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Smartphone-Based Human Activity Recognition

Abstract

Human Activity Recognition (HAR) is a multidisciplinary research field that aims to gather

data regarding people’s behavior and their interaction with the environment in order to deliver

valuable context-aware information. It has nowadays contributed to develop human-centered

areas of study such as Ambient Intelligence and Ambient Assisted Living, which concentrate on

the improvement of people’s Quality of Life.

The first stage to accomplish HAR requires to make observations from ambient or wear-

able sensor technologies. However, in the second case, the search for pervasive, unobtrusive,

low-powered, and low-cost devices for achieving this challenging task still has not been fully

addressed. In this thesis, we explore the use of smartphones as an alternative approach for per-

forming the identification of physical activities. These self-contained devices, which are widely

available in the market, are provided with embedded sensors, powerful computing capabilities

and wireless communication technologies that make them highly suitable for this application.

This work presents a series of contributions regarding the development of HAR systems with

smartphones. In the first place we propose a fully operational system that recognizes in real-time

six physical activities while also takes into account the effects of postural transitions that may

occur between them. For achieving this, we cover some research topics from signal processing and

feature selection of inertial data, to Machine Learning approaches for classification. We employ

two sensors (the accelerometer and the gyroscope) for collecting inertial data. Their raw signals

are the input of the system and are conditioned through filtering in order to reduce noise and

allow the extraction of informative activity features. We also emphasize on the study of Support

Vector Machines (SVMs), which are one of the state-of-the-art Machine Learning techniques for

classification, and reformulate various of the standard multiclass linear and non-linear methods

to find the best trade off between recognition performance, computational costs and energy

requirements, which are essential aspects in battery-operated devices such as smartphones. In

particular, we propose two multiclass SVMs for activity classification: one linear algorithm

which allows to control over dimensionality reduction and system accuracy; and also a non-

linear hardware-friendly algorithm that only uses fixed-point arithmetic in the prediction phase

and enables a model complexity reduction while maintaining the system performance.

The efficiency of the proposed system is verified through extensive experimentation over a

HAR dataset which we have generated and made publicly available. It is composed of inertial

data collected from a group of 30 participants which performed a set of common daily activities

while carrying a smartphone as a wearable device.

The results achieved in this research show that it is possible to perform HAR in real-time with

a precision near 97% with smartphones. In this way, we can employ the proposed methodology

in several higher-level applications that require HAR such as ambulatory monitoring of the

ix
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disabled and the elderly during periods above five days without the need of a battery recharge.

Moreover, the proposed algorithms can be adapted to other commercial wearable devices recently

introduced in the market (e.g. smartwatches, phablets, and glasses). This will open up new

opportunities for developing practical and innovative HAR applications.
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Reconocimiento de Actividades Humanas Basada en
Smartphones

Resumen

El Reconocimiento de Actividades Humanas (RAH) es un campo de investigación multidisci-

plinario que busca recopilar información sobre el comportamiento de las personas y su interacción

con el entorno con el propósito de ofrecer información contextual de alta significancia sobre las

acciones que ellas realizan. Recientemente, el RAH ha contribuido en el desarrollo de áreas

de estudio enfocadas a la mejora de la calidad de vida del hombre tales como: la inteligen-

cia ambiental (Ambient Intelligence) y la vida cotidiana asistida por el entorno para personas

dependientes (Ambient Assisted Living).

El primer paso para conseguir el RAH consiste en realizar observaciones mediante el uso de

sensores fijos localizados en el ambiente, o bien portátiles incorporados de forma vestible en el

cuerpo humano. Sin embargo, para el segundo caso, aún se dificulta encontrar dispositivos poco

invasivos, de bajo consumo energético, que permitan ser llevados a cualquier lugar, y de bajo

costo. En esta tesis, nosotros exploramos el uso de teléfonos móviles inteligentes (Smartphones)

como una alternativa para el RAH. Estos dispositivos, de uso cotidiano y fácilmente asequibles

en el mercado, están dotados de sensores embebidos, potentes capacidades de cómputo y diversas

tecnoloǵıas de comunicación inalámbrica que los hacen apropiados para esta aplicación.

Nuestro trabajo presenta una serie de contribuciones en relación al desarrollo de sistemas

para el RAH con Smartphones. En primera instancia proponemos un sistema que permite la

detección de seis actividades f́ısicas en tiempo real y que, además, tiene en cuenta las transiciones

posturales que puedan ocurrir entre ellas. Con este fin, hemos contribuido en distintos ámbitos

que van desde el procesamiento de señales y la selección de caracteŕısticas, hasta algoritmos de

Aprendizaje Automático (AA). Nosotros utilizamos dos sensores inerciales (el acelerómetro y

el giroscopio) para la captura de las señales de movimiento de los usuarios. Estas han de ser

procesadas a través de técnicas de filtrado para la reducción de ruido, segmentación y obtención

de caracteŕısticas relevantes en la detección de actividad. También hacemos énfasis en el estudio

de Máquinas de soporte vectorial (MSV) que son uno de los algoritmos de AA más usados en la

actualidad. Para ello reformulamos varios de sus métodos estándar (lineales y no lineales) con

el propósito de encontrar la mejor combinación de variables que garanticen un buen desempeño

del sistema en cuanto a precisión, coste computacional y requerimientos de enerǵıa, los cuales

son aspectos esenciales en dispositivos portátiles con suministro de enerǵıa mediante bateŕıas.

En concreto, proponemos dos MSV multiclase para la clasificación de actividad: un algoritmo

lineal que permite el balance entre la reducción de la dimensionalidad y la precisión del sistema;

y asimismo presentamos un algoritmo no lineal conveniente para dispositivos con limitaciones de

hardware que solo utiliza aritmética de punto fijo en la fase de predicción y que permite reducir

la complejidad del modelo de aprendizaje mientras mantiene el rendimiento del sistema.

xi



Resumen

La eficacia del sistema propuesto es verificada a través de una experimentación extensiva

sobre la base de datos RAH que hemos generado y hecho pública en la red. Esta contiene

la información inercial obtenida de un grupo de 30 participantes que realizaron una serie de

actividades de la vida cotidiana en un ambiente controlado mientras teńıan sujeto a su cintura

un smartphone que capturaba su movimiento.

Los resultados obtenidos en esta investigación demuestran que es posible realizar el RAH

en tiempo real con una precisión cercana al 97% con smartphones. De esta manera, podemos

emplear la metodoloǵıa propuesta en aplicaciones de alto nivel que requieran el RAH tales como

monitorizaciones ambulatorias para personas dependientes (ej. ancianos o discapacitados) du-

rante periodos mayores a cinco d́ıas sin la necesidad de recarga de bateŕıas. Adicionalmente,

los algoritmos propuestos se pueden adaptar a otros dispositivos vestibles recientemente intro-

ducidos en el mercado (ej. relojes y gafas inteligentes, y phablets). Esto permitirá abrir nuevas

oportunidades para el desarrollo de aplicaciones para el RAH más prácticas e innovadoras.

xii
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Mathematical Symbols and Notation

Table 1: Most commonly used mathematical symbols in this thesis

Symbol Description

x ∈ Rd Input sample of d dimensions

X ∈ Rn×d Set of n vector samples of dimension d

xi,j j-th feature of the i-th sample

y ∈ {−1, 1} output target in binary classification problems

y ∈ {1, · · · ,m} output target in m-class problems with m ∈ N1 > 2

y ∈ Zn Vector of n output targets yi
fc (x) ∈ R SVM output of a sample for class c

f (x) ∈ Rm SVM output vector for a m-class problem

pc (x) ∈ [0, 1] ⊂ R SVM probability output

p (x) ∈ Rm SVM probability output vector

c∗ ∈ {1, · · · ,m} SVM predicted class

a (t) ∈ R3 Time-domain triaxial body acceleration signal

ω (t) ∈ R3 Time-domain triaxial angular velocity signal

g (t) ∈ R3 Time-domain gravity signal

T Window sampling period in seconds

N Number of samples in an activity window

k number of bits for the fixed-point number representation

xix



Mathematical Symbols and Notation

Table 2: Notation of the presented SVM Machine Learning algorithms

SVM Algorithm

Name Binary Multiclass Norm K (xi,xj)

Linear

L1 Manhattan L1-SVM MC-L1-SVM ‖w‖1 xTx

L2 Euclidean L2-SVM MC-L2-SVM ‖w‖2 xTx

L1-L2 L1-L2-SVM MC-L1-L2-SVM ‖w‖1 , ‖w‖2 xTx

Non-Linear

Gaussian GK-SVM MC-GK-SVM ‖w‖2 e−γ‖xi−xj‖
2
2

Laplacian LK-SVM MC-LK-SVM ‖w‖2 e−γ‖xi−xj‖1

Hardware-Friendly HF-SVM MC-HF-SVM ‖w‖2 2−γ‖xi−xj‖1

Table 3: Notation of the Proposed HAR systems
HAR System

Name Notation ML Algorithm Activities Dataset Online Chap.
Hardware HF-HAR MC-HF-SVM 6BAs D1 - 5
Friendly

Linear L-HAR MC-L1-SVM 6BAs D2, D2T 3 6
MC-L2-SVM
MC-L1-L2-SVM

Postural PTA-HAR MC-L1-SVM 6BAs, D3T 3 7
Transition 6BAs+PTs
Aware

xx



Chapter 1

Introduction

1.1 Motivation

In the last years, recent advances in computing and sensing technologies have contributed with

novel ideas aiming to solve people’s needs in a wide range of situations: from basic daily living

essentials such as personal care, feeding and mobility, to more complex social issues including

health, education and security. Automated systems are an example of the materialization of

these ideas. They exploit information gathered from users and their environment in order to

produce an appropriate action [Campbell et al., 2008]. In this thesis, we are interested in

exploring the development of systems that promote the improvement of people’s Quality of Life

(QoL) through the recognition of human activities, especially, that of individuals with any type

of limitation (e.g. the disabled and the elderly) and lack of general well-being.

Understanding people’s actions and their interaction with the environment is a key element

for the development of the aforementioned intelligent systems. Human Activity Recognition

(HAR) is a research field that specifically deals with this issue through the integration of sens-

ing and reasoning, in order to deliver context-aware data that can be employed to provide

personalized support in many applications [Chen et al., 2012a]. As a simple example, imagine a

smart home equipped with ambient sensors able to detect people’s presence and the activation

of household appliances. It is possible to infer the activities performed by its residents based on

the sensors signals along with other relevant aspects such as time of the day and date (e.g. a

person in the kitchen during morning time while a coffee machine is on suggests that person is

making breakfast). Consequently, the collected HAR information can be exploited to anticipate

future people requirements and become responsive to them (e.g. by automatically pre-heating

the coffee machine, controlling room lighting and temperature, etc.).

In the HAR framework, there are still several issues that need to be addressed, some of which

are: obtrusiveness of current wearable sensors; lack of fully pervasive systems able to reach

users at any location any time; privacy concerns regarding invasive and continuous monitoring

of activities (e.g. by using video cameras); difficulty of performing HAR in real-time; battery

limitations of wearable devices; and dealing with content extraction from sparse multisensor
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data.

In this thesis, we explore the feasibility of using smartphones to perform the automatic recog-

nition of physical activities while also addressing some of these current HAR limitations. These

modern devices, which are a new generation of mobile phones, are provided with enhanced com-

puting capabilities and embedded sensors that make them highly suitable for their application

in HAR. We aim to provide a technological tool that can be employed as an activity information

resource to other systems for better decision making (e.g. for the remote monitoring of elderly

patients who live alone or without permanent caretaking and the measurement of their personal

autonomy).

The development of a smartphone-based HAR system introduces new challenges linked to the

incorporation of the recognition system on everyday use devices. In this work, we propose various

approaches in order to recognize, in real-time, human activity using the smartphone inertial

sensors (accelerometer and gyroscope) in conjunction with the implementation of supervised

Machine Learning (ML) algorithms (specifically Support Vector Machine (SVM)) on the device.

We focus particularly in the study of a group of six locomotion Basic Activities (BAs): standing,

sitting, lying-down, walking, walking downstairs and walking upstairs; and also examine six

Postural Transitions (PTs) that occur between its static postures: stand-to-sit, sit-to-stand,

sit-to-lie, lie-to-sit, stand-to-lie and lie-to-stand. Sometimes these PTs are disregarded in HAR

systems [Lara and Labrador, 2012a]. But they are significant for certain applications where

their incidence is high and overall duration is comparable to other activities. For example, in

the design of activity monitoring systems for the disabled during rehabilitation practices. The

study of these PTs is also a central element of our research.

This thesis addresses the following questions: i) How can we perform HAR using existing

smartphones? ii) How to exploit inertial sensors (accelerometer and gyroscope) to develop

smartphone-based HAR systems? iii) Which ML algorithms are suitable for efficient HAR

implementations in battery-limited smartphones? iv) How to achieve real-time HAR using

smartphones?

1.2 Main Contributions

The main contributions of this thesis are presented as follows:

• We propose a smartphone-based HAR system for the online recognition of human activities

from inertial data (PTA-HAR). It consists of the combination of four elements: the device-

embedded motion sensors, a signal processing unit for feature extraction, a multiclass

linear SVM algorithm and an activity filtering module for dealing with recurrent PTs. We

demonstrate the system operation in real-time and show the improvements achieved when

considering the detection of postural transitions (Chapter 7).

• We propose an ML algorithm for activity classification based on a one-vs-all (OVA) SVM

with L1- and L2-Norm regularization. Its advantage relies in its faster prediction when

2
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compared against non-linear SVM approaches while also allowing to fine tune the trade-

off between dimensionality reduction and classification accuracy. At the same time, we

present a novel unified approach for training the three possible instances of this algorithm:

L1-SVM, L2-SVM, L1-L2-SVM. Its significance relies on its flexibility and suitability to

be implemented with well-known solvers (Chapter 6).

• We propose the first hardware-friendly SVM based on fixed-point arithmetic for the pre-

diction of human activities (MC-HF-SVM). This approach allows to vary the fixed-point

number representation (number of bits) to control over model accuracy and complexity,

leading to improvements in terms of recognition accuracy, speed and battery energy sparing

with respect to conventional floating-point based formulations (Chapter 5).

• We have generated and made publicly available a HAR dataset [Reyes-Ortiz et al., 2013a]

composed of trials performed with a group of 30 participants which performed a set of

common daily activities while carrying a smartphone as a wearable device. The dataset

provides a collection of 10299 labeled activity instances which include the raw inertial

data from the smartphone accelerometer and gyroscope along with the extracted activity

features (Chapter 4).

1.3 Thesis Outline

This thesis focuses on the design and implementation of smartphone-based HAR systems. It

has been divided in three main parts. Part I covers essential aspects on the topic of HAR. First,

a series of fundamental concepts required to contextualize our research problem are portrayed.

These are followed by an introduction to HAR accompanied with its most influential works

which are contrasted and discussed. Part II concentrates on data collection and offline HAR. It

presents the procedure for the generation of the HAR dataset required for this research and also

introduces the first offline HAR method based on fixed-point arithmetic. Finally, Part III pays

particular attention in the description of the methods developed for the implementation of the

online HAR systems and concludes with a summarization of all the achievements of this work.

The remaining thesis chapters are briefly described here:

• Chapter 2 describes the main ideas about the areas of study relevant to the develop-

ment of HAR systems in order to develop a global perspective of our research problem.

These areas are divided in two groups: regarding our framework context (Ambient Intelli-

gence (AmI), Ambient Assisted Living (AAL)) and implementation mechanisms (sensors,

smartphones and ML with emphasis on SVMs).

• Chapter 3 examines the current state of the art on the subject of HAR. It starts with

a general introduction regarding the HAR pipeline and then focuses on various already

implemented HAR systems relevant to our research. It also highlights particular aspects
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of these systems such as sensing technologies, types of activities, ML approaches and

real-time computing.

• Chapter 4 presents the collection of stages required for the acquisition of the experimental

HAR data used in this thesis. It includes aspects such as smartphone selection, trials with

volunteers, signal conditioning and feature selection. It also describes the procedures

concerning the dataset validation; internally through experimentation and externally via

a HAR contest in which other research groups were encouraged to propose novel solutions

to the recognition problem.

• Chapter 5 explains the proposed hardware-friendly HAR system (HF-HAR) and its core

ML algorithm based on fixed point arithmetic (MC-HF-SVM). Initially motivated by cur-

rent limitations of mobile devices regarding battery life, this method aims to predict ac-

tivities relying on a modified SVM formulation with adjustable fixed-point number repre-

sentation. In this way, we show through experiments how system accuracy levels can be

maintained while increasing the speed during the prediction of activities. This is explained

under the light of Statistical Learning Theory (SLT) which shows how this implementation

brings advantages with respect to the generalization ability of the algorithm.

• Chapter 6 studies linear SVM algorithms and its application to an online system for the

recognition of activities on smartphones (L-HAR). The algorithms differ on the norm of

their formulation’s regularization term (whether it is the L1-, L2- or L1-L2-Norm). They

allow to control over dimensionality reduction and classification accuracy while increasing

the prediction speed when compared with kernelized SVM algorithms. Moreover, this

chapter presents a novel approach for training these classifiers (EX-SMO) with minimal

effort using well-known solvers. To conclude, the benefits of adding smartphones gyroscope

into the recognition system are presented along with another feature selection mechanisms

that use subsets of features in the time and frequency domain.

• Chapter 7 introduces an online HAR system for the classification of human activities

using smartphones which deals with recurring postural transitions while sequences of ac-

tivities are carried out (PTA-HAR). For its implementation, the linear SVMs presented

in Chapter 6 are combined with temporal filters that use activity probability estimations

within a limited time window. The benefits of these approaches are presented through

experimentation with the HAR dataset and compared against the previously presented

HAR systems.

• Chapter 8 summarizes the accomplishments of this work and also proposes future research

directions
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Chapter 2

Background

2.1 Introduction

In this chapter, we explore four areas or study directly related with HAR which are essential

to develop a global perspective of our research problem. They explain the context where our

proposed HAR systems can be applied to and also the mechanisms through which it is possible

to implement them.

Firstly, we introduce AmI and AAL as the frameworks where we focus our research on HAR

(Section 2.2). In particular, we target the detection of physical activities to provide context

information for daily living applications, predominantly, for people with motor impairments or

activity limitations. Following this, we concentrate on the requirements to implement HAR

systems. From the hardware aspect, we give an overview of the sensors used for the recognition

of activities in Section 2.3 and also present the smartphone as it is our selected device for HAR

(Section 2.4). Then, from the software and mathematical standpoint, we give an overview of

ML with emphasis on SVMs (Section 2.5). Finally, we summarize the chapter in Section 2.6.

2.2 Ambient Intelligence and Assisted Living

AmI is the paradigm that explores environments that behave intelligently and adaptively based

on the actions of the people that are part of it. These environments are aimed to respond, in

a cooperative manner, to their needs which are identified through the retrieval of context infor-

mation gathered by means of the available technology. This process stimulates the generation

of a dynamic human-machine interaction with the purpose of providing a better QoL to people,

expressed, for instance, via more efficient ways of solving tasks, faster assistance, and greater

comfort [Aarts and Wichert, 2009]. In the last decade of the 20th century, the term Ubiquitous

Computing (UbiComp) made its appearance [Issarny et al., 2005]. It considered the introduc-

tion of unobtrusive computing devices in the environment. Following this, AmI emerged when

advances in network technologies (e.g. internet, wireless communications) were incorporated in

the original idea [Abowd and Mynatt, 2000; Cook and Das, 2012].
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The integration of new technologies in our everyday life is evolving very rapidly. The minia-

turization, greater functionality, and lower manufacture costs of electronic devices and sensors

are making a transformation in the way humans and machines interact. These technological

changes are allowing the development of AmI services to seamlessly face user needs [Cook and

Das, 2012]. Moreover, dealing with a growing population, the lack of sufficient human resources

in some areas (e.g. caretakers, security forces, medical staff), and limited budgets are also im-

portant aspects which encourage people, communities and countries to make use of AmI for

their advantage.

AmI can benefit all population sectors. However, some of them, such as people with limita-

tions (e.g. the disabled and the elderly), have become a priority and need immediate attention.

In consequence, there is an area of AmI which is specifically focused on the development of

intelligent systems to assist these people: Ambient Assisted Living [Kleinberger et al., 2007].

This area is developing very rapidly in accordance to the current population explosion statistics

of these age groups and their growing demands [Aarts and Wichert, 2009; Eur, 2011].

In this section we explore the principles and characteristics of these two areas of study

and explore how they interact with each other. Finally, we connect these concepts with the

development of HAR systems.

2.2.1 AmI Systems

AmI is still in its early stages but current technologies are facilitating its development and the

introduction of new systems [Kleinberger et al., 2007]. These AmI systems exhibit common

characteristics some of which are here described:

• They are unobtrusive: hardly or not perceived by its users. This avoids disturbances

limiting users during the execution of their normal activities. For example, using smart

wearable accessories (e.g. smartphones, watches and glasses) and devices embedded in

clothes, nearby objects and furniture.

• They communicate between nodes. This involves fast and robust communication mecha-

nisms, such as wireless technologies, to connect different devices (nodes) when the trans-

mission of information over a distance is required.

• They are ubiquitous: available at any location, at any time. This characteristic considers

the continuous delivery of services, through the use of either fixed infrastructure, mo-

bile equipment or their combination, regardless of possible limitations linked to time and

location.

• They are context-aware. They capture the state of the user and its environment by ex-

ploiting heterogeneous sensors in order to respond accordingly to diverse and changing

conditions.
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• They intelligently anticipate to our needs based on previous information (e.g. activity

patterns, past events and their solutions). This is generally done through the use of ML

techniques that take past experience to forecast the required actions for similar situations

in the future.

• They allow seamless human-machine interaction. They are provided with mechanisms to

naturally communicate with its users (e.g. by interpreting body motion, gestures, location

and physiological signals). Ideally, without the user having to interact through custom-

made devices.

• They are adaptive: able to learn and respond to new or unusual situations. This char-

acteristic allows systems to become more robust and able to react against unexpected

conditions from the users and the environment.

2.2.2 AmI Applications

AmI has been already employed in a wide range of applications. Below, three significant areas

where it has been already applied are described:

• Smart Homes. Home automation is changing the way households and their residents inter-

act. Novel households are arranged with multimodal technologies involving environmental

sensors, user interfaces, computing devices and actuators; which aim to guarantee super-

vision and fast response to people in order to improve their QoL. Moreover, they are

incorporating centralized controls for most of their basic services such as heating, lighting,

security, entertainment, and, in general, all the available electronic appliances [Garćıa-

Vázquez et al., 2010; José et al., 2010; Silva et al., 2012].

• Vital Signs Monitoring for Healthcare. Wearable body sensors [Yang and Yacoub, 2006]

offer an alternative for monitoring people’s physiological and vital signs. These include,

for example, measurements of heart rate, blood pressure, oxygen saturation, body motion,

skin temperature and conductivity. AmI systems are capable of processing these data

to supervise the health condition of a target group (e.g. the elderly). Moreover, this

information can be communicated and distributed in real-time to interested parties such

as family members and emergency services when urgent assistance is required.

• Unifying heterogeneous operation interfaces. It is nowadays common to see environments

(e.g. living rooms, offices, conference rooms) composed of computing resources and elec-

tronic equipment for all kinds of purposes. These include: TVs, beamers, sound systems,

lighting control systems, personal computers and portable devices such as tablets and

smartphones. Even though they share the same space, their control mechanisms and in-

terfaces are rather different and there is generally no unique approach to operate them.

AmI contributes to unify the way these devices interact with people by creating more nat-
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Area 2000-2005 2045-2050

Entire World 65.4 75.1

More Developed regions 75.6 82.1

Less developed regions 63.4 74.0

Table 2.1: Life expectancy at birth comparison between more and less developed world regions
(in years). Data from [United Nations, 2006].

ural and simpler approaches to interface them. It also allows the automatic incorporation

of new devices in a more intuitive way.

2.2.3 Ambient Assisted Living

In developed countries, it has been observed in the recent years a large growth in the life

expectancy of their inhabitants. This trend is expected to expand to the whole world in the

forthcoming years [United Nations, 2006] (Refer to Table 2.1). These figures show the proportion

of elderly people is rapidly increasing and updating the distribution of age population groups.

These changes have a dramatic impact in the way resources and roles need to be assigned to the

various issues that affect the world.

Recent benchmarks in the population structure by main age groups in Europe have showed

that by 2060 the elderly (namely people over 65 years) will be near 30% of its population as

opposed to a 17% by 2010 [Eur, 2011]. These numbers represent an alarming growth of more

than 70% of this age group which brings new challenges to deal with.

