications rather than

components in the case studies. The Process and evaluation has still been targeted at

components. Subsequent studies would approach additional repositories and to access

metadata for components.

Another limitation of the study is that the automation is applied to a single repository

(Spiral 4 onward). Although one repository has been used, the strategies and tools are

not bound to the specific repository format. The data is converted to CdCE format by the

FM2CdCE filter. This is an exemplar for other repositories and would simplify bringing

in future repositories. Unfortunately, after much effort the conversion of the SourceForge

repository was found to be too complex due to the internal database structure. A flat

file export simplifies the transformation process and should be sought out for future

repositories.

The remaining limitations of the project are in the range of comparisons made. It

would have been informative to compare the responses of independent developers in using

the Process and reflect on their experiences. This would have tested documentation and

ease of use, as well as moved beyond the researchers familiarity with the Process. It

would also have been of value to have external evaluation of the Process, products and

case studies. These were peer-reviewed, however a more specific and detailed review may

have found areas to improve. Time did not allow this and it is a clear priority for future

work.

11.1.4 Impact of Study

This investigation opens up a new direction in strategies for component selection. On

a low level, the specific tools and techniques are available for component selection and

other selection tasks. These include:

• Component specification template

• Support for context

• Test generation

• XML/XSLT support for documentation

347

11.2. IMPLICATIONS

• Use of the classifier for selection

• Training data generation

• Decision-support through ClassifierSuite.

At the process and specification level, they can be utilised in the application of the

Process as described in this thesis, or they may be used to explore alternative strategies as

a framework. This is where the research conducted could have benefited from equivalent

specification, processes and case studies, had they existed. Future studies may find this

work useful as a benchmark.

Finally, the approach to the investigation which used SDM as the central research

methodology has been instructive as a method for carrying out objective setting, devel-

opment of strategies, implementation and evaluation. More than a software development

exercise, this work has shown a systematic approach to the entire study through the use of

the SDM. This is particularly suited to a PhD as the Spirals include checkpoints for eval-

uation which provide opportunities to write up cohesive sections of work for peer/review

and publication.

11.2 Implications

The investigation is considered to have a range of contributions at a variety of levels.

Each has potential to influence professional practice, as was the intent of the project. In

all cases aspects have been identified to be taken further through future studies. This

would aim to improve understanding and provide a wider comparison of techniques.

Future work could extend the component specification, the selection process, the use of

the classifier, data repository, testing and evaluation, ClassifierSuite, pattern and SDM.

Three of the identified contributions are considered to have strong potential in extending

scholarly understanding in the field: data representation; testing and ClassifierSuite. In

addition, data representation, pattern and use of SDM may influence theory in the area.

The impetus for this work was to support application developers in their discovery

and evaluation of components when developing COTS-intensive systems. Although many

processes have been published, there is evidence that the uptake is low and that most

developers use informal or ad-hoc approaches when selecting software (Li et al, 2005).

With the challenge of adoption in mind, the goals for GQM throughout the project

348

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

were quality, usability, intelligence, innovation, dynamics and reuse. These align

closely to the Win conditions and are all concerned with the professional practice of the

stakeholders.

Key stakeholders for quality were the application developers and quality assurance

personnel. Win conditions relating to quality included validity of results and documenta-

tion of the decision process. Kotonya and Hutchinson (2005) points out the importance

of documenting the selection process.

Each of these avenues of influence is now discussed in more detail in terms of the

contributions (C1-C9) which were described in Section 1.8. These are linked to the goals

of the study in the following discussion:

C1: Component specification template

There is support for the usability of the template as the required fields are synthesised

from existing templates in the literature and those used in software repositories. The

specification has potential to influence specification standards, as a whole, in part or

in the handling of data representation. The component specification is implemented as

an object in the developed code to isolate changes to attributes, allowing for dynamic

update and substitution of the template within the Process. The specification itself was

not highly innovative, however the content includes both functional and non-functional

attributes and context information, suited to both discovery and evaluation. It was a key

factor enabling the use of artificial intelligence throughout the Process.

C2: Repeatable, semi-automated process for component selection

A key to quality in selection is a repeatable, well documented process. Developers and

quality assurance can work with the CdCE and the automation within it to remove much

of the subjective work, giving supporting evidence for any decision that is made. Inputs

and outputs of the Process are held in XML files which can be audited if required. The

Process, and its tools, support the quality of selection through this documentation of

processes and decisions.

An intuitive, flexible process is more likely to be adopted than one that is difficult to

understand or adapt to local procedures (usability). The CdCE Process formalises the

common evaluation steps and may contribute to a quality process that developers will

349

11.2. IMPLICATIONS

actually use. In a manual selection process, it can help transition from an ad-hoc to a

structured approach. Using the automation tools takes on some of that manual effort

and gives the ability to assess larger repositories and more complex criteria.

The support for flexibility in the implementation of the Process is reflected in the

low coupling between steps in the process, and in the well-defined ‘interfaces’ between

Steps (dynamics).This was demonstrated as the Process evolved and the implementation

changed across the course of the investigation. The Process itself was innovative in its

generality and in its implications for the separation of functional (testing) and non-

functional (shortlisting) parts of the evaluation.

C3: Support for context

Context is clearly a key issue in quality for component-based systems, particularly in

testing (Weyuker, 1998). Support for context was targeted throughout the investigation.

For example, the non-functional criteria provide context information for the shortlisting

and a mechanism was developed for context-based tests. The context support is flexible

in that it can encode the context information for different selection tasks (dynamics).

The context information and related results and artefacts are reused throughout the

Process. The context-based tests and their specifications have potential for reuse beyond

the selection process.

C4: Use of classifiers for selection

An issue identified in the literature was the limitations of aggregated assessment ap-

proaches (Ncube and Dean, 2002). The application of computational intelligence for

assessment is an innovation with a purpose. The requirement was that the new strategy

needed to avoid: the loss of information of aggregation; calculations based on incompat-

ible criteria types; and the widely used AHP’s assumption of independent criteria. The

C4.5 classifier takes each criterion on its own merits, generating a decision tree that filters

through the criteria. It is capable of identifying interplay (dependencies and incompati-

bilities) which are obscured by aggregation approaches. AHP and WSM are still widely

applied and the classifier is a contribution to the practice in that it provides analysis

and justification without aggregation and assumptions of independence. The selection

calculation impacts on the quality of the results and this study provides another option

350

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

for application developers.

In terms of dynamics, the choice of classifier is an option on the call to Weka in

the scripts, which allows easy substitution of a different machine learning tool within the

Weka Suite. If another machine learning tool is used, the scripts can be updated easily,

with the main additional change the matching of file formats for input and output.

C5: Data representation enhancements

Using the shortlisting approach allows the user to use more advanced knowledge rep-

resentation than a standard database query. This is encapsulated within the choice of

transformation (T1-T5) and has been shown to provide greater recall and relevance in

the given case studies. For professional practice, adding value without increasing the

complexity of the user interface helps maintain usability.

When looking at the data representation it is possible to alter attribute types and

add new transformations (dynamics). Modifying attribute types and handling requires

changes to the Java classes. These have been implemented with object-orientation and

polymorphism which provides good structural guidance for change. Adding transforma-

tions requires insertion of newly valid options (e.g. Transformation 6 = T6) and handling

code in the class for each attribute type. To best see the impact of changes, it may be

advisable to modify the handling of one attribute type in each new transformation and

compare results.

The aim of the data representation Spiral (Spiral 4) was to improve the results de-

livered via computational intelligence in Spiral 3. Although ontologies have become

popular, the integration of the knowledge-based approach into the Process and tools is

uncommon (innovation).

C6: Testing and evaluation approach

To support quality and compatibility, testing needs to be done in context and the tests

be comparable. The CdCE Process enforces the use of the same tests on all candidates and

advocates that the test environment be as similar to the target environment as possible.

The Process maintains a direct connection between behavioural requirements, generated

abstract tests and adapted tests, giving confidence that the right things have been tested

and that the testing and evaluation has been consistent across all candidates.

351

11.2. IMPLICATIONS

The Process provides a straight forward approach to test generation. Although choos-

ing Z notation might be considered a potential barrier to usability, the level of complex-

ity required in the behavioural specification is low - at the level of interface specification.

With this information, the specification is parsed to find required specific information

for the tests to be generated. So, using a simply defined behavioural specification, the

developer can generate a set of abstract tests.

A modestly intelligent approach to test generation has been used, reusing methods

from the testing literature.

C7: Classifier suite for decision support

The ClassifierSuite is aimed squarely at improved usability of the CdCE Process - specifi-

cally in providing a greater understanding of the results of running sets of criteria through

the classifier. Where the use of classifiers could potentially put forward a difficult to un-

derstand list of numbers, the Suite gives representation for the underlying relationships

between the numbers. It also connects to the shortlists, providing the user with a drill-

down facility from criteria to shortlist. The ClassifierSuite provides decision support via

an innovative tool which improves usability of the shortlisting strategies and tools.

While the graph structure (lattice) does exist in the literature, this use of the struc-

ture is innovative. The approach allows the user to gain greater benefit from the

intelligence and knowledge techniques used for shortlisting.

C8: Pattern for software selection

In support of reuse, the process can be generalised into a template for selection which

has an instantiation in the CdCE Process. This involves the implementation of each of

the steps and relevant tools. However, many aspects of the Process can be implemented

differently to suit local requirements. This may be at an organisation, team or project

level. For example, if Object Constraint Language1 (OCL) is already being used on a

particular project, an adjustment can be to use OCL in place of Z notation throughout.

This would require a new test generator and parser, but most of the Process would be

unaffected. The flexibility of a pattern for selection has potential in professional practice

and makes the outcomes of this research more widely applicable.
1http://www.omg.org/spec/OCL/2.2/

352

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

Other data repositories are also easily substituted. The ontology can be extended

or substituted, the distance matrix can be altered or replaced and/or the repository

itself. Similarly, the testing and evaluation implementation can be substituted with dif-

ferent specification language; test generation, test metrics, a test harness and evaluation

method. Additional tools, such as the ClassifierSuite, can be included or excluded. The

ClassifierSuite is an example of modifying the Process, as it was inserted into Step 2 and

attached to the existing output files. This exemplifies the dynamic nature of the Process

as a template for selection. Indeed, the selection task may be changed to assessing items

other than software and still be applicable.

C9: SDM as a research methodology

An innovation the researcher considers highly effective is the use of the SDM for the

entire investigation. This has been discussed under Section 11.1.4, Impact of the Study,

and is reinforced here as a novel aspect of the work which may affect professional practice

in how research is undertaken. In terms of validity of results, the investigation has utilised

the stakeholder Win conditions, the Spiral evaluations and peer review to continually

validate results. The SDM has facilitated a quality process for doctoral research.

11.2.1 Implications for Professional Practice

The CdCE Process as a whole indicates a way forward for organisation seeking greater

quality, transparency and traceability in the selection of components. As a pattern, the

Process can be tailored to suit the existing procedures and tools used on-site.

Although not the focus of this investigation, brokers may find value in the specification

template, and in the support for the shortlisting activity: use of classifiers, leverage of

knowledge representation and visualisation of selection criteria.

