
Chapter 1

INDUCTIVE QUERIES FOR A DRUG

DESIGNING ROBOT SCIENTIST

Ross D. King
1
, Amanda Schierz

2
, Amanda Clare

1
, Jem Rowland

1
, Andrew

Sparkes
1
, Siegfried Nijssen

3
, Jan Ramon

3

1Department of Computer Science, Llandinam Building, Aberystwyth University, Aberystwyth,

Ceredigion, SY23 3DB, United Kingdom;2DEC, Poole House, Bournemouth University,

Poole, Dorset, BH12 5BB3Departement Computerwetenschappen, Katholieke Universiteit

Leuven, Celestijnenlaan 200A, 3001, Leuven, Belgium.

Abstract: It is increasingly clear that machine learning algorithms need to be integrated

in an iterative scientific discovery loop, in which data is queried repeatedly by

means of inductive queries and where the computer provides guidance to the

experiments that are being performed. In this chapter, we summarise several

key challenges in achieving this integration of machine learning and data

mining algorithms in methods for the discovery of Quantitative Structure

Activity Relationships (QSARs). We introduce the concept of a robot scientist,

in which all steps of the discovery process are automated; we discuss the

representation of molecular data such that knowledge discovery tools can

analyse it, and we discuss the adaptation of machine learning and data mining

algorithms to guide QSAR experiments.

Key words: Quantitative Structure Activity Relationships, Robot Scientist,

Graph Mining, Inductive Logic Programming, Active Learning.

1. Introduction
The problem of learning Quantitative Structure Activity Relationships

(QSARs) is an important inductive learning task. It is central to the rational

design of new drugs and therefore critical to improvements in medical care.

It is also of economic importance to the pharmaceutical industry. The QSAR
problem is: given a set of molecules with associated pharmacological

activities (e.g. killing cancer cells), find a predictive mapping from structure

to activity which enables the design of a new molecule with maximum
activity. Due to its importance, the problem has received a lot of attention

from academic researchers in data mining and machine learning. In these

approaches, a dataset is usually constructed by a chemist by means of
experiments in a wet laboratory and machine learners and data miners use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/4897876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Chapter 1

the resulting datasets to illustrate the performance of newly developed

predictive algorithms. However, such an approach is divorced from the

actual practice of drug design where cycles of QSAR learning and new
compound synthesis are typical. Hence, it is necessary that data mining and

machine learning algorithms become a more integrated part of the scientific

discovery loop. In this loop, algorithms are not only used to find

relationships in data, but also provide feedback as to which experiments
should be performed and provide scientists interpretable representations of

the hypotheses under consideration.

Ultimately, the most ambitious goal one could hope to achieve is the
development of a robot scientist for drug design, which integrates the entire

iterative scientific loop in an automated machine, i.e., the robot not only

performs experiments, but also analyses them and proposes new
experiments. Robot Scientists have the potential to change the way drug

design is done, and enable the rapid adoption of novel machine-

learning/data-mining methodologies for QSAR. They however pose

particular types of problems, several of which involve machine learning and
data mining. These challenges are introduced further in Section The Robot

Scientist Eve.

The point of view advocated in this book is that one way to support iterative
processes of data analysis, is by turning isolated data mining tools into

inductive querying systems. In such a system, a run of a data mining

algorithm is seen as calculating an answer to a query by a user, whether this

user is a human or a computerized system, such as a robot scientist.
Compared to traditional data mining algorithms, the distinguishing feature of

an inductive querying system is that it provides the user considerably more

freedom in formulating alternative mining tasks, often by means of
constraints. In the context of QSAR, this means that the user is provided

with more freedom in how to deal with representations of molecular data,

can choose the constraints under which to perform a mining task, and has
freedom in how the results of a data mining algorithm are processed.

This chapter summarizes several of the challenges in developing and using

inductive querying systems for QSAR. We will discuss in more detail three

technical challenges that are particular to iterative drug design: the
representation of molecular data, the application of such representations to

determine an initial set of compounds for use in experiments, and

mechanisms for providing feedback to machines or human scientists
performing experiments.

A particular feature of molecular data is that essentially, a molecule is a

structure consisting of atoms connected by bonds. Many well-known
machine learning and data mining algorithms assume that data is provided in

a tabular (attribute-value) form. To be able to learn from molecular data, we

1. Inductive queries for a drug designing robot scientist 3

either need strategies for transforming the structural information into a

tabular form or we need to develop algorithms that no longer require data in

such form. This choice of representation is important both to obtain
reasonable predictive accuracy and to make the interpretation of models

easier. Furthermore, within an inductive querying context, one may wish to

provide users with the flexibility to tweak the representation if needed. These

issues of representation will be discussed in Section Representations of
Molecular Data in more detail.

An application of the use of one representation is discussed in Section

Selecting Compounds for a Drug Screening Library, in which we discuss the
selection of compound libraries for a robot scientist. In this application it

turns out to be of particular interest to have the flexibility to include

background knowledge in the mining process by means of language bias.
The goal in this application is to determine the library of compounds

available to the robot: even though the experiments in a robot scientist are

automated, in its initial runs it would not be economical to synthesise

compounds from scratch and the use of an existing library is preferable. This
selection is however important for the quality of the results and hence a

careful selection using data mining and machine learning tools is important.

When using the resulting representation in learning algorithms, the next
challenge is how to improve the selection of experiments based on the

feedback of these algorithms. The algorithms will predict that some

molecules are more active than others. One may choose to exploit this result

and perform experiments on predicted active molecules to confirm the
hypothesis; one may also choose to explore further and test molecules about

which the algorithm is unsure. Finding an appropriate balance between

exploration and exploitation is the topic of Section Active learning of this
chapter.

2. The Robot Scientist Eve
A Robot Scientist is a physically implemented laboratory automation system

that exploits techniques from the field of artificial intelligence to execute

cycles of scientific experimentation. A Robot Scientist automatically:
originates hypotheses to explain observations, devises experiments to test

these hypotheses, physically runs the experiments using laboratory robotics,

interprets the results to change the probability that the hypotheses are

correct, and then repeats the cycle (Figure 1). We believe that the
development of Robot scientists will change the relationship between

machine-learning/data-mining and industrial QSAR.

Background

knowledge
Hypothesis

formation
Analysis

Experiment

formation
Final Hypothesis Robot

Results

4 Chapter 1

Figure 1. The Robot Scientist hypothesis generation, experimentation, and

knowledge formation loop.

In Aberystwyth, we have demonstrated the utility of the Robot Scientist

“Adam” which can automate growth experiments in yeast. Adam is the first

machine to have autonomously discovered novel scientific knowledge (King

et al., 2009). We are now built a new Robot Scientist for chemical genetics
and drug design: Eve. This was physically commissioned in the early part of

2009 (see Figure 2). Eve is a prototype system to demonstrate the

automation of closed-loop learning in drug-screening and design. Eve‟s
robotic system is capable of moderately high-throughput compound

screening (greater than 10,000 compounds per day) and is designed to be

flexible enough such that it can be rapidly re-configured to carry out a
number of different biological assays.

One goal with Eve is to integrate an automated QSAR approach into the

drug-screening process. Eve will monitor the initial mass screening assay

results, generate hypotheses about what it considers would be useful
compounds to test next based on the QSAR analysis, test these compounds,

learn from the results and iteratively feed back the information to more

intelligently home in on the best lead compounds.

Eve will help the rapid adoption of novel machine-learning/data-mining

methodologies to QSAR in two ways:

 It tightly couples the inductive methodology to the testing and

design of new compounds, enabling chemists to step-back and concentrate

on the chemical and pharmacological problems rather than the inductive
ones.

 It enables inductive methodologies to be tested under industrially

realistic conditions.

1. Inductive queries for a drug designing robot scientist 5

Figure 2. Pictures of Eve

2.1 Eve's Robotics

Eve‟s robotic system contains various instruments including a number of

liquid handlers covering a diverse range of volumes, and so has the ability to
prepare and execute a broad variety of assays. One of these liquid handlers

uses advanced non-contact acoustic transfer, as used by many large

pharmaceutical companies. For observation of assays, the system contains

two multi-functional microplate readers. There is also a cellular imager that
can be used to collect cell morphological information, for example to see

how cells change size and shape over time after the addition of specific

compounds.

2.2 Compound Library and Screening

In drug screening, compounds are selected from a “library” (a set of stored

compounds) and applied to an “assay” (a test to determine if the compound

is active – a “hit”). This is a form of “Baconian” experimentation – what
will happen if I execute this action [Med79]. In standard drug screening

there is no selection in the ordering of compounds to assay: “Start at the

6 Chapter 1

beginning, go on until you get to the end: then stop” (Mad Hatter, Lewis

Carroll). Eve is designed to test an active learning approach to screening.

