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ABSTRACT

Layered learning is a machine learning paradigm used to develop autonomous robotic-based agents

by decomposing a complex task into simpler subtasks and learns each sequentially. Although

the paradigm continues to have success in multiple domains, performance can be unexpectedly

unsatisfactory. Using Boolean-logic problems and autonomous agent navigation, we show poor

performance is due to the learner forgetting how to perform earlier learned subtasks too quickly

(favoring plasticity) or having difficulty learning new things (favoring stability). We demonstrate

that this imbalance can hinder learning so that task performance is no better than that of a sub-

optimal learning technique, monolithic learning, which does not use decomposition. Through the

resulting analyses, we have identified factors that can lead to imbalance and their negative effects,

providing a deeper understanding of stability and plasticity in decomposition-based approaches,

such as layered learning.

To combat the negative effects of the imbalance, a complementary learning system is applied to

layered learning. The new technique augments the original learning approach with dual storage

region policies to preserve useful information from being removed from an agent’s policy prema-

turely. Through multi-agent experiments, a 28% task performance increase is obtained with the

proposed augmentations over the original technique.
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CHAPTER 1: INTRODUCTION

The goal of this work is to improve the decomposition-based machine learning paradigm of lay-

ered learning by addressing its susceptibility to prematurely forgetting important knowledge. This

challenge is known to cause learning agents to quickly and catastrophically lose the ability to per-

form vital subtasks and result in sub-optimal task performance, challenging the effectiveness of the

learning system. The goal of this dissertation is achieved by satisfying three objectives: 1) demon-

strate that layered learning’s performance can be significantly hindered by a stability-plasticity

imbalance and identify the causes; 2) propose a new technique that augments layered learning

with a complementary learning system to mitigate the negative effects caused by the imbalance;

and 3) compare the proposed learning system’s performance to that of existing mitigation tech-

niques. This new research contributes a warning to layered learning practitioners of an unexplored

pitfall that can drastically hurt task performance and provides a tested solution to the anticipated

problem. Additionally, the presented work’s analysis and solution opens the possibility of using

layered learning with layer overlapping, a less restrictive form of layered learning that is unpopular

because of its susceptibility to forgetting. Finally, the study of a stability-plasticity imbalance in

the abstract learning paradigm can provide insight of how similar learning techniques may suffer

from the imbalance and propose solutions to their problems.

Layered Learning is a machine learning technique that uses task-decomposition and reinforcement

learning to teach agents how to perform a complex task. The technique decomposes a task into

simpler subtasks and trains the agent to reach a desired level of performance on each component.

Each subtask is learned in a layer that provides a training environment and scenario where the

agent can optimize it’s policy on specific aspects of the task. With each passing layer, the agent’s

proficiency of the task has the chance to increase because each layer optimizes performance on a

new component of the task and builds on top of what was learned previously. Ideally, upon the
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completion of the final layer, the agent has a policy capable of performing the complex task. The

aim behind using this task-decomposition machine learning technique is to allow the learning agent

to progressively acquire the ability to perform all of the necessary components to solve a complex

task.

Layered learning is not a machine learning algorithm like evolutionary computation or Q-learning;

instead, it is an abstract architecture and process that guides the agent to optimize performance

of a task through task decomposition. It acts as a high-level paradigm that resides on top of other

machine learning methods and can employ a variety of reinforcement learning techniques for actual

learning.

Layered Learning is being used in an array of different domains, in particular, to develop the

decision making policies of agents as they learn how to perform complex tasks autonomously. To

date, layered learning has taught simulated and physical robots and autonomous computer-based

agents how to perform motor skills, such as walking, running, and grabbing, play soccer, behave

as challenging non-playable characters in videos games, solve Boolean-logic problems, and train

a team of cooperating unmanned aerial vehicles (UAVs) to navigate through an environment. In

each case, the process of training agents on decomposed tasks has led to a degree of success in

agent policy development.

The learning paradigm is attractive from an empirical point of view: many implementations of

layered learning have proven successful at improving task performance compared to standard,

monolithic learning; for this reason, recently, the paradigm has become increasingly used by a

subset of the robotics community to develop the behavioral policies of autonomous agents needed

to solve complex tasks.

Indeed, layered learning robots are currently being deployed today, and developers and researchers

are relying on the success of these agents; however, little attention has been spent trying to gain

2



a deeper understanding of the strengths and weaknesses of the approach. Moreover, as we will

discuss, layered learning shares much in common with other decomposition-based approaches.

The aim of this dissertation is to improve our understanding of the paradigm, as well as to address

some obvious potential pitfalls so that those who are already using the approach can produce more

effective agents or, in the worst case, when they should consider other approaches altogether. We

do this by first looking at similar challenges and solutions from related machine learning methods.

From the literature review of similar decomposition-based approaches and the preliminary work, it

is clear that the best way to improve layered learning is to study and address a clear and predictable

challenge faced by the paradigm: its susceptibility to a stability-plasticity imbalance. A poten-

tial stability-plasticity imbalance is a problem all decomposition-based reinforcement learning ap-

proaches face. The stability-plasticity dilemma requires the learner to determine when to have a

preference for older, acquired knowledge (stability) and when to favor new, incoming knowledge

(plasticity). A major aim of this work is to provide the machine learning and robotics community

with an understanding of the imbalance in layered learning and attempt to mitigate the effects of

its occurrence.

The stability-plasticity imbalance is being targeted because it can clearly hinder the performance of

layered learning agents, forcing the developers to design agent learning plans in the unnatural man-

ner of layer isolation, accept inaccurate agent decision making, or waste additional computational

effort in attempting to regain vital information that has been forgotten in the learning process. In

autonomous robot development, these trade-offs can be extremely costly in terms of agent success

and performance evaluation due to limitations in development time, robot battery life, and policy

storage capacity.

Reducing or removing the occurrence of an imbalance and mitigating its negative effects will make

layered learning more effective at learning how to solve complex tasks and ultimately improve the

3



paradigm’s standing among other learning techniques. Considering that layered learning has done

well even with the imbalance flaw suggests that even greater levels of success can be achieved if its

challenges are addressed. Enhancements to the paradigm will result in further success with agents

who employ layered learning and possibly outperform techniques considered to be the current state

of the art.

Additional motivation for the proposed work is that beyond changing a specific paradigm, solu-

tions to the imbalance in layered learning also have the potential to mitigate the ill effects in other

machine learning techniques. For example, techniques that use transfer learning, robot shaping,

task decomposition, and hierarchical structures may be able to support the output from the pro-

posed investigation to counter negative forgetting. The potential for a discovered layered learning

solution to fit these other machine learning areas is because of layered learning’s foundation is

based on these other techniques and they naturally share many fundamental similarities.

Finally, there are no existing published studies that investigate the effect of a stability-plasticity

imbalance on layered learning. To date, the layered learning literature focuses on comparing the

paradigm to other machine learning techniques, notably monolithic genetic algorithms and coevo-

lution, and evaluating the effectiveness of employing the paradigm on real and simulated robots in

multi-agent environments. The proposed work will serve as the first study of the deeper challenges

of layered learning, the imbalance in particular. Specifically, we focus our analysis on challenges

in direct policy search using layered learning but also provide insight on stability-plasticity imbal-

ance in value search reinforcement learning. Lastly, this work also contributes the first suggested

changes to the paradigm to address such problems. Listed below are the major contributions of

this work:

• Provides the first empirical study of stability-plasticity imbalance in layered learning.

• Introduces a set of metrics for diagnosing and measuring the act of forgetting caused by
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imbalance.

• Demonstrates that an imbalance exists and can significantly hinder learning’s effectiveness.

• Produces a detailed analysis of new and existing simple solutions that mitigate the imbalance.

To accomplish the goal of improving layered learning by addressing the stability-plasticity dilemma,

this dissertation provides a literature review of the paradigm and stability-plasticity imbalance in

similar decomposition-based learning methods, demonstrates that an imbalance can exist in a lay-

ered learning system and identifies the causes and effects, examines the application of layered

learning to different reinforcement learning techniques, including the a direct policy search with

an evolutionary algorithm and value search with Q-learning, defines the proposed solution that

augments layered learning with a complementary learning system, and analyzes the new system’s

performance to that of existing layered learning techniques, using experiments that train multiple

learning agents to perform an unmanned aerial vehicle (UAV) surveying problem.

The paper is outlined as follows: chapter 2 provides the literature review of layered learning,

stability-plasticity imbalance in other systems, and preliminary work; chapter 3 demonstrates the

imbalance and identifies causes and effects; chapter 4 analyzes existing and proposed solutions;

and chapter 5 provides the conclusion and description of future work.
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CHAPTER 2: BACKGROUND

With the ability to make decisions, agents can display specific behaviors, achieve goals, and per-

form tasks when confronted with implementation choices. The work discussed here focuses on

enhancing the decision making ability of autonomous agents by understanding a specific set of

challenges facing an existing, well-used learning method and improving it based on this under-

standing. More specifically, the work addresses the retention of information used in making deci-

sions to accomplish a complex task. This chapter provides the background that gives context to this

work and problem. Here, we define common terminology that will be used throughout this work,

define layered learning, discuss the state-of-the-art uses of the paradigm, compare layered learn-

ing to other reinforcement learning approaches, describe the stability-plasticity dilemma faced by

other learning systems, and finally review preliminary work that has created the suspicion that lay-

ered learning may suffer from a performance hindering phenomenon caused by stability-plasticity

imbalance.

Terminology

A task is a behavior or objective to be satisfied by an agent. Every task has a set of sequences

of actions that must be executed to perform the task. The set of sequences is a subset of all

possible actions available to an agent and may vary with the environment’s state. Subtasks are

sub-components of a task that can be used to solve a portion of the task. These subtasks can be

easier to learn to perform than a task by requiring fewer actions to perform for subtask optimality

or have less difficulty in generating the sequence of actions to perform for subtask optimality

Decisions are made by the agent to select which actions to perform and when to execute them to
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carry out a task [57]. Reinforcement learning (RL) is an area of machine learning that searches for

decision-making solutions that maximize a cumulative reward [57]. From the RL point of view,

decisions are based on policies. A policy is a set of mappings that link states to actions; they

represent the conditions when certain actions should be executed. When an agent is faced with a

decision, it uses its policy to determine which action to perform based on the current state. The

purpose of the RL technique is to provide the learning agent with a policy capable of performing

the desired task well, according to the performance measure. In RL with direct policy search,

the learner searches through a solution space of possible policies to find one that meets the target

criteria, typically to maximize some cumulative reward over actions taken to accomplish the task

[41]. Value search is another type of RL where utility values are used to make estimates on the

rewards a policy would receive. Monte Carlo [27] and Q-learning [58] approaches are examples

of value search methods. In this work, we are primarily focusing on direct policy search but also

look at value search with layered learning.

S = {s0, s1, ..., sn}, where S is the set of environmental states and si is an individual state.

A = {a0, a1, . . . , an}, where A is the set of all potential actions.

P: S → A, where P is a policy mapping states to actions. As such, a policy can also be seen as

a collection of state-action pairs, one for each distinct state. In this work, a policy is a list of

state-action pairs (later referred to simply as pairs) that together are used to solve a task.

Task decomposition breaks down a task into subtasks when the task is too complex to learn at

once. The process of decomposing a task is a very general idea and there are many decomposition-

based approaches in machine learning. In this work, task decomposition uses subtasks to represent

fragments of the task in a whole-part manner. In this process, the subtasks are the stepping stones

required for the completion of the overall task. With the use of task decomposition, each subtask

is solved with a subset of the state-action pairs in the policy. For the rest of this dissertation, we
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will refer to tasks as the overall problem the agent is trying to solve.

It is reasonable to consider task decomposition when random search is a large solution space takes

an unacceptable amount of time. Two advantages stand out for using task decomposition in ma-

chine learning. The first advantage is that the agent can focus on one subtask at a time and hopefully

navigate through the reduced solution space with less effort. The second advantage is that agent

developers can order the subtasks in a way to guide how a task is learned. Without the task being

decomposed, the agent may be overwhelmed to learn every aspect of the task at once and learn

sub-optimally. With task decomposition, the agent is able to focus on learning parts of the task

separately and can be easily guided with a learning plan on how to learn aspects of the task.

An example of a complex task being decomposed into sub-components is teaching autonomous

robots how to play soccer. To decompose the complex game of soccer and all of its rules, the task

may be broken up into subtasks to learn how to approach, intercept, pass, and shoot the ball. In

this example, each subtask is simpler than the complex task, has a reduced solution space than the

overall task, and is necessary to learn how to play the game of soccer.

Methods in RL that employ decomposition include feudal reinforcement learning [6], hierarchical

abstract machines [44], MAXQ [7], and layered learning [56].

Layered Learning

In machine learning, a number of different approaches have been referred to as “layered learning,”

including weight tuning in multi-layered perception neural networks [25, 48, 15] and in incremen-

tal learning systems [51, 11, 35]. In this dissertation, the focus is placed on the specific learning

paradigm layered learning that was introduced by Stone and Veloso [56]. Stone and Veloso in-

troduced layered learning as a machine learning paradigm that relies on task decomposition to
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simplify a complex task into manageable components. At a high level, layered learning is given a

complex task decomposition and optimizes the agent’s policy to perform each subtask sequentially.

Once all of the subtasks are learned, the agent is expected to be able to perform the complex task.

Each subtask represents a component of the complex task the agent must learn to perform in order

to complete the complex task effectively. Typical uses of layered learning has the agent learn in

a bottom-up fashion by first learning the simplest subtasks and progressing to more complex ones

until the agent can perform the overall complex task. Other uses train the agent to preform inde-

pendent subtasks sequentially or by progressively training subtasks that build on the knowledge

gained by previously learned subtasks. Layered learning is defined in Equation 2.1.

Li = (Fi, Oi, Ti,Mi, hi) (2.1)

Here, each subtask learning phase is a layer ( Li), where the agent is given a training environment

and set of training examples designed for learning the subtask ( T i), set of all state variables for

the agent to analyze its environment (Fi), a set of all possible actions the agent can make (Oi), and

a machine learning technique to learn the subtask (Mi). The output of the layer is a policy (hi) the

agent has developed for solving the subtask. The outputted policy of a layer is used as the initial

policy its subsequent layer modifies to solve its own subtask, creating a dependency of learning

among the layers. Stone and Veloso [56] define Layered learning as:

Layered learning is deliberately abstract in its task decomposition, training set, machine learning

algorithms, and performance evaluation criteria inputs to allow the paradigm to be suited to solve a

variety of specific complex tasks; this abstraction is the main distinction between layered learning

and other decomposition-based reinforcement learners. The paradigm does not decompose the

task into simpler sub-components and relies on developers to decompose the complex task into a

meaningful way. To be effective, this task decomposition input must guarantee that the learning
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agent can grasp the complex task by learning to correctly perform each subtask and that each

subtask layer reduces the solution space enough to make learning the complex task tractable. In

addition, the paradigm must be given training sets for each layer where the agent can correctly

learn how to perform the subtask. Furthermore, all of the given training environments and training

sets for each layer must adequately represent the subtask.

Because layered learning is not a machine learning algorithm, the paradigm depends on other

learning techniques to modify agent decision-making policies. The machine learning algorithm is

responsible for modifying the agent’s policy to perform the current layer’s subtask and uses the

provided task decomposition and training set to guide the learning process. Although common

uses of layered learning employ the same learning algorithm for all of the layers, such as using

genetic programming [20, 21, 18, 23] and neuro-evolution [55, 60] throughout the learning pro-

cess, using different algorithms for individual layers has also proven to be effective. An example

of a mixture of algorithms is in Stone and Veloso’s [56] work where three different machine learn-

ing algorithms, neuro-evolution, C4.5 decision tree training algorithm, and TPOT-RL, are used in

training simulated soccer playing agents. The flexibility of employing different machine learning

algorithms in each layer allows for an effective algorithm to be used for solving a specific class of

problem represented in the subtask.

Similar to other task decomposition machine learning techniques, layered learning addresses the

monolithic direct-policy issues described below by biasing the solution space. The externally pro-

vided bias is in the decomposition, where each subtask has its own solution space that is typically

smaller than the complex task’s set of possible solutions. By sequentially focusing on a smaller

subset of solutions with each subtask, the paradigm reduces the difficulty of locating acceptable

solutions in a large solution space by searching for solutions in a sequence of smaller spaces. By

significantly reducing the solution space for each subtask, the learner will hopefully be able to

learn all of the components needed to solve the complex task in a more manageable way.
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Layered learning has four principles for when and how the paradigm should be used [56]. First,

layered learning works best when learning a direct mapping from inputs to outputs is not tractable.

Because layered learning decomposes the complex task into sub-components, the paradigm is most

effective when the task is large enough to be decomposed into simpler subtasks, such as mapping

sensors to actuators. With proper task decomposition inputted into a layered learning system, the

complex task is learned by incrementally learning sub-components of the task.

Second, the paradigm must be given a task decomposition that is bottom-up and hierarchical.

Because the paradigm learns progressively more complex subtasks, it must be given an effective

decomposition where the learner can incrementally learn the task with each experienced layer. Not

all problems are amendable to such decomposition, as we shall see.

Third, an appropriate machine learning algorithm is used at each layer to learn the desired subtask.

To learn a complex task, the layered learning agent must be given a learning algorithm suitable to

solving the subtask for each layer. Indeed, one of the key advantages of such a general framework is

the flexibility to work with many different underlying learning heuristics. With the proper learning

algorithm, task decomposition, and inputs, the learner will be able to learn subtasks vital to learning

the overall complex task.

Finally, one layer’s output policy seeds the next layer. Layered learning progressively improves the

agent’s ability to learn the task. To realize the progression, each layer must accept what was learned

in its preceding layer to enhance the policy to solve the current subtask and retain information

learned previously. The seeding can be used to adapt the policy to perform a new, higher-order

subtask or provide the new layer with learned components needed to perform the new subtask.

These four principles define when the paradigm should be used and which conditions need to be

met to implement the paradigm correctly.

11



Difficulties with Monolithic Learning

Learning effective mappings of sensors to actuators with monolithic direct-policy search for com-

plex tasks is difficult for reinforcement learning agents [56, 55, 20, 21, 10]. One cause of the

difficulty is that the solution space of a complex task can be too large to navigate through ef-

ficiently and exhibit insufficient gradient information. The second cause is that the task can be

too complex to find an effective solution in an acceptable amount of time. These two reasons can

cause direct-policy search algorithms to be both inefficient and ineffective at solving complex tasks

across multiple domains.

Monolithic RL inefficiency is a side-effect of amalgamating multiple states into one performance

criterion to evaluate solutions and the breadth of possible solutions through which the learner must

navigate through. In cases when the monolithic property combines multiple state attributes into

one performance criterion, the potential number of combinations of states to actions can create

an extremely large solution space to navigate through. If the agent learns by trial and error, such

as with a reinforcement learning algorithm, large amounts of evaluations, time, and effort can be

required to locate an acceptable solution. The entire process becomes inefficient due to the time

needed to search the large solution space for acceptable solutions.

Luke et al.’s [32] work is an example of the solution space being too large to efficiently navigate

through. In the work, simulated autonomous agents were tasked with learning how to play soccer

by learning various soccer-related behaviors with the learning technique of genetic programming

(GP) [29]. The approach of using GP to develop policies for complex tasks of ball interception and

movement between two way-points proved to be unsuccessful and forced the research to use hand-

coded policies to learn the behaviors. In this example, the complex tasks each possess a solution

space that is too large to identify acceptable mappings in the allotted amount of time.
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The second reason a monolithic learning system can have difficulty discovering an effective solu-

tion for a complex task is the potential scarcity of effective solutions. This rarity can be due to the

possibility of the added conditions the monolithic evaluation criterion places on the solution space

to narrow what are acceptable solutions. A second cause of rarity can be due to the size of the

solution space and the difficulty in finding acceptable solutions when there are so many possible

candidates. In other words, a monolithic approach imposes additional conditions that must be met

in order to deem a solution acceptable.

To illustrate this second reason, let’s consider two instances of this problem. First, consider when

the solution space is large but there are only a handful of acceptable solutions. Probabilistically,

the learner may never reach one of the acceptable solutions because only a few solutions in the

solution space meet the acceptable criteria for the complex task. Second, consider a small solution

space with one acceptable solution. The learner may fixate on similar solutions in the search

space and never reach the one dissimilar acceptable solution. Both of these examples focus on the

possibility of the learner lacking novelty exploration, fixating on a local optima, or getting stuck on

a performance plateau during its navigation of the solution space. These two obstacles are caused

by the learner having to navigate for solutions with more conditions to satisfy in one performance

measure and in a solution space with fewer solutions.

Two techniques for making monolithic RL for complex tasks tractable are to: 1) constrain or bias

the search space, and 2) bias the search method itself. By constraining the solution space, only a

subset of the complex task’s true solution space is considered in the search. The reduction in size

allows the learning algorithm to only focus on solutions considered important for the task. Biasing

the search is navigating through the solution space with guidance, typically with the use of external

domain knowledge. Two approaches include the use of a specialized representation that constrains

the problem, such as GP with structured operators and functions, and to use the decomposition of

the problem space into sub-components to learn separately, such as co-evolution and hierarchical
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reinforcement learning.

Layered learning is a machine learning paradigm that possesses the ability to constrain both the

solution and problem space. The paradigm is designed to ease the difficulty monolithic direct-

policy search has with solving complex tasks. The paradigm relies on both task decomposition

and bottom-up problem solving to reduce the solution space and incrementally learn complex

tasks. Studies have shown that layered learning can improve autonomous agent learning when

compared to standard monolithic approaches across several different domains. Success with the

paradigm has been witnessed in such complex tasks as training real and simulated robots how to

walk and play soccer, solve Boolean logic problems, and develop non-playable characters in video

games to name a few.

Next, we survey the current state of the art in layered learning, followed by a discussion of the

advantages and disadvantages of the paradigm and a look at similar learning approaches.

The State of Layered Learning

Our survey of layered learning research is organized based on the way in which empirical com-

parisons are examined in literature: feasibility studies, comparisons to monolithic approaches,

comparisons to other modular/composition-oriented approaches, and application to challenging,

realistic problem domains.

Feasibility Experiments of Layered Learning

Layered learning is introduced by Stone and Veloso [55] to train simulated agents how to play the

complex game of soccer. The approach decomposes the complex task into two layers: to first learn

the low-level individual skill of intercepting a moving ball and then learn a higher-level social skill
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of passing to a teammate. The levels of subtask complexity were defined by the authors. This

task decomposition is noteworthy because the low-level subtask is a vital component of the higher-

level subtask and the higher-level subtask is complex because of its multi-agent nature, requiring

coordination among teammates.

All agent decision making is controlled by a neural network that determines how the agent inter-

cepts and passes the ball among teammates. As the agents reside in a layer, these neural networks

are modified to adapt to the training scenario designed for each subtask.

To determine the effectiveness of layered learning, two experiments are made for the high-level

passing task. The first experiment demonstrates that a layered learning team is more successful

than a team that randomly selects to which teammate to pass the ball. This random passing foil is

intended to baseline the experiments.

The second experiment demonstrates that a team learned via a layered learning approach is also

more successful than a static approach where an agent with the ball always passes to the clos-

est teammate, though this performance difference is small. This second comparison is meant to

compare the results of layered learning to a known good, existing heuristic.

Stone and Veloso [56] extend their introduction of layered learning by formally defining layered

learning and jointly using multiple machine learning techniques to solve the same complex task.

To accomplish the use of multiple techniques, the work adds a third subtask and layer of scoring

goals to the complex task’s decomposition of soccer and uses three different machine learning

algorithms, one for each layer, to effectively learn each subtask. Experiments compare this new

take on layered learning to both agents who make random decisions and against real RoboCup

competitors.

In the first layer, the individual agent learns how to intercept the ball by modifying a neural net-
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work. The second layer is the complex task learned in the introductory work [55] of learning to

evaluate passing options and making the pass. This second subtask is multi-agent based, requir-

ing coordination among teammates, and the layer uses the C4.5 decision tree training algorithm.

The final layer uses the subtasks learned in the first 2 layers to master scoring goals. In this final

layer, the team tries to retain ball possession until it has a clear goal scoring opportunity, when at

which a team member will shoot at goal. This pass-or-shoot team layer uses the TPOT-RL learning

algorithm to learn the highest-level subtask.

These results provide some evidence of layered learning’s potential utility for complex tasks.To fur-

ther evaluate layered learning as a valid learning paradigm, the approach was used in the RoboCup

simulation competition for autonomous soccer playing agent teams. The layered learning paradigm

has been successful in these competitions, making it to semifinals of RoboCup-97 out of 29 teams,

being RoboCup-98 champions in a field of 34 teams, and RoboCup-99 champions in a field of

37. These RoboCup results show layered learning can thrive in competitive environments making

accurate, real-time decisions.

Comparing Layered Learning with Monolithic Learning

Making a direct comparison between layered learning and monolithic learning is a natural and

common practice during the lifespan of the learning paradigm. The comparison allows the learning

paradigm to have a direct measure against the very technique that serves as motivation for layered

learning.

The works performed by Hsu and Gustafson [20, 21] and Gustafson and Hsu [18] serve as some of

the earliest analysis of how well layered learning performs against a monolithic learning technique

in producing complex task solving agents. Each of these works compare layered learning with

genetic programming (LLGP) to monolithic standard genetic programming (SGP) in producing
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keepers in the RoboCup sub-domain challenge of Keep-away. In short, Keep-away is a variant of

the game of soccer, where instead of trying to score more goals than your opponent, the goal is

to maintain ball possession if you are a keeper and take possession if you are a taker. Keep-away

provides an excellent multi-agent behavior test-bed because, similarly to the RoboCup domain,

agents must interpret noisy environment variables, make real-time decisions, and coordinate among

teammates, to name a few features.

Hsu and Gustafson [20, 21] decomposed Keep-away into two subtasks: 1) first learn an interme-

diate skill of passing accurately to a teammate without a defender present and then 2) learn how

to move and pass with a defender present. While making the comparison among layered learning

and SGP, their work discovered that LLGP performs best when entire population of the previous

layer (LLGP-all) is copied to seed the next layer instead of duplicating only the best individual

(LLGP-best). The work also showed that early policy saturation in the first layer should lead to

faster transition to the next layer because more time spent training in the higher-level subtask layer

produced a more effective agent team. Their results show that the task decomposition method

helps boost agent-learning’s effectiveness and even more so when the subtask more closely related

to the complex task has more training time.

Gustafson and Hsu [18] extended their work by further examining whether the best individual

(policy) should be duplicated to seed the next layer’s population or the entire population should be

copied. They analyzed the effects of altering the duration the agent trained in each layer. Results

again showed that copying the entire population and decreasing the time spent in the first layer fur-

ther enhanced the agent team’s ability to perform the complex task of maintaining ball possession

in Keep-away.

Jackson and Gibbons’s [23] work studies the effectiveness of layered learning on solving Boolean-

logic problems and also compares LLGP’s ability against a monolithic GP learner. The Boolean
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logic problems in these experiments are Even-4 Parity and Majority-On 5. Two main experiments

are conducted to analyze layered learning by decomposing the task in 2 ways: 1) splitting training-

sets-to-learn on among layers, and 2) using earlier layers to solve lower-ordered problems. In the

first set of experiments, the training sets are split. The first layer is trained on half of the training

set to solve the Boolean logic problems, and the entire training set is learned in the second layer.

To measure LLGP’s effectiveness, standard GP (SGP) is used for comparison. Results show that in

instances where LLGP produces a higher success rate, the computation effort required to identify

the solution is less than that of SGP. Results are similar for the Majority-On 5 problem.

In the second experiment, half of the population learns on half of the training set and the second

half of the population learns the second half of the training set in layer 1. In layer 2, both population

halves are combined and the entire training set is trained on the entire population. Test cases that

divide the two sub-sets never produce a solution that bettered SGP for Even Parity 4, and in cases

where LLGP matches performance with SGP, it requires more computation effort to do so.

In the final set of Boolean logic experiments, lower-order versions of the Boolean logic problems

(Even-2 Parity, Even-3 Parity, and Majority-On 3) are learned in the first layer (each in separate

runs) and then the complete problem is learned in the second layer. The results of these experiments

show how successful LLGP is at accomplishing the two different Boolean logic programs in a

different type of task decomposition where lower-ordered problems first seed the learning process.

All together, the experiments highlight a key issue with decomposition-based approaches: the way

in which problems are decomposed is a critical design choice.

Layered Learning vs. Automatically Defined Functions

Besides comparing layered learning to standard, monolithic genetic programming, the learning

paradigm has been compared to other learning techniques to judge its overall effectiveness in
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solving complex tasks. The use of the data type ADFs with genetic programming (ADFGP) is

one of those techniques that have been used to evaluate layered learning’s effectiveness. ADFs

introduce a concept of modularity to GP, which makes it a natural comparison to approaches that

rely on composition/decomposition, which can be seen as a kind of forced modularity.