People are living longer, primarily due to the enormous advances in medicine such as the

development of new drugs, treatments and equipment. These important achievements of human-

ity are driving us to find alternatives to cope with the large demand from the expanding aging

population. One of the basic needs of the elderly arises from their places of residence. Many of

them live in isolated conditions and some are distant from the city centers. This makes more

difficult their access to services such as health and social care facilities. We can alleviate these

issues through the exploitation of current technologies. For example, by developing automatic

mechanisms for remote monitoring, diagnosis and assistance of people. AAL plays an impor-

tant role in this matter as it is specifically focused on finding solutions to provide independent

and healthy living to this population sector. This task can be supported by the adoption of

technologies developed for AmI as these two areas are closely related.

AAL is not only limited to the elderly but also to people with any type of limitation (e.g.

blindness, deafness, and physical disabilities). About 15% of the world population have some

type of disability [WHO, 2011]. This figure shows that there is a large sector to which AAL can

also bring numerous benefits.

AmI and AAL systems need to capture information from the environment and from the

users. In this research, we have centered our efforts in finding mechanisms for obtaining activity

information from the user by means of the analysis of their body motion. In particular, through

the use of the nowadays widely used smartphones.
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Figure 2.1: Examples of ambient and wearable devices.

The extraction of human activity information is only a small part of this large process of

developing AmI systems. Therefore, we aim to provide a technological tool that can be employed

as an input for applications in these two areas. This will provide systems with opportunities for

better decision making not only to people with limitations but also to any kind of people which

need to improve their well-being, health or comfort.

2.3 Sensing Activity

The right choice of sensors is one of the first elements to be taken into consideration for the design

of HAR systems. A number of sensors have already been explored to extract activity-related

information [Chen et al., 2012a; Lara and Labrador, 2012a]. They measure several attributes

including vital signs (e.g. heart rate, body temperature, blood pressure), environmental signals

(e.g. light intensity, temperature, sound levels), motion (e.g. acceleration, speed) and positioning

(e.g. global and indoor location).

Based on the sensor placement with respect to the user, the sensing mechanisms are classified

in: ambient, when sensors are in static locations of the environment and wearable, when they

are worn or attached to the user’s body. These two categories are detailed as follows. Besides,

examples of sensors in these two categories are depicted in Figure 2.1.

2.3.1 Ambient Sensors

Ambient sensors, also known as external or environmental sensors, are the collection of devices

found in the environment which measure physical properties regarding the surroundings, the

users that are part of it, and their interaction. There is a wide range of ambient sensors such as

microphones, video cameras, presence sensors, thermometers and depth sensors.

Many of these sensors have already been employed for HAR. For example, video cameras

are employed in [Poppe, 2007] for markerless vision-based human motion analysis. Also in [Bian

et al., 2005], microphones are used for sound source localization in a home environment for

11



Chapter 2 Background

communication activity inference. Even everyday use devices can also indicate the occurrence

of certain activities such as the identification of switched on/off household appliances to infer

home activities [Ogawa et al., 2002]. Moreover, in [Takač et al., 2013], a Microsoft Kinect’s

depth sensor is used as an ambient sensor for position and orientation tracking for an indoor

monitoring system for Parkinson’s disease (PD) patients. Although these examples can provide

accurate context information about the agent’s motion and localization, they require a static

infrastructure which limits its range of operation to a constrained space.

Additionally, video-based systems can be very effective for HAR but they are somewhat

disadvantageous due to their demanding computations (e.g. for achieving real-time operation)

and privacy concerns, for instance, when they are used in home environments as people are

generally uncomfortable about being continuously monitored.

2.3.2 Wearable Sensors

Wearable sensors are used to gather signals directly from users. They are commonly attached

to different body parts such as the waist, wrist, chest, legs and head [Ravi et al., 2005] but

also fit to clothes and embedded in other accessories of regular use such as watches, glasses or

mobile phones [Brezmes et al., 2009]. They contain a battery unit that provides the energy

supply for continuous operation and, some of them, also have a wireless unit for sensor data

transmission when it is externally needed or to interface them with other body-worn devices.

Physiological and motion signals obtained from wearable sensors are highly informative for

HAR. Skin temperature, heart rate, heat flux, conductivity, Global Positioning System (GPS)

location and body motion are some examples of variables that can be measured with current

wearable sensor technologies [Yang and Yacoub, 2006]. These can be convenient, for example,

in healthcare applications where it is possible to exploit them for the continuous monitoring of

patients and the detection of an emergent health condition.

Contrarily to ambient sensors, wearable sensors have advantages regarding privacy and area

of operation. In the first case, users are less reluctant to use them in every location if there is

no capture of images or video. Secondly, considering that these sensors are always carried by

the user, they are ubiquitous and their location coverage is virtually unconstrained. They have

also the advantage of being highly portable and do not require fixed equipment. On the other

hand, wearable sensors have also brought new challenges: preserving battery life and minimizing

obtrusiveness while being able to gather reliable context information from limited sensing. These

sensors are sometimes uncomfortable for the common user (e.g. if they are fastened too tight

or wired or if they need to be constantly repositioned after dressing) and cannot provide a

long-term solution for activity monitoring without recharging them regularly.

In addition, hybrid sensing approaches, which combine wearable and ambient sensors from

different sources, offer an alternative robust option for HAR. For instance, in [Tapia et al.,

2006], a sensor rich environment has been set for the collection of signals from 72 environmental

and body sensors aiming to evaluate complex activities in an indoor location. In this work, we

12



2.3 Sensing Activity

employ accelerometers and gyroscopes for the sensing human body motion. We describe their

key features as follows.

2.3.2.1 Accelerometer

The accelerometer is an instrument that measures the experienced physical acceleration of an

object. It has been employed for several applications in science, medicine, engineering and

industry such as for measuring vibrations in machinery, acceleration in high-speed vehicles and

moving loads on bridges. For what concerns to HAR, the accelerometer is one of the most widely

used sensors for reading body motion signals [Mannini and Sabatini, 2010].

Its principle of operation generally consists of a seismic mass which is displaced in relation to

the acceleration it is subjected to. The displacement can then be transduced into a measurable

electrical signal. This phenomenon has been applied for the development of Microelectromechan-

ical Systems (MEMS) sensors. Their technology allows to create nano-scale devices fabricated

with semiconductors. They are advantageous against other sensor technologies because it is pos-

sible to produce them in large scale and with low manufacturing costs. Most common MEMS

accelerometers work as a capacitive sensor composed of a cantilever beam with a proof mass

whose deflection is correlated with the acceleration experienced by the sensor [Woodman, 2007;

Yang and Hsu, 2010].

Acceleration magnitude and direction can be measured as a vector quantity by orthogonally

arranging sensors in the three spatial dimensions. This can be also built on a single chip and it

is now common to find triaxial accelerometers in several commercial electronic devices. This is

the case of smartphones which we exploit in this research.

One of the problems of using accelerometers for detection of body motion is the effect of

the gravitational field which is always present in the measurements and its magnitude (g =

9.81m/s2) is relatively high. However, it can also be separated from body motion by filtering

(see Section 4.3.2). Sensing the gravity vector can also help to determine orientation of an object

with respect to the gravitational-force axis when triaxial accelerometers are used.

2.3.2.2 Gyroscope

A gyroscope is a sensing device for measuring orientation [Woodman, 2007]. It has been used in

many applications such as inertial navigation systems, aerial vehicles for stability augmentation

(e.g. in quadcopters) and recently, it has been introduced in electronic devices (e.g. smartphones,

game consoles) for enhancing user interfaces and gaming experience. For HAR, this sensor has

been employed in various applications such as for the detection of activities (e.g. walking, stair

climbing) and transitions between postures (e.g. from standing to sitting) [Coley et al., 2005;

Najafi et al., 2002].

Gyroscopes have also been produced with MEMS technologies. However, sensors of this type

can only measure orientation indirectly. They estimate angular speed instead which can then be

integrated in time in order to obtain orientation. However, it is required first to have a reference
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Hardware Sensors Communications Services

CPU Camera Wi-Fi SMS
Battery Accelerometer GPRS MMS
Internal Memory Gyroscope EDGE Email
Touchscreen Compass Bluetooth Internet
SD Card Proximity USB Third-party apps
SIM Card GPS 2G, 3G, 4G Radio
Speakers Barometer NFC Gaming

Light Sensor
Microphone

Table 2.2: Common features of current smartphone models in the market

initial angular position to achieve this. These sensors are also highly prone to noise which can

cause measurement drift from integration.

Several MEMS gyroscopes obey the tuning fork principle in which a couple of test masses

are driven to resonance [Yazdi et al., 1998]. Then, their displacement with respect to their plane

of oscillation can be measured into a signal related to the angular speed of the sensor. Similarly

to the accelerometer, it is possible to measure angular velocity (magnitude and direction) using

arrangements of single-axis gyroscopes.

2.4 Smartphones: The Evolution of the Traditional Mobile Phone

Since the launch of the first mobile phones to the market by the end of the 1970s [Oliphant,

1999], a remarkable growth in the production of these devices has been observed over the years.

Statistics have shown that by 2011, this technology reached nearly 80% of the world population

[Ekholm and Fabre, 2011]. This trend is clearly showing that mobile devices will be accessible

to virtually everyone in a matter of years.

Conventional mobile phones offer the basic telephony service which allows people to commu-

nicate wirelessly from any location, provided it is within the available cellular network coverage.

These devices also include other essential communication services such as Short Message Service

(SMS), Multimedia Messaging Service (MMS) and email.

The user need for new services such as the instant access to information and more sophisti-

cated communication alternatives has stimulated the emergence of smartphones. These devices,

which are mainly a new generation of mobile phones, are provided with more computing capa-

bilities, integrated hardware, services and wireless communications than the traditional mobile

phones. Web access, multimedia, gaming, location-based services, image capture and video

recording, are just a few examples of their available features. Figure 2.2 shows an smartphone

and lists some of its features.

Moreover, Table 2.2 lists a set of features available in current smartphone models. Particular

importance should be given to the substantial number of sensors in these devices, nine in this
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Figure 2.2: Example of a commercial smartphone (SGSII) and some of its features.

case. They have been originally included to enhance human-computer interaction but soon

it has been observed that they can bring a broad range of measuring possibilities for several

applications [Lane et al., 2010]. Nowadays, they are playing an important role in the exploration

of novel information retrieval approaches directly from the users. This characteristic, known as

opportunistic sensing (Section 2.4.3), along with the high availability of these mass-marketed

devices which nearly cover the entire population, seems an interesting area to be exploited for

its application in HAR.

2.4.1 Characteristics and Selection Criteria

Various essential aspects are required for the selection of an appropriate smartphone for HAR

applications. These include:

• Hardware specifications, regarding memory capacity, processor speed, and power consump-

tion able to cope with the algorithm requirements. Other aspects, such as size and weight,

need to be considered as they could contribute to the device’s obtrusiveness during use.

• Mobile Operating System (OS), which is in charge of the device’s resource management

and controls the operation of apps. Moreover, other characteristics such as open source

model availability, user interface and developing interface should be taken into account.

• Sensors available, this aspect examines the type of sensors embedded on the device (and
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possible connection with others), their specifications and access possibilities through the

OS.

First mobile phones used embedded systems to control their operation. In contrast, smart-

phones now employ mobile OSs for this purpose. Their systems have similar characteristics to

OSs in PCs such as being responsible for providing common services to apps and programs,

and the management of resources and hardware. However, OSs for smartphones are also highly

oriented towards energy efficiency due to the device’s mobile nature and battery limitations.

Furthermore, the development of a new generation of portable devices (e.g. tablets, laptops,

etc.) is helping to vanish the line from fixed to mobile computing. This extends the possibility of

transferring smartphone tools easily, not only to different OSs but also devices. As an example,

Microsoft Windows latest OS’s platform (Windows 8) has hybrid characteristics that allows its

operation either in personal computers and tablets [Honeycutt, 2012].

The smartphone operation is not limited only to its OS, it should also be accompanied with

an appropriate hardware. The computational power of high-end smartphones is nowadays not

far from the one in standard personal computers regarding processor speeds and communication

services. Nevertheless, substantial improvements are needed in some aspects. Particularly and

most importantly in battery life. It is, in general, very short, in the order of hours rather than

days as it used to be with first mobile phones. Memory management and shared resources are

other aspects that affect the device performance and also need special attention. Meanwhile, we

overcome these issues by developing light and energy efficient applications. These aspects are

then taken into consideration for the design of our HAR systems.

2.4.2 Smartphones as Wearable Sensors

Wearable technologies comprises all the devices that are body-worn and allow to gather and

process information from the users and their interaction with the environment. In this research,

we use smartphones as a wearable device given they are now provided with numerous internal

sensors, some of which can be exploited for motion sensing and are thus appropriate for the

identification of human activities. Table 2.3 shows a list of these sensors. We selected two of

them: the accelerometer and the gyroscope. They provide information about the user’s linear

acceleration and angular velocity respectively when used as a wearable sensors, and are not

highly affected by external factors such as bad indoor signal reception in GPSs or electromagnetic

noise in compasses. However, accelerometers measurements are always influenced by the gravity

component in the detection of the body motion acceleration (See Section 2.3.2.1). Similarly,

we work with the acceleration and angular velocity signals which are directly read from these

sensors and avoid their integration to obtain either position or orientation information given

the known drift due to noise usually found in this type of inertial sensors (Section 2.3.2.2).

Accelerometers have been included in smartphones since 2007 [Lane et al., 2010], while

gyroscopes were introduced more recently (2010) in mid- and high-end devices and they have

demonstrated to improve the recognition performance in HAR systems when used in combination
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Table 2.3: Smartphone sensors with potential use in motion detection.
Sensor Measures/Captures Advantages/Disadvantages

Accelerometer Linear acceleration Gravity component is always present in the
measurements. 3D position estimation re-
quires double integration therefore it is sus-
ceptible to a large position drift.

Gyroscope Angular Velocity Angle orientation is estimated through in-
tegration of the angular velocity and prone
to drift due to signal noise.

Camera Images & Video Data extraction from images is computa-
tionally expensive and battery inefficient.
It brings concerns regarding user’s privacy.

Compass Magnetic field Measures orientation respect to the mag-
netic north but it is susceptible to electro-
magnetic noise.

GPS Geolocation Directly measures global 3D positioning
but it does not work indoors due to low
signal strength from satellites.

Barometer Atmospheric pressure Can deliver altitude coordinates and helps
to rapidly acquire GPS location. Its pre-
cision is low and can be affected by at-
mospheric factors (e.g. air currents and
changing weather).

with accelerometers such as in [Anguita et al., 2013d; Wu et al., 2012]. As these sensors are both

based on MEMS technologies, they are small, affordable and therefore suitable for commercial

use and integration in portable devices. Noise is however a limiting factor of these sensors which

we deal with through a few signal processing solutions (Refer to Section 4.3.2).

Smartphones are one of the portable devices users spend more interaction time with while

performing their usual Activities of Daily Living (ADL). This aspect combined with their char-

acteristics and the possibility of collecting and distributing usage data make them a exploitable

tool for HAR, for example, when used as wearable sensors. However, disadvantages related

to these sensors (Section 2.3.2) such as obtrusiveness and user-awareness are reduced to some

extent taking into account that smartphones are becoming part of our environment and their

users are familiarized with them.

2.4.3 Opportunistic Sensing

Our environment is now a highly instrumented infrastructure composed of all kinds of devices

and sensors which can provide, to some extent, information about it and its interaction with

users. When these elements are exploited as a sensing resource and its use is different from its

original function, we refer to the term Opportunistic Sensing. For example: the detection of

the activation of light switches at home can be a good indicator of the location of its occupants

and can contribute to infer their performed activities. Even more, this can be improved if

the gathered information is combined with the one coming from household appliances such as

microwaves, blenders, computers, phones, etc. (e.g. if the lights and the TV of the living room

are on, there is a high chance that somebody is watching TV) [Ogawa et al., 2002]. Clearly,
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advantage is being taken from these existing elements even though neither the switches nor the

appliances were firstly designed for this purpose.

Similarly, smartphones are equipped with a varied range of sensors which can be exploited

for new opportunistic sensing ¿applications. The Nokia N95 mobile phone for example, was

launched in 2009 and it was one of the pioneers in introducing motion sensors [Campbell and

Choudhury, 2012]. Its embedded accelerometer was originally used only for photo orientation

and video stabilization but a subsequent software upgrade provided developers control over the

sensor through an Application Programming Interface (API) and allowed them to take advantage

of it for novel applications. Even microphones that were primarily designed to make and receive

telephone calls, is now exploited for several mobile applications such as in voice recognition as

interface between the user and the device, and also to measure social isolation based on the

duration of ambient conversations [Lane et al., 2012].

Also, the combination of accelerometers and gyroscopes have brought many advantages re-

garding spatial positioning and its use on smartphones. The sensing of 6-axis motion have been

already exploited for a richer gaming experience. For example, in first person shooter games,

players can explore three dimensional locations in a more realistic manner by tilting or twisting

their devices instead of using the touchscreen or other phone controls.

2.5 Machine Learning

ML is the area of study concerned about the design, development and evaluation of systems

capable to learn from data. In many common situations where we need, for instance, to complete

a particular task, or perhaps to make some prediction regarding a given issue, it is possible to

find solutions by the inspection and analysis of previous observations with similar characteristics

to the addressed problem. In other words, ML systems are capable of predicting future actions

based on past experiences [Bishop, 2006; Murphy, 2012].

Data are used as the input of the learning process and their representation is fundamental

for the performance of the ML systems. They must describe any specific situation to better

predict future data in a meaningful way. The property that allows to correctly predict unseen

samples, is known as generalization and it is highly desirable in any learning machine as it is

directly related to its performance.

2.5.1 Taxonomy of ML Algorithms

ML algorithms have been categorized according to the type of input used for training and its

expected outcome. In this section, we describe the most relevant categories.

2.5.1.1 Supervised Learning

In this type of learning, input data are usually composed of a pair of elements, namely the

input vector (x) together with its target (y) [Bishop, 2006]. This can be better clarified with
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an example: assume a system that learns handwritten numbers from 0 to 9. The input vectors

would be the set of images of all the numbers (usually several samples per each one) and the

target vector the actual labels that correspond to each sample.

If the output of desired system is categorical (only a set of discrete classes are considered),

then it is a classification problem such as the example presented above. Otherwise, if the output

data are continuous variables, such as in temperature forecasting or stock market prediction,

then the system is considered a regression.

When the learning is performed gradually, for instance, by adding one new sample and its

target at a time to the model, we refer to Online Machine Learning [Shalev-Shwartz, 2011]. This

supervised approach have the advantage of making the model adaptive and flexible in accordance

to the new inputs. This type of learning is required in applications with high output variability

and where a stream of new samples is available and can be progressively added to the model for

learning. This is the case of online web ranking and stock market prediction applications.

This algorithm type is the most commonly used for ML and it is also the one used in our

research. However it is not useful to solve all kind of problems. In fact, one of its disadvantages is

that in some applications it is not always possible to have target information for all the available

input samples. As a result, other techniques can cope with these situations such as unsupervised

and semi-supervised learning which are described as follows.

2.5.1.2 Unsupervised Learning

In an unsupervised learning problem, the training data consists of only input vectors without

their associated targets. It aims to find certain similarities or discover distinguishable structure

within the input data (e.g. clustering). It can also be used for density estimation to describe

the distribution of the data in its space. Moreover, this learning approach can be exploited

for data visualization using dimensionality reduction methods which allow to better project

high-dimensional data into smaller spaces (e.g. 2D and 3D).

Unsupervised learning approaches have been already applied in several areas such as in

medical imaging where 3D Positron Emission Tomography (PET) scans use cluster analysis to

find dissimilarities between different organs and types of tissue to be able to correctly segment

the scanned area [George et al., 2011]. It has also been applied in the automatic grouping

of similar shopping items (e.g. books, movies, music), particularly in recommender systems for

online stores that aim to predict the user preferences based on products similarities and previous

purchases.

2.5.1.3 Semi-supervised learning

This learning approach combines labeled and unlabeled data for learning. Therefore, it takes

aspects from both supervised and unsupervised approaches. In general, small amounts of labeled

data are integrated with a large number of unlabeled samples for learning. For example, it is

useful for datasets where it is not always possible to have a label for each sample. Evidence
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have shown that semi-supervised learning can greatly improve the learning performance when

compared with supervised learning which does not take into account unlabeled data. This is

feasible if considerations such as the data smoothness assumption apply [Chapelle et al., 2006].

Vast digital image collections on the internet for content retrieval are an application example

where this type of learning can be exploited. Not all the images have an associated targets and

it would be humanly impossible to perform this labeling manually [Fergus et al., 2009].

2.5.1.4 Reinforcement Learning

This learning approach is oriented on finding an appropriate set of actions to solve a particular

problem. This is done with the purpose of maximizing a reward. Optimal solutions are not

found through learning a model given a set of input-target pairs. Instead, they are found by

trial and error [Sutton and Barto, 1998]. A common example assumes an environment that

interacts with an agent which can take actions that allow him to shift between different states.

The best actions are guided by the evaluation of a reward function related to each problem.

Humanoid Robotics is one of the research areas where Reinforcement Learning (RL) has

shown its great potential [Vijayakumar et al., 2003]. Although there are still many difficulties to

solve RL problems when the complexity of the problem increases (e.g when the dimensionality

is too high or states are continuous), there have been successful real life samples that have

demonstrated its applicability such as the cart-pole which automatically controls an inverted

pendulum [Doya, 2000].

2.5.2 Machine Learning Approaches

Several ML modeling approaches have been developed throughout the years in order to solve

different tasks such as classification, regression and clustering [Bishop, 2006]. Some of them are

based on deterministic models which aim to find fixed causal relationships between events. Other

approaches, on the other hand, are probabilistic and assume occurring events are generated from

a probability distribution. Combinations of these approaches have also been explored such as in

[Franc et al., 2011].

In the following list, the most popular ML algorithms are briefly described. Then, in the

next section we make particular focus on SVMs as they are the central ML algorithm employed

in this thesis.

• Decision Tree (DT): is a predictive model based on decision trees which makes choices from

a set of hierarchical rules related to the input data. Different versions have been proposed

such as ID3 and C5.4 [Quinlan, 1986, 1993]. It is a common approach for classification

particularly because the resulting models are easily interpretable by humans (due to its

intrinsic tree structure).

• Random Forest (RF): is an ML meta-classifier which is built using an ensemble of DTs.

The predicted class is chosen as the most frequently occurring amongst the output of each
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DT [Breiman, 2001].

• k-Nearest Neighbors (k-NN): this deterministic learning approach exploits similarity mea-

sures between data for classification and regression tasks. Given a new sample, the ap-

proach finds the k closest samples from a training set to decide the prediction outcome

with their values (e.g. by using majority rule in classification or averaging in regression)

[Altman, 1992]. Its main disadvantage relies on the size of its model as it is data-dependent

and makes it unfeasible in large datasets. There are, however, versions which consider data

reduction techniques for alleviating this issue.

• Naive Bayes (NB): is a popular probabilistic classifier based on Bayes’s theorem that

predicts the class of a given sample by assuming an underlying probability model of the

data and making strong independence assumptions between its features. Even though its

formulation is quite simple, it has shown to perform well in various applications [Bishop,

2006]. For example, when data are assumed to be Gaussian-distributed, its is possible to

learn the model only by calculating the mean and variance of the input data.

• Artificial Neural Networks (ANN): is an ML approach with a biological inspiration. It

simulates how the brain and its nervous system, composed of interconnected neurons, is

able to learn from experience and capture the underlying structure of the data. Neurons

are set in a layered structure and have associated weights which are able to adapt based

on the training data and the network output through a cost function. This approach has

shown to perform well in many applications (e.g. [LeCun et al., 1989]), including non-

linear problems. Its main disadvantage relies in the need of a large dataset for its training

stage. Multilayer Perceptron (MLP) is a popular ANN model that maps the input through

multiple layers of neurons in a fully connected directed graph until reaching the output.

• Logistic Regression (LR) is a probabilistic algorithm used for solving classification and

regression problems. It estimates the probability of a given sample of belonging to a

particular class. This is achieved through the use of a logistic function which is modeled

by fitting the training data generally using maximum likelihood estimation. [Landwehr

et al., 2005].

2.5.3 Support Vector Machines

A Support vector machine is one of the most commonly used supervised ML algorithms. It

was initially proposed by Vladimir Vapnik and his colleagues in [Boser et al., 1992; Cortes

and Vapnik, 1995] with the aim of solving linear and non-linear binary classification problems.

Afterward, this algorithm has been adapted for its application in multiclass classification and

regression analysis [Drucker et al., 1997; Weston and Watkins, 1998].