The ClassifierSuite has potential for extension and broader application as a mecha-

nism for understanding the impact of attributes on decisions. The value for supporting

selection has been shown. It is possible to consider multidimensional datasets and use

the tool to help understand the interactions of complex sets of variables (parameters,

attributes).

Another contribution of the investigation is the use of the SDM for managing the

entire project. The application of SDM in doctoral studies is not novel, however, it would

353

11.2. IMPLICATIONS

typically be focussed on the software development, separate to the wider investigation.

SDM has proven suitable across this study, supporting the reflection and self-evaluation

required for such an investigation. Thus, along with industry applications for the Process,

template and ClassifierSuite, the use of the SDM has potential implications for academic

professional practice.

11.2.2 Implications for Scholarly Understanding

The work of Spirals 3 to 5 are considered to have the most potential for influencing

scholarly understanding. In these parts of the investigation, case studies and quasi-

experiments were used to explore potential solutions and compare alternatives.

Spiral 3 explored alternatives for applying artificial intelligence to the shortlisting

task. A broad survey of traditional and new techniques highlighted those most suited to

this problem. The exploration of these techniques and any unforeseen issues are discussed

in Chapter 6. This information and analysis may be of value to other researchers as a

guide to additional options which may be suitable to investigate.

The exploration of data representation in Spiral 4 provided valuable information on

how to extract additional information from a dataset. Many small experiments were

carried out to compare the impact of each of the modifications. This provided an un-

derstanding of the individual and cumulative effects of the transformations and missing

data handling.

The third area having particular relevance to scholarly understanding is Spiral 6. The

ClassifierSuite formalised a manual approach to understanding criteria sets and shortlists.

In exploring the usefulness of the ClassifierSuite, properties and guidelines were developed.

As a novel approach to this analysis, the ClassifierSuite and the reflections on it are

contributions to scholarly understanding.

11.2.3 Implications for Future Research Studies

There are two main implications for future research studies: topics to extend and material

to build on. The CdCE Process and associated tools have been developed for reuse,

modification and extension. As such, they are available to be utilised in future research

studies. Beyond tool reuse, the case studies and scenarios may also be used as benchmarks

for comparison in future research. The researcher had looked (unsuccessfully) for existing

354

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

benchmarks to allow comparison of the work with other approaches.

Another implication is guidance for approaches to pursue in future research. From

this investigation and others (Ncube and Dean, 2002), there are many alternatives to

WSM and AHP (aggregation) based approaches. New work applying aggregation should

be able to justify the choice, given arguments against it and alternatives that are in the

literature.

Techniques including the use of XML/XSLT for process documentation, the C4.5

classifier and other machine learning techniques, distance calculations from ontologies,

abstract test generation and working with the freshmeat repository show promise and

can be recommended for further investigation.

11.3 Recommendations

There are many directions this work can be continued, and recommendations that can

be made for industry and academia.

11.3.1 Recommendations for Further Research

This investigation has highlighted many potential areas for future research. In most

cases, these relate to the identified limitations of the project. These areas include:

• A comparative study including CdCE and other processes

• Trial the Process in a software development environment

• External evaluation of the Process and tools

• Additional repositories

• Access to a component repository

• Other applications for ClassifierSuite

• Improve decision support through visualisation

• Test generation and the adaptation of tests.

In addition, further information could be elicited from the stakeholders about their

requirements. This could be through a variety of means, including surveys, focus groups

or case studies to find out more about current processes, requirements and allow for feed-

back on the CdCE Process. The experiments and cases in this study are laboratory-based,

355

11.3. RECOMMENDATIONS

and it would be beneficial to trial the Process in a commercial/organisational setting.

This would highlight any issues with Process suitability when socio-organisational factors

play a significant role, and any adjustments that may be required.

Of particular interest are two areas, test generation and to work with a dataset specific

to components. Unfortunately, it wasn’t possible to access real data from a component

repository at the time the work was carried out. The freshmeat dataset had strengths

in the type of metadata available and the number of entries - making it possible to

work through the shortlisting process. However, the intent of this work was to select

components. If access was available, a new case study would require the transformation

of the repository data to CdCE format. The selection process would be as described in

Chapters 5 to 9, with possible differences around the formal specification and the test

generation, adaptation and execution. Once the metrics were calculated, the existing

approach would continue.

A related extension of the work would be to further explore the generation and adap-

tation of the tests. One direction would be to go further with the adaptation models,

with the aim of automating that process. In addition, the tests could be executed via

a harness. In that case, some effort would be required to transform the abstract tests

to suit both the harness and the component adaptations. Once the transformations are

defined, an automated, repeatable process could take place to convert the test suite.

11.3.2 Recommendations for Professional Practice

The stakeholders identified for this investigation are the roles relating to these tasks

in professional practice. As a result, the outcomes are now considered in terms of the

stakeholders.

The key stakeholders throughout this investigation have been the application devel-

opers. The recommendation for them is to assess their current practices in selection of

third party software. If selection of externally developed components occurs, they may

look at adapting the CdCE Process to their environment. This could involve adjusting

for documentation standards, specification languages, relevant repositories and integrat-

ing with the development methodology used for the overall system. During adoption,

the new techniques should be staged in, as recommended by Rifkin (2003). Reviews

of performance and applicability after each selection task would aid in tuning the new

356

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

processes to match the organisational context.

Quality assurance personnel may not be aware of the practices used by developers

when selecting third party components. The Win conditions from the Spirals give an

indication of what parts of the CdCE Process the researcher believes these stakeholders

would be interested in. Overall quality can be considered as the minima of quality in

each part of the process - the weakest link affects overall quality. To avoid component-

intensive development from bringing unacceptable risk into the development, quality

assurance needs to encourage better practices. The Process provides documentation and

traceabillity, as well as formalising a task that is often informal.

For brokers, some of the issues encountered in the use of repositories may need to

be addressed. Provision of access to metadata for the repository affected the choice of

dataset for the research, and reduced options for comparative studies. For industry,

the effects are more serious and open access is encouraged. At the data level, the CdCE

template attributes may indicate additional information that could be added to a broker’s

data model. This research may also impact repository search facilities as the classifier

approach, and/or other aspects used in comparisons, may be able to enhance their search.

Component developers were not the direct targets for this work, but would have an

interest in how their components are evaluated. Key recommendations from this study

are: completeness of metadata; documentation of interfaces and functionality; regularity

of updates and ease of installation. If certification of components becomes more common,

this would be included in metadata and may become a discriminator for the selection of

software.

The final stakeholder is academia, in respect of how the study was carried out. As

has been mentioned, the SDM has been used to structure the entire study - beyond the

basic development of software. In this way, a software engineering or computer science

study can draw on alternative methodologies to the more commonly used R&D. As

computing is typically used to ‘solve problems’, this approach can put the problem at

the centre of the study, rather than the solution. Within the Spirals of the SDM, a mixed

methods approach has been used for evaluating strategies and their implementation. This

approach is novel, appropriate and has a solid theoretical basis. It is recommended to be

considered for future studies.

357

11.4. CONCLUSION

11.4 Conclusion

This thesis has documented the systematic exploration of strategies to support software

component selection. The study was based around four research elements which were

designed to provide the foundation for the development and implementation of strategies

and their evaluation. Section 11.1.1 lists the ten key conclusions drawn from the Research

Element findings.

The implications of the study span the professional practice of the stakeholders across

the goals of quality, usability, intelligence, innovation, dynamics and reuse. Spirals 3-

6 focussed on strategies and hence provide the greatest potential impact on scholarly

understanding. The outcomes and lessons from each of the Spirals has been published

as the investigation progressed (or after review and reflection).

The work raises new questions and avenues for future research as recommended in

Section 11.3.1. Recommendations are also given for the stakeholders: application devel-

opers; quality assurance officers; brokers; component developers and academia.

At this point the project has resulted in a series of contributions, across the seven

Spirals. These address issues and gaps identified in the critique in Chapter 2. Spiral

1 provided the component specification template. The lack of a standard specification

causes problems for storage, discovery, selection and for automation. The CdCE tem-

plate, swvML, is developed from existing standards, repository templates and the liter-

ature, along with the requirements for this study. It has been enhanced as the project

progressed to provide the information required in later Spirals.

The contributions from Spiral 2 are on two levels. Directly, a repeatable, semi-

automated process for component selection has been defined. The CdCE Process ad-

dresses the issue raised by Ruhe (2002) regarding the lack of scope for automation in

existing processes. At a reuse level, Spiral 2 also contributed a pattern for a selection

process, including filtering to a shortlist, functional evaluation and ranking. This pro-

vides flexibility for the Process to be implemented in different ways and for different

selection tasks.

Early (and some recent) literature on evaluation applied aggregation techniques (e.g.

WSM and AHP) for moving from results against selection criteria to a single result.

This has been criticised in the literature (Ncube and Dean, 2002) and was targeted in

the exploration of strategies in Spiral 3. The approach taken is the use of the ideal

358

CHAPTER 11. CONTRIBUTIONS OF THE STUDY

specification to generate training data for a predictive model using C4.5. This approach

centres the shortlisting on requirements as represented in the ideal specification. It is a

novel approach with the potential for application beyond C4.5 and component selection.

The classifier approach solved some issues and opened opportunities to make better

use of knowledge in the component attributes. Enhancements to the representation of

data and the methods of comparison were shown to enhance relevance and recall in the

resultant shortlists. The handling of missing data was also improved and made consistent.

The contribution of Spiral 4 is in the strategies for data representation and in the evidence

shown to support the premise that recall, relevance and consistency have been improved

through these strategies.

There were two strategic directions that were in the early intent of the project: ap-

plication of artificial intelligence and testing as part of the selection process. The testing

and evaluation in Spiral 5 was built on a behavioural specification in Z notation. The

contribution is not in the automated test generation itself - it is in the use of abstract

test cases and the integration of the testing and evaluation. Generating abstract test

cases ensures consistent tests can be used across all of the candidates, as the selection

process is matching to a single specification. The evaluation uses automatic test gener-

ation from the Z specification. The resulting abstract tests are then adapted to each of

the candidates.

Basic tests exercise the functionality as specified, then subsets of the tests are run to

focus on aspects of the functionality as required by the user context. These context-based

tests are in four areas: performance, reliability, stress and usage. A set of corresponding

metrics has been defined to capture these results. These are collated along with five

metrics for functional fit, functional excess, adaptation effort, testing fit and test result.

The classifier approach is reused for the ranking of candidates. Information across all

of the steps in the Process is provided to the application developer to assist in the final

decision and its documentation.

One of the benefits of automated and structured approaches is in the repeatability of

the process. The CdCE Process creates reusable artefacts which can be used when revisit-

ing the selection process. System evolution may force the replacement of components, or

components may become unavailable. Making it easy to ensure that the selection matches

the initial task reduces rework and provides consistency. Quality assurance activities can

359

11.4. CONCLUSION

make use of these artefacts in any audits of the selection.

The use of automation in shortlisting led to an increase in the number of shortlists

considered in the case studies. Extending this to an exhaustive exploration of all shortlists

created a new issue - the comprehension of all the shortlist data. The ClassifierSuite was

developed in response to this emergent need. The contribution of a novel and effective

decision support tool came in Spiral 6. Case studies from previous Spirals were revisited

and the ClassifierSuite tool uncovered new and unexpected shortlists. The ClassifierSuite

provided understanding and confidence in the choice of selection criteria and enhanced

the CdCE Process as a whole.

