
Composition of UML Described Refactoring Rules*

Slavisa Markovic

Swiss Federal Institute of Technology
Department of Computer Science
Software Engineering Laboratory

1015 Lausanne-EPFL
Switzerland

e-mail: Slavisa.Markovic@epfl.ch

Abstract. Refactorings represent a powerful approach for improving the quality
of software systems. A refactoring can be seen as a special kind of behavior
preserving model transformation. The Object Constraint Language (OCL) to-
gether with the metamodel of Unified Modeling Language (UML) can be used
for defining rules for refactoring UML models. This paper investigates descrip-
tions of refactoring rules that can be checked, reused and composed. The main
contribution of this paper is an algorithm to compute the description of sequen-
tially composed transformations. This allows one to check if a sequence of
transformations is successfully applicable for a given model before the trans-
formations are executed on it. Furthermore, it facilitates the analysis of the ef-
fects of transformation chain and its usage in other compositions

1 Introduction

Model transformations are the core of Model Driven Architecture (MDA) approach
[10]. There exist several classifications of model transformations like classification on
“exomorphic”, “endomorphic” and “creational” transformations [12].

Exomorphic transformation is a special type of transformation that involves models
from different levels of abstraction. On the contrary to exomorphic transformation,
endomorphic transformation deals with models that are represented at the same level
of abstraction and where source and target models are instances of the same meta-
model. Usages of endomorphic transformations are numerous. Typical examples of
this kind of transformation are refactorings [1, 2, 3].

For the description of model transformations we will use the Object Constraint
Language [8] that would replace, possibly vague and ambiguous, natural language de-
scription. In this paper, we will address the problem of composing endomorphic
model transformations in the context of their application to UML models [7]. Namely,
the aim is to have a method that will allow us to specify a transformation, analyze that
transformation, evaluate a sequence of transformations or compose together descrip-
tions of different transformations. This will leave us with the possibility to decide in

* This paper has been supported by Swiss National Scientific Research Fund under the
reference number 2000-067917.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

advance if it is meaningful or safe to perform a certain sequence of transformations or
not. We offer some examples in this paper that show the composition of several trans-
formation descriptions, with the goal of creating more elaborated transformation de-
scriptions.

This paper is composed as follows: section 2 contains details about the concepts
used in this approach and gives some examples of transformation descriptions applied
on refactoring rules. In section 3, the approach for composition of transformations is
presented. Sections 4 and 5 are reserved for related work and conclusions, respec-
tively.

2 Refactoring

Refactoring can be seen as a process of improving structure of a software system
without changing its behavior. In other words it means that for the same input the
refactored software system has to produce the same output as before. This behavior
preservation is assured by so called “preconditions” and “postconditions”. Precondi-
tions have to be fulfilled before some refactoring is executed, and postconditions rep-
resent description of effects of one refactoring In this paper we show that OCL con-
straints can be used to describe these pre and postconditions.

In the past, as described in [1], the process of refactoring was based on code-to-
code transformation. Today, thanks to UML, we can raise the level of abstraction by
refactoring UML models instead of implementation code. Because of this model
change, which appears after applying refactoring, we can observe refactoring as just
one type of model transformation. This type of model transformations, where the
transformation will be executed only if the precondition is met, is called “Conditional
Transformation” in [10]. Our main emphasis is on the pre and postconditions that
have to be satisfied in order to refactor some UML model. Applying OCL assertions
on instances of the UML metamodel (i.e., model elements) is possible to define these
constraints. The two following sub-sections contain examples of OCL descriptions of
transformations that represent two refactoring rules. The first one, “Abstraction”, cre-
ates a new abstract superclass for some existing class. The second one creates a new
interface for some existing class.

2.1 Description of the “Abstraction” Transformation

This transformation is used to create a new abstract class that will be connected with a
generalization link to the existing class, e.g. it creates a new parent of the existing
class.

The precondition of the description assures that before executing the transforma-
tion there is a class in the system with the same name as the parameter product but
there is no class with the same name as the parameter absProduct.

