421 research outputs found

    Online motion recognition using an accelerometer in a mobile device

    Get PDF
    This paper introduces a new method to implement a motion recognition process using a mobile phone fitted with an accelerometer. The data collected from the accelerometer are interpreted by means of a statistical study and machine learning algorithms in order to obtain a classification function. Then, that function is implemented in a mobile phone and online experiments are carried out. Experimental results show that this approach can be used to effectively recognize different human activities with a high-level accuracy.Peer ReviewedPreprin

    Smartphone-based human activity recognition

    Get PDF
    Cotutela Universitat Politècnica de Catalunya i Università degli Studi di GenovaHuman Activity Recognition (HAR) is a multidisciplinary research field that aims to gather data regarding people's behavior and their interaction with the environment in order to deliver valuable context-aware information. It has nowadays contributed to develop human-centered areas of study such as Ambient Intelligence and Ambient Assisted Living, which concentrate on the improvement of people's Quality of Life. The first stage to accomplish HAR requires to make observations from ambient or wearable sensor technologies. However, in the second case, the search for pervasive, unobtrusive, low-powered, and low-cost devices for achieving this challenging task still has not been fully addressed. In this thesis, we explore the use of smartphones as an alternative approach for performing the identification of physical activities. These self-contained devices, which are widely available in the market, are provided with embedded sensors, powerful computing capabilities and wireless communication technologies that make them highly suitable for this application. This work presents a series of contributions regarding the development of HAR systems with smartphones. In the first place we propose a fully operational system that recognizes in real-time six physical activities while also takes into account the effects of postural transitions that may occur between them. For achieving this, we cover some research topics from signal processing and feature selection of inertial data, to Machine Learning approaches for classification. We employ two sensors (the accelerometer and the gyroscope) for collecting inertial data. Their raw signals are the input of the system and are conditioned through filtering in order to reduce noise and allow the extraction of informative activity features. We also emphasize on the study of Support Vector Machines (SVMs), which are one of the state-of-the-art Machine Learning techniques for classification, and reformulate various of the standard multiclass linear and non-linear methods to find the best trade off between recognition performance, computational costs and energy requirements, which are essential aspects in battery-operated devices such as smartphones. In particular, we propose two multiclass SVMs for activity classification:one linear algorithm which allows to control over dimensionality reduction and system accuracy; and also a non-linear hardware-friendly algorithm that only uses fixed-point arithmetic in the prediction phase and enables a model complexity reduction while maintaining the system performance. The efficiency of the proposed system is verified through extensive experimentation over a HAR dataset which we have generated and made publicly available. It is composed of inertial data collected from a group of 30 participants which performed a set of common daily activities while carrying a smartphone as a wearable device. The results achieved in this research show that it is possible to perform HAR in real-time with a precision near 97\% with smartphones. In this way, we can employ the proposed methodology in several higher-level applications that require HAR such as ambulatory monitoring of the disabled and the elderly during periods above five days without the need of a battery recharge. Moreover, the proposed algorithms can be adapted to other commercial wearable devices