In addition to comparing layered learning with standard, monolithic genetic programming in their

work to produce Keep-away agents, Hsu and Gustafson [20, 21] also compare layered learning

to ADFGP. In their earlier layered learning work, Hsu and Gustafson [20] created the LLGP-

all approach which seeds a layer with the entire population from previous layer. The turnover

averages for behaviors outputted from LLGP outperform the ADFGP outputs. On the other hand,

ADFGP produces a better average team of keepers. It should be noted that when comparing the

best fit individual in the final population at the end of all of the generations, the selective ADFGP

produces a better keep-away team compared to LLGP. Although selecting the best 10 runs for the

ADF approach produces a smaller turnover rate, the averages are comparable between this selective

version and LLGP. The biggest factor to note is that LLGP does not require any additional analysis

to determine which runs to consider in order to produce a more fit individual, as required by the

“best ADFGP” run.

In the follow-up work, Hsu and Gustafson [21] conclude that LLGP has benefits over standard

GP and hand-coded hierarchical techniques due to the ease latter layers have at solving their sub-

tasks. With preceding layers solving subtasks needed by subsequent layers, these latter layers have

easier solution spaces to navigate through, being an advantage compared to attempting to solve

the complex task at once. Also, the performance of LLGP was very comparable, if not better, to

the monolithic approaches. The conclusion is backed up by the experiment results of LLGP out-

performing the other approaches in best of run and best individual after all of the generations in

fitness.
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In Jackson and Gibbons’s [23] work that compared layered learning with monolithic standard GP,

as discussed earlier, the work shows that learning lower-ordered problems of complex tasks in

earlier layers can increase effectiveness and decrease computation effort to reach the successful

solutions. The work also compared layered learning with ADFGP. ADFGP outperformed both

standard GP and LLGP in solving Even-4 Parity. However, when training sets were divided either

among layers or populations, LLGP produced a best success rate. When LLGP first learns lower-

ordered versions of the complex task, LLGP significantly outperforms ADFs.

Layered Learning vs. Coevolution

Up to this point, layered learning has been compared to learning techniques that use monolithic

reinforcement learning to learn complex tasks. Next we analyze how layered learning performs

against approaches that learn task components in parallel, using coevolution. Cooperative coevo-

lution [45] is another kind of composition/decomposition-based learner, which makes comparisons

to such particularly interesting.

Whiteson et al.’s [60] work expands layered learning comparison work by evaluating the paradigm

against both a monolithic and a coevolution approach. In their work, the three approaches are

tasked with producing keep-away keeper agents. In the experiments, each agent team shares among

its teammates the same hand-coded decision tree that determine which neural network to activate,

where each network controls a component responsible for a subtask of being a keeper. The subtasks

are to intercept the ball, make a pass, evaluate passing options, and control agents getting open for

a pass.

To implement layered learning, a layer is designed for each subtask and the subtasks are learned

sequentially. In the coevolution implementation, all of the subtasks are learned simultaneously in

the same, single training environment. The difference between the coevolution technique and the
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standard monolithic approach is that in the monolithic approach, the agent attempts to learn the

entire task in one learning sequence without any task decomposition. The coevolution approach in

this study uses task decomposition by optimizing each network in parallel as the agent teammates

learns how to play keep-away in the same, single training environment.

The first experiment evaluates the three approaches based on how well they learn the keeper task

using incremental evolution. In this instance of incremental evolution, the takers start with move-

ment that is 10% as fast as the keepers. The taker movement speed percentage is increased by

5% when the population’s average fitness (# of completed passes) exceeds a threshold. The incre-

mental increase continues until 100% speed is reached or when fitness plateaus. The increase in

speed percentage represents an increase in difficulty in task that the keeper team must overcome to

be successful. In other words, the keeper teams first learn how to play keep-away against an easy

opponent. As the keeper team adapts to handle an opponent difficulty level, the task becomes more

difficult to master.

The average task difficulty is analyzed in conjunction with learner performance on the keep-away

task. The experiments show that coevolution outperforms the layered learning and standard mono-

lithic approaches, reaching the highest (100% speed) taker difficulty. Layered learning and mono-

lithic learning never reach the highest task difficulty.

The second experiment trains the three approaches on the hardest version of the task, takers at

100% speed. The average fitness score over the 150 generations are used to measure performance.

Again, coevolution produced the best team of takers on average, having fitness of completed passes

between 100-120, where layered learning plateaus around 30 and monolithic learning around 20.

Again, coevolution outperforms monolithic and layered learning in these keep-away experiments.

Whiteson et al. [60] attribute coevolution’s outperformance of layered learning because coevolu-

tion constrains the search space less than the layered approach, placing fewer restrictions on the
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solutions to consider and increasing the range of viable possible solutions. Whiteson et al. also

believe that coevolved subtasks can modify a policy’s behaviors in accordance with other subtasks;

this holds true as the networks in this work are modified together, in parallel, where the networks

can be adjusted to suit each other at the same time. Layered learning does not see this type of

parallel behavior adjustment because of its sequential learning, which sees a network learned in a

later layer adjust itself to another network learned earlier. In this case, the later network can adjust

itself to the network learned earlier but the earlier learned network cannot adjust itself to suit the

later network.

This work also observes that layered learning requires training environments and scenarios to be

established to maximize the potential success for each layer. This requirement places additional

responsibility on developers to not just get the task decomposition correct but also to design com-

plete layers with training environments and scenarios that will give the agent a high probability of

learning the subtasks.

Finally, Whiteson et al.’s work further highlights the difficulty monolithic learning has with di-

rectly mapping sensors to actuators for complex tasks. In all of the performed experiments, mono-

lithic learning performed the worst of the three approaches in solving the complex task of keep-

away. In each of the experiments, the approach of using decision trees and neural networks in the

manner that they were used proved to be fruitless, and the complex task was too difficult to learn

effectively.

Whiteson and Stone [61] address layered learning’s shortcomings against coevolution by introduc-

ing concurrent layered learning (CLL). In CLL, the aim is to continue modifying already learned

subtasks during subsequent layers to continuously improve task component effectiveness. To be

more specific, CLL takes the best individual from Li’s population Pi to create a new population

Pi’. Pi is changed to Pi+1 and learns Li+1. Pi’ also trains on Li+1. The two populations evolve in
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parallel.

For performance evaluation, one individual is taken from each population, inserted into the same

agent, and evaluated on its ability to perform Li+1. Both individuals receive the same evaluation

score. Layer isolation occurs here as the individuals represent components of the agent that drive

different functions, such as subtasks.

Whiteson and Stone [61] use the same keep-away complex task and decomposition as in Whiteson

et al’s [60] and retrains the third layer of pass evaluation during the “get open” layer, in layer

4. Experimental results show that CLL outperforms traditional layered learning when keepers

actively seek to intercept passed balls and when receivers are not permitted to move until the ball

is kicked. CLL also outperforms a coevolution approach that coevolves the last 2 layers.

CLL is proven to be an improvement over standard layered learning and a outperforms a coevolu-

tion technique that vastly excelled in the same task as the standard paradigm. By adding the ability

to simultaneously modify aspects of a policy that controls two separate subtasks, CLL now has the

coevolution advantage that the behavior learned in one layer can adapt to another behavior even

when a new layer is being trained on. Also, CLL outperforms the coevolution approach because

it effectively restricts the search space to where the best solutions are still present but the solution

space is small enough to contain less ineffective solutions. In short, the layers reduce the search

space to a more manageable size.

Physical Robot Development with Layered Learning

The last area that will be discussed that evaluates the effectiveness of layered learning involves

using the learning paradigm to develop the decision making capabilities of real, physical robots.

Cherubini, Giannone, and Iocchi [5] and Fidelman and Stone [10] produce work that studies the
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possibility of using layered learning on robots in two separate approaches. These studies are im-

portant barometers because they represent applications to more realistic and challenging problems.

Cherubini, Giannone, and Iocchi [5] ask if a physical robot can learn to correctly perform a com-

plex task by first using layered learning to grasp the task on a simulator. In their work, physical,

legged robots are tasked to play soccer and are responsible for scoring goals on an opposition. In

a RoboCup soccer 3D simulator, layered learning is used to learn all of the behaviors and their

parameters to play the game. Once all of the learning on the simulator is complete, the learned

behaviors and parameters are ported to the real legged robots. The work also compares three

different machine learning techniques, a genetic algorithm, Nelder-Mead, and policy gradient, to

determine which is the best for solving this complex task of robot soccer with layered learning.

Policy gradient slightly outperforms the other approaches when the physical robot’s performance

is assessed. In a comparison between LLGA and when the initial population is randomly seeded,

LLGA outperforms the random approach.

Fidelman and Stone [10] use layered learning to train physical robots to perform the complex task

of learning gait movement and ball acquisition, the basics of robotic soccer. What is different

between their work and Cherubini, Giannone, and Iocchi’s is all learning is done on the physical

robot without the need for a simulator. In addition, the work aims at having as little human inter-

action with the robot’s learning process as possible, minus task decomposition, layer design, and

robot battery changes. Fidelman and Stone’s work also uses policy gradient as the machine learn-

ing algorithm for its two layers, the outstanding performer in Cherubini, Giannone, and Iocchi’s

work. Here, the task is decomposed in to two layers, the first layer is to master gait movement for

the legged robot and the second subtask is to grasp a ball.

From the work’s experiments, layered learning shows a noticeable improvement in success rates

of robot speed compared to the initial hand-tuned robot and the reliability in successful acquisition
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more than doubles when layered learning is used. Layered learning on the physical robot has been

concluded to saving robot behavioral development time and generating better policies than the

manually tuned approach. To further highlight layered learning effectiveness on physical robots,

Fidelman and Stone use the same training approach described in this paper to train a RoboCup

2004 team which finished 3rd at the US Open 4-legged competition and reached quarters at the

international event.

Both works that use layered learning on physical robots demonstrate that the learning paradigm

can be successful at solving real, physical world complex problems. Cherubini, Giannone, and

Iocchi’s work proves that layered learning can be used to seed physical robots with information

to solve complex tasks. Fidelman and Stone’s work shows that even with all learning done on-

board the physical robot, the paradigm can be successful. Combined, both works demonstrate the

tangibility of using layered learning to solve complex tasks with physical entities.

The difficulties of training physical robots to learn new behaviors completely on-board makes the

achievements in Cherubini, Giannone, and Iocchi’s [5] and Fidelman and Stone’s [10] works note-

worthy. Barrett, Taylor, and Stone [2] discuss the challenges of on-board robotics reinforcement

learning. Their work cites that learning with physical robots is difficult because of the physical

challenges of robots, including mechanical issues (batteries swaps, part break-downs, etc), time

requirements for establishing physical training environment, scenario, and robot setup, and the

number of trials needed to grasp the behavior are challenges that must be considered in design.

These difficulties are shared among the two instances of layered learning in robotics. Fidelman

and Stone’s work demonstrates that with a task decomposition and incremental learning approach,

these challenges can be overcome to produce physical robots that can learn completely on-board.
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Discussion on Layered Learning

From the survey of layered learning in the literature, several observations were made about the

practicality of deploying the learning paradigm. These observations include the advantages of

using layered learning, the challenges practitioners can face with the paradigm, and the distinction

between layer overlapping and isolation.

Advantages of Layered Learning

A number of positive features can be taken from the collection of existing layered learning work.

The most noteworthy features include the layered paradigm’s simplistic method of solving complex

tasks, similarly to how humans naturally learn, consistent outperformance of standard, monolithic

learning, accelerated learning rate, learning reuse, and use of machine learning abstraction.

The simplistic nature of layered learning derives from the small number of fundamental steps in

the paradigm’s procedure:

Step 1: Accept a progressively complex task decomposition.

Step 2: Learn each subtask in sequential order of the decomposition.

These two steps guide layered learning to master complex tasks in an uncomplicated process. The

simplicity stems from the fact that all of the complexities of learning reside outside of the responsi-

bility of learning paradigm. For instance, the task decomposition is provided to the paradigm as an

input prepared by an external source. The task decomposition is a vital component to the overall

success of the learning process because it determines the order in subtasks the learner will learn

and the solution space size that is navigated through at any point of the learning process. This great

responsibility of providing an accurate task decomposition is provided by an external process of
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the paradigm.

A second yielded responsibility is the process of learning each subtask. Layered learning requires

layers to be established with a machine learning algorithm to be selected to learn each subtask; it

is the responsibility of the employed algorithm to learn to perform the subtask. In other words,

layered learning is responsible for providing each algorithm with the inputs it needs to master the

subtask. The process of turning those inputs into a policy that can execute the subtask is solely the

algorithm’s responsibility. Both the generation of task decompositions and the details of subtask

learning are provided by processes outside the direct responsibility of layered learning, making the

layered paradigm simple to understand and uncomplicated to design.

In addition to the simplicity of the paradigm, layered learning is also similar to how animals nat-

urally learn. Humans and other animals tend to rely on decomposition when learning new skills.

The decomposition allows for previously learned skills to be incorporated in the learning of a new

ones. This form of reuse allows learners to not have to relearn previously learned skills, saving

time and effort to learn the new skill. A second advantage to having a learning paradigm be simple

and natural is that it is easier to be understood by practitioners than other complicated approaches.

With an approach that is easier to understand, a practitioner will be able to recognize the pros and

cons of the approach and know when it is appropriate to use the approach.

Another feature of layered learning can be derived from the work that compares the paradigm to

monolithic approaches. In the review of the state of layered learning, the decomposition approach

is highlighted by consistently outperforming standard, monolithic learning techniques when solv-

ing complex tasks. The favorable performance is attributed to the learning paradigm’s use of

smaller solution space series that the paradigm sequentially navigates through as it solves sub-

tasks.
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Challenges of Layered Learning

Layered learning has a few challenges that need to be considered. First, the paradigm is always

reliant on an external source to provide the task decomposition. The dependence of an external

decomposition-provider is a challenge because the paradigm does not have any bearing on how

the decomposition is made and how effective it will be in collaboration with the learning process.

Clearly, this provided decomposition is vitally important for learning the complex task. This claim

is held up in the work that analyzed layered learning’s effectiveness for solving Boolean logic

problems [23], which showed how different decomposition of the same task can have a great

effect of the outcome of learning. If the task is not decomposed in a way where the subtasks’

solution spaces are small enough to effectively learn the subtasks and the subtasks do not accurately

represent essential components of the task, then the learning agent will not learn the task optimally.

A second challenge is the effort required to design each layer. In the paradigm, each layer requires

careful decisions to be made on machine learning technique selection, training environment and

scenario set up, layer halting conditions, etc. Each of these decisions requires considerable plan-

ning to ensure every layer can result in the subtask being solved at an acceptable level. Consider

the advantage layered learning has in its ability to allow layers to be composed with the best ma-

chine learning technique to solve the subtask. The trade-off is that although this freedom allows

for the selection of the best tool for the job, it requires additional planning and design of each layer

compared to if one machine learning technique is forced on all layers.

Additional challenges lie in how the layers are designed; more specifically, if the layers follow

a layer isolation or layer overlapping method of learning. Although these two design choices

are dictated by the employed task decomposition and aggregation methods, the decision to use

isolation or overlapping can have significant impact on how the learner learns the task and how

effective the instance of the learning process will be.
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Layer Isolation

In layer isolation, independent sub-policies are manipulated to learn subtasks and the learning in

one layer does not alter the sub-policy of another. The majority of the layered learning studies use

layer isolation because of its support for a clear, well defined hierarchical task decomposition. In

addition, layer isolation conveniently sets up a straightforward comparison between layered learn-

ing and standard monolithic learning because both methods contrast each other. In the monolithic

case, everything required to perform a task is learned at once, in one solution space. Examples

of layer isolation are in Hsu and Gustafson’s [20, 21] and Gustafson and Hsu’s [18] works with

keep-away. In their decomposition, the learning keepers learned the independent skills of first in-

tercepting the ball then to pass to a teammate. After the learning phase, a hard-coded controller is

used to determine when it is appropriate to perform either subtask. Although layered learning has

been introduced to overcome the challenges of the monolithic standard, the use of isolation in the

layered paradigm has a number of issues that can seriously hinder layered learning’s effectiveness.

First, under layer isolation, subtasks can be out of context of their intended use by other subtasks.

For example, subtask B depends on and invokes subtask A to be able to perform subtask B. In layer

A, the sub-policy A is modified to perform subtask A. Because layer A can only train sub-policy

A with information it has already acquired (through learning or domain knowledge), information

to mold sub-policy A to satisfy subtask B must be designed into the layer; if not, sub-policy A may

perform subtask A effectively but not subtask B because layer A learned subtask A out of subtask

B’s context. In other words, sub-policy A can learn to perform subtask A optimally from layer A

but subtask B may perform sub-optimally because subtask A was not learned to satisfy subtask B.

Two solutions to overcome this context problem is to: 1) insert domain knowledge into layer A to

guide sub-policy A to also support subtask B’s requirements of subtask A , and 2) use additional

layers to refine learned subtasks. Inserting domain knowledge is difficult because such knowledge
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may not be available a priori to layer design. If such knowledge is available, additional challenges

to correctly incorporate the domain knowledge into training scenarios and environment may arise.

Refining subtasks to match the context of other subtasks is redundant and can further complicate

contextual issues. Sub-policy A can be refined to support subtask B after layer A is complete

by modifying sub-policy A in a layer that comes after layers A and B, let’s call it layer A’. This

refinement layer includes new training scenarios that will guide sub-policy A to performing subtask

A and meeting objectives of subtask B. Refining subtask A in this manner can be redundant because

additional learning time is given to subtask A after layer A is complete. Two arguments can be

made whether this refinement is no longer layer isolation: 1) a layer is modifying the sub-policy

of another ( sub-policy A is modified in layer A and layer A’), and 2) layer A and layer A’ can be

considered the same layer just split and executed at different times.

Layer isolation experiences further problems when more than one subtask depends on another, such

as subtask A being used by subtasks B and C. Even if sub-policy A satisfies subtask B through do-

main knowledge injection or the use of a refinement layer, there is no guarantee that sub-policy A

will meet the context of subtask C as well. If domain knowledge is use to set the context correct,

additional consideration must be used in the design of the layers to support the interdependence

of all related subtasks, not a feat to be taken lightly; similar design considerations must be made

with refinement layers. If refinement is the tool for correcting the context, then several refinement

layers maybe required to guarantee all subtasks that are used by other subtasks match their con-

textual requirements, such as the avoidance of circular subtask dependencies. Both cases require

added design time and the potential for wasted redundant computational effort to make sure the

components of the hierarchy satisfies the overall task.

The next issue is that simply aggregating sub-polices into one to solve the overall tasks brings on

additional challenges to layer isolation. A common practice among layered learning is to use a
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static hierarchical structure to decompose and organize the complex task. The structure, such as

decision tree, acts as a container for all of the sub-policies and invokes each sub-policy when it is

appropriate to perform a subtask. The hierarchy, decomposition, and how it makes decisions on

when to invoke subtasks is given to the learner, but the learner learns each subtask through layered

learning.

It is overly optimistic to assume in simple aggregation that a task can be decomposed into inter-

dependent components and believe training sub-policies independently will often produce a rea-

sonable solution. This optimism overlooks difficult questions about how one rewards the separate

sub-policies in an effective manner that ensures the overall task can be learned optimally and how

one guarantees that the learned ability to perform a subtask will seamlessly fit into another subtasks

that depends on it. Both questions are related to the contextual issues discussed above and require

deep consideration when attempting to aggregate a collection of sub-policies to perform a complex

task.

Finally, layered learning is designed to incorporate progressive learning. Although layer isolation

supports learning in low-to-high levels of task abstraction, isolation makes learning other forms

of progressive learning more difficult. Consider the case of incremental learning, where an agent

progressively learns higher orders of a task, from the most simplest to the most difficult tasks. In

keep-away soccer, progressive learning could see a keeper team learn to maintain ball possession

with one taker opponent, then two, three, etc., until the agents can perform the intended task against

the target number of opponent takers. The reason why this type of progressive learning is difficult

in layer isolation is because of the policy sharing that is required with each layer. Because learning

in the manner of the keep-away example requires everything that has been learned to be passed to

and modified in the next layer, layer isolation’s sub-component building does not support this form

of progressive learning. The lack of incremental learning support in layer isolation is unfortunate

because it limits the range of problems layered learning can solve, especially those that rely on
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iteratively building up to a complex task from simple, low-order subtasks.

Layer Overlapping

Layer isolation preserves learned information as the learner iterates through the layers at the cost of

prohibiting subtask refinement, overreliance on the decomposition and aggregation being correct,

and suboptimal task performance due to fragile relationships between subtasks. The alternative

to layer isolation is layer overlapping: when two or more layers can modify shared policy infor-

mation. Layer overlapping is the middle-ground between the two extremes of monolithic learning

and layered learning with layer isolation. In overlapping, tasks are still decomposed but layers can

be designed to modify the same policy in succession. Overlapping also supports the partitioning

of a policy into separate segments and solving individual subtasks just like layer isolation; the

difference is that overlapping layers modify shared sub-policies. Both types of overlapping layer

design result in layers directly altering the performance of learned subtasks. The work that stud-

ies layered learning effectiveness in solving Boolean logic problems [23] provides an example of

layer overlapping. In the latter experiments in the work, decomposing the task in low-to-high order

complexity variations of the overall problem, showed how a layer can use and modify information

learned prior to the current layer to learn the task. In the experiments, this overlap saw the Boolean

logic problems solved more effectively and efficiently than the isolation approach.

Mondesire and Wiegand [39] provide another example of layer overlap and compares layered

learning to standard monolithic learning. In the work’s experiments, policies to control individual

agents of a predator team are evolved to capture a hand-coded prey. The complex task is for the

predator team to capture the prey as quickly and reliably as possible. The task was decomposed

into three subtasks: 1) capture the prey with a great probability of success, 2) minimize hunting

time, and 3) capture the prey reliably and quickly. For subtask 1, the predator team is given 10 tri-
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als to catch the prey; catching the prey 9 out of 10 trials equated a positive reward high capture rate

of 90%. Because the roles of the predators and prey could temporarily switch through the course

of a trial, subtask 2 sees the learning agents try to minimize the hunting time by either catching

the prey quickly or by sacrificing themselves to be captured by their single opponent. subtask

3 aggregates the first 2 subtasks and represents the complex task the agents are learning. Layer

overlapping occurs because all three layers for an individual agent modify the same decision tree

select movement and communication actions the agent execute based on current state conditions.

With this decomposition, the agent team is able to learn to achieve an effectiveness subtask, effi-

ciency subtask, and finally, an aggregation subtask where each layer builds on previously learned

information.

In addition to overlapping’s favorable results in the Boolean logic work, layer overlapping has a

number of positives over layer isolation. First, added design time, as seen in isolation cases, is

not required to guarantee that the sub-policies are completely independent of each other. In layer

overlapping, shared sub-policies can benefit the learning experience by improving earlier learned

subtasks by means of providing additional contexts to related subtasks. Also, additional subtask

training time can be incorporated into later layers to enhance a previously learned subtask with

a new context and newly acquired information without adding to the overall time spent learning.

Concurrent layered learning can be an example of this last point because a subtask learned early in

the learning process can be refined in parallel with another subtask. Finally, unlike layer isolation,

a task decomposition with layers progressively increasing the order of subtask difficulty is fully

supported under layer overlapping. Because a policy can be modified in its entirety as it is passed

from one layer to the next in layer overlapping, layers can be designed to refine every learned

state-action pair to suit the current layer’s subtask.

Layer overlapping introduces layered learning to a difficulty that is common in multiple objective

learning, including decomposition learning, which is the requirement for the learner to have rules
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and safeguards to preserve important learned information when learning to perform new objec-

tives. In decomposition learning, learning tasks by solving subtasks, multi-objective learning is

the process of learning the subtasks that make up a task. Two challenges arise when learning a

new subtasks modifies a policy: 1) information needed to perform older subtasks is lost in favor

of information used to perform the new task, and 2) information to perform the new subtask is not

learned sufficiently so that old information can be retained.

The trade-off between these two challenges make up the stability-plasticity dilemma, a problem

shared among all multiple objective learning approaches. The dilemma has been studied in ma-

chine learning, producing many different solutions to balance stability and plasticity. Common

solutions include task rehearsal, policy deletion strategies, and the implementation of complemen-

tary learning systems.

Although the stability-plasticity dilemma in layered learning has not been analyzed in any pub-

lished work, the common, possibly unintended, solution among layered learning approaches is to

use layer isolation. Recall, in layer isolation, layers only modify portions of a policy that are not

shared with other layers. This use of isolation guarantees that information learned in one layer

does not destroy information used in another. The use of layer isolation also places additional de-

sign pressure to guarantee that the decomposition and means of aggregation are correct. Because

isolation occurs, information used by a subtask is not further refined after the layer is complete,

meaning the tasked must be decomposed in a way that the tasks build off of each other by only

using previously learned information and not modifying it.

Stability and plasticity become a challenge with layer overlapping because information that is im-

portant to one layer can be lost in favor of another. The issue arises if a vital subtask is modified

while learning another subtask because the performance of the overall task can be negatively af-

fected due to the sub-component’s sub-optimality.
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The predator-prey work conducted by Mondesire and Wiegand [39] indicates the stability-plasticity

imbalance with layer overlapping. The study shows that as the agent learns a new subtask, the

performance of previously learned subtasks can be altered because the new layer modifies the

shared policy. In the predator-prey experiments, favoritism of the newer subtask is evident in how

the performance to capture the prey decreases considerably while the agent learns to minimize

the hunt time. It takes the third layer, the aggregation subtask, to relearn the information lost in

the second layer to regain the ability to capture the prey with a high success rate. This form of

forgetting suggests that layers can be detrimental to each other and the time and effort required

to regain lost important information is wasted opportunity to search for more optimal solutions

instead of repairing what was lost.

The stability-plasticity dilemma caused by layer overlapping is a major challenge in layered learn-

ing because of the disastrous affect it can have on the learning process. The trade-offs between

isolation and overlapping make the latter a viable option in layer design but because of the for-

getting challenge, overlapping requires additional investigation into why the imbalance between

stability and plasticity occurs and how it can be mitigated.

Other Decomposition-Based Methods

Layered learning is not unique in its use of task decomposition and incremental learning to au-

tonomously train agents to learn new tasks. In fact, the paradigm has roots from transfer learning,

robot shaping, and hierarchical decomposition learning, among others. Next, a discussion of sim-

ilar machine learning approaches to layered learning will be provided, followed by a comparison

between these and layered learning.
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Transfer Learning and Robot Shaping

At layered learning’s core lies the machine learning approaches of transfer learning and robot

shaping. Transfer learning refers to the general reuse concept of knowledge gained in previous

experiences applied to new problems [2]. This type of learning is founded on the principle that

although it is conceivable that tasks be relearned every time a change occurs in the environment,

task, or robot, it is often not practical to make the additional effort [2]. This form of reuse is

seen in layered learning with how layers build on information gained in earlier layers. Layered

learning is designed to exploit task decompositions where successively learned subtasks rely on

the information learned previously. The repetitive use of earlier obtained information reduces

unnecessary redundant learning.

Robot shaping is a development technique where the agent progressively learns successive ap-

proximations of a behavior to master the target task [9]. In relation to layered learning, these

approximations are the subtasks decomposed from the overall task the agent is learning. Layered

learning’s process of progressively learning more complex subtasks guides the learner to the so-

lution of the overall task. Another similarity between shaping and layered learning is when it is

appropriate to employ either approach. Shaping is best used when learning to perform a task is too

difficult to be learned directly [9]. Similarly, layered learning is best deployed when learning the

task via a monolithic is too arduous and inefficient. Both approaches possess the ability to reduce

the solution space to a series of smaller spaces and navigate through each one more efficiently.

Both transfer learning and robot shaping clearly influence layered learning. The emphasis on

learning reuse in transfer learning and shaping’s focus on progressive learning both are evident in

layered learning’s core principles. These properties of reuse and divide-and-conquer are repetitive

themes in decomposition-base learning.
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Hierarchical Decomposition Learning

Hierarchical decomposition learning consists of techniques that decompose a task into a meaning-

ful hierarchy. These decompositions organize a task into a sub-component structure, typically in

a bottom-up fashion where it is common to have the target task at the highest level of abstraction

and low-level, basic subtasks underlying it. Learning with hierarchical decomposition takes place

in a number of forms, ranging from learning the appropriate way to arrange the decomposition to

modifying individual behaviors and their parameters.

Three hierarchical paradigms that share significant structural properties with layered learning are

subsumption, case base reasoning (CBR), and context-based reasoning (CxBR). In the subsump-

tion architecture, an agent is decomposed into modules, also called layers, to solve tasks [4]. The

layers are arranged in a bottom-up hierarchy, where high-level, abstract behaviors are at the top

and low-level, basic behaviors are at the bottom. In this hierarchy, each layer relies on underlying

layers to perform the behavior it is responsible for.

Both CBR and CxBR base their decomposition hierarchy on state abstractions instead of imple-

mentable sub-behaviors of the overall task. In CBR, the agent’s decision making is guided by a

hierarchy of cases that represent abstractions of the state the agent will reside in at any given time.

CBR case-trees are typically composed of the most abstract case the agent can be in, followed by

cases that contain more detail the further it is from the root case.

