858 research outputs found

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Inductive queries for a drug designing robot scientist

    Get PDF
    It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We introduce the concept of a robot scientist, in which all steps of the discovery process are automated; we discuss the representation of molecular data such that knowledge discovery tools can analyse it, and we discuss the adaptation of machine learning and data mining algorithms to guide QSAR experiments

    Complementary Layered Learning

    Get PDF
    Layered learning is a machine learning paradigm used to develop autonomous robotic-based agents by decomposing a complex task into simpler subtasks and learns each sequentially. Although the paradigm continues to have success in multiple domains, performance can be unexpectedly unsatisfactory. Using Boolean-logic problems and autonomous agent navigation, we show poor performance is due to the learner forgetting how to perform earlier learned subtasks too quickly (favoring plasticity) or having difficulty learning new things (favoring stability). We demonstrate that this imbalance can hinder learning so that task performance is no better than that of a suboptimal learning technique, monolithic learning, which does not use decomposition. Through the resulting analyses, we have identified factors that can lead to imbalance and their negative effects, providing a deeper understanding of stability and plasticity in decomposition-based approaches, such as layered learning. To combat the negative effects of the imbalance, a complementary learning system is applied to layered learning. The new technique augments the original learning approach with dual storage region policies to preserve useful information from being removed from an agent’s policy prematurely. Through multi-agent experiments, a 28% task performance increase is obtained with the proposed augmentations over the original technique

    Interaction and Intelligent Behavior

    Get PDF
    We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage

    An Introduction to Machine Learning -2/E

    Get PDF

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Learning to Behave: Internalising Knowledge

    Get PDF

    Fault Recovery in Swarm Robotics Systems using Learning Algorithms

    Get PDF
    When faults occur in swarm robotic systems they can have a detrimental effect on collective behaviours, to the point that failed individuals may jeopardise the swarm's ability to complete its task. Although fault tolerance is a desirable property of swarm robotic systems, fault recovery mechanisms have not yet been thoroughly explored. Individual robots may suffer a variety of faults, which will affect collective behaviours in different ways, therefore a recovery process is required that can cope with many different failure scenarios. In this thesis, we propose a novel approach for fault recovery in robot swarms that uses Reinforcement Learning and Self-Organising Maps to select the most appropriate recovery strategy for any given scenario. The learning process is evaluated in both centralised and distributed settings. Additionally, we experimentally evaluate the performance of this approach in comparison to random selection of fault recovery strategies, using simulated collective phototaxis, aggregation and foraging tasks as case studies. Our results show that this machine learning approach outperforms random selection, and allows swarm robotic systems to recover from faults that would otherwise prevent the swarm from completing its mission. This work builds upon existing research in fault detection and diagnosis in robot swarms, with the aim of creating a fully fault-tolerant swarm capable of long-term autonomy
    • …
    corecore