The postcondition of the description assures that after execution of the transforma-
tion a new abstract class with the same name as the parameter absProduct is created
and that there exists a generalization link between the new and initial class.

The postcondition is based on frame assumption that means that anything that is
not mentioned has not been changed during the transformation.

Example of states that represent this refactoring are shown on figure 1. The upper
and lower parts of figure represent the same system state but using different syntax.
The upper part describes one system state using UML model elements, and the lower
one describes the same system state using instances of metemodel elements. The OCL
constraints are specified on the metamodel level. The relevant part of the UML
metamodel is shown on figure 2.

context Package

def: classes: Set(Class) =

self.ownedClassifier->select(oclIsTypeOf(Class))->collect(c|c.oclAsType(Class))

def: generalizations: Set(Generalization)=

self.ownedClassifier->collect(generalization)

def: interfaces: Set(Interfaces::Interface)=

self.ownedClassifier->select(oclIsTypeOf(Interfaces::Interface))

 ->collect(c|c.oclAsType(Interfaces::Interface))

context Package::abstraction (product:String, absProduct:String)

pre:

 classes->exists(name= product) and

 not classes->exists(name= absProduct)

 not interfaces->exists(name= absProduct)

post:

let: absProd:Class=classes->select(name=absProduct)->any(true) in

let: gen:Generalization=generalizations->select(g|g.specific.name= product

 and g.general.name= absProduct)->any(true) in

 absProd.isAbstract=true and

 absProd.oclIsNew() and

 gen.oclIsNew()

:C las s
n am e= 'P rodu c t'

:G eneralization
:C las s

nam e= 'A b s P rodu c t'
is A bs trac t= tru e

g eneralization
s p ec if ic

gen eral

:C las s
nam e= 'P rod uc t'

p re p o s t

A bs P ro du c t

P rodu c t

P rodu c t

p re p o s t

Fig. 1. Example of the “Abstraction” refactoring

+general

Class

NamedElement
name : String
...

Namespace

Package

+nestedPackage ** 0..1

+package

0..1

Generalization
isSubstitutable : Bo...

Classifier
isAbstract : Boolean = false

*

0..1

+ownedClassifier

*

+package 0..1

11

1 *

+specific

1

+generalization

*

Fig. 2. The relevant part of the UML 2.0 metamodel for the “Abstraction” refactoring

2.2 Description of the “Interface Extraction” Transformation

The Interface Extraction transformation is used to add an interface to a class. This en-
ables another class to take a more abstract view of a class by accessing it instead, via
an interface.
By the pre condition of the description we assert that there exists a class on which we
want to apply this transformation and that there does not exist neither a class nor an
interface with name creatorInf.

The postcondition of the description ensures that, after execution of the transforma-
tion, a new interface is created with the same name as creatorInf parameter, and that
there exists one implementation relation between this interface and the class whose
name we pass as a parameter “creator”. Furthermore, the postcondition ensures that
all public operations from the class must exist in the interface. In this expression we
have “borrowed” hasSameSignature from UML 1.5 [15] that does not exist in the
UML 2.0.

This transformation is described in the following way using OCL constraints ap-
plied on the instances of the UML metamodel.

context Package

def: implementations:Set(Interfaces::Implementation)=

self.ownedClassifier->collect(implementation)

context Package::interfaceExtraction (creator:String, creatorInf:String)

pre:

 classes->exists(name= creator) and

 not classes-> exists(name= creatorInf) and

 not interfaces-> exists(name= creatorInf)

post:

let: creatInf:Interface=interfaces->select(name=creatorInf)->any(true) in

let: imp:Implementation=implemenations->

 select(i:Implementation|i.ilementatingClassifier.name= creator and

 i.contract.name= creatorInf)->any(true) in

let: creat:Class=classes->select(name=creator)->any(true) in

 creatInf.oclIsNew() and

 imp.oclIsNew and

 creat->collect(operation)->select(visibility=VisibilityKind::public)->

 forAll(o1:Operation|creatInf->collect(operation)->

 exists(o2:Operation|o2.hasSameSignature(o1))) and

 creatInf->collect(operation)->forAll(c:Operation| c.oclIsNew())

Figure 3 shows one possible state that satisfies the postcondition of the “Interface
Extraction” transformation.