CxBR is similar to CBR by basing decisions on a hierarchy of state abstractions, call contexts.

Contexts represent abstractions of the agent state and guide the decision making. Within contexts

reside sub-contexts, actions, and transitions to other contexts. At each decision step, every context

evaluates the agent’s state and returns a priority value that is used for the system to select which

context to activate. The context with the highest value is selected and the actions contained in the
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context are executed.

The main difference between these three paradigms and layered learning is that although subsump-

tion, CBR, and CxBR guide the decision making ability for agents, they are not explicitly designed

to evolve their hierarchies; layered learning is a process which guides a policy towards optimality

by taking a decomposition and mastering each component.

Hierarchical Reinforcement Learning

The area of hierarchical reinforcement learning (HRL) contains a collection of machine learning

approaches that share a number of similarities with layered learning. In this sub-domain of hier-

archical decomposition learning, the structure and task decomposition is applied to RL to improve

the range of effectiveness, especially when learning to perform complex task.

A majority of the HRL works discussed here seek to improve existing RL technique of Q-Learning

due to Q-Learning’s popularity in the RL domain. For a concise review, computational RL is

a technique that focuses on maximizing future rewards [9]. RL relies on the Markov Decision

Process (MDP) to base decisions on. The MDP is a 4-tuple decision making model defined by

(S, A, Pa(s, s’), Ra(s, s’)). S is the set of states that contains states s and s’, A is the set of actions

that contains action a, Pa(s, s’) is the probability of moving from state s to s’ when action a is

performed, Ra(s, s’) is the immediate reward received when transitioning to state s’ from s after

performing action a. The aim of any reinforcement learner is to maximize the reward for selecting

an action.

Q-Learning is an RL technique that focuses on constructing a function that allows decisions to

be made based on estimated reward of experiences, using a discounted cumulative reinforcement

utility [31]. Q-Learning has become the standard RL algorithm having proven its effectiveness
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in estimating future rewards. Standard Q-Learning is flat and is optimized to handle a single

task that can be learned monolithically. Problems occur when the task is complex and contains a

solution space that is too unwieldy to navigate through monolithically [6]. Many approaches turn

to hierarchical decomposition to relieve this large solution space constraint.

Lin [31] outlines three steps that are essential to any HRL approach:

1. Task decomposition: establishing subtasks and reward function for each subtask.

2. Learning elementary skills: deploy learning algorithm to maximize effectiveness of each

subtask.

3. Learning a high-level skill: requiring the coordination of elementary tasks to perform the

composite task.

Layered learning follows these three steps. Step 1 is reflected in layered learning’s requirement

to accept a task decomposition and the establishment of layers (with the selection of a machine

learning algorithm to solve each layer’s subtask). Step 2 is the iteration of each layer where the

layer’s machine learning algorithm navigates through the subtask’s solution space for the optimal

policy. Step 3 is evident in layered learning’s roll up of layers, where the dependency of previously

learned subtasks is used by later layers.

Next, a list of noteworthy HRL approaches similar to layered learning is provided. In the discus-

sion, descriptions of how each approach follows the three steps above will be made and underline

the properties each approach shares with layered learning.
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Compositional Q-Learning

Singh [52, 53] points out that Q-learning was designed to support tasks with only single goals

and not tasks with multiple goals; this claim implies that there needs to be a method that per-

mits elemental tasks to be shared among composite tasks to avoid duplicated and wasted effort in

relearning elemental tasks. To address this lack of multiple goal support, Singh proposes Com-

positional Q-Learning, a learning algorithm that makes Q-Learning support composite sequential

decision tasks (CSDTs) by applying costs to actions and rewards to states. CSDTs are tasks where

a sequence of actions must be performed by an agent to accomplish its goal. The key is that the

payoff for a subtask is assigned at the state level and not at the state-action pair. This assignment

allows new tasks to be learned simply by updating the rewards at states the agent must arrive at in

order to achieve the learning task.

Compositional Q-Learning proposes a new way of evaluated Q-values when the agent is learning

to perform a composite task with elemental tasks already learned. The new composite Q-value

considers the best elemental tasks that returns the highest estimated reward to get the agent to the

highest paying reward state. The method also uses a scheduling architecture to learn the decompo-

sition and Q-value function of the composite task.

Q-Nets

A Q-net is a multi-level neural network that uses back-propagation and temporal difference to

optimize policy [31]. Q-nets apply hierarchical reinforcement learning to a complex problem using

multilevel NNs for control policy development. In Lin’s study, the hierarchical learning system is

compared to a monolithic approach that uses a single layer NN that tries to locate the maximum

Q(state, action) utility. The multilevel hierarchical approach first learns the elementary tasks with

40



Q(state, action) then finds the optimum policy with Q(state, skill) where skill is the elementary task

to execute. Switching from action to skill reduces the solution space size in the high-level task.

In Q-nets, both behaviors and gating function (a function that determines when to switch to other

behaviors) are learned. First behaviors are learned, fixed, and the gating function is optimized [56].

The hierarchical approach outperforms the monolithic one because of the reduction in solution

space from the better state representation and the ability to learn tasks easier with smaller networks.

Q-Cut

Q-Cuts [38] proposes a modified version of Q-Learning to address the issues of RL solving MDP

problems in unreasonable amounts of time. Additionally, it addresses that task decomposition is

difficult because a correct decomposition may not be obvious and may not be available a-priori

to learning. The approach exploits a common way of identifying subtasks in the decomposition

phase - by understanding the state-space context to identify landmark states.

Q-Cut uses graph theory to automatically identify sub-goals in complex tasks. The approach uses

frequency of states that lead to the positive path of satisfying the target task. By identifying fre-

quent states, the approach assumes that these states (“bottlenecks”) are important to the agent at

performing the given tasks. The algorithm then takes the notion that by creating sub-goals that

lead the agent from bottleneck to bottleneck, the agent will master how to solve the task. The

task decomposition results in the agent learning to reach each bottleneck (perform each subtask)

separately, later to be combined to solve the overall task. This approach does require a lot of trials

to identify which states are bottlenecks but results show that it is an improvement over standard

Q-learning by speeding up the ability to learn these tasks [38]. The testing problem saw agents

learn to navigate through an environment to reach a goal in another room.
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Feudal Reinforcement Learning

Feudal reinforcement learning [6], a Q-Learning modification that decomposes a task into a feudal

hierarchy controlled but super-managers, managers, and sub-managers. Each level of manager

is responsible for a form of the original task. Super-managers are given the ultimate goal the

agent is trying to solve. Super-managers assign managers a subtask, cost, and reward system.

Managers further decompose their assigned subtask and provide the costs and rewards for solving

their sub-subtask. Each type of manager is responsible for maximizing the reward for their task

decomposition and is only provided information to achieve their goal. Returned values percolate

upwards, allowing managers to determine which sub-manager is best to carry out their subtasks.

Managers and sub-managers are solely responsible for solving their assigned tasks. Although the

overall agent may solve the task without a sub-manager solving its own, the sub-manager does not

receive any positive reward. Also, if a sub-manager solves the assigned task and it does not lead to

a favorable outcome for the super-manager or manager, the sub-manager is not punished.

Feudal reinforcement learning uses reward- and information-hiding. Reward-hiding is rewarding

sub-managers for learning tasks whether or not it satisfies the commands of upper management. In

information-hiding, managers are only given access to state information that affects their assigned

tasks.

Dayan and Hinton’s experiments to solve a maze task show the proposed feudal reinforcement

learning system does speed up learning (locating the goal) compared to standard, flat Q-Learning

over time, as it takes the technique a while to remove impossible subtask assignments.
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Hierarchical Abstract Machines (HAMS)

Parr and Russell [44] propose Hierarchical Abstract Machines (HAMS) as a machine learning

technique for learning decision making in “uncertain” environments. HAMS are hierarchies of

nondeterministic finite state machines that move an agent from state to state. The goal of the work

is to constrain the policy’s actions to those with the highest potential reward. The approach is

based on MDPs where the aim is to decompose the decision making processes into tiers of task

abstraction.

The HAM machine has four types of machine states: action, call, choice, and stop. When in a

choice state, the agent decides what other machines (to handle another subtask) should be executed

next. The call state calls the decided on machine. Action state invokes a primitive actions and the

stop state halts a machine’s execution and returns control to the machine that invoked it. The top

tier of a HAM can represent the overall task and will call another machine to perform a subtask.

Once all of the recursive subtasks are complete, control returns to the top tier machine, like a

main function in a program, to either continue invoking a sub-tier machine or halt execution. The

approach has been applied to Q-Learning, calling the modification HAM Q-Learning.

MAXQ

Many RL algorithms that focus on task decomposition cater to specific tasks, creating a need for an

approach that is a general, more abstract method of using RL with hierarchies to search for optimal

policies.

Dietterich [7, 8] proposes MAXQ, a RL method for decomposing tasks into sub-components and

solving the task by recursively solving all of its subtasks. The method requires decompositions

to be hand-coded, but once provided, the method accepts a MDP assigns subtasks to nodes (Max
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Nodes and Q-nodes) to perform the tasks. Max Nodes come in two varieties: 1) Max Nodes with-

out children are primitive actions and 2) Max Nodes with children are subtasks. Max Nodes are

context independent and focus solely on maximizing the expected cumulative reward for perform-

ing its own assigned subtask. MaxNodes (with children) can be shared among Q Nodes for reuse.

Q Nodes are actions that are performed to get its parent node’s subtask satisfied and are context

dependent on its parent node. In other words, Q Nodes return rewards awarded for its performance

and its parent’s performance. It should also be noted that in MAXQ, there is a hierarchical-policy

where each Max node has its own policy for satisfying its own task.

The main difference between the MAXQ form of hierarchical decomposition and others is that

MAXQ has the advantages of possessing subtasks that can be reused without relearning and reward

approximations are available at all levels of the decomposition; for instance, the root MAX Node

contains the estimated reward for executing a policy at that high level. In addition, each node is

responsible for maximizing its reward when performing its subtasks, both context dependent and

independent.

Comparisons to Layered Learning

The characteristics of task decomposition, learning reuse, and divide-and-conquer are the core of

any hierarchical decomposition approach, including layered learning, hierarchical RL, and many

other approaches. There are, however, a number of differences in the details separating layered

learning from the others.

The level of abstraction created by the hierarchical decomposition is similar to all of the discussed

approaches. In most of the decomposition approaches, the task is decomposed in a bottom-up

manner where the top tier is the most abstract definition of the task to be solved, followed by

low-level behaviors that support higher tiered subtasks. The abstraction differences take place in
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two key areas of how lower-level subtasks are learned. The first is that the layered paradigm uses

a sequential plan to progressively learn complex tasks, where a layer relies on the information

obtained earlier. Many of the HRL approaches learn these subtasks in a depth manner, where

layered learning tackles the issue in a breadth, serial sequence. The second abstraction difference

is how each subtask is learned. In layered learning, layers are constructed by having a machine

learning algorithm selected to learn how to perform a subtask. This freedom explicitly allows

for different algorithms to be use and is contrary to the standard RL approaches of selecting one

algorithm for all subtasks. The machine learning algorithm abstraction at the layer level allows for

the best algorithm to be selected to solve any given subtask. From the layered learning definition,

any of the mentioned HRL algorithms can be employed within a layer as long as the HRL algorithm

accepts the layer’s subtask as its task to solve and can reuse learned information from previous

layers.

A second feature is that layered learning has the flexibility of being wide or narrow in terms of

hierarchical structure; the distinction is based on the decomposition the instance of layered learning

is accepting. Consider a task decomposition of soccer where the highest tier is “play soccer”, next

tier is to “play offense” and “play defense”, where “play offense” is decomposed into two subtasks

of “score goals” and “move to the ball” and “play defense” has two subtasks of “steal the ball” and

“move to the ball”, as shown in Figure 2.

In the layered learning paradigm, the learner may learn through the layer sequence of movement

then steal, score goals, play offense, play defense, and finally, the aggregate layer of playing soccer.

With this decomposition, the task is decomposed into a bottom-up hierarchical structure with the

top tiers having width in their subtask options. On the other hand, a layered learning agent may

decompose the task into progressively complex subtasks that have a width size of one, as depicted

in Figure 2.
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Figure 2.1: A deep task decomposition with a hierarchy of abstraction.

Figure 2.2: A flat task decomposition with subtasks that are progressively more complex versions
of the overall task.

For instance, soccer can be decomposed to play the game with 6, then 7, then 8, ..., and eventually

11 players per team. In this decomposition, layers progressively aim at having the learner pick up

all of the skills of soccer against an increasingly amount of players on the field. The first form of

decomposition is widely supported through classical HRL but the former and latter are supported

by layered learning.

Another feature that makes layered learning stand out is its use of learning reuse. The common way

to reuse knowledge in hierarchical decomposition approaches is to have higher-tier subtasks access

the same lower-tier components. By doing so, the learner only has to learn the lower-tier subtask

once instead of redundantly relearning how to perform the lower level subtask for each higher-tier
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one. For instance, lets again use the above example of soccer where two higher subtasks are to

play defense and to play offense. Both subtasks requires the low level subtask of movement. In

this form of reuse and wide decomposition, the movement subtask will only need to be learned

once instead of learning two separate moving subtasks, one for offense and one for defense. The

exact type of reuse can be used in layered learning and the RL algorithms discussed earlier. The

difference is that layered learning can also reuse knowledge in the narrow decomposition (6v6,

7v7, etc...) by making sure layers use the information gained in previous subtasks. In the example

that progressively increase the number of field players, the reuse comes in from a layer using the

information learning in a lower order layer. For example, the 8 vs. 8 layer will use the information

learned to handle a field with 12 and 14 players.

Although the core properties are similar throughout, the level of abstraction and freedom layered

learning has separates it from the other decomposition approaches.

Benefits and Challenges of Decomposition Learning

Improved exploration, task decomposition, and policy reuse are the benefits of using decomposi-

tion learning, such as HRL, over standard, monolithic approaches, like flat RL [7]. The improve-

ment in exploration comes from the higher levels of the hierarchy’s abstraction tree. Any changes

at such a high level of abstraction can cause big changes in policy exploration as the entire decom-

position’s make up is affected. Second, task decomposition allows for fewer learning trials because

each subtask has a smaller solution space to navigate through. Instead of searching through the

entire solution space at once, as in a monolithic approach, hierarchical decompositions serialize the

space into smaller, more manageable partitions. Finally, because of the hierarchy’s organization of

task components, subtasks can be reused by higher abstractions, saving time and effort that would

be used on learning redundant subtasks used by higher level components.
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Several challenges exist with decomposition learning, including issues with how the task is decom-

posed, how decomposition elements are aggregated to solve the original task, and how the learner

balances stability and plasticity while learning subtasks.

A good task decomposition requires domain knowledge or a large amount of experience [31]. If

a learning system does not have means to automate the task decomposition, domain knowledge

and experience may be difficult to come across. Domain knowledge and experience are vital

because the information they provide can seed a learner with an effective learning plan based on

the decomposition that will reduce the solution space of each subtask. Incorrect decompositions

can lead to the task not being correctly performed or wasted time navigating through a solution

space dense with useless solutions. Jackson and Gibbons’ [23] Boolean logic problem solving

work demonstrates the importance of a good decomposition, showing how poor decompositions

can result in a solution to never be found or sub-optimal performance. The complexities of issues

surrounding decomposition and aggregation, in terms of cooperative coevolutionary approaches to

function optimization, are well known [62].

Just as it is important to decompose the task into manageable components, recombining the learned

subtasks is another challenge. Whether it is a static hierarchy that invokes subtasked behaviors or

if the hierarchy contains a dedicated subtasks that combines all of the information obtained in the

learning process, a mechanism must be in place that reconstitutes the decomposition to solve the

overall task. Any form of aggregation requires consideration while designing a decomposition-

based approach that insures all of the learned components can be combined into one decision

making system without any unintended loss of performance.

Of particular concern to us is the aforementioned challenge of the stability-plasticity dilemma in

the learning paradigm, forgetting in particular. The following section discusses this challenge in

detail.

48



Forgetting and Stability-Plasticity Imbalance

The act of forgetting can be a beneficial occurrence or hindrance to any learning algorithm. Gen-

erally, forgetting is the loss of information. In the context of direct policy search applications of

layered learning, forgetting is the loss of one or more state-action pairs used to perform a task or

subtask at a previously measured level. Here, we are concerned with either a subtask’s, or the

overall task’s performance, decreasing as a new subtask is being learned.

The physical limitations an agent has for storing a policy is a reason why forgetting occurs. The

storage limitation becomes an issue when the collection of state-action pairs grows larger than the

size of storage for the policy. When this occurs, the learning algorithm must consider the fact that

all acquired state-action pairs cannot be stored at once and must decide what items of the policy

should be stored and which should be discarded.

The challenge is to determine which state-action pairs positively contribute to the task’s perfor-

mance. If the learning algorithm can determine which pairs are not useful, then the unnecessary

pairs can make way for new mappings that may increase performance. Unfortunately, the identifi-

cation of unneeded pairs is difficult because decision making tends to be dependent on the sum of

its policy and pinpointing the exact cause of under-performance is a challenge.

Types of Forgetting

The common misconception is that all forgetting is bad. In fact, though forgetting might be cate-

gorized into a number of different types, in this work, forgetting is categorized simply as positive,

neutral, or negative.

Negative forgetting is the loss of state-action pairs that degrades a task’s performance. In essence,
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this type of forgetting replaces a policy that has been beneficial for performing the task with a

policy that is less effective. In layered learning, negative forgetting results in the progress made in

one layer to be lost in another. Positive forgetting is the process of replacing an underperforming

state-action pair with one that is more effective. This type of forgetting creates opportunities of

arriving at novel solutions because it replaces a less effective policy with a more effective collection

of state-action pairs. Additionally, positive forgetting is commonly referred to as learning because

the agent is improving its solution to the targeted problem. Neutral forgetting takes place when the

modification of a policy is neither positive nor negative for the performance of the task or subtask;

it has no effect on the performance of what is being learned.

Following the same notation as the definition of layered learning used in the layered learning

section, below are definitions of negative, positive, and neutral forgetting as these apply to layers.

Again, function f is the performance function used to evaluate the proficiency of a subtask’s (ti)

execution when given a policy (Pi).

Let ti and tj be subtasks for the ith and jth layer of learning, respectively, where j > i. The learner

has exhibited forgetting if after learning policy Pi for layer i and Pj for layer j, Pi 6= Pj . The

following definitions classify forgetting in types with the same notation:

• Negative forgetting: f (ti, Pi) < f (tj , Pj)

• Positive forgetting: f (ti, Pi) > f (tj , Pj)

• Neutral forgetting: f (ti, Pi) = f (tj , Pj)

It is understood that performance changes may be caused by many factors. We generalize those

factors into the performance consequence of policy change. With that said, ideally, a learning al-

gorithm is equipped with a design that attempts to maximize positive forgetting while minimizing
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its negative counterpart. This objective means that the learning algorithm tries to retain bene-

ficial state-action pairs and remove ones that are hindrances. Unfortunately, removing negative

forgetting entirely is a challenge because it is not always possible to predict the effects of policy

modification. The effects of forgetting are typically known at hindsight, after the policy has been

changed. Only after the policy has been modified can the performance state be measured to com-

pare the before and after effects of forgetting. Until this thesis, there were no serious studies to

understand when and how negative forgetting occurs in layered learning or what techniques are

best used to mitigate such problems.

Instances of Negative Forgetting

Markotvitch and Scott studied the role of forgetting in order to produce more effective learners

[34]. In their work, knowledge is the output of what is obtained through the learning process and

is akin to the state-action pairs of a policy. The term negative knowledge is used to describe the

product of negative forgetting. It is synonymous to the less effective state-action pair that replaces

a better performing pair when negative forgetting occurs. Nakayama and Yoshii also define an

instance of negative forgetting as obstacle data [43]. They define obstacle data to be knowledge

that leads to bad influences, or poor decision making, in a system.

In Markotvitch and Scott‘s discussion of forgetting, negative knowledge is described as the product

of learning that may solve the task but is less effective than other knowledge items [34]. Their work

claims that through the process of forgetting, negative knowledge can be removed from a policy

and replaced with more effective instances; in other words, negative knowledge can be corrected

with positive forgetting. To prove this claim, Markotvitch and Scott have shown in their exper-

iments with autonomous agent graph traversal that random forgetting improves the performance

of learners by removing under-performing knowledge items and that learned knowledge can be
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ineffective even when it leads to a correct completion of a task [34].

Stability-Plasticity Dilemma

The stability-plasticity dilemma is a machine learning problem that is directly related to negative

forgetting. Identified by McCloskey and Cohen, the stability-plasticity dilemma is a learner’s bal-

ance between being able to consistently perform learned tasks at a specific level while possessing

the ability to learn new things such as the ability to adapt to new tasks, states, and environments

[37]. Also known as the sensitivity-stability dilemma [14], coping with stability-plasticity dilemma

seeks to keep a stable performance of old tasks while the learner is learning from new ones.

Yaochu and Sendhoff make the case that the dilemma is a problem that all learners must face be-

cause a learner should be able to learn new information without completely forgetting information

that has been learned previously [24]. The dilemma becomes an issue when a learner is given a

new task to learn after previously learning another one. Without adequate balance, two generalized

outcomes can occur: 1) on the one hand, when stability is favored, the learner will be slow to adapt

to a new task because knowledge used to perform an older task is preferred, 2) while on the other

hand, when plasticity is favored, the learner’s policy optimizes on a new task with greater ease by

replacing what it has learned to solve an older task with state-action pairs used to solve the new

task. Both forms of imbalance affect the learning rate because pairs (either obtained while learning

new or existing tasks) are discarded from the policy, resulting in a type of forgetting. For instance,

when plasticity is favored, pairs used to solve an older task are modified to optimize the policy on

a new task, and performance of that older task decreases, negative forgetting occurs. This type of

forgetting takes place because the learner loses the ability to solve the original task at a previously

obtained level.

The stability-plasticity dilemma is a trade-off that demands to have a balance between being able
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to perform previous learned tasks while having the ability to learn new ones. Coping with the

dilemma aims at maintaining or improving an old task’s performance while maximizing the per-

formance of a new task.

Catastrophic Forgetting

Catastrophic forgetting (also known as catastrophic interference and the serial learning problem)

is the stability-plasticity dilemma applied to Neural Networks [24]. This type of forgetting occurs

when a neural network has been trained on one set of inputs to locate the ideal activation weights

and is then given a new set of inputs to train on. This change in inputs can cause the loss of

information gained in the weight optimization phase for the first set of inputs when the new input

is trained on. If the inputs represent a task the neural network is learning, a change in task can

cause the ability to perform the old task to be completely forgotten while a new task (the new

inputs) is trained on, hence the term catastrophic forgetting [50, 14].

The occurrence of catastrophic forgetting is due to how the learning process manipulates the neural

network to optimize its activation weights. Back-propagation is a standard mechanism for adjust-

ing connection weights in neural networks by applying propagating gradient-descent based output

corrections backwards in the neural network, starting at its output nodes. When a neural network

receives a new input pattern and a correlating target output pattern to learn, back-propagation has

the ability to wipe out all weights optimized on a previously learned set of inputs. The catastrophic

aspect comes from the weight adjustment having the ability to completely remove all information

used by the original input pattern [14].

Catastrophic forgetting is a reason why many learning systems that use neural networks combine

training inputs as a single entity [47]. By treating all of the training inputs as one complete training

set to learn, the shift in input data does not occur and the negative effects of catastrophic forgetting
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is reduced if not removed completely. The case of catastrophic forgetting when the inputs cannot be

combined into a single has spawned many different works proposing ways to mitigate its negative

effects. Works with major contributions to this type of forgetting will be discussed in the coming

sections.

Methods of Balancing Stability and Plasticity

The impact of the stability-plasticity dilemma on learning systems is great. If the dilemma is

ignored during design, a learning system can be susceptible to two extremes: 1) possessing insta-

bility of old tasks while learning new ones, or 2) only being able to effectively learn to perform

one task and never adapt to new ones. Because the stability-plasticity dilemma is a major issue

that many learning approaches must consider, many approaches have been proposed to produce a

learner that is capable of balancing stability and plasticity. This section analyzes the commonly

accepted approaches of incremental learning, rehearsal methods, complementary learning systems,

and deletion strategies. Each approach uniquely preserves relevant learned data while learning new

information.

Incremental Learning

Incremental learning is the process of gradually learning new information. The process allows the

learner to adapt to new data (tasks, environment, etc.) at a pace that seeks to preserve what has

been learned previously. The process makes small changes to the policy as it adapts to each new

training set. Learning with decomposed tasks and gradually training the agent on a more difficult

or challenging training set are examples of incremental learning.

The process has been used to cope with the stability-plasticity dilemma by reducing the drastic
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shift in what is being learned. The assumption is that if an agent is given small changes to cope

with in phases, then it will be able to adapt its policy accordingly as it learns new things. In the

case of tasks, by gradually learning new subtasks or more difficult aspects of the task, the agent

will not make wholesale changes to its policy as the policy adapts to new training sets.

Incremental evolution is a type of incremental learning as it combines the gradual learning process

with neuro-evolution [16]. In approaches with incremental evolution, agents are trained to learn

a complex task gradually through the use of evolving neural networks. Gomez and Miikkulainen

outline their incremental evolution method by decomposing a task into smaller subtasks and train-

ing the agent on each subtask until a performance threshold has been reached. With each passing

phase of learning, the thresholds gradually become more difficult to achieve.

Incremental reuse is another form if incremental learning. In this approach, agents learn to solve

complex tasks by first learning to solve subtask decompositions. The solutions of the subtasks

are then reused by applying the solutions to tackle a more difficult task. For example, a learning

system with incremental reuse can produce functions to solve a series of small tasks. The outputted

functions can then be selected to be used to try to solve a more difficult task with a learning

technique. Automatically-defined functions (ADFs) are an example of incremental reuse in play

[22]. The work in [22] compares incremental reuse of ADFs with monolithic genetic programming

approaches for generating keep-away soccer playing agents. The works shows that agents can learn

in phases of first learning to master subtasks and reapplying the learned solutions to the a more a

difficult task.

Rehearsal

Rehearsing is a technique that retrains an agent on previously learned tasks during or after a new

task is being learned. The technique is used to preserve and strengthen old information when new
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information is learned. Because it is impractical for all learning agents to retain all information to

handle new and old data, rehearsing is a technique used to keep old information active in memory

and balance the ability to learn and retain new and old information [50]. By revisiting old informa-

tion, the agent is given a chance to repair any lost or damaged information caused by the process

of learning new information.

Interleaved learning [50], simple rehearsal [47], and pseudorehearsal [46] are rehearsing tech-

niques used incorporate old training datasets with new ones to balance stability and plasticity.

Interleaved learning and simple rehearsal are basic rehearsal techniques used to refresh an agent’s

policy through simple repetition of old tasks. Interleaved learning is a form of rehearsing where

old datasets are relearned while new datasets are trained on. Interleaved learning weaves new and

old data together to produce learners capable of supporting new and old information. Interleaved

learning differs from focused learning because in focused learning, the agent is given only new

information to learn. Although, in focused learning, the agent can be given the same new infor-

mation to learn repeatedly in a rehearsal fashion, old information is not reintroduced to the learner

[14].

Simple rehearsal is the repetition of pushing old inputs through neural networks to refresh the

network with what was previously learned. Although both rehearsal techniques of interleaved

learning and simple rehearsal are basic, they both can be effective of keeping old information

active within an agent.

The idea of pseudorehearsal is spawned from the problem that simple rehearsal methods are not

always practical because old patterns are not guaranteed to be available to refresh a neural network.

Old inputs may not always be available because they become outdated, forgotten, or deleted due

to storage limitations [47]. Pseudorehearsal creates randomly generated input approximations to

fill in the role of old inputs to refresh the network with. When a neural network goes through a
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pseudorehearsal, it trains the network by interleaving new input data with these random approx-

imations when old inputs are not available. The process of pseudorehearsal is described more in

detail in the discussion of complementary learning systems.

Complementary Learning Systems

In order to produce more effective learning systems, several works have turned to modeling com-

puter learning systems after how the human brain is perceived to learn. One such approach is the

idea of complementary learning systems, which is modeled after the human short and long-term

memory. More specifically, complementary learning systems are modeled after the hippocam-

pus and neocortical portions of the human nervous system. In the human nervous system, the

hippocampus handles short-term memory and is in charge of storing new information. The neo-

cortical system is the long-term memory device. It is assumed that after information has resided

in the hippocampus for duration of time, it is condensed and transferred to the neocortex for long-

term storage [36]. Consolidation, the transfer of information from short- to long-term memory, has

an unknown trigger and information may be pushed to the neocortex for various reasons.

The separation of memory into hippocampus and neocortex regions in agent learning systems ap-

plies directly to the stability-plasticity dilemma. The two-tiered memory structure allows new

information to be placed in a separate region from information to solve old inputs; the separate

regions create a buffer where new information can be stored without directly affecting old infor-

mation. Through computer simulation, McClelland, McNaughton, and O’Reilly have shown how

a complementary learning system with consolidation causes the learner to gradually adapt to new

inputs [36]. Their work provides a complete basis of the complementary learning system.

