7 research outputs found

    Composition of UML Described Refactoring Rules

    Get PDF
    Refactorings represent a powerful approach for improving the quality of software systems. A refactoring can be seen as a special kind of behavior preserving model transformation. The Object Constraint Language (OCL) together with the metamodel of Unified Modeling Language (UML) can be used for defining rules for refactoring UML models. This paper investigates descriptions of refactoring rules that can be checked, reused and composed. The main contribution of this paper is an algorithm to compute the description of sequentially composed transformations. This allows one to check if a sequence of transformations is successfully applicable for a given model before the transformations are executed on it. Furthermore, it facilitates the analysis of the effects of transformation chain and its usage in other compositions

    Pattern-based model transformation: a metamodel-based approach to model evolution

    Get PDF
    Software systems continue to grow in complexity at a rapid pace, creating systems that are complex to build and evolve. The problems that accompany changes in requirements, system upgrades, and error correction produce a desire for software evolution methods that increase the efficiency and effectiveness of adapting complex software to changes. As software systems evolve, design models must be modified to accommodate the required changes. Techniques that control the changes to models in a systematic manner are a key to model evolution. A process that improves the ability to effectively modify a design, thereby enhancing design qualities, supports the need for improved model evolution techniques. Design patterns are common forms of reusable design experiences. They offer solutions to common design problems, reduce complexity by naming and defining abstractions, and provide a foundation for building reusable software. Well-known pattern solutions are expressed in a natural language as fragments of code which are sometimes difficult to understand and implement by software modelers. With increased focus on development of model-driven approaches, rigorous descriptions of design patterns that capture solutions during design instead of implementation are needed. This research defines an approach for the transformation of models that supports controlled model evolution. More precisely, a process for capturing design patterns in UML class diagrams is defined. This process involves defining a metamodel-level representation which specifies how a software developer can introduce design patterns into existing design models. We defined transformation patterns as an extension of the UML metamodel to characterize source and target model elements. The transformation pattern consists of specialized metamodel elements that specify the structure of source and target metamodels. Transformation patterns were specified for the Abstract Factory, Bridge and Visitor design patterns to show how the model-level transformations can be perform on patterns that represent different functionalities. We developed an action language to specify constructs which add, delete, retrieve and connect model elements. We used the constructs of the action language to define transformation specifications that implement model-level transformations on class diagrams. To determine the potential of this approach we manually implemented the transformation specification on a UML design

    UMLexe – UML virtual machine : a framework for model execution

    Get PDF
    The aim of this thesis is the specification and development of a new UML virtual machine – UMLexe- capable of executing platform independent system specifications. For executing models, computational completeness is required and UMLexe propose a subset of UML and operational semantics for executing those models. UMLexe will provide prototype functionality to prove the concept of executing components combined with interaction models. The first part of the thesis describes a case scenario illuminating the model notation. After a more detailed look at the specification and implementation, this case is executed to prove the concept. The last part of the thesis is dedicated to the specification and development of the UMLexe virtual machine and the evaluation of the implementation in terms of defined requirements and existing solutions executing UML models