:C lass

n am e= 'C reator'

: Im p lem en ta tion

:In terface

n am e= 'C reatorIn f'

im p lem en tation

im p lem en tatin g C lass ifie r

con trac t

:C lass

n am e= 'C reator'

p re pos t

C re a to rIn f

C reator

C reator

p re pos t

Fig. 3. Example of “Interface Extraction” refactoring

Figure 4 shows the relevant part of UML 2.0 metamodel on which the OCL ex-
pressions from pre and postconditions of “Interface Extraction” are specified.

Class

NamedElement
name : String
...

Namespace

Package

+nestedPackage ** 0..1

+package

0..1

Implementation
(from Interfaces)

BehavioredClassifier +implementation

*+implementatingClassifier

1

*

1

Classifier
isAbstract : Boolean = false

*

0..1

+ownedClassifier

*

+package 0..1

Interface
(from Interfaces)

1

*+contract

1

*

Operation
0..1

*

+class
0..1

+ownedOperation

*

0..1

*

0..1

+ownedOperation*

Fig. 4. The relevant part of the UML 2.0 metamodel for the “Abstraction” refactoring

3 Composition of Refactorings

3.1 Why Composing Refactorings?

Refactorings as they are presented in well known catalogs like [1] or [3] represent
only “basic” transformations that can only be used in some specific situations. Fur-
thermore, tools like [14] that support these “basic” refactorings do not let users to cre-
ate their own refactorings, from scratch or by composing existing refactorings into
new ones. The composition of refactorings would allow users of the tool to create
their own complex refactorings that fulfill their specific needs. Of course, the new
refactoring created in this way could be combined with others in order to create new
ones, and so on.

The problem with composing refactorings that are given as the transformations of
existing code or models is that if it is not possible to execute one component trans-
formation we have to invoke a kind of roll-back mechanism that will restore the sys-
tem in the previous state; it may even be necessary to rollback several steps. By not
dealing with concrete transformations but only with their specifications, it is possible
to avoid this kind of problem. Namely, the preconditions and postconditions of one
composed transformation could be calculated before the transformation is executed so
it would be possible to know in advance if one composition of transformations is legal
and if it fulfills our needs. Furthermore, it is easier to analyze composed refactorings
if they are represented by one pre-post pair.

3.2 Principles of Composing

Whenever we want to make a transformation that is composed of several transforma-
tions we have to deal with as many pre and post conditions as we have transforma-
tions.

The question that arises is how to calculate the “overall” pre and post conditions
that we can use for the whole chain of small transformations.

Figure 5 shows one transformation that consists of three sub-transformations. As
we have already stated each transformation has its own pre and post condition given
by two OCL expressions. One approach for applying this sequence is to evaluate the
pre and post expressions for each step (i.e., each transformation) in the given se-
quence on their own system states. A better approach would be to calculate one pre
and one post condition for the whole sequence. This problem is solved by calculating
pre and post condition for a chain of length 2. Iterative additions of the next transfor-
mation pre and post conditions will lead us to composite conditions for the chain of
any length.

At a first glance, one might guess that two transformations can be composed sim-
ply by composing the preconditions using the AND operator and composing the post-
conditions using AND as well. In some cases this is correct but this would not always
lead to the legal chain of transformation descriptions. This is because each of the con-
ditions is evaluated on its specific system state in some point of time.

Our task now is to “project” precondition of intermediate state to condition of the
initial state. Here, the semantics of the first transformation has to be taken into ac-
count. Obviously, if the precondition of the intermediate state is a logical conse-
quence from the postcondition of the first transformation then nothing has to be added
to the precondition of the initial state.

T1 T2
preT1 postT1 preT2 postT2

precomposite 1-2 postcomposite 1-2

T3

precomposite 1-3 postcomposite 1-3

preT3 postT3

...

Fig. 5. Composite transformation

Figure 6 shows relation between two transformations. Each precondition is evalu-
ated on its own system state that can be different from other system states. Also, each
postcondition is evaluated on the separate system state but on the contrary to precon-
ditions, each postcondition can be dependent on some part of the previous state. This
dependency on the previous system state is realized using @pre operator in OCL. On
figure 6, this kind of dependency is represented with the dashed lines.

