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Abstract: It is increasingly clear that machine learning algorithms need to be integrated 

in an iterative scientific discovery loop, in which data is queried repeatedly by 

means of inductive queries and where the computer provides guidance to the 

experiments that are being performed. In this chapter, we summarise several 

key challenges in achieving this integration of machine learning and data 

mining algorithms in methods for the discovery of Quantitative Structure 

Activity Relationships (QSARs). We introduce the concept of a robot scientist, 

in which all steps of the discovery process are automated; we discuss the 

representation of molecular data such that knowledge discovery tools can 

analyse it, and we discuss the adaptation of machine learning and data mining 

algorithms to guide QSAR experiments. 

Key words: Quantitative Structure Activity Relationships, Robot Scientist, 

Graph Mining, Inductive Logic Programming, Active Learning. 

1. Introduction 
The problem of learning Quantitative Structure Activity Relationships 

(QSARs) is an important inductive learning task.  It is central to the rational 

design of new drugs and therefore critical to improvements in medical care.  

It is also of economic importance to the pharmaceutical industry.  The QSAR 
problem is: given a set of molecules with associated pharmacological 

activities (e.g. killing cancer cells), find a predictive mapping from structure 

to activity which enables the design of a new molecule with maximum 
activity.  Due to its importance, the problem has received a lot of attention 

from academic researchers in data mining and machine learning. In these 

approaches, a dataset is usually constructed by a chemist by means of 
experiments in a wet laboratory and machine learners and data miners use 
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the resulting datasets to illustrate the performance of newly developed 

predictive algorithms. However, such an approach is divorced from the 

actual practice of drug design where cycles of QSAR learning and new 
compound synthesis are typical. Hence, it is necessary that data mining and 

machine learning algorithms become a more integrated part of the scientific 

discovery loop. In this loop, algorithms are not only used to find 

relationships in data, but also provide feedback as to which experiments 
should be performed and provide scientists interpretable representations of 

the hypotheses under consideration. 

Ultimately, the most ambitious goal one could hope to achieve is the 
development of a robot scientist for drug design, which integrates the entire 

iterative scientific loop in an automated machine, i.e., the robot not only 

performs experiments, but also analyses them and proposes new 
experiments. Robot Scientists have the potential to change the way drug 

design is done, and enable the rapid adoption of novel machine-

learning/data-mining methodologies for QSAR. They however pose 

particular types of problems, several of which involve machine learning and 
data mining. These challenges are introduced further in Section The Robot 

Scientist Eve. 

The point of view advocated in this book is that one way to support iterative 
processes of data analysis, is by turning isolated data mining tools into 

inductive querying systems. In such a system, a run of a data mining 

algorithm is seen as calculating an answer to a query by a user, whether this 

user is a human or a computerized system, such as a robot scientist. 
Compared to traditional data mining algorithms, the distinguishing feature of 

an inductive querying system is that it provides the user considerably more 

freedom in formulating alternative mining tasks, often by means of 
constraints. In the context of QSAR, this means that the user is provided 

with more freedom in how to deal with representations of molecular data, 

can choose the constraints under which to perform a mining task, and has 
freedom in how the results of a data mining algorithm are processed. 

This chapter summarizes several of the challenges in developing and using 

inductive querying systems for QSAR. We will discuss in more detail three 

technical challenges that are particular to iterative drug design: the 
representation of molecular data, the application of such representations to 

determine an initial set of compounds for use in experiments, and 

mechanisms for providing feedback to machines or human scientists 
performing experiments. 

A particular feature of molecular data is that essentially, a molecule is a 

structure consisting of atoms connected by bonds. Many well-known 
machine learning and data mining algorithms assume that data is provided in 

a tabular (attribute-value) form. To be able to learn from molecular data, we 
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either need strategies for transforming the structural information into a 

tabular form or we need to develop algorithms that no longer require data in 

such form. This choice of representation is important both to obtain 
reasonable predictive accuracy and to make the interpretation of models 

easier. Furthermore, within an inductive querying context, one may wish to 

provide users with the flexibility to tweak the representation if needed. These 

issues of representation will be discussed in Section Representations of 
Molecular Data in more detail. 

An application of the use of one representation is discussed in Section 

Selecting Compounds for a Drug Screening Library, in which we discuss the 
selection of compound libraries for a robot scientist. In this application it 

turns out to be of particular interest to have the flexibility to include 

background knowledge in the mining process by means of language bias. 
The goal in this application is to determine the library of compounds 

available to the robot: even though the experiments in a robot scientist are 

automated, in its initial runs it would not be economical to synthesise 

compounds from scratch and the use of an existing library is preferable. This 
selection is however important for the quality of the results and hence a 

careful selection using data mining and machine learning tools is important. 

When using the resulting representation in learning algorithms, the next 
challenge is how to improve the selection of experiments based on the 

feedback of these algorithms. The algorithms will predict that some 

molecules are more active than others. One may choose to exploit this result 

and perform experiments on predicted active molecules to confirm the 
hypothesis; one may also choose to explore further and test molecules about 

which the algorithm is unsure. Finding an appropriate balance between 

exploration and exploitation is the topic of Section Active learning of this 
chapter. 

2. The Robot Scientist Eve 
A Robot Scientist is a physically implemented laboratory automation system 

that exploits techniques from the field of artificial intelligence to execute 

cycles of scientific experimentation.  A Robot Scientist automatically: 
originates hypotheses to explain observations, devises experiments to test 

these hypotheses, physically runs the experiments using laboratory robotics, 

interprets the results to change the probability that the hypotheses are 

correct, and then repeats the cycle (Figure 1).  We believe that the 
development of Robot scientists will change the relationship between 

machine-learning/data-mining and industrial QSAR.    
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Figure 1.  The Robot Scientist hypothesis generation, experimentation, and 

knowledge formation loop. 

In Aberystwyth, we have demonstrated the utility of the Robot Scientist 

“Adam” which can automate growth experiments in yeast.  Adam is the first 

machine to have autonomously discovered novel scientific knowledge (King 

et al., 2009).  We are now built a new Robot Scientist for chemical genetics 
and drug design: Eve. This was physically commissioned in the early part of 

2009 (see Figure 2).  Eve is a prototype system to demonstrate the 

automation of closed-loop learning in drug-screening and design.  Eve‟s 
robotic system is capable of moderately high-throughput compound 

screening (greater than 10,000 compounds per day) and is designed to be 

flexible enough such that it can be rapidly re-configured to carry out a 
number of different biological assays. 

One goal with Eve is to integrate an automated QSAR approach into the 

drug-screening process. Eve will monitor the initial mass screening assay 

results, generate hypotheses about what it considers would be useful 
compounds to test next based on the QSAR analysis, test these compounds, 

learn from the results and iteratively feed back the information to more 

intelligently home in on the best lead compounds. 
 
Eve will help the rapid adoption of novel machine-learning/data-mining 

methodologies to QSAR in two ways: 

 It tightly couples the inductive methodology to the testing and 

design of new compounds, enabling chemists to step-back and concentrate 

on the chemical and pharmacological problems rather than the inductive 
ones. 

 It enables inductive methodologies to be tested under industrially 

realistic conditions. 
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Figure 2.  Pictures of Eve 

2.1 Eve's Robotics 

Eve‟s robotic system contains various instruments including a number of 

liquid handlers covering a diverse range of volumes, and so has the ability to 
prepare and execute a broad variety of assays. One of these liquid handlers 

uses advanced non-contact acoustic transfer, as used by many large 

pharmaceutical companies. For observation of assays, the system contains 

two multi-functional microplate readers. There is also a cellular imager that 
can be used to collect cell morphological information, for example to see 

how cells change size and shape over time after the addition of specific 

compounds. 

2.2 Compound Library and Screening 

In drug screening, compounds are selected from a “library” (a set of stored 

compounds) and applied to an “assay” (a test to determine if the compound 

is active – a “hit”).  This is a form of “Baconian” experimentation – what 
will happen if I execute this action [Med79].  In standard drug screening 

there is no selection in the ordering of compounds to assay: “Start at the 
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beginning, go on until you get to the end: then stop” (Mad Hatter, Lewis 

Carroll).  Eve is designed to test an active learning approach to screening. 

Eve will initially use an automation-accessible compound library of 14,400 
chemical compounds, the Maybridge „Hit-finder‟ library 

(www.maybridge.com). This compound library is cluster-based and was 

developed specifically to contain a diverse range of compounds.  We realise 

this is not a large compound library - a pharmaceutical company may have 
many hundreds of thousands or even millions of compounds in its primary 

screening library. Our aim is to demonstrate the proof-of-principle that 

incorporating intelligence within the screening process can work better than 
the current brute-force approach.   