recently introduced in the market (e.g. smartwatches, phablets, and glasses). This will open up new opportunities for developing practical and innovative HAR applications.El Reconocimiento de Actividades Humanas (RAH) es un campo de investigación multidisciplinario que busca recopilar información sobre el comportamiento de las personas y su interacción con el entorno con el propósito de ofrecer información contextual de alta significancia sobre las acciones que ellas realizan. Recientemente, el RAH ha contribuido en el desarrollo de áreas de estudio enfocadas a la mejora de la calidad de vida del hombre tales como: la inteligència ambiental (Ambient Intelligence) y la vida cotidiana asistida por el entorno para personas dependientes (Ambient Assisted Living). El primer paso para conseguir el RAH consiste en realizar observaciones mediante el uso de sensores fijos localizados en el ambiente, o bien portátiles incorporados de forma vestible en el cuerpo humano. Sin embargo, para el segundo caso, aún se dificulta encontrar dispositivos poco invasivos, de bajo consumo energético, que permitan ser llevados a cualquier lugar, y de bajo costo. En esta tesis, nosotros exploramos el uso de teléfonos móviles inteligentes (Smartphones) como una alternativa para el RAH. Estos dispositivos, de uso cotidiano y fácilmente asequibles en el mercado, están dotados de sensores embebidos, potentes capacidades de cómputo y diversas tecnologías de comunicación inalámbrica que los hacen apropiados para esta aplicación. Nuestro trabajo presenta una serie de contribuciones en relación al desarrollo de sistemas para el RAH con Smartphones. En primera instancia proponemos un sistema que permite la detección de seis actividades físicas en tiempo real y que, además, tiene en cuenta las transiciones posturales que puedan ocurrir entre ellas. Con este fin, hemos contribuido en distintos ámbitos que van desde el procesamiento de señales y la selección de características, hasta algoritmos de Aprendizaje Automático (AA). Nosotros utilizamos dos sensores inerciales (el acelerómetro y el giroscopio) para la captura de las señales de movimiento de los usuarios. Estas han de ser procesadas a través de técnicas de filtrado para la reducción de ruido, segmentación y obtención de características relevantes en la detección de actividad. También hacemos énfasis en el estudio de Máquinas de soporte vectorial (MSV) que son uno de los algoritmos de AA más usados en la actualidad. Para ello reformulamos varios de sus métodos estándar (lineales y no lineales) con el propósito de encontrar la mejor combinación de variables que garanticen un buen desempeño del sistema en cuanto a precisión, coste computacional y requerimientos de energía, los cuales son aspectos esenciales en dispositivos portátiles con suministro de energía mediante baterías. En concreto, proponemos dos MSV multiclase para la clasificación de actividad: un algoritmo lineal que permite el balance entre la reducción de la dimensionalidad y la precisión del sistema; y asimismo presentamos un algoritmo no lineal conveniente para dispositivos con limitaciones de hardware que solo utiliza aritmética de punto fijo en la fase de predicción y que permite reducir la complejidad del modelo de aprendizaje mientras mantiene el rendimiento del sistema. La eficacia del sistema propuesto es verificada a través de una experimentación extensiva sobre la base de datos RAH que hemos generado y hecho pública en la red. Esta contiene la información inercial obtenida de un grupo de 30 participantes que realizaron una serie de actividades de la vida cotidiana en un ambiente controlado mientras tenían sujeto a su cintura un smartphone que capturaba su movimiento. Los resultados obtenidos en esta investigación demuestran que es posible realizar el RAH en tiempo real con una precisión cercana al 97%. De esta manera, podemos emplear la metodología propuesta en aplicaciones de alto nivel que requieran el RAH tales como monitorizaciones ambulatorias para personas dependientes (ej. ancianos o discapacitados) durante periodos mayores a cinco días sin la necesidad de recarga de baterías.Postprint (published version