Transformationcomposite

State1 State2 State3

Transformation1pre1 post1 Transformation1pre2 post2precomposite postcomposite

Fig. 6. Dependencies between two transformations

Before we proceed with the composition of transformation descriptions we have to
perform a kind of “pre-processing” of descriptions by marking all variables dependant
on their system states on the following way:

ii

ii

ii

VpreVpost
VVpost
VVpre

→
→
→

+

@:
:

:

1

(1)

In order to provide more precise description of transformation composition we in-

troduce the following notation:

Χ – set of all variables that exist in some system state

321 ,, XXX – set of all variables in initial, intermediate and final system state

() },{ falsetrueXpre ii a – precondition of the i-th transformation that is
evaluated on the state iX

() },{, 1 falsetrueXXpost iii a+ – postcondition of the i-th transformation that
is evaluated on the states iX and 1+iX

()1, +iii XXtrans – description of a transformation that transforms one system
state i to system state i+1

() },{1 falsetrueXPRE a – composite precondition that is evaluated on initial
system state

() },{, 31 falsetrueXXPOST a – composite postcondition that is evaluated

on the states 1X and 3X

()31, XXTRANS – description of composite transformation that transforms
initial system state to system state 3

Now we can represent each transformation description like:

() () ()11 ,, ++ ∧= iiiiiiii XXpostXpreXXtrans (2)

Using this notation, two transformations from figure 6 can be represented as fol-
lowing:

() () ()21111211 ,, XXpostXpreXXtrans ∧=

() () ()32222322 ,, XXpostXpreXXtrans ∧=

(3)

The process of finding composed transformation description can be formulated
like: calculating pre and postcondition for a transformation that transforms one system
from state 1X to state 3X . Given with our notation, composite transformation can be
represented like:

() () ()31131 ,, XXPOSTXPREXXTRANS ∧= (4)

Or in other words:

() () () () () ()32222211112311 ,, , XXpostXpreXXpostXpreXXXPOSTXPRE ∧∧∧∃→∧ (5)

We can calculate composite precondition ()1XPRE using the following formula:

() () () ()222111121 , XpreXXpostXpreXXPRE ∧∧∃→ (6)

On the similar way we can calculate the composite postcondition by using the fol-
lowing formula:

() () () () ()322211211311 ,, , XXpostXXpostXXpreXXPOSTXPRE ∧∃∧→∧ (7)

The first condition for our chain of refactorings to be legal is that every precondi-

tion must evaluate to true on its own system state.

()[] trueXpreeval ii =
(8)

If this condition is not satisfied then we have one illegal component transformation
and we can conclude that our whole chain is illegal.

The second condition that must be satisfied is that if the postcondition of the first
transformation description evaluates to true then the precondition of the second trans-
formation description must also evaluate to true:

()[] ()[] trueXpreevaltrueXXposteval == 22211 then , if

⇓

() ()[] trueXpreimpliesXXposteval =22211 ,

(9)

Before we continue with composing OCL statements we are obliged to perform a
sort of analysis. This is analysis of consistency between postcondition of the first and
precondition of the second transformation description. With this step we detect all
cases in which after completion of the first transformation we cannot continue with
the second transformation due to its unsatisfied precondition.

During this analysis of legality of a chain of transformations three cases can be de-
tected:

– The chain is legal
– The chain is illegal but it can be transformed into a legal one
– The chain is illegal but it can not be transformed into a legal one
The three following subsections contain three simple examples that describe these

three possible cases.

Example 1. In this subsection we give an example of one legal chain of two
transformations. These two transformations are shown in Table1.

Table 1. Example of two transformations before “pre-processing“

1trans 2trans

1pre 1post 2pre 2post
2>x 2@pre += xx 3>x 5=x
3=y @preyy = @preyy =

After the “pre-processing” using (1) we have the following pre and postconditions
like shown in Table 2.