2.3 QSAR Learning 

In the typical drug design process, after screening has found a set of hits, the 

next task is to learn a QSAR.  This is initially formed from the hits, and then 
new compounds are acquired (possibly synthesised) and used to test the 

model.  This process is repeated until some particular criterion of success is 

reached, or too many resources are consumed to make it economical to 
continue the process.  If the QSAR learning process has been successful then 

a “lead” compound is the result which can then go for pharmacological 

testing.  In machine learning terms such QSAR learning is an example of 

“active learning” - where statistical/machine learning methods select 
examples they would like to examine next to optimise learning [DHS01].  In 

pharmaceutical drug design the ad hoc selection of new compounds to test is 

done by QSAR experts and medicinal chemists based on their collective 
experience and intuition – there is a tradition of tension between the 

modellers and the synthetic chemists about what to do next.  Eve aims to 

automate this QSAR learning.  Given a set of “hits” from Baconian 
screening, Eve will switch to QSAR modelling.  Eve will employ both 

standard attribute based, graph based, and ILP based QSAR learning 

methods to model relationships between chemical structure and assay 

activity (see below).  Little previous work has been done on combining 
active learning and QSARs, although active learning is becoming an 

important area of machine learning. 

3.  Representations of Molecular Data 
 

Many industrial QSAR methods are based around using tuples of attributes 
or features to describe molecules [HMFM64,Mar78]. An attribute is a 

proposition which is either true or false about a molecule, for example, 

solubility in water, the existence of a benzene ring, etc.  A list of such 

propositions is often determined by hand by an expert, and the attributes are 
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measured or calculated for each molecule before the QSAR analysis starts. 

This representational approach typically results in a matrix where the 

examples are rows and the columns are attributes.  The procedure of turning 
molecular structures into tuples of attributes is sometimes called 

propositionalization. 

This way of representing molecules has a number of important 

disadvantages.  Chemists think of molecules as structured objects 
(atom/bond structures, connected molecular groups, 3D structures, etc.). 

Attribute-value representations no longer express these relationships and 

hence may be harder to reason about. Furthermore, in most cases some 
information will be lost in the transformation. How harmful it is to ignore 

certain information is not always easy to determine in advance. 

Another important disadvantage of the attribute-based approach is that is 
computationally inefficient in terms of space, i.e. to avoid as much loss of 

information as possible, an exponential number of attributes needs to be 

created.  It is not unusual in chemoinformatics to see molecules described 

using hundreds if not thousands of attributes.   

Within the machine learning and data mining communities, many methods 

have been proposed to address this problem, which we can categorize along 

two dimensions. In the first dimension, we can distinguish machine learning 
and data mining algorithms based on whether they compute features 

explicitly, or operate on the data directly, often by having implicit feature 

spaces. 

 Methods that compute explicit feature spaces are similar to the methods 
traditionally used in chemoinformatics for computing attribute-value 
representations: given an input dataset, they compute a table with attribute-

values, on which traditional attribute-value machine learning algorithms can 

be applied to obtain classification or regression models. The main difference 

with traditional methods in chemoinformatics is that the attributes are not 
fixed in advance by an expert, but that the data mining algorithm determines 

from the data which attributes to use. Compared to the traditional methods, 

this means that the features are chosen much more dynamically; 
consequently smaller representations can be obtained that still capture the 

information necessary for effective prediction. 

The calculation of explicit feature spaces is one of the most common 
applications of inductive queries, and will hence receive special attention in 

this chapter. 

 Methods that compute implicit feature spaces or operate directly on the 
structured data are more radically different: they do not compute a table with 

attribute-values, and do not propositionalize the data beforehand. Typically, 
these methods either directly compute a distance between two molecule 
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structures, or greedily learn rules from the molecules. In many such models 

the absence or presence of a feature in the molecule is still used in order to 

derive a prediction; the main difference is that both during learning and 
prediction the presence of these features is only determined when really 

needed; in this sense, these algorithms operate on an implicit feature space, 

in which all features do not need to be calculated on every example, but only 

on demand as necessary. Popular examples of measures based on implicit 
feature spaces are graph kernels. 

 For some methods it can be argued that they operate neither on an implicit 
nor on an explicit feature space. An example is a largest common 

substructure distance between molecules. In this case, even though the 

conceptual feature space consists of substructures, the distance measure is 
not based on determining the number of common features, but rather on the 

size of one such feature; this makes it hard to apply most kernel methods that 

assume implicit feature spaces. 

The second dimension along which we can categorise methods is the kind of 

features that are used, whether implicit or explicit: 

 Traditional features are typically numerical values computed from each 
molecule by an apriori fixed procedure, such as structural keys or 

fingerprints, or features computed through comparative field analysis. 

 Graph-based features are features that check the presence or absence of a 

sub-graph in a molecule; the features are computed implicitly or explicitly 
through a data mining or machine learning technique; these techniques are 

typically referred to as Graph Mining techniques. 

 First-order logic features are features that are represented in a first-order 
logic formula; the features are computed implicitly or explicitly through a 

data mining or machine learning technique. These techniques have been 
studied in the area of Inductive Logic Programming (ILP). 

We will see in the following sections that these representations can be seen 

as increasing in complexity; many traditional features are usually easily 
computed, while applying ILP techniques can demand large computational 

resources. Graph mining is an attempt to find a middle ground between these 

two approaches, both from a practical and a theoretical perspective. 

3.1 Traditional Representations 

The input of the analysis is usually a set of molecules stored in SMILES, 

SDF or InChi notation. In these files at least the following information about 

a molecule is described: 
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 Types of the atoms (such as: is the atom a Carbon, Oxygen, 

Nitrogen, ...?); 

 Types of the bonds between the atoms (such as: is the bond single, 

double, ...?). 

Additionally, these formats support the representation of: 

 Charges of atoms (is the atom positively or negatively charged, and 

how much?); 

 Aromaticity of atoms or bond (such as: is an atom part of an 
aromatic ring?); 

 Stereochemistry of bonds (such as: if we have two groups connected 

by one bond, how can the rotation with respect to each other be 

categorized?); 

Further information is available in some formats, for instance, detailed 3D 

information of atoms can also be stored in the SDF format. Experimental 

measurements may also be available, such as the solubility of a molecule in 

water. The atom-bond information is the minimal set of information 
available in most databases. 

The simplest and oldest approach for propositionalizing the molecular 

structure is the use of structural keys, which means that a finite amount of 
features are specified beforehand and computed for every molecule in the 

database. There are many possible structural keys, and it is beyond the scope 

of this chapter to describe all of these; examples are molecular weight, 
histograms of atom types, number of hetero-atoms, or more complex 

features, such as the sum of van der Waals volumes. One particular 

possibility is to provide an a priori list of substructures (OH groups, 

aromatic rings, ...) and either count their occurrences in a molecule, or use 
binary features that represent the presence or absence of each a priori 

specified group. 

Another example of a widely used attribute-based method is comparative 
field analysis (CoMFA) [CPB88]. The electrostatic potential or similar 

distributions are estimated by placing each molecule in a 3D grid and 

calculating the interaction between a probe atom at each grid point and the 
molecule. When the molecules are properly aligned in a common reference 

frame, each point in space becomes comparable and can be assigned an 

attribute such that attribute-based learning methods can be used.  However, 

CoMFA fails to provide accurate results when the lack of a common skeleton 
prevents a reasonable alignment. The need for alignment is a result of the 

attribute-based description of the problem. 
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It generally depends on the application which features are most appropriate. 

Particularly in the case of substructures, it may be undesirable to provide an 

exhaustive list beforehand by hand. Fingerprints were developed to alleviate 
this problem. Common fingerprints are based on the graph representation of 

molecules: a molecule is then seen as a labelled graph (V,E,,) with nodes 

V and edges E; labels, as defined by a function  from VE to , represent 
atom types and bond types. A fingerprint is a binary vector of a priori fixed 

length n, which is computed as follows: 

 All substructures of a certain type occurring in the molecule are 

enumerated (usually all paths up to a certain length); 

 A hashing algorithm is used to transform the string of atom and bond 

labels on each path into an integer number k between 1 and n; 

 The kth element of the fingerprint is incremented or set to 1. 

The advantage of this method is that one can compute a feature table in a 

single pass through a database. There is a large variety of substructures that 
can be used, but in practice paths are only considered, as this simplifies the 

problems of enumerating substructures and choosing hashing algorithms. An 

essential property of fingerprints is thus that multiple substructures can be 
represented by a single feature, and that the meaning of a feature is not 

always transparent. In the extreme case, one can choose n to be the total 

number of possible paths up to a certain length; in this case, each feature 
would correspond to a single substructure. Even though theoretically 

possible, though, this approach may be undesirable, as one can expect many 

paths not to occur in a database at all, which leads to useless attributes. 

Graph mining, as discussed in the next section, proposes a solution to this 
sparsity problem. 

3.2 Graph Mining 

The starting point of most graph mining algorithms is the representation of 

molecules as labelled graphs. In most approaches no additional information 
is assumed – consequently, the nodes and edges in the graphs are often 

labelled only with bond and atom types. These graphs can be used to derive 

explicit features, or can be used directly in machine learning algorithms. 

3.2.1 Explicit Features 

Explicit features are usually computed through constraint-based mining 

systems, and will hence be given special attention. 

The most basic setting of graph mining is the following. 
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Definition 1. Graph Isomorphism. Graphs G=(V,E,,) and G'=(V',E',',') 

are called isomorphic if there exists a bijective function f such that: vV: 

(v)= '(f(v)) and E={{f(v1),f(v2)} | { v1, v2}E'} and eE: (e)= '(f(e)). 