Because it is impractical to store all information learned in the hippocampus and the neocortex,

consolidation schemes must be in place to decide when and what information will be transferred
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between the regions. The impracticality comes from memory storage limitations and increased

search times for information retrieval existent in real systems [14].

Complementary learning systems have been applied to solving catastrophic forgetting in neural

networks. The idea of a complementary learning system is a natural choice for neural networks

as both are inspired by the neurological functions of the human brain. Second, introducing a two-

tiered memory system to a neural network allows information to be placed in separate short/long-

term regions where old information is safeguarded from the deleterious nature of back-propagation.

Works that use a two-phased learning system to mitigate catastrophic forgetting include pseudore-

hearsal [46], pseudo-recurrent Networks [14], using a hippocampus-neocortical configuration with

a Hopfield network and Hebbian Learning [19], and Seipone and Bullinaria’s work of evolving a

two-phased neural network learning system [50].

Robins introduced pseudorehearsal as a technique similar to interleaved learning; instead of mix-

ing new inputs and stored old inputs, pseudorehearsal creates approximates of old inputs that are

learned with the new inputs [46]. These new approximates are termed pseudoitems and are ran-

domly generated binary vectors that are inputs to the neural network to be optimized. Pseudore-

hearsal was introduced because old information is not always available to be interleaved with new

inputs during rehearsals; information to solve old inputs may have been removed from storage

implicitly or explicitly. The process of pseudorehearsal randomly generates pseudoitems when old

items are not available. The pseudoitems are then fed into the neural network, using whatever

output is generated as the target output for weight refinement. The next step combines the gener-

ated pseudoitems and the new inputs to create a new training set for the neural network to adjust

weights for. With the use of pseudoitems, pseudorehearsal produces robust networks capable of

maintaining information used to solve old inputs while coping with new ones.

French also proposes a learning system that uses approximations to keep important, old informa-
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tion valid in a neural network by introducing pseudo-recurrent networks [14]. In pseudo-recurrent

networks, the neural network contains two storage areas: one for early processing and the other for

final storage. The early processing area is based on the hippocampus and stores information gath-

ered from learning new input patterns. The final storage area stores information that has resided in

the early processing area of the network and is based on long-term memory.

Pseudopatterns use approximations, termed pseudopatterns, to represent old patterns that were pre-

viously trained on in the network. The purpose and construction of pseudopatterns are very similar

to those of Robins’s pseudoitems [46]. Just like pseudoitems, pseudopatterns are randomly gen-

erated binary vectors that are fed into the feed-forward neural network and uses back-propagation

to optimize its weights. The target output is also generated by capturing the output of the network

when a pseudopattern is inputted. Pseudo-recurrent networks create a new training set by interleav-

ing a new input pattern with pseudopatterns then feeding the patterns into the network sequentially.

When the network learns the new pattern and the pseudopatterns, it replaces the weights in the final

storage area with the ones in the corresponding the early processing area [14].

Although the work in [46], [14], and [13] propose approximation methods and examine the effec-

tiveness of the use of pseudorehearsal and pseudopatterns, a negative of the approach is the amount

of error it introduces to the network. In a system tasked with alpha-numeric symbol recognition,

a neural network with pseudorehearsal has shown to underperform compared to a system without

the approximation technique. The use of interleaving new patterns with pseudoitems introduces

too much error in the base population. The error is generated from the random vectors being intro-

duced into the network while learning new patterns. The use of the random approximations train

the network on inputs that do not match previously learned patterns and causes too many shifts

in weight adjustment. Robins and McCallum conclude that pseudorehearsal performs best when

learning is done as a single entity instead of serially inputted into the system.
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To address the potential of adding error to the learning process, Hattori’s work extends the use

of pseudopatterns by interleaving inputs that are new patterns, pseudopatterns, and old patterns

[19]. Also using a complementary system with hippocampus and neocortical storage regions, this

work’s dual-network model extends the conventional use of pseudopatterns by adding a chaotic

neural network to the neocortical network. The chaotic neural network is added to retrieve original

patterns and not just pseudopatterns from the neocortex. By retrieving original patterns for pattern

interleaving, more training inputs closer to previous patterns are available than if just pseudopat-

terns were used. The rational is that with more information available from the neocortex, fewer old

patterns will be forgotten as new patterns are learned. Experiments show that with the use chaotic

neural networks in the hippocampus, the proposed model outperformed conventional dual-network

implementations because original patterns were accessible in the neocortical network.

Complementary learning systems and the use of approximating training inputs are viable solutions

to mitigating negative forgetting. Complementary learning systems provide a buffer for the infor-

mation learning stream. The buffer permits the importance of information to be determined while

it resides in the short-term storage before the information instance is discarded or preserved in

long-term memory. In addition, the buffer isolates new and old learned information, providing one

storage region that guards stability and one designated for plasticity. The process of interleaving

approximations with new inputs, such as pseudo-recurrent systems and pseudorehearsal, provides

a way to keep old information active in the learning agent.

Deletion Strategies

The use of deletion strategies is another mechanism used in learning systems to cope with the

stability-plasticity dilemma. Deletion strategies seek to remove items of knowledge that do not

provide positive benefits to the system [54]. These strategies explicitly select which learned infor-
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mation, such as state-action pairs, is removed from the agent’s memory and policy.

The act of deleting state-action pairs from a policy can be taken reactively or proactively. Reactive

deletion waits until it is necessary for a pair to be removed, like when an agent’s memory storage

is full before selecting candidates for deletion. Here, candidate selection can be based on a utility

function or chosen at random, but the main purpose is to free storage space for incoming infor-

mation that otherwise cannot be accepted due to storage constraints. Proactive deletion constantly

compares learned policies before selecting which candidate will be deleted. In this case, the library

does not have to be full before a pair is chosen for removal.

Nakayama and Yoshii classify deletion schemes as passive and active forgetting [43]. Passive

forgetting removes learned information based on elapsed time. This type of forgetting works at a

constant rate, removing information as it expires. Active forgetting constantly searches for negative

knowledge to target for forgetting at an increased rate than passive forgetting and is similar to

proactive deletion.

Several reasons should be noted as why a system would want to incorporate a deletion strategy in

its learning process. First, the learning algorithm must be able to cope with the possibility of its

storage to become full when new information needs to be captured [26]. If the learner does not

have a method of selecting which old information to replace with new information, then the agent

cannot learn the new thing. In short, there will be no place for new information to be retained by

the learning agent.

Second, even if the storage is considered large enough for newly learned information to constantly

be added, the utility problem arises for the learner. The utility problem occurs when the effort to

search for information in storage outweighs the reward of using the retrieved data [54]. It is well

known that the presence of negative knowledge can degrade a system’s performance but another

hindrance on performance can actually be the time needed to make a decision. If the time needed
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to make a decision surpasses the time the decision needs to be made in, the agent can find itself in

a different state when the decision is made, requiring a completely different action to be performed

than what was selected. The utility problem also shows that the more information an agent has is

not always best. Again, if an agent’s policy is loaded with state-action pairs, the agent’s decision

making must spend time traversing the storage for pairs that match the state the agent resides in;

typically, the number of items in storage is proportionate to the search time needed to make the

decision.

Case-based reasoning systems (CBR) have the overhead that is being balanced in the utility prob-

lem. CBR is a learning method where the learner applies data from experienced situations to

current ones. Cases are generalized abstractions of experienced states and are applied to similar

situations the agent will experience in the future [26]. In case-based systems, the agent must locate

stored cases that match the state the agent resides in. The returned cases link the state to the actions

the agent will then perform. Deletion strategies make the traversal of the case-base manageable as

the storage size grows [54]. Without a deletion strategy for the case-base, retrieval times for cases

can become unwieldy.

A third reason for the use of deletion strategies is that the environment and task the agent operates

in and on can change. If the agent’s domain is in a dynamic environment or is expected to perform

multiple tasks, the policy the agent has may become outdated at any point. With a deletion strategy,

the policy can remove outdated and under-performing state-action pairs and replace them with new,

more effective ones [49].

Environments with drift, such as recommender systems, constantly require the agent to adapt to

changing inputs. Drift is the occurrence of something changing gradually overtime. Recommender

systems experience a form of drift. In recommender systems, the agent is tasked with making a

recommendation based on an inputted profile of a target. For example, a movie rental company
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may want to make movie recommendations to its users. In this example, the aim of the learner is

to make a recommendation that will be taken by the target user and is generated by a profile the

agent creates of the user. Because at any time the users can change preference in movie genres,

time periods, casted actors, etc, the learning agent has to cope with the changing demands.

Dynamic environments and changing tasks are two aspects that can affect the agent’s policy be-

cause the agent must decide what new inputs to accept, which old state-action pairs to remove, and

which old pairs to preserve. Solutions to these design questions directly affect how the learning

agent copes with the stability-plasticity dilemma.

Although deletion strategies vary in approach drastically, common strategies can be categorized

as random, temporal-spatial, utility-based, and hybrids. Each strategy has a criteria for selecting

state-action pairs to be removed from the policy so new pairs can be added.

Random Deletion

The random deletion strategy is the most basic method of selecting deletion candidates. The strat-

egy randomly selects state-action pairs and removes them from the policy. Markovitchs’ work

shows that random removal of stored decision making information can improve the effectiveness

of the agent and can outperform learners without a forgetting/deletion mechanism in place [34].

The rationale is that random deletion promotes exploration of new solutions and negative knowl-

edge may be removed through the process. McClelland, McNaughton and O’reilly have studied the

effects of removing information from memory, called amnesia, and reaffirm the claim that random

deletion can help remove non-positive knowledge from a learner [36].

The advantage of using a random deletion strategy is that it is simple to design a learning algorithm

around and does not discriminate between new and old state-action pairs being chosen for deletion.
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The disadvantage is that because there is no discrimination in a purely random strategy, important,

effective pairs can be deleted, requiring the agent to relearn the effective pair.

Temporal-Spatial Deletion

Temporal and spatial deletion strategies are more complex than random deletion. Temporal dele-

tion uses time as a utility function when selecting a state-action pair for deletion. The most basic

temporal deletion strategy is the use of a queue in order to select which pair to remove. For exam-

ple, first-in-first-out (FIFO), being the simplest of the queues, removes the oldest pair in the policy

when the deletion strategy is invoked.

Time-based decay is another form of temporal deletion that makes the last time a candidate pair

has been accessed the criterion for deletion. In the queue-based system, at least one candidate

is removed per invocation of the deletion mechanism if the queue is full. In time-based decay,

every pair in the policy is given an expiration date as soon as it is added to the policy. Each pair’s

prominence in the policy declines as time elapse. When the pair is accessed, a new expiration date

is given to extend the pair’s lifeline.

STAGGER is an incremental learning system that uses time-based decay. It is a learner used to

recognize and adapt to state changes in recommender problems [28]. STAGGER applies gradual

forgetting, a form of time-based decay, to allow the recommender system to quickly adapt to the

changing environment by replacing old information used for making recommendations with new

profile information. Gradual forgetting degrades the importance of the learned information by

adjusting weights to distinguish prominence over time.

Kernel-based Online Anomaly Detection (KOAD) is another learning system that uses temporal

deletion [1]. KOADS is a system used to solve network anomalies of traffic and IP network be-
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havior. KOAD’s system employs forgetting to remove out-dated information from its storage for

anomaly recognition points. The algorithm uses gradual forgetting to slowly decrease the impor-

tance of old information as new information constantly flows in.

An advantage to using a temporal deletion strategy, such as time-base decay, is that it removes

outdated and underutilized information quickly. The disadvantage is that it removes information

without providing cover for what is being lost [49]. Cover is the ability to have a backup for a state

whose pair is being removed. If a temporal deletion strategy removes the only pair that matches a

state, then the learner will not have a mapping to the actions to perform when that state is reached

again.

Spatial deletion is based on locality and can be seen as a direct solution to the cover disadvantage of

temporal deletion. Spatial deletion searches for a state-action pair to delete based on redundancy

in coverage. If multiple pairs share the same or very similar states and provide cover for each

other, then the pairs become candidates for deletion. Salganicoff’s DARLING algorithm is based

on spatial deletion and sees new information only decay the prominence of their neighbors (pairs

whom provide cover each other) [49]. A spatial deletion strategy and locality allows the learning

algorithm to preserve pairs that are unique in the states that they support and remove redundant

pairs.

Utility-Based Deletion

Utility-based deletion strategies use a performance metric to analyze which state-action pairs

should be removed from the policy. Typically, those pairs with the lowest utility value are cho-

sen for deletion. Q-learning is an example of utility-based deletion. In Q-learning, the Q-value

(Q(s,a), of a pair is the utility which reflects the reward expected to gain if the agent performs

action a when in state s. Those pairs with the lowest Q-values are then compared to new pairs and
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their Q-values. By basing the deletion strategy on Q-values, the learner makes educated estimates

on which pairs are more beneficial to retain and which can be replaced.

Evolution algorithms are another example of utility-based deletions. The fitness function provides

values that make up individual utility values. As the population evolves, an individual’s fitness

determines the probability of the individual remaining in the population.

Lieber’s work with CBR is another example of a utility-based deletion strategy being used to

preserve stability in a learner while exploring new solutions [30]. The work compares two case-

bases on a similarity criterion; the aim is to minimize the loss of performance while maximizing

the number of cases that can be removed from the case-base. By comparing the two cases-bases on

a utility, the case-base with the weakest utility is discarded, while storing the case-base expected to

yield the higher performance. The comparison of the two case-bases becomes useful in comparing

new and old cases to determine which ones should be accepted and which should be deleted.

In their work that studies how different deletion strategies fare in teaching autonomous robot nav-

igation in a CBR, Kira and Arkin have identified types of interferences used in deletion to be

random, performance, recency, frequency, and activation levels [26]. The performance metric is

the use of a utility function that analyzes how the overall policy or an individual pair performs.

Earlier, random deletion was defined as simply the removal of random state-action pairs from a

policy. Recency and frequency are two temporal-based approaches. Recency removes pairs based

on their last accessed time; the pair that has resided in the policy the longest without being ac-

cessed is deleted. Frequency bases its deletion on how often a pair is accessed. Those pairs with

the lowest access frequency are removed. With this interference, a rule has to be established to

prevent new pairs from dominating old pairs. Activation levels reward pairs each time they are

accessed. Because there can be different ways to access a pair, different access types can lead to

different amounts of rewards being given.
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An example of activation levels is in Maes and Brooks’ work, where they propose an algorithm

to teach behavior-based robots when to perform behaviors [33]. The algorithm uses a binary, im-

mediate positive/negative feedback system for rewards to guide the robot to learn when to activate

behaviors. The algorithm allows each behavior to learn in a distributed manner which conditions

are met when to activate itself. The system is based on a feedback system that determines relevance

and reliability of conditions for activation. Those conditions that are both relevant to the task and

consistent in feedback have the greatest chance of activation.

Their work concludes that learning which conditions to activate in a distributed fashion accom-

plishes the task autonomously. There is no centralized learning component in this distributed

behavior-based robot learning algorithm. The activation level deletion strategy is in use by behav-

iors constantly reevaluating the conditions for activation. Because relevance and reliability are a

factor, the behaviors have the ability to adjust to new situations. The algorithm accepts that old

pairs can be wiped away by new pairs but relies on quick adjustments to recover.

Smyth and Keane developed a system that uses a utility function to judge the importance of cases

in a CBR system [54]. These authors believe that deletion strategies should be designed to con-

sider both maximizing competence of the task and minimizing the case-base size. They categorize

cases to be pivotal, auxiliary, supportive, and spanning. Auxiliary cases do not contribute to the

competence of the agent against the task and are the least important. Pivotal cases are the most

important to task competence, followed by spanning, then support. With these four classifications,

Smyth and Keane propose the Footwork Deletion (FD) and Footwork Utility Deletion (FUD) dele-

tion strategies. In FD, the cases that contribute the least to the learning agent’s performance are

removed, first searching for auxiliary through pivotal cases. FUD extends FD by using an addi-

tional utility function to break ties if multiple candidates within the lowest competency category are

located. FD and FUD performed better than random and a simple utility-based deletion strategy.
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Hybrid deletion strategies combine multiple techniques when choosing what to delete. They are

most commonly used to select which state-action pair to remove when multiple deletion candidates

are chosen by a deletion criterion. Symth and Keane’s FD and FUD strategies can be hybrids if

the additional tie-breaking strategy is another type of technique from the first [54]. For example, if

two auxiliary cases were located and one has to be deleted, a spatial or temporal deletion strategy

can be applied to select the case to be removed.

ActSimple is one such hybrid example: it combines temporal deletion with a utility function for

deletion selection [12]. ActSimple combines the learning systems of ACT-R and SIMPLE for a

learner that uses both time-based decay and inference forgetting, respectively. ACT-R is a trace-

based cognitive rule system that deteriorates state-action pairs over time and reactivates their ac-

tivation levels when accessed. SIMPLE is a learning system that uses inference forgetting in se-

lecting deletion candidates. The combination of the two approaches has produced a learning agent

that is capable of outperforming standard SIMPLE, ACT-R, Queue-based forgetting, random for-

getting, and learning with no forgetting at all.

Surprisingly, given how wide-spread layered learning has become, until recently, there was no

effort investigating stability-plasticity imbalance in the paradigm.

Preliminary Work

Preliminary work that explored the possibility of using layered learning with layer overlapping

uncovered a potential stability-plasticity imbalance that negatively affected the agents’ learning

ability [39]. The goal of the work was to provide a performance comparison between agents

developed by layered learning with overlapping against a standard monolithic technique. The

objective was to use a predator-prey scenario to gage performance on agent policies developed
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with layered learning to locate a solution where the predator team could capture its prey as quickly

as possible. The produced policies were compared to others developed with monolithic techniques

that trained the predator team based on a single subtask’s performance. The effort provided the

first rough evidence of an imbalance and motivated the deeper study provided by this thesis.

For the study, Pac-Clone, a PacMan-type simulator, was used to provide the training environment

and scenario the agents learned in. Layered learning was tasked with training autonomous, non-

playable characters (NPCs) to capture a hand-coded prey as it moves through a 2D environment.

Approach

The approach used a genetic algorithm to search for the optimum set of three policies that would

guide a team of three predators to capture their prey. The genetic algorithm’s population consists

of individuals that represent a set of three scripts that make up a predator-team’s policy for solving

the task. The layered learning approach decomposed the capture PacMan task into three layers

where each layer used the genetic algorithm to manipulate a population of team policies with the

genetic operators of cross-over and mutation; individuals were evaluated based on the performance

function of the current layer. Performance evaluation was determined by running each individual

in the population in the simulator where each team of predators was given 10 attempts to capture its

prey for each generation. The first layer trained the ghosts to capture PacMan effectively and based

its performance function on the total number of captures. The second layer sought to perform the

task efficiently by rewarding the agent on minimizing the time required in each training game. The

final layer attempted to perform the task effectively and efficiently by combining the performance

functions of the first two layers into one aggregate function. Layer overlapping was present because

each layer could modify any pair in the policy, potentially changing a pair shared between multiple

layers.
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Results

Experiments compared the policies generated by layered learning and monolithic genetic algo-

rithms by analyzing the techniques’ performance with each subtask. Each of the monolithic ap-

proaches used one of the performance functions used in the proposed layered learning approach

and their genetic algorithms used the same parameters as their layered learning counter-part.

Although layered learning’s performance was comparable to the monolithic techniques, it does

not clearly outperform any of the monolithic policies as might be expected. One cause of layered

learning’s inability to outperform the monolithic techniques was the adjustment each individual

had to make while transition from layer to layer. As evident in the performance decreases as a

new layer is trained on, the agent’s policy required computation-time to adjust to the new subtask

it was learning. These experiments show that new layers drive out state-action pairs used to solve

old subtasks to accommodate pairs that solve the new subtask: an imbalance that favors plasticity.

Performance of the older subtasks noticeably decreased as new layers were transitioned to and

continued to decrease over-time while new subtasks were optimized on, as evident in Figure 2.

The use of the aggregate layer repaired forgotten information from the first layer but used critical

learning time it could have spent focusing on optimizing the policies on its subtask to do so. The

significance of this work was that it led to the suspicion that layered learning with overlapping

struggles with balancing stability and plasticity and displayed that learning performance can be

hindered because of the possible imbalance. Because this preliminary work does not explicitly

investigate the role of stability and plasticity and nor does it propose any solutions to ill effects

of an imbalance, further study of the dilemma in layered learning is necessary. This dissertation

investigates the suspicion and fills the void of uncertainty by demonstrating that an imbalance can

easily occur in the paradigm, identify causes and effects, and proposes solutions.
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Figure 2.3: Average Aggregate Fitness for Monolithic and Layered Learning Approaches [39]
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CHAPTER 3: DEMONSTRATION OF IMBALANCE IN LAYERED

LEARNING

In order to show first-hand that a performance affecting problem exists in layered learning, we

demonstrate that a stability-plasticity imbalance can exist in the technique. Using two distinct

problem domains, an abstract set of Boolean-logic problems and a collaborative multi-agent,

direct-policy search problem, we show how layered learning can easily favor plasticity, analyze

performance loss and hindrance, and finally identify major causes for the imbalance and their

negative effects.

Metrics for the Identification and Classification of Forgetting

Before providing the demonstration, we discuss an existing set of metrics and introduce two new

ones that together identify, classify, and quantify the type of forgetting that takes place during

direct-policy search in reinforcement learning. Determining which metrics are most effective is

integral to our study of the effects of an imbalance. Effective metrics provide analytical tools for

understanding performance changes that are correlated with policy modification.

Performance-Based Metrics

Because the classification of negative, neutral, and positive forgetting are performance-based, let

us first discuss commonly used metrics that quantify performance changes. These metrics include

performance difference, performance ratio, knowledge payoff, transfer ratio, transfer regret, and

calibrated transfer ratio.
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The simplest policy comparison measures are performance difference and ratio, which directly

compare a policy’s (P) performance with the policy after some knowledge has been forgotten (P’).

Performance difference (PD), f(x), is the difference between the post-forgetting policy’s perfor-

mance g(P’) and the pre-forgetting policy performance g(P). If f(x) is positive, positive forgetting

has taken place; if f(x) is negative, negative forgetting has occurred; if f(x) is zero, neutral forget-

ting has happened because there was no change in performance, although the policy has changed.

PD is defined in Equation 3.1.

f(x) = g(P ′)− g(P ) (3.1)

Performance ratio (PR) is the quotient of the performance of P and P’s. If f(x) is greater than one,

then positive forgetting has happened; if f(x) is less than one, negative forgetting has occurred; if

f(x) is 1, then both performance values are the same and neutral forgetting has taken place. PR is

defined in Equation 3.2.

f(x) =
g(P ′)

g(P )
(3.2)

Markovitchs and Scott’s [34] economics of learning also measures the value of knowledge. In their

approach, the payoff of learning is measured, where payoff can be positive, negative, or neutral and

indicates the effect missing knowledge has on a policy. Payoff, f (x) defined in Equation 3.4, is

calculated by taking the difference between two benefits, which are two separate policies, solving

the same task.

Bi = Qi − Pi (3.3)

A benefit (Bi), defined in Equation 3.3, for one policy is the difference between the quality of the

solution (Qi) and the cost of solving the problem (Pi).

f(x) = Bj −Bi; 0 < i < j (3.4)
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Here, we let Bi represent the benefit of control policy P and Bj represents the benefit of the mod-

ified policy P’ where some knowledge x is removed from P. If f (x) is positive, disadvantageous

knowledge has been forgotten from the policy P; if f (x) is negative, beneficial knowledge has been

acquired; if f (x) is zero, neutral forgetting has happened and neutral knowledge was forgotten

because there was no change in performance although the policy was modified.

In Gorski and Laird’s [17] work on transfer learning metrics, transfer ratio, transfer regret, cal-

ibrated transfer ratio (CTR), and average relative reduction (ARR) are examined for validity in

comparing learning performances. These metrics determine if an experimental policy, one that

has learned a new behavior from an old behavior, outperforms a controlled policy. These metrics

are based on the overall task performance, using the difference of the area below the performance

curve as the foundation of each metric.

The simplest of the four performance-change metrics in Gorski and Laird’s work and the most

similar to performance ratio is transfer ratio. Transfer ratio, defined in Equation 3.5 and used by

Morrison et al. [42], is the ratio of the area under the experimental policy’s performance from time

0 to time t over the area of the control’s learning curve in the same time range.

∫ t
0 fE(t)dt∫ t
0 fC(t)dt

(3.5)

Unlike simple performance ratio, transfer ratio considers the entire learning curve of the two com-

pared policies. Below is the transfer ratio equation, where fE is the experimental policy’s learning

curve and fC is the control policy’s learning curve.

Each of the metrics Gorski and Laird tested has their strengths and weakness. For instance, CTR

and ARR have meaningful interpretations, while transfer regret and CTR provided the most con-

sistent results. Each metric is “unitless” (not measured in domain specific units) and statistically
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testable. This work described transfer ratio because of its simplicity in calculating performance

comparison and because it directly inspired metrics proposed in this dissertation, which are de-

scribed in upcoming sections. With that said, details on each of the transfer learning metrics are

provided in Gorski and Laird’s [17] work.

Although the metrics above do not form a comprehensive list of all performance measures in trans-

fer learning, they, in their entirety or in a modified form, represent common methods of comparing

policy performance change. An overlooked issue with such performance measurements is that they

do not capture an entire policy change that occurs in decomposition-based approaches; instead they

capture the difference of only a single performance criterion: the overall task the policy tries to

solve.

In decomposition-based approaches, a task is decomposed into subtasks that the policy must learn

to perform to solve the overall task. Although these single criterion measurements are adequate

for monolithic learning, the learning of a task without decomposition, they lack the ability to ana-

lyze the changes in subtask performance caused by a policy modification in decomposition-based

approaches. Tracking forgotten subtask-specific knowledge is significant because it can identify

instances of when beneficial knowledge is lost and when learning at the subtask level stagnates

or declines. The significance is heightened when the subtask performance is a necessary compo-

nent to the overall task but the evaluation of the task does not explicitly measure proficiency of

subtasks. In this case, a single criterion-based forgetting metric only considers overall task perfor-

mance changes and can overlook the loss of beneficial knowledge or the acquisition of negative

knowledge used by important subtasks. Additionally, measuring performance changes only at the

task level makes it difficult to determine the magnitude the lost knowledge has on task perfor-

mance. Again, if subtask proficiency is an integral part of task performance, then measuring the

impact of lost proficiency can be inaccurate if the task evaluation does not explicitly consider the

importance of each subtask.
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Forgetting Metrics

To capture these missing subtask performance changes, we introduced two new metrics: the direct

and maximized forgetting metrics [40]. Both metrics classify which type of forgetting occurs at

any point of the learning process and quantifies the magnitude of that diagnosed classification

at different levels of fidelity. Furthermore, the introduced forgetting measurements can be used

by a range of existing monolithic- and decomposition-based approaches to identify performance

changes due to forgetting. The main distinction of the metrics is their increased level of fidelity

in diagnosing and measuring forgetting because of their consideration of subtask performance

changes.

Both metrics are purely performance-based. They compare performance of each subtask with its

corresponding best observed performance to determine what effect the policy change has on each

component of the task being learned. Because these metrics do not detect policy change, they are

intended to be used when state-action pair mappings change is suspected.

The difference between these proposed metrics and the others mentioned earlier is that the pro-

posed metrics explicitly factor in changes to all subtask performances instead of only the perfor-

mance of the one, overall task. By considering subtask performance changes, each metric serves

as an indicator of when a policy loses or gains performance for individual subtasks. With that said,

the proposed metrics are heavily influenced by Markovitch and Scott’s [34] measure of the value

of knowledge and the metric transfer ratio, examined by Gorski and Laird [17].

Before describing the proposed metrics, a few definitions must be made that are common for each

method: a policy maybe modified at time-step t. At time-step t, the policy’s performance of each

subtask is retrieved from the function p(si, t), where si is a subtask in the set of all subtasks S

used to perform task T. In addition, function p returns the performance measure of task T at time-
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step t with the parameters of p(T, t). Function p returns the real value ratio of performance to

the optimum and is bounded to inclusively range from 0 to 1, where 1 represents optimal task or

subtask performance and 0 represents the converse.

For each subtask si, there is a corresponding weight wi. Also, there exists a weight for the task,

wt. Each weight is a real value inclusively ranging from 0 to 1, and the sum of all of the weights

equals to 1. The weights determine the importance each subtask has on task performance and

is defined by the developer. The weights also determine how forgiving the system should be for

losing particular knowledge.