Table 2. Example of one legal chain of two transformations

1trans 2trans

1pre 1post 2pre 2post
21 >x 212 += xx 32 >x 53 =x

31 =y 12 yy = 23 yy =

Now, by observing values of postcondition of 1trans and precondition of

2trans for variables of system state 2 we can conclude that sequence of transforma-
tions { 1trans , 2trans } is legal because after solving the equation from the postcondi-
tion of 1trans , we have situation that 42 >x in 1post and 32 >x in 2pre which
depicts a set of correct system states. In other words, any value that satisfies 1post
also satisfies 2pre , which means that the condition (2) is satisfied.

For example given in Table 2, using (6) we have calculated the composite precon-
dition described with the following expression:

{ }() 12121212211 3322 , yyyxxxxyxyxPRE =∧=∧>∧+=∧>∃→ (10)

After the first step of simplification we get:

{ }() 312, 11111 =∧>∧>→ yxxyxPRE (11)

And in the next step of simplification:

{ }() 32, 1111 =∧>→ yxyxPRE (12)

One remark is that during the process of calculating the composite precondition,
we are always looking for the weakest solution among all preconditions that solve the
condition (11).

Using formula (7) we can calculate the composite postcondition. For our example
from Table 2 we have that:

{ }() { }()
23132121122

331111

5232
,,,,

yyxyyxxyxyx
yxyxPOSTyxPRE

=∧=∧=∧+=∧=∧>∃
→∧

(13)

So after simplification we get:

{ }() 35,,, 333311 =∧=→ yxyxyxPOST (14)

Example 2. In this subsection we give an example of one illegal chain of two
transformations that can be transformed into a legal one. Two transformations that
build this chain are shown in Table 3. The only difference from example 1 is that now
the precondition of the second transformation is 102 >x .

Table 3. Example of an illegal chain that can be transformed into a legal one

1trans 2trans

1pre 1post 2pre 2post
21 >x 212 += xx 102 >x 53 =x

31 =y
12 yy = 23 yy =

By observing values of postcondition of 1trans and precondition of 2trans for

variables of system state 2 we can conclude that this sequence of transformations is
not legal because after solving the equation from the postcondition of 1trans , we have
situation that 42 >x in 1post and 102 >x in 2pre . This means that there can exist
system states that satisfy the postcondition of the first transformation but don’t satisfy
the precondition of the second one, i.e. there can exist some system states that do not
satisfy (2).

If we want to compute composite precondition for example from Table 3 we fol-
low the same algorithm like we did for example from Table 2. After the first step of
simplification we have the following situation:

{ }() 382, 11111 =∧>∧>→ yxxyxPRE (15)

Further simplification of this expression yields the following:

{ }() 38, 1111 =∧>→ yxyxPRE (16)

This means that if we want to have legal composite transformation description we
have to make composite precondition “stronger” than precondition of the first trans-
formation description.
The composite postcondition will be the same as (14) because the change on the pre-
condition of the second transformation does not make any influence on it.

Example 3. In this subsection we give an example of one illegal chain of two
transformations that can not be transformed into a legal one. Two transformations that
build this chain are shown in Table 4. The only difference from example 1 is that now
the precondition of the second transformation is 42 <x .

Table 4. Example of an illegal chain that can not be transformed into a legal one

1trans 2trans

1pre
1post 2pre 2post

21 >x 212 += xx 42 <x 53 =x

31 =y 12 yy = 23 yy =

By observing values of postcondition of 1trans and precondition of 2trans for

variables of system state 2 we can conclude that this sequence of transformations is
not legal because after solving the equation from the postcondition of 1trans , we
have situation that 42 >x in 1post and 42 <x in 2pre . This means that set of sys-
tem states that satisfies both pre and postcondition is empty.

If we try to compute the composite precondition using (7) we will get the follow-
ing:

{ }() 344, 11111 =∧>∧<→ yxxyxPRE (17)

This means that it is not possible to find the composite precondition for this chain,
i.e. the chain is illegal.