Spiral 7 focussed on Research Element 4 - evaluation of the products of the inves-

tigation. The final key contribution is in the structure of the evaluation and how the

research was conducted. The investigation has been structured around the use of the

SDM. This also structures the review and evaluation for each Spiral. Goals were defined

for the overall project, then interpreted in the context of each Spiral. These contextual

goals were used for the GQM evaluation at the end of each Spiral, along with the Win

conditions for each of the stakeholders. Thus the final contribution is in the manner in

which the research was conducted, showing that the SDM is appropriate not only to the

development of software, but also to entire research projects.

In conclusion, the investigation was concerned with the development of strategies to

support software component selection. The project has addressed the gaps identified in

the literature and practice, and made corresponding contributions through the strategic

approaches taken towards these gaps. There are implications for professional practice,

scholarly understanding and to future research in the area. It is hoped that this work

helps to progress the uptake of CBSE and the ability for application developers to employ

quality in their selection of third party software components.

360

Bibliography

Abbass H A and Sarker R (2001) “Simultaneous Evolution of Architectures and Connection
Weights in ANNs”, in “The Artificial Neural Networks and Expert Systems Conference
(ANNES2001)”, Dunedin, New Zealand, pp 16–21

Abran A, Bourque P, Dupuis R, Moore J W and Tripp L L (eds) (2004) Guide to the Software
Engineering Body of Knowledge - SWEBOK, Piscataway, NJ, USA: IEEE Press, 2004 version
ed

Albert C and Brownsword L (2002) Evolutionary Process for Integrating COTS-Based Systems
(EPIC) Building, Fielding, and Supporting Commercial-off-the-Shelf (COTS) Based Solutions,
Technical Report CMU/SEI-2002, Carnegie-Mellon University

Alexander C (1977) A Pattern Language: Towns, Buildings, Construction, Oxford University
Press

Alvaro A, de Almeida E S and de Lemos Meira S (2005a) “Software Component Certification: A
Survey”, in “31st EUROMICRO Conference on Software Engineering and Advanced Applica-
tions (EUROMICRO-SEAA’05)”,

Alvaro A, Almeida E S D and de Lemos Meira S R (2005b) “Quality Attributes for a Component
Quality Model”, in “In the 10th International Workshop on Component-Oriented Programming
(WCOP) in Conjunction with the 19th European Conference on Object Oriented Programming
(ECOOP)”,

Alvaro A, de Almeida E S and de Lemos Meira S R (2010) “A Software Component Quality
Framework”, ACM SIGSOFT Software Engineering Notes, 35(1)

Alves C and Castro J (2001) “CRE: A systematic method for COTS components selection”, in
“Proc. of the XV Brazilian Symposium of Software Engineering”, Brazil

Alves C and Finkelstein A (2002) “Challenges in COTS Decision-Making: A Goal-driven Re-
quirements Engineering Perspective”, in “Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering (SEKE 2002)”,

Anderson W (1989) “A heuristic for software evaluation and selection”, Software Practice and
Experience, 19(8), pp 707–717

Andreea Vescan A and Grosan C (2008) “A Hybrid Evolutionary Multiobjective Approach for the
Component Selection Problem”, in “Proceedings of the International Conference on Hybrid
Artificial Intelligence Systems (HAIS)”, pp 164–171

Andreou A and Tziakouris M (2007) “A quality framework for developing and evaluating original
software components.”, Information and Software Technology, 49(02), pp 122–141

Andreou A S, Vogiatzis D G and Papadopoulos G A (2006) “Intelligent Classification and Re-
trieval of Software Components”, in “IEEE signature conference on Computer Software and
Applications (COMPSAC)”,

361

BIBLIOGRAPHY

Aoyama M (1998) “New Age of Software Development: How Component-Based Software
Engineering Changes the Way of Software Development”, in “International Workshop on
Component-Based Software Engineering”, Kyoto, Japan

Atkinson S (1997) A Formal Model for Integrated Retrieval from Software Libraries, Technical
Report 97-01, University of Queensland

Bachmann F, Bass L, Buhman C, Comella-Dorda S, Long F, Robert J E, Seacord R C and
Wallnau K C (2000) Volume II: Technical Concepts of Component-Based Software Engineering,
Technical Report CMU/SEI-2000-TR-008, Carnegie Mellon University: Software Engineering
Institute

Bader A, Mingins C, Bennett D and Ramakrishan S (2003) “Establishing Trust in
COTS Components”, in “Proceedings of the Second International Conference on COTS-
Based Software Systems”, ICCBSS ’03, London, UK: Springer-Verlag, pp 15–24,
http://dl.acm.org/citation.cfm?id=646853.707759

Bak̊as O, Romsdal A and Alfnes E (2007) “Holistic ERP selection methodology”, in “14th Inter-
national EurOMA Conference”,

Barden R, Stepney S and Cooper D (1994) Z in Practice, Prentice-Hall

Basili V (1992) Software Modelling and Measurement: The Goal/Question/Metric Paradigm,
Technical Report CS-TR-2956, University of Maryland

Basili V and Boehm B (2001) “COTS-Based Systems Top 10 List”, IEEE Computer, 34(5), pp
91–93

Basili V, Caldeira G and Rombach H D (1994) The Goal Ques-
tion Metric Approach, New York, USA: John Wiley and Sons,
http://wwwagse-old.informatik.uni-kl.de/pubs/repository/basili94b/encyclo.gqm.pdf

Bass L, Buhman C, Comella-Dorda S, Long F, Robert J E, Seacord R C and Wallnau K C (2000)
Volume I: Market Assessment of Component-Based Software Engineering, Technical Report,
CMU/SEI-2001-TN-007

Bass L, Clements P and Kazman R (1998) Software Architecture in Practice, Reading, Mas-
sachusetts: Addison Wesley Longman

Batista G and Monard M (2003) “An Analysis of Four Missing Data Treatment Methods for
Supervised Learning”, Applied Artificial Intelligence, (17), pp 519–533

BCS (2001) Standard for Software Component Testing, Standard Working Draft 3.4, British
Computer Society: Specialist Interest Group in Software Testing (BCS SIGIST)

Benôıt G (2002) Data Mining, Silver Spring, MD: American Society for Information Science and
Technology, pp 265–310

Bergner K, Rausch M, Sihling M and Vilbig A (1999) “Componentware - Methodology and Pro-
cess”, in “International Workshop on Component-Based Software Engineering”, Los Angeles

Bertolino A (2007) “Software Testing Research: Achievements, Challenges, Dreams”, in “Future
of Software Engineering (FOSE’07)”, IEEE Computer Society

Beus-Dukic L (2000) “Non-Functional Requirements for COTS Software Components”, in “Po-
sition Paper. ICSE ’2000 Workshop on Continuing Collaborations for Successful COTS Devel-
opment”, ACM Press, pp 4–5

362

BIBLIOGRAPHY

Boehm B (1988) “A Spiral Model of Software Development and Enhancement”, IEEE Computer,
pp 61–72

Boehm B (2006) “A view of 20th and 21st century software engineering”, in Osterweil L J,
Rombach H D and Soffa M L (eds) “ICSE ’06: Proceedings of the 28th International Conference
on Software Engineering”, ACM, pp 12–29

Boehm B, Port D, Yang Y, Bhuta J and Abts C (2003) “Composable Process Elements for
Developing COTS-Based Applications”, in “Proceedings of the 2003 International Symposium
on Empirical Software Engineering (ISESE03)”, pp 8–17

Bonoma T (1985) “Case Research in Marketing: Opportunities, Problems, and a Process”, Jour-
nal of Marketing Research, XXII, pp 199–208

Bote-Lorenzo M, Dimitriadis Y and Gãmez-Sãnchez E (2004) “Grid Characteristics and Uses: A
Grid Definition”, in Fernãndez Rivera F, Bubak M, Gãmez Tato A and Doallo R (eds) “Grid
Computing”, Springer Berlin / Heidelberg, volume 2970 of Lecture Notes in Computer Science,
pp 291–298, http://dx.doi.org/10.1007/978-3-540-24689-336, 10.1007/978 − 3 − 540 −
24689− 3− 36

Bracciali A, Brogi A and Canal C (2002) “A formal approach to component adaptation”, The
Journal of Systems and Software, 74(2005), pp 45–54

Brereton P and Budgen D (2000) “Component-Based Systems: A Classification of Issues”, IEEE
Computer, pp 54–62

Briand L C (2002) “On the many ways software engineering can benefit from knowledge engi-
neering”, in “In Proceedings of the 14th international conference on Software engineering and
knowledge engineering”, ACM, pp 3–6

Briand L C, Labiche Y and Sowka M M (2006) “Automated, Contract-based User Testing of
Commercial-Off-The-Shelf Components”, in “ICSE ’06: Proceedings of the 28th International
conference on Software Engineering”, New York, NY, USA: ACM, pp 92–101

Brogi A, Canal C and Pimentel E (2006) “On the semantics of software adaptation”, Science of
Computer Programming, 61, pp 136–151

Brooks F P (1987) “No Silver Bullet - Essence and Accidents of Software Engineering”, IEEE
Computer, 20(4), pp 10–19

Brou K (2005) “Querying of Open Source Programs Libraries: an Approach Based on a XML
Metadata Repository”, in “IEEE SITIS”, pp 100–106

Buglione L and Abran A (2000) “Balanced Scorecards and GQM: What are the differences?”, in
“FESMA-AEMES Software Measrurement Conference”,

Burgues X, Estay C, Franch X, Pastor J A and Quer C (2002) “Combined Selection of COTS
Components”, in “International Conference on COTS-Based Software Systems (ICCBSS)”,
LNCS 2255, Springer, pp 54–64

Burton S (2000) Automated Testing From Z Specifications,
http://citeseer.nj.nec.com/burton00automated.html

Buxton J, Naur P and Randell B (eds) (1968) Software Engineering Concepts and Techniques:
1968 NATO Conference on Software Engineering

Carney D and Long F (2000) “What Do You Mean by COTS? Finally, a Useful Answer”, IEEE
Software, 17, pp 83–86, http://dl.acm.org/citation.cfm?id=624636.626114

363

BIBLIOGRAPHY

Carrington D, MacColl I, McDonald J, Murray L and Strooper P (1998) From Object-Z Speci-
fications to ClassBench Test Suites, Technical Report SVRC Technical Report No 98-22, The
University of Queensland

Carvallo J P and Franch X (2006) “Extending the ISO/IEC 9126-1 quality model with non-
technical factors for COTS components selection”, in “WoSQ ’06: Proceedings of the 2006
international workshop on Software quality”, New York, NY, USA: ACM, pp 9–14

Carvallo J P, Franch X, Grau G and Quer C (2004) “COSTUME: A Method for Building Quality
Models for Composite COTS-Based Software Systems”, in “QSIC”, IEEE Computer Society,
pp 214–221

Cechich A, Piattini M and Vallecillo A (2003) “Assessing Component-based Systems”, In: Cechich
et al (Eds) Component-Based Software Quality,, LNCS 2693, pp 1–20