Definition 2.  Subgraph. Given a graph G=(V,E,,), graph G'=(V',E',',') 

is called a subgraph of G iff V'V and E'E and vV':'(v')=(v) and 

eE':'(e')=(e). 

Definition 3. Subgraph Isomorphism. Given two graphs G=(V,E,,) and 

G'=(V',E',','), G is called subgraph isomorphic with G', denoted by G' G, 

iff there is a subgraph G'' of G' to which G is isomorphic. 

Definition 4. Frequent Subgraph Mining. Given a dataset of graphs D, and a 
graph G, the frequency of G in D, denoted by freq(G,D), is the cardinality of 

the set {G'D|G' G}. A graph G is frequent if freq(G,D)minsup, for a 

predefined threshold minsup. The frequent (connected) subgraph mining is 

the problem of finding a set of frequent (connected) graphs F such that for 

every possible frequent (connected) graph G there is exactly one graph G'F 
such that G' and G are isomorphic. 

We generate as features those subgraphs which are contained in a certain 
minimum number of examples in the data. In this way, the eventual feature 

representation of a molecule is dynamically determined depending on the 

database it occurs in. 

There are now many algorithms that address the general frequent subgraph 
mining problem; examples are AGM [IWM00], FSG [KK01], gSpan 

[YH02], MoFA [BB02], FFSM [HWP03] and Gaston [NK04]. Some of the 

early algorithms imposed restrictions on the types of structures considered 

[KR01, KRH01]. 

If we set the threshold minsup very low, and if the database is large, even if 

finite, the number of subgraphs can be very large. One can easily find more 
frequent subgraphs than examples in the database. Consequently, there are 

two issues with this approach: 

 Computational complexity: considering a large amount of subgraphs 

could require large computational resources. 

 Usability: if the number of features is too large, it could be hard to 

interpret a feature vector. 

These two issues are discussed below. 

Complexity 

Given that the number of frequent subgraphs can be exponential for a 
database, we cannot expect the computation of frequent subgraphs to 

proceed in polynomial time. For enumeration problems it is therefore 
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common to use alternative definitions of complexity. The most important 

are: 

 Enumeration with polynomial delay. A set of objects is enumerated 

with polynomial delay if the time spent between listing every pair of objects 
is bounded by a polynomial in the size of the input (in our case, the dataset). 

 Enumeration with incremental polynomial time. Objects are 

enumerated in incremental polynomial time if the time spent between listing 

the k and (k+1)th object is bounded by a polynomial in the size of the input 
and the size of the output till the kth object. 

Polynomial delay is more desirable than incremental polynomial time. Can 

frequent subgraph mining be performed in polynomial time? 

Subgraph mining requires two essential capabilities: 

 Being able to enumerate a space of graphs such that no two graphs 

are isomorphic. 

 Being able to evaluate subgraph isomorphism to determine which 

examples in a database contain an enumerated graph. 

The theoretical complexity of subgraph mining derives mainly from the fact 

that the general subgraph isomorphism problem is a well-known NP 

complete problem, which in practice means that the best known algorithms 
have exponential complexity. Another complicating issue is that no 

polynomial algorithm is known to determine if two arbitrary graphs are 

isomorphic, even though this problem is not known to be NP complete. 

However, in practice it is often feasible to compute the frequent subgraphs in 

molecular databases, as witnessed by the success of the many graph miners 

mentioned earlier. The main reason for this is that most molecular graphs 

have properties that make them both theoretically and practically easier to 
deal with. Types of graphs that have been studied in the literature include; 

 Planar graphs, which are graphs that can be drawn on a plane 

without edges crossing each other [Epp95]; 

 Outerplanar graphs, which are planar graphs in which there is a 
Hamilton cycle that walks only around one (outer) face [Lin89]; 

 Graphs with bounded degree and bounded tree width, which are 

tree-like graphs
1
  in which the degree of every node is bounded by a constant 

[MT92]. 

__________________________________________________________  
1
 A formal definition is beyond the scope of this chapter. 
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Graphs of these kinds are common in molecular databases (see Table 1, 

where we calculated the number of occurrences of certain graph types in the 

NCI database, a commonly used benchmark for graph mining algorithms). 

 

Graph property Number 

All graphs 250251 

Graphs without cycles 21963 

Outerplanar graphs 236180 

Graphs of tree width 0, 1 or 2 243638 

Graphs of tree width 0, 1, 2 or 3 250186 

Table 1:  The number of graphs with certain properties in the NCI database 
 

No polynomial algorithm is however known for (outer)planar subgraph 

isomorphism, nor for graphs of bounded tree width without bounded degree 

and bounded size. However, in recent work we have shown that this does not 
necessarily imply that subgraph mining with polynomial delay or in 

incremental polynomial time is impossible: 

 If subgraph isomorphism can be evaluated in polynomial time for a 

class of graphs, then we showed that there is an algorithm for solving the 
frequent subgraph mining algorithm with polynomial delay, hence showing 

that the graph isomorphism problem can always be solved efficiently in 

pattern mining [RN08]. 

 Graphs with bounded tree width can be enumerated in incremental 
polynomial time, even if no bound on degree is assumed [HR08]. 

 For the block-and-bridges subgraph isomorphism relation between 

outerplanar graphs (see next section), we can solve the frequent subgraph 

mining problem in incremental polynomial time [HRW06]. 

These results provide a theoretical foundation for efficient graph mining in 

molecular databases. 

Usability 

The second problem is that under a frequency threshold, the number of 

frequent subgraphs is still very large in practice, which affects 

interpretability and efficiency, and takes away one of the main arguments for 
using data mining techniques in QSAR. 

One can distinguish at least two approaches to limit the number of subgraphs 

that is considered: 

 Modify the subgraph isomorphism relation; 
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 Apply additional constraints to subgraphs. 

We will first look at the reasons for changing the subgraph isomorphism 

relation. 

Changing Isomorphism: Assume we have a molecule containing Pyridine, 
that is, an aromatic 6-ring in which one atom is a nitrogen. How many 

subgraphsare contained in this ring only?  As it turns out, Pyridine has 

2+2+3+3+4+3=17 different subgraphs next to Pyridine itself (ignoring 
possible edge labels): 

 

N  C 

C-C  N-C 

C-C-C N-C-C  C-N-C 

C-C-C-C  N-C-C-C  C-N-C-C 

C-C-C-C-C  N-C-C-C-C  C-N-C-C-C  C-C-N-C-C 

N-C-C-C-C-C  C-N-C-C-C-C  C-C-N-C-C-C 

 

It is possible that each of these subgraphs has a different support; for 

example, some of these subgraphs also occur in Pyrazine (an aromatic ring 
with two nitrogens). The support of each of these subgraphs can be hard to 

interpret without visually inspecting their occurrences in the data. Given the 

large number of subgraphs, this can be infeasible. 

Some publications have argued that the main source of difficulty is that we 

allow subgraphs which are not rings to be matched with rings, and there are 

applications in which it could make more sense to treat rings as basic 

building blocks. This can be formalized by adding additional conditions to 
subgraph isomorphism matching: 

 In [HBB03] one identifies all rings up to length 6 in both the 

subgraph and the database graph; only a ring is allowed to match with a ring. 

 In [HRW06] a block and bridge preserving subgraph isomorphism 
relation is defined, in which bridges in a graph may only be matched with 

bridges in another graph, and edges in cycles may only be matched with 

edges in cycles; a bridge is an edge that is not part of a cycle. 

Comparing both approaches, in [HBB03] only rings up to length 6 or 
considered; in [HRW06] this limitation is not imposed. 

Most subgraph mining algorithms need to be changed significantly to deal 

with a different definition of subgraph isomorphism. To solve this [HBB03, 
HRW06] introduce procedures to deal with ring structures. 

We are not aware of an experimental comparison between these approaches. 
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Additional Constraints: The use of constraints is a general methodology to 

obtain a smaller set of more meaningful subgraphs [KR01, KRH01]. One 

can distinguish two types of constraints: 
 Structural constraints; 

 Data based constraints. 

Minimum frequency is one example of a constraint based on data. Many 

other subgraph types have been proposed based on data constraints: 

 Maximally frequent subgraphs, which are subgraphs such that every 

supergraph in a database is infrequent [KR01, KRH01, HWPY04]; 

 Closed subgraphs, which are subgraphs such that every supergraph 

has a different frequency [YH03]. 

 Correlated subgraphs, which are subgraphs whose occurrences have 

a significant correlation with a desired target attribute [BZRN06]; 

 Infrequent subgraphs [KR01, KRH01]. 

These constraints can be combined.  For instance, one can be interested in 

finding subgraphs that occur frequently in molecules exhibiting a desired 
property, but not in other  molecules. 

In practice, these constraints are often not sufficient to obtain small 

representations. Additional inductive queries can be used to reduce the set of 
patterns further. A more detailed overview of approaches to obtain smaller 

sets of patterns is given in another chapter of this book. 