3.3 Example of a Composed Refactoring Rule

By analyzing our two refactoring examples from section 2, we can conclude that
composed transformation description will look like the following:

context Package::composed (product:String, absProduct:String, creator:String,
creatorInf:String)

pre:

 classes->exists(name= product) and

 not classes->exists(name= absProduct) and

 not interfaces-> exists(name= absProduct)

 classes->exists(name= creator) and

 not classes-> exists(name= creatorInf) and

 not interfaces-> exists(name= creatorInf) and

 not absProduct=creatorInf

post:

let: absProd:Class=classes->select(name=absProduct)->any(true) in

let: gen:Generalization=generalizations->select(g|g.specific.name= product

 and g.general.name= absProduct)->any(true) in

let: creatInf:Interface=interfaces->select(name=creatorInf)->any(true) in

let: imp:Implementation=implemenations->

 select(i:Implementation|i.ilementatingClassifier.name= creator and

 i.contract.name= creatorInf)->any(true) in

let: creat:Class=classes->select(name=creator)->any(true) in

 absProd.isAbstract=true and

 absProd.oclIsNew() and

 gen.oclIsNew() and

 creatInf.oclIsNew() and

 imp.oclIsNew and

 creat->collect(operation)->select(visibility=VisibilityKind::public)->

 forAll(o1:Operation|creatInf->collect(operation)->

 exists(o2:Operation|o2.hasSameSignature(o1))) and

 creatInf->collect(operation)->forAll(c:Operation| c.oclIsNew())

3.4 Limitations of the Approach

One can notice that in our approach we use only a limited set of OCL expressions in
postconditions in order to be able to evaluate unique new system state from the initial
one. This means that we do not use expressions with, for the example “<” or “>” op-
erators. In other words, we are using only those OCL expressions that can be evalu-
ated to true only on one system state. Using the full set of OCL expressions can be
seen as superfluous because the future system state in which we want to bring our sys-
tem is precisely defined so operations that can evaluate to true on several system
states have to be avoided. Also, OCL is clumsy when we do not use the frame as-
sumption but have to write full versions of pre or postconditions. Still there is a hope
that this process of extracting full version of OCL constraints out of version that is
based on the frame assumption could be automated.

Current limitation of our approach is that we can describe only transformations
whose source and target models are instances of the same metamodel like the refac-
toring rules.

4 Related Work

In his PhD thesis [1], Opdyke represents refactorings as combinations of precondi-
tions whose purpose is the preservation of behavior of a program that is to be refac-
tored and actual refactoring steps that are described using natural language. These
preconditions have to preserve seven basic properties of each program that are usually
violated during refactoring process. Also, this work contains certain principles of
composition of refactorings. The emphasis is on the composition of primitive precon-
ditions in order to keep behavior preserved.

In [2], Roberts introduces postconditions into the refactoring process; they are used
in the composition of preconditions for the chain of refactorings. Before composing

preconditions, Roberts first transforms them according to the previous refactorings in
the chain, by using the postconditions. Besides the problem of composition, he dis-
cusses the problems of commutativity and dependencies between refactorings. He ex-
tends the approach of Opdyke by formalizing refactorings using first-order predicate
logic. Similarly to this approach, we also use postconditions in order to calculate cu-
mulative precondition of a refactoring chain.

In his thesis [5], Ó Cinneidé uses the approach of Roberts in order to compose
refactorings related to design patterns. Besides the composition of preconditions, he
introduces the concept of composition of postconditions. He uses this approach for
manually calculating design patterns seen as a chain of primitive refactorings.

Sunyé et al. [4] use a very similar approach to our one for representing refactor-
ings. They describe refactorings using OCL expressions applied to the metamodel of
UML. A difference of our approach with theirs is that we localize all transformations
on the level of one package assuming that, for the sake of simplicity, all refactorings
are done locally in the package. Their refactorings are defined on the model elements
that are influenced by the specific refactoring. In [13] , Sunyé et al. extend OCL with
so called “actions” which are used to describe the transformations as the third compo-
nent of refactoring, besides pre and postconditions. Composition of refactorings is not
discussed in this work.