Cechich A and Polo M (2002) “Black-Box Evaluation of COTS Components Using Aspects and
Metadata”, in Oivo M and Komi-Sirviö S (eds) “PROFES”, Springer, volume 2559 of Lecture
Notes in Computer Science, pp 494–508

Cechich A, Requile-Romanczuk A, Aguirre J and Luzuriaga J M (2006) “Trends on COTS Compo-
nent Identification”, in “Proceedings of the Fifth International Conference on Commercial-off-
the-Shelf (COTS)-Based Software Systems”, Washington, DC, USA: IEEE Computer Society,
pp 90–, http://dl.acm.org/citation.cfm?id=1114286.1114655

Chang K H, Liao S, Chapman R and Chen C (2000) “Test Scenario Generation based on Formal
Specification and Usage Profile”, International Journal of Software Engineering and Knowledge
Engineering, 10(2), pp 185–201

Charette R N (1989) Software Engineering Risk Analysis and Management, Multiscience Press

Chau P Y K (1995) “Factors used in the selection of packaged software in small busi-
nesses: Views of owners and managers”, Information and Management, 29(2), pp 71–78,
http://www.sciencedirect.com/science/article/pii/037872069500016P

Chen Y and Yao Y (2008) “A multiview approach for intelligent data analysis based on data
operators”, Information Sciences, 178(2008), pp 1–20

Choi Y, Lee S, Song H, Park J and Kim S (2008) “Practical S/W Component Quality Evaluation
Model”, in “the 10th IEEE International Conference on Advanced Communication Technology
(ICACT)”,

Christiansson B and Christiansson M (2004) “An informal COTS Specification Model – Enabling
Component Acquisition”, in “International Workshop on COTS Terminology and Categories:
Can We Reach a Consensus?, ICCBSS 2004”,

Clark B and Clark B (2007) “Added Sources of Costs in Maintaining COTS-Intensive Systems”,
CROSSTALK The Journal of Defense Software Engineering, (June), pp 4–8

Collet P, Coupaye T, Chang H, Seinturier L and Dufrêne G (2007) Components and Ser-
vices: A Marriage of Reason, Rapport de recherche ISRN I3S/RR–2007-17–FR, Laboratoire
d’Informatique de Signaux et Systèmes de Sophia Antipolis

Comella-Dorda S, Dean J, Lewis G, Morris E, Oberndorf P and Harper E (2004) Process for COTS
Software Product Evaluation, Technical Report CMU/SEI-2003-TR-017, Carnegie-Mellon Uni-
versity, http://www.sei.cmu.edu/library/abstracts/reports/03tr017.cfm

Comella-Dorda S, Dean J, Morris E and Oberndorf P P (2002) “A process for COTS soft-
ware product evaluation”, in “International Conference on COTS-Based Software Systems
(ICCBSS)”, LNCS 2255, Springer, pp 86–96

364

BIBLIOGRAPHY

Computer History Museum (2009) Computer Pioneers and Pioneer Computers [DVD]

Coplien J, Harrison N and Bjørnvig G (2005) “Organizational Patterns: Building on the Agile
Pattern Foundations”, Agile Project Management Report, 6(6)

Cortellessa V, Crnkovic I, Marinelli F and Potena P (2008) “Experimenting the Automated Se-
lection of COTS Components Based on Cost and System Requirements”, Journal of Universal
Computer Science, 14(8), pp 1128–1255

Councill W T (1999) “Third-Party Testing and Stirrings of the New Software Engineering”, IEEE
Software, 16(6), pp 76–79

Cover R (2011) Extensible Markup Language (XML), http://xml.coverpages.org/xml.html

Creswell J W, Tashakkori A, Jensen K and Shapley K D (2003) Teaching Mixed Methods Research:
Practices, dilemmas and challenges., Thousand Oaks, CA: Sage

Crnkovic I, Schmidt H, Stafford J and Wallnau K C (eds) (2003) Workshop on Component-Based
Software Engineering: Automated Reasoning and Prediction, IEEE Press

Crossan F (2003) “Research philosophy: towards an understanding”, Nurse Res, 11(1), pp 46–55

Cubo J, Salaun G, Camara J, Canal C and Pimental E (2007) “Context-Based Adaptation of
Component Behavioural Interfaces”, in Murphy A and Vitek J (eds) “Coordination”, volume
LNCS 4467, pp 305–323

Cunningham W (2010a) Component Definition, http://c2.com/cgi/wiki?ComponentDefinition

Cunningham W (2010b) Software Design Patterns Index,
http://c2.com/cgi/wiki?SoftwareDesignPatternsIndex

Curtis B, Kellner M I and Over J (1992) “Process modeling”, Communications of the ACM,
35(9), pp 75–90

DACS (2011) DACS Gold Practices Website: Goal-Question-Metric (GQM) Approach,
http://goldpractice.thedacs.com/practices/gqm/

Di Giacomo P (2005) “COTS and Open Source Software Components: Are They Really Different
on the Battlefield?”, in Franch X and Port D (eds) “ICCBSS 2005”, LNCS 3412, pp 301–310

Dick J and Faivre A (1993) “Automating the Generation and Sequencing of Test Cases from
Model-Based Specifications”, in “FME ’93: Industrial-Strength Formal Methods”,

Dijkstra E W (1968) “Letters to the editor: go to statement considered harmful”, Communications
of the ACM, 11(3), pp 859–866

Dijkstra E W (1972) “The humble programmer”, Communications of the ACM, 15(10), pp 859–
866

Ding Y and Napier N (2006) “Measurement Framework for Assessing Risks in Component-Based
Software Development”, in “Proceedings of the 39th Annual Hawaii International Confer-
ence on System Sciences - Volume 09”, Washington, DC, USA: IEEE Computer Society,
http://dl.acm.org/citation.cfm?id=1109717.1110102

Dodig-Crnkovic G (2002) “Scientific Methods in Computer Science”, in “Conference for the
Promotion of Research in IT at New Universities and Colleges in Sweden”,

Easterbrook S, Singer J, MStorey and Damian D (2007) Selecting Empirical Methods for Software
Engineering Research, Springer

365

BIBLIOGRAPHY

Esteves J and Porter J (2004) “Using a Multimethod Approach to Research Enterprise Systems
Implementations”, Electronic Journal of Business Research Methods, 2(2), pp 69–81

Fidge C J (2002) “Contextual matching of software library components”, in Strooper P and
Muenchaisri P (eds) “Asia-Pacific Software Engineering Conference”, IEEE Computer Society
Press, pp 297–306

Frakes W B and Kang K (2005) “Software Reuse Research: Status and Future”, IEEE Trans
Software Eng, 31(7), pp 529–536

Frakes W B and Pole T P (1994) “An Empirical Study of Representation Methods for Reusable
Software Components”, IEEE Transactions on Software Engineering, 20(8), pp 617–630

Frakes W B and Terry C (1996) “Software Reuse: Metrics and Models”, ACM Computing Surveys,
28(2), pp 415–435

Freedman R S (1991) “Testability of Software Components”, IEEE Transactions on Software
Engineering, 17(6), pp 553 – 564

freshmeat (2007) Freshmeat software index, http://freshmeat.net/

Friedman-Hill E (2008) Jess The Rule Engine for the Java Platform, Technical Report Version
7.1p2, Sandia National Laboratories

Galorath D D and Evans M W (2006) Software Sizing, Estimation, and Risk Management, Boston,
MA, USA: Auerbach Publications

Gamma E, Helm R, Johnson R and Vlissides J (1995) Design patterns: elements of reusable
object-oriented software, Addison-Wesley Professional

Ganter B and Wille R (1997) Applied Lattice Theory: Formal Concept Analysis, Technical Report
http://www.math.tu-dresden.de/ ganter/psfiles/concept.ps

Gao J, Gopinathan D, Mai Q and He J (2006) “A Systematic Regression Testing Method and
Tool For Software Components”, in “IEEE signature conference on Computer Software and
Applications (COMPSAC)”, pp 244–249

Gao J Z, Gupta K K, Gupta S and Shim S S Y (2002) “On Building Testable Soft-
ware Components”, in “Proceedings of the First International Conference on COTS-
Based Software Systems”, ICCBSS ’02, London, UK: Springer-Verlag, pp 108–121,
http://dl.acm.org/citation.cfm?id=646852.707746

Garcia V C, Lucrédio D, Durão F A, Santos E C R, de Almeida E S, de Mattos Fortes R P and
de Lemos Meira S R (2006) “From Specification to Experimentation: A Software Component
Search Engine Architecture”, in et al G (ed) “CBSE 2006”, LNCS 4063, pp 82–97

Garlan D, Allan R and Ockerbloom J (2009) “Architectural Mismatch: Why Reuse is Still so
Hard”, IEEE Software, pp 86–89

Garlan D, Allen R and Ockerbloom J (1995) “Architectural Mismatch or Why it’s hard to build
systems out of existing parts”, in “Seventeenth International Conference on Software Engi-
neering”, pp 17–26

Gill N S (2004) “Few Imporant Considerations For Deriving Interface Complexity Metric For
Component-Based Systems”, Software Engineering, 29(2), pp 1–4

Gill N S and Grover P S (2004) “Few Imporant Considerations For Deriving Interface Complexity
Metric For Component-Based Systems”, Software Engineering, 29(2), pp 1–4

366

BIBLIOGRAPHY

Glaser B G and Strauss A (1967) Discovery of Grounded Theory. Strategies for Qualitative Re-
search, Sociology Press

Gnatz M, Marschall F, Popp G, Rausch A and Schwerin W (2002) “Common Template for
Software Development Process Patterns”, in “1st Workshop on Software Development Process
Patterns”, www.forsoft.de/zen/sdpp02/authors/template.pdf

Grundy J C (1999) “Aspect-Oriented Requirements Engineering for Component-Based Soft-
ware Systems”, in “Proceedings of the 4th IEEE International Symposium on Re-
quirements Engineering”, Washington, DC, USA: IEEE Computer Society, pp 84–91,
http://dl.acm.org/citation.cfm?id=647646.731259

Grzymala-Busse J and Hu M (2001) “A Comparison of Several Approaches to Missing Attribute
Values in Data Mining”, RSCTC 2000, LNAI 2005, pp 378–385

Gui G and Scott P D (2006) “Ranking reusability of software components using coupling metrics”,
The Journal of Systems and Software

Gupta A, Conradi R, Shull F, Cruzes D, Ackermann C, Rønneberg H and Landre E (2008) “Expe-
rience Report on the Effect of Software Development Characteristics on Change Distribution”,
in Jedlitschka A and Salo O (eds) “Conf. on Product Focused Software Process Improvement
(Profes 2008)”, LNCS 5089, pp 158–173

Hall H, Frank E, Holmes G, Pfahringer B, Reutemann P and Witten I (2009) “The WEKA Data
Mining Software: An Update”, SIGKDD Explorations, 11(1), pp 10–18

Hall P A V and Hierons R (1991) Formal Methods and Testing, Technical Report 91/16, Com-
puting Department, Open University

Hamlet D (2007) “Software component composition: a sub-domain testing-theory foundation”, J
Software Testing and Verification Research

Harker P T (1987) “Incomplete pairwise comparisons in the analytical hierarchy process”, Math-
ematical Modelling, 9, pp 837–848