Eve will initially use an automation-accessible compound library of 14,400
chemical compounds, the Maybridge „Hit-finder‟ library

(www.maybridge.com). This compound library is cluster-based and was

developed specifically to contain a diverse range of compounds. We realise

this is not a large compound library - a pharmaceutical company may have
many hundreds of thousands or even millions of compounds in its primary

screening library. Our aim is to demonstrate the proof-of-principle that

incorporating intelligence within the screening process can work better than
the current brute-force approach.

2.3 QSAR Learning

In the typical drug design process, after screening has found a set of hits, the

next task is to learn a QSAR. This is initially formed from the hits, and then
new compounds are acquired (possibly synthesised) and used to test the

model. This process is repeated until some particular criterion of success is

reached, or too many resources are consumed to make it economical to
continue the process. If the QSAR learning process has been successful then

a “lead” compound is the result which can then go for pharmacological

testing. In machine learning terms such QSAR learning is an example of

“active learning” - where statistical/machine learning methods select
examples they would like to examine next to optimise learning [DHS01]. In

pharmaceutical drug design the ad hoc selection of new compounds to test is

done by QSAR experts and medicinal chemists based on their collective
experience and intuition – there is a tradition of tension between the

modellers and the synthetic chemists about what to do next. Eve aims to

automate this QSAR learning. Given a set of “hits” from Baconian
screening, Eve will switch to QSAR modelling. Eve will employ both

standard attribute based, graph based, and ILP based QSAR learning

methods to model relationships between chemical structure and assay

activity (see below). Little previous work has been done on combining
active learning and QSARs, although active learning is becoming an

important area of machine learning.

3. Representations of Molecular Data

Many industrial QSAR methods are based around using tuples of attributes
or features to describe molecules [HMFM64,Mar78]. An attribute is a

proposition which is either true or false about a molecule, for example,

solubility in water, the existence of a benzene ring, etc. A list of such

propositions is often determined by hand by an expert, and the attributes are

1. Inductive queries for a drug designing robot scientist 7

measured or calculated for each molecule before the QSAR analysis starts.

This representational approach typically results in a matrix where the

examples are rows and the columns are attributes. The procedure of turning
molecular structures into tuples of attributes is sometimes called

propositionalization.

This way of representing molecules has a number of important

disadvantages. Chemists think of molecules as structured objects
(atom/bond structures, connected molecular groups, 3D structures, etc.).

Attribute-value representations no longer express these relationships and

hence may be harder to reason about. Furthermore, in most cases some
information will be lost in the transformation. How harmful it is to ignore

certain information is not always easy to determine in advance.

Another important disadvantage of the attribute-based approach is that is
computationally inefficient in terms of space, i.e. to avoid as much loss of

information as possible, an exponential number of attributes needs to be

created. It is not unusual in chemoinformatics to see molecules described

using hundreds if not thousands of attributes.

Within the machine learning and data mining communities, many methods

have been proposed to address this problem, which we can categorize along

two dimensions. In the first dimension, we can distinguish machine learning
and data mining algorithms based on whether they compute features

explicitly, or operate on the data directly, often by having implicit feature

spaces.

 Methods that compute explicit feature spaces are similar to the methods
traditionally used in chemoinformatics for computing attribute-value
representations: given an input dataset, they compute a table with attribute-

values, on which traditional attribute-value machine learning algorithms can

be applied to obtain classification or regression models. The main difference

with traditional methods in chemoinformatics is that the attributes are not
fixed in advance by an expert, but that the data mining algorithm determines

from the data which attributes to use. Compared to the traditional methods,

this means that the features are chosen much more dynamically;
consequently smaller representations can be obtained that still capture the

information necessary for effective prediction.

The calculation of explicit feature spaces is one of the most common
applications of inductive queries, and will hence receive special attention in

this chapter.

 Methods that compute implicit feature spaces or operate directly on the
structured data are more radically different: they do not compute a table with

attribute-values, and do not propositionalize the data beforehand. Typically,
these methods either directly compute a distance between two molecule

8 Chapter 1

structures, or greedily learn rules from the molecules. In many such models

the absence or presence of a feature in the molecule is still used in order to

derive a prediction; the main difference is that both during learning and
prediction the presence of these features is only determined when really

needed; in this sense, these algorithms operate on an implicit feature space,

in which all features do not need to be calculated on every example, but only

on demand as necessary. Popular examples of measures based on implicit
feature spaces are graph kernels.

 For some methods it can be argued that they operate neither on an implicit
nor on an explicit feature space. An example is a largest common

substructure distance between molecules. In this case, even though the

conceptual feature space consists of substructures, the distance measure is
not based on determining the number of common features, but rather on the

size of one such feature; this makes it hard to apply most kernel methods that

assume implicit feature spaces.

The second dimension along which we can categorise methods is the kind of

features that are used, whether implicit or explicit:

 Traditional features are typically numerical values computed from each
molecule by an apriori fixed procedure, such as structural keys or

fingerprints, or features computed through comparative field analysis.

 Graph-based features are features that check the presence or absence of a

sub-graph in a molecule; the features are computed implicitly or explicitly
through a data mining or machine learning technique; these techniques are

typically referred to as Graph Mining techniques.

 First-order logic features are features that are represented in a first-order
logic formula; the features are computed implicitly or explicitly through a

data mining or machine learning technique. These techniques have been
studied in the area of Inductive Logic Programming (ILP).

We will see in the following sections that these representations can be seen

as increasing in complexity; many traditional features are usually easily
computed, while applying ILP techniques can demand large computational

resources. Graph mining is an attempt to find a middle ground between these

two approaches, both from a practical and a theoretical perspective.

3.1 Traditional Representations

The input of the analysis is usually a set of molecules stored in SMILES,

SDF or InChi notation. In these files at least the following information about

a molecule is described:

1. Inductive queries for a drug designing robot scientist 9

 Types of the atoms (such as: is the atom a Carbon, Oxygen,

Nitrogen, ...?);

 Types of the bonds between the atoms (such as: is the bond single,

double, ...?).

Additionally, these formats support the representation of:

 Charges of atoms (is the atom positively or negatively charged, and

how much?);

 Aromaticity of atoms or bond (such as: is an atom part of an
aromatic ring?);

 Stereochemistry of bonds (such as: if we have two groups connected

by one bond, how can the rotation with respect to each other be

categorized?);

Further information is available in some formats, for instance, detailed 3D

information of atoms can also be stored in the SDF format. Experimental

measurements may also be available, such as the solubility of a molecule in

water. The atom-bond information is the minimal set of information
available in most databases.

The simplest and oldest approach for propositionalizing the molecular

structure is the use of structural keys, which means that a finite amount of
features are specified beforehand and computed for every molecule in the

database. There are many possible structural keys, and it is beyond the scope

of this chapter to describe all of these; examples are molecular weight,
histograms of atom types, number of hetero-atoms, or more complex

features, such as the sum of van der Waals volumes. One particular

possibility is to provide an a priori list of substructures (OH groups,

aromatic rings, ...) and either count their occurrences in a molecule, or use
binary features that represent the presence or absence of each a priori

specified group.

Another example of a widely used attribute-based method is comparative
field analysis (CoMFA) [CPB88]. The electrostatic potential or similar

distributions are estimated by placing each molecule in a 3D grid and

calculating the interaction between a probe atom at each grid point and the
molecule. When the molecules are properly aligned in a common reference

frame, each point in space becomes comparable and can be assigned an

attribute such that attribute-based learning methods can be used. However,

CoMFA fails to provide accurate results when the lack of a common skeleton
prevents a reasonable alignment. The need for alignment is a result of the

attribute-based description of the problem.

10 Chapter 1

It generally depends on the application which features are most appropriate.

Particularly in the case of substructures, it may be undesirable to provide an

exhaustive list beforehand by hand. Fingerprints were developed to alleviate
this problem. Common fingerprints are based on the graph representation of

molecules: a molecule is then seen as a labelled graph (V,E,,) with nodes

V and edges E; labels, as defined by a function from VE to , represent
atom types and bond types. A fingerprint is a binary vector of a priori fixed

length n, which is computed as follows:

 All substructures of a certain type occurring in the molecule are

enumerated (usually all paths up to a certain length);

 A hashing algorithm is used to transform the string of atom and bond

labels on each path into an integer number k between 1 and n;

 The kth element of the fingerprint is incremented or set to 1.

The advantage of this method is that one can compute a feature table in a

single pass through a database. There is a large variety of substructures that
can be used, but in practice paths are only considered, as this simplifies the

problems of enumerating substructures and choosing hashing algorithms. An

essential property of fingerprints is thus that multiple substructures can be
represented by a single feature, and that the meaning of a feature is not

always transparent. In the extreme case, one can choose n to be the total

number of possible paths up to a certain length; in this case, each feature
would correspond to a single substructure. Even though theoretically

possible, though, this approach may be undesirable, as one can expect many

paths not to occur in a database at all, which leads to useless attributes.