    Testing and test-driven development of conceptual schemas

    Get PDF
    The traditional focus for Information Systems (IS) quality assurance relies on the evaluation of its implementation. However, the quality of an IS can be largely determined in the first stages of its development. Several studies reveal that more than half the errors that occur during systems development are requirements errors. A requirements error is defined as a mismatch between requirements specification and stakeholders¿ needs and expectations. Conceptual modeling is an essential activity in requirements engineering aimed at developing the conceptual schema of an IS. The conceptual schema is the general knowledge that an IS needs to know in order to perform its functions. A conceptual schema specification has semantic quality when it is valid and complete. Validity means that the schema is correct (the knowledge it defines is true for the domain) and relevant (the knowledge it defines is necessary for the system). Completeness means that the conceptual schema includes all relevant knowledge. The validation of a conceptual schema pursues the detection of requirements errors in order to improve its semantic quality. Conceptual schema validation is still a critical challenge in requirements engineering. In this work we contribute to this challenge, taking into account that, since conceptual schemas of IS can be specified in executable artifacts, they can be tested. In this context, the main contributions of this Thesis are (1) an approach to test conceptual schemas of information systems, and (2) a novel method for the incremental development of conceptual schemas supported by continuous test-driven validation. As far as we know, this is the first work that proposes and implements an environment for automated testing of UML/OCL conceptual schemas, and the first work that explores the use of test-driven approaches in conceptual modeling. The testing of conceptual schemas may be an important and practical means for their validation. It allows checking correctness and completeness according to stakeholders¿ needs and expectations. Moreover, in conjunction with the automatic check of basic test adequacy criteria, we can also analyze the relevance of the elements defined in the schema. The testing environment we propose requires a specialized language for writing tests of conceptual schemas. We defined the Conceptual Schema Testing Language (CSTL), which may be used to specify automated tests of executable schemas specified in UML/OCL. We also describe a prototype implementation of a test processor that makes feasible the approach in practice. The conceptual schema testing approach supports test-last validation of conceptual schemas, but it also makes sense to test incomplete conceptual schemas while they are developed. This fact lays the groundwork of Test-Driven Conceptual Modeling (TDCM), which is our second main contribution. TDCM is a novel conceptual modeling method based on the main principles of Test-Driven Development (TDD), an extreme programming method in which a software system is developed in short iterations driven by tests. We have applied the method in several case studies, in the context of Design Research, which is the general research framework we adopted. Finally, we also describe an integration approach of TDCM into a broad set of software development methodologies, including the Unified Process development methodology, MDD-based approaches, storytest-driven agile methods and goal and scenario-oriented requirements engineering methods.Els enfocaments per assegurar la qualitat deis sistemes d'informació s'han basal tradicional m en! en l'avaluació de la seva implementació. No obstan! aix6, la qualitat d'un sis tema d'informació pot ser ampliament determinada en les primeres fases del seu desenvolupament. Diversos estudis indiquen que més de la meitat deis errors de software són errors de requisits . Un error de requisit es defineix com una desalineació entre l'especificació deis requisits i les necessitats i expectatives de les parts im plicades (stakeholders ). La modelització conceptual és una activitat essencial en l'enginyeria de requisits , l'objectiu de la qual és desenvolupar !'esquema conceptual d'un sistema d'informació. L'esquema conceptual és el coneixement general que un sistema d'informació requereix per tal de desenvolupar les seves funcions . Un esquema conceptual té qualitat semantica quan és va lid i complet. La valides a implica que !'esquema sigui correcte (el coneixement definit és cert peral domini) i rellevant (el coneixement definit és necessari peral sistema). La completes a significa que !'esquema conceptual inclou tot el coneixement rellevant. La validació de !'esquema conceptual té coma objectiu la detecció d'errors de requisits per tal de millorar la qualitat semantica. La validació d'esquemes conceptuals és un repte crític en l'enginyeria de requisits . Aquesta te si contribueix a aquest repte i es basa en el fet que els es quemes conceptuals de sistemes d'informació poden ser especificats en artefactes executables i, per tant, poden ser provats. Les principals contribucions de la te si són (1) un enfocament pera les pro ves d'esquemes conceptuals de sistemes d'informació, i (2) una metodología innovadora pel desenvolupament incremental d'esquemes conceptuals assistit per una validació continuada basada en proves . Les pro ves d'esquemes conceptuals poden ser una im portant i practica técnica pera la se va validació, jaque permeten provar la correctesa i la completesa d'acord ambles necessitats i expectatives de les parts interessades. En conjunció amb la comprovació d'un conjunt basic de criteris d'adequació de les proves, també podem analitzar la rellevancia deis elements definits a !'esquema. L'entorn de test proposat inclou un llenguatge especialitzat per escriure proves automatitzades d'esquemes conceptuals, anomenat Conceptual Schema Testing Language (CSTL). També hem descrit i implementa! a un prototip de processador de tes tos que fa possible l'aplicació de l'enfocament proposat a la practica. D'acord amb l'estat de l'art en validació d'esquemes conceptuals , aquest és el primer treball que proposa i implementa un entorn pel testing automatitzat d'esquemes conceptuals definits en UML!OCL. L'enfocament de proves d'esquemes conceptuals permet dura terme la validació d'esquemes existents , pero també té sentit provar es quemes conceptuals incomplets m entre estant sent desenvolupats. Aquest fet és la base de la metodología Test-Driven Conceptual Modeling (TDCM), que és la segona contribució principal. El TDCM és una metodología de modelització conceptual basada en principis basics del Test-Driven Development (TDD), un métode de programació en el qual un sistema software és desenvolupat en petites iteracions guiades per proves. També hem aplicat el métode en diversos casos d'estudi en el context de la metodología de recerca Design Science Research. Finalment, hem proposat enfocaments d'integració del TDCM en diverses metodologies de desenvolupament de software