The SVM for classification is a deterministic approach that aims to find the hyperplanes

that best separate the data into classes. These subspaces are the ones that provide the largest
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Figure 2.3: Example of a binary classification problem in a two-dimensional space. The line
represents a possible solution to the problem and the dots with red outline are the misclassified
dataset samples.

margin separation from the classes of the training data with the intention of providing a model

with low generalization error for its use with unseen data samples.

SVMs are the basis for the classification of activities in this work. For this reason we now

introduce them, starting from the binary SVM model which is its simplest representation, to the

extended case that allows the classification of more than two classes: the multiclass SVM. This

algorithm will be further revised throughout the development of this research to tackle specific

requirements for our application in aspects such as kernel type, arithmetic used and algorithm

output type.

2.5.3.1 The binary HF-SVM model

In a binary classification problem only two classes are involved and it aims to predict the class

that a given new sample belongs to. As a mode of illustration, Figure 2.3 shows an example

in a two-dimensional space. Two classes represented by white and dark dots are depicted. The

solution to this classification problem is to find a way to separate the elements in two groups

in order to reduce the number of misclassifications to a minimum. In this example, a simple

approach involves tracing a line to divide the space in two regions (such as the one depicted in

the figure). This approach, however, produces some classification errors (the ones highlighted

in red) because these groups are partially overlapped. A non-linear approach is therefore most

likely to better solve this particular data configuration.

22



2.5 Machine Learning

More formally, consider a dataset composed of n samples. Each one corresponds to an

ordered pair (xi, yi) ∀i ∈ {1, ..., n}, where xi ∈ Rd are the input vectors and yi = ±1 are their

target values representing one of the two possible classes. We want to solve this problem by

finding a linear hyperplane which separates the data in two groups. The set of linear classifiers

which are possible solutions to the problem is of the form:

f (x) = wTx+ b, (2.1)

where w ∈ Rd is a vector orthogonal to the hyperplane (commonly known as weights), and

the scalar b ∈ R is the bias. A standard linear SVM aims to find the w and b values that allow

the optimal separation of the data in order to provide the largest margin between the classes and

the lowest error rate of the available data. This can be learned by solving Convex Constrained

Quadratic Programming (CCQP) minimization problem formulated as:

min
w,b,ξ

1

2
‖w‖2 + C1Tnξ (2.2)

yi
(
wTxi + b

)
≥ 1− ξi, ξi ≥ 0, ∀i ∈ {1, ..., n} ,

where ξ ∈ Rn is the vector of slack variables associated with each sample and represent a measure

of error (ξi = 0 when the sample is correctly classified, 0 < ξi < 1 when is also correctly classified

but lies within the margin, and ξi ≥ 1 when it is misclassified). C is the hyperparameter which

allows to trade-off the contribution of the margin1 and the error terms. In this thesis we will

use the notation ab to represent a vector of dimension b of the scalar a. In this way, 1Tnξ can be

seen as an upper bound of the number of errors.

This formulation is called the primal problem. Moreover, it can be reformulated and solved

more easily by using the Lagrange multipliers such as presented in [Oneto and Greco, 2010] in

order to obtain the dual formulation. The solution starts with the Lagrangian of the primal

formulation (Equation (2.2)) where two sets of multipliers are introduced. These are the ones

linked to the first and second constrains: α ∈ Rn and µ ∈ Rn respectively. This is presented as:

Lp (w, b, ξ) =
1

2
‖w‖2 + C1Tnξ −

n∑
i=1

αi
(
yi
(
wTxi + b

)
− 1 + ξi

)
−

n∑
i=1

µiξi, (2.3)

Following this, with can obtain the Karush-Kuhn-Tucker (KKT) conditions for the Wolfe

dual problem [Karush, 1939; Kuhn et al., 1951]. They include the partial derivatives of the

Lagrangian (Lp) with respect to w, b, and ξ; and slackness conditions for α and µ.

1The ‖·‖ symbol represents the Euclidean norm unless stated otherwise.
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∂Lp
∂wj

= 0→ wj =
n∑
i=1

αiyixi,j , ∀j = 1, · · · , d (2.4)

∂Lp
∂b

= 0→
n∑
i=1

αiyi = 0, (2.5)

∂Lp
∂ξi

= 0→ C − αi − µi = 0, ∀i = 1, · · · , n (2.6)

yi
(
wTxi + b

)
≥ 1− ξi, ∀i = 1, · · · , n (2.7)

αi
(
yi
(
wTxi + b

)
− 1 + ξi

)
= 0, ∀i = 1, · · · , n (2.8)

µiξi = 0, ∀i = 1, · · · , n (2.9)

(C − αi) ξi = 0, ∀i = 1, · · · , n (2.10)

αi, ξi, µi ≥ 0, ∀i = 1, · · · , n (2.11)

The dual form is obtained as:

min
α

1

2

n∑
i=1

n∑
i=1

αiαjyiyjx
T
i xj −

n∑
i=1

αi (2.12)

0 ≤ αi ≤ C, ∀i = 1, · · · , n
n∑
i=1

yiαi = 0,

which can be further simplified in matrix form as:

min
α

1

2
αTQα− 1Tnα (2.13)

0 ≤ αi ≤ C ∀i ∈ {1, ..., n} , yTα = 0,

where Q is the kernel matrix and is a symmetric positive semidefinite n × n matrix where

qij = yiyjK (xi,xj).

K (·, ·) is the kernel function which helps to solve linear and non-linear problems. This is

possible through an implicit mapping of the inputs known as the Kernel trick. The idea was

first introduced in [Aizerman et al., 1964] and it assumes the existence of a function φ (x) which

maps a sample from its original space to a feature space (H) which is higher-dimensional (with

potentially infinite dimensions) and it is defined as:

φ (x) : Rd → H (2.14)

In a binary classification problem, if samples are mapped into H, they are more likely to

be linearly separable. Therefore, the use of a linear SVM to solve it appears to be practical.
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Moreover, from its formulation, we can also notice that it is not necessary to explicitly compute

the φ (x) function but rather the inner product between two elements. This is known as the

Kernel Function and its formulation is:

K (a, b) = φ (a) · φ (b) (2.15)

Its only requirement is that it must satisfy the Mercer’s theorem [Cristianini and Shawe-

Taylor, 2000] which represents a symmetric positive-definite function on a square by means of a

sum of a convergent sequence of product functions.

In order to solve the CCQP problem, many efficient algorithms have been previously pro-

posed [Shawe-Taylor and Sun, 2011], such as, for example, the well-known Sequential Minimal

Optimization (SMO) [Keerthi et al., 2001; Platt, 1998].

Once the αi coefficients are found, new patterns can be classified by applying the SVM

Feed-Forward Phase (FFP) which is given by the following general formulation:

f (x) =
n∑
i=1

yiαiK (xi,x) + b (2.16)

where b is the bias term and can be estimated by taking into account the KKT conditions

that were formulated to obtain the dual problem as described in [Oneto and Greco, 2010].

They consist of the derivatives and the slackness conditions of the Lagrangian of the primal

formulation. We can obtain b from the following condition:

αi [yi (w · xi + b)− 1] = 0 (2.17)

and assuming that we have a data sample whose αi > 0, we find that:

yi (w · xi + b) = 1 (2.18)

From Equation (2.16) it is also possible to realize that only the samples which affect the

classification of new samples are those with αi > 0. They are denominated support vectors.

Geometrically, these points usually lie close to the margin bounds between the two classes.

2.5.3.2 Extension to the Multiclass SVM

It is possible to generalize binary ML models to solve problems with more than two classes.

This process is known as multiclass or multinomial classification. Figure 2.4 shows a simple

example of a set of elements from 3 different classes in a space of two dimensions, each one

represented with a different color (red, green and blue). Also, separating hyperplanes are chosen

as a possible solution to this problem.

There are several methods that have been previously proposed for solving multiclass problems

from binary formulations. [Hsu and Lin, 2002], but generally the two most commonly used are:

OVA and one-vs-one (OVO). Their difference relies in the way they compare each class of interest
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Figure 2.4: Example of a multiclass problem in a two-dimensional space. Three classes repre-
sented by the red, green and blue dots are separated by hyperplanes which provide a possible
linear solution to the classification problem.

against the remaining ones: either all together for the first case and one by one for the latter.

In this work we use OVA [Rifkin and Klautau, 2004] and take advantage of it because its output

directly represents how likely is each class to match a new test sample against the rest.

The OVA approach consists on constructing a set of m binary SVMs, each one associated

to each existing class c. They are built from positive training samples coming from the class

of interest (labeled as +1) and negative samples which contain the remaining samples (labeled

as −1). Once the SVMs are learned, its is possible to compare them to determine which class

is the most likely to represent a test sample. The output of the FFP for every class (fc (x)) is

either positive or negative and its sign represents if the new sample is either classified as a given

class or not. Ideally, for a given sample in a multiclass problem, only one of the binary classifiers

should be positive. Therefore the classification of a new sample can be then formulated as a

winner-take-all arbiter which selects the label c∗corresponding to the class with the maximum

value of the SVM:

c∗ = arg max
c

fc (x) (2.19)

In the following chapters, we will deal with better approaches to compare the output of the

SVMs from multiple classes such as the use of probability estimates (refer to Section 5.2.2).
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Predicted Class

Actual Class
a b

a True Positives False Negatives
b False Positives True Negatives

Table 2.4: The four fundamental numbers for estimating statistical performance measures of a
classifier

2.5.4 Performance Evaluation

The evaluation of ML algorithms is predominantly made through the statistical analysis of the

models using the available experimental data. The most common method is the confusion matrix

which allows representing the algorithm performance by clearly identifying the types of errors

(false positives and negatives) and correctly predicted samples over the test data. From it,

various metrics can also be extracted such as model accuracy, sensitivity, specificity, precision

and F1-Score [Bulling et al., 2014; Lara and Labrador, 2012a]. In addition, other comparative

qualitative indicators, such as the number of available activities, prediction speed and memory

consumption, can support the selection of HAR algorithms.

2.5.4.1 Confusion Matrix

A common method to visualize the performance of an ML algorithm is through the confusion

matrix C, also called contingency table. Assuming there are m classes available, a typical con-

fusion matrix consists of a squared matrix of size m × m where misclassifications are visible

outside the diagonal. For example, if we consider a dataset composed of n patterns, where each

one corresponds to an ordered pair of extracted features and their corresponding activity label

(xi, yi) ∀i ∈ {1, · · · , n}, xi ∈ Rd, and yi ∈ {1, · · · ,m}, we can obtain C when provided with the

predicted labels fc (x).

Rows represent the actual activities and columns the predicted ones. Therefore, each matrix

cell Ci,j shows the number of instances of activity i that were predicted as activity j. It is clear

then that all the values within the matrix diagonal are correct predictions and classification errors

otherwise. From this matrix, we can visualize four different helpful values used to estimate the

various statistical measures regarding the system performance. These are visible in the simplified

confusion matrix of two classes (a and b) from Table 2.4. We take these values assuming class

a is the class of interest or positive condition.

• True Positives (TP): actual samples of class a correctly predicted as class a

• True Negatives (TN): actual samples of class b correctly predicted as class b

• False Positives (FP): actual samples of class b incorrectly predicted as class a

• False Negatives (FN): actual samples of class a incorrectly predicted as class b
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2.5.4.2 Accuracy, Sensitivity and Specificity

The accuracy can be obtained as the proportion of the true results (TP and TN) with respect

to the total number of instances in the population:

accuracy =
TP + TN

TP + FP + FN + TN
(2.20)

This measure gives an indication of how good the overall performance of a classifier is.

Moreover, we can also use the error measure for expressing the opposite. It denotes the deviation

of the measurement from the truth and it can be obtained in terms of the accuracy:

error = 1− accuracy (2.21)

Sensitivity, also known as the true positive rate or recall, is a measure of how good is the

classifier to correctly predict actual positives samples. Its formulation is:

sensitivity =
TP

TP + FN
(2.22)

In contrast, the specificity measure, also called the true negative rate, shows the ability to

correctly predict actual negative samples. It is formulated as:

specificity =
TN

TN + FP
(2.23)

The measures above are the ones we mostly use throughout this work. Nevertheless there

are also some statistical measures that are widely used such as precision, also known as positive

predictive value, which is the rate of TP with respect to all the predicted positives, and F1-score

(or F-measure) which is a general measure of the classifier’s accuracy that combines precision

an sensitivity. These two can be estimated in the following way:

precision =
TP

TP + FP
(2.24)

F1-score = 2 · precision · sensitivity

precision + sensitivity
(2.25)

2.5.4.3 Qualitative Criteria

In order to select the most appropriate classification system for a particular application, it is also

interesting to take into account a set of various qualitative criteria in addition to the statistical

measures. These aspects can help to make important trade-off decisions during this selection

process. Some of them are described as follows:

• Online capability : tells whether the system is able to perform activity recognition in real-

time.
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• Recognition time: is the time delay associated with the activity prediction process. For

instance, the length of the time window related to each prediction and its CPU processing

time.

• Battery consumption: quantifies the energy expenditure of portable devices and how this

affects their continuous operation time.

• Memory and CPU usage: considers limitations regarding memory and CPU requirements.

It is critical for instance in systems that share resources with others applications (e.g. in

smartphones, personal computers).

• Obstrusivity : evaluates how comfortable is the system for the user (e.g. sensors location

and weight, presence of wires, fitting time, etc.)

• User’s privacy : examines whether the system protects the accessed personal data of its

users from external sources.

• Number and type of classes the system is able to classify.

• Number and type of sensors required for the recognition of activities.

• Modular design: indicates whether or not the system allows its integration with others or

the adaptation of new sensors and devices.

2.6 Summary

In this chapter we described the background required to contextualize the problem of HAR. We

first covered the fields of application our research work is targeting to: AAL and AmI which are

human-centered areas aiming to improve people’s QoL through the use of smart technologies.

Then, we explored three implementation considerations that constitute the main building blocks

involved in the development of our proposed HAR systems. These are: Sensing devices, with

focus on inertial sensors (accelerometers and gyroscope), for the detection of physical activity;

smartphones, the recent everyday use device with strong computing capabilities now exploited

as a novel service provider (HAR in our case); and the intelligence behind our systems provided

by SVMs.
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Chapter 3

State of the Art

3.1 Introduction

The rise of ubiquitous computing systems in our environment is engendering a strong need

for novel approaches to human-computer interaction. HAR systems can effectively contribute

to develop these approaches due to the unobtrusive and pervasive ways of interaction they

provide Schmidt et al. [1999]. Human intervention is needed in many systems for decision

making, usually by means of interaction through traditional devices such as keyboards, remote

controls, switches, or touchscreens [Weiser, 1993]. These mechanisms of interaction are becoming

intractable considering the amount of devices we are exposed to every day.

Moreover, we are now facing a new challenge as a result of the easy access to vast amounts

of information coming from multiple sources. They can contribute to reduce our demanding

interaction with machines to a minimum. This is possible especially because we are always

(involuntarily or not) providing feedback to the environment through our behavior and actions.

Novel systems could therefore become more cognitive and fundamentally transform our ways

of interaction with them [Cook and Das, 2012]. For instance, in the medical field, monitoring

physiological signals in humans, such as an increase in our average daily heart rate or body

temperature, can indicate an emerging health condition. This detection can be possible even

without the patient being aware of the situation or the need of a check up visit to the doctor.

HAR is an active research field in which methods for understanding human behavior are de-

veloped by interpreting attributes derived from various sources [Karantonis et al., 2006; Lukow-

icz et al., 2004; Poppe, 2007] (e.g. by sensing motion, location, physiological signals, weather

and temperature etc.). It aims to identify the actions carried out by a person given a set of

observations of him/herself and the surrounding environment. HAR has provided substantial

contributions in human-centered areas of study such as AmI, Pervasive Computing (PerComp)

and AAL. These areas make use of HAR systems as an underlying technological tool which gath-

ers behavioral information from people about their actions and environment during the course

of their daily life and delivers context-aware data that can help to provide valuable services,

products and technologies aiming to improve people’s QoL.
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In this chapter we address the subject of HAR supported by its most relevant works in the

literature. In Section 3.2, we start with a general description of this field including aspects such

as the standard recognition process, studied activities, common approaches for experimental

data collection, and performance evaluation. Subsequently, we emphasize on the state of the art

research on HAR systems, some of which are described and compared against our approaches

in Section 3.3. Finally, we conclude the state of the art in Section 3.4.

3.2 Human Activity Recognition Overview

HAR is an essential component for the development of systems for allowing smarter interactive

cognitive environments. As a mode of illustration, in a simplified view of the human information

processing pipeline which consists of four stages (sensing, data analysis, decision making and

taking action) [Gandetto et al., 2003; Parasuraman et al., 2000], HAR belongs to the first and

second stages. It contributes to acquire the necessary information regarding the user activity.

This is then combined with the perceived environmental data in order to obtain a complete

state representation of the world and its individuals before continuing to subsequent stages. For

instance, a system for the management of accidents in the elderly (e.g. falls [Lord, 2007]) would

require initially the detection of a potential event from the user’s wearable sensors. Then this

detection needs to be fused with environmental information which can help to confirm that what

has occurred is not a false negative (e.g. if the sensor felt on the floor). Afterward, it is possible

to make decisions about what to do and if necessary take action by calling the emergency services

for immediate assistance. In this section we introduce the main concepts behind HAR and their

application into real world problems with particular focus on the fields of AAL and AmI.

A general representation of the principal components of a HAR process is depicted in Fig-

ure 3.1. Many of the HAR approaches found in literature, follow a regular structure with slight

variations based on their application, sensors, and selected ML algorithms. The diagram is valid

to supervised, semi-supervised and incremental learning approaches [Karantonis et al., 2006;

Stikic et al., 2011; Wang et al., 2012] (Refer to Section 2.5.1). They differ on the type of input

(labeled or unlabeled) and if the learned model updates when new samples are added into the

system (notice the Feedback dotted line on the graph).

From the four main blocks of a HAR system (Figure 3.1), sensing is responsible of gathering

the sensor data from the available sources and process them (See section Section 2.3). Generally,

signal conditioning (e.g. reducing noise, digitizing, amplifying) is always required for adapting

the sensed signals to the application requirements. In the second place, the feature extraction

process is in charge of obtaining meaningful features that describe the data and allow a better

representation and understanding of the studied phenomena. The extracted features turn into

the input of the ML algorithm, either for learning the model or for the activity prediction of

novel samples when the model already exist.

Moreover, traditional HAR systems usually operate in a feed-forward basis thus learning is

performed offline only once and there is no further feedback into the system. This is useful in
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Figure 3.1: The Human Activity Recognition Process Pipeline with its four main blocks.

Duration/Complexity Activity Type Examples

Short Events Gestures waving hands, nodding head, laughing
Transitions stand-to-sit, lie-to-sit

Basic Activities (BAs) Static standing, sitting, reading
Dynamic walking, running, cycling

Complex Activities (CAs) Multi-activity cooking, assembling furniture, weight training
Multi-user talking, ballroom dancing, hugging

Table 3.1: Classification of activities by duration and complexity.

cases where the data distribution does not change over time or the system is subject-independent

and robust against high input variability. Otherwise adaptive methods such as incremental

online or transfer learning [Zheng et al., 2009] are advised but conditioned with an increase

in the computational load into the process. In relation to the analysis of high level activities,

which are combinations of simple activities (e.g. assembling furniture or fixing a car [Amft et al.,

2007]), there is a limited amount of work that has been done and it is still an open research

field.

3.2.1 Human Activities

A HAR system is dependent on the set of activities to recognize as they can directly affect the

way systems are designed and implemented. For this reason, the classification of activities in

categories simplifies the selection of appropriate mechanisms to recognize activities. Here, we

categorize them with respect to their duration and complexity, and activity type.

Table 3.1 shows the categorization of activities with respect to their duration and complexity.

There are three main groups: Short events are simple activities with a defined small duration.

These are divided in two types. First, Body gestures which are visible motions mainly used as
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Application Examples

Daily living Watching TV, ironing, eating, showering, cleaning

Locomotion Walking, riding, standing, laying down, falling

Sports/Fitness Jumping, weight lifting, climbing, swimming

Communication / Connectivity Phone calling, texting, talking, signing

Security/Surveillance Loitering, chasing, supervising, stalking

Table 3.2: Classification of activities by type.

a mechanism for nonverbal communication and second, transitions which are the events that

connect the execution of two different activities. For example: when a person is seated and then

stands up, the sit-to-stand (SiSt) PT occurs. The second group is composed of Basic Activities.

They are mostly characterized either by a continuous or a cyclic action. Their duration is

variable but in general they take much longer than short events (in the order of minutes). Two

activity types are derived from this class: Static which involve Static Postures (SPs) such as

sitting and standing and dynamic which are activities that have periodicity such as walking and

running (here we will refer to them as Ambulation Activities (AAs)). Finally, the third group is

the one of Complex Activities (CAs). This comprises the rest of activities which are generally a

sequence of BAs and short events (multi-activity) or that involve more than one subject (multi-

user) such as ballroom dancing which requires the participation and coordination of two people

while performing several movements.

There are currently many applications of public interest where HAR is greatly needed. For in-

stance: in healthcare, for tailoring medication of disabled patients with motor problems through

the continuous monitoring of locomotion and daily living activities using inertial sensors, and

in security, for the surveillance of public places and crime prevention through the detection of

security-related activities using video cameras [Avci et al., 2010; Lin et al., 2008]. In this manner

it is possible to see a clear categorization of activities according to their type. These groups

of activities are, in general, relevant to various HAR applications. Table 3.2 depicts different

types of activities which have been employed in previous studies. Other proposed taxonomies

of activity type are presented in [Bruno et al., 2012; Lara and Labrador, 2012a].

3.2.2 Sensing and Data Collection

The definition of the experimental set up for data acquisition is also an important aspect in HAR.

Depending on how the subject is observed in its habitat with or without any manipulation by

the observer. Naturalistic environments are ideal for experimentation but in many cases it is

not feasible to exploit them. Therefore, controlled experiments can be carried out in laboratory

conditions aiming to simulate natural settings (semi-naturalistic environments). Otherwise, fully

controlled environments are the last resource for data acquisition although the performance of

the developed method/system with this approach is uncertain until verified in real situations.

Failures in the design of HAR systems can be due to the lack of real life considerations

such as unaccounted activities or target users, noise, sensor calibration and positioning, etc.

This latter is for instance highly linked to the system performance as presented in [Atallah
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et al., 2010; Maurer et al., 2006] where different sensor locations were evaluated for determining

the ideal positions for performing HAR through the use of wearable accelerometers. Another

final consideration about the experimentation process is the number of individuals selected

as generally larger number of people involving various age groups and physical conditions are

preferred. This is also directly related with the performance and generalization capability of the

system in the presence of new users.

3.2.3 Feature Selection and Extraction

In an ML problem, feature selection refers to the process of selecting a significant set of features

to largely impact the discrimination ability of a learning algorithm. Feature extraction, on the

other hand, is an approach to diminish the dimensionality of an available set of features by

performing inter-feature transformations in order to obtain a new dimensionally reduced repre-

sentation without largely sacrificing relevant information from the original set. The curse of di-

mensionality, which describes the difficulty in understanding and dealing with high-dimensional

data, is certainly linked with these two reduction mechanisms as they can alleviate the problems

that may arise when working in high-dimensional spaces.

Feature selection and extraction also allows to reduce the training times and increase the

generalization performance in ML problems. They, however, differ on that the interpretability of

models in which feature selection is employed is much clearer. In this case, features are distinct

between each other and not merged such as in feature-extraction-based approaches.

Depending on the application, the features required for the extraction of relevant informa-

tion may vary. In the particular case of HAR, a reduced representation of the sensor data can

be used as the input of a recognition algorithm. This is attained by estimating various mea-

sures from the sensor signals in different domains (e.g. in time and frequency). Nonetheless,

other time-frequency function representations such as the wavelet transforms are also applicable.

Once obtained, they can be further reduced using feature selection (e.g. exhaustive search, or

wrappers, filters and embedded methods [Guyon and Elisseeff, 2003]) and extraction approaches

(e.g. using Principal Component Analysis (PCA) [Bishop, 2006]), or a combination of both.

In Section 4.3.3 the features selected for the development of our HAR dataset are presented.

Moreover, in Section 6.4 we describe the feature selection approaches used in this work.

3.2.4 Machine Learning

Several ML approaches have been developed throughout the years for HAR. It has mostly been

targeted through supervised learning algorithms although semi-supervised and unsupervised

methods have also been proposed [Stikic et al., 2008; Wyatt et al., 2005].