Graph mining, as discussed in the next section, proposes a solution to this
sparsity problem.

3.2 Graph Mining

The starting point of most graph mining algorithms is the representation of

molecules as labelled graphs. In most approaches no additional information
is assumed – consequently, the nodes and edges in the graphs are often

labelled only with bond and atom types. These graphs can be used to derive

explicit features, or can be used directly in machine learning algorithms.

3.2.1 Explicit Features

Explicit features are usually computed through constraint-based mining

systems, and will hence be given special attention.

The most basic setting of graph mining is the following.

1. Inductive queries for a drug designing robot scientist 11

Definition 1. Graph Isomorphism. Graphs G=(V,E,,) and G'=(V',E',',')

are called isomorphic if there exists a bijective function f such that: vV:

(v)= '(f(v)) and E={{f(v1),f(v2)} | { v1, v2}E'} and eE: (e)= '(f(e)).

Definition 2. Subgraph. Given a graph G=(V,E,,), graph G'=(V',E',',')

is called a subgraph of G iff V'V and E'E and vV':'(v')=(v) and

eE':'(e')=(e).

Definition 3. Subgraph Isomorphism. Given two graphs G=(V,E,,) and

G'=(V',E',','), G is called subgraph isomorphic with G', denoted by G' G,

iff there is a subgraph G'' of G' to which G is isomorphic.

Definition 4. Frequent Subgraph Mining. Given a dataset of graphs D, and a
graph G, the frequency of G in D, denoted by freq(G,D), is the cardinality of

the set {G'D|G' G}. A graph G is frequent if freq(G,D)minsup, for a

predefined threshold minsup. The frequent (connected) subgraph mining is

the problem of finding a set of frequent (connected) graphs F such that for

every possible frequent (connected) graph G there is exactly one graph G'F
such that G' and G are isomorphic.

We generate as features those subgraphs which are contained in a certain
minimum number of examples in the data. In this way, the eventual feature

representation of a molecule is dynamically determined depending on the

database it occurs in.

There are now many algorithms that address the general frequent subgraph
mining problem; examples are AGM [IWM00], FSG [KK01], gSpan

[YH02], MoFA [BB02], FFSM [HWP03] and Gaston [NK04]. Some of the

early algorithms imposed restrictions on the types of structures considered

[KR01, KRH01].

If we set the threshold minsup very low, and if the database is large, even if

finite, the number of subgraphs can be very large. One can easily find more
frequent subgraphs than examples in the database. Consequently, there are

two issues with this approach:

 Computational complexity: considering a large amount of subgraphs

could require large computational resources.

 Usability: if the number of features is too large, it could be hard to

interpret a feature vector.

These two issues are discussed below.

Complexity

Given that the number of frequent subgraphs can be exponential for a
database, we cannot expect the computation of frequent subgraphs to

proceed in polynomial time. For enumeration problems it is therefore

12 Chapter 1

common to use alternative definitions of complexity. The most important

are:

 Enumeration with polynomial delay. A set of objects is enumerated

with polynomial delay if the time spent between listing every pair of objects
is bounded by a polynomial in the size of the input (in our case, the dataset).

 Enumeration with incremental polynomial time. Objects are

enumerated in incremental polynomial time if the time spent between listing

the k and (k+1)th object is bounded by a polynomial in the size of the input
and the size of the output till the kth object.

Polynomial delay is more desirable than incremental polynomial time. Can

frequent subgraph mining be performed in polynomial time?

Subgraph mining requires two essential capabilities:

 Being able to enumerate a space of graphs such that no two graphs

are isomorphic.

 Being able to evaluate subgraph isomorphism to determine which

examples in a database contain an enumerated graph.

The theoretical complexity of subgraph mining derives mainly from the fact

that the general subgraph isomorphism problem is a well-known NP

complete problem, which in practice means that the best known algorithms
have exponential complexity. Another complicating issue is that no

polynomial algorithm is known to determine if two arbitrary graphs are

isomorphic, even though this problem is not known to be NP complete.

However, in practice it is often feasible to compute the frequent subgraphs in

molecular databases, as witnessed by the success of the many graph miners

mentioned earlier. The main reason for this is that most molecular graphs

have properties that make them both theoretically and practically easier to
deal with. Types of graphs that have been studied in the literature include;

 Planar graphs, which are graphs that can be drawn on a plane

without edges crossing each other [Epp95];

 Outerplanar graphs, which are planar graphs in which there is a
Hamilton cycle that walks only around one (outer) face [Lin89];

 Graphs with bounded degree and bounded tree width, which are

tree-like graphs
1
 in which the degree of every node is bounded by a constant

[MT92].

__
1
 A formal definition is beyond the scope of this chapter.

1. Inductive queries for a drug designing robot scientist 13

Graphs of these kinds are common in molecular databases (see Table 1,

where we calculated the number of occurrences of certain graph types in the

NCI database, a commonly used benchmark for graph mining algorithms).

Graph property Number

All graphs 250251

Graphs without cycles 21963

Outerplanar graphs 236180

Graphs of tree width 0, 1 or 2 243638

Graphs of tree width 0, 1, 2 or 3 250186

Table 1: The number of graphs with certain properties in the NCI database

No polynomial algorithm is however known for (outer)planar subgraph

isomorphism, nor for graphs of bounded tree width without bounded degree

and bounded size. However, in recent work we have shown that this does not
necessarily imply that subgraph mining with polynomial delay or in

incremental polynomial time is impossible:

 If subgraph isomorphism can be evaluated in polynomial time for a

class of graphs, then we showed that there is an algorithm for solving the
frequent subgraph mining algorithm with polynomial delay, hence showing

that the graph isomorphism problem can always be solved efficiently in

pattern mining [RN08].

 Graphs with bounded tree width can be enumerated in incremental
polynomial time, even if no bound on degree is assumed [HR08].

 For the block-and-bridges subgraph isomorphism relation between

outerplanar graphs (see next section), we can solve the frequent subgraph

mining problem in incremental polynomial time [HRW06].

These results provide a theoretical foundation for efficient graph mining in

molecular databases.

Usability

The second problem is that under a frequency threshold, the number of

frequent subgraphs is still very large in practice, which affects

interpretability and efficiency, and takes away one of the main arguments for
using data mining techniques in QSAR.

One can distinguish at least two approaches to limit the number of subgraphs

that is considered:

 Modify the subgraph isomorphism relation;

14 Chapter 1

 Apply additional constraints to subgraphs.

We will first look at the reasons for changing the subgraph isomorphism

relation.

Changing Isomorphism: Assume we have a molecule containing Pyridine,
that is, an aromatic 6-ring in which one atom is a nitrogen. How many

subgraphsare contained in this ring only? As it turns out, Pyridine has

2+2+3+3+4+3=17 different subgraphs next to Pyridine itself (ignoring
possible edge labels):

N C

C-C N-C

C-C-C N-C-C C-N-C

C-C-C-C N-C-C-C C-N-C-C

C-C-C-C-C N-C-C-C-C C-N-C-C-C C-C-N-C-C

N-C-C-C-C-C C-N-C-C-C-C C-C-N-C-C-C

It is possible that each of these subgraphs has a different support; for

example, some of these subgraphs also occur in Pyrazine (an aromatic ring
with two nitrogens). The support of each of these subgraphs can be hard to

interpret without visually inspecting their occurrences in the data. Given the

large number of subgraphs, this can be infeasible.

Some publications have argued that the main source of difficulty is that we

allow subgraphs which are not rings to be matched with rings, and there are

applications in which it could make more sense to treat rings as basic

building blocks. This can be formalized by adding additional conditions to
subgraph isomorphism matching:

 In [HBB03] one identifies all rings up to length 6 in both the

subgraph and the database graph; only a ring is allowed to match with a ring.

 In [HRW06] a block and bridge preserving subgraph isomorphism
relation is defined, in which bridges in a graph may only be matched with

bridges in another graph, and edges in cycles may only be matched with

edges in cycles; a bridge is an edge that is not part of a cycle.

Comparing both approaches, in [HBB03] only rings up to length 6 or
considered; in [HRW06] this limitation is not imposed.

Most subgraph mining algorithms need to be changed significantly to deal

with a different definition of subgraph isomorphism. To solve this [HBB03,
HRW06] introduce procedures to deal with ring structures.

We are not aware of an experimental comparison between these approaches.

1. Inductive queries for a drug designing robot scientist 15

Additional Constraints: The use of constraints is a general methodology to

obtain a smaller set of more meaningful subgraphs [KR01, KRH01]. One

can distinguish two types of constraints:
 Structural constraints;

 Data based constraints.

Minimum frequency is one example of a constraint based on data. Many

other subgraph types have been proposed based on data constraints:

 Maximally frequent subgraphs, which are subgraphs such that every

supergraph in a database is infrequent [KR01, KRH01, HWPY04];

 Closed subgraphs, which are subgraphs such that every supergraph

has a different frequency [YH03].