An issue of special interest in QSAR applications is which graph types lead 
to the best results: even though molecules contain cycles, is it really 

necessary to find cyclic patterns? Experiments investigating this issue can be 

found in [Nij06, BZRN06,WK06]. The conclusion that may be drawn from 

these investigations is that in many approaches that use patterns, paths 
perform equally well as graphs; naïve use of cyclic patterns can even lead to 

significantly worse results. 

3.2.2 Implicit Features & Direct Classification 

The alternative to graph mining is to learn classifiers directly on the graph 

data. The most popular approaches are based on the computation of a 

distance between every pair of graphs in the data. Such distance functions 
can be used in algorithms that require distance functions, such as k-nearest 

neighbour classification, or support vector machines (SVMs). In SVMs a 

special type of distance function is needed, the so-called kernel function. 

One popular type of kernel is the decomposition kernel, in which the 

distance is defined by an implicit feature space. If this implicit feature space 
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is finite, the kernel value between molecules can in principle be computed by 

first computing two feature vectors for the pair, and then computing a 

distance from these feature vectors; the advantage of kernels is that in 
practice only the (weighted) number of substructures that two particular 

graphs have in common is computed. 

The most commonly used graph kernels are based on the idea of random 

walks: given two molecules, we count the number of walks that both 
molecules have in common. Note that walks differ from paths as walks are 

allowed to visit the same node more than once. If a maximum walk length is 

given, we could represent two molecules by binary feature vectors with one 
bit for each possible walk. In practice, though, it is more efficient to scan the 

two molecules in parallel to make sure we search for common walks. This 

methodology has further possible advantages. For instance, if we give all 
walks in graphs a weight which (carefully) shrinks with the length of the 

walk, a kernel can be defined in which we sum the infinite number of such 

common weighted walks. This number is efficiently computable without 

explicitly enumerating all walks [GFW03]. Many kernel methods have the 
advantage that they deal easily with possibly infinite representations of 

structures in a feature space. An early overview of graph kernels can be 

found in [Gär03], while a more recent overview of walk-based kernels can 
be found in Error! Not a valid bookmark self-reference.Error! Not a 

valid bookmark self-reference.[Vish09]. 

Another type of distance function is obtained by computing the largest 

common subgraph of two graphs. The assumption is here that the larger the 
subgraph is that two molecules have in common, the more similar they are. It 

is easy to see that this problem is at least as hard as computing subgraph 

isomorphism. However, the problem may become more easy for the types of 
graphs identified in the previous section. In [SRBB08] it was shown how to 

compute the largest common subgraph in polynomial time for outer-planar 

graphs under the block-and-bridges subgraph relation. 

3.2.3 Extended Graph Representations 

So far we have considered representations in which nodes correspond to 

atoms and edges to bonds.  This limits the types of knowledge that can be 
used in the classification. It may be desirable to extend the representation: in 

some cases it is necessary to classify atom types, e.g. halogen (F, Cl, Br, I); 

to say an atom in an aromatic ring but not specify the atom type; to extend 
the notion of bond from that of a covalent bond to include non-covalent 

ones, e.g. hydrogen bonds; etc. 

To deal with such issues of ambiguity the common solution is to assume 

given a hierarchy of edge and node labels. In this hierarchy more general 



1. Inductive queries for a drug designing robot scientist 17 

 
labels, such as „halogen‟ and „hydrogen donor‟, are included, as well as the 

generalization relationships. There are two ways to use these hierarchies: 

 We change the subgraph isomorphism operator, such that more 

general labels are allowed to match with their specialisations [HBB03, 
Ino04]; 

 We exploit the fact that in some  hierarchies every atom has at most 

one generalization, by changing the graph representation of the data: we 

replace the atom type label with the parent label in the hierarchy, and 
introduce a new node, which is labeled with the original atom type. 

Optionally, we add additional nodes labeled with other attributes, such as 

charges [KNK06]. 

These approaches have mainly been investigated when computing explicit 

features. An essential problem is then in both approaches the increased 

number of patterns. Without additional constraints we could find patterns 

such as C-Aromatic-C-Aromatic-C in aromatic rings, that is, patterns 

in which the labels iterate between specific and general labels. The 

approaches listed above differ in their approach to avoid or limit such 
patterns. 

3.3 Inductive Logic Programming 

In QSAR applications such as toxicity and mutagenicity prediction, where 

structure is important, Inductive Logic Programming is among the more 
powerful approaches, and has found solutions not accessible to standard 

statistical, neural network, or genetic algorithms [DTK98, EK03, KMLS92, 

KMSS96]. The main distinguishing feature of ILP is that data and models 

are represented in first order logic (FOL). The classical atom/bond 
representation in first-order logic is based on the molecular structure 

hypothesis. Atoms are represented in the form: atom(127,127_1,c,22,0.191), 

stating that the first atom in compound 127 is a carbon atom of type 22 
(aromatic) with a positive charge of 0.191. Similarly, 

bond(127,127_1,127_6,7) states that there is a type 7 bond (here aromatic) 

between the first and sixth atom in compound 127. Bonds are represented in 
a similar fashion. 

When only atoms, bonds and their types are represented in FOL facts, the 

resulting representation is essentially a graph. The main advantage of ILP is 

the possibility of including additional information, such as charges, and of 
including background knowledge in the form of computer programs. One 

example of this is to define a distance measure which enables three-

dimensional representations with rules in the form: “A molecule is active if it 
has a benzene ring and a nitro group separated by a distance of 4 ± 0.5˚A”. 

The key advantage of this approach to representing three-dimensional 
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structures is that it does not require an explicit alignment of the molecules. It 

is also straightforward to include more than one conformation of each 

compound which allows the consideration of conformation flexibility which 
is often a major drawback by conventional QSAR/SAR methodologies. 

Since chemists often study molecules in terms of molecular groups, the 

atom/bond representation can be extended with programs that define such 

high-level chemical concepts. Contrary to propositional algorithms and 
graph mining, ILP can learn rules which use structural combinations of these 

multiple types of concepts. 

A downside of ILP is the lack of results with respect to efficient theoretical 
complexity. As shown in the previous section, for many classes of graphs 

efficient mining algorithms are known. As a result, graph mining is usually 

efficient, both in theory and in practice. For ILP algorithms no similar 
theoretical results are available and the algorithms typically require more 

computational power, both in theory and in practice. 

The number of ILP algorithms is very large, and the discussion of this area is 

beyond the scope of this article. We will limit our discussion here to the 
relationship between graph mining and ILP algorithms, and approaches that 

we will need later in this chapter. For a more complete discussion of ILP see 

[DR08]. An important aspect of ILP algorithms is the background 
knowledge used. We will conclude this section with a discussion of the 

details of a library of background knowledge for SAR applications that we 

recently developed, and is important in allowing users to formulate 

alternative inductive queries. 

3.3.1 Explicit Features 

A similar problem as the frequent subgraph mining problem can be 
formulated in ILP. The data is conceived as a set of definite clauses and 

facts, for instance: 

halogen(X,Y) :- atom(X,Y,f,_,_). 

halogen(X,Y) :- atom(X,Y,cl,_,_). 

... 

atom(127,127_1,c,22,0.191). 

atom(127,127_2,c,22,0.191). 

bond(127,127_1,127_2,single). 

The database is usually represented as a program in Prolog. The clauses can 

be thought of as brackground knowledge, while the facts describe the 
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original data. Assume now we are given the following clause, which is not 

part of the database: 

f1(X) :-  molecule(X),halogen(X,Y), 

atom(X,Z,c,_,_),bond(X,Y,Z,_). 

Then for a given constant, for instance 127 in our example, we can evaluate 

using a Prolog engine whether f1(127) is true. If this is the case, we may 

see f1 as a feature which describes molecule 127. We may call a clause 

frequent if it evaluates to true for a sufficient number of examples. The 

problem of finding frequent clauses is the problem that was addressed in the 

WARMR algorithm [DDR97]. 

Definition 4. Frequent Clause Mining. Given clause C = h(X) :- b, 

where b is the body of the clause C, and a Prolog database D with constants 

C, the frequency of clause C in D, denoted by freq(C,D), is the cardinality of 

the set { c C | D{C}  h(c) }; in other words, the number of 

constants for which we can prove the head of the clause using a Prolog 

engine, assuming C were added to the data. A clause C is frequent if 

freq(C,D)minsup, for a predefined threshold minsup. Assume given a 
language L of clauses. The frequent clause mining is the problem of finding 

a set of clauses F such that for every possible frequent clause C in L there is 

exactly one clause C'F such that C' and C are equivalent. 

It is of interest here to point towards the differences between frequent graph 

mining and frequent clause mining. 

The first practical difference is that most algorithms require an explicit 

definition of the space of clauses C considered. This space is usually defined 
in a bias specification language. In such a bias specification language, it can 

be specified for instance that only clauses starting with a molecule 

predicate will be considered, and next to this predicate only atom and bond 

predicates may be used. Note that such clauses would essentially represent 

graphs. The bias specification language can considered a part of the language 
of an inductive querying system and provides users the possibility to 

carefully formulate data mining tasks. 