Direct Forgetting Metric (DFM): This metric calculates a direct difference between two policies

using the weighted sum of subtask performances and is defined in Equation 3.6. For simplicity, we

will use policies at time-steps t and t-1 as the immediate policies that will be directly compared. By

calculating subtask PD from these two time-steps, f (t) makes a direct comparison between a policy

and its immediate change in the next time-steps to determine the significance of the knowledge that

was lost or modified.

f(t) =
|S|∑
i=1

wi (p (si, t)− p(si, t− 1)) (3.6)

Maximized Forgetting Metric (MFM): This metric is represented as g(t) and is the weighted sum

of the difference of p(si, t) and the best performance of si from time 0 to t-1. MFM is defined in

Equation 3.7. This measure utilizes the max function that retrieves the best performance of policy

P on subtask si up to the time t. By calculating this difference, the entire performance history of

each subtask is factored into the forgetting measure.

g(t) =
|S|∑
i=1

wi

(
p(si, t) − max

t′∈{0,...,t−1}
{p(si, t′)}

)
(3.7)
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If f (t) or g(t) return a positive value, then positive forgetting has occurred at time t. If the returned

value is 0, then neutral forgetting has occurred. If f (t) or g(t ) is less than 0, then negative forgetting

has taken place. The magnitude of the occurred forgetting is represented by the returned value. For

instance, if the returned value is negative, the smaller the value, the higher the negative forgetting

magnitude is and denotes how much performance has suffered because of the lost or modified

knowledge. Consequently, if the returned value is positive, the larger the number, the stronger

performance has improved with the forgotten knowledge.

Through experimentation using layered learning to solve Boolean-logic, discussed later in the im-

balance demonstration section, DFM and MFM were validated and verified to accurately identify

the three classifications of forgetting and quantify their magnitudes [40].

Policy-Based Metrics

To further understand what happens to a policy during the layered learning process, a five quanti-

tative policy-based metrics were used. These metrics coupled with the performance-based metrics

provide deeper insight in how the learning process is affected by measuring the two factors of the

forgetting classification: policy and performance change.

Pair Changes: Pair changes is the total number of state-action pairs that are different between two

versions of a policy, a primary (P) and a secondary policy (P’). This metric only tallies states (s)

that are in the primary that do not map to the same action (a) in the secondary policy.

Unchanged Pairs: The unchanged pairs metric is the converse of the number of pair changes. It

is the number of states in the primary policy that map to the same actions as the secondary policy.

This metric tracks how many pairs remain the same as a new subtask is optimized on.

New Pairs: This metric is the sum of new pairs introduced to the policy between different policy
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versions. Assuming a policy never deletes a state and only modifies action mappings, which is fol-

lowed in all of the experiments in this dissertation, the number of introduced pairs is the difference

in total pairs between two policies. By tracking this statistic, we can see how many new states an

agent reaches and how much a policy has grown while learning a new subtask.

Permanently Damaged Pairs: A permanently damaged pair is one that resides in a policy once a

targeted layer is complete, has been changed in a subsequent layer, and never reverted back to the

original mapping in the targeted layer. This statistic is gathered for each non-terminal layer and

indicates how destructive a successive layer can be on a policy previously optimized on another

subtask.

Repaired Pairs: A repaired pair is the converse of a permanently damaged pair and is a pair that

was reverted back to the targeted layer’s state-action mapping. This statistic indicates if a layer

relearned a forgotten pair and if the system retained that remapping until the end of the learning

process. A high number of repaired pairs means although pair destruction took place, a large

amount relearning and time spent on reverting forgotten pairs occurred.

In addition to the forgetting metrics and these policy-based gathered statistics, we measure per-

formance of each subtask throughout learning. This simple statistic is the most powerful to our

demonstration because it shows how proficiency of each subtask changes during a new subtask’s

optimization and on layer transitions. Because an agent is actively learning in all of our experi-

ments, we expect the policy to constantly experience changes. By tracking each subtask’s perfor-

mance at each policy change, we are able to see the impact on previously achieved proficiency and

diagnose if the learner has a clear preference for stability, plasticity, or balance.
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Imbalance Demonstration

To demonstrate the susceptibility of a stability-plasticity imbalance in layered learning and that

critical knowledge used to perform a task can be lost in a decomposition-based learning system,

a series of Boolean-logic and collaborative multi-agent, direct-policy search problem experiments

were performed. The experiments were design to demonstrate the ease at which an imbalance can

occur in layered learning and identify the imbalance’s causes and effects. In these two different

problem domains, we show that as the performance evaluation functions transitions from one sub-

task to another, the policy experiences drastic changes to its state-action pairs, subtask and task

performance degrades, and computational effort is wasted when a policy attempts to regain lost

proficiency.

Boolean-Logic Problems

Two variants of Leading Ones Trailing Zeros (LOTZ) serve as the Boolean-logic problems used in

the first imbalance demonstration. These problems were chosen because they are clearly defined

and their problem properties are easily understood and constructed for analysis purposes. While

they are not strictly speaking RL problems, they are analogous to real problems faced by such

algorithms. First, each Boolean-logic problem represents a task the agent is given to learn to per-

form. Mastering a task is represented by the bit string’s transformation into an optimal solution as

indicated by the received maximum performance score of the given problem. Each bit in the string

symbolizes state-actions pairs (knowledge) used by an RL agent to make decisions, thus making

the bit string a representative of an agent’s policy in RL. These representations and transformations

are akin to a policy being modified to contain state-action pairs that guide the agent into making

decisions to perform a task in a RL system. Also, the construction and destruction of behavioral

knowledge is simulated by the toggling of bits. When a bit that positively affected subtask perfor-
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mance proficiency is toggled and no longer has such an effect, negative forgetting has occurred.

Positive forgetting is the converse reaction if performance increased after a toggle and is essentially

learning. Neutral forgetting occurs when no performance change happens after a bit string change.

Leading Ones Trailing Zeros

To evaluate a bit string’s optimality, a different performance metric is used for the two Boolean-

logic problems and their subtask decompositions. For commonality among the problems, each

performance metric is scaled to a value ranging from 0 to 1, where 1 is optimal. This problem

is a representative of simple tasks where individual decisions contribute linearly to overall perfor-

mance.

Leading Ones Trailing Zeros (LOTZ) is a task where performance is rewarded based on the lengths

of an all-one string prefix and an all-zero suffix in the bit string. In these LOTZ experiments,

two variations are examined, Leading Ones Times Trailing Zeros (LO*TZ) and Leading Ones Plus

Trailing Zeros (LO+TZ). There are two components to these problems: leading ones (LO) and

trailing zeros (TZ). The performance functions for LO and TZ are defined in Equation 3.8 and 3.9,

respectively. The LO*TZ is defined in Equation 3.10 and LO+TZ in Equation 3.11. The LOTZ

problems provide means of exploring extreme situations where some subtask solutions involve

the opposite decisions as another and where the final task is either a linear or non-linear balance

between these.

x ∈ {0, 1}n, LO(x) =
n∑

i=1

i∏
j=1

xj (3.8)
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x ∈ {0, 1}n, TZ(x) =
n∑

i=1

i∏
j=1

(1− xn−j+1) (3.9)

x ∈ {0, 1}n, LO ∗ TZ(x) = 4

n2
(LO(x) · TZ(x)) (3.10)

x ∈ {0, 1}n, LO + TZ(x) =
1

n
(LO(x) + TZ(x)) (3.11)

Because the LO*TZ performance function calls for the product of leading ones and trailing zeros,

there is only one optimal bit string if the size of the string is even that solves the task completely

and returns an LO*TZ value of 1. When the number of bits is odd, there are two optimal solutions:

each solution has a split between all-ones and all-zeros as even as possible where the total equals

the number of bits. LO+TZ, on the other hand, has n optimal solutions, at 2-hamming distance

intervals.

These two LOTZ variants were selected because of the conflicting bit string requirements the LO

and TZ subtasks have between each other; the LO subtask requires the all-ones string, while TZ

needs the all-zeros string. The decompositions with LO and TZ subtasks following one another

forces one subtask to drive out information acquired to optimally perform the preceding subtask.

This occurrence of drive is used to forcibly simulate forgetting while the agent learns to perfor-

mance subtasks vital for complex task execution.

To be clear: these problems are constructed to create a situation in which forgetting will almost

certainly occur. This provides an opportunity to demonstrate the stability-plasticity imbalance.

For more realistic problems, we will not have such foreknowledge and will need to use the metrics

previously discussed for diagnosis.
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Experiment Description

To transform a randomly generated bit string into an optimal solution, layered learning was paired

with a (1+1) Evolutionary Algorithm [(1+1) EA]. A (1+1) EA is a simplified type of EA where

one genetic operator is used to manipulate the only individual in the population. Borisovsky and

Eremeev [3] and Wegener and Witt [59] studied (1+1) EA performance and provide additional

details on the approach.

In this work’s EA, a single child is cloned from its parent and modified via the mutation operator.

The child is then evaluated on the current layer’s subtask and replaces its parent if it performs at

least as well as the parent. The mutation operator is the only genetic operator used and functions

by toggling each bit at a 1/n probability per manipulation phase of the EA. Also, a bit string size

of 128 is used because it is large enough to make each Boolean-problem challenging.

There is a pair of test cases for each of the performed experiments, both containing a different

layer halting condition. Within each test case is a set of test plans where each plan decomposes a

Boolean-logic problem into a sequences of layers. Each test plan is repeated for 100 trials to have

a large enough sample to draw significant conclusions.

The process of optimizing a string is as follows: a LOTZ problem is selected as the task to solve. If

the task is to be learned monolithically, then layered learning is structured to have one layer where

the subtask is the selected Boolean-logic problem. If the task is to be learned with decomposition,

then multiple layers are constructed and each layer contains one subtask from Table 3.1. Each

layer also has a halting condition, which indicates when the layer is complete and the learner can

progress to the next layer. The halting condition is to either run until optimal performance for the

layer’s subtask is achieved or when a predefined number of time-steps have elapsed. A time-step is

one complete EA cycle iteration, where the bit string finishes a manipulation and evaluation phase
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by going through the cloning, evaluation, and replacement process. The fixed duration halting

condition test case was set at 90% of the average number of time-steps required to generate the

optimal bit string in the monolithic test plan of maximize subtask performance halting condition.

Table 3.1: LOTZ Task and Subtask Descriptions

Subtask Maximization Objective Description
LO (Leading Ones) Length of the all-ones prefix.
TZ (Trailing Zeros) Length of the all-zeros suffix.
LO+TZ The sum of LO and TZ (LO+TZ) across the entire string.
LO*TZ The product of LO and TZ (LO*TZ) across the entire string.
MiddleThirdLO+TZ LO+TZ over the middle 1/3rd bits.
MiddleTwoThirdLO+TZ LO+TZ over the middle 2/3rd bits.
MiddleOneThirdLO*TZ LO*TZ over the middle 1/3rd bits.
MiddleTwoThirdLO*TZ LO*TZ over the middle 2/3rd bits.

In the monolithic case, once the halting condition has been met for the sole layer, the learning

process is complete. For the decomposition case, when one layer has halted, the bit string is then

passed to the next layer and is optimized on a new subtask. Once all of the layers have been iterated

through, the learning process is complete. In all of the decomposition cases, the complex LOTZ

variant, either LO*TZ or LO+TZ, is the final layer’s subtask.

LO+TZ Results

Table 3.2 displays the test plans and their subtask sequences for the LO+TZ experiment. Based on

the decomposition and the bit string composition requirement of the LO+TZ subtask, the maximize

subtask performance halting condition test case resulted in plans 0-2 being monolithic while plans

3-5 were decomposition-based. Plans 0-2 are monolithic because strings optimized on the LO or

84



TZ subtask are also optimized for the LO+TZ subtask, not needing a single bit toggle in layer 2 to

satisfy the final layer’s LO+TZ subtask in plans 1 and 2. Table 3.3 displays the average time-steps

needed to iterate through each plan’s layers using the maximize performance halting condition,

standard deviation, and Z-score comparing plans 1-5 to the control test plan, plan 0.

Table 3.2: LO+TZ Test Plans with Subtask Sequences

Test Plan # Layer 1 Layer 2 Layer 3
Plan0 LO+TZ - -
Plan1 LO LO+TZ -
Plan2 TZ LO+TZ -
Plan3 LO TZ LO+TZ
Plan4 TZ LO LO+TZ
Plan5 MiddleThirdLO+TZ MiddleTwoThirdLO+TZ LO+TZ

Table 3.3: Average Time-Steps to Find Optimal LO+TZ Bit String

Test Plan Time-steps STDV Z-Score
Plan0 6,948.13 1,028.799773 -
Plan1 13,809.1 2,050.667762 -29.90
Plan2 14,081.81 2,147.559721 -29.96
Plan3 28,324.04 3,130.869352 -64.86
Plan4 28,458.81 3,354.459956 -61.31
Plan5 12,074.22 1,355.825259 -30.12

From the average time-steps needed to generate optimal subtask performing strings, plan 0 required

the least number of time-steps with 6,948.13. Test plan 5 that used a middle-third, lower-order

decomposition (12,074.22 time-steps) then followed. Plans 1 and 2, which only used their first

layers required 13,809.1 and 14,081.81 time-steps, respectively. Finally, plan 3 averaged 28,324.04

and plan 4 averaged 28,458.81 time-steps.The Z-scores were compared to a critical value of -2.326

based on a Bonferroni adjusted alpha of .01. Plan 0’s 6,948.13 average time-steps is significantly

less than those of the decomposition-based plans.
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The difference between the monolithic approaches was that plan 0 has more permutations of op-

timal bit string solutions while plan 1 required the all-ones string and plan 2 the all-zero string.

Plans 3 and 4 were the worst performers because their first two layers contained subtasks that con-

tradicted each other. For example, in plan 3, after the all-ones string was generated to maximize

performance of the LO subtask, the string then needed to be optimized on the all-zero string. Be-

cause optimization of the TZ subtask also is an optimized string for LO+TZ, layer three did not

need to manipulate any bits for its subtask optimization, halting the learning phase for this plan.

The contradiction between the first two layers’ subtasks forced the bit string to be optimized twice,

hence the averages between plans 2 and 3 being approximately double the time-steps of plans 1

and 2.

Plan 5’s results demonstrated that learning lower-ordered versions of the overall task and progres-

sively increase the problem’s magnitude can produce competitive results to the type of decompo-

sitions exhibited in plan 1 and 2 and plans 3 and 4. By learning LO+TZ in progressively larger

chunks from the middle of the bit string outward, the decomposition was able to reduce the solu-

tion space into manageable partitions and solve the overall task faster than decompositions with

less layers.

The second test case split 6,253 time-steps between all of the layers of each test plan, for the fixed

layer duration halting condition. 6,253 time-steps was chosen because it is 90% of the duration

needed to reach optimality in the monolithic test-case. In this test case, plans 1 and 2 are no longer

considered monolithic and plans 3 and 4 manipulate the bit string in all three of their layers. The

change to plans 1-4 is because each layer does not meet optimal subtask performance, resulting in

the LO+TZ layer always requiring evaluations and bit modification.

A second major change is in plan performance. Plan 5, which solved LO+TZ using the middle-

based decomposition, became the worst average LO+TZ performer, producing a LO+TZ perfor-
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mance score of 0.4316. The monolithic control of plan 0 produced an average LO+TZ performance

score of 0.9275 at the end of the 6,253 time-steps. All average LO+TZ performance scores, stan-

dard deviations, and Z-scores comparing plans 1-5 to plan 0 are found in Table 3.4. Z-tests confirm

plan 0 outperform the decomposition-based plans, using a Bonferroni adjusted α = 0.01 and criti-

cal value of 2.326. The right-tailed test rejected the null hypotheses that plan 0’s average LO+TZ

performance was less than or equal to the averages of plans 1-4. Thus, the monolithic test plan’s

LO+TZ performance average was significantly greater than those of the decomposition-based ap-

proaches.

Table 3.5 displays the fixed duration halting condition’s individual subtask performances at the

end of each layer. From this table, it is noted that the first subtask performance decreases during

a transition from layer 1 to 2 in test plans 3 and 4. The decrease in LO and TZ performance is

attributed to the contradictory subtask of their respected second layer. As an example, consider

plan 3’s LO subtask. At the end of layer 1, the LO average performance is 0.239, resulting in

approximately the first 30 bits being set to 1. After the second layer, which is the TZ subtask,

LO performance decreases to .007; this means, that on average, the all-ones prefix is of length 1.

Although the TZ subtask is a part of plan 3’s decomposition of LO+TZ, the TZ layer was disastrous

to LO subtask performance, affecting the first 30 bits negatively.

Table 3.4: Average LO+TZ Performance with Fixed Layer Duration

Test Plan LO+TZ Perf. STDV Z-Score
Plan0 0.9275 0.072087661 -
Plan1 0.772421875 0.088247747 13.61
Plan2 0.787890625 0.092954798 11.87
Plan3 0.58375 0.078879791 32.17
Plan4 0.604453125 0.094654846 27.15
Plan5 0.431640625 0.081312889 45.63
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Table 3.5: LO+TZ: Average Subtask Performances per Layer’s Completion

Test Plan # Subtask Layer 1 Layer 2 Layer 3
Plan0 LO+TZ 0.9275 - -
Plan1 LO 0.336328 0.541641 -
Plan1 LO+TZ 0.345234 0.772422 -
Plan2 TZ 0.338438 0.558438 -
Plan2 LO+TZ 0.346172 0.787891 -
Plan3 LO 0.239297 0.006641 0.17875
Plan3 TZ 0.006719 0.234063 0.405
Plan3 LO+TZ 0.246016 0.240703 0.58375
Plan4 TZ 0.233359 0.008984 0.185859
Plan4 LO 0.006641 0.235391 0.418594
Plan4 LO+TZ 0.24 0.244375 0.604453
Plan5 MiddleThirdLO+TZ 0.986429 0.28381 0.050714
Plan5 MiddleTwoThirdLO+TZ 0.021412 0.608824 0.178941
Plan5 LO+TZ 0.016641 0.018281 0.431641

Because of the fixed duration halting condition, plan 5 suffers similarly to plans 3 and 4. The new

halting condition causes the segments of plan 5’s bit string to not be optimized before moving to

the next layer. The suboptimal performance of layer 1’s substring combined with the additional bits

of layer 2’s subtask means not only does layer 2 have to optimize layer 1’s substring but also has

to connect the newly added bits padded to the middle thirds’ substring to maximize the number of

leading ones and trailing zeros. If the substring from layer 1 was optimized, layer 2 has to alter the

padded bits to the left to maximize the all-ones prefix and generate all zeros for the added bits to the

right of layer 1’s substring. If layer 1’s substring was optimized to contain the all ones string, then

layer 2 would have to generate the all-ones string for its substring prefix. If layer 1’s substring was

optimized on the all-zeros string, then layer 2 would attempt to generate an all-zero suffix. In short,

layer transitions and task decomposition caused the decrease in subtask performance experienced

by plans 3-5, as displayed in Table 3.5.

These experiments show that when subtasks require radically different behaviors, layered learning
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can produce catastrophically poor performance due to a heavy preference for plasticity, even when

the overall task requires a balance.

LO*TZ Results

Both test cases in the LO*TZ experiment follow similar test plans as the LO+TZ experiments. The

only difference is the LO+TZ subtask is replaced with LO*TZ. Table 3.6 displays the LO*TZ test

plans with their layer and subtask sequences.

Table 3.6: LO*TZ Test Plans with Subtask Sequences

Test Plan # Layer 1 Layer 2 Layer 3
Plan0 LO*TZ - -
Plan1 LO LO*TZ -
Plan2 TZ LO*TZ -
Plan3 LO TZ LO*TZ
Plan4 TZ LO LO*TZ
Plan5 MiddleThirdLO*TZ MiddleTwoThirdLO*TZ LO*TZ

Like the LO+TZ experiment, the maximize fitness halting condition test case resulted in the mono-

lithic test plan of plan 0 to outperform all of the other decomposition-based test plans. Here, plan

0 required 9,654.57 time-steps on average to generate the optimal LO*TZ bit string. Plan 5, with

its middle-thirds decomposition, produced the next fastest optimal string in 16,316.47 time-steps.

The two test plans with two layers, plans 1 and 2, generated the next fastest optimal strings with

23,892.62 and 23,649.88 time-steps, respectively. Plans 3 and 4 required the most time-steps and

bit-manipulations, needing 38,010.62 and 37,457.38 time-steps, respectively. Z-tests with the Bon-

ferroni adjusted alpha of 0.01 and a critical value of -2.326 confirm that plan 0’s average required

time-steps were significantly lower than those of the other plans. All averages, standard deviations,

and Z-scores for the first test case are provided in Table 3.7.
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Table 3.7: Average Time-Steps to Find Optimal LO*TZ Bit String

Test Plan Time-steps STDV Z-Score
Plan0 9,654.57 2,766.02302 -
Plan1 23,892.62 3,543.243536 -31.67
Plan2 23,649.88 3,366.461891 -32.12
Plan3 38,010.62 3,750.248397 -60.85
Plan4 37,457.38 4,260.572191 -54.73
Plan5 16,316.47 3,464.359091 -15.03

The LO*TZ fixed duration halting condition test case produced a slightly different outcome to

the LO+TZ experiment. Limited to 8,689 time-steps, plan 0 generated bit strings that performed

LO*TZ with an average score of 0.981. Plans 1 and 2 produced the next best LO*TZ performers

with average scores of 0.616 and 0.619, respectively. The slight difference between fixed duration

LO+TZ and LO*TZ is in the similar, lowest scores of the final 3 plans: plans 3, 4, and 5 averaged

0.381, 0.367, and 0.369 LO*TZ values, respectively.
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Figure 3.1: LO subtask performance while learning LO*TZ with a fixed layer duration.
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Figure 3.2: TZ subtask performance while learning LO*TZ with a fixed layer duration.
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Figure 3.3: Subtask performance while learning Middle Third LO*TZ with a fixed layer duration.
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Figure 3.4: LO*TZ performance with each decomposition test plan under a fixed layer duration.

Table 3.8: Average LO*TZ Performance with Fixed Layer Duration

Test Plan LO*TZ Perf. STDV Z-Score
Plan0 0.981740723 0.038980479 -
Plan1 0.61628418 0.16698787 21.31
Plan2 0.61901123 0.174793245 20.25
Plan3 0.380949707 0.140954749 41.08
Plan4 0.366726074 0.154949282 38.49
Plan5 0.368535156 0.152464694 38.97

The reason why plans 3 and 4 produced the lowest LO*TZ scores is because they contained the

most layers, layer transitions, and subtask changes in the test case. In the case of plans 3 and

4, the first two layers contained subtasks that contradicted each other, undoing bit changes that

affected positive performance. Figure 3.1 shows how plan 3 begins to optimize LO performance

until that layer reaches its time-step limit of 2,897, then its subtask performance drops drastically

while the bit string is optimized on layer 2’s subtask of TZ. Figure 3.2 displays the same extreme
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performance decrease in plan 4 at time-step 2,897. In both test plans, the first layer’s subtask per-

formance does not increase again until time-step 5,794, when the third layer’s subtask of LO*TZ

is used to optimize the bit string; recall that LO*TZ relies on a balanced LO prefix and TZ suffix

for optimality, unlike LO+TZ. Figure 3.4 displays the average LO*TZ performance over time for

plans 0-4. From this graph, it is evident how much faster plan 0 reaches suboptimal performance

compared to the other plans and how much plans 3 and 4 suffer from the forced first layer’s subtask

performance decrease caused in layer 2.

Finally, plan 5 also suffers from having three layers of decomposition. Because the LO*TZ com-

ponent of MiddleThirdLO*TZ and MiddleTwoThirdsLO*TZ required LO and TZ lengths to be

greater than 0 for optimality, the decomposition forces each layers newly expanded substring to

toggle all new left bits to be ones and all new right bits to be zeros to connect to and take advan-

tage of the previous layer’s LO*TZ performance. Any break between the newly appended bits

and those of the previous layer’s substring is not rewarded in the performance of LO*TZ. This

hurdle makes it difficult for this type of decomposition because newly added bits must be toggled

to maximize the LO prefix, maximize the TZ suffix, and make sure the previous layer’s substring’s

LO*TZ performance is maximized and not negatively changed.

Figure 3.3 graphs the difficulty plan 5 had at maintaining the MiddleThirdLO*TZ performance.

After the first layer’s fixed duration at time-step 2,897, the second layer began to optimize the

entire string on the MiddleTwoThirdsLO*TZ subtask and modified bits in the middle one-third of

the string, causing MiddleThirdLO*TZ performance to decrease. A similar performance decrease

happens to MiddleTwoThirdsLO*TZ in layer 3 as well, when the subtask encompasses the entire

bit string for LO*TZ evaluation.

These experiments show that not only can a preference for plasticity create problems for layered

learning on complex, non-linear problems with conflicting subtasks, but that performance can be
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very sensitive to the order in which subtasks are presented.

Discussion

A number of observations and conclusions were made from these Boolean-logic experiments that

demonstrate that layered learning is susceptible to a stability-plasticity imbalance. First, the mono-

lithic approaches outperformed each of their decomposition-based counterparts. When allowed to

optimize the bit string until task optimality was reached, the monolithic test plans always generated

the optimal solution with the least number of evaluations. When the number of bit string evalu-

ations and modifications were limited by fixing the number of time-steps spent in each layer, the

monolithic approach produced a higher overall task performance than all of the tested decomposi-

tions.

In addition to executing statistical tests on the performances of each test plan, it has been further

verified by Gorski and Laird’s [17] transfer learning metrics that each tested monolithic approach

outperforms those based on decomposition. The previously discussed transfer metrics of transfer

ratio (T. Ratio), transfer regret (T. Regret), and calibrated transfer ratio (Calibrated T. Ratio)

were used in this work to compare a controlled transfer learner’s performance to an experimental,

decomposition approach.

Table 3.9 displays the values of each decomposition test plan (the experimental approach) com-

pared to the monolithic control (plan 0) of the fixed duration test case of each Boolean-logic prob-

lem. Because each of the transfer ratio values are positive and each of the transfer regret and

calibrated transfer ratio values are negative, the transfer learning metrics reveal that the mono-

lithic control produced a higher performing policy than the experimental decomposition-based

approaches. This under-performance experienced by the decomposition-based approaches is a re-

action to the learning paradigm driving out overall task-critical bits before reaching the final layer,
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causing time-steps to be spent repairing ineffective bits.

Table 3.9: Transfer learning metrics comparing each test plan to the monolithic control

Test Plan T. Ratio T. Regret Calibrated T. Ratio
LO+TZ 1 0.698 -0.181 -0.362

2 0.719 -0.168 -0.337
3 0.423 -0.344 -0.690
4 0.433 -0.338 -0.678
5 0.241 -0.451 -0.908

LO*TZ 1 0.282 -0.376 -0.761
2 0.289 -0.372 -0.752
3 0.121 -0.460 -0.930
4 0.113 -0.465 -0.939
5 0.214 -0.412 -0.832

A second conclusion is that the number of overlapping layers in a decomposition affected perfor-

mance and the rate of learning to perform tasks at an optimal level. It is observed that the more

layers in a decomposition, the more policy evaluations and modifications were needed to discover

the optimal solution. Additionally, the more layers in a decomposition, the lower the overall task

performance. These two claims are derived from the average number of time-steps required to find

optimality in the first test case of each experiment being the highest for test plans with 3 layers,

second highest for test plans with 2 layers, and the lowest for the monolithic approaches. For test

case 2, overall task performance decreased with an increase in the number of layers. Table 3.9 sup-

ports this claim with how test plans with 3 subtasks produced the lowest transfer learning values,

followed by the test plans with 2 layers.

A third conclusion is that a learned subtask’s performance was affected by changes to the perfor-

mance evaluation function of a new subtask. This conclusion is made from the observation that

subtask performance of a previous layer decreases when the new subtask of the subsequent layer is

learned; the most significant performance decreases occurred when the decomposition contained
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3 layers. The LO*TZ fixed time duration test case provided the clearest example of this observa-

tion. Recall that in test plan 3 the decomposition optimized on LO, TZ, then LO*TZ. Test plan

3’s LO performance increased during layer 1’s LO optimization, decreased sharply in layer 2’s TZ

optimization, and increased again in layer 3, shown in Figure 3.1. Conversely, the performance of

test plan 3 on the TZ subtask decreased while it learned LO in layer 1, increased during layer 2’s

optimization of TZ, and slightly decreased in layer 3. From this and the other decomposition test

plans from the other experiments, it is concluded that explicitly learned subtask proficiency was

negatively impacted when performance evaluation changed to optimize over a new subtask.

A fourth conclusion is that the poor performances noted in the first three conclusions are all caused

by a stability-plasticity imbalance that favors knowledge that is being currently rewarded over what

was learned previously. More specifically, all of the decomposition-based approaches performing

worse than the monolithic controls and the number of layers negatively affecting performance were

all caused by the learning system overriding information depended on to perform older subtasks

for knowledge used to optimize the policy on a new subtask. In the case of these Boolean-logic

problems, the switch to a new performance evaluation function when the layer was changed pres-

sures the bit string to toggle bits to maximize new subtask performance without any regard to any

previously learned subtasks. Because of the use of layer overlapping, the priority shift toward the

new subtask caused bits that were used for older subtask performance to be negatively affected as

bits relied on in one layer were modified in another.