 Correlated subgraphs, which are subgraphs whose occurrences have

a significant correlation with a desired target attribute [BZRN06];

 Infrequent subgraphs [KR01, KRH01].

These constraints can be combined. For instance, one can be interested in

finding subgraphs that occur frequently in molecules exhibiting a desired
property, but not in other molecules.

In practice, these constraints are often not sufficient to obtain small

representations. Additional inductive queries can be used to reduce the set of
patterns further. A more detailed overview of approaches to obtain smaller

sets of patterns is given in another chapter of this book.

An issue of special interest in QSAR applications is which graph types lead
to the best results: even though molecules contain cycles, is it really

necessary to find cyclic patterns? Experiments investigating this issue can be

found in [Nij06, BZRN06,WK06]. The conclusion that may be drawn from

these investigations is that in many approaches that use patterns, paths
perform equally well as graphs; naïve use of cyclic patterns can even lead to

significantly worse results.

3.2.2 Implicit Features & Direct Classification

The alternative to graph mining is to learn classifiers directly on the graph

data. The most popular approaches are based on the computation of a

distance between every pair of graphs in the data. Such distance functions
can be used in algorithms that require distance functions, such as k-nearest

neighbour classification, or support vector machines (SVMs). In SVMs a

special type of distance function is needed, the so-called kernel function.

One popular type of kernel is the decomposition kernel, in which the

distance is defined by an implicit feature space. If this implicit feature space

16 Chapter 1

is finite, the kernel value between molecules can in principle be computed by

first computing two feature vectors for the pair, and then computing a

distance from these feature vectors; the advantage of kernels is that in
practice only the (weighted) number of substructures that two particular

graphs have in common is computed.

The most commonly used graph kernels are based on the idea of random

walks: given two molecules, we count the number of walks that both
molecules have in common. Note that walks differ from paths as walks are

allowed to visit the same node more than once. If a maximum walk length is

given, we could represent two molecules by binary feature vectors with one
bit for each possible walk. In practice, though, it is more efficient to scan the

two molecules in parallel to make sure we search for common walks. This

methodology has further possible advantages. For instance, if we give all
walks in graphs a weight which (carefully) shrinks with the length of the

walk, a kernel can be defined in which we sum the infinite number of such

common weighted walks. This number is efficiently computable without

explicitly enumerating all walks [GFW03]. Many kernel methods have the
advantage that they deal easily with possibly infinite representations of

structures in a feature space. An early overview of graph kernels can be

found in [Gär03], while a more recent overview of walk-based kernels can
be found in Error! Not a valid bookmark self-reference.Error! Not a

valid bookmark self-reference.[Vish09].

Another type of distance function is obtained by computing the largest

common subgraph of two graphs. The assumption is here that the larger the
subgraph is that two molecules have in common, the more similar they are. It

is easy to see that this problem is at least as hard as computing subgraph

isomorphism. However, the problem may become more easy for the types of
graphs identified in the previous section. In [SRBB08] it was shown how to

compute the largest common subgraph in polynomial time for outer-planar

graphs under the block-and-bridges subgraph relation.

3.2.3 Extended Graph Representations

So far we have considered representations in which nodes correspond to

atoms and edges to bonds. This limits the types of knowledge that can be
used in the classification. It may be desirable to extend the representation: in

some cases it is necessary to classify atom types, e.g. halogen (F, Cl, Br, I);

to say an atom in an aromatic ring but not specify the atom type; to extend
the notion of bond from that of a covalent bond to include non-covalent

ones, e.g. hydrogen bonds; etc.

To deal with such issues of ambiguity the common solution is to assume

given a hierarchy of edge and node labels. In this hierarchy more general

1. Inductive queries for a drug designing robot scientist 17

labels, such as „halogen‟ and „hydrogen donor‟, are included, as well as the

generalization relationships. There are two ways to use these hierarchies:

 We change the subgraph isomorphism operator, such that more

general labels are allowed to match with their specialisations [HBB03,
Ino04];

 We exploit the fact that in some hierarchies every atom has at most

one generalization, by changing the graph representation of the data: we

replace the atom type label with the parent label in the hierarchy, and
introduce a new node, which is labeled with the original atom type.

Optionally, we add additional nodes labeled with other attributes, such as

charges [KNK06].

These approaches have mainly been investigated when computing explicit

features. An essential problem is then in both approaches the increased

number of patterns. Without additional constraints we could find patterns

such as C-Aromatic-C-Aromatic-C in aromatic rings, that is, patterns

in which the labels iterate between specific and general labels. The

approaches listed above differ in their approach to avoid or limit such
patterns.

3.3 Inductive Logic Programming

In QSAR applications such as toxicity and mutagenicity prediction, where

structure is important, Inductive Logic Programming is among the more
powerful approaches, and has found solutions not accessible to standard

statistical, neural network, or genetic algorithms [DTK98, EK03, KMLS92,

KMSS96]. The main distinguishing feature of ILP is that data and models

are represented in first order logic (FOL). The classical atom/bond
representation in first-order logic is based on the molecular structure

hypothesis. Atoms are represented in the form: atom(127,127_1,c,22,0.191),

stating that the first atom in compound 127 is a carbon atom of type 22
(aromatic) with a positive charge of 0.191. Similarly,

bond(127,127_1,127_6,7) states that there is a type 7 bond (here aromatic)

between the first and sixth atom in compound 127. Bonds are represented in
a similar fashion.

When only atoms, bonds and their types are represented in FOL facts, the

resulting representation is essentially a graph. The main advantage of ILP is

the possibility of including additional information, such as charges, and of
including background knowledge in the form of computer programs. One

example of this is to define a distance measure which enables three-

dimensional representations with rules in the form: “A molecule is active if it
has a benzene ring and a nitro group separated by a distance of 4 ± 0.5˚A”.

The key advantage of this approach to representing three-dimensional

18 Chapter 1

structures is that it does not require an explicit alignment of the molecules. It

is also straightforward to include more than one conformation of each

compound which allows the consideration of conformation flexibility which
is often a major drawback by conventional QSAR/SAR methodologies.

Since chemists often study molecules in terms of molecular groups, the

atom/bond representation can be extended with programs that define such

high-level chemical concepts. Contrary to propositional algorithms and
graph mining, ILP can learn rules which use structural combinations of these

multiple types of concepts.

A downside of ILP is the lack of results with respect to efficient theoretical
complexity. As shown in the previous section, for many classes of graphs

efficient mining algorithms are known. As a result, graph mining is usually

efficient, both in theory and in practice. For ILP algorithms no similar
theoretical results are available and the algorithms typically require more

computational power, both in theory and in practice.

The number of ILP algorithms is very large, and the discussion of this area is

beyond the scope of this article. We will limit our discussion here to the
relationship between graph mining and ILP algorithms, and approaches that

we will need later in this chapter. For a more complete discussion of ILP see

[DR08]. An important aspect of ILP algorithms is the background
knowledge used. We will conclude this section with a discussion of the

details of a library of background knowledge for SAR applications that we

recently developed, and is important in allowing users to formulate

alternative inductive queries.

3.3.1 Explicit Features

A similar problem as the frequent subgraph mining problem can be
formulated in ILP. The data is conceived as a set of definite clauses and

facts, for instance:

halogen(X,Y) :- atom(X,Y,f,_,_).

halogen(X,Y) :- atom(X,Y,cl,_,_).

...

atom(127,127_1,c,22,0.191).

atom(127,127_2,c,22,0.191).

bond(127,127_1,127_2,single).

The database is usually represented as a program in Prolog. The clauses can

be thought of as brackground knowledge, while the facts describe the

1. Inductive queries for a drug designing robot scientist 19

original data. Assume now we are given the following clause, which is not

part of the database:

f1(X) :- molecule(X),halogen(X,Y),

atom(X,Z,c,_,_),bond(X,Y,Z,_).

Then for a given constant, for instance 127 in our example, we can evaluate

using a Prolog engine whether f1(127) is true. If this is the case, we may

see f1 as a feature which describes molecule 127. We may call a clause

frequent if it evaluates to true for a sufficient number of examples. The

problem of finding frequent clauses is the problem that was addressed in the

WARMR algorithm [DDR97].

Definition 4. Frequent Clause Mining. Given clause C = h(X) :- b,

where b is the body of the clause C, and a Prolog database D with constants

C, the frequency of clause C in D, denoted by freq(C,D), is the cardinality of

the set { c C | D{C} h(c) }; in other words, the number of

constants for which we can prove the head of the clause using a Prolog

engine, assuming C were added to the data. A clause C is frequent if

freq(C,D)minsup, for a predefined threshold minsup. Assume given a
language L of clauses. The frequent clause mining is the problem of finding

a set of clauses F such that for every possible frequent clause C in L there is

exactly one clause C'F such that C' and C are equivalent.