Frequentist and Bayesian models have been well covered throughout HAR literature. They

involve rule-based models such as DT and RF [Coley et al., 2005; Ermes et al., 2008], geometric

approaches including k-NN, ANN and SVMs [He and Jin, 2009; Khan et al., 2010a; Maurer

et al., 2006], and probabilistic classification methods as for example NB classifiers, and Hidden
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Markov Models (HMM) [Tapia et al., 2007; Zhu and Sheng, 2009].

Many of these ML approaches have demonstrated comparable performance in different works

(e.g. [Mannini and Sabatini, 2010]) though suggesting that the effectiveness and right selection of

the algorithms can be linked to other aspects such as data structure and application [Wolpert and

Macready, 1997]. Other relevant aspects for ML algorithm selection include: energy consump-

tion, memory requirements, interpretability and computational complexity, etc. As a matter

of example, decision trees could be preferred when the model interpretability is required and

SVMs for high performance applications. In Section 3.3.3 we provide more details regarding

HAR systems which have employed different ML algorithms.

3.3 Related work in HAR Systems

Several approaches have been previously proposed in literature for the recognition of human

activities. They cover diverse application domains such as healthcare, smart homes, UbiComp,

AAL, surveillance and security [Cedras and Shah, 1995; Choudhury et al., 2008; Poppe, 2010;

Turaga et al., 2008]. In general, these proposed HAR systems are able to sense, monitor, and

learn from our actions in order to provide useful information which can be used to decide better

about our future needs or behavior [Cook and Das, 2012].

These approaches can be categorized according to many different criteria. Some of the

most relevant are: by sensor type, which is reliant on the class of signals measured to extract

activity information (e.g. inertial, vision-based and physiological [Lara and Labrador, 2012a]);

by sensor location, which depends on the position of the sensor with respect to the user. Namely

external sensing when sensors are located in fixed positions in the environment and wearable

sensing when they are body-attached [Yang and Yacoub, 2006]; by human activity type, which

groups the systems with respect to the activities they are able to identify (e.g. locomotion and

ADLs); by modeling principle, which can be data- or knowledge-driven depending on whether

the HAR models are built given pre-existing datasets or from the exploitation of prior knowledge

regarding a particular domain [Chen et al., 2012a,b]; by learning approach, in relation to the

type of algorithms used for learning such as supervised, semi-supervised or unsupervised methods

[Kwapisz et al., 2011; Stikic et al., 2011; Wyatt et al., 2005].

The work presented in [Bao and Intille, 2004] was pioneer in developing a method for the

detection of a set of activities of daily living using five body-worn accelerometers and employ-

ing well-known ML classifiers (e.g. decision trees, naive Bayes, and nearest neighbor). They

developed a method for the detection of a large set (20) of ADL. Their approach was performed

offline and, considering the large amount of activities included, it achieved promising results

regarding the possibility of extracting activity information from accelerometer signals. They

also suggested the potential advantages of developing online systems.

Moreover, other wearable systems have particularly grabbed the attention of the HAR re-

search community [Lee and Mase, 2002; Lukowicz et al., 2004; Mantyjarvi et al., 2001] due

to the ease of obtaining activity information (e.g. body motion, temperature and heart rate)
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directly from the user, unobtrusively and virtually at any location without the need of fixed

infrastructure. For example, [Ravi et al., 2005], as opposed to [Bao and Intille, 2004], used only

one body-worn triaxial accelerometer in the pelvic region, and evaluated a set of base-level and

meta-level classifiers (e.g. boosting and bagging) for improving the recognition performance.

Furthermore, in [Lukowicz et al., 2004], an approach to recognized workshop activities was pro-

posed. It used accelerometers in combination with microphones strategically located on the

user’s dominant arm. They analyzed the intensity of the acoustic signals and correlated them

with the inertial data in order to infer user activities. This approach, which achieved accuracy

levels of 84.4%, showed that the fusion of different sensors can greatly improve the classification

accuracy of their system.

More recently in [Kwapisz et al., 2011] six human activities such as jogging, walking and

sitting were classified using a smartphone-embedded accelerometer carried in the pocket in an

attempt to simplify the recognition process with a more pervasive, practical and unobtrusive

approach. Other approaches have also been proposed targeting specific applications: for ex-

ample, from the medical standpoint, monitoring systems have been presented for the detection

of different attributes in elder PD patients such as gait parameters, motion disorders and falls

using on-body accelerometer [Herrlich et al., 2011; Sama et al., 2012].

In Table 3.3, a summary of the most influential offline HAR works is presented. It highlights

the most important aspects about them such as type of sensor used, activities identified and

system accuracy levels. In some of these works, system accuracy was not provided, but instead,

measures such as sensitivity and specificity. For comparative purposes, we assumed in these

cases a balanced dataset with the same number of positive and negative samples in order to

approximate this measure as accuracy = 1
2 (sensitivity + specificity). In the same manner, we

present in Table 3.4 the most relevant online HAR systems. In the tables, it can be noticed the

large diversity of sensors, types of activities, number of subjects in the experiment and learning

approaches that has been employed to achieve the recognition of activities. These differences

clearly produce variations in the algorithms performance. For example, the number of people

involved in an experiment is an important factor during learning: the higher this number is,

the more realistic representation of the overall population (or target group) is obtained. This

can therefore increase the generalization ability of a recognition system in order to correctly

classify the activities of new unseen persons (e.g. the work in [Lukowicz et al., 2004] performed

experiments with a single individual. Even though it achieved a high accuracy it is possible

that their system performance would degrade when tried on new people). Likewise, the system

accuracy decreases when more activities are added into the system for classification.

The HAR systems proposed in this thesis are included at the bottom of the Tables 3.3 and

3.4. They are identified by their corresponding system name. We use smartphones as a wearable

device located on the waist which contains two inertial sensors (the accelerometer and gyroscope)

for the extraction of activity information. With regard to human activities, we classify 6 different

BAs and also consider the effects 6 PTs. Our learning approach is based on supervised SVMs

which is a data-driven model as it is built from the HAR dataset. Lastly, we explore both online
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HAR System Sensor Activities P∗ Machine Learning Computing Acc.
No. Type Location No. Type Algorithm Device

[Bao and Intille, 2004] 5 2D-acc

Thigh,
ankle,
arm,
wrist,
hip

20 ADL 20 NB, DT, k-NN PC 84%

[Ravi et al., 2005] 1 3D-acc
Pelvic
region

8
Locomotion,
ADL

2

SVM, NB, DT, k-NN,
bagging, boosting,
stacking, plurality
voting

PDA, PC
73.3%-
99.8%

[Lukowicz et al.,
2004]

5
3D-acc,
Microphone

Arm,
chest

8 Workshop 1

Intensity Analysis
(IA), LDA, HMM,
majority voting:
(IA+LDA)

Laptop, PC
95.5% -

100%

[Kwapisz et al., 2011] 1 3D-acc Pocket 6 Locomotion 29 DT, LR, ANN Smartphone, PC 91.7%

[Mannini and
Sabatini, 2010]

5 2D-acc

Thigh,
ankle,
arm,
wrist,
hip

7 Locomotion 13
NB, DT, k-NN, ANN,
GMM, cHMM

PC
92.2%-
98.5%

[Lee and Mase, 2002] 2
2D-acc
1D-gyro

Waist 5 Locomotion 8 Threshold-based PC
92.9%-
95.9%

[Allen et al., 2006] 1 3D-acc Waist 8
Locomotion,
PTs

6
GMM,
threshold-based

PC
71.1%-
91.3%

[Najafi et al., 2003] 2
1D-acc,
1D-gyro

Chest 6
Locomotion,
PTs

11 Threshold-based PC 94.3%

[Salarian et al., 2007] 3
2D-acc,
1D-gyro

Trunk,
shanks

6
Locomotion,
PTs

20
Threshold-based,
Fuzzy Logic

Data logger, PC 95.4%

[Rodŕıguez-Mart́ın
et al., 2013b]

1 3D-acc Waist 9
Locomotion,
PTs

31
Threshold-based,
SVM

Microcontroller,
PC

90.5%

[Wu et al., 2012] 2
3D-acc,
3D-gyro

Arm,
pockets

13 Locomotion 16 k-NN Smartphone, PC 90.2%

[Altun and Barshan,
2010]

5
3D-acc,
3D-gyro,
3D-Mag

Chest,
arms,
legs

19 ADL 8
BDM, LSM, k-NN,
DTW, SVM, ANN

PC
75.8%-
99.1%

[Lee and Mase, 2002] 3
2D-acc,
1D-gyro,
1D-Mag

Waist,
pocket

5 Locomotion 8 Threshold-based PDA, PC
92.8%-
19.91%

[Lara et al., 2012] 6
3D-acc, vital
signs

Chest 5 Locomotion 8
NB, DT, MLP, LR,
bagging, boosting

Smartphone, PC 92.0%

[Nham et al., 2008] 1 3D-acc Pocket 4 Locomotion 4 GDA, SVM Smartphone, PC 93.88%

HF-HAR 1 3D-acc Waist 6 Locomotion 30 MC-HF-SVM Smartphone, PC 89.0%
∗P: Number of participants

Table 3.3: Summary of existing offline HAR systems.

and offline approaches for the recognition of activities.

Various surveys regarding HAR systems have been presented in the literature covering general

approaches [Chen et al., 2012a], or more specific ones such as focusing on wearable sensors [Lara

and Labrador, 2012a], on-body accelerometers [Mannini and Sabatini, 2010], smart environments

[Cook and Das, 2007]. In the following subsections, we focus on some of these HAR systems

attributes in order to analyze them independently against our proposed approaches.

3.3.1 Human Activity Type

Human activities can be categorized based on complexity and area of application as described in

Section 3.2.1. Related HAR works have directed efforts in these two directions. Most of them,

however, have focused on the study of locomotion activities as it can be seen in Table 3.3 and

Table 3.4. Within this group, we have found that static postures such as sitting and standing are

commonly investigated along with some dynamic activities such as walking and climbing stairs.

In [Karantonis et al., 2006], for instance, the user posture is detected using a waist-mounted

accelerometer and it is then used for early stage decisions in a human classifier of dynamic

movements (e.g. walking, running, cycling). Moreover, [Allen et al., 2006] developed a classifier

which combines 3 static postures and 5 movements using a rule-based heuristic system and a

Gaussian Mixture Models (GMM).
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HAR System Sensor Activities P∗ Machine Learning Computing Acc.
No. Type Location No. Type Algorithm Device

[Karantonis et al.,
2006]

1 3D-acc Waist 10
Locomotion,
falls

Threshold-based
Microcontroller,
PC

90.8%

[Sama et al., 2012] 1 3D-acc Waist 3
PD motor
symptoms

20 SVM Microcontroller 94%

[Brezmes et al., 2009] 1 3D-acc Pockets 6
Locomotion,
falls N/A

k-NN Smartphone 80%

[Bruno et al., 2013] 1 3D-acc Wrist 8
ADL, PTs,
AAs

16 GMM, GMR PC 68%

[Maurer et al., 2006] 4

2D-acc,
microphone,
light sensor,
thermometer

Wrist 6 Locomotion 6 DT, k-NN, NB Watch 92.8%

[Lara and Labrador,
2012b]

7
3D-acc, vital
signs, GPS

Chest 3 Locomotion 8 DT Smartphone 92.64%

[Ermes et al., 2008] 3 3D-acc
Chest,
wrist,
ankle

5 Locomotion 3 DT PDA 94%

[Riboni and Bettini,
2011]

3 3D-acc, GPS
Wrist,
pocket

10
Locomotion,
ADL

6 NB, DT, LR, SVM
Smartphone,
server

93%

[Tapia et al., 2007] 6
3D-acc,
heart rate

Wrist,
arm,
ankle,
thigh,
chest,
hip

30 Gymnasium 21 NB, DT Laptop
58.6%-
97.6%

L-HAR 2
3D-acc,
3D-gyro

Waist 6 Locomotion 30 MC-L1-L2-SVM Smartphone 96.4%

PTA-HAR 2
3D-acc,
3D-gyro

Waist 7
Locomotion,
PTs

30 MC-L1-SVM Smartphone 96.7%

∗P: Number of participants

Table 3.4: Summary of existing online HAR systems.

Considering the classification of activities based on complexity, most of the works have been

concentrated on short events and basic activities. For example, in [Ravi et al., 2005], 8 basic

activities related to locomotion and ADL are classified using four different learning algorithms.

Additionally, transitions and basic activities are classified simultaneously in [Najafi et al., 2003].

Not much work has been done on complex activities or activity sequences. Primarily because

of the difficulty of developing automatic sensor signal segmentation into activities and the high

computational cost involved which takes into account past events. In [Lukowicz et al., 2004],

a method for continuous recognition of activities based on large decision windows after small

window classification is proposed. It is a first step in the study of more complex sets of activities.

They apply Linear Discriminant Analysis (LDA) and HMM over audio and inertial signals for

developing their classification model.

Some systems have focused on the detection of specific events that occur to people. For

example, in healthcare, falls are commonly studied activities. Their detection is essential in

order to assist people with any type of limitation such as the elderly (e.g. [Li et al., 2009]). Other

activities are directly related to particular illnesses. In the case of PD patients, symptoms such

as bradykinesia, freezing of gait, and on/off states are also relevant and therefore their detection

have been previously investigated such as in [Sama et al., 2012], [Bachlin et al., 2010] and [Takač

et al., 2013].

Most of the HAR systems do not consider PTs as part of their activity set, even if these

frequently occur during the transitions from one activity to another (Refer to Section 7.1 for

further information). Among the works which have studied PTs we have the following: [Khan

et al., 2010b], which chose 3 SPs, 4 AAs and 7 PTs for their study. Furthermore in [Najafi

et al., 2003], a comprehensive study of signals occurring during PTs for healthy and elderly
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people is used for the classification of activities. In [Salarian et al., 2007], the detection of sit-to-

stand and stand-to-sit transitions were crucial for the distinction between standing and sitting.

This was achieved through a fuzzy logic classifier which required past and future transition

information for this task. Finally in [Rodŕıguez-Mart́ın et al., 2013b], a hierarchical structure

of classifiers was employed to distinguish stand-to-sit and sit-to-stand PTs in patients with PD

through measurements from a triaxial accelerometer located on the waist. Lastly, in the medical

field, the detection of PTs is sometimes necessary such as in the work of [Mellone et al., 2012]

where the Timed Up and Go test, used for the assessment of balance and mobility in patients

with motor problems, is automated using smartphones. The objective measure of this time

required the detection of stand-to-sit and sit-to-stand transitions. In this thesis we first explore

methods for the detection of 6 BAs linked to locomotion, and then we also propose an approach

which considers PTs as their detection can also enhance the correct prediction of the first set of

activities.

3.3.2 Sensor type and Smartphones

There is currently a wide range of sensors available that have been used for developing HAR

systems. In this review, we highlight the ones exploited for wearable sensing. Inside this category,

we find that sensors can come as a self-contained device, or take part of specific purpose hardware

along with other sensors (e.g. [Sama et al., 2012]), or be interconnected as nodes forming a Body

Sensor Network (BSN) [Yang and Yacoub, 2006]. Moreover, they can also be embedded elements

within other portable devices, such as smartphones or Personal Digital Assistants (PDAs). In

this section, we contrast the various wearable approaches used for gathering activity-related

signals. Previous HAR works selected accelerometers as their preferred inertial sensor, e.g.

[Allen et al., 2006; Ravi et al., 2005; Sama et al., 2012]. However, they are generally employed

in cooperation with other sensors such as gyroscopes, microphones and vital signs sensors, in

order to contribute with additional information in the recognition process [Lara et al., 2012; Lee

and Mase, 2002; Lukowicz et al., 2004].

Previous work has used configurations of multiple sensors located in different body parts,

generally ranging from 1 to 5. Although the use of numerous sensors could improve the perfor-

mance of a recognition algorithm, it is unrealistic to expect that the general public will use them

on a regular basis as their obtrusiveness is relatively high and it becomes tedious to wear them.

For instance, in [Bao and Intille, 2004], where a set of five biaxial body-worn accelerometers was

used, a drawback was evident regarding the number of sensors they needed to attach around the

body. The same occurs with other works such as [Lukowicz et al., 2004; Mannini and Sabatini,

2010; Salarian et al., 2007]. The trend shows that in recent years, HAR approaches are aiming

to reduce obtrusiveness, either by using less wearable sensors, by opportunistically gathering

signals from commonly used devices (e.g. smartphones) or by even fusing sparse sensor data

from environmental sensors when available [Bahle et al., 2013]. In our approaches (e.g. L-HAR,

PTA-HAR), we only use a single device with only two embedded inertial sensors (accelerometer
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and gyroscope) and explore how it is possible to achieve HAR with them.

Research efforts have also concentrated on exploiting smartphones for HAR. Some smartphone-

based approaches have been already proposed in the literature [Berchtold et al., 2010; Brezmes

et al., 2009; Kwapisz et al., 2011; Wu et al., 2012]. In [Kwapisz et al., 2011], for example, it

was presented one of the first approaches to exploit an Android smartphone and its embedded

triaxial accelerometer for HAR. Their approach was able to classify six locomotion activities over

intervals of 10 seconds using an ANN while the device was carried in the pockets. In [Nham

et al., 2008], the mode of transport (walking, running, cycling and driving) was predicted using

accelerometer data from an iPhone through a signal Fourier analysis and an SVM classifier. In

a similar way, Brezmes et al. in [Brezmes et al., 2009] implemented a real-time activity classi-

fier to detect 6 different states on a Nokia mobile phone. Research on HAR with smartphone

has mostly incorporated only accelerometers [Lara and Labrador, 2012a; Mannini and Sabatini,

2010]. This can be explained due to the fact that these embedded inertial sensors were the first

to be introduced in the mobile phone market (2007) [Lane et al., 2010]. Gyroscopes, on the

other hand, made a late appearance a few years later (2010), though less approaches have con-

sidered them for HAR (e.g. [Altun and Barshan, 2010; Lee and Mase, 2002]). Recently, in [Wu

et al., 2012], a hybrid accelerometer and gyroscope approach was used for the classification of 9

activities using an iPhone 4. They showed insights of the benefits of adding gyroscope signals

into the recognition system achieving improvements ranging from 3.1% to 13.4% in classification

accuracy.

3.3.3 Machine Learning

Machine Learning approaches that have already been applied for the recognition of activities

include: NB [Jatoba et al., 2008], HMM [Mannini and Sabatini, 2010], DT, and SVM [Maurer

et al., 2006]. Some HAR works have also compared various ML methods to find the most

suitable approach in their applications. However, they do not coincide with a specific best

solution and have found instead heterogeneous approaches (e.g. DT, GMM, k-NN, etc.). This

finding shows a possible dependency of the algorithm selection on the type of application and

data used. Moreover, meta-classifiers, which predict based on the output of a series of base-level

classifiers, has also been used in HAR systems. In [Ravi et al., 2005], for instance, plurality

voting is preferred as the best approach for the classification of activities from the output of

standard classifiers including SVM, NB , k-NN and DT. The use of these classifiers is therefore

interesting in order to improve the overall recognition performance of a HAR system at the

expense of carrying out more complex operations which can lead to limitations with respect to

battery consumption, shared resources, and real-time operation.

Our approach exploits SVMs for the classification of activities similarly to other works which

have successfully employed them [He and Jin, 2009; Khan et al., 2010a; Maurer et al., 2006].

Furthermore, SVMs have shown to be effective in heterogeneous types of recognition such as

in handwritten characters [LeCun et al., 1995] and speech [Ganapathiraju et al., 2004]. In this
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thesis, we show in Section 4.4.2 that they outperform other ML approaches when our HAR

dataset is used. SVMs provide a good compromise between accuracy and training time while

also count with a variety of publicly available learning tools for experimentation such as LIBSVM

[Chang and Lin, 2011]. However, although characterized by several appealing attributes, one

of its drawbacks consists in its näıve two-class nature, that makes generalization to multiclass

problems (as in the typical case of HAR) not straightforward. Different approaches have been

explored for targeting this issue [LeCun et al., 1995]. The two most commonly used methods

are: OVA and OVO as seen in Section 2.5.3.2. We selected, in particular, the OVA method for

our research.

Adaptive HAR systems have also been explored in the literature. Their purpose is to take

classification algorithms and adapt them to a particular user in order to personalize it to the

user characteristics making it more robust and accurate. Although, in this thesis we do not

perform adaptation, some approaches that have already proposed them are: [Zhao et al., 2010],

a cross-people AR technique is described. They transfer classification knowledge to a new user

without data collection by adapting the activity labeled samples of an initial model using a

binary DT model. Also in [Allen et al., 2006], a method for user adaptation based on GMM is

proposed to compensate the problem of limited training data for each test subject.

3.3.4 Offline and Online

HAR system can also be classified into two main groups depending on the response time that

systems take to perform activity classification [Lara and Labrador, 2012a]: online methods

aim for real-time prediction of activities while, conversely, offline methods usually need extra

processing time, use computationally demanding algorithms or simply they do not require real-

time operation. In the first case, many of these approaches focus on the detection of a small

group activities (generally SPs and AAs) because an increment in the number of activities or

their complexity might not allow to achieve real-time operation.

Various previously proposed systems have required external computing support for allowing

online recognition capability. This has been done by transmitting body motion data in real-

time to a fixed device. For example, a real-time system for the detection of basic SPs and AAs

was described in [Karantonis et al., 2006]. It used a waist-mounted wireless unit composed of

a microcontroller and an accelerometer which transmitted processed inertial signals to a local

computer for activity evaluation and display. Furthermore, an online approach was introduced

in [Tapia et al., 2007]. It classified 30 physical gymnasium activities and their intensities using

3 accelerometers and a heart rate monitor. Signals were also wirelessly transmitted to a laptop

for processing and classification. In [Ermes et al., 2008], motion bands with an embedded

accelerometer attached to the user’s wrist, ankle and chest transmitted via Bluetooth link the

inertial signals to a PDA for the classification of fitness-related activities. Nowadays PDAs are

nearly obsolete and are being replaced with smartphones [Liu et al., 2011].

Smartphones have simplified the online implementation of many applications as they inte-
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grate sensing and computing capabilities, in contrast to the aforementioned approaches which

had to rely on ad-hoc implementations to establish the recognition pipeline using different de-

vices. First smartphone-based HAR attempts were offline and only recorded the inertial data

using the device sensors or other linked devices and later processed the signals/data for activity

classification. For example: in [Lara et al., 2012] the Centinela system was presented. It con-

sisted of a chest unit composed of several sensors to measure acceleration data and vital signs

(e.g. heart rate, breath amplitude, respiration rate) and a smartphone wirelessly connected via

Bluetooth. Data was later processed and classified offline using different ML algorithms showing

how vital signs can also add value to the system performance. Kwapisz et al. [Kwapisz et al.,

2011], which was previously mentioned, also developed an offline smartphone-based HAR system

for the classification of 2 SPs and 4 AAs. In the work proposed in [Nham et al., 2008], they are

able to perform offline classification of four modes of transportation (biking, running, walking

and driving) using an iPhone accelerometer. Similarly, in this thesis we propose the HF-HAR

system which is able to perform offline the recognition of 6 activities from data gathered from

smartphones using a hardware-friendly approach (Chapter 5). The ML method uses a modified

multiclass SVM with fixed-point arithmetic prediction aiming to obtain a fast implementation

more suitable for battery operated devices.

More recently, other contributions have proposed online smartphone-based HAR systems.

A Nokia smartphone was used in [Brezmes et al., 2009] for the online recognition of 6 activities.

In the same way, the work presented in [Kose et al., 2012] used an Android OS smartphone

with embedded accelerometer for the classification of 4 activities. The training stage was also

performed online through the option of collecting live data from the users by following a prede-

fined activity protocol. [Lara and Labrador, 2012b] proposed an improved version of the work in

[Lara et al., 2012] for the recognition of activities in real-time. To conclude, [Riboni and Bettini,

2011] proposed a HAR system which combined the smartphone internal accelerometer with an

external one on the user’s wrist for the classification of ADL. They proposed a context-aware

framework based on ontologies, reasoning and statistical inferencing to solve scalability problems

when the number of activities becomes large.

3.4 Summary

In this chapter we discussed essential aspects regarding the recognition of human activities in the

light of the existing research literature. It included common strategies for the development and

evaluation of HAR systems. Additionally, relevant up-to-date HAR approaches are highlighted

and compared against the methods proposed in this thesis.