    Modélisation en UML/OCL des langages de programmation et de leurs propriétés et processus IDM

    Get PDF
    Cette étude est axée sur l'activité de génération de composants logiciels se situant en phase terminale des processus de développement de logiciels dirigés par les modèles. Dans une première partie, nous présentons les travaux de recherche déjà existants sur les modèles et les transformations de modèles, ainsi que sur la modélisation en UML/OCL des langages de programmation limitée, la plupart du temps, aux aspects syntaxiques. Dans une deuxième partie, nous montrons comment nous modélisons en UML/OCL, les propriétés comportementales et axiomatiques des langages de programmation de style impératif. La modélisation des propriétés comportementales et axiomatiques d'un langage, en UML/OCL enrichi d'un langage d'actions, nous amène à montrer comment on peut, à l'aide de triplets de Hoare, vérifier que des segments de modèles de programmes sont corrects. Les assertions déduites des triplets de Hoare par application des propriétés axiomatiques du langage sont transmises à un Atelier B en vue d'étudier leurs éventuelles validités. Dans une troisième partie, nous montrons comment on peut injecter au niveau du Méta-Modèle UML des propriétés comportementales et axiomatiques spécifiques à un domaine d'applications particulier. Nous nous sommes limités au fragment du Méta-Modèle UML définissant les diagrammes d'activité se situant donc en amont des modèles de codes, avant la génération proprement dite des codes. La cohérence entre les modèles et les codes peut se vérifier à l'aide de propriétés comportementales et axiomatiques en comparant les modèles issues des exigences et les modèles des codes. Ces travaux de recherche ont été financés dans le cadre de l'ANR.Our work focuses on the software component generation phase that takes place at the last phase of a model driven development process. Our work is related to either the modelware or the grammarware because the model driven process can be considered as a successive of model transformations whereas the code generation is a specific transformation from the model to a language grammar. In the first part, we resume some relative works in the domain of the models and of the models transformation; we also present the language modeling in UML which is generally restricted by the syntax modeling. In the second part, we show how we model in UML/OCL the behavioral and axiomatic properties of imperative programming languages. The modeling of the behavioral properties helps to execute the code models if we dispose a right execution environment. In the other hand, the modeling of the axiomatic properties helps to demonstrate the correctness of the code model. In fact, the assertions obtained from the modeling of the axiomatic properties of the language will be transferred to a B atelier in order to have further validation. In the third part, we show how we inject into the UML metamodel the considered domain behavioral and axiomatic properties. We focus on the activity diagram metamodel of the UML which defines the behavior part of a UML model. The coherence between the models and the codes can be then verified in comparing the behavioral and axiomatic properties of the models issued from the requirements and that of the codes. Our work is financed by the ANR research projects
    corecore