It is of interest here to point towards the differences between frequent graph

mining and frequent clause mining.

The first practical difference is that most algorithms require an explicit

definition of the space of clauses C considered. This space is usually defined
in a bias specification language. In such a bias specification language, it can

be specified for instance that only clauses starting with a molecule

predicate will be considered, and next to this predicate only atom and bond

predicates may be used. Note that such clauses would essentially represent

graphs. The bias specification language can considered a part of the language
of an inductive querying system and provides users the possibility to

carefully formulate data mining tasks.

The second difference is the use of traditional Prolog engines to evaluate the

support of clauses. Prolog engines are based on a technique called
resolution. There is an important practical difference between resolution and

subgraph isomorphism, as typically used in graph mining algorithms.

Assume given a clause over only atoms and bonds, for instance,

h(X) :- molecule(X), atom(X,Y,c,_,_),

bond(X,Y,Z1,_),bond(X,Y,Z2,_)

then this clause is equivalent to the following clause:

20 Chapter 1

h(X) :- molecule(X), atom(X,Y,c,_,_),bond(X,Y,Z1,_)

the reason is that if constants are found for which the second clause

succeeds, we can use the same constants to satisfy the first clause, as there is

no requirement that Z1 and Z2 are different constants. On the other hand,
when using subgraph isomorphism, two atoms in a subgraph may never be

matched to the same atom in a molecule.

The use of resolution has important consequences for the procedure that is
used for eliminating equivalent clauses. Whereas in graph mining, it is

possible to avoid equivalent subgraphs during the search, it can be proved

that there are languages of clauses for which this is impossible; the only

solution in such cases is to first generate a highly redundant set of clauses,
and eliminate duplicates in a post-processing step.

To address this problem, an alternative to resolution was proposed, in which

two different variables are no longer allowed to be resolved to the same
constant. This approach is known as theta-subsumption under Object Identity

[DR08].

Similar constraints as proposed in graph mining, can also be applied when

mining clauses. However, this has not yet been extensively applied in
practice.

3.3.2 Implicit Features & Direct Classification

The alternative to separate feature construction and learning phases is also in

ILP to learn a model directly from the data. Contrary to the case of graphs,

however, the use of distance functions has only received limited attention in

the ILP literature; see [FP08] for a kernel on logical representations of data
and [DR09] for a distance based on the least general generalization of two

sets of literals. The application of these methods on molecular data is yet

unexplored; one reason for this is the expected prohibitive performance of
these methods, in particular when one wishes to include background

knowledge in the lgg based methods.

On the other hand, a very common procedure in ILP is to greedily learn a
rule-based or tree-based classifier directly from training data; examples of

such algorithms include FOIL, Tilde and Progol [DR08]. In graph mining

such approaches are rare; the main reason for this is that greedy heuristics

are expected to be easily misled when the search proceeds in very “small”,
uninformative steps, as common in graph mining when growing fragments

bond by bond.

To illustrate one such greedy algorithm, we will discuss the Tilde algorithm
here [BD98]. Essentially, Tilde starts from a similar database as WARMR,

and evaluates the support of a clause in a similar way as WARMR; however,

1. Inductive queries for a drug designing robot scientist 21

as the algorithm is aware of the class labels, it can compute a score for each

clause that evaluates how well it separates examples of one or more two

classes from each other. For instance, the clause

h(X) :- molecule(X), benzene(X,Y)

may hold for 15 out of 20 constants identifying positive molecules, and only

15 out of 30 negative molecules; from these numbers we may compute a

score, such as information gain:

(-0.4 log 0.4 – 0.6 log 0.6) - 0.3 (-0.5 log 0.5 – 0.5 log 0.5) – 0.7 (-0.25

log 0.25 – 0.75 log 0.75)

Here the first term denotes the information of the original class distribution

(20/50 positives, 30/50 negatives), the second term denotes the information
of the examples for which the query succeeds, and the third term denotes the

information of the examples for which it fails.

Using such a score, we can compare several alternative clauses. In Tilde
clauses are grown greedily, i.e. for a given clause, all possible literals are

enumerated that can be added to it, and only the extended clause that

achieves the best score is chosen for further extension. If the improvement is

too small, the molecules are split in two sets based on whether the clause
succeeds. For these two sets of examples, the search for clauses recursively

continues. The end result of this procedure constitutes a tree in which

internal nodes are labeled with clauses; we can label a leaf by the majority
class of the examples ending up in the leaf. This tree can be used directly for

classification.

The problem of learning accurate decision trees has been studied extensively,
and many techniques, such as pruning, can also be applied on relational

decision trees [BD98]. The main downside of algorithms such as Tilde is that

the greedy procedure will prevent large carbon-based substructures from

being found automatically, as the intermediate steps through which the
greedy search would have to go usually do not score exceptionally well on

commonly used heuristics. Hence, it is advisable in ILP to specify larger

substructures in advance by means of background clauses.

3.3.3 A Library of Chemical Knowledge for Relational QSAR

An important benefit of ILP algorithms is the ability to incorporate

background knowledge, for instance, to represent special groups in
molecules. The availability of such background knowledge in a data mining

system may allow data analysts to query a database from additional

perspectives, as will be illustrated in the next section when studying the
problem of selecting a library for use in a robot scientist.

22 Chapter 1

To exploit this benefit, it is essential that a comprehensive library of

background knowledge is available. We developed a chemical structure

background-knowledge-for-learning (Molecular Structure Generator MSG).
This consists of a large library of chemical substructures, rings and

functional groups, including details of isomers and analogues. This library

consists of three main parts (see Appendix 1): a functional group library, a

ring library, and a polycycle library. We encoded the standard functional
groups have been pre-coded in the library (Appendix 1). The ring library

consists of predominantly 3, 4, 5 and 6 length rings. Rings that are identified

but do not have specific chemical names are given an standard label, for eg,
other_six_ring. Unnamed rings of up to 15 atoms in length are pre-coded in

this way. Appendix 1 shows the specific rings that are in the library. Rings

with isomers have been defined individually but they will have a
corresponding parent predicate held in the library, for eg, isomer_parent(1,3-

cyclohexadiene, cyclohexadiene); isomer_parent(1,4-cyclohexadiene,

cyclohexadiene). This will mean that inductions may be made over either the

specific isomer or for the whole family. The polycycle library consists of
predominantly 2 and 3 ring polycycles that have been pre-coded and held in

the MSG Prolog library. Polycycles that are not specifically named have

been given an other label, for e.g. other_carbon. All polycycles will be
identified regardless if specifically named in the library. Appendix 1 shows

the specific polycyles that are in the library. Structures are built up from

substructure, for e.g. an anthracene would have facts for 3 benzene rings, 2

fused pair naphthalenes and a polycycle anthracene; an aryl-nitro structure
would have facts for a nitro and an aromatic ring. The data have been fully

normalised according to Boyce-Codd relational data standards [Cod74]. The

example of the representation of the molecule 8-nitroquinoline is shown in
Figure 3 and Table 2.

Figure 3. Chemical structure of 8-nitroquinoline

1. Inductive queries for a drug designing robot scientist 23

ring_length(2,1,6).

aromatic_ring(2,1).

carbon_ring(2,1).

ring(2,1,benzene).

ring_atom(2,1,1).

ring_atom(2,1,2).

ring_atom(2,1,3).

ring_length(2,2,6).

n_containing(2,2).

aromatic_ring(2,2).

hetero_ring(2,2).

ring(2,2,pyridine).

ring_atom(2,2,3).

ring_atom(2,2,4).

ring_atom(2,2,5).

ring_atom(2,2,6).

ring_atom(2,2,7).

ring_atom(2,2,8).

fused_ring_pair(2,3,1).

fused_ring_pair_share_atom(2,3,8).

polycycle(2,4,quinoline).

hetero_poly(2,4).

poly_no_rings(2,4,2).

polycycle_pair(2,4,3).

group(2,5,nitro).

group_atom(2,5,11).

group_atom(2,5,13).

r_atom(2,5,9).

group(2,6,aryl_nitro).

part_of_group_structure(2,6,1).

part_of_group_structure(2,6,5).

count_ring(2,benzene,1).

count_ring(2,pyridine,1).

count_poly(2,quinoline,1).

count_group(2,nitro,1).

count_group(2,aryl_nitro,1).

parent(2,6,nitro).

nextto(2,1,2,fused).

nextto(2,1,5,bonded).

Table 2. Ground background knowledge generated for 8-nitroquinoline.

4. Selecting Compounds for a Drug Screening Library

This MSG library will be used to generate ILP representations of the
compounds that will be screened by the Eve. To test the efficacy of the

representation and the method, this library was used to aid the decision-

making process for the selection of a compound library to be used with Eve.