There are already several alternatives that deal with the problem of recognizing activities

which have similarities between them in various aspects (e.g. the types and number of activities

identified, sensors used, ML approaches and real-time prediction). Nevertheless, we explore

in this thesis some unique aspects in this field which have not yet been fully covered in the

literature. They include elements such as the evaluation of hardware-friendly approaches for
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the recognition of activities using fixed-point arithmetic, the study of hybrid linear SVM models

for their application in HAR, and the awareness of postural transitions in real-time recognition

systems. These will be thoroughly covered in the forthcoming chapters.
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Data Collection and Offline Activity

Recognition
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Chapter 4

Human Activity Dataset Generation

4.1 Introduction

Two of the vital elements required for developing our research in smartphone-based HAR are:

experimental data collection and dataset generation. In this chapter, we describe a general

overview of these elements organized in three main sections. Section 4.2 describes all the aspects

linked to data gathering, first by selecting the appropriate smartphone for experimentation, and

then by describing the protocol of trials with volunteers. Moreover, Section 4.3 deals with the raw

sensor data in order to generate the dataset. For this task, we use signal conditioning techniques

and select a suitable set of features for data characterization. In Section 4.4 preliminary results

with the available data are presented. This includes data validation with different ML algorithms

that confirm their usability and data publication in a centralized repository. We also describe

an organized HAR competition with the obtained dataset in which people were encouraged to

propose their own solutions to the recognition problem. Finally, the chapter is summarized in

Section 4.5.

4.2 Experimental Data Collection

In the HAR research framework, some benchmark datasets have been released to the public do-

main providing experimental data with various inertial sensors. They provide a freely available

source of data across different disciplines and researchers in the field. For example, the Op-

portunity Project [Roggen et al., 2010] has recorded a set of ADL in a sensor-rich environment

using 72 environmental and body sensors. Similarly, other works have provided datasets such

as [Tapia et al., 2006] and [Dernbach et al., 2012].

However, public smartphone inertial data for activity recognition is limited. For this reason,

we chose to make our own collection of data and also to make it available online as a research

resource. The data have been collected from one experiment which is thoroughly described in

the following section.
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4.2.1 Smartphone Selection

Finding a suitable smartphone to perform HAR involves the evaluation of the up-to-date devices

in the market following the selection criteria listed in Section 2.4.1, in which hardware, sensors

and software are the primary elements to be considered. Also, other aspects such as price,

market of available brands and potential future distribution of applications were taken into

account. However, by the time this selection process was done (2011), the smartphones with

the required embedded sensors were very limited, as well as their specifications regarding speed

and direct access to the sensors through their OS. This motivated the assessment of only the

available high-end devices at that time. As it is known with the accelerated growth of current

technologies, it was just a matter of two years to discover that now in almost every mid- and high-

end smartphone in the market the required sensors and hardware with even higher specifications

were available. This finding expands the range of applications of the developed approaches of

this work to a greater group of devices.

4.2.1.1 Up-to-date Smartphones

For the selection of the smartphone regarding sensor type, we took as a reference point an already

available inertial sensor, the 9X2 [Rodŕıguez-Mart́ın, 2010], which had already demonstrated its

applicability in the detection of various human motor disorders in people with disabilities (e.g.

PD patients) [Rodŕıguez-Mart́ın et al., 2013a,b]. It is internally composed of three triaxial

sensors: an accelerometer, a gyroscope and a magnetometer. It collects inertial sensor data that

can be stored on a microSD memory card or wirelessly transmitted to a terminal via Bluetooth.

We expected to find smartphones with those minimum characteristics. Figure 4.2 shows an

image of the sensor.

Table 4.1 presents a comparison of the 9X2 sensor with two high-end smartphone candidates.

It includes their characteristics regarding hardware and software. The embedded accelerometer

and gyroscope smartphone specifications outperform the ones from the reference inertial sensor

regarding speed and operation ranges, making them potentially suitable for their application in

HAR. However, even though the specified frequencies are provided by the devices datasheets,

the net frequency of these inertial sensors is limited by the smartphones OS which regulates their

operation speed and battery consumption. It is around 100Hz and it can vary depending on the

OS load, but it is sufficient to properly capture human body motion according to [Karantonis

et al., 2006] (refer to Section 4.3.2). Regarding memory and Central Processing Unit (CPU)

characteristics, both smartphones share similar characteristics. As a result, the device selection

was consequently subject to additional factors.

The selected smartphone for carrying out experiments on HAR was the SGSII. It is managed

by the Android OS which is an open source platform with a publicly distributed development

environment which includes a large set of APIs allowing access to the smartphones hardware

and internal sensors, robust ML tools and its publication policies for apps are relatively simple

to fulfill. Moreover, developing on this OS, also extends the utilization of HAR apps to a wider
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Device 9X2 iPhone 4 I9100 Galaxy S II
Brand CETpD Apple Samsung
CPU Microchip dsPIC33 ARM Cortex-A8 ARM Cortex-A9

80MHz 1 GHz 1.2GHz dual-core
ROM Memory 2GB 16GB/32GB 16GB/32GB
RAM Memory 16KB 510MB 1 GB
Operating System N/A iOS 4 Android OS v2.3
Accelerometer STMicroelectronics STMicroelectronics Bosch Sensortec

LIS3LV02DQ LIS331DLH SMB380
Max Frequency 640Hz 1KHz 1.5KHz
Operation Range ±2/6g ±2/4/8g ±2/4/8g
Gyroscope InvenSense STMicroelectronics STMicroelectronics

IDG650, ISZ650 L3G4200D L3G4200D
Max Frequency 140Hz 800Hz 800Hz
Operation Ranges ±440/2000◦s−1 ±250/500/2000◦s−1 ±250/500/2000◦s−1

Display N/A LED-Backlit IPS TFT Super AMOLED Plus
External Card Yes No Yes
Wireless Bluetooth 3G,WLAN,Bluetooth 3G,WLAN,Bluetooth
Battery Type Li-Ion 1000mAh Li-Po 1420mAh Li-Ion 1650 mAh
Battery Stand-by Up to 18 h Up to 300 h Up to 610 h

Table 4.1: Smartphones and 9X2 sensor specifications

range of brands and devices (e.g. tablets, notebooks) which also work under Android OS, unlike

iOS which only operates on devices of only one brand. Figure 4.1 depicts an image of the

selected device.

Android OS has also a leading position in the market which is advantageous because it can

also contribute with an easier distribution of final applications to a larger population sector.

Smartphone market shares in 2013 [Gupta et al., 2013], for example, showed that the three

top mobile OSs were: Android OS, iOS and Windows Phone. They together make up the vast

majority of the phone market reaching a 96%. Android OS controls a remarkable 79% of the

market share on its own.

4.2.1.2 App Development

All the smartphone apps of this work were built using a software solution for Android devel-

opment (Android Development Tools (ADT) Bundle) which integrates a collection of various

programs [Android, 2013]:

• Eclipse: is an integrated environment for the development of software projects with multi-

language support.

• ADT plug-in: is the toolset for Eclipse designed to allow the development of Android

Apps.

• Android Software Development Kit (SDK): provides the API libraries and developer tools

required to build apps for Android.
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Figure 4.1: SGSII Smartphone.

Figure 4.2: 9X2 inertial sensor
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• Android Native Development Kit (NDK): is the collection of tools that allows to implement

apps using native-code languages such as C and C++.

The code was written using two languages, namely, Java and C. The former was employed

for the development of the graphical user interface and app basic controls. C was reserved for

the computationally expensive tasks such as accessing smartphone sensors, signal processing,

running ML algorithms and storing data.

4.2.2 HAR Protocol

A set of experiments were carried out to obtain the HAR datasets. A group of 30 volunteers with

ages ranging from 19 to 48 years were selected for this task. The mean age of all volunteers was

28.9±6 years. Each person was instructed to follow a protocol of activities while wearing a waist-

mounted SGSII smartphone. The experiment was planned in order to contain six BAs: three

SPs (standing, sitting, lying-down) and three AAs (walking, walking-downstairs and walking--

upstairs). Moreover, it was arranged with the intention of having also available all the possible

PTs that occur between the three existing SPs. These are: stand-to-sit (StSi), SiSt, sit-to-lie

(SiLi), lie-to-sit (LiSi), stand-to-lie (StLi), and lie-to-stand (LiSt). Figure 4.3 shows images of

one of the experiment participants while carrying out the six BAs.

The protocol of activities is detailed in Table 4.2. It includes all the tasks in sequential order

and the time expected to be spent on performing each of them. Each subject performed the

protocol of activities twice: on the first trial the smartphone was fixed on the left side of the

waist, approximately 45 degrees away from the anterior direction. On the second trial the belt

with the smartphone was placed by the user himself as preferred. For the AAs, participants

were told to remain standstill in between these tasks in order to facilitate the labeling of the

ground truth. This also supported the repeatability of the test as in this way every activity was

at least tried twice. Similarly, this period was required after the last SP (lying-down) in order

to fully capture the LiSt PT.

The duration of the entire experiment was around 15 minutes per person including the setting

up of the sensors and the repetition of the protocol. Although the tasks were carried out in

laboratory conditions, volunteers were asked to perform freely the sequence of activities aiming

to simulate a more naturalistic dataset. All the experiments were recorded on video with the

consent of the participants in order to have a ground truth of the performed activities. It was

done with the video camera of another smartphone at a frame rate of 30 Hz.

4.2.3 Data recording

MotoLog was the first Android app we developed for capturing and storing data from the smart-

phone inertial sensors and it was created for carrying out the HAR experiments. It also performs

real-time visualization of the inertial signals (accelerometer, gyroscope and magnetometer) on

the smartphone screen. The app also allows to visualize the experiment recordings offline. Fig-

ure 4.4 shows a screenshot of the app showing online and offline visualization modes.
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Figure 4.3: Example of the performed activities during the collection of experimental data. From
left to right and top to bottom: standing, sitting, lying-down, walking, walking-downstairs and
walking-upstairs

No. Static Time (sec) No. Dynamic Time (sec)

0 Start (Standing Pos) 0 8 Walk (1) 15
1 Stand (1) 15 9 Walk (2) 15
2 Sit (1) 15 10 Walk Downstairs (1) 12
3 Stand (2) 15 11 Walk Upstairs (2) 12
4 Lay Down (1) 15 12 Walk Downstairs (1) 12
5 Sit (2) 15 13 Walk Upstairs (2) 12
6 Lay Down (2) 15 14 Walk Downstairs (3) 12
7 Stand (3) 5 15 Walk Upstairs (3) 12

16 Stop 0

Total 192

Table 4.2: Protocol of activities for the HAR Experiment.
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(a) (b)

Figure 4.4: Screenshots of the smartphone MotoLog app for the recording of the inertial data
from smartphone accelerometer, gyroscope and magnetometer. a) Preview of main screen and
b) visualization of recorded files.

(a) (b)

Figure 4.5: SGSII casing: (a) the smartphone case and belt used for the experiments and (b)
arrows show the axis orientation of the inertial sensors.

For its basic operation, the app requests access to the three inertial sensors which periodically

provide readings at a frequency equal or higher than a minimum specified (50 Hz in our case).

A periodic task is then in charge of collecting these readings from the enabled sensors along

with their timestamps. Subsequently, all the inertial data is handled as an output stream and

stored in a log file. At the same time a visualization module performs the graphs that display

the available data.

The smartphone was located on the users waist using a belt provided with a case as it is

shown in Figure 4.5(a). The phone always faced the same direction with respect to the case in

order to maintain the same orientation of the triaxial sensors coordinate axis (Figure 4.5(b)).
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Figure 4.6: ARGUI application user interface for handling experiment inertial data and video

4.3 HAR Data Processing

Once data were collected from the experiment, log files and video footage were handled in order

to generate the HAR datasets. We developed an application for this purpose (ARGUI ). It

was written in Matlab by means of its Graphical User Interface (GUI) tool. Figure 4.6 shows

a screenshot of the main interface in which it is possible to visualize the collection of HAR

experiments and the main functions available. The main steps involve: activity labeling, signal

processing and feature mapping. These are all described in this section.

4.3.1 Labeling

Data were labeled manually and guided by the video footage recorded during the experiment

execution. The first step consisted on synchronizing the video and inertial signals. This task

was done aided by the user interface which allowed to visually inspect them. The occurrence of

the first PT was used as a reference event to find the time shift between the video and inertial

signals. A verification step was made by examining the last PT of each experiment. Figure 4.7

shows the labeling interface with an example of the synchronization process.

After synchronization, the start and end times were manually set for each performed activity

(BAs and PTs) using the labeling application. All the labels for all the experiments were

collected in a file (labels file) which was used as one of the inputs for the dataset generation

process.
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Figure 4.7: Labeling interface: visualization of inertial signals and video

4.3.2 Signal Processing

Raw sensor signals from the accelerometer (ar (t)) and the gyroscope (ωr (t)) were preprocessed

by the application of a series of filters for conditioning. First, noise reduction was achieved with

a third-order median filter and then followed by a third-order low-pass Butterworth filter with

a cutoff frequency of 20 Hz. This frequency threshold was selected from the work presented

in [Karantonis et al., 2006] which states that the energy spectrum of the human body motion

lies mainly within the range of 0 Hz to 15 Hz. From these processes, a clean triaxial total

acceleration (aτ (t)) and an angular velocity (ωt (t)) signals were obtained. The application of

these filters is represented by the H1() transfer function. The example presented in Figure 4.8

shows the raw triaxial acceleration while a subject is walking and then walking-upstairs.

The acceleration signal is further processed as it is interpreted as the combined effect of

the gravitational force and the acceleration due to body motion. Therefore, assuming that the

gravitational component only affects the lowest frequencies, it is possible to separate the body

motion acceleration signal (a (t)) through high-pass filtering aτ (t) with a cutoff frequency of 0.3

Hz. This threshold was calculated by varying the cutoff frequency from 0.0 to 1.0 Hz in small

increments of 1/40 Hz and estimating the minimum square error of the filtered gravity signal

minus the standard gravity constant
(
9.81 m/s2

)
using the experimental data. This findings

were similar to those in [Karantonis et al., 2006]. The segmentation of the body acceleration is

represented with the transfer function H2(). Finally, the gravity signal (g (t)) can be found by
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Figure 4.8: Example of inertial signals from the accelerometer while performing two activities:
(a) walking, (b) walking upstairs.

using the total acceleration and body acceleration in the following way:

g (t) = aτ (t)− a (t) . (4.1)

Other works have also separated body acceleration and gravity in a similar way such as in [Bruno

et al., 2012].

Moreover, ωτ (t) is also high-pass filtered in order to remove any DC bias affecting the

gyroscope as it is one of the possible calibration errors that can be found in these sensors. After

filtering, using the same frequency values as in H2(), the ω (t) signal was obtained.

The outcome after noise filtering and signal segmentation consists of three signals: a (t), g (t)

and ω (t). They are informative about the user’s body motion, the person’s orientation (e.g.

helpful for the distinction of lying-down and standing states), and motion patterns people have

for performing some activities (e.g. for recognizing AAs and PTs). An additional transformation

is performed to (a (t) and ω (t)). This is the derivative with respect to time (a′ (t) and ω′ (t))

which has shown to be informative in order to extract relevant activity-related features and it has

already been successfully used in some applications such as in the detection of ON/OFF states

on PD patients [Samà et al., 2011]. Lastly, the magnitude (Euclidean norm) is also applied to

the triaxial inertial signals in order to obtain amag (t) and ωmag (t). A compilation of the signal

transformations is presented in Table 4.3.

Following these steps, the signals are segmented into window samples which are the activity

unit of this work. In this manner, every window unequivocally has an associated activity.
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Name Symbol Formulation

Total Acceleration aτ (t) H1 (ar (t))
Body Acceleration a (t) H2 (aτ (t))
Gravity g (t) aτ (t)− a (t)
Body Jerk a′ (t) d (a (t)) /dt
Body Acc Magnitude amag (t) ‖a (t)‖
Angular Speed ω (t) H2 (H1 (ωr (t)))
Angular Acceleration ω′ (t) d (ω (t)) /dt
Angular Speed Magnitude ωmag (t) ‖ω (t)‖

Table 4.3: Main signal processing operations applied to the smartphone sensors inertial signals

Window sampling is done in a fixed-width sliding windows fashion. We use a 50% overlap

between windows as it has shown to be suitable for various recognition applications [Bao and

Intille, 2004; Van Laerhoven and Cakmakci, 2000] in order to avoid missing events and activity

truncation. Moreover, we chose an activity window length of 2.56 sec guided by the following

reasons:

• The cadence of an average person walking is within [90, 130] steps/min [BenAbdelkader

et al., 2002], i.e. a minimum of 1.5 steps/sec;

• At least a full walking cycle is preferred on each window sample, this corresponds to a

minimum of two steps;

• People with slower cadence such as elderly and disabled people with motor impairments

should also benefit from this method. We supposed a minimum speed equal to 50% of

average human cadence;

• Signals are also mapped in the frequency domain through the Fast Fourier Transform

(FFT), which is optimized for vectors with power of two length: N = (2.56 sec× 50 Hz = 128 cycles).

• Longer windows sizes were not preferred as they would increase the latency times in the

prediction of activities when used online.

The processed inertial signals and the labels file (Section 4.3.1) were used for the extraction

and labeling of activity windows. The windowing process has been approached in two ways. In

the first method (W1), we worked with the start and end times of each activity segment label

and the signals defined within this time region. We partitioned them into fixed-width sliding

windows and assigned them the corresponding activity label.

In method two (W2), we first divided the entire inertial signal into sliding windows (e.g.

from the sequence of all the experiment activities) and then we assigned a label to each window

using the linked activity segments. This suggests that sometimes uncertainty situations may

appear. In particular, when more than one activity segment label from the ground truth overlaps

a particular window. To solve this, we defined some conditions to choose the activity label to

represent each window. In a window sample, the time length of the involved labels was measured
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Name Time Freq.

Body Acc 1 1

Gravity Acc 1 0

Body Acc Jerk 1 1

Body Angular Speed 1 1

Body Angular Acc 1 0

Body Acc Magnitude 1 1

Gravity Acc Mag 1 0

Body Acc Jerk Mag 1 1

Body Angular Speed Mag 1 1

Body Angular Acc Mag 1 1

Table 4.4: Time and frequency domain signals obtained from the smartphone sensors.

and it was chosen the one that lasted longer. W2 is slightly harder to implement than W1 but

it is more realistic because it takes into account that activities happen sequentially. It is more

useful for its application in online recognition systems where transitions between activities occur.

In the following sections we will be specific about which method is used in the generation of the

activity datasets.

4.3.3 Feature Mapping and Dataset Generation

A reduced representation composed of features with relevant activity information can be ob-

tained from the activity windows in the time domain. These windows are also transformed into

frequency domain with the Discrete Fourier Transform (DFT) using a real-valued FFT algo-

rithm [Duhamel and Vetterli, 1990; Ho, 2004]. In this work, we extract features from these two

domains. They include standard measures that have already been proposed for HAR in several

works [Yang et al., 2008] such as the mean, correlation between signal pairs, Signal Magnitude

Area (SMA) and autoregression coefficients [Khan et al., 2010a], energy of different frequency

bands [Samà, 2013]. We also include original measures such as frequency spectrum skewness

and kurtosis, and angles between triaxial signals. These measures are applied to the processed

accelerometer signals as well as the ones from the gyroscope (Table 4.3). Therefore, considering

the amount of signals involved, the generated number of features can largely increase. Table 4.4

shows the selected signals and indicates the domains from which features were extracted.

Table 4.5 shows the measures applied to the signals for generating the datasets along with

their formulation over the window signal s of length N . Numerical indexes set under the s

indicate one of the three possible axis x, y or z. A total of 561 features were extracted to

describe each activity window. Some of these features are well-know and their estimation is

straightforward. These are the ones in the top box of the table. Others, on the other hand, are

here introduced for clarification:

• Signal Magnitude Area: this measures helps to identify periods of activity over a

triaxial signal in the time domain. It is defined as the sum of the absolute value of all axis
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4.3 HAR Data Processing

Function Description Formulation

mean (s) Arithmetic mean s̄ = 1
N

∑N
i=1 si

std (s) Standard deviation σ =
√

1
N

∑N
i=1 (si − s̄)2

mad (s) Median absolute deviation mediani ( |si −medianj(sj)| )

max (s) Largest values in array maxi (si)

min (s) Smallest value in array mini (si)

skewness (s) Frequency signal Skewness E
[(

s−s̄
σ

)3 ]
kurtosis (s) Frequency signal Kurtosis

E[(s−s̄)4 ]
E[(s−s̄)2 ]2

maxFreqInd (s)
Largest frequency
component

arg maxi (si)

energy (s) Average sum of the squares 1
N

∑N
i=1 s

2
i

sma (s1, s2, s3) Signal magnitude area 1
3

∑3
i=1

∑N
j=1 |si,j |

entropy (s) Signal Entropy
∑N
i=1 (ci log (ci)) , ci = si/

∑N
j=1 sj

iqr (s) Interquartile range Q3 (s)−Q1 (s)

autoregression (s)
4th order Burg
Autoregression coefficients

a = arburg (s, 4) ,a ∈ R4

correlation (s1, s2)
Pearson Correlation
coefficient

C1,2/
√
C1,1C2,2, C = cov (s1, s2)

meanFreq (s)
Frequency signal weighted
average

∑N
i=1 (isi) /

∑N
j=1 sj

energyBand (s,a, b)
Spectral energy of a
frequency band [a, b]

1
a−b+1

∑b
i=a s

2
i

angle (s1, s2, s3, v)
Angle between triaxial
signal mean and vector

tan−1 (‖[s̄1, s̄2, s̄3]× v‖ , [s̄1, s̄2, s̄3] · v)

Table 4.5: List of measures for computing feature vectors. N : signal vector length, Q: Quartile.

divided by the number of samples N in a signal window [Karantonis et al., 2006].

• Entropy: this measure of uncertainty commonly used in Information Theory is applied to

the signal s in the frequency domain and gives an estimation of the amount of information

this provides. It is estimated using the normalized information entropy of the magnitudes

of this signal [Ho, 2004].

• Interquartile range: this statistical measure calculates the difference between the upper

(Q3) and lower quartiles (Q1) of a ranked set of elements. These quartiles are the points

that divide the data by 25% and 75% respectively.

• Autoregression coefficients: are the coefficients found through the Burg’s method that

fit an autoregressive model of the input s [Roth et al., 2003]. This operation is applied to

the signal in the time domain and produces an output of 4 features corresponding to the

algorithm order such as in [Khan et al., 2010a].

• Pearson correlation coefficient: measures the relationship between two signal vectors

s1 and s2. This statistical measure is bounded between the interval [−1, 1] and denotes

either a positive or negative correlation when this value is close to 1 or -1 respectively, and

no correlation when it is close to 0. We apply this operation to the time signals from pair

of axis from the accelerometer or gyroscope.
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• Signal weighted average: this measure gives the average frequency of a signal s con-

sidering that each point contributes in proportion to its magnitude.

• Spectral energy of a frequency band: this function returns an energy measure in a

similar way to the energy (s) function but only within an interval of the frequency signal.

We selected contiguous intervals starting from zero with three different bandwidths (8, 16

and 24 points).

• Angle between vectors: this measure gives an estimation of the angle between the

mean value of a triaxial time signal and a another vector (e.g. to measure the angle of the

average acceleration with respect to the y axis [0, 1, 0]). It is useful for determining the

average orientation of the smartphone in every activity window.

Features were normalized in order to lie within the [−1, 1] range following this formulation:

x = 2
x0 − xmin
xmax − xmin

− 1, (4.2)

where x0 is the original vector of features and the xmin and xmax vectors respectively contain

the minimum and maximum values for each feature from the available data.

In order to ease the performance assessment, the dataset was randomly partitioned into

two independent sets, where 70% of the data were selected for training and the remaining 30%

for testing. This partition was done at the level of number of people and not the number of

samples in order to guarantee that samples from both groups were completely independent.

Moreover, the protocol of activities was planned to provide a balanced number of sample per

each BA, however during the extraction of windows samples, classes resulted with a slightly

different number of activities between them producing a nearly-balanced set. We preserved

all the samples and avoided using balancing methods such as homogeneous multi-partitioning

approaches [Aupetit, 2009]. Instead we worked with the parameters of the ML algorithms used

to balance the data when required.

In this work, different partitions of the dataset are used for specific purposes. Therefore, in

order to simplify the understanding in future sections, we collect in Table 4.6 these partitions

as well as their characteristics including type of sensors, feature domains, activities, number of

features and window sampling method. They have been named with the D symbol followed

by a number which represents a chronological order. We started with a simple version of the

dataset for research (D1). It has a limited number of features (17) which are extracted from

accelerometer data and it has fixed-point number representation. Following this, we added

the gyroscope and extended the number of features in the time and frequency domain (D2).

Moreover, as we will see in Chapter 6, we also consider the use of only time domain features and

we make distinction of this particular subset as D2T . Finally the D3 and D3T partitions include

PT information and modifies the window sampling method required for the implementation of

an online HAR system in Chapter 7.