Harman M, Mansouri S A and Zhang Y (2009) Search Based Software Engineering: A Comprehen-
sive Analysis and Review of Trends Techniques and Applications, Technical Report TR-09-03,
Department of Computer Science, Kinǵıs College London

Harrold M J, Orso A, Rosenblum D, Rothermel G, Soffa M L and Do H (2001) Using Component
Metadata to Support the Regression Testing of Component-Based Software, Technical Report
GIT-CC-01-38, College of Computing, Georgia Institute of Technology

Hartman R S (1969) The Structure of Value, Knoxville, Tennessee: Robert S Hartman Institute
of Applied Axiology

Hasan H (2003) “Information Systems Development as a Research Method”, Australasian Journal
of Information Systems, 11(1), pp 4–13

Helke S, Neustupny T and Santen T (1997) “Automating test case generation
from Z specifications with Isabelle”, in “Proccedings of Z Users Meeting ’97”,
http://citeseer.nj.nec.com/article/helke97automating.html

Hemer D (2003) “Specification matching of state-based modular components”, in “Software En-
gineering Conference, 2003. Tenth Asia-Pacific”, pp 446–455

Holz H and Melnik G (2004) “1-6 Research on Learning Software Organizations – Past, Present,
and Future”, Lecture Notes in Computer Science, 3096, pp 1–6

367

BIBLIOGRAPHY

Horcher H M and Mikk E (1996) Test Automation using Z Specifications, Bremen, Germany:
Shaker Verlag

Hunter J (2003) A survey of metadata research for organizing the web,
http://findarticles.com/p/articles/mim1387/is252/ai112542835/

IEEE (1990) IEEE Standard Glossary of Software Engineering Terminology, Technical Report

InternationalStandardOrganization (June, 2001) “Information Technology – Product Quality -
Part1: Quality Model”, International Standard ISO/IEC 9126

Ivers J and Moreno G A (2008) “PACC starter kit: developing software with predictable behav-
ior”, in “ICSE Companion ’08: Companion of the 30th International Conference on Software
Engineering”, New York, NY, USA: ACM, pp 949–950

Jobs S (2006) “Steve Jobs Keynote: 86 million lines of source code that was ported
to run on an entirely new architecture with zero hiccups”, in “WWDC 2006”,
http://www.engadget.com/2006/08/07/live-from-wwdc-2006-steve-jobs-keynote

Johnson R and Onwuegbizue A (2004) “Mixed methods research: a research paradigm whose
time has come”, Educational Researcher, 33(7), pp 14–26

Karolak D W (1996) Software Risk Management, IEEE Computer Society Press (Los Alamitos,
Calif.)

Kaur V and Goel S (2011) “Facets of Software Component Repository”, International Journal
on Computer Science and Engineering, 3(6), pp 2473–2476

Kitchenham B A, Pfleeger S L, Pickard L M, Jones P W, Hoaglin D C, Emam K E and Rosen-
berg J (2002) “Preliminary Guidelines for Empirical Research in Software Engineering”, IEEE
Transactions on Software Engineering, 28, pp 721–734

Klein M and Kazman R (1999) Attribute-Based Architectural Styles, Technical Report Techni-
cal Report CMU/SEI-99-TR-022, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

Knox K (2004) “A researcher’s dilemma – philosophical and methodological pluralism”, Electronic
Journal of Business Research Methods, 2(2), pp 119–128

Kontio J (1995) OTSO: A Systematic Process for Reusable Component Selection, Technical Re-
port CS-TR-3478, University of Maryland

Korel B (1999) “Black-box Understanding of COTS Components”, in “International Workshop
on Program Understanding”, Pittsburgh, Pennsylvania, pp 226–233

Kotonya G and Hutchinson J (2004) “Viewpoints for Specifying Component-Based Systems”, in
Crnkovic I e a (ed) “CBSE 2004”, LNCS 3054, pp 114–121

Kotonya G and Hutchinson J (2005) “Analysing the Impact of Change in COTS-Based Systems”,
in “ICCBSS”, pp 212–222

Kotonya G, Onyino W, Hutchinson J and Sawyer P (2001) Component Architecture Descrip-
tion Language (CADL), Technical Report CSEG/57/2001, Computing Department, Lancaster
University

Kuhn T S (1996) The Structure of Scientific Revolutions, The University of Chicago Press, 3 ed

Kunda D (2003) “STACE: Social Technical Approach to COTS Software Evaluation”, in Cechich
A, Piattini M and Vallecillo A (eds) “Component-Based Software Quality”, Springer, volume
2693 of Lecture Notes in Computer Science, pp 64–84

368

BIBLIOGRAPHY

Kunda D and Brooks L (1999) “Applying Social-technical Approach for COTS selection”, in
Brooks L and Kimble C (eds) “UKAIS 99”, McGraw-Hill

Kunda D and Brooks L (2000) “Accessing Success of a Social-Technical Method for COTS Soft-
ware Selection: A Survey Approach”, in “ICEIS”, pp 294–298

Kuo Y H, Hsu J P and Horng M F (1999) “Neuro-fuzzy Based Search Robot for Software Com-
ponents”, International Journal on Artificial Intelligence Tools, 8(2)

Lampson B (2004) Computer Systems: Theory, Technology, and Applications, 2004, pp 137-146.,
Springer, chapter Software Components: Only the Giants Survive

Larman C and Basili V (2003) “Iterative and incremental developments. a brief history”, Com-
puter, 36(6), pp 47–56

Larsson M and Crnkovic I (2001) “Configuration Management for Component-based Systems”,
in “Software Configuration Management - SCM 10, ICSE ’01: Proceedings of the 23rd Inter-
national Conference on Software Engineering”,

Lázaro M and Marcos E (2005) “Research in Software Engineering: Paradigms and Methods”,
in “CAiSE Workshops (2)”, pp 517–522

Lee J and Ware B (2002) Open Source Development with LAMP: Using Linux, Apache, MySQL,
Perl, and PHP, Addison-Wesley Professional

Lee J H, Kim M H and Lee Y J (1993) “Information Retrieval Based on Conceptual Distance in
IS-A Hierarchies”, Journal of Documentation, 49(2), pp 113 –136

Leedy P D (2002) Practical Research: Planning and Design, Check this one - may have used a
paper

Legeard B, Peureaux F and Utting M (2002) “Automated Boundary Testing from Z and B”, in
“FME ’02: 11th Conference on Formal Methods”,

Lehman M M (1979-1980) “On understanding laws, evolution, and conservation in
the large-program life cycle”, Journal of Systems and Software, 1, pp 213–221,
http://www.sciencedirect.com/science/article/pii/0164121279900220

Li J, Conradi R, Slyngstad O P N, Bunse C, Khan U, Torchiano M and Morisio M (2005) “Valida-
tion of New Theses on Off-the-Shelf Component Based Development”, in “IEEE METRICS”,
p 26

Li J, Conradi R, Slyngstad O P N, Bunse C, Torchiano M and Morisio M (2006) “An empirical
study on decision making in off-the-shelf component-based development”, in “ICSE ’06: Pro-
ceedings of the 28th International Conference on Software Engineering”, New York, NY, USA:
ACM, pp 897–900

Lill S, Olsen N and Loe K (2005) The CoExSel Tool, Technical Report, Norwegian University of
Science and Technology

Liskov B and Zilles S (1974) “Programming with abstract data types”, SIGPLAN Not, 9, pp
50–59, http://doi.acm.org/10.1145/942572.807045

Lootsma F (1999) Multi-Criteria Decision Analysis via Ratio and Difference Judgement, Dor-
drecht, The Netherlands: Kluwer Academic Press

Lovins J B (1968) “Development of a stemming algorithm”, Mechanical Translation and Compu-
tational Linguistics, 11, pp 22–31

369

BIBLIOGRAPHY

Lucredio D, Prado A F d and Almeida E S d (2004) “A Survey on Soft-
ware Components Search and Retrieval”, in “Proceedings of the 30th EUROMI-
CRO Conference”, Washington, DC, USA: IEEE Computer Society, pp 152–159,
http://dl.acm.org/citation.cfm?id=1018420.1019676

Luhn H P (1960) “Keyword-in-context index for technical literature”, American Documentation,
11(4), pp 288–295

Maiden N, Croce V, Kim H, Sajeva G and Topuzidou S (2003) “SCARLET: Inte-
grated Process and Tool Support for Selecting Software Components”, in Cechich
A, Piattini M and Vallecillo A (eds) “Component-Based Software Quality”, Springer
Berlin / Heidelberg, volume 2693 of Lecture Notes in Computer Science, pp 85–98,
http://dx.doi.org/10.1007/978-3-540-45064-15, 10.1007/978− 3− 540− 45064− 15

Malawski M, Bubak M, Baude F, Caromel D, Henrio L and Morel M (2007) “Interoperability
of grid component models: GCM and CCA case study”, in “Towards Next Generation Grids:
Proceedings of the CoreGRID Symposium”, Springer

Manes S (2007) Dim Vista, http://www.forbes.com/forbes/2007/0226/ 050.html

Martinez C P A (2008) Systematic Construction Of Goal-Oriented COTS Taxonomies, PhD the-
sis, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

Massa P and Avesani P (2009) “Trust Metrics in Recommender Systems”, in Golbeck J (ed)
“Computing with Social Trust”, Human-Computer Interaction Series, Springer London, pp
259–285, http://dx.doi.org/10.1007/978-1-84800-356-910, 10.1007/978 − 1 − 84800 −
356− 910

Masterman M (1957) “The Thesaurus in Syntax and Semantics”, Mechanical Translation, 4(1
and 2), pp 35–43

Maxville V (2002) “Intelligent Selection of Components”, in “Young Researchers Workshop, 7th
International Conference on Software Reuse: Methods, Techniques, and Tools (ICSR-7)”,

Maxville V (2005) “Knowledge Representation for COTS Selection”, in “Postgraduate Electrical
Engineering and Computing Symposium (PEECS)”,

Maxville V (2009) “Preparing scientists for scalable software development”, in “Workshop on
Workshop on Software Engineering for Computational Science and Engineering, ICSE09”, Los
Alamitos, CA, USA: IEEE Computer Society, volume 0, pp 80–85

Maxville V, Armarego J and Lam C (2004a) “Assessment Methods for Component Selection”, in
“Postgraduate Electrical Engineering and Computing Symposium (PEECS)”,

Maxville V, Armarego J and Lam C (2009) “Applying a reusable framework for software selec-
tion”, IET Software, 3(5), pp 369–380

Maxville V, Armarego J and Lam C P (2003a) “The CdCT Process for Component Selection and
Evaluation”, in “Postgraduate Electrical Engineering and Computing Symposium (PEECS)”,

Maxville V, Armarego J and Lam C P (2004b) “Learning to Select Software Components”, in
Maurer F and Ruhe G (eds) “International Conference on Software Engineering and Knowledge
Engineering (SEKE)”, pp 421–426

Maxville V, Lam C P and Armarego J (2003b) “Selecting Components: a Process for Context-
Driven Evaluation”, in “Asia-Pacific Software Engineering Conference (APSEC)”, IEEE Com-
puter Society, pp 456–465

370

BIBLIOGRAPHY

Maxville V, Lam C P and Armarego J (2004c) “Intelligent Component Selection”, in “IEEE
signature conference on Computer Software and Applications (COMPSAC)”, IEEE Computer
Society, pp 244–249