Because these experiments provided a stable and repeatable environment for bit string optimiza-

tion and subtask evaluation, the coupling of changes to the bit string and the observed changes

to subtask performance makes it clear that negative forgetting can occur in layered learning. Ad-

ditionally, this negative forgetting is the product of the learning paradigm’s struggle to balance

stability and plasticity. It should be reminded that in these experiments, although bit toggles were

explicitly invoked by the use of the mutation operator, performance change was not guaranteed
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with each mutation; changes in performance were the effect of bit mutation. Moreover, changes

to the policy is not necessarily forgetting but the loss of the ability to perform the subtask at a

previously obtained level is. It is these performance proficiency and policy changes that is referred

to as forgetting and is what we have sought out to demonstrate occurs with this learning paradigm.

These problems represent (at a high level) a range of different properties present in many real RL

problems and stability-plasticity imbalance was found in all of them. It is therefor evident that this

is a general challenge for layered learning.

The conclusion that negative forgetting dominated the learning process is made because the learn-

ing system lost learned subtask proficiency (stability) when the bit string was altered during the

optimization for a new subtask (plasticity). To provide further evidence that negative forgetting

occurred and to measure its magnitude, we have used our proposed forgetting metrics to analyze

the performance changes. Table 3.10 displays the average performance difference (PD), direct

forgetting measure (DFM), and maximized forgetting measure (MFM) values across all time-steps

of the LOTZ experiments with the fixed duration halting condition. Again, for each of the metrics,

if the value is positive, positive forgetting had the greatest impact on learning. If the forgetting

value is 0, a balance between positive and negative forgetting took place, resulting in neutral for-

getting occurred over the learning process. If the value is negative, negative forgetting dominated

the learning process.

Table 3.10: Forgetting Metrics for Fixed Time Duration Test Case

Plan 0: 1 Layer Plan 1: 2 Layers Plan 3: 3 Layers
PD/DFM/MFM PD DFM MFM PD DFM MFM

LO*TZ 0.00011 0.00007 0.00007 -0.01166 0.00004 0.00004 -0.02393
LO+TZ 0.00015 0.00012 0.00011 0.00005 0.00009 0.00008 -0.04363

Table 3.10 reveals that the monolithic approach of test plan 0 produced the highest positive for-
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getting while plan 3, with a 3-layer decomposition, generated the least positive forgetting and the

most negative forgetting. Again, poor decomposition performances and the increase in negative

forgetting compared to test plans with less decomposed subtasks is attributed to the performance

evaluation function transitions.

Finally, from the experiment results and observations, two common properties were identified to

make layered learning and these problem decompositions susceptible to negative forgetting and

stability-plasticity imbalance. First, in layered learning, the solution landscape changes through-

out the course of learning a task, forcing the policy to adapt to each new subtask. These layer

transitions are native to the learning paradigm and essential to its sequential learning process. Un-

fortunately, these transitions have caused vital policy information to be lost and negative forgetting

to occur in these experiments. Second, although policy overlapping allows for an entire policy to

be modified and optimized for a subtask, the layer transitions can have a disastrous affect on how

the policy retains important subtask knowledge. In these experiments, every tested decomposition-

based test plan used layer overlapping, meaning each layer had read/write access to the same bits.

Because of this, subtasks in different layers forced policy change, resulting in knowledge obtained

in older layers to be forgotten in order to make way for knowledge to solve newer subtasks.

UAV Surveying Problem

In the previous section, we contrived a set of simple optimization problems designed to create

an imbalance. Here, we demonstrate an imbalance in layered learning that favors plasticity by

training agents to solve a more realistic collaborative multi-agent problem. Specifically, in this

studied problem, each agent represents a quadcopter unmanned aerial vehicle (UAV) that must

learn when and how to take off and land, move to a coordinate in the environment, refuel, and

transmit reached coordinates to its UAV teammates. Quadcopters (also known as quadrocopters)
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are similar to remote controlled helicopters with four rotors instead only one. They are known for

their mobility and ability to change direction and heading quickly.

In this surveying task, four UAVs are initially grounded at four different corners of the 50x50 2D

discrete grid environment. Figure 3.5 represents the simulation scenario at 10th the scale of teh

50x50 2D environment. In each run of the simulation with this task, performance is evaluated on

the percentage of unique grid coordinates the UAV team has navigated to out of the 2,500 total

number of cells in 2,000 time-steps. At every time-step, each UAV determines its state and selects

and performs an action with that corresponding state from its policy. UAVs have the movement

abilities to take off, land, and move towards any coordinate in the environment, one cell at a time.

UAVs remain active in the simulation as long as they have fuel. With each time-step a UAV is in

flight, its fuel level depletes by one unit. If a UAV’s fuel level reaches zero, the UAV becomes

inactive and can no longer execute actions, such as movement to survey the environment or refuel.

To replenish depleting fuel levels, a UAV must navigate back to a refueling depot (located on the

ground of each of the four corners of the grid), land, and explicitly execute the “refuel” action.

Figure 3.5: Visualization of the UAV Surveying Problem at 10th the scale of the environment
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The UAV’s fuel level is replenished by 10 units for each time-step the refueling action is executed.

Initially, a UAV has 100 units of fuel and refueling never exceeds a level of 100 units.

The surveying problem requires collaboration among the UAV teammates to maximize the task’s

performance: no single UAV can navigate to every cell in the environment in the limited amount

of time and duplication with UAVs covering the same cell wastes time. To facilitate collaboration,

each UAV maintains a list of coordinates the team has visited and may execute the action “transmit

coordinates” to broadcast a complete history of all of the coordinates that UAV has reached during

the simulation up until the current time-step. This broadcast is instant and is guaranteed to reach

each of the other UAVs.

Because each UAV must decide when to transmit and when to perform other actions, a UAV also

contains a buffer of coordinates it has surveyed since its last transmit action was executed. Sub-

states, such as “is buffer size at least 5”, exist so each UAV can determine their own thresholds of

when to transmit unshared, reached coordinates with their teammates. We discuss policy represen-

tation more specifically in section 3.

The problem is similar to those studied in other reinforcement learning and direct-policy search

works, including UAV navigation and search-and-rescue problems. This UAV exploration problem

was selected because of its task complexity, straight-forward decomposition into subtasks, require-

ment of UAV collaboration among teammates to solve the problem optimally, and direct mapping

to problems used in the real world.

Layered Learning Configuration

To learn to solve the problem, a decomposition of the UAV surveying problem and a layer config-

uration, including a subtask sequence, training scenarios, and halting conditions were used with
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layered learning to optimize the UAV policies. The employed decomposition was as follows: the

agent team first learned to refuel in layer 1, take off and survey the environment in layer 2, and

lastly, the overall task of surveying and refueling when necessary in the final, aggregate layer of

layer 3.

The process of layered learning takes one set of policies, one policy for each UAV, and passes

it into layer 1 for optimization on the refueling subtask. In that layer, a learning algorithm is

used to optimize performance on the subtask by repeatedly running the refueling simulation and

modifying the policies to map states to appropriate actions. For underlying learning, we examine

two simple variants of very different types of RL: a simple (1+1) EA for direct policy search and

a Q-learner for value search. The evaluation and modification process, which is reliant on these

learning algorithms, repeats for a set number of iterations, called epochs. These are discussed in

more detail below. We use the term epoch to denote a generation in an evolutionary algorithm

and a simulation iteration for Q-learning. The refueling optimized policy set is then fed into the

second layer, which does the same process as layer 1 but optimizes the policy set on the take off

and survey subtask. Finally, the policy set outputted in layer 3 is optimized on the overall task.

Through this decomposition, the aim is to gradually learn each important aspect of the overall task

in incremental phases of learning and have a policy set that solves the overall task at the end of the

last epoch of layer 3.

UAV Refueling Layer: The refueling subtask trained the agents to recognize when their individual

fuel levels were low and how to navigate to the refueling depot, land, and refuel. This layer’s

simulation initialized the UAVs to be 20 cells away from a fuel depot with 20 units of fuel, to force

the UAVs to be low on fuel. Each UAV received .25 points for accomplishing each successive

milestone of first navigating to a depot, then land, start to refuel, and continue to refuel until fuel

level was above 90% full. Each simulation run lasted for 35 time-steps. For example, if a UAV

navigated and landed at a depot, it received a score of .5 where as if the UAV performed all four
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actions, it received a maximum score of 1.0. To evaluate the entire policy set, performance for one

simulation was the average score of each UAV, where 1.0 meant the entire UAV team has mastered

the subtask of refueling.

Take off and Survey Layer: The second layer’s subtask is the same as the overall UAV Survey

task, except the simulation lasts 100 time-steps instead of 2000 and the maximum unique cells to

reach is 396. Although the environment dimensions remains the same 50x50 grid, the reduction in

the number of time-steps means the number of possible cells the team can reach is 396 (each UAV

can reach a maximum of 99 cells after taking off in the time limit). Similarly, because the team is

evaluated on the percentage of unique cells navigated to and because a refueling UAV would waste

time refueling, the UAVs do not have to refuel to maximize performance of this subtask.

The limitations of this subtask make this layer critical and create layer overlapping. Because the

simulation runs for 100 time-steps, the first and second layer shares states of when a UAV is low on

fuel. The conflict occurs because the first layer’s subtask relies on a UAV to refuel while the second

layer’s subtask relies on a UAV to survey the environment. Although it is acknowledged that the

subtasks could be decomposed in a completely non-overlapping manner, the layer configuration

was explicitly designed to uncover how layered learning responds to the forced conflict between

desired actions with the shared states. Also, both of these subtasks are integral aspects of the

overall aggregate task, optimized in the third layer. The decomposition allows the agents to master

these critical and difficult subtasks individually instead of learning all of the required steps of each

subtask all at once.

Policy Representation

Each UAV can perform exactly one action for each state that it is in at any given time-step. A

UAV’s state is the collective value of the UAV’s internal conditions, called sub-states, similar to a
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Boolean array or bit string, where each element corresponds to a specific sub-state value. A sub-

state is a true or false value of a condition the UAV has at a time-step. For example, the sub-state

“is grounded” is true if the UAV is on the ground, not in flight. At every time-step, each UAV

evaluates all of its sub-states and represents that collection as a single state (similar to converting a

boolean array into a decimal value). Table 3.11 lists all of the UAV sub-states and table 3.12 lists

all of the actions.

Table 3.11: List of UAV Sub-States

State Description

Is Fuel Level Low True if the UAV can navigate
to a fuel depot with 5 or less
fuel units remaining.

Am I Grounded True if the UAV is on the
ground.

Am I at Fuel Depot True if the UAV is at one of
the fuel depots.

Is Fuel Level Above 90 Percent True if the UAV’s fuel level is
above 90%.

Is Untransmitted Buffer Size At Least 1 True if the UAV has at least
1 untransmitted coordinate in
its buffer.

Is Untransmitted Buffer Size At Least 5 True if the UAV has at least
5 untransmitted coordinate in
its buffer.

Is Untransmitted Buffer Size At Least 10 True if the UAV has at least
10 untransmitted coordinate
in its buffer.

Is Untransmitted Buffer Size At Least 20 True if the UAV has at least
20 untransmitted coordinate
in its buffer.
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Table 3.12: List of Actions Each UAV Can Perform.

Action Description

Move to Closest Unvisited Coordinate Move one coordinate towards
an unvisited coordinate.

Take Off UAV takes off, instantly is in
the air but the 2D coordinate
remains the same.

Land UAV becomes grounded at
the last coordinate.

NOP No operation is performed.
Move to Closest Fuel Depot UAV moves one coordinate

towards the closest fuel de-
pot.

Refuel If the UAV is grounded at a
fuel depot, its fuel level is in-
crease by 10 units, unless full.

Transmit Coordinates Sends all of the coordinates
the UAV has visited to the
other UAVs.

The policy is a direct state-action mapping that links each state to one of seven actions that UAV

can perform. In this problem, there are 7 unique actions with 8 sub-states. The simulation ig-

nores impossible or redundant actions, such as landing when already grounded or fling to a new

coordinate when grounded.

The Learning Algorithms

Two machine learning algorithms were examined separately to facilitate policy optimization over

the problem: (1+1) Evolutionary Algorithm [(1+1) EA] and Q-learning. Q-learning is a RL tech-

nique that makes decisions from an estimated action-selection utility. The action utility is based on

past decision outcomes and is used to predict the actions that will maximize reward in the future
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[58].

The EA and Q-learning were selected to determine if an imbalance can be demonstrated in two

different learning techniques and if they both share a cause for such an imbalance. Additionally,

both techniques are popular with autonomous agents that come with backgrounds of work that

address the stability-plasticity dilemma. Further, because we wish to focus on layered learning

in general and not the underlying machine learning methods, we chose as simple examples from

both direct-policy search and value-function search techniques as possible. These experiments

demonstrate that although the employed learning algorithms can introduce their own biases toward

stability or plasticity, it is layered learning’s layer transitions that causes performance to negatively

be affected by an imbalance with the decomposition-based approach.

(1+1) EA

The (1+1) EA uses a single “parent” candidate solution, generates a “child” candidate solution via

a “mutation” genetic operator, and replaces the parent with the child if it performs at least as well

as the parent. The sole parent is the set of policies of the team, where each policy represents the

decision making capability of a UAV teammate.

For the (1+1) EA, a policy is represented as collection of state-action pairs, where no two pairs in

a policy share a state. During an epoch, every reached pair corresponding to an activated state in

the simulation has a 25% chance of being mutated by changing the pair’s action to a random one.

Through trial and error, this mutation rate produced a high enough exploration rate to find optimal

subtask performing policies quickly. When an agent reaches a state that is not mapped in its policy,

a new pair is created, linking that new state to a random action.
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Q-Learning

For the Q-learner, a Q-table is used to represent the policy. The Q-table is a 1-to-many mapping

that connects every state to each possible action’s estimated utility. Using the standard Q-learning

function as defined in [58], a Q-value in the Q-table is updated after an action has been executed by

a UAV and a reward determined. Immediate rewards were given by individual UAVs performing

predetermined appropriate actions when in certain states; all other action rewards were set to zero.

For example, when training to learn to refuel in layer 1, an immediate reward of 1.0 was given

when a flying UAV located away from the fuel depot was low on fuel executed the action to move

towards the closest depot. Tables 3.13 and 3.14 contain all sub-states and performed actions that

would receive a maximum immediate reward for refueling and take off and survey, respectively.

A learning rate (α) and discount factor (γ) of .2 and .1 were used, respectively. Through trial and

error, theses values produced the best task performers.

Table 3.13: Q-learning Refueling Immediate Reward Criteria

Sub-State Move to Closest Unvisited Coordinate Land Refuel

Am I at Fuel
Depot

TRUE TRUE TRUE

Am I Grounded TRUE TRUE TRUE
Is Fuel Level

Above 90 Percent
TRUE TRUE

Is Fuel Level
Low

TRUE TRUE

The policy set’s evaluation on subtasks followed the same scoring criteria as the (1+1) EA. Unlike

the EA, a clone of the policy set is never made, therefore, one set of policies was continuously

modified by updating Q-values in the Q-table.
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Table 3.14: Q-learning Take Off & Survey Immediate Reward Criteria

Sub-State Transmit Coordinates Move to Closest Unvisited Coordinate Take Off

Am I Grounded FALSE TRUE
Is Fuel Level

Low
FALSE FALSE FALSE

Is Untransmitted
Buffer Size At

Least 5

TRUE

In order for the learner to explore new solutions early in its optimization of a new subtask and

finish the layer with higher reward-yielding action selection, an epsilon-decreasing strategy was

use. In this strategy, the UAV selected the action with the highest Q-value at a proportion of 1-ε

of the time. When the highest Q-valued action was not selected, a random action was selected. At

the start of a layer, ε is set to one and gradually decreases to zero as the number of epochs in that

layer elapse.

Experiment Description and Results

The defined layer sequence of layers 1 through 3 was used to train the UAV team to perform the

UAV Surveying task by using the (1+1) EA and then Q-learning, in two separate instances of

layered learning. In each instance, every layer was given 10,000 epochs to learn a layer’s subtask,

limiting the entire learning process to 30,000 epochs and simulations to learn the overall task. Each

instance was evaluated over 100 runs to create a large enough sample size to reduce error.

To demonstrate imbalance in this UAV surveying implementation, we first analyzed the compo-

sitional changes made to the policies during learning. Tables 3.15 and 3.16 display the average

state-action pair changes between a layer and one of its subsequent layers. From the (1+1) EA
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experiment, 14.58 averaged pairs were changed between the last epoch of layer 1 and the last of

layer 2, as displayed in Table 3.15. This means, that of the approximately 56 shared pairs of layers

1 and 2, about 26% of them were modified in the optimization of layer 2’s subtask. Similarly,

32% of the overlapped pairs of layers 2 and 3 were modified in the final layer. In Q-learning, an

even higher percentage of changes took place, averaging 158.29 shared pair changes between the

first two layers, resulting in over 63% of the states in layer 1 had a new highest Q-valued action

after the next 10,000 epochs. In the final policy set, layer 3 changed 41.55 existing pairs, shared

between it and layer 2.

The Effects of Stability-Plasticity Imbalance in Layered Learning

The stability-plasticity imbalance caused a number of adverse effects to the learning system, in-

cluding beneficial knowledge to be negative forgotten, policies to fall in local optima traps, and

the learning system to perform as poorly as a monolithic system, which was expected to struggle

learning the complex task.

Negative Forgetting

Negative forgetting clearly occurred in these layered learning experiments when vital refueling

pairs were modified in the second layer and pairs for the take off and survey subtask were changed

in the third, aggregate layer, leading to significant proficiency decreases in the first then second

subtask, respectively. For instance, at the end of layer two, 25% of the pairs obtained to refuel in

layer one were modified to keep surveying even when fuel levels were low, resulting in significant

refueling performance drop from .87 to .37. Here, policy change directly led to subtask perfor-

mance to drastically decrease. The Q-learner experienced the same type of forgetting with the

refueling subtask, going from mastery of the subtask (refueling score of 1.0) to completely losing
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the skill (score of 0.0), where the UAVs could not perform the first step in the refueling sequence

at the end of layer two. The take off and survey subtask also experienced negative forgetting in

the third layer as the UAVs repaired refueling pairs damaged in the second layer in an attempt to

optimize on the overall task. These repairs led to a decrease from .74 to .44 in layer two’s subtask

performance and from .82 to .73 with the (1+1) EA and Q-learner, respectively.

To further confirm the occurrence of negative forgetting throughout these two layered learning

experiments, the maximized forgetting metric was used for diagnosis. Evaluated through the com-

pletion of the third layer, MFM classified that layered learning suffered from negative forgetting

with both the (1+1) EA and Q-learning. When the weights were equal (wi = .3333, where 1 ≤ i

≤ |W|), the (1+1) EA’s average MFM was -0.1514 (STD 0.1164) and -0.3415 (STD 0.1705) for

Q-learning. With unequal weights that placed more overall importance on performance of the ag-

gregate task (wRefuel = .25, wTakeOffAndSurvey = .25, and wUAV SurveyTask = .5), the EA’s MFM

was -0.1139 (STD 0.087) and -0.3772 (STD 0.1834) in Q-learning. By returning negative values,

all four MFM values indicate that over the course of learning, negative forgetting dominated the

learning process experienced by layered learning. The main contributing factor for these negative

forgetting values was the large drops in refueling subtask performance experienced in layer two

and the fact that refueling proficiency obtained in the first layer was never regained in layer three.

One consequence to the occurrence of negative forgetting was the amount of wasted learning time

used to regain lost proficiency in the final layer. Because important subtask optimized pairs were

forgotten by the start of the third layer, the learner had to perform double duty by balancing the

relearning of forgotten aspects of the refueling subtask with improving its taking off and surveying

functionality. This distraction significantly hurt overall task performance and led to sub-optimal

performance.

To demonstrate how detrimental the second layer was to the ability to refuel, a new independent
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run of the (1+1) EA was conducted. In this run, we wanted to determine how long it takes for

refueling proficiency that was negatively forgotten in layer two to be relearned to the same level

obtained at the end of layer one. To do so, we replaced layer three’s task of the UAV surveying

problem with a repeat of layer one; thus the decomposition was to learn to refuel, take off and

survey, and refuel again. Epoch 27,608 was the first to equal or improve layer one’s average high

refueling performance of 0.8925 (STD .1359). This meant that it took, on average, 7,608 epochs

from the start of the third layer and while focusing on solely relearning to refuel to regain lost

proficiency experienced in layer two; over 76% of layer three was spent on reverting pair changes

crucial to refueling or finding new ways to refuel. Additionally, of the 14.31 averaged pair changes

of the policy set introduced in layer two (STD 4.1248), 2.38 pairs (STD 1.5019) were restored

by the end of layer three. This small amount of repaired state-action mappings coupled with how

long it took to restore these forgotten pairs meant that it was a difficult problem for the learner to

revert the small subset of the modified pairs that affected refueling performance. It was difficult

because of all of the pairs in the policy set (14.23 pairs total per policy), 4% (.595 averaged pairs

per policy) of them needed to be identified as beneficial knowledge and reverted to their end of

layer one mappings. For a clearer understanding of how difficult reversion is, consider that the

affected state must be activated in an epoch, its pair has to then be reverted back to the pre-layer

two action (the process includes a uniformly random selection of one of the seven possible actions)

if mutation is activated via a random roll for that state, and no other pair could be modified to a

value that negatively affects the third layer’s subtask. That entire sequence is highly improbable to

happen early in the third layer. Because of how difficult it was to recover lost beneficial knowledge

in a decomposition where the final layer focused on repairing the forgotten refueling capability,

it is understandable that the original decomposition of refueling, then taking off and surveying,

and finally the UAV surveying problem saw its policy set never fully recover the lost subtask

proficiency, ultimately negatively affecting overall task performance.
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Table 3.15: (1+1) EA: Average Policy Set Composition Changes Per Layer Completion

Pair Changes Unchanged Pairs New Pairs

Avg STD Avg STD Avg STD
Layer 1 Layer 2 14.58 4.65 42.06 7.25 65.27 9.75
Layer 1 Layer 3 21.77 5.49 34.87 6.84 83.20 10.52
Layer 2 Layer 3 39.55 10.52 82.36 12.33 17.93 7.81

Table 3.16: Q-learning: Average Policy Set Composition Changes Per Layer Completion

Pair Changes Unchanged Pairs New Pairs

Avg STD Avg STD Avg STD
Layer 1 Layer 2 158.29 19.44 89.43 8.11 20.67 2.86
Layer 1 Layer 3 129.48 19.40 113.44 6.92 21.55 2.91
Layer 2 Layer 3 41.55 3.51 190.83 4.51 0.88 0.89

These composition changes caused subtask performance of the first two layers to drastically de-

crease during the next, immediate layer. When learning with the (1+1) EA, refueling proficiency

dropped from 87% of optimality earned at the end of layer 1 to 37% at the conclusion of layer

2. The second layer’s subtask earned a proficiency of 74% optimality but dropped to 44% in the

overall task’s layer. The same trend occurred with Q-learning. After mastering the ability to refuel

in layer 1 with a 100% optimality score, the agent team completely lost proficiency in layer 2 with

a 0% score, resulting in UAVs failing to perform any portion of the refueling subtask. The second

subtask also suffered a loss in proficiency: in the transition from layer 2 to layer 3, subtask profi-

ciency decreased from 82% to 73%. All of the average subtask proficiency changes for the (1+1)

EA trained policy set and Q-learning can be respectively found in Tables 3.17 and 3.18.
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Table 3.17: (1+1) EA: Average Subtask Performance after each Layer Completion

Refuel Take off & Survey UAV Surveying Task

Layer 1 0.87063 0.02907 0.00408
Layer 2 0.36500 0.73896 0.12144
Layer 3 0.28875 0.43652 0.55824

Table 3.18: Q-learning: Average Subtask Performance after each Layer Completion

Refuel Take off & Survey UAV Surveying Task

Layer 1 1 0.04846 0.04586
Layer 2 0 0.82444 0.12961
Layer 3 0.75313 0.72790 0.36917

Additionally, subtask proficiency of the previous layer was observed to sharply drop at the be-

ginning of each new layer. Figure 3.6 plots subtask performance throughout the entire learning

process, where each 10,000 epochs denotes a layer transition. This plot illustrates that after the

first transition, refueling proficiency of 0.86 decreases rapidly before stabilizing around .38 for the

remainder of layer 2. At the same time and consequently, performance of the take off and survey

subtask increase quickly until halting at .74. A similar performance drop as the refueling case

took place between layers 2 and 3, where the second layer’s subtask decreases suddenly after the

20,000th epoch, when the performance evaluation criteria switches to the overall task.

112



0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

b
ta

sk
 P

e
rf

o
rm

a
n

ce

0

0.1

0.2

0.3

0.4

0 5000 10000 15000 20000 25000

S
u

b
ta

sk
 P

e
rf

o
rm

a
n

ce

Epoch

Refuel Take off & Survey UAV Surveying Task

Figure 3.6: (1+1) EA Average Subtask Performance of all Runs

Lastly, after observing that the oldest learned subtask from layer 1 was the most volatile in terms

of subtask performance and composition changes, the number of pairs that were reverted to layer

1’s state at the end of layer 3 was used as an indicator of the damage caused by its subsequent

layers. From the (1+1) EA’s 14.58 pairs changed in layer 2, 13.33 were permanently damaged

at the conclusion of learning, and remained different from the first layer. Comparably, of the

158.29 pairs changed at the end of layer 2 from layer 1 with Q-learning, 119.43 were permanently

damaged. These high rates of permanent damage mean that once a refueling pair has been changed,

the learning algorithm found it extremely difficult to revert the change to restore lost proficiency.

These experiments show that not only do new layers modify existing pairs that are shared with

other layers, but proficiency is modified as well. Because subtasks were not retrained in this

decomposition, once a layer has completed, subsequent layers modified pairs relied on to perform

earlier learned subtasks. This occurrence is unfortunate for subtasks where their vital pairs are

modified in newer layers because, as the permanently damaged pair statistics have highlighted, the

probability for repair is modest (9% with the EA learner).
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Furthermore, the examined instances behaved greedily by focusing all of their attention to the

current layer’s subtask for optimization. Simply put, there was no incentive to keep pairs used in

older layers intact. This resulted in the learner purposely driving older, obtained knowledge out of

a policy if it conflicted with a pair that improved the latest layer’s subtask. This strong affinity for

pair changes that lead the policy set closer to the latest layer’s subtask optimality means the learner

favors plasticity over stability; consequently, the affinity means imbalance can exist in the layered

paradigm.

Local Optima

The occurrence of negative forgetting and the learner’s inability to fully regain the lost subtask

proficiency indicate that layer transitions have a great, negative affect in how the agents learn to

perform the overall task. In fact, it is the performance criteria changes and the overlapping layers’

ability to drive out conflicting, critical pairs. This can cause the policies to fall into a local optima

trap as the layers transition away from the refueling subtask. The result is that the layered learning

agents never gain the ability to perform the overall task optimally.

Again, an optimal solution to the UAV surveying task requires the UAVs to refuel and survey when

appropriate. Simply, without high proficiency of refueling the UAVs would run out of fuel before

reaching each coordinate. In the second layer specifically, pairs vital to refueling are replaced with

ones that optimize the second layer’s subtask. These policy changes force the policy set into a

local optima and requires the agents to relearn the difficult action sequence for refueling while also

learning to survey in the third layer if task optimization is to be reached.

This situation is a local optima trap because at the start of third layer, the policy is already optimized

for the second layer’s subtask of surveying until the UAVs crash due to lack of fuel. A local optima

is a sub-optimal solution to a problem that the learner becomes fixated on, often due to difficulty
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in finding a better solution. In this case, because the refueling subtask requires a specific sequence

of actions to be executed, it is difficult for the policy set to revert those key pairs and maintain

pairs important to surveying, all while improving the current policy set’s overall task performance.

Furthermore, each policy has no incentive to immediately repair lost refueling capability early in

the third layer because the overall task performance increases quickly with minimal pair changes

to the policy set at the end of the second layer. At this time, refueling pairs continue to be forgotten

as the learner finds it easier to survey without refueling.

Observations of the policy set after layer three reveals that two UAVs retained refueling ability

while two maintained layer two’s abandonment of refueling and surveyed until fuel was depleted.

Because it was more difficult to relearn the exact sequence of refueling for all four UAVs, the

policy set fell into the optima trap influenced by layer two and spent the remaining time in layer

three waiting for the improbable event of pair changes that re-enabled a UAV’s refueling ability

and survey when fuel was not low.

In comparison to the decomposition that solely relearned to refuel in the third layer, the original

decomposition to solve the UAV Surveying problem was only able to recover half of the pairs

necessary to regain forgotten refueling proficiency. At the end of the 30,000 epochs, the (1+1)

EA with the original decomposition was only able to recover an average of 1.25 (STD 1.252)

pairs changed in layer two compared to the relearning decomposition’s 2.38 (STD 1.5019). In

other words, the relearned decomposition repaired 4% of the negatively forgotten refueling pairs

while the original decomposition only repaired 2%, half the amount of pairs. Because the original

decomposition could not repair all of the forgotten critical refueling knowledge, the learner never

regained the lost subtask proficiency required to perform the overall task optimally.
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Layered Learning vs. Monolithic Learning

To highlight the overall negative impact the stability-plasticity imbalance can have on layered

learning and show how difficult it was for the learner to overcome negative forgetting and a local

optima trap, we compare the decomposition-based learning paradigm’s performance against that

of a standard, monolithic approach that learned to perform the UAV surveying task without de-

composition. The monolithic approach is constructed in the same manner as the layered learning

approach with the two exceptions that 1) there is only one layer (layered learning’s third layer)

that optimizes the policies on the overall task, and 2) the sole layer has the total number of epochs

(30,000) used in all three layers of the decomposition approach to learn to perform the task.