60



4.4 Results

Table 4.6: Dataset partitions generated from the HAR experiment. * FP: Fixed-Point
Name Acc Gyro Time Freq d BAs PTs Sampling FP*

D1 X - X - 17 6 0 W1 X
D2 X X X X 561 6 0 W1 -

D2T X X - 272 6 0 W1 -

D3 X X X X 561 6 6 W2 -

D3T X X X - 272 6 6 W2 -

Classifier Acronym Accuracy

Decision Tree C4.5 DT 83.06%

Random Forest RF 89.34%

k-Nearest Neighbors k-NN 88.19%

Naive Bayes NB 78.89%

Logistic Regression LR 96.40%

Multilayer Perceptron MLP 94.60%

Support Vector Machine SVM 96.50%

Table 4.7: Performance comparison of the ML classifiers.

4.4 Results

In this section the generated HAR dataset is tested in order to verify its usability. This is done

in two ways. First, the inertial data are validated using various state-of-the-art classification

algorithms. Learned models from training data are used to predict new samples and evaluate

the algorithms’ performance with the HAR test data. Second, we present the results of a HAR

competition that was organized in order to encourage external researchers to find novel ML

solutions to the same recognition problem.

4.4.1 Dataset Validation

A series of experiments were conducted for data validation. We employed some of the most well-

known ML algorithms as described in Section 2.5.2. The Waikato Environment for Knowledge

Analysis (WEKA) ML software suite for dealing with data [Hall et al., 2009] was used for this

validation task. For the experiments, we worked with the D2 data partition as it contains the

all the BAs and the complete set available features from both inertial sensors. For each of the

ML algorithms used we estimated its performance in terms of classification accuracy of the test

data. The results are depicted in Table 4.7.

Classification results show evident differences between the performance of the selected ML

algorithms. We found that some algorithms have a relatively low performance, with accuracies

below 90%. These are DT, RF, k-NN and NB. On the other hand, we observed a better outcome

in the remaining three MLalgorithms: MLP, LR, and SVM. The last two have comparable

classification accuracy with SVM slightly outperforming, with a 96.50%, and only differing by

0.1%. These results reinforce SVMs as a good candidate for performing HAR with smartphone
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MC-GK-SVM — D2

Activity WK WU WD SI ST LD Sensitivity Specificity
WK 486 6 4 0 0 0 97.98% 99.31%
WU 12 458 1 0 0 0 97.24% 98.59%
WD 5 27 388 0 0 0 92.38% 99.80%
SI 0 2 0 450 39 0 91.65% 99.71%
ST 0 0 0 7 525 0 98.68% 98.39%
LD 0 0 0 0 0 537 100.00% 100.00%

Accuracy 96.50%

MC-GK-SVM — D3

Activity WK WU WD SI ST LD PT Sensitivity Specificity
WK 539 1 3 2 0 0 1 98.72 % 98.93 %
WU 28 513 2 1 1 0 14 91.77 % 99.65 %
WD 2 5 498 0 4 0 0 97.84 % 99.84 %
SI 0 3 0 486 68 0 0 87.25 % 99.24 %
ST 1 0 0 19 591 0 1 96.57 % 97.65 %
LD 0 0 0 0 0 604 0 100.00 % 100.00 %
PT 3 2 0 2 0 0 322 97.87 % 99.53 %

Accuracy 95.61%

Table 4.8: Confusion matrices for the D2 and D3 dataset using the multiclass SVM with Gaus-
sian kernel (MC-GK-SVM).

inertial data. This algorithm is the one selected in our research and from now on we focus our

attention on its study and implementation.

In the particular case of SVMs, we used a multiclass SVM model through an OVA approach

which take one binary SVM with Gaussian Kernel (GK-SVM) per activity. From now on, we

will refer to this SVM configuration as MultiClass GK-SVM (MC-GK-SVM). This Radial Basis

Function (RBF) kernel is commonly used in SVMs because it has shown to deal successfully with

non-linear data and it is considered a universal approximator [Wang et al., 2004]. We employed

the recognized LIBSVM library [Chang and Lin, 2011] which can be run under WEKA or Matlab.

The classification results for the D2 dataset are presented in Table 4.8 as a confusion matrix.

It includes the classification accuracy of the algorithm along with the sensitivity and specificity

measures for each class. They show an overall accuracy of 96.50% for the test data composed

of 2947 patterns. In the same way, Table 4.8 shows the performance of D3 using the same

classification algorithm (MC-GK-SVM). It achieves an accuracy of 95.61%. Notice that their

difference relies on the addition of the PT class which combines all the available transitions into

one. Moreover, the number of window samples of this class is smaller than the other classes.

However, we take this into account during the training in order to balance the data through the

C hyperparameter of the binary SVM. This dataset will be covered more in detail in Chapter 7

where we clarify how this additional class is needed for improving the online HAR system.

4.4.1.1 Dataset Publication

The HAR dataset has been made available for public use. It is composed of the experiment raw

inertial data and also of the processed feature vectors for each window sample. A first version
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(with data from D2) was submitted as the Human Activity Recognition using Smartphones

dataset in the UCI Machine Learning Repository [Bache and Lichman, 2013]. The details of the

dataset are shown in the following reference:

• [Reyes-Ortiz et al., 2013a] Jorge-Luis Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca

Oneto, and Xavier Parra. Human activity recognition using smartphones data set. http://

archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones,

2013a

Moreover, a second version based on the D3 data is also public. It is available in the Smartlab

Laboratory website as displayed in the following reference:

• [Reyes-Ortiz et al., 2014a] Jorge-Luis Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca

Oneto, and Xavier Parra. Recognition of basic activities and postural transitions using

smartphones data set. http://www.har.smartlab.ws, 2014a

4.4.2 HAR Competition

A competition targeting the development of novel learning approaches for the classification of a

set of activities was planned as part of a special session in Human and Motion Disorder Recogni-

tion at the European Symposium on Artificial Neural Networks (ESANN) in 2013. Competitors

were challenged to submit their proposals given the HAR training data from D2 before its final

publication. Participants were also provided with an unlabeled test set in order to receive from

them the predicted labels for each sample. The performance of their approaches was measured

in terms of classification accuracy using the experiment ground truth.

We received proposals from different universities and research centers in Europe. The three

best contributions are depicted in Table 4.9. In [Romera-Paredes et al., 2013], a One-Vs-One

(OVO) Multiclass SVM with linear kernel was proposed for the classification task. The method

used majority voting to find the most likely activity for each test sample from an arrangement

of 6 binary classifiers. An overall accuracy of 96.40% was reached on the test data and this

method became the competition winner. For comparative purposes, they also evaluated the

performance of a OVA SVM and a k-NN model which exhibited poorer accuracies (93.7% and

90.6% respectively). In the same way, a sparse kernelized matrix Learning Vector Quantization

(LVQ) model was employed in [Kästner et al., 2013] for the HAR dataset classification achieving

96.23% test accuracy, only differing 0.17% against the first approach. Their method was a

variant of LVQ in which a metric adaptation with only one prototype vector for each class was

proposed. Ultimately, a novel confidence-based boosting algorithm (Conf-AdaBoost.M1.) was

presented in [Reiss et al., 2013] and assessed against the traditional decision tree classifier and

the AdaBoost.M1 algorithm. The method is a direct multiclass classification approach which

exploits confidence information from weak learners for the classification. They achieved an

accuracy of 94.33% on the test set.
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Ref. Approach Implemented Accuracy
[Romera-Paredes et al., 2013] OVO Multiclass linear SVM with ma-

jority voting.
96.40%

[Kästner et al., 2013] Kernel variant of learning vector quan-
tization with metric adaptation

96.23%

[Reiss et al., 2013] Confidence-based boosting algorithm
Conf-AdaBoost.M1.

94.33%

Table 4.9: HAR Competition. Test data classification accuracy of the best performing ap-
proaches.

The results of this competition also show evidence of the benefits of using SVMs for HAR

as its winner also employed this algorithm. Their approach was slightly different than our OVA

MC-GK-SVM algorithm but the performance was similar. In the following chapters, we present

variations of the original SVM formulation in order to solve the recognition problem and adapt

it to limited hardware such as the smartphone.

4.5 Summary

In this chapter, a new dataset for HAR using smartphones has been introduced. We thoroughly

described the process to achieve this by incorporating the most important stages such as device

selection, data collection experiments, dealing with data and validation. We also acknowledged

initial classification results using 6 up-to-date ML algorithms including a multiclass SVM. This

latter approach showed a noticeable advantage in terms of classification accuracy confirming our

purpose of using it as the core ML algorithm in this thesis. This was also confirmed by the

organized HAR competition whose winning algorithm was SVM-based.

These findings allows to argue that the use of smartphones for motion information retrieval

seems feasible. In addition, it is also less obtrusive and invasive than other special purpose

solutions (e.g. wearable sensors), and a practical way to walk for effectively performing HAR.

Making the data available to the public has brought many advantages. First, it offers to the

research community the opportunity of comparing different HAR related works based on the

same data, therefore, ML methods can be better evaluated. Second, it provides feedback from

many users regarding different aspects of the dataset such as signal processing, feature selection,

and possible corrections in future versions of the dataset.
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Chapter 5

Hardware-Friendly Activity

Recognition with Fixed-Point

Arithmetic

5.1 Introduction

Exploiting SVM models for HAR on smartphones requires a multitude of operations to be carried

out per second: despite not being an issue from a theoretical point of view, this could lead to

battery discharge after few hours of continuous operation, making this approach unfeasible to

allow people’s mobility. In this chapter, we explore a fixed-point arithmetic based reformulation

of the conventional SVM, targeted towards multiclass classification. Up to date we have no

knowledge of other research works that have incorporated fixed-point arithmetic into the learning

algorithms for the classification of human activities. However, extensive research on fixed-point

arithmetic has been developed to integrate ML models on hardware with limited resources

(e.g. [Wawrzynek et al., 1993]). This idea was initially motivated some years ago because

the assemble of devices with floating-point units was infeasible. Moreover, limited devices are

usually preferred for specific-purpose applications if they demonstrate similar performance to

traditional processing units as their production (and/or acquisition) costs are generally lower.

Nowadays, it has become particularly interesting to retake these approaches and apply them in

the development of software applications for portable devices such as smartphones which are

highly demanding in terms of energy consumption and system resources management.

The term Hardware-Friendly SVM (HF-SVM) was first presented in [Anguita et al., 2007].

This method was designed for binary classification problems by employing fixed-point arithmetic

in the FFP of the SVM classifier, with the purpose of allowing its use in hardware-limited devices.

In this work, we adapt the model to target HAR on smartphones through a modified multiclass

HF-SVM learning algorithm MultiClass HF-SVM (MC-HF-SVM). It aims to provide faster

predictions and better preserve the battery lifetime of these portable devices with respect to

conventional floating-point formulations while maintaining comparable system accuracy levels.
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Figure 5.1: Activity Recognition process pipeline.

The introduction of this ML algorithm for HAR gives origin to the HF-HAR system which is

described throughout this chapter.

The organization of this chapter is as follows: Section 5.2 describes the methodology of

the hardware-friendly approach including its mathematical formulation from the binary to the

multiclass case. This is succeeded by Section 5.3 which investigates under the light of SLT how

the implementation of this new model brings advantages with respect to the generalization ability

of the algorithm. Experiments show in Section 5.4 comparative results between this approach

and the traditional SVM in terms of recognition performance, speed and battery consumption.

Finally the chapter is fully summarized in Section 5.5.

5.2 The Hardware-Friendly Multiclass SVM

Here we introduce the MC-HF-SVM approach which consists of a reformulation of the SVM

minimization problem in order to learn a model that allows the prediction of activity samples

using only fixed-point notation. Although the learning process is itself performed with floating-

point operations, its resulting model parameters and the FFP are not. Thereby, this approach

makes possible a fully fixed-point implementation of prediction modules in hardware devices.

MC-HF-SVM allows to vary the fixed-point number representation in terms of number of bits

(k) to control over model accuracy and complexity, leading to noticeable improvements in terms

of recognition speed and battery energy sparing without influencing recognition accuracy.

Figure 5.1 depicts schematically the basic HAR process including its main components: Data

collection, signal processing, feature extraction and classification. In this section we focus only

in the classification part, first by introducing the binary problem and then by generalizing the

hardware-friendly approach to multiple classes.

5.2.1 The Binary Hardware-Friendly Formulation

The dual formulation of the original SVM (Equation (2.13)) is evidently invalid for its use

in fixed-point arithmetic because the αi values belong to the group of real numbers limited
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between 0 and C. To overcome this issue, a normalization process can be employed. This

process maintains the SVM accuracy unchanged because it does not affect the output sign of

the classifier but only its magnitude. For this purpose, we propose the use of a new vector β

which is defined as:

βi = αi
2k − 1

C
, (5.1)

where k is the number of bits. Moreover, by omitting the equality constraint of the dual

SVM formulation (yTα = 0) on Equation (2.13), we can search for an SVM solution without a

bias term b. This is clearly advantageous when we deal with a fixed-point arithmetic formulation

as this value can be difficult to control and instead the FFP can be easily computed as:

f (x) =
n∑
i=1

yiαiK (xi,x) (5.2)

This modification has no influence on the classification performance of the trained model

as far as a Radial Basis Function (RBF) kernel, such as the Gaussian or the Laplacian ones, is

exploited [Poggio et al., 2002]. These two modifications yield the following formulation:

min
β

1

2
βTQβ − sTβ s.t. 0 ≤ βi ≤

2k − 1

C
∀i ∈ {1, ..., n} , (5.3)

where si =
(
2k − 1

)
/C ∀i ∈ {1, ..., n}. Once the problem expressed in Equation (5.3) is

solved, β can straightforwardly target fixed-point arithmetic through a simple nearest-integer

normalization [Anguita et al., 2007].

To finally have a full FFP with only integer values, it is needed to modify the representation

of the kernel K (·, ·) and the input vector x in terms of number of bits (u and v bits respectively)

[Anguita et al., 2007]. This produces:

0 ≤ K (xi,x) ≤ 1− 2−u ∀i ∈ {1, ..., n} , (5.4)

0 ≤ xj ≤ 1− 2−v ∀j ∈ {1, ..., d} . (5.5)

Consequently the modified Fixed-Point FFP formulation vector is:

f (x) =
n∑
i=1

yiβiK (xi,x) (5.6)

In particular, we opted for a Laplacian kernel (K (xi,xj) = 2−γ‖xi−xj‖1), instead of the more

conventional Gaussian kernel, as it is more convenient for hardware limited devices [Anguita

et al., 2007] because it can be easily computed using shifters. The Manhattan norm is defined as

‖x‖1 =
∑d

j=1 |xj | and γ > 0 is the kernel hyperparameter which can be selected (altogether with
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the regularization hyperparameter C), for example, through a k-Fold Cross Validation (KCV)

procedure (with k = 10), where the hyperparameters space is explored according to a grid search

procedure [Anguita et al., 2009].

5.2.2 Generalization to Multiclass SVM with probability estimates

In SVMs, the output of the FFP is either positive or negative. Its sign represents if the new

sample is either classified as a given class or not. But the magnitude of its value, just as it

is, does not represent a quantity directly comparable against other SVMs. Ideally, for a given

sample in a multiclass problem, only one of the binary classifiers should be positive and the rest

negative but this is not always the case. Therefore, output normalization methods are required

to have comparable SVMs. We opted to compute probability estimates pc (x) ∈ [0, 1] which

represent how probable it is for a new sample pattern to be classified as a given class c. This

is appropriate when used in OVA classification as each binary classifier is associated with a

particular class (or, in this case, human activity). For a given number of classes m and a test

sample x, the probability output of each SVM (pc (x) ∀ c ∈ {1, ...,m}) is compared against the

others to find the class c∗ with the Maximum A Posteriori Probability (MAP). Assuming that

all the classes have the same a priori distribution then: c∗ = arg maxc pc (x).

The probability estimation is implemented using the approach presented in [Platt, 1999] in

which the output of the SVM FFP (f (x)) obtained from the training set is fit to a sigmoid

function of the following form:

p (x) =
1

1 + e(Γf(x)+∆)
, (5.7)

where Γ and ∆ are function parameters whose optimal values can be found using the f (xi)

values and the targets of the training samples (modified as ti = (yi + 1) /2) in the following

error minimization function:

arg min
Γ,∆

−
n∑
i=1

ti log (p (xi)) + (1− ti) log (1− p (xi)), (5.8)

Considering the fixed-point arithmetic limitation, the sigmoid function, which works also

with real numbers, cannot be directly used for estimating p (x). This is solved by means of

Look-Up-Tables (LUTs) which link f (x) with p (x) through a simple indexing operation. For

this, a fixed number of bits must be defined in order to map the probability estimates p (x)

without the need of floating-point arithmetic.

The complete MC-HF-SVM process for the recognition of 6 activities is illustrated in Fig-

ure 5.2. It depicts the binary classifiers for each activity along with their associated LUT. The

notation allows to understand how an input sample x is processed until the most likely activity

c∗ is selected.
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Figure 5.2: MC-HF-SVM using LUTs for probability estimates

5.3 HF–SVM and Statistical Learning Theory

In the last decades several works have been devoted to adapt ML approaches to specific hardware

platforms [Epitropakis et al., 2010; Genov and Cauwenberghs, 2003; Irick et al., 2008; Lee et al.,

2003] and, in particular, to analyze the effects of parameter quantization on the training and

FFPs [Anguita et al., 2007; Lesser et al., 2011; Neven et al., 2009]. Motivations for these activities

are usually linked to application-specific requirements but also to the basic principle of the SLT

[Vapnik, 1995] where we have to search for the simplest model that correctly classifies the

available data. The introduction of bit–based hypothesis spaces brings widespread benefits on

the learning process of classifiers (i.e. classes of functions where models are described through

a limited number of bits). This is due to the fact that reducing the number of bits largely

influences the complexity of the hypothesis space [Anguita et al., 2013a], which is a key issue

in Machine Learning as underlined in [Bartlett et al., 2005; Shawe-Taylor et al., 1998]. If we

are able to reduce the complexity of the hypothesis space without affecting the ability of the

algorithm to learn a function with low empirical error, in practice, we are able to learn more

effectively [Herbrich and Williamson, 2003; Shawe-Taylor et al., 1998].

In this section we investigate how the adoption of a fixed-point arithmetic affects the gen-

eralization ability of a classifier in the form of Equation (5.6). In order to do this we describe
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each parameter βi as an integer value of k bits:

βi =

k−1∑
j=0

bji2
j , (5.9)

where bji ∈ {0, 1} is a binary valued variable and therefore βi can be expressed as an integer

variable such that 0 ≤ βi ≤ 2k − 1. Since each bji belongs to a finite set, for a fixed training set

of cardinality n and a fixed kernel (with its hyperparameter), the number of classifiers that we

can represent is finite. According to the notation of [Vapnik, 1995] we call Nn
f the number of

classifiers that we can build with bji , i ∈ {1, . . . , n} and j ∈ {0, . . . , k − 1}. Consequently we can

exploit the well-known Vapnik’s generalization bounds for finite hypothesis sets [Vapnik, 1995]

which uses Nn
f as measure of complexity. Let then dβ be the number of nonzero parameters

(βi 6= 0) then:

Nn
f (k, dβ) ≤

dβ∑
i=1

(
n

i

)[(
2k − 1

)dβ
−
(

2k−1 − 1
)dβ]

, (5.10)

where we take into account the fact that if all the parameters are even numbers, they can be

divided by two without changing the class estimate. If, instead, db is the number of nonzero

parameters, bji 6= 0, then

Nn
f (k, db) ≤

db∑
i=1

(
n k

i

)
. (5.11)

In the SLT and Structural Risk Minimization (SRM) frameworks [Vapnik, 1995], a good

generalization capability on previously unseen data can be guaranteed [Anguita et al., 2012a;

Vapnik, 1995] if a nested structure of the available hypothesis sets with increasing complexity is

defined (H1 ⊆ H2 ⊆ . . .). In this way, the generalization capability of a model can be controlled

by choosing the set that achieves the best compromise between complexity and learning error.

In our case the complexity of the class can be defined through two quantities, k and dβ

(or db). Starting from the set H1 with complexity N l
f (1, 1) we can increase the complexity by

increasing the number of bits k → k + 1 or by decreasing the sparsity of the representation

dβ, db → dβ, db+1. In other words we have to search the best class which is as sparse as possible

(smaller dβ or db) and represented with the minimum number of bits k.

Obviously a classifier that belongs to a space with smaller complexity is also more energy

efficient respect to the one that belongs to a space with higher complexity, as will also be shown

in the subsequent experiments.

Increasing the complexity of the space has also direct consequence on the generalization

ability of the classifier since according to the bound of Vapnik [Vapnik, 1995], which holds with

probability (1− δ):

π ≤ ν +

√√√√ ln
[
Nn
f (k, d)

]
− ln (δ)

2l
(5.12)

where π is the generalization error and ν is the error obtained by the learning machine on the
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Feature Vector

Measure Applied to

SMA aτ (t), a′τ (t), a (t), a′ (t)

Mean aτ,1 (t), aτ,2 (t), aτ,3 (t)

STD aτ,1 (t), aτ,2 (t), aτ,3 (t)

Correlation aτ,1 (t)–aτ,2 (t), aτ,1 (t)–aτ,3 (t), aτ,2 (t)–aτ,3 (t)

Entropy Aτ,1 (ω), Aτ,2 (ω), Aτ,3 (ω), Amag (ω) ∗
∗ Capitalized letters represent the signal in the frequency domain ω.

Table 5.1: List of measures for computing feature vectors.

dataset.

This result is similar to the one presented in [Neven et al., 2008]. The important outcome of

this section is that the number of bits in the HF-SVM has a strong regularization effect with an

impact on the generalization ability of the classifier. Between two classifiers with approximately

the same performance, we have to choose the one that can be represented with less number of

bits since it is more energy efficient and it has more capacity of performing well on previously

unseen data.

Finally we want to highlight that the bound in Equation (5.12) is very loose since it is

data independent and does not take into account the quality of the available samples for its

estimation. In the last few years, proposed data dependent bounds [Bartlett and Mendelson,

2003; Bartlett et al., 2005] are becoming tighter and providing better interpretation of the

generalization ability of classifiers. They have shown to work well on the performance estimation

of real world problems such as in [Anguita et al., 2012a]. For these reason, the understanding

of the influence of fixed–point arithmetic approaches in the estimation of these bounds is an

interesting topic of research.

5.4 Results

The performance of the MC-HF-SVM was evaluated through a collection of experiments using

the HAR dataset D1 described in Section 4.3.3. The data samples were composed of 17 features

extracted from the smartphone triaxial accelerometer in the time and frequency domain. These

features had been previously suggested in the HAR literature [Bao and Intille, 2004; Lovell et al.,

2007; Sama et al., 2010] including measures such as SMA, mean, Standard Deviation (STD),

entropy and signal-pair correlation, when applied to the available processed inertial signals,

provided the set of features depicted in Table 5.1.

The method evaluation is divided in two parts. The first one analyzes the system recognition

performance against a traditional approach (Multiclass LK-SVM (MC-LK-SVM)). Then, in the

second part, we focus on evaluating other algorithm attributes more related with its use in

hardware devices. These are the recognition speed and battery discharge.
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5.4.1 System performance using Fixed-Point Arithmetic

D1 has been discretized in order to allow its use with the MC-HF-SVM algorithm. The data was

converted from floating-point to fixed-point and represented with different number of bits k. Ten

MC-HF-SVM models were learned, one for each value of k which ranged from 4 to 16 bits. Their

performance was assessed in terms of test data error (Equation (2.21)) and compared against

the standard conventional floating-point MC-LK-SVM. The classification results for each model

are showed in Figure 5.3.
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Figure 5.3: Comparison between error rates obtained with MC-LK-SVM (red dotted line) and
MC-HF-SVM (blue line) as k is varied.

The test error curve shows a plateau which values appear to be stable (near 1% variation)

for k ranging from 6 to 16 bits and are equivalent to the error obtained with the floating-point

MC-LK-SVM (represented with the dotted red line). In addition, the experiment shows that

for this HAR dataset, k = 6 bits are sufficient for obtaining a recognition performance similar

to the MC-LK-SVM approach. Once the numbers of bits drops below this value, the test error

significantly increases by around 50%. From a practical point of view, however, it is worth

underlining that fixed-point libraries allow to use only values of k which are powers of 2, as

will be also detailed in the forthcoming Section 5.4.2 where we will thus consider k = 8 as our

minimum reference value.

