662 research outputs found

    Respiration rate and volume measurements using wearable strain sensors.

    Get PDF
    Current methods for continuous respiration monitoring such as respiratory inductive or optoelectronic plethysmography are limited to clinical or research settings; most wearable systems reported only measures respiration rate. Here we introduce a wearable sensor capable of simultaneously measuring both respiration rate and volume with high fidelity. Our disposable respiration sensor with a Band-AidĀ© like formfactor can measure both respiration rate and volume by simply measuring the local strain of the ribcage and abdomen during breathing. We demonstrate that both metrics are highly correlated to measurements from a medical grade continuous spirometer on participants at rest. Additionally, we also show that the system is capable of detecting respiration under various ambulatory conditions. Because these low-powered piezo-resistive sensors can be integrated with wireless Bluetooth units, they can be useful in monitoring patients with chronic respiratory diseases in everyday settings

    A useful modification of the Wright spirometer

    Get PDF
    Spirometer modification to permit computer reduction of respiratory flow dat

    Portable spirometer using pressure-volume method with Bluetooth integration to Android smartphone

    Get PDF
    This paper presents a study on an embedded spirometer using the low-cost MPX5100DP pressure sensor and an Arduino Uno board to measure the air exhaled flow rate and calculate force vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and the FEV1/FVC ratio of human lungs volume. The exhaled air flow rate was measured from differential pressure in the sections of a mouthpiece tube using the venturi effect equation. This constructed mouthpiece and the embedded spirometer resulted in a 96.27% FVC reading accuracy with a deviation of 0.09 L and 98.05% FEV1 accuracy with a deviation of 0.05 L compared to spirometry. This spirometer integrates an HC-05 Bluetooth module for spirometry data transceiving to a smartphone for display and recording in an Android application for further chronic obstructive pulmonary disease (COPD) diagnosis

    Hot-thermistor spirometry for the artificial ventilation of infants

    Get PDF
    Bibliography: leaves 230-245.This thesis describes equipment and techniques which were developed for use in monitoring mechanical aspects of artificial ventilation and optimising ventilation procedures. A strong emphasis is placed on the clinical applicability of the techniques and clinical applications are discussed. A new temperature-compensated hot-thermistor anemometer/spirometer was developed because the wide variety of spirometers described previously for-measuring respiratory volumes ā€¢and volume flow rates were unsatisfactory for routine use in monitoring infant ventilation. The principles of hot-thermistor spirometry were investigated both theoretically and experimental.ly to develop new temperature-compensation techniques and to predict the effect of gas composition changes on spirometer celebration. New electronic circuits were developed which greatly simplify the construction of temperature-compensated hot- thermistor anemometers and extend the dynamic range off low rates that can be measured

    The feasibility of a fluidic respiratory flow meter

    Get PDF
    A study was undertaken to determine the feasibility of adapting a fluidic airspeed sensor for use as a respiratory flowmeter. A Pulmonary Function Testing Flowmeter was developed which should prove useful for mass screening applications. The fluidic sensor threshold level was not reduced sufficiently to permit its adaptation to measuring the low respiratory flow rates encountered in many respiratory disorders

    CONTROL OF END-TIDAL HALOTHANE CONCENTRATION: Part A: Anaesthesia Breathing System and Feedback Control of Gas Delivery

    Get PDF
    Conventional anaesthetic breathing systems are not designed to control end-tidal gas concentrations, nor can they be used to measure accurately the uptake of oxygen or of anaesthetic agent. We built and tested a leak-tight closed-loop anaesthetic breathing system with low solubility to volatile anaesthetic agents and with efficient gas mixing. The system included a water-sealed spirometer, a small carbon dioxide absorber, a coaxial tube to the patient a circulating pump and feedback controllers for system volume and anaesthetic concentration. Feedback control was implemented to adjust and control automatically the end-tidal anaesthetic concentration and the volume of the system with oxygen supplied through a mass flow controller and with halothane supplied by a titrating syringe. Controller gains, as a function of body weight, were found using a nine-compartment tissue uptake model. Stability was maintained with Ā±50% changes in alveolar ventilation and cardiac output. During subsequent investigations in an animal model, arterial, mixed venous and cerebral venous blood halothane concentrations were measured to show that the feedback-controlled halothane induction was optimized. We conclude that feedback control appears to be clinically applicable for adjusting the end-tidal Concentration and system volume to provide a rapid and optimized induction of anaesthesi

    micromachined flow sensors in biomedical applications

    Get PDF
    Application fields of micromachined devices are growing very rapidly due to the continuous improvement of three dimensional technologies of micro-fabrication. In particular, applications of micromachined sensors to monitor gas and liquid flows hold immense potential because of their valuable characteristics (e.g., low energy consumption, relatively good accuracy, the ability to measure very small flow, and small size). Moreover, the feedback provided by integrating microflow sensors to micro mass flow controllers is essential to deliver accurately set target small flows. This paper is a review of some application areas in the biomedical field of micromachined flow sensors, such as blood flow, respiratory monitoring, and drug delivery among others. Particular attention is dedicated to the description of the measurement principles utilized in early and current research. Finally, some observations about characteristics and issues of these devices are also reported

    Human Respiration Rate Measurement with High-Speed Digital Fringe Projection Technique

    Get PDF
    This paper proposes a non-contact continuous respiration monitoring method based on Fringe Projection Profilometry (FPP). This method aims to overcome the limitations of traditional intrusive techniques by providing continuous monitoring without interfering with normal breathing. The FPP sensor captures three-dimensional (3D) respiratory motion from the chest wall and abdomen, and the analysis algorithms extract respiratory parameters. The system achieved a high Signal-to-Noise Ratio (SNR) of 37 dB with an ideal sinusoidal respiration signal. Experimental results demonstrated that a mean correlation of 0.95 and a mean Root-Mean-Square Error (RMSE) of 0.11 breaths per minute (bpm) were achieved when comparing to a reference signal obtained from a spirometer
    • ā€¦
    corecore