Maxville V, Lam C P and Armarego J (2008) “Supporting component selection with a suite of
classifiers”, in “IEEE Congress on Evolutionary Computation (CEC)”, pp 3946–3953

McGregor J D, Stafford J A and Cho I H (2003) “Measuring and Reporting Component Relia-
bility”, in “In Proceedings of the 1st ACIS International Conference on Software Engineering
Research and Applications”,

McIlroy D (1968) “Mass-produced software components”, in “In Software Engineering Concepts
and Techniques, 1968 NATO Conference on Software Engineering, J. Buxton, P. Naur, and B.
Randell, Eds. 88–98.”, pp 88–98

Mendonca M and Sunderhaft N L (1999) Mining software engineering data: A survey. A DACS
state-of-the-art report, Technical Report, Data Analysis Center for Software, Rome, NY

Meyer B (1992) “Applying “Design by Contract””, IEEE Computer, 25(10), pp 40–51

Meyer B (1997) “The Next Software Breakthrough”, IEEE Computer, 30(7), pp 113–114

Meyer B (1999) “On to Components”, IEEE Computer, 32(1), pp 139–143

Meyer B (2003) “The Grand Challenge of Trusted Components”, in “ICSE’03: Proceedings of
the 25th International Conference on Software Engineering)”, USA, pp 660–667

Mili A, Yacoub S, Addy E and Hafedh M (1999) “Toward an Engineering Discipline of Software
Reuse”, IEEE Software, 16(5), pp 22–31

Mili R, Mili A and Mittermeir R T (1992) “A Formal Approach to Software reuse: design and
Implementation”, in “Proceedings of the 5th Workshop on Software Reuse”,

Miller G A (1956) “The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information”, The Psychological Review, 63, pp 18–97

Min H G and Kim S D (2004) “Using Smart Connectors to Resolve Partial Matching Problems
in COTS Component Acquisition”, in Crnkovic I (ed) “CBSE 2004”, LNCS 3054, pp 40–47

Mingers J (2001) “Combining IS Research Methods: Towards a Pluralist Methodology”, Infor-
mation Systems Research, 12(3), pp 240–259

Mittermeir R, Mili A and Mili A (2007) Building A Repository of Software Components: A Formal
Specifications Approach

Mohamadali N A K and Garibaldi J M (2009) “A Review of Selected Multi-Criteria Decision
Analysis Techniques and Applications”, in “9th Annual Workshop on Computational Intelli-
gence (UKCI 2009)”,

Mohamed A, Ruhe G and Eberlein A (2007a) “COTS Selection: Past, Present, and Future”,
in “IEEE International Conference and Workshops on the Engineering of Computer-Based
Systems (ECBS’07)”, IEEE Computer Society, pp 103–114

Mohamed A, Ruhe G and Eberlein A (2007b) “MiHOS: an approach to support handling the
mismatches between system requirements and COTS products”, Requirements Engineering,
12, pp 127–143

Morisio M and Tsoukiàs A (1997) “IusWare: a methodology for the evaluation and selection of
software products”, IEE Proceedings on Software Engineering, 144(3), pp 162–174

371

BIBLIOGRAPHY

Morris J, Lee G, Parker K, Bundell G A and Lam C P (2001) “Software Component Certification”,
IEEE Computer, 34(9), pp 30–36

Myers G J (1979) The Art of Software Testing, New York: John Wiley and Sons

Myerson M (1996) Risk Management Processes for Software Engineering Models, Norwood, MA,
USA: Artech House, Inc., 1st ed

Nakkrasae S, Sophatsathit P and Edwards W R (2004) “Fuzzy Subtractive Clustering Based In-
dexing Approach For Software Components Classification”, International Journal of Computer
and Information Science, 5(1)

Navarrete F, Botella P and Franch X (2005) “How Agile COTS Selection Methods are (and can
be)?”, in “EUROMICRO Conference”, Los Alamitos, CA, USA: IEEE Computer Society, pp
160–167

Ncube C and Dean J C (2002) “The Limitations of Current Decision-Making Techniques in the
Procurement of COTS Software Components”, in Dean J C and Gravel A (eds) “ICCBSS”,
Springer, volume 2255 of Lecture Notes in Computer Science, pp 176–187

Ncube C and Maiden N A (1999) “PORE: Procurement-Oriented Requirements Engineering
Method for the Component Based Systems Engineering Development Paradigm”, in “Interna-
tional Workshop on Component Based Software Engineering”, pp 1–12

Negnevitsky M (2002) Artificial Intelligence:A Guide to Intelligent Systems, Addison Wesley

Neubauer T and Stummer C (2007) “Interactive Decision Support for Multiobjective COTS Selec-
tion”, in “Proceedings of the Hawaii International Conference on System Sciences (HICSS)”,

Nunamaker J, Chen M and Purdin T D M (1991) “Systems Development in Information Systems
Research”, J of Management Information Systems, 7(3), pp 89–106

Oberndorf T, Brownsword L and Sledge C (2000) An Activity Framework for COTS-Based Sys-
tems, Technical Report CMU/SEI-2000-TR-010, Carnegie-Mellon University

Ochs M, Pfahl D, Chrobok-Diening G and Nothhelfer-Kolb B (2001) “A Method for Efficient
Measurement-based COTS Assessment and Selection - Method Description and Evaluation
Results”, in “IEEE METRICS”, IEEE Computer Society, pp 285–285

Ochs M, Pfahl D, Chrobok-Diening G and Nothhelfer-Kolb B (2009) A COTS Acquisition Process:
Definition and Application Experience, Technical Report IESE-002.00/E, Fraunhofer Institut
Experimentelles Software Engineering

Orso A, Harrold M J and Rosenblum D (2000) “Component Metadata for Software Engineering
Tasks”, in “2nd International Workshop on Engineering Distributed Objects”, Davis, CA:
USA, pp 129–144

Orso A, Harrold M J, Rosenblum D S, Rothermel G, Soffa M L and Do H (2001) “Using Compo-
nent Metadata to Support the Regression Testing of Component-Based software”, in “Proceed-
ings of the IEEE International Conference on Software Maintenance (ICSM 2001)”, Firenze,
Italy, pp 716–725

Page L, Brin S, Motwani R and Winograd T (1999) The PageRank citation
ranking: Bringing order to the Web, Technical Report, Stanford University,
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

Parnas D L (1972) “On the Criteria To Be Used in Decomposing Systems into Modules”, Com-
munications of the ACM ACM, 15(12), pp 1053–1058

372

BIBLIOGRAPHY

Pedrycz W, Ekel P and Parreiras R (2011) Fuzzy Multicriteria Decision-Making: Models, Methods
and Applications, Kluwer Academic Publishers

Petska-Juliussen K and Egil-Juliussen E (2009) Worldwide PC Market,
http://www.c-i-a.com/worldwideuseexec.htm

Pfleeger S L (2001) “What Good Are Metrics? The Views of Industry and Academia”, in “IEEE
METRICS”, IEEE Computer Society, p 146

Port D and Chen S (2004) “Assessing COTS Assessment: How Much Is Enough?”, in “Interna-
tional Conference on COTS-Based Software Systems (ICCBSS)”, pp 183–198

Prieto-Diaz R (1991) “Implementing faceted classification for software reuse”, Communications
of the ACM ACM, 34(5), pp 88–97

Quinlan J R (1993) C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco

Quinn P (2009) Radio Astronomy in the Petascale world, Presentation, International Centre for
Radio Astronomy Research

Rao D V and Sarma V V S (2003) “A Rough:Fuzzy Approach for Retrieval of Candidate Com-
ponents for Software Reuse”, Pattern Recognition Letters, 26(6), pp 875–886

Raymond E S (1997) “The Cathedral and the Bazaar”, in “Linux Kongress”,
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

Reifer D J, Basili V, Boehm B and Clark B (2004) “COTS-Based Systems – Twelve Lessons
Learned about Maintenance”, in “International Conference on COTS-Based Software Systems
(ICCBSS)”, volume LNCS 2959, pp 137–145

Rifkin S (2003) “Why New Software Processes Are Not Adopted”, Advances in Computers, 59,
pp 83–126

Robb T N and Susser B (2000) “The Life and Death of Software: Examining the Selection
Process”, CALICO Journal, 18(1), pp 41–52

Robles G (2005) Debian Counting, http://libresoft.dat.escet.urjc.es/
debian-counting

Rocha C R and Martins E (2008) “A method for model based test harness gen-
eration for component testing”, Journal of the Brazilian Computer Society, 14,
pp 7 – 23, http://www.scielo.br/scielo.php?script=sciarttextpid = S0104 −
65002008000100003nrm = iso

Rowe W D (1977) An Anatomy of Risk, John Wiley Sons

Roy B (1991) “The Outrank Approach and the Foundations of ELECTRE Methods”, Theory
and Decisions, 31, pp 49–73

Royce W W (1970) “Managing the Development of Large Software Systems: Concepts and Tech-
niques”, in “Proceedings of 26th IEEE WESCON”, volume 26, pp 1–9

Ruhe G (2002) “Intelligent Support for Selection of COTS Products”, in Chaudhri A B, Jeckle M,
Rahm E and Unland R (eds) “Web, Web-Services, and Database Systems”, Springer, volume
2593 of Lecture Notes in Computer Science, pp 34–45

Ruhe G, Eberlein A and Pfahl D (2003) “Trade-off analysis for requirements selection”, Interna-
tional Journal of Software Engineering and Knowledge Engineering, 13(4), pp 345–366

Saaty T L (1990) The Analytical Hierarchy Process, McGraw-Hill, New York

373

BIBLIOGRAPHY

Sankar S and Hayes R (1994) Specifying and Testing Software Compo-
nents using ADL, Technical Report SMLI TR-94-23, Sun Microsystems,
http://labs.oracle.com/techrep/1994/abstract-23.html

Sassi S, Jilani L and Ghezala H (2003) “COTS Characterization Model in a COTS-based Devel-
opment Environment”, in “Asia-Pacific Software Engineering Conference (APSEC)”, Chiang
Mai, Thailand, pp 352–361

Sassi S, Jilani L and Ghezala H (2004) “Modeling COTS-Based Development and Related Se-
lection Methods Processes with MAP”, in “Asia-Pacific Software Engineering Conference
(APSEC)”, Busan, Korea, pp 546–553

Schmid H A (1999) “Business Entity Components and Business Process Components”, Journal
of Object-Oriented Programming (JOOP), (12), pp 6–15

Seacord R C, Mundie D and Boonsiri S (2001) “K-BACEE: Knowledge-Based Automated Com-
ponent Ensemble Evaluation”, in “Proceedings of 27th Euromicro Conference 2001: A Net
Odyssey (euromicro’01)”, Warsaw, Poland, p 56

Sedigh-Ali S, Ghafoor A and Paul R A (2001) “Software Engineering Metrics for COTS-Based
Systems”, IEE Proceedings - Software, pp 44–50

SEI (2011) http://www.sei.cmu.edu/index.cfm

Serban C and Vesca A (2007) “Metrics for component-based system development”, Creative
Mathematics and Informatics, 16, pp 143–150