Moreover, it is also noticeable from the graph that some of the error values with fixed-point

representation were smaller than the one found with the MC-LK-SVM approach. This finding

coincides with what is observed elsewhere in the literature (e.g. [Anguita and Sterpi, 2006;
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MC-LK-SVM

Activity WK WU WD SI ST LD Sensitivity Specificity

WK 109 0 5 0 0 0 95.61% 97.63%
WU 1 95 40 0 0 0 69.85% 97.86%
WD 15 9 119 0 0 0 83.22% 93.03%
SI 0 5 0 132 5 0 92.96% 99.38%
ST 0 0 0 4 108 0 100.00% 99.26%
LD 0 0 0 0 0 142 96.43% 100.00%

Accuracy 89.35%

Table 5.2: Confusion Matrix of the classification results on the test data using the traditional
floating-point MC-LK-SVM.

MC-HF-SVM k = 8

Activity WK WU WD SI ST LD Sensitivity Specificity

WK 109 2 3 0 0 0 95.61% 97.63%
WU 1 98 37 0 0 0 72.06% 96.63%
WD 15 14 114 0 0 0 79.72% 93.81%
SI 0 5 0 131 6 0 92.25% 99.54%
ST 0 1 0 3 108 0 96.43% 99.11%
LD 0 0 0 0 0 142 100.00% 100.00%

Accuracy 88.97%

Table 5.3: Confusion Matrix of the classification results on the test data using the MC-HF-SVM
with k = 8 bits.

Neven et al., 2008]). It is worth noting that we can remarkably reduce the number of bits (from

∞ to 8 bits) without losing the possibility of representing the functions that are characterized by

good performance on the training set (as underlined in [Anguita et al., 2011, 2013a; Koltchinskii,

2006]): these functions will be most likely chosen by the learning process and, then, there seem

to be no reasons to search for more complex spaces. Moreover, note that few bits are required

in order to represent these functions, thus contemplating an infinite-dimension space appears to

be unmotivated by practical needs [Anguita et al., 2013a]. In the SRM framework we have to

search for the simplest hypothesis space (before looking at the training set [Vapnik, 1995]) that

guarantees the best trade off between accuracy on the training set and complexity of the space.

The introduction of a bit–based hypothesis space is also encouraged by the basic ML idea to

search for the simplest class of functions capable of solving the problem under examination.

In Table 5.2 and Table 5.3, the confusion matrices of the MC-LK-SVM and the MC-HF-

SVM with k = 8 bits for the test data are depicted. In them, measures of overall accuracy,

sensitivity and specificity are also given and exhibit very similar values in both approaches.

Small variations are noticed in the recognition accuracy of dynamic activities within the two

SVM approaches such as in the walking downstairs and walking upstairs activities, which also

display some misclassifications mainly to their movement similarities. Static activities on the

other hand performed better, such as laying, for which we reported 0% classification error.

Furthermore, a small misclassification overlap was found between standing and sitting, which is
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attributed to the waist-mounted smartphone physical location and the difficulty to discriminate

between them: this is mainly due to the slight inclination difference of the phone with respect

to the vertical axis when these activities are performed and largely depends on the user’s body

type.

These classification errors could be in some way improved by incorporating new types of

features or sensors into the HAR system. For example, the inclusion of gyroscopes as we will see

in the following Chapter 6 or the incorporation of additional accelerometers in different body

parts.

5.4.2 Processing Time and Battery Consumption

Various tests were performed on the smartphone to determine the advantages of using this

novel hardware-friendly approach in terms of recognition speed and battery consumption. We

expected that avoiding the use of the floating-point arithmetic for complex calculations could

lead to energy sparing on stand-alone devices. For these trials, we used a SGSII smartphone

equipped with a Li-Ion 1650 mAh battery with up to 610 hours of stand-by operation and

Android OS as the operating system (Gingerbread version 2.3.4).

A phone app was developed for this purpose: measure prediction speed and battery consump-

tion. All the expensive operations were written in C using the Android NDK (signal processing

and Machine Learning algorithm). Before trials, we turned off all phone services (e.g. Wi-Fi,

Bluetooth and 3G Network) and, more importantly, the phone screen. This latter is in general

the most energy consuming part in a smartphone. We aimed to isolate this measurement process

as much as possible to obtain a realistic approximation of the variables under evaluation.

A simulation of the HAR process was implemented on the smartphone with the possibility of

adjusting the number representation. This was achieved for either fixed-point or floating-point

arithmetic using the default data types available in the C language from 8 to 64 bits. They were

selected because the available libraries have only power of two number representations.

On the first part of the measurements, we decided to continuously make activity predictions

over a fixed period of time (5 min) and obtain an estimate of the average prediction rate (in

number of predictions/sec). The time of the activity recognition process was measured starting

from the sensor reading to determining the SVM FFP output was measured for each approach.

Table 5.4 shows the obtained results. It is worth highlighting the large difference between the

rates using the fixed-point representation instead of the floating-point and also the proportional

relationship between the number of bits used and the processing time. For instance, the 32-bits

integer model outperforms in speed the 32-bit float model by almost 7 times.

An additional test was carried out aimed to measure battery consumption with the floating-

point and fixed-point representations. For this, the accelerometer sensor was set to constantly

read the triaxial signal at a fixed frequency as described in Section 4.3.2 and then copied into

a circular buffer. Every 1.28 sec an interruption started the activity recognition process using

the last available window sample taking into account the 50% overlap between windows and
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Data Type No. Bits No.Predictions/sec

Fixed-Point Representation

char 8 315.35
short int 16 241.54
int 32 185.00
long int 64 141.70

Floating-Point Representation

float 32 27.04
double 64 20.68

Table 5.4: Estimated prediction rates on the smartphone with basic data types.
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Figure 5.4: Comparison 32-bit floating-point MC-LK-SVM and 32-bit fixed-point MC-HF-SVM
with respect to battery discharge

their 2.56 sec length. In this experiment we compared the data types with the same number

of bits but with different arithmetic: 32-bit float and 32-bit integer. For this, we run three

times for each data type the HAR smartphone application continuously and measured the time

of battery discharge from a fully charged state until a minimum level of 10% was reached. We

found that the average battery time using the 32-bit float model was of 89 hours and the time

with the 32-bit integer was of 112 hours and they both described a linear discharge trend as

it is visualized in Figure 5.4. Their time difference is equivalent to an increase of 25% of the

battery life when the application is running alone. These measurements are dependent on the

hardware and OS used but they are showing a trend on the improvements that can be reached

with this hardware-friendly approach. For obtaining a more reliable measure of the relationship

between the battery savings and processing time more experimental tests with different devices

and operational conditions would be required.
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In current scenarios, even small savings in battery consumption make a big difference in

deciding whether or not to use a mobile app, such as in cases where the HAR application is

required to deliver activity information to other higher-level decision applications (e.g. phone

apps for maintaining a healthy lifestyle through HAR [Lane et al., 2012]), thus implying sharing

system resources. In general, we aim to build a device able to operate at least during a full

day in order to be able to recharge battery during idle times such as at nights. These results

are a good indicator of the benefits that this method can offer for saving battery life and the

possibility of being integrated into devices for everyday life.

5.5 Summary

In this section we presented a novel energy efficient system for the classification of BAs using

smartphones (HF-HAR). It has been constructed based on a modified SVM model that works

with fixed-point arithmetic (MC-HF-SVM). This approach brings a significant reduction of the

processing time in the prediction of activities, attributable to the change of arithmetic, leading to

a lower use of system resources. Moreover, results showed the method provides energy savings

while maintaining comparable recognition performance when compared with the traditional

SVM approach (MC-LK-SVM).

The proposed model was supported in terms of Structural Risk Minimization principles,

where simpler models are preferred if they have equivalent ability to learn when compared to

more complex approaches. This work is relevant to AmI and AAL applications where energy

consumption becomes a critical issue such as in long term smartphone-based activity monitoring

systems. Similarly, it could be explored the possibility of using this approach in low-cost devices

(e.g. with fixed-point hardware) for applications including body sensor networks with local

prediction of events and disposable wearable sensing.

The experimental results confirmed that it is possible to substitute the standard Multiclass

SVM model with more efficient fixed-point representations. Further experimentation is required

to evaluate the system in more realistic conditions when the smartphone system shared resources

are allocated for different applications, and also using different smartphones for its evaluation.
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Online Activity Recognition with

Smartphones
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Chapter 6

Linear SVM Models for Online

Activity Recognition

6.1 Introduction

The exploitation of smartphones for HAR has been an active research area in which the devel-

opment of fast and efficient ML approaches is crucial for providing real-time performance and

preserving the device’s battery life. In this chapter, we focus on the exploration of three linear

SVM algorithms for performing online HAR. Their formulation differs only in the regularization

term. It uses different norms, namely L1, L2 and L1-L2, and gives the SVM different properties

and behavior. Specifically, these differences affect the trade-off between dimensionality reduction

and classification accuracy. Using the proposed learned linear models we implement our first

online HAR system: Linear HAR System (L-HAR). It provides in real-time the classification of

activities using a smartphone device using features extracted from its embedded accelerometer

and gyroscope.

Moreover, we present a novel algorithm for training L1-L2-Norm SVM (L1-L2-SVM) clas-

sifiers. The proposed training approach allows the exploitation of all the well-known effective

and reliable tools (e.g. Quadratic Programming (QP) solvers) already developed for solving the

conventional L2-Norm SVM (L2-SVM), thus minimal effort is required by the user to implement

L1-L2 model training. The proposed method is flexible, as it also allows to train L1-Norm SVM

(L1-SVM), L2-SVM. The effectiveness of this approach is tested on our HAR dataset.

We also show the benefits of adding smartphones gyroscope signals into the recognition

system against the common approach which only uses accelerometer data. MEMS gyroscopes

made its entrance in the smartphones market a couple of years after accelerometers and they have

not been fully explored [Wu et al., 2012]. We also study two feature selection mechanisms for

allowing a faster recognition: the utilization of exclusively time domain features from the inertial

data and the adaptation of the L1-L2-SVM which controls over the number of non-informative

features as part of its model construction process.

This chapter is distributed in the following way: first we present the standard algorithms
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based on L1 and L2 norms (Section 6.2) and show how they are adjusted in order to solve

our multiclass HAR problem. In a similar way, we present in Section 6.3 the combined algo-

rithm (MultiClass L1-L2-SVM (MC-L1-L2-SVM)) that allows to merge the effectiveness of L2

models and the feature selection characteristics of L1 solutions for HAR. Moreover, we describe

our proposed training algorithm (Extended SMO (EX-SMO)). Experimental results regarding

the proposed SVM approaches, addition of gyroscopes and feature selection mechanisms are

presented in Section 6.4. Finally we summarize the chapter in Section 6.5.

6.2 L1-Norm and L2-Norm SVMs for Activity Recognition

Our target is to design a model, which can be effectively run on smartphones with limited bat-

tery life and computational restrictions. We have thus to identify the simplest possible classifier

exploiting the smallest set of features that guarantees the best performance/computational bur-

den ratio. For these purposes, we peruse the exploitation of linear models, which use only those

selected inputs that are crucial to attain sufficient classification accuracy. In this section we

formulate the OVA SVMs with the L1- and L2-Norms.

In the framework of supervised learning and in the case of binary classification problems,

the goal is to approximate the relationship between examples from a set X composed of xi ∈ Rd

elements and a set Y which contains outputs targets yi = ±1. This relationship is encapsulated

by a fixed, but unknown, probability distribution P. A training set Dn = {(x1, y1), . . . , (xn, yn)}
is sampled according to P. The learning algorithm maps Dn to f ∈ F with a linear separator

in the original space f(x) = wTx + b. Moreover, the accuracy in representing the hidden

relationship P is measured with reference to a loss function `(f(x), y).

In general, the hard loss function `H(f(x), y) = [1− y sign(f(x))] /2 seems the most natural

choice, as it counts the number of misclassifications, but unfortunately it is non–convex. For this

reason the hinge loss function `ξ(f(x), y) = [1− y f(x)]+ is exploited instead [Vapnik, 1998]. It

is possible to introduce a regularization term in order to adjust the size of the class. In this case,

we choose the Euclidean norm (‖w‖2 =
√∑d

j=1w
2
j ), also known as the L2-Norm [Tikhonov

and Arsenin, 1978]. According to the SRM principle [Vapnik, 1998], we can derive, similarly to

Equation (2.2), the primal formulation using the L2-Norm in the minimization problem:

min
w,b,ξ

1

2
‖w‖22 + C1Tnξ, s.t. Y (Xw + bn) ≥ 1n − ξ, ξ ≥ 0n, (6.1)

where ξi = `ξ(f(xi), yi), X = [x1| . . . |xn]T , y = [y1| . . . |yn]T , Y = diag(y) (Y is a diagonal

matrix where the element on the diagonal are the yi∈{1,...,n}). Also by introducing n Lagrange

multipliers α we can obtain the dual formulation (Equation (2.13)) which is a CCQP problem

and can be solved through many efficient techniques previously been proposed in the literature

[Shawe-Taylor and Sun, 2011]. For example, the well-known and widely used SMO [Keerthi

et al., 2001; Platt, 1998] which consists in iteratively updating the two αi∈{1,...,n} that mostly
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violate the KKT conditions until convergence is reached.

The L2-SVM method described above does not perform any dimensionality reduction. This

is, however, not desirable in some practical applications where it is needed to highlight relevant

features, discard noisy ones, and reduce the computational burden of performing the classifica-

tion of new samples. For this issue, the replacement of the L2-Norm term with the Manhattan

distance or L1-Norm (‖w‖1 =
∑d

j=1 |wj |) has been proposed [Tibshirani, 1996]:

min
w,b,ξ

‖w‖1 + C1Tnξ, s.t. Y (Xw + bn) ≥ 1n − ξ, ξ ≥ 0n, (6.2)

This L1 regularization introduces an automatic feature selection effect which is embedded in

the learning process. The optimization problem using L1-Norm is formulated in the following

way:

min
w+,w−,b,ξ

1Td
(
w+ +w−

)
+ C1Tnξ (6.3)

s.t. Y
[
X
(
w+ −w−

)
+ bn

]
≥ 1n − ξ, ξ ≥ 0n, w

+,w− ≥ 0d,

The solution to this problem provokes many of the weights (wj) to become zero which is

useful for our needs as the calculations required to perform the FFP are directly related to the

number of weights different from zero. The disadvantage of this approach is that effective tools

developed for the conventional L2-SVM cannot be applied for solving it.

Note also that the conventional kernel trick cannot be exploited in the previous formulation,

thus the effectiveness of linear models assumes an ever greater importance. This problem is a

standard Linear Programming problem, for which many tools have been developed throughout

the years [Press et al., 2007].

L1-SVM allows to perform dimensionality reduction thanks to the characteristics of the

Manhattan norm exploited, that is several weights wj will be (generally) nullified during the

learning procedure: this is in contrast with the conventional L2-SVM, where wj 6= 0 ∀j =

1, · · · , d in the final model.

The extension of the L1-SVM binary problem into multiple classes for our application can

be achieved using a OVA approach (MultiClass L1-SVM (MC-L1-SVM)) as we also did in

Chapter 5 but with some modifications in order to take advantage of the intrinsic feature selection

mechanisms of the model. The final classification is carried out by contemplating the output of

m linear models:

fc (x) = wT
c x+ bc, ∀c ∈ {1, . . . ,m} (6.4)

Each binary model is learned independently and not all the zero-valued weights for one class,

are also zero for the others. For such purposes, we can define the set S which includes all the
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indexes of the features whose weights are equal to zero for all the classes in the following way:

S = {j | wc,j = 0, ∀c ∈ {1, · · · ,m}}. In that sense, all the zero-valued weights can be removed

from the FFP computation. We can also compute the effective feature dimensionality reduction

as the fraction of selected features ρ = d−|S|
d , where |S| indicates the cardinality of the set.

Additionally, we can measure the feature reduction which is possible per class. This measure

give us an idea of how fast the FFP computation can be. So we also define the mean feature

dimensionality reduction as ρ̄ = 1
m

∑m
c=1

d−|Sc|
d , where Sc are the indexes of zero-valued features

per class.

6.3 L1-L2 SVM Algorithm

The conventional L2-SVM approach is considered as one of the state-of-the-art methods for clas-

sification, and several effective techniques have been developed throughout the years for training

these models [Fan et al., 2008; Ghio et al., 2012; Keerthi et al., 2001; Platt, 1998; Shalev-Shwartz

et al., 2007]. While allowing to derive sparse classifiers (i.e. models described by exploiting a

limited subset of training patterns), L2-SVM [Vapnik, 1998] does not perform any feature re-

duction which becomes a limitation for the analysis of the dataset and the interpretability of

the informative content of the inputs. On the other hand, L1-SVM allows to introduce in the

learning process an automatic dimensionality reduction effect. However, despite this being very

appealing for this task, L1-SVM is also characterized by some drawbacks:

1. No feature grouping effect characterizes L1 models, i.e. clusters of highly cross-correlated

inputs are usually not entirely selected by the training procedure [Segal et al., 2003];

2. When the dimensionality of the dataset is remarkably larger than the number of samples,

L1 models are able to exploit only a number of inputs at most equal to the cardinality of

the training set, which could be restrictive in some applications [Zou and Hastie, 2005]

3. L1-SVM require custom ad-hoc algorithms to be developed for classifier training [Friedman

et al., 2010], which do not exploit the huge effort spent in the last decades for designing

effective solvers for the conventional SVM (e.g. [Keerthi et al., 2001; Platt, 1998]).

In order to deal with the first two points above, an SVM which combines L1- and L2-Norms

has been proposed in [Zou and Hastie, 2005]. It allows to enhance feature grouping effects in

model training, to properly balance sparsity and dimensionality reduction, and to combine the

effectiveness of the L2 approach and the feature selection characteristics of L1-SVMs.

Moreover, to cope with the third issue, we present a new training tool allowing to efficiently

deal with SVMs based on L1-, L2- and L1-L2-Norms. The proposal builds on the efficient solvers

developed in the last decades for L2-SVM (e.g. [Keerthi et al., 2001; Platt, 1998]), and thus can

be implemented with a minimal effort.
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6.3 L1-L2 SVM Algorithm

6.3.1 L1-L2 SVM Formulation

L1-L2-SVM has been proposed with the intention of combining the effectiveness of L2 solutions

and the dimensionality reduction capabilities of L1 models [Zou and Hastie, 2005]:

min
w,b,ξ

1

2
λ ‖w‖22 + (1− λ) ‖w‖1 + C1Tnξ (6.5)

s.t. Y (Xw + bn) ≥ 1n − ξ, ξ ≥ 0n,

where λ ∈ (0, 1] is a constant that balances sparsity characteristics with feature selection

ability between the two margin terms. It is worth noting that, if λ → 0, we can derive the

L1-SVM, while λ = 1 leads to the conventional L2-SVM. To solve this, we can introduce an

identity matrix Id of size d× d and reformulate Equation (6.5) in the following manner:

min
w,b,ξ,η+,η−

1

2
λwTw + (1− λ) 1Td

(
η+ + η−

)
+ C1Tnξ (6.6)

s.t. Y (Xw + bn) ≥ 1n − ξ, ξ ≥ 0n

Idw = η+ − η−, η+,η− ≥ 0d.

Therefore, we can compute the dual formulation of Equation (6.6) using the method of

Lagrange multipliers. This leads us to the following:

min
α,β

1

2

[
α

β

]T [[
Y XXTY

]
[Y X][

XTY
]

[Id]

][
α

β

]
−

[√
λ1n

0d

]T [
α

β

]
(6.7)

s.t.

[√
λy

0d

]T [
α

β

]
= 0,

[
0n

− (1−λ)√
λ

1d

]
≤

[
α

β

]
≤

[
C√
λ
1n

(1−λ)√
λ

1d

]
,

where w =
√
λ
λ

(
XTYα+ β

)
, and α ∈ Rn, β ∈ Rd are the Lagrange multipliers of the

inequality and equality constrains.

The problem depicted in Equation (6.5) is convex, the same as its dual formulation [Boyd

and Vandenberghe, 2004]. For its solution, we present in the following section a novel approach

to solve it.

6.3.2 Extended Algorithm for solving L1-L2 SVMs

Equation (6.7) can be split into two subproblems which can be solved iteratively until the

solution is reached [Boyd and Vandenberghe, 2004]. In particular, we can fix β to some constant

value β̂, which satisfy the constrains, and then reformulate Equation (6.7) as follows:
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α∗t , bt : arg min
α

P1(α, β̂) =
1

2
αTY XXTYα+

(
XTY β̂ − 1Tn

)
α (6.8)

s.t.
√
λyTα = 0, 0n ≤ α ≤

C√
λ

1n,

where the bias bt is derived analogously to the conventional L2-SVM approach. As a matter

of fact, Equation (6.8) is a simple reformulation of the conventional dual formulation of L2-SVM,

which can be solved by exploiting any of the several approaches proposed in the last decades

[Shawe-Taylor and Sun, 2011]. If, instead, we fix α to some constant value α̂, which also satisfies

the constrains, we can reformulate Equation (6.7) in the following manner:

β∗t : arg min
β

P2(β, α̂) =
1

2
βT Iβ +

(
α̂TY X

)
β (6.9)

s.t. − (1− λ)√
λ

1d ≤ β ≤
(1− λ)√

λ
1d.

Equation (6.9) has a closed form solution, as we have to identify the minimum of a paraboloid

in a box, which is characterized by an identity Hessian matrix:

β∗t = max

[
−(1− λ)√

λ
1d,min

[
(1− λ)√

λ
1d,
(
α̂TY X

)T]]
. (6.10)

Consequently, we propose an approach to solve Equation (6.7) which is detailed in Algo-

rithm 1. For this, solutions of Equation (6.8) and Equation (6.9) are iteratively found. The

former case can therefore be solved with any of the methods surveyed by [Shawe-Taylor and

Sun, 2011].

Particularly, we have also described Algorithm 2 which is focused on the adoption of the

SMO algorithm [Keerthi et al., 2001; Platt, 1998] for solving Equation (6.8). Note that, since,

at every optimization step, two αi coefficients are optimized by the SMO, in order to better

balance the overall L1-L2 optimization procedure we can run n
2 iterations of SMO and, then,

update βi∈{1,...,d}.

By simply tuning the value of λ with the EX-SMO algorithm, it is also possible to exploit

the proposed procedure for solving L1 (λ→ 0), L2 (λ = 1) and L1-L2 (0 < λ < 1) SVM training

problems.

6.4 Results

Open rooms for improving smartphone-based HAR exist. In this section, we explore the perfor-

mance of the various linear SVM models proposed in this chapter and apply them to our HAR

dataset. We focus on the evaluation of different aspects: (i) the introduction of a larger set of
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Algorithm 1: Algorithm for solving Problem (6.7)

Data: Dn, λ, C, ε and numerical precision ε
Result: w∗, b∗

t = 0, αt = 0n, βt = 0d;
repeat

αt+1, bt+1 = arg minα P1(α,βt);

βt+1 = max
[
− (1−λ)√

λ
1d,min

[
(1−λ)√

λ
1d,
(
αTt+1Y X

)T ]]
;

t = t + 1;

until
[ (
‖αt −αt−1‖22 +

∥∥βt − βt−1

∥∥2

2

)
< ε
]
;

return w∗ =
√
λ
λ

(
XTYαt + βt

)
, b = bt

Algorithm 2: EX-SMO algorithm for solving Problem (6.7)

Data: Dn, λ, C, ε and numerical precision ε
Result: w∗, b∗

t = 0, αt = 0n, βt = 0d;
repeat

αt+1, bt+1 = arg minα P1(α,βt) by running n
2 iteration of the SMO algorithm

[Keerthi et al., 2001] ;

βt+1 = max
[
− (1−λ)√

λ
1d,min

[
(1−λ)√

λ
1d,
(
αTt+1Y X

)T ]]
;

t = t + 1;

until
[ (
‖αt −αt−1‖22 +

∥∥βt − βt−1

∥∥2

2

)
< ε
]
;

return w∗ =
√
λ
λ

(
XTYαt + βt

)
, b = bt
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gyroscope-based signals along with the ones that come from the smartphone’s accelerometer for

the recognition of activities; (ii) the selection of the most useful features and simpler, though

effective, models to make HAR more suitable for devices with limited battery life and compu-

tational restrictions. (iii) the exploration of alternative linear SVM approaches that allows to

control sparsity and dimensionality reduction.