The second difference is the use of traditional Prolog engines to evaluate the 

support of clauses. Prolog engines are based on a technique called 
resolution. There is an important practical difference between resolution and 

subgraph isomorphism, as typically used in graph mining algorithms. 

Assume given a clause over only atoms and bonds, for instance, 

h(X) :-  molecule(X), atom(X,Y,c,_,_), 

bond(X,Y,Z1,_),bond(X,Y,Z2,_) 

then this clause is equivalent to the following clause: 
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h(X) :- molecule(X), atom(X,Y,c,_,_),bond(X,Y,Z1,_) 

the reason is that if constants are found for which the second clause 

succeeds, we can use the same constants to satisfy the first clause, as there is 

no requirement that Z1 and Z2 are different constants. On the other hand, 
when using subgraph isomorphism, two atoms in a subgraph may never be 

matched to the same atom in a molecule. 

The use of resolution has important consequences for the procedure that is 
used for eliminating equivalent clauses. Whereas in graph mining, it is 

possible to avoid equivalent subgraphs during the search, it can be proved 

that there are languages of clauses for which this is impossible; the only 

solution in such cases is to first generate a highly redundant set of clauses, 
and eliminate duplicates in a post-processing step. 

To address this problem, an alternative to resolution was proposed, in which 

two different variables are no longer allowed to be resolved to the same 
constant. This approach is known as theta-subsumption under Object Identity 

[DR08]. 

Similar constraints as proposed in graph mining, can also be applied when 

mining clauses. However, this has not yet been extensively applied in 
practice. 

3.3.2 Implicit Features & Direct Classification 

The alternative to separate feature construction and learning phases is also in 

ILP to learn a model directly from the data. Contrary to the case of graphs, 

however, the use of distance functions has only received limited attention in 

the ILP literature; see [FP08] for a kernel on logical representations of data 
and [DR09] for a distance based on the least general generalization of two 

sets of literals. The application of these methods on molecular data is yet 

unexplored; one reason for this is the expected prohibitive performance of 
these methods, in particular when one wishes to include background 

knowledge in the lgg based methods. 

On the other hand, a very common procedure in ILP is to greedily learn a 
rule-based or tree-based classifier directly from training data; examples of 

such algorithms include FOIL, Tilde and Progol [DR08]. In graph mining 

such approaches are rare; the main reason for this is that greedy heuristics 

are expected to be easily misled when the search proceeds in very “small”, 
uninformative steps, as common in graph mining when growing fragments 

bond by bond. 

To illustrate one such greedy algorithm, we will discuss the Tilde algorithm 
here [BD98]. Essentially, Tilde starts from a similar database as WARMR, 

and evaluates the support of a clause in a similar way as WARMR; however, 



1. Inductive queries for a drug designing robot scientist 21 

 
as the algorithm is aware of the class labels, it can compute a score for each 

clause that evaluates how well it separates examples of one or more two 

classes from each other. For instance, the clause 

h(X) :- molecule(X), benzene(X,Y) 

may hold for 15 out of 20 constants identifying positive molecules, and only 

15 out of 30 negative molecules; from these numbers we may compute a 

score, such as information gain: 

( -0.4 log 0.4 – 0.6 log 0.6 ) - 0.3 ( -0.5 log 0.5 – 0.5 log 0.5 ) – 0.7 ( -0.25 

log 0.25 – 0.75 log 0.75 ) 

Here the first term denotes the information of the original class distribution 

(20/50 positives, 30/50 negatives), the second term denotes the information 
of the examples for which the query succeeds, and the third term denotes the 

information of the examples for which it fails. 

Using such a score, we can compare several alternative clauses. In Tilde 
clauses are grown greedily, i.e.  for a given clause, all possible literals are 

enumerated that can be added to it, and only the extended clause that 

achieves the best score is chosen for further extension. If the improvement is 

too small, the molecules are split in two sets based on whether the clause 
succeeds. For these two sets of examples, the search for clauses recursively 

continues. The end result of this procedure constitutes a tree in which 

internal nodes are labeled with clauses; we can label a leaf by the majority 
class of the examples ending up in the leaf. This tree can be used directly for 

classification. 

The problem of learning accurate decision trees has been studied extensively, 
and many techniques, such as pruning, can also be applied on relational 

decision trees [BD98]. The main downside of algorithms such as Tilde is that 

the greedy procedure will prevent large carbon-based substructures from 

being found automatically, as the intermediate steps through which the 
greedy search would have to go usually do not score exceptionally well on 

commonly used heuristics. Hence, it is advisable in ILP to specify larger 

substructures in advance by means of background clauses. 

3.3.3 A Library of Chemical Knowledge for Relational QSAR 

An important benefit of ILP algorithms is the ability to incorporate 

background knowledge, for instance, to represent special groups in 
molecules. The availability of such background knowledge in a data mining 

system may allow data analysts to query a database from additional 

perspectives, as will be illustrated in the next section when studying the 
problem of selecting a library for use in a robot scientist. 
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To exploit this benefit, it is essential that a comprehensive library of 

background knowledge is available. We developed a chemical structure 

background-knowledge-for-learning (Molecular Structure Generator MSG). 
This consists of a large library of chemical substructures, rings and 

functional groups, including details of isomers and analogues.  This library 

consists of three main parts (see Appendix 1): a functional group library, a 

ring library, and a polycycle library.  We encoded the standard functional 
groups have been pre-coded in the library (Appendix 1).  The ring library 

consists of predominantly 3, 4, 5 and 6 length rings. Rings that are identified 

but do not have specific chemical names are given an standard label, for eg, 
other_six_ring. Unnamed rings of up to 15 atoms in length are pre-coded in 

this way. Appendix 1 shows the specific rings that are in the library.  Rings 

with isomers have been defined individually but they will have a 
corresponding parent predicate held in the library, for eg, isomer_parent(1,3-

cyclohexadiene, cyclohexadiene); isomer_parent(1,4-cyclohexadiene, 

cyclohexadiene). This will mean that inductions may be made over either the 

specific isomer or for the whole family. The polycycle library consists of 
predominantly 2 and 3 ring polycycles that have been pre-coded and held in 

the MSG Prolog library. Polycycles that are not specifically named have 

been given an other label, for e.g. other_carbon. All polycycles will be 
identified regardless if specifically named in the library. Appendix 1 shows 

the specific polycyles that are in the library.  Structures are built up from 

substructure, for e.g. an anthracene would have facts for 3 benzene rings, 2 

fused pair naphthalenes and a polycycle anthracene; an aryl-nitro structure 
would have facts for a nitro and an aromatic ring.  The data have been fully 

normalised according to Boyce-Codd relational data standards [Cod74].  The 

example of the representation of the molecule 8-nitroquinoline is shown in 
Figure 3 and Table 2. 

 

 

 

Figure 3. Chemical structure of 8-nitroquinoline 
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ring_length(2,1,6). 

aromatic_ring(2,1). 

carbon_ring(2,1). 

ring(2,1,benzene). 

ring_atom(2,1,1). 

ring_atom(2,1,2). 

ring_atom(2,1,3). 

ring_length(2,2,6). 

n_containing(2,2). 

aromatic_ring(2,2). 

hetero_ring(2,2). 

ring(2,2,pyridine). 

ring_atom(2,2,3). 

 

ring_atom(2,2,4). 

ring_atom(2,2,5). 

ring_atom(2,2,6). 

ring_atom(2,2,7). 

ring_atom(2,2,8). 

fused_ring_pair(2,3,1). 

fused_ring_pair_share_atom(2,3,8). 

polycycle(2,4,quinoline). 

hetero_poly(2,4). 

poly_no_rings(2,4,2). 

polycycle_pair(2,4,3). 

group(2,5,nitro). 

group_atom(2,5,11). 

 

group_atom(2,5,13). 

r_atom(2,5,9). 

group(2,6,aryl_nitro). 

part_of_group_structure(2,6,1). 

part_of_group_structure(2,6,5). 

count_ring(2,benzene,1). 

count_ring(2,pyridine,1). 

count_poly(2,quinoline,1). 

count_group(2,nitro,1). 

count_group(2,aryl_nitro,1). 

parent(2,6,nitro). 

nextto(2,1,2,fused). 

nextto(2,1,5,bonded). 

 

Table 2. Ground background knowledge generated for 8-nitroquinoline. 

4. Selecting Compounds for a Drug Screening Library 

This MSG library will be used to generate ILP representations of the 
compounds that will be screened by the Eve. To test the efficacy of the 

representation and the method, this library was used to aid the decision-

making process for the selection of a compound library to be used with Eve. 

The two main criteria for selecting compounds for screening libraries are 
that they resemble existing approved pharmaceuticals, and that they are 

structurally diverse. The requirement for a compound in a screening-library 

to resemble existing pharmaceutically active compounds maximizes the a 
priori probability of an individual compound being active and non-toxic 

because existing pharmaceutically-active compounds have this property.  

The requirement for diversity is usually justified by the fact that structurally 
similar compounds tend to exhibit similar activity - a structurally diverse set 

of compounds should cover the activity search space and therefore contain 

fewer redundant compounds [LG03].   