Sharma A, Kumar R and Grover P (2008) “Estimation of quality for software
components: an empirical approach”, SIGSOFT Softw Eng Notes, 33, pp 1–10,
http://doi.acm.org/10.1145/1449603.1449613

Shaw M and Garlan D (1996) Software Architecture: Perspectives on an Emerging Discipline,
Prentice Hall

Silaghi R and Strohmeier A (2003) “Integrating CBSE, SoC, MDA, and AOP in a Software
Development Method”, in “EDOC ’03: Proceedings of the 7th International Conference on
Enterprise Distributed Object Computing”, Washington, DC, USA: IEEE Computer Society,
p 136

Sim S E, Easterbrook S and Holt R C (2003) “Using benchmarking to advance research:
a challenge to software engineering”, in “Proceedings of the 25th International Confer-
ence on Software Engineering”, ICSE ’03: Proceedings of the 25th International Confer-
ence on Software Engineering, Washington, DC, USA: IEEE Computer Society, pp 74–83,
http://dl.acm.org/citation.cfm?id=776816.776826

Singh H, Conrad M and Sadeghipour S (1997) “Test Case Design Based on Z
and the Classification Tree Method”, in “Proceedings of the 1st International
Conference on Formal Engineering Methods”, IEEE Computer Society, pp 81–,
http://dl.acm.org/citation.cfm?id=523981.852147

Solberg H and Dahl K M (2001) COTS Software Evaluation and Integration Is-
sues, Technical Report SIF8094, Norwegian Institute of Technology and Science,
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2001/p14.pdf

Sorensen R L (2004) Systems Engineering in a COTS World, Technical Report, Vitech Corpora-
tion

Sparck Jones K (1970) “Some thoughts on classification for retrieval”, Journal of Documentation,
26(2), pp 89–101

374

BIBLIOGRAPHY

Sparck Jones K (1972) “A statistical interpretation of term specificity and its application in
retrieval”, Journal of Documentation, 28(1), pp 11–21

Spivey J M (1992) The Z Notation: a reference manual, International Series in Computer Science,
Prentice Hall, 2nd ed

Stafford J and Wallnau K C (2001) “Predictable Assembly from Certifiable Components”, in
Pulvermüller E, Speck A, Coplien J, D’Hondt M and DeMeuter W (eds) “Feature Interaction
in Composed System, ECOOP 2001 Workshop 08”, pp 35–41

Stocks P and Carrington D (1993) “Test Template Framework: A Specification-based Case
Study”, in “International Symposium On Software Testing And Analysis”,

Stylianou C and Andreou A S (2007) “A Hybrid Software Component Clustering and Retrieval
Scheme Using an Entropy-Based Fuzzy k-Modes Algorithm”, in “19th IEEE international
Conference on Tools with Artificial intelligence (ICTAI)”, IEEE Computer Society, volume 1,
pp 202–209

Szyperski C (1998) Component software: Beyond Object-Oriented Programming, New York: ACM
Press

Szyperski C and Messerschmitt D G (2003) “The Flexible Factory”, Software Development,
11(12), pp 30–34

Tahat L (2001) “Requirement-Based Automated Black-Box Test Generation”, in “25th An-
nual International Computer Software and Applications Conference”, IEEE Computer Society
Press, pp 489–495

Taleghani A (2007) “Using Software Model Checking for Software Component Certification”, in
“ICSE Companion’07”, pp 99–100

Tichy W (1997) “Should Computer Scientists Experiment More 16 Excuses to Avoid Experimen-
tation. 16 Excuses to Avoid Experimentation”, IEEE Computer, 31, pp 32–40

Tran V and Lin D B (1999) “Application of CBSE to projects with evolving requirements-a
lesson-learned”, in “Sixth Asia Pacific Software Engineering Conference (APSEC ’99)”, pp 28
–37

Triantaphyllou E (1995) “Linear programming based decomposition approach in evaluating pri-
orities from pairwise comparisons and error analysis”, J Optim Theory Appl, 84, pp 207–234,
http://dl.acm.org/citation.cfm?id=213441.213473

Triantaphyllou E (2001) Multi-Criteria Decision Making Methods: A Comparitive Study, Kluwer
Acedemic Publishers

Udell J (1994) “Componentware”, Byte, 19(5), pp 46–56

Vallecillo A, Hernandez J and Troya J M (2000) “Component Interoperability”, in “European
Conference on Object-Oriented Programming (ECOOP ’99) Reader”, LNCS 1743, Springer-
Verlag, pp 1–21

Voas J (1998a) “An Approach to Certifying Off-the-Shelf Software Components”, IEEE Com-
puter, 31, pp 53–59

Voas J (1998b) “The Software Quality Certification Triangle”, CROSSTALK The Journal of
Defense Software Engineering, 11(11), pp 12–14

Voas J (2000) “Developing a Usage-Based Software Certification Process”, IEEE Computer, (33),
pp 32–37

375

BIBLIOGRAPHY

Voas J (2001) “Composing Software Component ‘ilities”’, IEEE Software, 18(4), pp 16–17

Voinea L and Telea A (2005) “Visual Assessment Techniques for Component-Based Framework
Evolution”, in “Proceedings of the 31st EUROMICRO Conference on Software Engineering and
Advanced Applications”, EUROMICRO ’05, Washington, DC, USA: IEEE Computer Society,
pp 168–179, http://dx.doi.org/10.1109/EUROMICRO.2005.65

Wallnau K C, Clements P and Zaremski A (1997) “Correcting, Identifying and Avoiding Inter-
face Mismatch: Theory and Practice”, in “ICSE ’97: Proceedings of the 19th international
conference on Software engineering”,

Washizaki H (2003) “A Metrics Suite for Measuring Reusability of Software Components”, IEE
Proceedings - Software

Watkins D (1998) “Using Interface Definition Languages to Support Path Expressions and Pro-
gramming by Contract”, in “Technology of Object-Oriented Languages and Systems (TOOLS
26)”, p 308

Wegner P (1996) “Interoperability”, ACM Computing Survey, 28(1), pp 285–287

Weinberg G (1971) The Psychology of Computer Programming, Dorset House

Weyuker E (1998) “Testing Component-based Software: A Cautionary Tale”, IEEE Software,
15(5), pp 54–59

White L and Leung H (1992) “A firewall concept for both control-flow and data flow in regression
integration testing”, in “Proceedings of International Conference on Software Maintainance”,
pp 262–271

Williams K B (2004) Grace Hopper: admiral of the cyber sea, Naval Institute Press

Wirth N (2008) “A Brief History of Software Engineering”, IEEE Annals of the History of Com-
puting, 30, pp 32–39

Witten I, Frank E and Hall M A (2011) Data Mining: Practical Machine Learning Tools and
Techniques, Morgan Kaufmann, San Francisco, 3 ed

Wohlin C and Runeson P (1994) “Certification of Software Components”, IEEE Transactions on
Software Engineering, 20(6), pp 494–499

Wohlin C, Runeson P, Host M, Ohlsson M C, Regnell B and Wesslen A (2000) Experimentation
in Software Engineering: An Introduction, Kluwer Academic Publishers

Woodman M, Benediktsson O, Lefever B and Stallinger F (2001) “Issues of CBD Product Quality
and Process Quality”, in “The 4th ICSE Workshop on Component-Based Software Engineering
(CBSE)”, Canada, pp 55–57

Wu H, Luk R, Wong K and Kwok K (2008) ACM Transactions on Information Systems, 26(3),
pp 1–37

Wu X, McMullan D and Woodside M (2003) “Component Based Performance Prediction”, in
Crnkovic I, Schmidt H, Stafford J and Wallnau K (eds) “6th ICSE Workshop on Component-
Based Software Engineering: Automated Reasoning and Prediction”, Carnegie Mellon Univer-
sity, USA and Monash University, Australia

Xie X and Zhang W (2007) “A framework for software component adaptation”, in Jin H (ed)
“ICA3PP”, Springer-Verlag Berlin / Heidelberg, volume 4494, pp 153–164

XML (2004) XML Schema Part 0: Primer Second Edition,
http://www.w3.org/TR/xmlschema-0/

376

Yacoub S, Ammar H and Mili A (1999) “Characterizing a Software Component”, in “International
Conference in Software Engineering ’99”,

Yamamoto K and Saeki M (2007) “Using Attributed Goal Graphs for Software Component Selec-
tion: An Application of Goal-Oriented Analysis to Decision Making”, in “Proceedings of the
26th International Conference on Conceptual Modeling ER 2007 - Tutorials, Posters, Panels
and Industrial Contributions”, http://crpit.com/confpapers/CRPITV83Yamamoto.pdf

Yoon H, Choi B and Jeon J (1999) “A UML Based Test Model for Component Integration Test”,
in “Workshop on Software Architecture and Component”, Japan

Zheng J, Robinson B, Williams L and Smiley K (2006) “Applying regression test selection for
COTS-based applications”, in “ICSE ’06: Proceedings of the 28th International Conference
on Software Engineering”, New York, NY, USA: ACM, pp 512–522

377

378

Appendix A

Glossary

API An application programming interface (API) is an interface that a software pro-
gram implements in order to allow other software to interact with it.
Source: en.wikipedia.org/wiki/Api

ARFF An ARFF (Attribute-Relation File Format) file is an ASCII text file that de-
scribes a list of instances sharing a set of attributes. ARFF files have two distinct
sections. The first section is the Header information, which is followed the Data
information
Source: weka.wikispaces.com/ARFF

CBD Component-based development

CBS Component-based systems

CBSE Component-based software engineering

CdCT Context-driven Component Testing - previous name for CdCE

CdCE Context-driven Component Evaluation

Component-intensive systems Systems assembled from components, or a mixture
of components and new code

COTS A COTS (commercial off-the-shelf) product is one that is used ‘as-is’. COTS
products are designed to be easily installed and to interoperate with existing system
components.
Source: searchenterpriselinux.techtarget.com/sDefinition

DOM The Document Object Model (DOM) is a cross-platform and language-independent
convention for representing and interacting with objects in HTML
Source: en.wikipedia.org/wiki/XML-DOM

DTD Document Type Definition (DTD) is a set of markup declarations that define a
document type for SGML-family markup languages (SGML, XML, HTML).
Source: en.wikipedia.org/wiki/.dtd

GOTS A GOTS (government off-the-shelf) product is typically developed by the tech-
nical staff of the government agency for which it is created. It is sometimes devel-
oped by an external entity, but with funding and specification from the agency.
Source: searchenterpriselinux.techtarget.com/sDefinition

379

GPL GPL is short for General Public Licence and is a type of licence published by
the GNU Project.
Source: cplus.about.com/od/glossar1/g/gpldefinition.htm

GQM The Goal—Question—Metric method is a structured approach to evaluation,
discussed in Section 3.1

Ontology In computer science and information science, an ontology is a formal repre-
sentation of the knowledge by a set of concepts within a domain and the relation-
ships between those concepts.
Source: http://en.wikipedia.org/wiki/Ontology

swvML software verification Markup Language, previously cpML, component Markup
Language

OSS Open-source Software - an approach to software development where source code
is available

OTS Off the shelf (software) - software developed by a third party which may be
purchased or used under licence

RDF Resource Description Framework relies on XML as an interchange syntax, cre-
ating an ontology system for the exchange of information on the Web.
Source: isp.webopedia.com/TERM/R/RDF.html