The two main criteria for selecting compounds for screening libraries are
that they resemble existing approved pharmaceuticals, and that they are

structurally diverse. The requirement for a compound in a screening-library

to resemble existing pharmaceutically active compounds maximizes the a
priori probability of an individual compound being active and non-toxic

because existing pharmaceutically-active compounds have this property.

The requirement for diversity is usually justified by the fact that structurally
similar compounds tend to exhibit similar activity - a structurally diverse set

of compounds should cover the activity search space and therefore contain

fewer redundant compounds [LG03].

Drug-like properties are usually defined in terms of ADME - Absorption,
Distribution, Metabolism, and Excretion - and describe the action of the drug

within an organism, such as intestinal absorption or blood-brain-barrier

penetration. One of the first methods, and still the most popular, to model the
absorption property was the “Rule of 5” [LLDF97]

which identifies the

compounds where the probability of useful oral activity is low. The "rule of

5" states that poor absorption or permeation is more likely when:

1. There are more than 5 Hydrogen-bond donors

24 Chapter 1

2. The Molecular Weight is over 500.

3. The LogP (partition coefficient) is over 5 (or MLogP is over 4.15).

4. There are more than 10 Hydrogen-bond acceptors

The negation of the Lipinski rules are usually used as the main selection

criteria for the compounds to include in a screening-library. Though these
rules are not definitive, the properties are simple to calculate, and provide a

good guideline for drug-likeness.

We have taken an operational approach to determining the drug-likeness of

compounds [SK09]. The basic idea is to use machine learning techniques to
learn a discrimination function to distinguish between pharmaceutically-

active compounds and compounds in screening-libraries. If it is possible to

discriminate pharmaceutically-active compounds from compounds in a
screening-library then the compounds in the library are considered not drug-

like; conversely, if they cannot be discriminated then the compounds are

drug-like.

Two compound-screening libraries were chosen for analysis – the target-

based NatDiverse collection from Analyticon Discovery (Version 070914)

and the diversity-based HitFinder (Version 5) collection from Maybridge.

The libraries from these companies are publicly available and this was the
main reason for their inclusion in this research. The HitFinder collection

includes 14,400 compounds representing the drug-like diversity of the

Maybridge Screening Collection (~60,000 compounds). Compounds have
generally been selected to be non-reactive and meeting Lipinski‟s Rule of 5.

AnalytiCon Discovery currently offers 13 NatDiverse libraries which are

tailor-made synthetic nitrogen-containing compounds. The total number of
compounds is 17,402. The approved pharmaceuticals dataset was obtained

from the KEGG Drug database and contains 5,294 drugs from the United

States and Japan. The data was represented using the Molecular Structure

Generator, mentioned above, and the ILP decision tree learner Tilde [BD98],
was used to learn the discrimination functions between the set of approved

pharmaceuticals and the two compound screening-libraries.

Three tests per dataset were carried out – one based on structural information

only, another on quantitative attributes only, and the other based on both

structural information and the quantitative attributes. The complete datasets

were split into a training and validation set and an independent test set. A
ten-fold cross-validation was used for Tilde to learn the decision trees. For

each of the three scenarios, the ten-fold cross-validation was carried out with

identical training and validation sets. For each scenario, the classification
tree that provided the best accuracy when applied to the validation set was

applied to the independent test set, see Table 3. The independent test results

are good and consistent with validation results. They indicate that the

1. Inductive queries for a drug designing robot scientist 25

inclusion of quantitative attributes resulted in increasing the classification

accuracy only slightly. The best accuracy was achieved by the decision trees

when the data is represented by both structures and properties. These
decision trees were represented as a set of Prolog rules and the most accurate

rules were selected to build the smallest decision list that had a minimum

accuracy of 85%. A complication is the the problem of uneven class

distributions (approximately 3:1, screening-library: approved
pharmaceuticals).

Testing Dataset Accuracy True

Negatives

True

Positives

HitFinder / App structures only 90% 92% 74%

NAT / App structures only 99% 99% 96%
HitFinder / App properties only 83% 90% 62%
NAT / App properties only 89% 92% 74%
HitFinder / App structures & properties 91% 93% 75%
NAT / App structures & properties 99% 99% 97%

Table 3. Accuracy of the classification trees when applied to the independent

test set.

The classification system had more difficulty discriminating approved

pharmaceuticals from the diversity-based HitFinder library than the target-

based NATDiverse library. However, the ILP method had 91% success in
classifying compounds in the HitFinder library and 99% in classifying

compounds from the NATDiverse collection when applied to an independent

test set. These discrimination functions were expressed in easy to understand
rules, are relational in nature and provide useful insights into the design of a

successful compound screening-library.

Given a set of rules that can discriminate between drugs and non-drug

compounds, the question arises how best to use them in the drug design
process. The simplest way to use them would be as filters, and to remove

from consideration any compound classed as being non-drug-like. This is

what is generally done with the original Lipinski rules - any compounds that
satisfy the rules are removed from drug libraries. This approach is non-

optimal because such rules are soft,as they are probabilistic and can be

contravened under some circumstances. However, new data mining research

such as multi-target learning research [ZD08] has originated better ways of
using prior rules than simply using them as filters. We believe that such

approaches could be successfully applied to the drug design problem.

26 Chapter 1

5. Active learning

In many experiment-driven research areas, it is important to select

experiments as optimal as possible in order to reduce the amount and the

costs of the experiments. This is in particular true for high-throughput

screening in the drug discovery process, as thousands of compounds are

available for testing. QSAR methods can help to model the results obtained

so far. When fit into an active learning strategy, they can be used to predict

the expected benefit one can obtain from experiments.

However, in QSAR applications there is an important difference with

classical active learning approaches. Usually, one is not interested to get an

accurate model for all molecules. It is only important to distinguish the best

molecules (and therefore to have an accurate model for the good ones). So

instead of active learning where one chooses experiments to improve the

global performance of the learned model, in these applications an active

optimization approach is desired where one chooses experiments to find the

example with the highest target value.

There may be two major reasons why an experiment is interesting. First, one

may believe that the molecule being tested has a high probability of being

active. In that case, one exploits the available experience to gain more value.

Second, the molecule may be dissimilar to the bulk of the molecules tried so

far. In that case, the experiment is explorative and one gains new experience

from it.

5.1 Selection strategies

Different example selection strategies exist. In geostatistics, they are called

infill sampling criteria [Sas02].

In active learning, in line with the customary goal of inducing a model with

maximal accuracy on future examples, most approaches involve a strategy

aiming to greedily improve the quality of the model in regions of the

example space where its quality is lowest. One can select new examples for

which the predictions of the model are least certain or most ambiguous.

Depending on the learning algorithm, this translates to near decision

boundary selection, ensemble entropy reduction, version space shrinking,

and others. In our model, it translates to maximum variance on the predicted

value, or
))(t(varargmax

.

Likely more appropriate for our optimization problem is to select the

example that the current model predicts to have the best target value, or
)t(argmax

. We will refer to this as the maximum predicted strategy. For

1. Inductive queries for a drug designing robot scientist 27

continuous domains, it is well known that it is liable to get stuck in local

minima.

A less vulnerable strategy is to always choose the example for which the

optimistic guess is maximal. In reinforcement learning, one has shown that

with this strategy the regret is bounded (Explicit Explore or Exploit,

[KS98]). In that case, the idea is to not (re)sample the example in the

database where the expected reward
t

is maximal, but the example where
)(tb+t var
is maximal. The parameter b is the level of optimism. In this

paper we do not consider repeated measurements, unlike reinforcement

learning, where actions can be reconsidered. This optimistic strategy is

similar to Cox and John‟s lower confidence bound criterion [CJ97]. It is

obvious that the maximum predicted and maximum variance strategies are

special cases of the optimistic strategy, with b=0 and b= respectively. In a

continuous domain, this strategy is not guaranteed to find the global

optimum because its sampling is not dense [Jon01].

Another strategy is to select the example that has the highest probability of

improving the current solution [Kus64]. One can estimate this probability as

follows.

Let the current step be N, the value of the set of k best examples be kbestNT

and the k-th best example be N)(k,x
with target value N)(k,t

. When we query

example ,either is smaller than or equal to N)(k,t
, or 1+Nt is greater. In the

first case, our set of k best examples does not change, and
kbestNkbest+N T=T

1 . In the latter case, 1+Nx
will replace the k-th best

example in the set and the solution will improve. Therefore, this strategy

selects the example 1+Nx
that maximizes

)t>P(t N)(k,+N 1 . We can evaluate

this probability by computing the cumulative Gaussian

 .))(var,1 dtttN(=)t>P(t N)(k,+N (1)

In agreement with [LWBS07], we call this the most probable improvement

(MPI) strategy.

Yet another variant is the strategy used in the Efficient Global Optimization

(EGO) algorithm [JS98]. EGO selects the example it expects to improve

most upon the current best, i.e the one with highest

.)(var,0,max)dtttN()t(t=)]tt(E[N)(k,N)(k,
 (2)

This criterion is called maximum expected improvement (MEI).