Drug-like properties are usually defined in terms of ADME - Absorption, 
Distribution, Metabolism, and Excretion - and describe the action of the drug 

within an organism, such as intestinal absorption or blood-brain-barrier 

penetration. One of the first methods, and still the most popular, to model the 
absorption property was the “Rule of 5” [LLDF97]

 
which identifies the 

compounds where the probability of useful oral activity is low.  The "rule of 

5" states that poor absorption or permeation is more likely when: 

1. There are more than 5 Hydrogen-bond donors 
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2. The Molecular Weight is over 500. 

3. The LogP (partition coefficient) is over 5 (or MLogP is over 4.15). 

4. There are more than 10 Hydrogen-bond acceptors 

The negation of the Lipinski rules are usually used as the main selection 

criteria for the compounds to include in a screening-library. Though these 
rules are not definitive, the properties are simple to calculate, and provide a 

good guideline for drug-likeness. 

We have taken an operational approach to determining the drug-likeness of 

compounds [SK09].  The basic idea is to use machine learning techniques to 
learn a discrimination function to distinguish between pharmaceutically-

active compounds and compounds in screening-libraries.  If it is possible to 

discriminate pharmaceutically-active compounds from compounds in a 
screening-library then the compounds in the library are considered not drug-

like; conversely, if they cannot be discriminated then the compounds are 

drug-like.   

Two compound-screening libraries were chosen for analysis – the target-

based NatDiverse collection from Analyticon Discovery (Version 070914) 

and the diversity-based HitFinder (Version 5) collection from Maybridge. 

The libraries from these companies are publicly available and this was the 
main reason for their inclusion in this research. The HitFinder collection 

includes 14,400 compounds representing the drug-like diversity of the 

Maybridge Screening Collection (~60,000 compounds). Compounds have 
generally been selected to be non-reactive and meeting Lipinski‟s Rule of 5. 

AnalytiCon Discovery currently offers 13 NatDiverse libraries which are 

tailor-made synthetic nitrogen-containing compounds. The total number of 
compounds is 17,402.  The approved pharmaceuticals dataset was obtained 

from the KEGG Drug database and contains 5,294 drugs from the United 

States and Japan. The data was represented using the Molecular Structure 

Generator, mentioned above, and the ILP decision tree learner Tilde [BD98], 
was used to learn the discrimination functions between the set of approved 

pharmaceuticals and the two compound screening-libraries. 

 

Three tests per dataset were carried out – one based on structural information 

only, another on quantitative attributes only, and the other based on both 

structural information and the quantitative attributes. The complete datasets 

were split into a training and validation set and an independent test set. A 
ten-fold cross-validation was used for Tilde to learn the decision trees. For 

each of the three scenarios, the ten-fold cross-validation was carried out with 

identical training and validation sets.  For each scenario, the classification 
tree that provided the best accuracy when applied to the validation set was 

applied to the independent test set, see Table 3.  The independent test results 

are good and consistent with validation results. They indicate  that the 
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inclusion of quantitative attributes resulted in increasing the classification 

accuracy only slightly. The best accuracy was achieved by the decision trees 

when the data is represented by both structures and properties. These 
decision trees were represented as a set of Prolog rules and the most accurate 

rules were selected to build the smallest decision list that had a minimum 

accuracy of 85%.  A complication is the the problem of uneven class 

distributions (approximately 3:1, screening-library: approved 
pharmaceuticals). 

 
Testing Dataset Accuracy True 

Negatives 

True 

Positives 

HitFinder  /  App structures only 90% 92% 74% 

NAT / App structures only 99% 99% 96% 
HitFinder  /  App properties only 83% 90% 62% 
NAT / App properties only 89% 92% 74% 
HitFinder  /  App structures & properties 91% 93% 75% 
NAT / App structures & properties 99% 99% 97% 

 

Table 3. Accuracy of the classification trees when applied to the independent 

test set. 

 

The classification system had more difficulty discriminating approved 

pharmaceuticals from the diversity-based HitFinder library than the target-

based NATDiverse library. However, the ILP method had 91% success in 
classifying compounds in the HitFinder library and 99% in classifying 

compounds from the NATDiverse collection when applied to an independent 

test set. These discrimination functions were expressed in easy to understand 
rules, are relational in nature and provide useful insights into the design of a 

successful compound screening-library. 

Given a set of rules that can discriminate between drugs and non-drug 

compounds, the question arises how best to use them in the drug design 
process.   The simplest way to use them would be as filters, and to remove 

from consideration any compound classed as being non-drug-like.  This is 

what is generally done with the original Lipinski rules - any compounds that 
satisfy the rules are removed from drug libraries.  This approach is non-

optimal because such rules are soft,as they are probabilistic and can be 

contravened under some circumstances.  However, new data mining research 

such as multi-target learning research [ZD08] has originated better ways of 
using prior rules than simply using them as filters.  We believe that such 

approaches could be successfully applied to the drug design problem. 
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5. Active learning 

In many experiment-driven research areas, it is important to select 

experiments as optimal as possible in order to reduce the amount and the 

costs of the experiments. This is in particular true for high-throughput 

screening in the drug discovery process, as thousands of compounds are 

available for testing. QSAR methods can help to model the results obtained 

so far. When fit into an active learning strategy, they can be used to predict 

the expected benefit one can obtain from experiments. 

However, in QSAR applications there is an important difference with 

classical active learning approaches. Usually, one is not interested to get an 

accurate model for all molecules. It is only important to distinguish the best 

molecules (and therefore to have an accurate model for the good ones). So 

instead of active learning where one chooses experiments to improve the 

global performance of the learned model, in these applications an active 

optimization approach is desired where one chooses experiments to find the 

example with the highest target value. 

There may be two major reasons why an experiment is interesting. First, one 

may believe that the molecule being tested has a high probability of being 

active. In that case, one exploits the available experience to gain more value. 

Second, the molecule may be dissimilar to the bulk of the molecules tried so 

far. In that case, the experiment is explorative and one gains new experience 

from it. 

 

5.1 Selection strategies 

Different example selection strategies exist. In geostatistics, they are called 

infill sampling criteria [Sas02]. 

In active learning, in line with the customary goal of inducing a model with 

maximal accuracy on future examples, most approaches involve a strategy 

aiming to greedily improve the quality of the model in regions of the 

example space where its quality is lowest. One can select new examples for 

which the predictions of the model are least certain or most ambiguous. 

Depending on the learning algorithm, this translates to near decision 

boundary selection, ensemble entropy reduction, version space shrinking, 

and others. In our model, it translates to maximum variance on the predicted 

value, or 
))(t( varargmax

. 

Likely more appropriate for our optimization problem is to select the 

example that the current model predicts to have the best target value, or 
)t(argmax

. We will refer to this as the maximum predicted strategy. For 
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continuous domains, it is well known that it is liable to get stuck in local 

minima. 

A less vulnerable strategy is to always choose the example for which the 

optimistic guess is maximal. In reinforcement learning, one has shown that 

with this strategy the regret is bounded (Explicit Explore or Exploit, 

[KS98]). In that case, the idea is to not (re)sample the example in the 

database where the expected reward 
t

is maximal, but the example where 
)(tb+t var
is maximal. The parameter b is the level of optimism. In this 

paper we do not consider repeated measurements, unlike reinforcement 

learning, where actions can be reconsidered. This optimistic strategy is 

similar to Cox and John‟s lower confidence bound criterion [CJ97]. It is 

obvious that the maximum predicted and maximum variance strategies are 

special cases of the optimistic strategy, with b=0 and b= respectively. In a 

continuous domain, this strategy is not guaranteed to find the global 

optimum because its sampling is not dense [Jon01]. 

Another strategy is to select the example  that has the highest probability of 

improving the current solution [Kus64]. One can estimate this probability as 

follows. 

Let the current step be N, the value of the set of k best examples be kbestNT


and the k-th best example be N)(k,x
with target value N)(k,t

. When we query 

example ,either  is smaller than or equal to N)(k,t
, or 1+Nt is greater. In the 

first case, our set of k best examples does not change, and 
kbestNkbest+N T=T

1 . In the latter case, 1+Nx
will replace the k-th best 

example in the set and the solution will improve. Therefore, this strategy 

selects the example 1+Nx
that maximizes 

)t>P(t N)(k,+N 1 . We can evaluate 

this probability by computing the cumulative Gaussian 

  .))(var,1 dtttN(=)t>P(t N)(k,+N  (1) 

In agreement with [LWBS07], we call this the most probable improvement 

(MPI) strategy. 

Yet another variant is the strategy used in the Efficient Global Optimization 

(EGO) algorithm [JS98]. EGO selects the example it expects to improve 

most upon the current best, i.e the one with highest 

 
.)(var,0,max )dtttN()t(t=)]tt(E[ N)(k,N)(k,  
 (2) 

This criterion is called maximum expected improvement (MEI). 
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5.2 Effects of properties of experimental equipment. 