SAX SAX is a standard API for event-based XML parsing, and SAX implementations
are available in different programming languages.
Source: dret.net/glossary/sax

SDM Spiral Development Method, an iterative software development method, devel-
oped by Barry Boehm

W3C World Wide Web Consortium - develops and maintains standards, such as XML

XML XML (Extensible Markup Language) is a set of rules for encoding documents
electronically.
Source: en.wikipedia.org/wiki/XML

XML Schema An XML schema describes the structure of an XML document.
Source: www.w3schools.com/schema/schema intro.asp

XSLT XSL Transformations (XSLT) is a declarative, XML-based language used for
the transformation of XML documents into other XML documents.
Source: en.wikipedia.org/wiki/XSLT

WEKA Weka is a collection of machine learning algorithms for data mining tasks.
The algorithms can either be applied directly to a dataset or called from your own
Java code. Weka contains tools for data pre-processing, classification, regression,
and clustering.
Source: http://www.cs.waikato.ac.nz/ ml/weka/

380

Appendix B

Code and Scripts

B.1 Scripts from Spiral 4

B.1.1 xml exp SEARCH

#!/bin/bash

echo

echo "##"

echo

echo " CALCULATOR CASE STUDY (On the Mac!)"

echo

echo "##"

base=$1

./process ${base}t5s10

./process ${base}t5s21

./process ${base}t5s22

./process ${base}t5s23

./process ${base}t5s31

./process ${base}t5s32

./process ${base}t5s33

./process ${base}t5s41

./grab_predict $base

echo "##"

echo

echo " Don’t forget to move the files before running the script again."

echo

echo " (grab_predict doesn’t like it)"

echo

echo "##"

B.1.2 process

#!/bin/bash

laptop version 15/6/05

Re-saved to run on Mac - CR/LF problem, 31/12/08

381

Rejigged paths for Mac 31/12/08

Needed old xerces - see http://archive.apache.org/dist/xml/xerces-j/ for version 1_4_4

Had to change j48.J48 to J48 for Weka 31/12/08

echo

echo "##"

echo

echo " INTELLIGENT COMPONENT SELECTION"

echo

echo "##"

echo

see http://www.tldp.org/LDP/abs/html/io-redirection.html for

output redirection options

if [-z "$1"]; then

echo "ERROR: No file base given - exiting."

echo

echo "Usage: process file_base"

echo

exit 1

fi

echo "Setting up directory for running experiment on >> $1 <<"

EXPERIMENT=$1

WORKDIR="${1}_‘date +%F_%H_%M‘"

TEMPDIR="TEMP_‘date +%F_%H_%M‘"

WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/Weka-3-6-0/weka.jar"

#WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/Weka-3-4-14/weka.jar"

#WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/weka-3-0-6.jar"

JAVACLASSPATH=".:/Users/valeriemaxville/_Thesis/dev_new/FMfilter/classes:

/Users/valeriemaxville/_Thesis/dev_new/xerces-1_4_4/xerces.jar:

/Users/valeriemaxville/_Thesis/dev_new/xml-writer-0.2/xml-writer.jar:${WEKAHOME}"

echo "Directory name is $WORKDIR"

if [-d "$WORKDIR"]; then

echo

echo "ERROR: Directory >> $WORKDIR << already exists, "

echo " please delete/rename then re-run script."

echo

exit 1

fi

mkdir $WORKDIR

mkdir $TEMPDIR

echo "Copying files..."

if [-e "*${EXPERIMENT}*.arff"]; then # Keep any arff files safe

mv *.arff $TEMPDIR

fi

cp parameters_${EXPERIMENT}.xml $WORKDIR

cp ideal_${EXPERIMENT}.xml $WORKDIR

cd $WORKDIR

382

echo "Running programs..."

echo " CdCETransformer"

java -classpath $JAVACLASSPATH fmfilter.CdCETransformer parameters_${EXPERIMENT}.xml

1> ${WORKDIR}/transformer_output.txt 2> ${WORKDIR}/transformer_errors.txt

echo " Intelligent"

java -classpath $JAVACLASSPATH fmfilter.Intelligent parameters_${EXPERIMENT}.xml

1> ${WORKDIR}/generator_output.txt 2> ${WORKDIR}/generator_errors.txt

mv *${EXPERIMENT}*.arff $WORKDIR

if [-e "${TEMPDIR}/*.arff"]; then

mv ${TEMPDIR}/*.arff . # Bring back saved files

fi

rmdir $TEMPDIR

cd $WORKDIR

echo " ...calling weka_train..."

../weka_train .

B.1.3 weka train

#!/bin/bash

Laptop version - altered path to J48 17/6/05

30Dec06 - changed *FM* to *fm* on line 32

Re-saved to run on Mac - CR/LF problem, ::: 31/12/08

Rejigged paths for Mac ::: 31/12/08

Needed old xerces - see http://archive.apache.org/dist/xml/xerces-j/

for version 1_4_4 ::: 31/12/08

Played with other weka versions, but didn’t solve problem - using 3-6-0 now. ::: 1/1/09

echo

echo "##"

echo

echo " WEKA TRAINING AND TESTING"

echo

echo "##"

echo

Assumes that there’s only one training file in the directory - could loop through later

if [-z "$1"]; then

echo "ERROR: No directory given - exiting."

echo

echo "Usage: weka_train directory"

echo

exit 1

fi

WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/Weka-3-6-0/weka.jar"

#WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/Weka-3-4-14/weka.jar"

#WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/weka-3-0-6.jar"

JAVACLASSPATH=".:/Users/valeriemaxville/_Thesis/dev_new/FMfilter/classes:

/Users/valeriemaxville/_Thesis/dev_new/xerces-1_4_4/xerces.jar:

/Users/valeriemaxville/_Thesis/dev_new/xml-writer-0.2/xml-writer.jar"

383

WORKDIR=$1

pushd $WORKDIR

TRAININGFILE=‘ls *train.arff‘

TEST1=‘ls *test1.arff‘

TEST2=‘ls *test2.arff‘

REAL=‘ls *fm*.arff‘

REAL=‘ls *FM*.arff‘

echo "#### WEKA TRAINING ####" >>train_output.txt

echo >>train_output.txt

echo "#### WEKA TRAINING ####"

echo

echo "Classpath is >> $JAVACLASSPATH <<"

echo "Wekahome is >> $WEKAHOME <<"

echo "Training file is >> $TRAININGFILE <<"

echo "Training file : ${TRAININGFILE}" >> train_output.txt

echo "Test file 1 : ${TEST1}" >> train_output.txt

echo "Test file 2 : ${TEST2}" >> train_output.txt

echo "Real data : ${REAL}" >> train_output.txt

echo >>train_output.txt

echo "#### TRAINING ####" >>train_output.txt

echo "#### TRAINING ####" >>train_error.txt

echo "#### TRAINING ####"

java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.J48 -t $TRAININGFILE

-d model.mod 1>> train_output.txt 2> train_error.txt

#java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.j48.J48 -t $TRAININGFILE

-d model.mod 1>> train_output.txt 2> train_error.txt

echo "#### TEST1 ####" >>train_output.txt

echo "#### TEST1 ####" >>train_error.txt

echo "#### TEST1 ####"

java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.J48 -l model.mod -T $TEST1

1>> train_output.txt 2>> train_error.txt

#java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.j48.J48 -l model.mod -T $TEST1

1>> train_output.txt 2>> train_error.txt

echo "#### TEST2 ####" >>train_output.txt

echo "#### TEST2 ####" >>train_error.txt

echo "#### TEST2 ####"

java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.J48 -l model.mod -T $TEST2

1>> train_output.txt 2>> train_error.txt

#java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.j48.J48 -l model.mod -T $TEST2

1>> train_output.txt 2>> train_error.txt

echo "#### REAL ####" >>train_output.txt

echo "#### REAL ####" >>train_error.txt

echo "#### REAL ####"

java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.J48 -l model.mod -T $REAL

1>> train_output.txt 2>> train_error.txt

#java -Xint -classpath "${WEKAHOME}" weka.classifiers.trees.j48.J48 -l model.mod -T $REAL

1>> train_output.txt 2>> train_error.txt

popd

384

B.1.4 grab predict

#!/bin/bash

17/6/05 - Laptop version - changed javaw to java and updated classpath

2/1/06 - Updated component filename

1/1/08 - Added lines in loop to generate separate shortlists for each set in suite

echo

echo "##"

echo

echo " GRABBING RESULTS"

echo

echo "##"

echo

base=$1

#WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/Weka-3-6-0/weka.jar"

#WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/Weka-3-4-14/weka.jar"

WEKAHOME="/Users/valeriemaxville/_Thesis/dev_new/weka-3-0-6.jar"

JAVACLASSPATH=".:/Users/valeriemaxville/_Thesis/dev_new/FMfilter/classes:

/Users/valeriemaxville/_Thesis/dev_new/xerces-1_4_4/xerces.jar:

/Users/valeriemaxville/_Thesis/dev_new/xml-writer-0.2/xml-writer.jar"

rm ${base}_predict.txt

rm ${base}_predict_detail.txt

rm ${base}_inst.txt

rm ${base}_shortlist.xml

for w_dir in ‘ls -d ${base}*‘

do

if [-d $w_dir]; then

./weka_predict $w_dir

grep accept ${w_dir}/train_predict.txt >> ${base}_predict.txt

grep accept ${w_dir}/train_predict.txt >> ${w_dir}/accept_predict.txt

echo "Matches in ${w_dir}" >> ${base}_predict_detail.txt

MATCHCOUNT=‘grep accept ${w_dir}/train_predict.txt | wc -l‘

echo "Count : ${MATCHCOUNT}" >> ${base}_predict_detail.txt

grep accept ${w_dir}/train_predict.txt >> ${base}_predict_detail.txt

grep accept ${w_dir}/train_predict.txt >> ${w_dir}/accept_predict_detail.txt

awk ’{print $1}’ ${w_dir}/accept_predict_detail.txt > ${w_dir}/inst.txt

java -classpath $JAVACLASSPATH fmfilter.Grabber ${w_dir}/inst.txt fm_projects06_CdCE.xml

${w_dir}/shortlist.xml

fi

done

#awk -F: ’{print $2}’ ${base}_predict.txt | awk ’{print $1}’ > ${base}_inst.txt

awk ’{print $1}’ ${base}_predict.txt > ${base}_inst.txt

java -classpath $JAVACLASSPATH fmfilter.Grabber ${base}_inst.txt fm_projects06_CdCE.xml

${base}_shortlist.xml

echo "Number of unique items is: "

echo "Number of unique items is: " > ${base}_unique.txt

grep "<swv:component>" ${base}_shortlist.xml | wc -l

grep "<swv:component>" ${base}_shortlist.xml | wc -l >> ${base}_unique.txt

WORKDIR="${base}_results_‘date +%F_%H_%M‘"

385

mkdir $WORKDIR

mv ${base}_predict.txt $WORKDIR

mv ${base}_predict_detail.txt $WORKDIR

mv ${base}_inst.txt $WORKDIR

mv ${base}_shortlist.xml $WORKDIR

mv ${base}_unique.txt $WORKDIR

386

	Strategies for the intelligent selection of components
	Recommended Citation

	Strategies for the intelligent selection of components.