Although a widely accepted and standard form of learning, monolithic learning was expected to

struggle with the UAV surveying problem. The challenge was that each UAV policy had to learn to

perform the task by navigating through one large solution space, essentially mapping every reached

state to an appropriate action without the guidance of a decomposition. Lacking a decomposition

and the advantages of transfer learning and robot shaping, each of the monolithic learner’s policies

had to be optimized to recognize when to refuel and learn the correct refueling sequence, when

it is appropriate to survey, and how to take off, navigate to unvisited coordinates, and when to

transmit its visited coordinate buffer to other UAVs all at the same time to contribute to the team’s

performance.

With the decomposition used in layered learning, it was assumed that the layers would reduce

the solution space, making it more probable for the policies to be optimized on the task via the

sequential learning of three simpler subtasks. With the introduction of monolithic learning, a total

of four experimental runs were evaluated: layered and monolithic learning each using the (1+1)

EA and Q-learning with the limitation to 30,000 epochs.
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Table 3.19 displays the average performances of the overall task at the last epoch of each layer.

Figure 3.7 plots the average performance over the 30,000 epochs with the (1+1) EA. Table 3.20

provides the standard deviations of the final, average UAV surveying task performances and two-

sample Z-test results comparing the layered and monolithic learning results for each learning al-

gorithm used.

Table 3.19: Average UAV Surveying Task Performance at the Completion of Each Layer

Learning Algorithm Decomposition Layer 1 Layer 2 Layer 3

(1+1) EA
Monolithic 0.4091 0.5021 0.5316

Layered Learning 0.0041 0.1214 0.5582

Q-learning
Monolithic 0.0685 0.0690 0.3642

Layered Learning 0.0459 0.1296 0.3692
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Figure 3.7: Average UAV Surveying Task Performance Using (1+1) EA. Vertical bars at epochs
10,000 and 20,000 represent the layer transitions.
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These results revealed that layered and monolithic learning performed statistically similarly to each

other. In the (1+1) EA case, the monolithic learner averaged a task score of 0.5316 (STD 0.1189)

and layered learning averaged 0.5582 (STD 0.1506). The Q-learning resulted in monolithic learn-

ing averaging 0.3642 (STD 0.0277) and layered learning 0.3692 (STD 0.0461). Although both

approaches returned similar task averages, the difference in how they generated their policies in

the EA case are revealed in 3.7. Because the EA only kept policy changes that improved the current

subtask’s performance, layered learning experienced plateaus as the subtasks changed through out

the 30,000 epochs. The monolithic learner had only one subtask (the overall task) to maximize.

Therefore, learning monolithically produced a smoother performance curve as it constantly ac-

cepted policy changes that improved task performance over the learning duration.

Table 3.20: Standard deviations, Z-scores, and P-values (α = 0.05) of the final average UAV sur-
veying task performance scores.

Learning Algorithm Approach STD Layer 3
Two-Sample Z-Test
Z-score P-value

(1+1) EA
Monolithic 0.1189

-1.3863 0.1657Layered Learning 0.1506

Q-learning
Monolithic 0.0277

-0.9297 0.3525Layered Learning 0.0461

Conclusion

The negative effects of the imbalance, such as the waste of relearning cycles used to regain neg-

atively forgotten knowledge and policies falling in local optima traps, cause the decomposition-

based approach to perform as poorly as the monolithic case. The transitions to new layers with

new subtasks have a traumatic effect on the policies trying to converge toward optimal perfor-

mance. The identification of these layer transitions being the main culprit of the imbalance during
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both the Boolean-logic experiments and these UAV surveying problem demonstrations is notewor-

thy because these transitions are integral to layered learning; without them, layered learning could

not guide policies toward solving complex tasks via the mastering of simpler problems and transfer

the learned knowledge from one layer to another. Moreover, because similar transitions are used

in other learning approaches, this work’s demonstrations imbalance and identification of its nega-

tive effects and problem-source provides warning to other decomposition-based learners about the

pitfalls of the stability-plasticity dilemma.
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CHAPTER 4: STABILITY-PLASTICITY BALANCING TECHNIQUES

It has been demonstrated that layered learning can suffer from a stability-plasticity imbalance from

the preliminary work’s predator-prey, LOTZ Boolean-logic, and UAV Surveying problems. Layer

transitions have been identified as the main cause of the imbalance due to the lack of learned ben-

eficial knowledge retention, and the discovery that negative forgetting is a significant imbalance

side-effect. We now turn our attention to analyzing solutions to balance stability and plasticity to

improve the learning paradigm’s effectiveness. We first explore the possibility of using two exist-

ing techniques, subtask rehearsal and concurrent layered learning, discussed in this dissertation’s

background to mitigate, the imbalance’s negative effects. Subtask rehearsal has demonstrated the

ability to regain lost beneficial knowledge in other decomposition-based learners. Concurrent lay-

ered learning has outperformed standard layered learning because of its ability to learn a new

subtask while retaining an old subtask’s proficiency. We demonstrate that although these tech-

niques showed promise from the literature, under the conditions of our multi-agent problem, the

two approaches do not sufficiently address the imbalance problem in general. We then introduce a

solution that fills the gap of the other mitigation techniques by applying a complementary learning

system to layered learning, called complementary layered learning. We see that the best result oc-

curs when complementary layered learning is combined with other, more specialized approaches.

Finally, we compare and contrast the proposed system to standard layered learning, layered learn-

ing with subtask rehearsal, and concurrent layered learning to demonstrate the solution’s effective-

ness.
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Existing Balancing Techniques

Subtask rehearsal and concurrent layered learning (ConcLL) were examined because of their

promising results for improvement derived from the literature. Furthermore, because none of

the layered learning approaches discussed in the literature review remove pairs from policy and

only modify their state-action mappings, techniques such as deletion strategies are not relevant to

existing uses of the learning paradigm.

Subtask Rehearsal

Subtask rehearsal is a technique where a subtask is explicitly relearned. We apply subtask rehearsal

to layered learning by repeating a layer. The goal of this layer repetition is to regain lost knowledge

by reintroducing pairs used by one layer but forgotten in another.

To implement subtask rehearsal in layered learning and train the agent team to solve the UAV

Surveying Problem, we added an additional refueling layer after layer 2’s take off and survey and

before the final, aggregate layer. Now, the layer sequence is refuel, take off and survey, refuel, and

then the overall task. All layer compositions remain the same as described in the UAV Surveying

Problem section, with one exception: the time spent on the refueling subtask is split in two, creating

two separate layers both for refueling. In other words, the number of epochs in the first refueling

layer is reduced from 10,000 to 5,000 and a new, second refueling layer with 5,000 epochs is

created. Splitting the number of refueling epochs allows for the take off and survey and the overall

task layers to keep their original number of learning iterations and maintain a fair comparison with

standard layered learning’s performance.
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Direct Policy Search Performance Evaluation

After evaluating subtask rehearsal on the UAV Surveying Problem for 100 runs, following the same

experiment settings as in section 3, we can conclude that the technique does not improve layered

learning’s direct-policy search performance. Subtask rehearsal averaged a task performance of

.5547 (Std. Dev: .1016), showing no significant difference from layered learning’s .5582 (.0964).

Table 4.1 displays the rehearsal and concurrent layered learning performances on the UAV Survey-

ing Task with a two-tailed, multi-way Z-test using a Bonferroni adjusted α of 0.025. The Z-test

compares both techniques to layered learning’s task performance.

Table 4.1: (1+1) EA: UAV Survey Task Performance and Multi-Way Z-Test (α = 0.025)

AVG STD % Delta Z-Score P-Value

Layered Learning 0.5582 0.0964
Subtask Rehearsal 0.5547 0.1016 -0.0064 0.2548 0.7989

ConcLL 0.5382 0.0895 -0.0360 1.5259 0.1270

Subtask rehearsal performed as badly as standard layered learning because it suffered from the

same problem as its predecessor: vital pairs of a subtask were forgotten during the optimization of

a new subtask, and the final layer could not recover them.

Although the addition of a second refueling layer resulted in a recovery of the subtask’s lost pro-

ficiency experienced by layer 2, it was at the expense of the ability to take off and survey. In

standard layered learning, a 58% refueling performance decrease took place between the first two

layers. A similar 54% decrease occurred from layer 1 to layer 2 with subtask rehearsal. Layer 3

not only recovered the lost proficiency from layer 1, which averaged a refueling performance of

0.7919, but exceeded its performance by averaging a refueling score of 0.8569. Conversely, the

take off and survey subtask saw a loss in proficiency during the second refueling layer, resulting in
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the subtask score to drop from .7384 to .5389, a 27% decrease. These subtask fluctuations meant

that the policy set entered the final layer with a high refueling performance and a moderate take off

and survey capability, the same problem experienced with layered learning but with the subtasks

swapped. Table 4.2 displays subtask performances at the end of each layer.

Table 4.2: (1+1) EA: Subtask Performance Per Layer for Subtask Rehearsal

Refuel Take off & Survey UAV Surveying Task

Layer 1 0.7919 0.0291 0.0042
Layer 2 0.3631 0.7384 0.1139
Layer 3 0.8569 0.5389 0.1021
Layer 4 0.4488 0.4294 0.5547

Under subtask rehearsal, although the third layer recovered lost refueling proficiency, the chance

to relearn lost knowledge for the take off and survey subtask relied on the final layer. This re-

sponsibility placed on the final layer meant that optimization was split to focus on both of the first

two subtasks with a random, unguided search, as experienced by standard layered learning. This

solution search is difficult, resulting in sub-optimal performance in standard layered learning and

now with rehearsal.

The high number of permanently damaged take off and survey pairs supports the claim that the

rehearsal method did not overcome the difficulty of recovering forgotten pairs. At the completion

of all of the layers, each policy only averaged 1.41 (1.06) recovered pairs that were changed be-

tween the take off and survey layer and the second refueling layer, leaving 13.75 (5.75) pairs per

policy permanently damaged. This low amount of reverted pairs is similar to layered learning’s

small average of 1.25 refueling pairs that were recovered in the final layer.

Lastly, in terms of forgetting, subtask rehearsal performs very closely to standard layered learning.

The MFM Even metric, which weights each of the three subtasks the same, evaluated standard
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layered learning’s negative forgetting at -0.1514 and rehearsal at -0.1495. Similarly, MFM 50,

which weights the overall task at .5 and the remaining subtasks at .25 each, evaluated layered

learning at -0.1139 and rehearsal at -0.1003. Both maximized forgetting metric scores show how

similar both approaches perform and highlight that negative forgetting was not mitigated with the

rehearsal technique. Table 4.3 displays all of the average forgetting scores for all of the tested

(1+1) EA techniques. Table 4.4 displays their standard deviations.

Table 4.3: (1+1) EA: Average Forgetting Scores

LL Rehearsal ConcLL CLL CLL-Reh CLL-Conc

PD 0.000018 0.000018 0.000021 0.000021 0.000024 0.000022
DFM Even 0.000014 0.000015 0.000017 0.000018 0.000021 0.000022
MFM Even -0.151428 -0.149456 -0.070811 -0.114623 -0.117318 -0.029358

DFM 50 0.000015 0.000016 0.000019 0.000019 0.000022 0.000022
MFM 50 -0.113855 -0.100327 -0.041490 -0.086355 -0.079330 -0.017407

Table 4.4: (1+1) EA: Standard Deviations of the Forgetting Scores

LL Rehearsal ConcLL CLL CLL-Reh CLL-Conc

PD 0.000195 0.000212 0.000218 0.000231 0.000246 0.000202
DFM Even 0.000232 0.000277 0.000238 0.000242 0.000275 0.000232
MFM Even 0.116387 0.091762 0.084097 0.079153 0.058851 0.032020

DFM 50 0.000188 0.000198 0.000172 0.000197 0.000210 0.000164
MFM 50 0.087000 0.060697 0.048898 0.059042 0.038924 0.018443

Value Search Performance Evaluation

Subtask rehearsal with Q-learning improved layered learning’s value search performance by 11%,

averaging a task performance of 0.4113 (0.032). Table 4.5 shows the Z-test results comparing
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subtask rehearsal and concurrent layered learning to standard layered learning. The rehearsal tech-

nique’s performance was significantly different than that of layered learning even though the first

two layers followed the trend set by layered learning of obtaining optimal refueling proficiency

during the first layer and completely losing all of that subtask’s performance by the end of the

second layer. The third layer, which repeated optimization on the refueling subtask, performed

as hoped. This third layer regained all of the lost proficiency by earning a refueling score of 1.0.

Additionally, performance for the take off and survey subtask only decreased by 17% from layer 2

to layer 3, resulting in the final layer to be seeded with a refueling proficiency of 1.0 and 0.7047 for

refueling and take off and survey, respectively. Table 4.6 shows the average subtask performance

changes per layer completion.

Table 4.5: Q-learning: UAV Survey Task Performance and Multi-Way Z-Test (α = 0.025)

AVG STD % Delta Z-Score P-Value

Layered Learning 0.3692 0.0461
Rehearsal 0.4113 0.0320 0.1142 7.8312 < 0.0001
ConcLL 0.4868 0.1260 0.3186 -8.7673 < 0.0001

Table 4.6: Q-learning: Subtask Performance Per Layer for Subtask Rehearsal

Refuel Take off & Survey UAV Surveying Task

Layer 1 1.0000 0.0508 0.0567
Layer 2 0.0000 0.8212 0.1297
Layer 3 1.0000 0.7047 0.9574
Layer 4 0.7531 0.7345 0.4113
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Concurrent Layered Learning

The second technique examined to see if it can improve layered learning was Concurrent layered

learning (ConcLL). ConcLL is an existing enhancement to learning paradigm that simultaneously

learns two subtasks. ConcLL aims to retain older subtask knowledge by factoring in proficiency

of this older subtask into the current epoch’s performance evaluation, although a newer subtask is

also being optimized on at the same time. We apply ConcLL to the UAV Surveying problem by

evaluating the policy set’s performance on the refueling and take off and survey subtasks during

each epoch of belonging to layers in between the first and last layer; we call these layers concurrent

layers. Individual, raw subtask performance evaluation remains the same as previously defined.

For each concurrent layer, we get two bounded [0, 1] performance scores, one for refueling and

one for taking off and surveying. We then weigh each score based on weights defined in the layer

(the weights together sum to 1) and add the weighted values together. This value is the policy set’s

layer performance for that epoch. For instance, layer 2 weighs refueling at .90 and take off and

survey at .1. At any epoch during this second layer, the refueling performance score is multiplied

to the weight and added to the multiplication of the take off and survey performance score and its

weight. In the tested layer sequence, there were 7 layers, 5 of which were consecutive concurrent

layers that follow this scheme, each with different weights. The first and final layers were exactly

the same as standard layer learning’s layer configuration for refueling and the UAV Surveying

Problem layer, respectively. The first layer remained the same to allow refueling optimization to

occur without having influence of the take off subtask.

The concurrent layers and their weight scheme gradually adds the take off and survey ability to the

policy, which facilitates a kind of gradual lending from one task to another, rather than abrupt task

change. The weights for refueling and taking off and surveying were as follows: layer 2 (refueling

.9, take off and survey .1), layer 3 (.8, .2), layer 4 (.7, .3), layer 5 (.6, .4), and layer 6 (.5, .5). This
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weight sequence was determined by informal parameter sweep intended to give the best possible

results.

Layers 1 and 7 each had 10,000 epochs while the concurrent layers had 1,000 each, for a total of

25,000 epochs. The reason for a difference of 5,000 epochs compared to standard layered learning

and subtask rehearsal is because two simulation runs, one for refueling and one for taking off and

surveying, has to be made for layers 2-6; this accounts for a total of 10,000 simulations for these

layers and a total of 30,000 for all of the layers combined. With an equal number of simulation

runs, we can make a fair performance comparison between ConcLL and the other tested approaches

because each was given the same amount of time to optimize overall task performance.

Direct Policy Search Performance Evaluation

These ConcLL experiments also follow the same settings as described in the demonstration chap-

ter. From their results, we conclude that just like subtask rehearsal, ConcLL does not improve lay-

ered learning’s direct-policy search performance. ConcLL averaged a task performance of .5382

(.0895), not significantly different from layered learning’s .5582 (.0964). Table 4.1 displays the

statistical test results that compare the ConcLL’s task performance to layered learning’s.

The shared sub-optimal performance ConcLL has with standard layered learning is attributed to

the technique’s attempt to retain refueling capability while gradually learning how to take off and

survey. By progressively increasing the influence of the take off subtask to a weight of 0.5 before

the final layer, the technique allows the refueling subtask to dominate the policy. This domination

stifles learning how to take off and survey by slowing down the learning rate of this subtask com-

pared to how fast the subtask’s proficiency increased in the other approaches. Table 4.7 contains

all of the subtask performances for ConcLL at the end of each of the seven layers.
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Table 4.7: (1+1) EA: Subtask Performance Per Layer for ConcLL

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.8888 0.0302 0.0085
Layer 2 0.8994 0.0920 0.0185
Layer 3 0.9069 0.1241 0.0239
Layer 4 0.9150 0.1656 0.0401
Layer 5 0.9125 0.2025 0.0404
Layer 6 0.8794 0.2804 0.0584
Layer 7 0.4713 0.3895 0.5382

Ultimately, ConcLL gives the final layer a challenge experienced by subtask rehearsal of having to

simultaneously optimize the policy set on one lower performing subtask while maintaining, if not

improve, proficiency on the other. In fact, both ConcLL and standard layered learning had subtask

proficiencies that mirrored each other going into the final layer. At the end of layer 2 in standard

layered learning, refueling performance was at 0.365 (0.2132) and the take off and survey was at

0.739 (0.0391). ConcLL went into its final layer with the opposite scenario of standard layered

learning by having a high refueling proficiency and a moderate take off and survey performance

capability, 0.8794 (0.1219) and 0.2804 (0.1355), respectively. The similar levels of proficiencies

meant that ConcLL went into the final layer with similar difficulties as standard layered learn-

ing and the subtask rehearsal technique, explaining why ConcLL’s final task performance is not

significantly different from the other two techniques.

Finally, ConcLL experienced the least amount of negative forgetting compared to the other two

tested techniques. Table 4.3 displays the average forgetting metric scores. From this table, we see

that ConcLL received a MFM Even score of -0.0708, more than half of that of standard layered

learning and subtask rehearsal, and an MFM 50 of -0.415. These low forgetting values are due to

the technique’s gradual convergence in subtask weights, which resulted in refueling proficiency to

noticeably decrease starting in layer 5.
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In short, subtask rehearsal and ConcLL did not enhance task performance of layered learning

for a direct policy search. All three techniques suffered from the same challenge that ultimately

limited task performance. The common difficulty was that the terminal layers all began with an

imbalance in proficiency between the refueling and take off and survey subtask. In standard layered

learning and subtask rehearsal, the difference in subtask proficiency was caused by the policies

negatively forgetting pairs as the learner transitioned from one layer to another. In ConcLL, the

changes in refueling and the take off and survey subtask performance was caused by the gradual

convergence of subtask weights, which resulted in the learner favoring refueling. These imbalances

caused the final layer to have the responsibility of maintaining a high capability in one subtask

while searching for solutions that will increase proficiency in the other, under-performing subtask.

Another contributing factor to these techniques’ sub-optimal performance was that the (1+1) EA’s

search for optimality lost gradient across the solution space. This unguided search proved costly,

specifically in the final layer, because of the learning time wasted evaluating pairs that do not

improve overall performance. Neither of the two techniques provide any mechanisms to improve

the final layer’s solution space navigation. Lastly, although subtask rehearsal and ConcLL provide

some incentive to retain learned knowledge or provide the capability to regain lost knowledge, vital

pairs were still forgotten and a balance between old and new information was not achieved.

Value Search Performance Evaluation

ConcLL with Q-learning produced a 32% task performance increase over standard layered learn-

ing’s value search. ConcLL averaged 0.4868 (0.1260) compared to layered learning’s 0.3692

(0.0461). Table 4.5 contains results from the multi-sample Z-test comparing ConcLL, subtask

rehearsal, and layered learning using Q-learning.

As witnessed in the rehearsal technique, after the first layer was complete, refueling proficiency
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was optimal under ConcLL. The two techniques began to differ in performance afterwards. As the

weights for refueling decreased while take off and survey’s weight increased towards .50, refueling

proficiency immediately dropped to 0.1669 (0.185) at the end of layer 2 and gradually decreased

to 0.1294 (0.1379) by the end of layer 6. Consequently, layer 2 resulted in the take off and survey

subtask performance to increase to 0.774 (0.0321) and stabilize until the end of the final layer,

resulting in a final take off and survey average of 0.7317. The introduction of take off and survey

subtask performance to the learner’s policy evaluation immediately modified overlapping pairs

shared between the two subtasks to favor the taking off and surveying capability. It was only at the

final layer, where both subtasks implicitly contributed towards the policy evaluation, did refueling

regain lost performance, averaging 0.7556 at the end of the learning process. Table 4.8 displays

each subtask performance value per layer completion.

Table 4.8: Q-learning: Subtask Performance Per Layer for ConcLL

Refuel Take Off & Survey UAV Surveying Task

Layer 1 1.0000 0.0390 0.0433
Layer 2 0.1669 0.7740 0.1889
Layer 3 0.1544 0.7793 0.1634
Layer 4 0.1338 0.7789 0.1549
Layer 5 0.1369 0.7803 0.1351
Layer 6 0.1294 0.7798 0.1375
Layer 7 0.7556 0.7317 0.4868

Direct Policy Search vs. Value Search

The discrepancies between each of the tested balancing techniques using the (1+1) EA and Q-

learning is attributed to both learning algorithms belonging to different types of reinforcement

learning and having different search dynamics. We point to two different algorithm characteristics
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that make the EA and Q-learning react differently to subtask rehearsal and ConcLL.

In these experiments, Q-learning was seen to be more sensitive than the EA. The sensitivity of

the value search caused the learner to experience extremes in performance, resulting in subtask

optimality to be achieved quickly and to “catastrophically” lose proficiency when a new subtask

was learned. This same sensitivity allowed the policy set to easily recover lost proficiency. The

sensitivity was witnessed in how each of the Q-learning approaches always achieved optimal re-

fueling performance high proficiency in the take off and survey task but also lost refueling ability

to zero or very low rates as the learning process progressed. Direct policy search did not expe-

rience such drastic proficiency changes; although high subtask performance was experienced and

then decreased, neither subtask received optimal performance at any point nor did proficiency ever

get completely lost like those in Q-learning. Because the Q-learner experienced more sensitivity

and had to overcome variability in subtask performance, more time was spent on relearning lost

subtask proficiency than the EA and resulted in lower task performance.

Next, we believe the difference in how the policy was represented attributed to why both rehearsal

and ConcLL significantly improved UAV Surveying task performance with Q-learning’s value

search but not in the (1+1) EA. Because the EA is represented by as a direct policy search, each

state maps directly to a single action. When the learning algorithm modified a pair, the old map-

ping was removed from the learning system until the learner stumbled randomly across the pair

again. Q-learning’s use of a Q-table meant that the selection of a state-action mapping was always

persistent in the policy but was dependent on the utility function and ε value. For example, al-

though a beneficial pair’s utility value could be lowered to make that action selection less likely in

the future, to re-select the pair is more likely than that experienced by the EA. Because the Q-table

kept state-action mappings persistent, the balancing techniques were able to reevaluate the lower

utility actions more frequently. If these actions were beneficial to the current layer’s subtask per-

formance criterion, then they would be rewarded, their utility value modified, and the probability
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of future selection increased. Subtask rehearsal and ConcLL encouraged these pair reevaluations,

catering to the characteristics of Q-learning.

It is clear that ConcLL can sometimes be beneficial in specialized cases, such as the Q-learning

example for this problem because of the reasons just discussed; however, it is also clear that neither

rehearsal nor ConcLL represents a reliable solution to the stability-plasticity dilemma in general.

Even though subtask rehearsal and ConcLL did improve task performance in the value search,

we continue our exploration for solutions that mitigate the negative effects of stability-plasticity

imbalance and increase task performance for direct policy search.

Complementary Layered Learning

Complementary layered learning (CLL) is the balancing augmentation to layered learning that is

introduced in this dissertation. It is inspired by complementary learning systems employed by

neural networks to mitigate catastrophic forgetting when imbalance is expected in their systems.

Just as in traditional complementary systems, CLL has dual memory storage regions used to retain

previously learned beneficial knowledge that could be prematurely removed from the policy. CLL

is designed to work by itself or in conjunction with subtask rehearsal or CLL.

The trend in complementary learning systems is to split the memory storage region into short- and

long-term distinctions and make action selection by constantly accessing the two. The proposed

enhancement to layered learning differs from these systems by augmenting the existing policy with

an indexed collection of obtained pairs that are only accessed during the final layer. In the proposed

system, the policy keeps its original functionality of being the action selection mechanism that is

optimized through the layers. We add to the paradigm a simple indexed collection of pairs that the

policy accesses when making pair updates. Once learning is complete, the indexed collection can
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be discarded.

The process of CLL is as follows: at the end of a non-terminal layer, all pairs in the policy are

copied into the indexed collection, permitting duplicates as new layers add their pairs. The terminal

layer uses the indexed collection to modify the policy for its subtask optimization by reintroducing

pairs obtained in earlier layers to the policy. Depending on the employed learning algorithm, the

policy can either update its pairs after the penultimate layer has copied its pairs to the indexed

collection (before the final layer begins) or during the terminal layer. For the case of updating the

policy before the terminal layer, all pairs in the policy are iterated through and their mappings or

utility function values are updated based on the corresponding pairs in the indexed collection. In

the alternative case, at points during a layer that update policy pairs, individual pair updates are

made based on corresponding pairs found in the indexed collection.

For instances of direct-policy search, all mapping updates are determined by a randomly generated

number and a fixed probability of selecting from the indexed collection. If the random value is in

favor of using the indexed collection, then the policy pair is updated to be a random pair from the

indexed collection that matches the policy pair’s state. A random pair from the collection is chosen

because multiple pairs matching the policy pair’s state is a possibility. For random draws against

the indexed collection, the policy pair is updated to map to a randomly selected action from the set

of all possible actions. The use of a random draw allows for both exploration and exploitation to

take place in the final layer. High indexed collection probability favors exploitation and low favors

exploration.

By updating the policy in the aggregate, final layer based on tested pairs from the indexed collec-

tion, the learning paradigm has an increased chance of regaining forgotten beneficial knowledge

than the standard approach. This increased probability is attributed to the indexed collection’s ser-

vice as a knowledge bank, or a snap shot, of the policy after each subtask has been optimized. The
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collection of tested pairs allows policy updates to not only rely on randomness for optimization but

can also make policy changes based on pairs that at least one layer has considered beneficial.

To provide more explanation of CLL, we define how the new augmentation is implemented in the

UAV Surveying Problem with the (1+1) EA and Q-learning algorithms.

In the (1+1) EA, a hash table is used as the indexed collection, where the state is the key and the

action is the value. When a layer is complete, all pairs in the policy are inserted into the indexed

collection’s hash map, allowing duplicates during collisions. In the final layer, the mutation oper-

ator randomly generates a number between 0 and 1, both inclusive. If that number is less than .75,

which represents a 75% probability of selecting from the indexed collection, then the pair being

mutated will randomly select a pair in the indexed collection’s hash table that shares the state. If

the randomly generated number is greater than or equal to .75, then the pair selected for mutation

is given a random action from the set of all possible actions the UAV can perform.

In the Q-learning implementation, a hash table is created for the indexed collection, setting the

state-action mapping as the key and a Q-value as the value. Recall that we refer to the Q-table

as the policy and changes to a state-action’s Q-value is how action-selection is modified. When

a layer is complete, pairs for each state with the highest Q-value are copied to the hash table,

allowing duplicates upon collision and copying all pairs that share the same high Q-value for a

given state. For example, multiple pairs may share a state and map to different actions but have the

same Q-value. When the penultimate layer has finished copying its pairs to the indexed collection,

the Q-value for every pair in the policy is set to the Q-value of the corresponding pair in the indexed

collection. If there are multiple pairs in the index collection that share a state-action mapping, then

their average is calculated and the corresponding pair in the policy is updated to it. Unlike the (1+1)

EA implementation, when all of the pairs in the policy have completed their Q-value updates, the

final layer begins and updates its Q-table (policy) in the same manner as its preceding layers.
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Performance Comparison to Standard Layered Learning

To evaluate the effectiveness of CLL, we trained the autonomous UAV team using the proposed

approach and compared results to those of standard layered learning. All of the experiment param-

eters, learning algorithms, and layer configurations were exactly the same as the UAV Surveying

Problem implementation with layered learning, only now using the complementary learning sys-

tem.