Most approaches assume an alternation between the algorithm proposing one 

single experiment and the environment performing one experiment 

producing a definite answer to the proposed question. After a number of 

iterations, the algorithm converges then to one optimal solution. However, in 

practice such a procedure is not always acceptable. 

First, in some cases, not all parameters are evaluated during the first stage of 

experimentation. E.g. in the drug discovery process, active compounds may 

be rejected at a later stage due to other adverse properties such as toxicity, 

and therefore one prefers to discover in the first stage several dissimilar 

candidates instead of one optimal one. 

Second, in many applications among which high throughput screening, the 

equipment can perform several experiments at the same time. E.g. several 

compounds can be tested on a single plate, or the experiments happen in a 

pipeline such that several experiments are under way before the result of the 

first one is known. In such cases, the algorithm has to choose several 

experiments without knowing the result of all earlier experiments. Therefore, 

apart from exploitation and exploration, the algorithm also needs 

diversification. 

Third, noise is a common factor in real-world experiments. It means that 

results are not always exact or trustworthy. Depending on the domain, one 

may want to perform the same experiment several times, or design different 

experiments to jointly measure a set of related values. 

6. Conclusions 
In this chapter we have first introduced the challenges involved in 
automating the discovery process of new drugs, of which the development of 

a robot scientist is the arguably the most ambitious. We have provided a 

more detailed discussion of several of the challenges particular to iterative 
drug discovery: the representation of molecular data, the use of active 

learning and the development of libraries that serve as input for the former 

two tasks. 

Even though we made an attempt to provide a reasonably complete summary 
of the areas and issues involved, the overview in this chapter is far from  

complete. An important element which is missing from this chapter is an all-

encompassing experimental comparison of the representation methods 
presented (both ILP and graph mining), as well as detailed recommendations 

with respect to which algorithms to use for which types of data, under which 

types of constraints or under which type of language bias. Desirable as this 
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may be, to the best of our knowledge no such comparison is currently 

available in the literature and most studies have focused on a subset of 

methods and limited types of data (mostly NCI, see [WK06, BZRN06] for 
instance). This type of analysis could be a useful topic for further research, 

for which we hope that this chapter provides some useful hints. 

References 

[BB02] Christian Borgelt and Michael R. Berthold. Mining molecular 

fragments: Finding relevant substructures of molecules. In ICDM, pages 

51–58. IEEE Computer Society, 2002. 
[BD98] Hendrik Blockeel, Luc De Raedt: Top-Down Induction of First-

Order Logical Decision Trees. Artif. Intell. 101(1-2): 285-297 (1998). 
[BDK04] H. Blockeel, S. Dzeroski, B. Kompare, S. Kramer, B. Pfahringer, 

and W. Van Laer. Experiments in predicting biodegradability. In Appl. Art. 
Int. 18, pages 157–181, 2004. 

[BZRN06] Björn Bringmann, Albrecht Zimmermann, Luc De Raedt, and 

Siegfried Nijssen. Don‟t be afraid of simpler patterns. In Johannes 
Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, PKDD, 

volume 4213 of Lecture Notes in Computer Science, pages 55–66. 

Springer, 2006. 
[Cod74] E.F. Codd. Recent Investigations into Relational Data Base 

Systems. IBM Research Report RJ1385 (April 23rd, 1974). Republished 

in Proc. 1974 Congress (Stockholm, Sweden, 1974). New York, N.Y.: 

North-Holland, 1974. 
[CJ97] Dennis D. Cox and Susan John. SDO: a statistical method for global 

optimization. In Multidisciplinary design optimization (Hampton, VA, 

1995), pages 315–329. SIAM, Philadelphia, PA, 1997. 
[CPB88] R.D. III Cramer, D.E. Patterson, and Bunce J.D. Comparative Field 

Analysis (CoMFA). 1. The effect of shape on binding of steroids to carrier 

proteins. J. Am. Chem. Soc. 110: 5959–5967, 1988. 
[DTK98] L. Dehaspe, H. Toivonen, and R.D. King. Finding frequent 

substructures in chemical compounds. In: The Fourth International 

Conference on Knowledge Discovery and Data Mining. AAAI Press, 

Menlo Park, Ca. 30-36, 1998. 
[DDR97] Luc Dehaspe, Luc De Raedt: Mining Association Rules in 

Multiple Relations. In: ILP 1997: 125-132. 
[DR08] Luc De Raedt. Statistical and Relational Learning. Springer, 2008. 
[DR09] Luc De Raedt, Jan Ramon: Deriving distance metrics from 

generality relations. Pattern Recognition Letters 30(3): 187-191 (2009). 
[DHS01] R.O. Duda,  P.E. Hart, and D.G. Stork. Pattern Classification.  

Wiley, 2001. 
[EK03] D. Enot and R.D. King. Application of inductive logic programming to 

structure-based drug design. Proceedings of the 7
th
 European Conference on 



30 Chapter 1 

 
Principles and Practice of Knowledge Discovery in Databases (PKDD), 

2003. 
[Epp95] D. Eppstein. Subgraph isomorphism in planar graphs and related 

problems. In Symposium on Discrete Algorithms, pages 632-640, 1995. 
[FP08] Paolo Frasconi, Andrea Passerini: Learning with Kernels and Logical 

Representations. Probabilistic Inductive Logic Programming, 2008: 56-

91. 
[Gär03] Thomas Gärtner. A survey of kernels for structured data. SIGKDD 

Explorations, 5(1):49–58, 2003. 
[GE03] Johann Gasteiger and Thomas Engel. Chemoinformatics: A 

Textbook. Wiley-VCH, 2003. 
[GFW03] Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. On graph 

kernels: Hardness results and efficient alternatives. In Bernhard Schölkopf 
and Manfred K. Warmuth, editors, COLT, volume 2777 of Lecture Notes 

in Computer Science, pages 129–143. Springer, 2003. 
[HMFM64] C. Hansch, P.P. Malony, T. Fujiya, and R.M. Muir, R.M.  

Correlation of biological activity of phenoxyacetic acids with Hammett 
substituent constants and partition coefficients. Nature 194, 178-180, 

1965. 
[HBB03] Heiko Hofer, Christian Borgelt, and Michael R. Berthold. Large 

scale mining of molecular fragments with wildcards. In Michael R. 

Berthold, Hans-Joachim Lenz, Elizabeth Bradley, Rudolf Kruse, and 

Christian Borgelt, editors, IDA, volume 2810 of Lecture Notes in 

Computer Science, pages 376–385. Springer, 2003. 
[HCKD04] C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data mining 

and machine learning techniques for the identification of mutagenicity 

inducing substructures and structure activity relationships of 
noncongeneric compounds. In Journal of Chemical Information and 

Computer Systems 44, pages 1402–1411, 2004. 
[HR08] Tamás Horváth and Jan Ramon. Efficient frequent connected 

subgraph mining in graphs of bounded treewidth. In Walter Daelemans, 

Bart Goethals, and Katharina Morik, editors, ECML/PKDD (1), volume 

5211 of Lecture Notes in Computer Science, pages 520–535. Springer, 

2008. 
[HRW06] Tamás Horváth, Jan Ramon, and Stefan Wrobel. Frequent 

subgraph mining in outerplanar graphs. In Tina Eliassi-Rad, Lyle H. 

Ungar, Mark Craven, and Dimitrios Gunopulos, editors, KDD, pages 197–
206. ACM, 2006. 

[HWP03] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent 

subgraphs in the presence of isomorphism. In Proceedings of the Third 
IEEE International Conference on Data Mining (ICDM), pages 549–552. 

IEEE Press, 2003. 
[HWPY04] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining 

maximal frequent subgraphs from graph databases. In Won Kim, Ron 



1. Inductive queries for a drug designing robot scientist 31 

 
Kohavi, Johannes Gehrke, and William DuMouchel, editors, KDD, pages 

581–586. ACM, 2004. 
[Ino04] Akihiro Inokuchi. Mining generalized substructures from a set of 

labeled graphs. In ICDM, pages 415–418. IEEE Computer Society, 2004. 
[IWM00] A. Inokuchi, T. Washio, and H. Motoda. An APRIORI-based 

algorithm for mining frequent substructures from graph data. In 

Proceedings of the 4th European Conference on Principles and Practice 
of Knowledge Discovery in Databases (PKDD), volume 1910 of Lecture 

Notes in Artificial Intelligence, pages 13–23. Springer-Verlag, 2000. 
[Jon01] Donald R. Jones. A taxonomy of global optimization methods based 

on response surfaces. Journal of Global Optimization, 21:345–383, 2001. 
[JS98] Donald R. Jones and Matthias Schonlau. Efficient global optimization 

of expensive black-box functions. Journal of Global Optimization, 
13(4):455–492, December 1998. 

[KK01] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In 

Proceedings of the First IEEE International Conference on Data Mining 

(ICDM), pages 313–320. IEEE Press, 2001. 
[KNK06] Jeroen Kazius, Siegfried Nijssen, Joost N. Kok, Thomas Bäck, and 

Adriaan IJzerman. Substructure mining using elaborate chemical 

representation. In Journal of Chemical Information and Modeling 46, 
2006. 