Due to the lack of Action Semantics in UML 1.4 specification, Van Gorp et al. [6]
propose their own UML extension for the support of refactorings. OCL expressions
are applied on the UML 1.4 extended metamodel. They define OCL pre and post con-
ditions as the separate functions introduced with the OCL def-let mechanism. This
approach lacks of the possibility to use the @pre operator inside of postconditions.

Kniesel and Koch [11] give a precise definition of refactorings composition and
describe an automatic approach of composing refactorings that are given with their
precondition and transformation description. Their notion of transformation descrip-
tion is different from ours, because they use this term as a function that transforms
conditions to reflect the “real” transformations. Our transformation descriptions in-
clude necessary pre and postconditions which describe each transformation. Their ap-
proach for composition of refactorings is different to ours because they start compos-
ing from the last transformation while we start from the first one.

5 Conclusion

This work tackles the problems of composing endomorphic model transformations
like refactorings. The aim was to provide an approach for validating the sequence of
these transformations and to find the way of composing these transformations in order
to get more complicated transformations that can be applied or used in further compo-
sitions. On the contrary to work of some authors where a new metamodel is created in
order to facilitate usage of OCL expressions, we use the full UML. Despite all its
drawbacks, OCL in this approach provides an elegant way of describing model trans-
formations and compositions of transformations. Unfortunately, by using OCL pre-
post conditions like in our approach we can deal only with the models that represent
instances of the same metamodel. Our wish is to further develop our method in order

to be able to deal not only with endomorphic transformations but with any kind of
transformation.

The future steps will involve the creation of a library of mini transformation de-
scriptions in order to get some foundations for describing more complicated refactor-
ings or design patterns. Our intention is to create the tool that would be able to auto-
matically calculate dependencies and mismatching between mini-transformations
descriptions and to be able to generate a composite transformation description out of
these mini-transformation descriptions.

References

[1] Opdyke, W. F., “Refactoring Object-Oriented Frameworks,” Ph.D. thesis, University of Il-
linois at Urbana-Champaign, 1992.

[2] Roberts, D., “Practical Analysis for Refactoring,” Ph.D. thesis, University of Illinois at Ur-
bana-Champaign, 1999.

[3] Fowler, M., “Refactoring: Improving the Design of Existing Programs,” Addison-Wesley,
1999.

[4] Sunyé, G., Pollet, D., Le Traon Y., and Jézéquel J-M. “Refactoring UML models,” In
Gogolla M. and Kobryn C., editors, Proc. UML 2001 - The Unified Modeling Language.
Modeling Languages, Concepts, and Tools. 4th International Conference, Toronto, Canada,
volume 2185 of LNCS, pages 134–148. Springer, 2001.

[5] Ó Cinnéide, M., “Automated Application of Design Patterns: A Refactoring Approach,”
Ph.D. thesis, Department of Computer Science, Trinity College, University of Dublin,
2000.

[6] Van Gorp, P., Stenten, H., Mens T., Demeyer, S.: “Towards automating source-consistent
UML Refactorings,” UML 2003.

[7] Object Management Group. UML 2.0 Superstructure Specification, September 2003
[8] Object Management Group. UML 2.0 OCL Specification, Final Adopted Specification,

October 2003
[9] Gamma, E., Helm R., Johnson R. and Vlissides, J. “Design Patterns: Elements of Reusable

Object-Oriented Languages and Systems,” Addison-Wesley, 1994.
[10] Object Management Group. MDA Guide Version 1.0.1, OMG, 1. June 2003
[11] Kniesel G., Koch H., “Static Composition of Refactorings”, In R. Lämmel, editor, Science

in Computer Programming; Special issue on program transformation. Elsevier Science,
2004. To appear.

[12] Pollet D., Vojtisek D. and Jézéquel J-M. “OCL as a core UML transformation language.”
WITUML 2002 Position paper, Malaga, Spain, June 2002.

[13] Sunyé, G., Le Guennec, A. and Jézéquel J-M. “Using UML Action Semantics for model
execution and transformation.” Information Systems Journal 27(6):445-457, July 2002

[14] Eclipse Project, http://www.eclipse.org/
[15] Object Management Group. Unified Modeling Language (UML), version 1.5, March 2003.