From 100 experiment trials of each algorithm, CLL produced a higher task performance than

standard layered learning in both the direct policy search using the (1+1) EA and value search

with Q-learning. In the direct policy search, CLL averaged a UAV Surveying task score of 0.631

(0.142) compared to layered learning’s 0.5582 (0.964), a 13% significant increase in task profi-

ciency. When using Q-learning, CLL increased layered learning’s task performance from 0.3692

(0.0461) to 0.4011 (0.831), a 9% increase. The increase in performance is caused by CLL’s ability

to reinsert forgotten beneficial knowledge back into the policy for direct policy search and boost

utility values of diminished vital pairs in the value search. Table 4.9 displays UAV Survey task per-

formance averages, standard deviations, and Z-tests results for the (1+1) EA experiments. Table

4.10 displays the Z-test results of the Q-learning experiments.

Table 4.9: (1+1) EA: Average UAV Survey Task Performance and Z-Test Results (α = 0.017)

AVG STD % Delta Z-Score P-Value

Layered Learning 0.5582 0.0964
CLL 0.6310 0.1420 0.1304 -4.2395 < 0.0001

CLL-Reh 0.7139 0.1447 0.2789 -8.9543 < 0.0001
CLL-Conc 0.5670 0.1264 0.0158 -0.5536 0.5798
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Table 4.10: Q-Learning: Average UAV Survey Task Performance and Z-Test Results (α = 0.017)

AVG STD % Delta Z-Score P-Value

Layered Learning 0.3692 0.0461
CLL 0.4011 0.0831 0.0866 -3.3626 0.0008

CLL-Reh 0.4023 0.0347 0.0898 -5.7506 < 0.0001
CLL-Conc 0.4892 0.1337 0.3252 -8.4881 < 0.0001

Direct Policy Search Performance Evaluation

In the (1+1) EA case, lost beneficial knowledge is regained by the mutation operator having a 75%

chance of updating a pair to be one that assisted in the optimization of a subtask from the first two

layers. For instance, if the indexed collection contained two pairs for a state, one pair that assisted

refueling to achieve a high performance score of 0.8644 at the end of the first layer and one pair

that led to a take off and surveying performance score of 0.7423 at the end of the second layer, and

if the random roll selected from the indexed collection, then there was a 50% probability that the

updated action would benefit either subtask. On the other hand, if a random action was selected,

such as what takes place in layered learning, subtask rehearsal, and ConcLL, then the probability

of mutating a pair to something that is beneficial is less likely.

The benefit of having a high probability of selecting a tested pair that aided in a subtask’s high

performance takes place during the third layer. Here, both of the first two layers’ subtask perfor-

mances converge and stabilize quickly. Figure 4.1 displays performance for each of the subtasks

during CLL’s learning. Figure 3.6 displays performance for each of the subtasks in standard lay-

ered learning. When we compare the sharp decrease in performance of refueling and taking off

and surveying during the first 2,000 epochs of the final layer, we see that CLL’s subtask perfor-

mance drops are not as drastic as in layered learning. Additionally, refueling subtask performance

quickly stabilizes, while take off and survey performance gradually increases. Table 4.11 displays
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the average performance of every subtask at the end of each layer; Table 4.12 displays their stan-

dard deviations. Layered learning ended its learning with refueling proficiency of 0.2888 and take

off and survey with 0.4365. With CLL, refueling averaged 0.49 and take off and survey averaged

0.5736 at the end of the final layer; that is a 70% and 31% increase per subtask performance,

respectively. From these results, we conclude that CLL outperformed standard layered learning.

Table 4.11: (1+1) EA: Average CLL Subtask Performance Per Layer Completion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.8644 0.0291 0.0046
Layer 2 0.3813 0.7423 0.1184
Layer 3 0.4900 0.5736 0.6310

Table 4.12: (1+1) EA: Standard Deviation of CLL Subtask Performance Per Layer Completion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.1332 0.0604 0.0076
Layer 2 0.2225 0.0394 0.0643
Layer 3 0.2227 0.0961 0.1420

Corresponding to CLL’s improved performance over layered learning’s direct policy search, the

forgetting metrics confirm that significantly less negative forgetting took place between the paradigm

and its augmentation. Layered learning received an MFM Even negative forgetting score of

-0.1514 (.1164) while CLL scored -0.1146 (.07915). A two-tailed Z-test with an α of 0.05 showed

that CLL’s negative forgetting decrease was significant with a z-value of -2.6145 and a p-value

of 0.0089. MFM 50 provided the same conclusion that CLL’s negative forgetting was lessened:

layered learning’s MFM 50 score was -0.1139 (0.087) and CLL produced -0.0864 (0.5904), with

z-value of -2.6155 and p-value 0.0089. Tables 4.3 and 4.4 displays all of the forgetting averages

and standard deviations.
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Figure 4.1: (1+1) EA Average Subtask Performance with CLL of All Runs

The decrease in the amount of negative forgetting experienced by CLL is directly related to the

number of pairs that were repaired in the final layer. Of the 13.86 pairs per policy obtained during

layer 1’s optimization of the refueling subtask that were modified in layer 2, CLL reverted 3.67

pairs to their layer 1 mapping in layer 2, resulting in a 194% increase over layered learning’s

1.25 repairs per policy. It should be noted that layered learning averaged 14.58 (4.6478) pair

changes from layer 1 to layer 2. Because of the increase in repaired pairs that were reverted to

their mappings originally found in layer 1, there was an increase in probability that some of those

relearned pairs were beneficial knowledge to the refueling subtask and aided in its performance at

the end of learning.

To further compare layered learning to CLL under direct policy search, we turn to the transfer

learning metrics transfer regret, transfer ratio, and calibrated transfer ratio. Used to compare our

control (layered learning) to our experimental transfer learning approach (CLL), all three metrics

confirm that in our experiments, CLL outperformed layered learning. In order to make the metrics

applicable to both our EA and Q-learning algorithms, we used an abbreviated form of these metrics,
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where instead of tracking across all of the epochs, we sampled overall task performance at three

critical points of learning: the end of each layer. This reduced sample was used because Q-learning

employs an ε-increasing technique that purposely does not use the highest Q-value action in non-

terminal epochs of each layer. All factors and variables for these metrics were samples from

the same three points for both layered learning and CLL. Transfer ratio was 1.1026, favoring

the CLL experimental approach because its performance integral ratio was greater than 1. Both

transfer ratio (0.1127) and calibrated transfer ratio (0.0323) also indicated that better performance

occurred in CLL because their values were greater than zero. In every respect, CLL resulted in an

improvement upon standard layered learning and clearly made measurable progress mitigating the

stability-plasticity imbalance.

Value Search Performance Evaluation

The complementary learning system’s augmentation to layered learning provided a boost in task

performance going into the final layer. By updating the Q-table based on averages from the indexed

collection, the policy increased the chance to reevaluate beneficial pairs that have seen their Q-

values decrease as a result of the take off and survey layer. Recall that the policy experiences all of

the subtask proficiency changes as standard layered learning up to the third layer, only diverging

from the original process by updating Q-values based on the indexed collection before the final

layer begins. By having every other layered learning process untouched, this made it clear that the

only difference between layered learning and CLL was this utility seeding inserted between layer

2 and 3, and that it is actually the cause for the performance increase.

Table 4.13 displays the average subtask performance at the end of each layer. Table 4.14 displays

their standard deviations. From these layer transitions, we see that again, optimal refueling perfor-

mance was gained in layer 1, followed by an extreme loss of capability and an average refueling
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score of 0.0, and refueling proficiency was regained to 0.7506 (0.0062) by the end of layer 3. The

take off and survey subtask performance is similar to that of standard layered learning as well. In

this subtask, performance went from 0.0476 in layer 1 to 0.8187 in layer 2, finalizing at 0.7321.

Again, the similarity between the standard layered learning and CLL lies in the final layer’s up-

dated Q-table and how it boosted Q-values of more beneficial pairs than the standard approach.

Table 4.13: Q-learning: Average CLL Subtask Performance Per Layer Completion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 1.0000 0.0476 0.0648
Layer 2 0.0000 0.8187 0.1290
Layer 3 0.7506 0.7321 0.4011

Table 4.14: (Q-learning: Standard Deviation for CLL Subtask Performance Per Layer Completion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.0000 0.0612 0.1300
Layer 2 0.0000 0.0270 0.0042
Layer 3 0.0062 0.0245 0.0831

Once again, we evaluated the experimental approach of CLL to our control, standard layered learn-

ing, using the transfer learning metrics. The measures produced a transfer ratio of 1.0923, transfer

regret of 0.1189, and a calibrated transfer ratio of 0.0205. Each of these values indicates there was

in improvement in task performance using CLL over the control approach. These results further

conclude that under these experiment conditions and overall task, CLL improved standard layered

learning in both direct policy and value search.
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Complementary Layered Learning Applied to Balancing Techniques

Due to the success in improving task performance of standard layered learning with the proposed

complementary augmentation in both direct policy search and value search, complementary lay-

ered learning was applied to subtask rehearsal and concurrent layered learning. The aim of the

application was to determine if the complementary learning system can be further improved by

combining it with a more specialized balancing technique.

For these evaluations, minimal changes were necessary to apply CLL to subtask rehearsal and

ConcLL. In fact, both rehearsal and ConcLL’s layer configuration and implementation remained

the same as described earlier in this chapter. CLL was applied by adding the same indexed col-

lection as in the proposed CLL for both the (1+1) EA and Q-learning cases and following the pair

integration and policy update procedures that were used to augment the complementary system

to standard layered learning. Again, the same UAV Surveying task, 100 trials, layer configura-

tion, and experiment settings were used to test the effectiveness of CLL with subtask rehearsal

(CLL-Reh) and complementary concurrent layered learning (CLL-Conc).

Direct Policy Performance

Of all of the approaches studied in this work, CLL-Reh with the EA produced the highest task per-

formance, averaging 0.7139 (0.1447); that is a 28% improvement over standard layered learning,

a 28% improvement to standard layered learning with rehearsal, and a 13% increase over CLL.

The difference in refueling subtask performance indicates how well each of the approaches retains

and relearns older information. Figure 4.2 graphs the refueling performance of layered learning,

CLL, and the two rehearsal techniques. From the graph, we see that layered learning’s refueling

ability decreases rapidly once layer 2 begins (after the first 10000 epochs) and does not regain
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lost proficiency. Standard rehearsal regains lost proficiency during its second refueling layer but

also sees the subtask’s performance decrease in the subsequent layer. CLL experiences the same

refueling decrease as standard layered learning but regains some of its forgotten proficiency in

layer 3. Complementary layered learning with rehearsal saw a combination of the positives of

CLL and rehearsal: after the second refueling layer, refueling performance was high, and after the

initial performance drop in layer 3 to .6481, subtask proficiency stabilized and began to increase

to .7831.

Adding the complementary system to ConcLL did not enhance task performance over standard lay-

ered learning under direct policy search. With the (1+1) EA, CLL-Conc averaged 0.567 (0.1264),

not improving performance over standard layered learning and significantly underperformed com-

pared to CLL’s average of 0.631. A positive was that CLL-Conc did improve performance over

concurrent layered learning by 5%. Table 4.10 contains task averages and standard deviations of

the complementary direct policy search approaches. Tables 4.15 through 4.18 displays average

and standard deviation of the task performance per layer completion for each of the direct policy

search approaches.

Table 4.15: (1+1) EA: Average CLL-Reh Subtask Performance Per Layer Completion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.8206 0.0242 0.0062
Layer 2 0.3344 0.7423 0.1075
Layer 3 0.8488 0.5461 0.0959
Layer 4 0.6769 0.5617 0.7139
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Table 4.16: (1+1) EA: Standard Deviation of CLL-Reh Subtask Performance Per Layer Comple-
tion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.1217 0.0398 0.0109
Layer 2 0.2287 0.0368 0.0119
Layer 3 0.1244 0.1145 0.0460
Layer 4 0.1865 0.0945 0.1447

Table 4.17: (1+1) EA: Average CLL-Conc Subtask Performance Per Layer Completion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.8869 0.0278 0.0056
Layer 2 0.8975 0.0936 0.0168
Layer 3 0.9075 0.1374 0.0230
Layer 4 0.9000 0.1906 0.0372
Layer 5 0.8988 0.2385 0.0448
Layer 6 0.8825 0.2849 0.0493
Layer 7 0.7388 0.3963 0.5670

Table 4.18: (1+1) EA: Standard Deviation of CLL-Conc Subtask Performance Per Layer Comple-
tion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.1078 0.0515 0.0089
Layer 2 0.1113 0.0887 0.0291
Layer 3 0.1040 0.1130 0.0194
Layer 4 0.1035 0.1201 0.0431
Layer 5 0.0975 0.1207 0.0559
Layer 6 0.1112 0.1319 0.0435
Layer 7 0.1836 0.1123 0.1264
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To determine what happened to the policies during the (1+1) EA using CLL-Reh and CLL-Conc

and why there were improvements in task performance, we analyzed the amount of pair repairing

that took place in the final layer per policy. CLL-Reh repaired 3.81 (2.4071) refueling pairs lost

during the second layer and 3.72 (2.4903) take off and surveying pairs lost during the second refuel-

ing layer. Standard layered learning with subtask rehearsal recovered 1.26 (1.2052) refueling pairs

and 1.41 (1.0592) take off and survey pairs. Similarly, CLL-Conc repaired 2.46 (2.0514) refueling

pairs from layer 1 while ConcLL only repaired 1.15 (1.1948). Because of the increased amount

of refueling pairs repaired in the final layer, especially compared to standard layered learning’s

average of repaired refueling pair repairs of 1.25 (1.252), it is concluded that the complementary

system did improve task performance by reintroducing lost beneficial in the final layer.

Finally, from the forgetting metrics of MFM Even and MFM 50, CLL-Reh experienced signifi-

cantly less negative forgetting than those of standard layered learning, standard layered learning

with subtask rehearsal. The improvement in these metrics coupled with what was observed dur-

ing layer transitions means CLL-Reh was able to recover lost proficiency more effectively than

standard layered learning and subtask rehearsal. Table 4.19 displays the forgetting metrics for the

complementary systems and standard layered learning using direct policy search.

Table 4.19: (1+1) EA: Forgetting Metrics Values for the Complementary Systems and Standard
Layered Learning

LL Rehearsal ConcLL CLL CLL-Reh CLL-Conc

PD .00002 .00002 .00002 .00002 .00002 .00002
DFM Even .00001 .00002 .00002 .00002 .00002 .00002
MFM Even -.15143 -.14946 -.07081 -.11462 -.11732 -.02936

DFM 50 .00001 .00002 .00002 .00002 .00002 .00002
MFM 50 -.11385 -.10033 -.04149 -.08635 -.07933 -.01741
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Figure 4.2: (1+1) EA Refueling Subtask Performance

Value Search Performance

When applied to value search, CLL-Reh and CLL-Conc did not improve performance of their cor-

responding standard versions, but they did improve standard layered learning. CLL-Reh produced

an 8% task performance increase over standard layered learning while no significant difference

was gained between layered learning with rehearsal and CLL. CLL-Conc generated the high-

est task performance of any value search approach, although not statistically different than that

of ConcLL. CLL-Conc’s task performance of 0.4892 (0.1337) was higher than standard layered

learning’s 0.3692 and CLL’s performance score of 0.4011 but did not significantly improve on

ConcLL’s task performance of 0.4868. So, the more general CLL method is able to improve upon

standard layered learning, while at the same time, it will not impede the success of more special-

ized approaches. Table 4.10 displays all task averages, standard deviations, and Z-test results for

the value search experiments.

Comparing corresponding subtask rehearsal to CLL-Reh and ConcLL to CLL-Conc, subtask per-
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formance at each layer completion was extremely similar. This similarity created an understanding

of why overall task performance did not improve with the addition of a complementary system:

the utility seeding before the final layer did not boost the Q-values of the beneficial pairs enough to

make a positive impact on the policy. Tables 4.20 through 4.23 displays the average and standard

deviation of the task performance for each approach per layer completion.

Table 4.20: Q-learning: Average CLL-Reh Subtask Performance Per Layer Completion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 1.0000 0.0395 0.0517
Layer 2 0.0000 0.8241 0.1290
Layer 3 1.0000 0.7053 0.9489
Layer 4 0.7506 0.7311 0.4023

Table 4.21: Q-learning: Standard Deviation of CLL-Reh Subtask Performance Per Layer Comple-
tion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.0000 0.0510 0.1054
Layer 2 0.0000 0.0275 0.0041
Layer 3 0.0000 0.0270 0.0892
Layer 4 0.0062 0.0265 0.0347
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Table 4.22: Q-learning: Average CLL-Conc Subtask Performance Per Layer Completion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 1.0000 0.0464 0.0489
Layer 2 0.2144 0.7746 0.2276
Layer 3 0.1469 0.7762 0.1614
Layer 4 0.1306 0.7751 0.1533
Layer 5 0.1413 0.7774 0.1463
Layer 6 0.1444 0.7807 0.1285
Layer 7 0.7606 0.7343 0.4892

Table 4.23: Q-learning: Standard Deviation of CLL-Conc Subtask Performance Per Layer Com-
pletion

Refuel Take Off & Survey UAV Surveying Task

Layer 1 0.0000 0.0562 0.1158
Layer 2 0.1766 0.0354 0.1693
Layer 3 0.1333 0.0328 0.0890
Layer 4 0.1302 0.0300 0.0792
Layer 5 0.1230 0.0328 0.0767
Layer 6 0.1246 0.0315 0.0141
Layer 7 0.0235 0.0206 0.1337

Discussion

From the results of all of the direct policy search and value search experiments, we conclude a

few points about the evaluated existing and proposed solutions. First, due to the special search

dynamics of value search on this problem, it benefited the most from the existing techniques of

subtask rehearsal and ConcLL. Layered learning’s task performance was increased by 11% with

subtask rehearsal and by 32% with ConcLL. The Q-learning implementation’s sensitivity to plas-

ticity allowed these approaches to learn new subtasks quickly, and the use of a utility table kept

beneficial knowledge accessible towards the end of the learning process.
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Second, subtask rehearsal and ConcLL’s success did not transfer well to direct policy search, where

the search dynamics were very different. Neither technique enhanced standard layered learning

task performance in this case because the stability-plasticity imbalance was not mitigated. With

the employed (1+1) EA, these techniques continued to suffer from the same negative effects as

layered learning and could not retain or relearn lost beneficial knowledge any better.

Third, the proposed complementary learning system’s augmentation to layered learning addressed

the disadvantages of rehearsal and ConcLL in direct policy search. The enhanced version of lay-

ered learning (CLL) increased task performance in the learning paradigm by 13% by reintroducing

pairs that were present when subtasks were at their best observed proficiencies.

Fourth, the combination of the complementary system and subtask rehearsal or ConcLL did not

impede Q-learning and resulted in improvements in the EA. In fact, CLL-Reh increased standard

layered learning’s task performance by 28%, producing the best results in all of the tested ap-

proaches. The addition of the complementary system to ConcLL improved task performance of

concurrent layered learning, which suggests that when specialized methods suitable to particular

search dynamics are effective, CLL did not interfere with its efficacy.

Finally, all of these results suggest that concurrent layered learning can demonstrate significant im-

provement over standard layered learning in value search while CLL-Reh can provide the greatest

enhancement with direct policy search. This suggests that CLL may be a good general technique to

help mitigate negative forgetting, which can then be combined effectively with another technique

more tailored for a specific search type.
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CHAPTER 5: CONCLUSION

This dissertation contributes a deeper understanding and an enhancement to layered learning, a

machine learning paradigm that is being used to develop autonomous robotic and computer-based

systems. These contributions were achieved by demonstrating that a previously unexplored prob-

lem exists and hinders the paradigm’s effectiveness, identifying causes and effects of the problem,

analyzing existing solutions and proposes new ones, and recommending effective uses for each

solution.

In more detail, this work demonstrated that a previously unaddressed problem, a stability-plasticity

imbalance, can exist in a decomposition-based reinforcement learning paradigm. We provided the

demonstration in two, very different types of problems: the first analyzed the effects of imbalance

when trying to solve Boolean-logic optimization problems; the second demonstration optimized

the policies in a more realistic, cooperative multi-agent problem. In the latter, two different types

of reinforcement learning were used to drive the policy optimization: a direct policy search using

a simple (1+1) EA and a value search with Q-learning. From these demonstrations, we identified

the main cause of the imbalance to be the layer transitions that change the performance evaluation

criterion and causes older subtask performance to be lost when newer subtasks are being optimized

on. Additional causes include the employed learning algorithm and conflicting subtasks used in

the task decomposition. The most significant effect of the imbalance was the premature loss of

beneficial knowledge that resulted in overall task performance lost (negative forgetting), limiting

the effectiveness of the learning paradigm.

Next, we analyzed the effectiveness of applying an existing balancing solution (subtask rehearsal)

to layered learning and an enhancement to layered learning (concurrent layered learning); both

are known from the literature review to have improved learning performance in other systems and
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problems. Under the cooperative multi-agent problem, these had mixed success that depended

largely on particularities of the search dynamic. A complementary system was then proposed to

improve the direct policy search’s performance by seeding the policy change in the final layer with

pairs that existed in the policy when each subtask was at their best observed performance. This

augmentation significantly improved task performance compared to standard layered learning. The

complementary system was then applied in conjunction with subtask rehearsal and concurrent lay-

ered learning. In the direct policy search learning, subtask rehearsal with complementary layered

learning improved task performance substantially when compared to standard layered learning.

When a complementary system was combined with subtask rehearsal and concurrent layered learn-

ing with value search, the performance of both techniques with standard layered learning was not

impeded.

From these experiment results, we concluded that the proposed, simple complementary system

improved performance under both types of reinforcement learning because of its ability to reintro-

duce forgotten beneficial knowledge. Specifically, complementary subtask rehearsal produced the

best performance boost for direct policy search. Concurrent layered learning with either standard

or complementary layered learning generated the highest task performance results for the value

search.

Contributions

A number of contributions and major findings are provided from this work:
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First Study of Imbalance in Layered Learning

Although the stability-plasticity dilemma is analyzed in other learning systems cited in the litera-

ture review, this work provides the first explicit study of imbalance in layered learning. We show

that there is a problem and why, analyze potential solutions, and recommend solutions for the two

types of reinforcement learning studied in our experiments.

Improvement in Layered Learning Effectiveness

With the examination of subtask rehearsal, concurrent layered learning, and complementary lay-

ered learning as mitigation techniques of negative forgetting, we provide methods to improve task

performance in layered learning, ultimately enhancing the paradigm’s learning effectiveness. This

improvement is a major contribution because a wide variety of autonomous systems rely on layered

learning. By not only demonstrating that there is a problem but also providing an improvement to

the learning paradigm, those who will depend on the learning system in the future may have an

even more effective learning than previously experienced.

Literature Review on the State of Layered Learning

The literature review reveals and confirms a number of critical aspects of layered learning. First,

layered learning is a viable alternative to monolithic learning, especially when the solution space’s

gradient is steep. Second, the paradigm is being applied to and sees success in a variety of different

problem domains. Next, layered learning is similar to other decomposition-based reinforcement

learning techniques in how it breaks down a complex task into simpler problems, uses incremental

learning to solve those simpler subproblems, and shares characteristics with shaping and transfer

learning; it is unique in its abstractness and reliance on other approaches to facility that actual
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learning. Fourth, the literature revealed that there is a problem, the stability-plasticity dilemma,

that is a challenge in other decomposition-based reinforcement learning. Finally, other systems

have addressed the dilemma with mitigation techniques, but imbalance in layered learning has

been unexplored until this work.

Introduction of New Forgetting and Policy Change Metrics

As part of the imbalance demonstration, we have developed two forgetting metrics: the direct for-

getting metric (DFM) and maximized forgetting metric (MFM). Based on our used performance-

based definitions of negative, positive, and neutral forgetting, these metrics allow researchers to

simply classify and measure the amount of suspected forgetting that has taken place during rein-

forcement learning. Additionally, we have introduced a set of measures that allow for a quantifiable

way to interpret the impact of policy change across layer transitions. These metrics were discussed

in the section on Policy-Based Metrics in Chapter 3. Included in this set are the total number of

changed, unchanged, new, permanently damaged, and repaired pairs per layer. All of these metrics

are effectively used in our analysis comparing standard layered learning to our proposed solutions.

Moreover, we believe many may be useful for diagnosing similar problems in a wide array of

decomposition-based RL, not just layered learning.

Overlapping Feasibility Demonstrated

To demonstrate an imbalance and facilitate forgetting, all of our experiments used layer overlap-

ping; this was seen in conflicting optimality requirements in the leading ones and trailing zero

subtasks and then in the refueling and take off and survey subtasks. Even though more design con-

sideration has to take place when using layer overlapping, we believe it is a more natural method

of learning than layer isolation. The experiments in this work demonstrate that layer overlapping
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can be effective at learning complex tasks. Additionally, this dissertation provides methods to mit-

igate the negative effects of stability-plasticity imbalance that are present in overlapping but not in

layer isolation, now making the layer design approach more attractive and feasible than previously

viewed.

Imbalance Awareness to Other Decomposition-Based Systems

Because layered learning shares many similarities with other decomposition-based reinforcement

learning systems, a demonstration of stability-plasticity imbalance in layered learning and pro-

posed solutions may be applicable to these other learning approaches. For example, an imbalance

favoring plasticity was shown to be prevalent in artificial neural networks. Complementary learn-

ing systems were applied and shown to be successful solutions at balancing stability and plasticity

in neuro-evolution. In this work, we show that layered learning suffers from a similar challenge and

our complementary layered learning was directly inspired by these preceding works. Other, similar

learning approaches may benefit from our study by being able to apply our proposed solutions to

bring balance to their systems.

Future Work

Because this dissertation serves as the first explicit investigation of stability-plasticity imbalance

in layered learning, there are still unexplored areas of imbalance in the paradigm. For example,

we primarily focused on understanding the imbalance in direct policy search, although we also

analyzed problems and solutions using value search. Because so much focus was placed on direct

policy search, our proposed complementary system may not have been optimal in mitigating nega-

tive forgetting when using Q-learning. This is suggested by how subtask rehearsal and concurrent
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layered learning did not see a statistical difference in performance when the complementary sys-

tem was applied. It is suspected that the integration of the indexed collection’s average Q-values

back into the Q-table before the final layer begins is too aggressive. For example, a pair A may

earn a very high Q-value in the first layer and is placed in to the indexed collection. Meanwhile,

pair B, that maps to a different action but at the same state as A, may receive smaller utility values

but is in the policy at the end of multiple layers. During the Q-table updates in between the end

of the penultimate and ultimate layers, A will always be seeded with a higher Q-value, although B

has persisted in the policy as the highest utility valued pair for that state over multiple layers. This

situation can isolate B from being reevaluated in the final layer or require a number of simulations

to elapse before B’s Q-value is restored as the highest for that state or for B to be chosen again for

action selection.

A second extension will be to analyze the balance of stability and plasticity in layered learning

using more sophisticated algorithms. In our study, we purposely choose the (1+1) EA and the

type of Q-learner because they are simple learning algorithms that make it less difficult to analyze

what happens during the learning process. Using more complex algorithms may provide deeper

understanding of the dilemma and layered learning. Additionally, the same goals maybe achieved

if the dilemma was studied in layered learning with more types of problems; this would allow the

paradigm to be evaluated on a diverse set of tasks and conditions not yet explored.

Another future work includes examining the proposed complementary learning system on direct

policy searches where standard layered learning struggled in performance because of suspected

imbalance. For example, in the preliminary work, layered learning’s effectiveness was compared

to that of monolithic learning. In the experiments, monolithic and the decomposition approach both

learned at a similar rate, having no significant difference between the two performances. This result

made monolithic learning seem more attractive of the two because of the reduction in design time

required in order to produce the same task performance and simplicity of the approach. Applying
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complementary layered learning to this predator-prey, direct policy search problem would provide

further consensus of the efficacy of the proposed approach in a system that is suspected of suffering

from stability-plasticity imbalance.

Next, the proposed forgetting metrics have shown their usefulness when comparing two direct

policy searches. Unfortunately, the value searches performed in this work, like many others, use

a mechanism that changes the ε as the number of simulations changes within a layer. Our use

of ε-decreasing makes comparing two epoch results difficult because the policy is not guaranteed

to return the highest Q-valued action for a state, a random action may be chosen. Therefore, the

metrics must be revisited in order to factor in the action-selection variability experienced with such

value-based strategies.

Finally, we would like to see the solutions and analysis made in this dissertation be applied to other

decomposition-based reinforcement learning approaches. The complementary learning systems

used to mitigate imbalance in neural networks have inspired the proposed CLL solution here. Ap-

plying our tested solutions and analysis to other systems may reveal that they translate well to other

decomposition-based approaches, improving their understanding of stability-plasticity dilemma

and efficacy.

Although these future works are all beyond of the scope of this dissertation, they are expected to

provide more understanding of stability-plasticity imbalance in layered learning once investigated.
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