28 Chapter 1

5.2 Effects of properties of experimental equipment.

Most approaches assume an alternation between the algorithm proposing one

single experiment and the environment performing one experiment

producing a definite answer to the proposed question. After a number of

iterations, the algorithm converges then to one optimal solution. However, in

practice such a procedure is not always acceptable.

First, in some cases, not all parameters are evaluated during the first stage of

experimentation. E.g. in the drug discovery process, active compounds may

be rejected at a later stage due to other adverse properties such as toxicity,

and therefore one prefers to discover in the first stage several dissimilar

candidates instead of one optimal one.

Second, in many applications among which high throughput screening, the

equipment can perform several experiments at the same time. E.g. several

compounds can be tested on a single plate, or the experiments happen in a

pipeline such that several experiments are under way before the result of the

first one is known. In such cases, the algorithm has to choose several

experiments without knowing the result of all earlier experiments. Therefore,

apart from exploitation and exploration, the algorithm also needs

diversification.

Third, noise is a common factor in real-world experiments. It means that

results are not always exact or trustworthy. Depending on the domain, one

may want to perform the same experiment several times, or design different

experiments to jointly measure a set of related values.

6. Conclusions
In this chapter we have first introduced the challenges involved in
automating the discovery process of new drugs, of which the development of

a robot scientist is the arguably the most ambitious. We have provided a

more detailed discussion of several of the challenges particular to iterative
drug discovery: the representation of molecular data, the use of active

learning and the development of libraries that serve as input for the former

two tasks.

Even though we made an attempt to provide a reasonably complete summary
of the areas and issues involved, the overview in this chapter is far from

complete. An important element which is missing from this chapter is an all-

encompassing experimental comparison of the representation methods
presented (both ILP and graph mining), as well as detailed recommendations

with respect to which algorithms to use for which types of data, under which

types of constraints or under which type of language bias. Desirable as this

1. Inductive queries for a drug designing robot scientist 29

may be, to the best of our knowledge no such comparison is currently

available in the literature and most studies have focused on a subset of

methods and limited types of data (mostly NCI, see [WK06, BZRN06] for
instance). This type of analysis could be a useful topic for further research,

for which we hope that this chapter provides some useful hints.

References

[BB02] Christian Borgelt and Michael R. Berthold. Mining molecular

fragments: Finding relevant substructures of molecules. In ICDM, pages

51–58. IEEE Computer Society, 2002.
[BD98] Hendrik Blockeel, Luc De Raedt: Top-Down Induction of First-

Order Logical Decision Trees. Artif. Intell. 101(1-2): 285-297 (1998).
[BDK04] H. Blockeel, S. Dzeroski, B. Kompare, S. Kramer, B. Pfahringer,

and W. Van Laer. Experiments in predicting biodegradability. In Appl. Art.
Int. 18, pages 157–181, 2004.

[BZRN06] Björn Bringmann, Albrecht Zimmermann, Luc De Raedt, and

Siegfried Nijssen. Don‟t be afraid of simpler patterns. In Johannes
Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors, PKDD,

volume 4213 of Lecture Notes in Computer Science, pages 55–66.

Springer, 2006.
[Cod74] E.F. Codd. Recent Investigations into Relational Data Base

Systems. IBM Research Report RJ1385 (April 23rd, 1974). Republished

in Proc. 1974 Congress (Stockholm, Sweden, 1974). New York, N.Y.:

North-Holland, 1974.
[CJ97] Dennis D. Cox and Susan John. SDO: a statistical method for global

optimization. In Multidisciplinary design optimization (Hampton, VA,

1995), pages 315–329. SIAM, Philadelphia, PA, 1997.
[CPB88] R.D. III Cramer, D.E. Patterson, and Bunce J.D. Comparative Field

Analysis (CoMFA). 1. The effect of shape on binding of steroids to carrier

proteins. J. Am. Chem. Soc. 110: 5959–5967, 1988.
[DTK98] L. Dehaspe, H. Toivonen, and R.D. King. Finding frequent

substructures in chemical compounds. In: The Fourth International

Conference on Knowledge Discovery and Data Mining. AAAI Press,

Menlo Park, Ca. 30-36, 1998.
[DDR97] Luc Dehaspe, Luc De Raedt: Mining Association Rules in

Multiple Relations. In: ILP 1997: 125-132.
[DR08] Luc De Raedt. Statistical and Relational Learning. Springer, 2008.
[DR09] Luc De Raedt, Jan Ramon: Deriving distance metrics from

generality relations. Pattern Recognition Letters 30(3): 187-191 (2009).
[DHS01] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification.

Wiley, 2001.
[EK03] D. Enot and R.D. King. Application of inductive logic programming to

structure-based drug design. Proceedings of the 7
th
 European Conference on

30 Chapter 1

Principles and Practice of Knowledge Discovery in Databases (PKDD),

2003.
[Epp95] D. Eppstein. Subgraph isomorphism in planar graphs and related

problems. In Symposium on Discrete Algorithms, pages 632-640, 1995.
[FP08] Paolo Frasconi, Andrea Passerini: Learning with Kernels and Logical

Representations. Probabilistic Inductive Logic Programming, 2008: 56-

91.
[Gär03] Thomas Gärtner. A survey of kernels for structured data. SIGKDD

Explorations, 5(1):49–58, 2003.
[GE03] Johann Gasteiger and Thomas Engel. Chemoinformatics: A

Textbook. Wiley-VCH, 2003.
[GFW03] Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. On graph

kernels: Hardness results and efficient alternatives. In Bernhard Schölkopf
and Manfred K. Warmuth, editors, COLT, volume 2777 of Lecture Notes

in Computer Science, pages 129–143. Springer, 2003.
[HMFM64] C. Hansch, P.P. Malony, T. Fujiya, and R.M. Muir, R.M.

Correlation of biological activity of phenoxyacetic acids with Hammett
substituent constants and partition coefficients. Nature 194, 178-180,

1965.
[HBB03] Heiko Hofer, Christian Borgelt, and Michael R. Berthold. Large

scale mining of molecular fragments with wildcards. In Michael R.

Berthold, Hans-Joachim Lenz, Elizabeth Bradley, Rudolf Kruse, and

Christian Borgelt, editors, IDA, volume 2810 of Lecture Notes in

Computer Science, pages 376–385. Springer, 2003.
[HCKD04] C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data mining

and machine learning techniques for the identification of mutagenicity

inducing substructures and structure activity relationships of
noncongeneric compounds. In Journal of Chemical Information and

Computer Systems 44, pages 1402–1411, 2004.
[HR08] Tamás Horváth and Jan Ramon. Efficient frequent connected

subgraph mining in graphs of bounded treewidth. In Walter Daelemans,

Bart Goethals, and Katharina Morik, editors, ECML/PKDD (1), volume

5211 of Lecture Notes in Computer Science, pages 520–535. Springer,

2008.
[HRW06] Tamás Horváth, Jan Ramon, and Stefan Wrobel. Frequent

subgraph mining in outerplanar graphs. In Tina Eliassi-Rad, Lyle H.

Ungar, Mark Craven, and Dimitrios Gunopulos, editors, KDD, pages 197–
206. ACM, 2006.

[HWP03] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent

subgraphs in the presence of isomorphism. In Proceedings of the Third
IEEE International Conference on Data Mining (ICDM), pages 549–552.

IEEE Press, 2003.
[HWPY04] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining

maximal frequent subgraphs from graph databases. In Won Kim, Ron

1. Inductive queries for a drug designing robot scientist 31

Kohavi, Johannes Gehrke, and William DuMouchel, editors, KDD, pages

581–586. ACM, 2004.
[Ino04] Akihiro Inokuchi. Mining generalized substructures from a set of

labeled graphs. In ICDM, pages 415–418. IEEE Computer Society, 2004.
[IWM00] A. Inokuchi, T. Washio, and H. Motoda. An APRIORI-based

algorithm for mining frequent substructures from graph data. In

Proceedings of the 4th European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD), volume 1910 of Lecture

Notes in Artificial Intelligence, pages 13–23. Springer-Verlag, 2000.
[Jon01] Donald R. Jones. A taxonomy of global optimization methods based

on response surfaces. Journal of Global Optimization, 21:345–383, 2001.
[JS98] Donald R. Jones and Matthias Schonlau. Efficient global optimization

of expensive black-box functions. Journal of Global Optimization,
13(4):455–492, December 1998.

[KK01] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In

Proceedings of the First IEEE International Conference on Data Mining

(ICDM), pages 313–320. IEEE Press, 2001.
[KNK06] Jeroen Kazius, Siegfried Nijssen, Joost N. Kok, Thomas Bäck, and

Adriaan IJzerman. Substructure mining using elaborate chemical

representation. In Journal of Chemical Information and Modeling 46,
2006.