[KMLS92] R.D. King, S. Muggleton, R.A Lewis, and M.J.E Sternberg. Drug 

design by machine learning: The use of inductive logic programming to 

model the structure-activity relationships of trimethoprim analogues 
binding to dihydrofolate reductase. Proc. Nat. Acad. Sci. U.S.A. 89, 

11322-11326, 1992. 
[KMSS96] R.D. King, S. Muggleton, A. Srinivasan, and M.J.E. Sternberg. 

Structure-activity relationships derived by machine learning: The use of 

atoms and their bond connectivities to predict mutagenicity by inductive 

logic programming. Proc. Nat. Acad. Sci. USA 93, 438-442, 1996. 
[KR01] Stefan Kramer and Luc De Raedt. Feature construction with version 

spaces for biochemical applications. In Carla E. Brodley and Andrea 

Pohoreckyj Danyluk, editors, ICML, pages 258–265. Morgan Kaufmann, 

2001. 
[KRH01] Stefan Kramer, Luc De Raedt, and Christoph Helma. Molecular 

feature mining in hiv data. In KDD, pages 136–143, 2001. 
[KS98] Michael Kearns and Satinder Singh. Near-optimal reinforcement 

learning in polynomial time. In Proc. 15th International Conf. on Machine 

Learning, pages 260–268. Morgan Kaufmann, San Francisco, CA, 1998. 
[Kus64] Harold J. Kushner. A new method of locating the maximum point of 

an arbitrary multipeak curve in the presence of noise. Journal of Basic 

Engineering, pages 97–106, March 1964. 
[LG03] A.R. Leach, and V.J. Gillet. An Introduction to Chemoinformatics, 

Kluwer Academic Publishers, Dordrecht, 2003. 



32 Chapter 1 

 
[Lin89] A. Lingas. Subgraph isomorphism for biconnected outerplanar 

graphs in cubic time. Theoretical Computer Science 63, 295-302, 1989. 
[LLDF97] C.A. Lipinski, F. Lombardo, B.W. Dominy, and P. J. Feeney. 

Experimental and computational approaches to estimate solubility and 

permeability in drug discovery and development settings, Adv. Drug 

Delivery Rev., 23(1-3), pp. 3-25, 1997. 
[LWBS07] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale 

Schuurmans. Automatic gait optimization with gaussian process 

regression. In Proceedings of the 20th International Joint Conference on 

Artificial Intelligence, pages 944–949, 2007. 
[Mar78] Y.C. Martin. Quantitative Drug Design: A Critical Introduction, 

Marcel Dekker, New York, 1978. 
[MT92] J. Matousek and R. Thomas. On the complexity of finding iso- and 

other morphisms for partial k-trees. Discrete mathemathics, 108(1-3), 

343-364, 1992. 
[Med79] P.B. Medewar. Advice to a Young Scientist. BasicBooks. 1979. 
[Nij06] Siegfried Nijssen. Mining interpretable subgraphs. In Proceedings of 

the International Workshop on Mining and Learning with Graphs (MLG), 

2006. 
[NK04] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent 

structure mining can make a difference. In Proceedings of the 2004 

International Conference on Knowledge Discovery and Data Mining 

(KDD), pages 647–652. ACM Press, 2004. 
[RN08] Jan Ramon and Siegfried Nijssen. Polynomial-delay enumeration of 

monotonic graph classes. Journal of Machine Learning Research, 2009. 
[Sas02] M. J. Sasena. Flexibility and Efficiency Enhancements for 

Constrained Global Design Optimization with Kriging Approximations. 
PhD thesis, University of Michigan, 2002. 

[SK09] A. Schierz, and R.D. King. Drugs and Drug-like compounds: 

Discriminating Approved Pharmaceuticals from Screening Library 
Compounds. In Pattern Recognition in Bioinformatics, pages 331-343, 

2009. 
[SRBB08] Leander Schietgat, Jan Ramon, Maurice Bruynooghe, Hendrik 

Blockeel: An Efficiently Computable Graph-Based Metric for the 
Classification of Small Molecules. In Discovery Science 2008: 197-209. 

[Vish09] S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor, 

and Karsten M. Borgwardt. Graph Kernels. Journal of Machine Learning 
Research, 2009. 

[WK06] Nikil Wale and George Karypis. Comparison of descriptor spaces 

for chemical compound retrieval and classification. In ICDM, pages 678–
689. IEEE Computer Society, 2006. 

[YH02] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. 

In Proceedings of the Second IEEE International Conference on Data 

Mining (ICDM), pages 721–724. IEEE Press, 2002. 



1. Inductive queries for a drug designing robot scientist 33 

 
[YH03] Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent 

graph patterns. In KDD, pages 286–295. ACM, 2003. 
[ZD08] B. Zenko, and S. Dzeroski. Learning Classification Rules for 

Multiple Target Attributes. In PAKDD, pages 454-465, 2008. 
 

 



34 Chapter 1 

 

APPENDIX 1 

 

 

cyclopropane 2,3-dihydropyrrole benzene 

cyclopropene 2,5-dihydropyrrole pyridine 

aziridine 3,4-dihydropyrrole 1,2-dihydropyridine 

diaziridine pyrrolidine 1,4-dihydropyridine 

azirine furan tetrahydropyridine 

diazirine 1,3-dihydrofuran piperidine 

oxirane 2,5-dihydrofuran 4H-pyran 

dioxirane oxolane 2H-pyran 

oxirene 1,2-dioxolane dihydropyran 

thiirane 1,3-dioxolane aromatic_pyran 

dithiirane dioxole oxane 

thiirene imidazole thiane 

oxathiirane imidazolidine dihydrothiopyran 

oxaziridine dihydroimidazole pyridazine 

thiaziridine pyrazole 1,2-diazinane 

dioxathiirane pyrazoline 1,3-diazinane 

cyclobutane 1,2,3-triazole tetrahydropyridazine 

cyclobutene 1,2,4-triazole pyrimidine 

cyclobutadiene dihydrotriazole dihydropyrimidine 

azetidine tetrazole 3H-pyrimidine 

2,3-dihydroazete 1,3-oxazole pyrazine 

oxetane 1,2-oxazole tetrahydropyrazine 

1,2-dioxetane dihydrooxazole piperazine 

1,3-dioxetane 1,3,4-oxadiazole morpholine 

thietane 1,2,5-oxadiazole 1,3-oxazinane 

1,2-dithietane 1,2,4-oxadiazole 1,2-oxazinane 

1,3-dithietane thiazole dihydro-1,2-oxazin 

cyclopentane 1,3,4-thiadiazole dihydro-1,3-oxazin 

cyclopentene 1,2,5-thiadiazole 1,3-oxazin 

cyclopentadiene 1,2,3-thiadiazole 1,3-thiazinane 

thiolane 1,2,4-thiadiazole thiomorpholine 

1,2-dithiolane dihydrothiazole 1,3-dithiane 

1,3-dithiolane thiazolidine 1,4-dithiane 

1,2-dithiole isothiazole 1,4-dioxane 

1,3-dithiole cyclohexane 1,3-dioxane 

thiophene cyclohexene 1,2-dioxane 

2,3-dihydrothiophene 1,3-cyclohexadiene 1,4-dioxene 

2,5-dihydrothiophene 1,4-cyclohexadiene dihydrodioxin 
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pyrrole  triazine 

  cycloheptane 

Appendix Table 1: Specific ring structures pre-coded in the MSG library. 
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benzocyclobutene acridine pyrrolizine 

benzofuran perimidine pyridopyrimidine 

indole beta_carboline oxanthrene 

isoindole pteridine chromene 

benzothiophene phenoxazine isochromene 

benzimidazole phenothiazine naphthalene 

indazole phenazine pentalene 

benzoxazole phenanthroline indene 

benzisoxazole naphthyridine as-indacene 

benzothiazole carbazole s-indacene 

purine phthalazine biphenylene 

quinoline 1H-quinolizine acenaphthylene 

isoquinoline 9H,4H- quinolizine fluorene 

quinoxaline 2H-quinolizine phenalene 

quinazoline indolizine phenanthrene 

cinnoline pyrrolopyridine anthracene 

Appendix Table 2: Specific polycyclic structures pre-coded in the MSG library. 
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alkyl_halide aryl-thioether methoxy 

aryl-halide carboxylic acid chain ether 

carboxylic-acid halide ester aryl ether 

hydroxyl amide imine 

alcohol other carbonyl nitro 

hetero aryl alcohol 0H-amine aryl nitro 

phenols 1H-amine nitroso 

aldehyde 2H-amine aromatic nitroso 

ketone ammonium azo 

thiol aromatic amine aromatic  azo 

sulfonic acid hydroxylamine aliphatic chain length 5 

sulfonyl phosphoric acid butyl 

sulfone phosphate propyl 

sulfonamide phosphonate ethyl 

cyclic thioether phosphinate norm methyl 

chain thioether cyclic ether haloalkane methyl 

methylene single haloalkane methylene  

methylene double heteroatoms single bonded  

methylene valence   

aliphatic halide   

Table 3: Specific functional groups pre-coded in the library. 

 

 