    A Study on Human Fall Detection Systems: Daily Activity Classification and Sensing Techniques

    Get PDF
    Fall detection for elderly is a major topic as far as assistive technologies are concerned. This is due to the high demand for the products and technologies related to fall detection with the ageing population around the globe. This paper gives a review of previous works on human fall detection devices and a preliminary results from a developing depth sensor based device. The three main approaches used in fall detection devices such as wearable based devices, ambient based devices and vision based devices are identified along with the sensors employed.  The frameworks and algorithms applied in each of the approaches and their uniqueness is also illustrated. After studying the performance and the shortcoming of the available systems a future solution using depth sensor is also proposed with preliminary results

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    Wearable Technology Supported Home Rehabilitation Services in Rural Areas:– Emphasis on Monitoring Structures and Activities of Functional Capacity Handbook

    Get PDF
    The sustainability of modern healthcare systems is under threat. – the ageing of the population, the prevalence of chronic disease and a need to focus on wellness and preventative health management, in parallel with the treatment of disease, pose significant social and economic challenges. The current economic situation has made these issues more acute. Across Europe, healthcare expenditure is expected to rice to almost 16% of GDP by 2020. (OECD Health Statistics 2018). Coupled with a shortage of qualified personnel, European nations are facing increasing challenges in their ability to provide better-integrated and sustainable health and social services. The focus is currently shifting from treatment in a care center to prevention and health promotion outside the care institute. Improvements in technology offers one solution to innovate health care and meet demand at a low cost. New technology has the potential to decrease the need for hospitals and health stations (Lankila et al., 2016. In the future the use of new technologies – including health technologies, sensor technologies, digital media, mobile technology etc. - and digital services will dramatically increase interaction between healthcare personnel and customers (Deloitte Center for Health Solutions, 2015a; Deloitte Center for Health Solutions 2015b). Introduction of technology is expected to drive a change in healthcare delivery models and the relationship between patients and healthcare providers. Applications of wearable sensors are the most promising technology to aid health and social care providers deliver safe, more efficient and cost-effective care as well as improving people’s ability to self-manage their health and wellbeing, alert healthcare professionals to changes in their condition and support adherence to prescribed interventions. (Tedesco et al., 2017; Majumder et al., 2017). While it is true that wearable technology can change how healthcare is monitored and delivered, it is necessary to consider a few things when working towards the successful implementation of this new shift in health care. It raises challenges for the healthcare systems in how to implement these new technologies, and how the growing amount of information in clinical practice, integrates into the clinical workflows of healthcare providers. Future challenges for healthcare include how to use the developing technology in a way that will bring added value to healthcare professionals, healthcare organizations and patients without increasing the workload and cost of the healthcare services. For wearable technology developers, the challenge will be to develop solutions that can be easily integrated and used by healthcare professionals considering the existing constraints. This handbook summarizes key findings from clinical and laboratory-controlled demonstrator trials regarding wearables to assist rehabilitation professionals, who are planning the use of wearable sensors in rehabilitation processes. The handbook can also be used by those developing wearable sensor systems for clinical work and especially for use in hometype environments with specific emphasis on elderly patients, who are our major health care consumers

    Accelerometry-Based Classification of Human Activities Using Markov Modeling

    Get PDF
    Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series

    ROS-Based Indoor Autonomous Exploration and Navigation Wheelchair

    Get PDF
    The aim of this project is to create a platform that when implemented to an electric wheelchair could give to the users different control methods to suit their needs. It will be composed of a adaptive control system by means of different controllers and an autonomous control system. In addition, a system for measuring physiological parameters has been implemented to supervise the user?s health state when it is used sites such as hospitals, and their emotional state in order to optimize their period of adaptation to the control. It is oriented to offering people with severe disabilities, who cannot control a wheelchair by themselves, independent mobility from their caregivers in indoor spaces. The control platform has the objective to be as economic as possible and adaptable to any electric wheelchair model.El objetivo de este proyecto es crear una plataforma que, una vez implementada en una silla de ruedas eléctrica, pueda proporcionar a los usuarios diferentes métodos de control que se adapten a sus necesidades. Ésta estará compuesta por un sistema de control adaptativo, mediante diferentes controladores, y un sistema de control autónomo. Aparte, también se ha implementado un sistema de medida de parámetros fisiológicos que permite supervisar el estado de salud del usuario cuando se utiliza en lugares como hospitales, y el estado emocional para poder optimizar su fase de adaptación al control. Está orientado a ofrecer a las personas con discapacidades graves, que no pueden controlar por sí mismas una silla de ruedas, movilidad independiente de sus cuidadores en espacios interiores. La plataforma tiene el objetivo de ser adaptable a cualquier modelo de silla de ruedas eléctrica y ser lo más económica posible.L'objectiu d'aquest projecte és crear una plataforma que, un cop implementada a una cadira de rodes elèctrica, pugui proporcionar als usuaris diferents mètodes de control que s'adaptin a les seves necessitats. Aquesta estarà composta per un sistema de control adaptatiu, mitjançant diferents controladors, i un sistema de control autònom. A part, també s'ha implementat un sistema de mesura de paràmetres fisiològics que permet supervisar l'estat de salut de l'usuari quan es fa servir en llocs com hospitals, i l'estat emocional per tal de poder optimitzar la seva fase d'adaptació al control. Està orientat a oferir a les persones amb discapacitats greus, que no poden controlar per elles mateixes una cadira de rodes, mobilitat independent dels seus cuidadors en espais interiors. La plataforma té l'objectiu de ser adaptable a qualsevol model de cadira de rodes elèctrica i ser el més econòmica possible
    corecore