[KMLS92] R.D. King, S. Muggleton, R.A Lewis, and M.J.E Sternberg. Drug

design by machine learning: The use of inductive logic programming to

model the structure-activity relationships of trimethoprim analogues
binding to dihydrofolate reductase. Proc. Nat. Acad. Sci. U.S.A. 89,

11322-11326, 1992.
[KMSS96] R.D. King, S. Muggleton, A. Srinivasan, and M.J.E. Sternberg.

Structure-activity relationships derived by machine learning: The use of

atoms and their bond connectivities to predict mutagenicity by inductive

logic programming. Proc. Nat. Acad. Sci. USA 93, 438-442, 1996.
[KR01] Stefan Kramer and Luc De Raedt. Feature construction with version

spaces for biochemical applications. In Carla E. Brodley and Andrea

Pohoreckyj Danyluk, editors, ICML, pages 258–265. Morgan Kaufmann,

2001.
[KRH01] Stefan Kramer, Luc De Raedt, and Christoph Helma. Molecular

feature mining in hiv data. In KDD, pages 136–143, 2001.
[KS98] Michael Kearns and Satinder Singh. Near-optimal reinforcement

learning in polynomial time. In Proc. 15th International Conf. on Machine

Learning, pages 260–268. Morgan Kaufmann, San Francisco, CA, 1998.
[Kus64] Harold J. Kushner. A new method of locating the maximum point of

an arbitrary multipeak curve in the presence of noise. Journal of Basic

Engineering, pages 97–106, March 1964.
[LG03] A.R. Leach, and V.J. Gillet. An Introduction to Chemoinformatics,

Kluwer Academic Publishers, Dordrecht, 2003.

32 Chapter 1

[Lin89] A. Lingas. Subgraph isomorphism for biconnected outerplanar

graphs in cubic time. Theoretical Computer Science 63, 295-302, 1989.
[LLDF97] C.A. Lipinski, F. Lombardo, B.W. Dominy, and P. J. Feeney.

Experimental and computational approaches to estimate solubility and

permeability in drug discovery and development settings, Adv. Drug

Delivery Rev., 23(1-3), pp. 3-25, 1997.
[LWBS07] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale

Schuurmans. Automatic gait optimization with gaussian process

regression. In Proceedings of the 20th International Joint Conference on

Artificial Intelligence, pages 944–949, 2007.
[Mar78] Y.C. Martin. Quantitative Drug Design: A Critical Introduction,

Marcel Dekker, New York, 1978.
[MT92] J. Matousek and R. Thomas. On the complexity of finding iso- and

other morphisms for partial k-trees. Discrete mathemathics, 108(1-3),

343-364, 1992.
[Med79] P.B. Medewar. Advice to a Young Scientist. BasicBooks. 1979.
[Nij06] Siegfried Nijssen. Mining interpretable subgraphs. In Proceedings of

the International Workshop on Mining and Learning with Graphs (MLG),

2006.
[NK04] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent

structure mining can make a difference. In Proceedings of the 2004

International Conference on Knowledge Discovery and Data Mining

(KDD), pages 647–652. ACM Press, 2004.
[RN08] Jan Ramon and Siegfried Nijssen. Polynomial-delay enumeration of

monotonic graph classes. Journal of Machine Learning Research, 2009.
[Sas02] M. J. Sasena. Flexibility and Efficiency Enhancements for

Constrained Global Design Optimization with Kriging Approximations.
PhD thesis, University of Michigan, 2002.

[SK09] A. Schierz, and R.D. King. Drugs and Drug-like compounds:

Discriminating Approved Pharmaceuticals from Screening Library
Compounds. In Pattern Recognition in Bioinformatics, pages 331-343,

2009.
[SRBB08] Leander Schietgat, Jan Ramon, Maurice Bruynooghe, Hendrik

Blockeel: An Efficiently Computable Graph-Based Metric for the
Classification of Small Molecules. In Discovery Science 2008: 197-209.

[Vish09] S. V. N. Vishwanathan, Nicol N. Schraudolph, Imre Risi Kondor,

and Karsten M. Borgwardt. Graph Kernels. Journal of Machine Learning
Research, 2009.

[WK06] Nikil Wale and George Karypis. Comparison of descriptor spaces

for chemical compound retrieval and classification. In ICDM, pages 678–
689. IEEE Computer Society, 2006.

[YH02] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining.

In Proceedings of the Second IEEE International Conference on Data

Mining (ICDM), pages 721–724. IEEE Press, 2002.

1. Inductive queries for a drug designing robot scientist 33

[YH03] Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent

graph patterns. In KDD, pages 286–295. ACM, 2003.
[ZD08] B. Zenko, and S. Dzeroski. Learning Classification Rules for

Multiple Target Attributes. In PAKDD, pages 454-465, 2008.

34 Chapter 1

APPENDIX 1

cyclopropane 2,3-dihydropyrrole benzene

cyclopropene 2,5-dihydropyrrole pyridine

aziridine 3,4-dihydropyrrole 1,2-dihydropyridine

diaziridine pyrrolidine 1,4-dihydropyridine

azirine furan tetrahydropyridine

diazirine 1,3-dihydrofuran piperidine

oxirane 2,5-dihydrofuran 4H-pyran

dioxirane oxolane 2H-pyran

oxirene 1,2-dioxolane dihydropyran

thiirane 1,3-dioxolane aromatic_pyran

dithiirane dioxole oxane

thiirene imidazole thiane

oxathiirane imidazolidine dihydrothiopyran

oxaziridine dihydroimidazole pyridazine

thiaziridine pyrazole 1,2-diazinane

dioxathiirane pyrazoline 1,3-diazinane

cyclobutane 1,2,3-triazole tetrahydropyridazine

cyclobutene 1,2,4-triazole pyrimidine

cyclobutadiene dihydrotriazole dihydropyrimidine

azetidine tetrazole 3H-pyrimidine

2,3-dihydroazete 1,3-oxazole pyrazine

oxetane 1,2-oxazole tetrahydropyrazine

1,2-dioxetane dihydrooxazole piperazine

1,3-dioxetane 1,3,4-oxadiazole morpholine

thietane 1,2,5-oxadiazole 1,3-oxazinane

1,2-dithietane 1,2,4-oxadiazole 1,2-oxazinane

1,3-dithietane thiazole dihydro-1,2-oxazin

cyclopentane 1,3,4-thiadiazole dihydro-1,3-oxazin

cyclopentene 1,2,5-thiadiazole 1,3-oxazin

cyclopentadiene 1,2,3-thiadiazole 1,3-thiazinane

thiolane 1,2,4-thiadiazole thiomorpholine

1,2-dithiolane dihydrothiazole 1,3-dithiane

1,3-dithiolane thiazolidine 1,4-dithiane

1,2-dithiole isothiazole 1,4-dioxane

1,3-dithiole cyclohexane 1,3-dioxane

thiophene cyclohexene 1,2-dioxane

2,3-dihydrothiophene 1,3-cyclohexadiene 1,4-dioxene

2,5-dihydrothiophene 1,4-cyclohexadiene dihydrodioxin

1. Inductive queries for a drug designing robot scientist 35

pyrrole triazine

 cycloheptane

Appendix Table 1: Specific ring structures pre-coded in the MSG library.

36 Chapter 1

benzocyclobutene acridine pyrrolizine

benzofuran perimidine pyridopyrimidine

indole beta_carboline oxanthrene

isoindole pteridine chromene

benzothiophene phenoxazine isochromene

benzimidazole phenothiazine naphthalene

indazole phenazine pentalene

benzoxazole phenanthroline indene

benzisoxazole naphthyridine as-indacene

benzothiazole carbazole s-indacene

purine phthalazine biphenylene

quinoline 1H-quinolizine acenaphthylene

isoquinoline 9H,4H- quinolizine fluorene

quinoxaline 2H-quinolizine phenalene

quinazoline indolizine phenanthrene

cinnoline pyrrolopyridine anthracene

Appendix Table 2: Specific polycyclic structures pre-coded in the MSG library.

1. Inductive queries for a drug designing robot scientist 37

alkyl_halide aryl-thioether methoxy

aryl-halide carboxylic acid chain ether

carboxylic-acid halide ester aryl ether

hydroxyl amide imine

alcohol other carbonyl nitro

hetero aryl alcohol 0H-amine aryl nitro

phenols 1H-amine nitroso

aldehyde 2H-amine aromatic nitroso

ketone ammonium azo

thiol aromatic amine aromatic azo

sulfonic acid hydroxylamine aliphatic chain length 5

sulfonyl phosphoric acid butyl

sulfone phosphate propyl

sulfonamide phosphonate ethyl

cyclic thioether phosphinate norm methyl

chain thioether cyclic ether haloalkane methyl

methylene single haloalkane methylene

methylene double heteroatoms single bonded

methylene valence

aliphatic halide

Table 3: Specific functional groups pre-coded in the library.