These three issues are targeted in this section in the following way: regarding point (i),

we fully exploit the HAR dataset, which contains gyroscope measures plus a set of previously

suggested features from the accelerometer [Bao and Intille, 2004; Karantonis et al., 2006; Khan

et al., 2010a] and verify the improvements that can be achieved in the classification performance

of the algorithm (Section 6.4.2). Concerning issue (ii), we resort to effective SVM classifiers and

implement two feature selection mechanisms to allow faster and computationally non-intensive

recognition: on the one hand, we evaluate features discriminating on sensor type and domain

(either time or frequency) in Section 6.4.2; on the other hand, MC-L1-SVM models are imple-

mented, allowing to perform an automatic selection of significant features emerging from the

training set while keeping the appealing classification performance of conventional SVMs (Sec-

tion 6.4.3). Finally, point (iii) is dealt with the analysis of the MC-L1-L2-SVM approach in

order to find the ideal trade off point that combines the effectiveness of the L2-SVM and the

feature selection characteristics of L1-SVMs, this is presented in Section 6.4.4.

One of the main drawbacks of L1-SVMs consists in the impossibility of resorting to non-

linearity to improve classification accuracy through the kernel trick [Vapnik, 1998]: for targeting

this issue, here we compare the use of conventional non-linear models with the one of linear

classifiers in the particular case of HAR, showing how the latter ones are characterized by

similar performance/complexity ratios than the former ones (Section 6.4.1). The HAR Dataset,

that we use in the forthcoming analysis is D2 composed of a large set of time and the frequency

domain features extracted from the accelerometer and gyroscope signals and also subsets of this,

such as D2T , which only include time domain features.

6.4.1 Linear vs. Non-Linear SVMs

The first experiment aimed to compare the performance of SVM models based linear and non-

linear kernels. For that, we performed the training of D2 using two models: first, the standard

OVA MC-GK-SVM (K(xi,xj) = exp
(
−γ ‖xi − xj‖22

)
). For model selection of this SVM, we

used a KCV with k = 10 and we searched for the two SVM hyperparameters C and γ. With C

in the range [10−4, 102] and γ between [10−4, 102]. Both partitioned in 20 points equally spaced

in a logarithmic scale. The second method used was the MultiClass L2-SVM (MC-L2-SVM),

which was also trained using also k = 10 and the same partition for its only hyperparameter C.

The confusion matrices in Table 6.1 depict the classification results obtained given the 6

BAs using the complete set of features from D2. The accuracies achieved with the two methods

are very similar, thus showing the equivalence between these two models. The linear approach

performs slightly better, only varying in a 0.04% with respect to the non-linear one. Results
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also show sensitivity and specificity measures for all the activities.

Some large datasets have shown similar classification performance when linear or non-linear

approaches are used [Schölkopf and Smola, 2001], meaning that data mapping into a higher-

dimensional space is not always required. The advantage of a linear kernel is the rapider predic-

tion that can be achieved. The MC-GK-SVM model selection was performed doing grid-search

over two hyperparameters which is also computationally more expensive than MC-L2-SVM

which only uses one. Our application only considers online prediction while learning is per-

formed offline. The idea behind this experiment was to study the possibility of employing a

linear classifier for the HAR dataset instead of a more complex approach without risking recog-

nition performance. This is also justifiable from the SLT perspective in which the easiest solution

that properly classifies the data is always preferred [Vapnik, 1995].

Taking into account these findings, the linear approach is consequently favored for the pre-

diction of activities, more specifically for its application in limited resources devices: in fact, the

prediction phase is much faster than the kernelized approach and linear models allow to exploit

more sophisticated dimensionality reduction approaches, as will be shown in Section 6.4.3. From

now on in this thesis, we will only make use of linear SVM models for HAR.

6.4.2 Selection of subsets of features

The second set of experiments consisted of evaluating the available features in the dataset

aiming at a significant reduction in their number. This was firstly achieved by separating the

inputs in groups with respect to: (i) the type of sensor employed, namely Accelerometer (A)

and Gyroscope (G); and (ii) the feature domain, namely Time (T ) and Frequency (F ). The

analysis aims to gather some evidence of the benefits the addition of gyroscope signals bring

into the HAR system, and also assesses the need of frequency domain features for improving the

recognition performance.

In practice, we expect to balance the trade-off between the addition of meaningful features

and the removal of the ones that are redundant or that require expensive computations for

their estimation. For such purposes, we tested the possible combinations of feature groups and

computed the system accuracy performed by a linear SVM model (MC-L2-SVM), trained on

the corresponding subset of features. Table 6.2 presents the results.

These results suggest that the more relevant features are added into the system, the higher

classification accuracy is achieved. The whole set of features (AGTF) provides the best per-

formance. However, from this analysis, it is also noticeable that frequency-related inputs are

only producing a very small improvement in this application as they do not largely affect recog-

nition performance when compared with the AGT subset. This indicates they are not strictly

necessary for the classification as we already have a significant number of features in the time

domain. Moreover, frequency domain features requires an extra effort for their derivation such

as the calculation of the FFT for each window sample (Section 4.3.2). The accuracy difference

between the AGT and AGTF subsets is only 0.24% which is a negligible value.
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MC-GK-SVM — D2

Activity WK WU WD SI ST LD Sensitivity Specificity

WK 486 6 4 0 0 0 97.98% 99.31%
WU 12 458 1 0 0 0 97.24% 98.59%
WD 5 27 388 0 0 0 92.38% 99.80%
SI 0 2 0 450 39 0 91.65% 99.71%
ST 0 0 0 7 525 0 98.68% 98.39%
LD 0 0 0 0 0 537 100.00% 100.00%

Accuracy 96.50%

MC-L2-SVM — D2

Activity WK WU WD SI ST LD Sensitivity Specificity

WK 493 1 2 0 0 0 99.40% 99.10%
WU 20 450 1 0 0 0 95.54% 99.56%
WD 2 6 412 0 0 0 98.10% 99.88%
SI 0 4 0 435 51 1 88.59% 99.43%
ST 0 0 0 14 518 0 97.37% 97.89%
LD 0 0 0 0 0 537 100.00% 99.96%

Accuracy 96.54%

MC-L2-SVM — D2T

Activity WK WU WD SI ST LD Sensitivity Specificity

WK 494 2 0 0 0 0 99.60% 98.82%
WU 20 451 0 0 0 0 95.75% 99.80%
WD 8 0 412 0 0 0 98.10% 100.00%
SI 0 3 0 428 60 0 87.17% 99.39%
ST 1 0 0 15 516 0 96.99% 97.52%
LD 0 0 0 0 0 537 100.00% 100.00%

Accuracy 96.30%

Table 6.1: Confusion Matrices for the MC-GK-SVM algorithm with D2 (Top), MC-L2-SVM)
with D2 (center), and with only time domain features D2T (bottom)

Results also allow to gather some evidence of the benefits that the incorporation of gyroscope

signals brings into the HAR system that counterbalance the limited slowdown in prediction due

to the presence of these extra features. It can be observed, for instance, the visible accuracy

difference between the ATF and AGTF feature groups which diverge only on the use of the

gyroscope (5.31%). It is also noticeable, on the other hand, that the models trained with sets

using only gyroscope features (GT, GTF) have a lower performance. This suggests that the use

of the gyroscope by its own is not appropriate for its application in HAR, despite enhancing the

recognition when exploited concurrently with accelerometers.

6.4.3 Dimensionality reduction with L1-SVM

In this section we explore the use of the MC-L1-SVM instead of the conventional MC-L2-

SVM which does not perform any dimensionality reduction [Khan et al., 2012]. This fact is

desirable in some practical applications to highlight relevant features as well as to reduce the
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Acc Gyro Time Freq Feature groups N. Features MC-L2-SVM MC-L1-SVM

0 1 1 0 GT 108 78.02% —
0 1 1 1 GTF 213 81.04% —
1 0 1 0 AT 164 90.62% —
1 0 1 1 ATF 348 91.23% —

1 1 1 0 AGT (D2T ) 272 96.30% 96.61%
1 1 1 1 AGTF (D2) 561 96.54% 96.17%

Table 6.2: Experiments with different feature subsets and conventional linear SVM models.

computational burden of performing the classification of new samples. Table 6.3 presents the

confusion matrices resulting from the classification of the D2 and D2T datasets with this SVM

algorithm. Moreover, in Table 6.4 we display the comparison of MC-L2-SVM and MC-L1-SVM,

both in terms of accuracy and number of selected features (remembering that L2 procedures do

not perform any dimensionality reduction).

In particular, we considered only the groups of features that showed to be necessary for

HAR purposes according to the results derived in the previous section. These are the AGTF

and AGT subsets which correspond to D2 and D2T respectively. They obtained classification

accuracies equal to 96.17% and 96.61%. It is worth noting that L1 models perform comparably

to L2 models with our datasets, furthermore allowing to remarkably reduce the dimensionality

of the problem. In the literature it is common to find L2 models to outperform. Therefore,

these findings show the classification performance of L1 is probably due to the intrinsic filtering

of noisy features, which negatively afflict L2 classifiers.

Dimensionality reduction is also an important aspect in the comparison of the L1- and L2-

Norm algorithms. As we can see in Table 6.4, MC-L1-SVM achieves an effective reduction in the

number of features up to 42% of the total number of features. This means that the discarded

features do not need to be estimated in our HAR system, speeding up the recognition process

from feature extraction. The average dimensionality reduction ρ̄ is also showing that each binary

classifier needs less than 20% of the total number of available features for classification. This

indicates that some features help to classify better certain activities from others. Moreover, the

execution time of the FFP of each L1-SVM can be up to 5 times faster than L2-SVM, assuming a

single process implementation. Overall, we can argue that the use of the L1 models is a suitable

option for our HAR system because it brings the advantages of a linear classifier that performs

dimensionality reduction while maintaining the system performance.

Figure 6.1 depicts the results of the hyperparameter optimization process for the MC-L1-

SVM and MC-L2-SVM where the Cm values for each activity classifier are selected using a KCV

with k = 10 on the training set. All the values are contained within the [1, 100] interval. It is also

visible that initial values of C present low accuracy, specially in the L1-SVM classifiers which

display a sharp reduction in this area. Greater values display a nearly constant accuracy within

the explored range. The selection process consist of a sequential evaluation of the accuracy with

different C values. Only if a new value delivers greater accuracy than a previous recorded one,

it is replaced and selected as optimal C. This procedure prevents the model from overfitting by
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taking very large values of C.

As a final remark, the results obtained with the MC-L1-SVM algorithm are analogous to the

ones obtained at the ESANN 2013 HAR competition (Refer to Section 4.4.2) in which contestants

were challenged to propose novel approaches for the recognition of activities using the same HAR

dataset. The work of [Romera-Paredes et al., 2013] achieved a maximum classification accuracy

of 96.4%, where an OVO SVM classification approach [Rifkin and Klautau, 2004] was employed

for the recognition task instead of our OVA MC-L1-SVM approach.

MC-L1-SVM — D2

Activity WK WU WD SI ST LD Sensitivity Specificity

WK 493 2 1 0 0 0 99.40% 98.98%
WU 23 445 1 2 0 0 94.48% 99.56%
WD 2 5 412 1 0 0 98.10% 99.92%
SI 0 4 0 428 59 0 87.17% 99.35%
ST 0 0 0 13 519 0 97.56% 97.56%
LD 0 0 0 0 0 537 100.00% 100.00%

Accuracy 96.17%

MC-L1-SVM — D2T

Activity WK WU WD SI ST LD Sensitivity Specificity

WK 492 3 1 0 0 0 99.19% 99.06%
WU 18 452 0 1 0 0 95.97% 99.80%
WD 5 1 413 1 0 0 98.33% 99.92%
SI 0 1 1 436 53 0 88.80% 99.31%
ST 0 0 0 15 517 0 97.18% 97.81%
LD 0 0 0 0 0 537 100.00% 100.00%

Accuracy 96.61%

Table 6.3: Confusion Matrices for the linear method MC-L1-SVM with D2 (top) and D2T

(bottom)

Feature group d MC-L2-SVM MC-L1-SVM
Accuracy Accuracy d− |S| ρ ρ̄

AGT 272 96.06% 96.61% 168 61.76% 19.24%
AGTF 561 96.54% 96.17% 239 42.6% 12.03%

Table 6.4: Comparison between MC-L2-SVM and MC-L1-SVM regarding accuracy and dimen-
sionality reduction.

6.4.4 L1-L2 SVM with HAR data

In order to derive the experimental results with the MC-L1-L2-SVM algorithm, we replicated

the model selection methodology adopted in Section 6.4.1 with the difference that we have an

additional hyperparameter to tune: λ ∈ (0, 1]. In order to compare L1, L2 and L1-L2 SVM

solutions, we set λ = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.
After an inspection of the results obtained in the previous two sections with the different
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Figure 6.1: Hyperparameter C grid search results per class for MC-L1-SVM (top) and MC-L1-
SVM (bottom). Circled points correspond to the selected C values.

91



Chapter 6 Linear SVM Models for Online Activity Recognition

combinations of features, we decided to work only with time features because the improvement

granted with frequency domain features is minimal and it also increases the system’s compu-

tational load in the feature extraction and prediction stages. Therefore, we work with D2T

in this experiment. Table 6.5 compares the training times for the EX-SMO training approach

described in Algorithm 2 against commonly used solvers for L1 (the Simplex Method for Linear

Programming (SMLP) [Flannery et al., 1992]) and L2 SVM (the conventional SMO [Keerthi

et al., 2001]). Table 6.5 shows that EX-SMO performs comparably to SMO on L2 problems

and outstrips SMLP on training L1 SVMs, albeit EX-SMO effectiveness tends to decrease as

λ → 0: this is expected, as we are using a QP tool to solve an (almost) LP problem, and this

suboptimal approach leads to a slight loss in the algorithm’s performance.

SVM L1-SVM
L1-L2-SVM

L2-SVMλ
0.001 0.005 0.01 0.05 0.1 0.5 1

Training SMLP EX-SMO SMO
Time (h) 2.54 2.37 1.97 1.54 1.47 1.39 1.32 1.14 1.13

Table 6.5: Comparison of the EX-SMO algorithm training time (in hours) against SMLP and
SMO.

Table 6.6 reports the confusion matrices for L1, L1-L2 and L2 SVMs obtained on the D2T .

We do not present results for different solvers as no differences are shown in them. Different

from the expected behavior, we observe a regular classification performance in all the methods

in terms of accuracy (with variations below 1%). However, we found an interesting result and

it is that when λ = 0.05 the highest accuracy (96.91%) is achieved instead of MC-L2-SVM

and MC-L1-SVM. This finding is possibly linked to the fact that this intermediate solution is

selecting relevant features and filtering noisy ones, two aspects that cannot be properly dealt

with extreme cases such as when λ→ 0 and when λ = 1 respectively.

Moreover, in Table 6.7 we collect the experiment results for all the values of λ. They

include classification accuracy, dimensionality reduction (overall ρ and average ρ̄), and grouping

ability σ. First, we can observe that ρ decreases (or increases) with λ. This corroborates the

dimensionality reduction capability of L1-SVM and equivalently L1-L2-SVM with small values

of λ. However, though the dimensionality reduction capability is maximized for L1-SVM, feature

grouping effects, namely the ability of the algorithm in selecting (or neglecting) clusters of highly

cross-correlated inputs, are usually absent when λ → 0, although they are desirable in order

to have more insights on the informative content of each input [Segal et al., 2003]. In order

to evaluate whether L1-L2-SVM is able to overcome these L1-related issues, as expected from

literature, we computed the correlation matrix MC ∈ Rd×d of X and we created feature clusters

by joining the 10 most cross-correlated inputs. Our purpose was to verify the percentage σ of

clusters features selected (or neglected) by the different procedures (ranging from L1-SVM to

L2-SVM): a high value for σ is obviously desirable. Results are also shown in the table and it

is thus worth noting that: a very small subset of features (L1-SVM) is necessary to guarantee
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MC-L1-SVM

Activity WK WU WD SI ST LD
WK 492 3 1 0 0 0
WU 18 452 0 1 0 0
WD 5 1 413 1 0 0
SI 0 1 1 436 53 0
ST 0 0 0 15 517 0
LD 0 0 0 0 0 537

Accuracy 96.61%

MC-L1-L2-SVM λ = 0.001

Activity WK WU WD SI ST LD
WK 493 2 1 0 0 0
WU 16 455 0 0 0 0
WD 5 2 413 0 0 0
SI 0 1 0 436 54 0
ST 0 0 0 14 518 0
LD 0 0 0 0 0 537

Accuracy 96.78%

MC-L1-L2-SVM λ = 0.005

Activity WK WU WD SI ST LD
WK 493 2 1 0 0 0
WU 15 456 0 0 0 0
WD 5 2 413 0 0 0
SI 0 2 0 434 55 0
ST 0 0 0 14 518 0
LD 0 0 0 0 0 537

Accuracy 96.74%

MC-L1-L2-SVM λ = 0.01

Activity WK WU WD SI ST LD
WK 493 2 1 0 0 0
WU 15 456 0 0 0 0
WD 4 2 413 1 0 0
SI 0 2 0 436 53 0
ST 0 0 0 14 518 0
LD 0 0 0 0 0 537

Accuracy 96.81%

MC-L1-L2-SVM λ = 0.05

Activity WK WU WD SI ST LD
WK 493 2 1 0 0 0
WU 15 456 0 0 0 0
WD 4 2 413 1 0 0
SI 0 1 0 437 53 0
ST 0 0 0 12 520 0
LD 0 0 0 0 0 537

Accuracy 96.91%

MC-L1-L2-SVM λ = 0.1

Activity WK WU WD SI ST LD
WK 493 2 1 0 0 0
WU 17 454 0 0 0 0
WD 5 2 412 1 0 0
SI 0 1 0 436 54 0
ST 0 0 0 13 519 0
LD 0 0 0 0 0 537

Accuracy 96.74%

MC-L1-L2-SVM λ = 0.5

Activity WK WU WD SI ST LD
WK 493 2 1 0 0 0
WU 18 453 0 0 0 0
WD 3 1 414 1 1 0
SI 0 3 0 433 55 0
ST 0 0 0 12 520 0
LD 0 0 0 0 0 537

Accuracy 96.71%

MC-L1-L2-SVM λ = 1

Activity WK WU WD SI ST LD
WK 494 2 0 0 0 0
WU 20 451 0 0 0 0
WD 8 0 412 0 0 0
SI 0 3 0 428 60 0
ST 1 0 0 15 516 0
LD 0 0 0 0 0 537

Accuracy 96.30%

MC-L2-SVM

Activity WK WU WD SI ST LD
WK 494 2 0 0 0 0
WU 20 451 0 0 0 0
WD 8 0 412 0 0 0
SI 0 3 0 428 60 0
ST 1 0 0 15 516 0
LD 0 0 0 0 0 537

Accuracy 96.30%

Table 6.6: Confusion matrices obtained with D2T and the MC-L1-L2-SVM algorithm using
different values of as λ.

an acceptable classification performance, though grouping effects are limited. By balancing the

effects of L1 and L2 regularization terms, we can decide whether we want a higher accuracy, a

smaller number of features or a higher grouping ability.

In the particular case of HAR using smartphones, as we are targeting the minimization of

the computational burden to maximize battery duration and we are only partially interested in

having insights on information content of each input, L1-L2 SVMs with (very) small values of λ

are preferable, but this could not be, in general, the best choice. The advantage of a very flexible

solver that copes with L1, L1-L2 and L2 SVMs, as the one presented in this chapter, consists in

93



Chapter 6 Linear SVM Models for Online Activity Recognition

Table 6.7: Accuracy, feature selection and grouping ability for the different approaches with
D2T .

Method Algorithm % Accuracy % ρ % ρ̄ % σ

L1 SVM SMLP 96.61 61.76 19.24 0.0
L1-L2 SVM λ = 0.001 EX-SMO 96.78 61.40 19.42 0.0
L1-L2 SVM λ = 0.005 EX-SMO 96.74 62.87 20.34 0.0
L1-L2 SVM λ = 0.01 EX-SMO 96.81 66.18 21.38 10.8
L1-L2 SVM λ = 0.05 EX-SMO 96.91 72.06 24.88 20.4
L1-L2 SVM λ = 0.1 EX-SMO 96.74 74.63 27.45 60.5
L1-L2 SVM λ = 0.5 EX-SMO 96.71 91.54 39.58 90.6
L1-L2 SVM λ = 1 EX-SMO 96.30 100.00 91.67 100.0
L2 SVM SMO 96.30 100.00 91.67 100.0

the possibility of identifying the best application-dependent trade-off between performance and

dimensionality reduction, at the expense of a very small implementation effort.

6.5 Summary

In this chapter, we showed the benefits of adding gyroscope information into a HAR system

based on smartphone technology. We verified that a set of common BAs can be accurately

classified when this sensor is used along with the accelerometer. We also explored four SVM

algorithms including linear (L1-SVM, L1-L2-SVM and the conventional L2-SVM) and non-

linear (GK-SVM) approaches on the D3 dataset. We found similar performance between them

in terms of classification accuracy, but our selection criterion was subject to prediction speed and

the possibility of applying them in devices with limited resources to provide less computational

complexity and energy consumption.

Linear approaches exhibited the best trade off between accuracy and prediction speed, con-

ferring distinctive benefits to the MC-L1-SVM, which provides itself a reduction of the effective

number of features needed for the prediction of BAs. Furthermore, the study between different

feature domains lead us to disregard frequency domain features as they were not only marginally

contributing to the recognition performance but also adding expensive computations for their

estimation. The ideal set of features selected for our application was the AGT, which only takes

into account time domain features from the accelerometer and the gyroscope. Additionally, we

showed in experiments with the MC-L1-L2-SVM algorithm, which combines L1 and L2 norms,

that it is provided with interesting characteristics that can be exploited in order to fine tune

different aspects of the learned model such as accuracy, dimensionality reduction and grouping

ability that can be convenient in different applications.

Moreover, we proposed in this chapter a novel approach for training L1-L2-SVM classifiers.

The proposed method is characterized by two main advantages: (i) it is flexible, as it allows to

solve L1, L1-L2 and L2 SVM problems and to properly tune the trade-off between dimensionality

reduction and performance; (ii) it builds on conventional QP solvers, thus can be implemented
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with a minimal effort. We tested our approach on our HAR application, that allowed us to

compare the proposed approach with state-of-the-art alternatives and to highlight the usefulness

of such a flexible solver in a real-world practical problem.
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Chapter 7

Online Recognition with Postural

Transition Awareness

7.1 Introduction

In this chapter we introduce an online system for the classification of human activities using

smartphones: PTA-HAR. This system is an adaptation of the previously presented L-HAR

system that deals with frequent PTs while sequences of BAs are carried out. As it will be

shown, when PTs are not properly identified in a HAR system, they can affect its performance

by triggering the appearance of false positives. In most HAR systems, transitions between ac-

tivities are usually ignored since their incidence is generally low and duration is shorter when

compared against other activities. Nevertheless, this assumption depends on each application

and, therefore, it should be considered accordingly. For instance, in the design of activity mon-

itoring systems for the disabled during rehabilitation practices, or for athletes while performing

fitness/gymnasium activities, it is important to identify PTs because in these cases is common

to do different tasks in short time periods. Incorrect classification of PTs can significantly affect

the performance of the recognition system because transitions appear more frequently.

The proposed system to deal with PTs is based on a probabilistic analysis of consecutive

predictions. More concretely, two different methods to handle these transitory events are ex-

plored. Both follow a similar recognition pipeline although in one of them PTs are learned

by the ML classifier (PTA-7A) along with the BAs, while in the other they are handled only

through filtering (PTA-6A). We employ linear SVMs whose probability estimates are analyzed

in conjunction with the predictions of its neighboring samples in time and interpreted as activity

signals. These signals are then heuristically filtered in order to clean and suppress unwanted

noise since we assume that, in real-life applications, contiguous events are in general correlated.

We present the benefits of these two methods and show, through experiments over the D3T

HAR dataset which includes labels of BAs and PTs, that they outperform previously explored

systems which exclude these transitions (e.g. L-HAR). Moreover, results depict their differences

and show their usability is application-dependent. We also propose the detection of unknown
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activities (UAs) that the system is not able to recognize or match to any of the learned activities

based on probability estimates. Dealing with them can help make systems more functional for

a variety of applications where other activities are unaccounted for in the learning process. We

interpret UAs as an arbitrary subspace that contains unknown activities not learned by the ML

algorithm, similarly to the NULL class presented in [Bulling et al., 2014].

Following a similar framework to previous chapters, the proposed system exploits a waist-

mounted smartphone with embedded accelerometer and gyroscope. Moreover, it aims to provide

near real-time activity prediction for monitoring applications within the device or through wire-

less connectivity to others. This work is, to the best of our knowledge, the first to evaluate the

occurrence of PTs on online smartphone-based HAR systems. The studied PTs in this work

are: stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-stand.

The following sections are organized as follows: Section 7.2 gives an introduction about

postural transitions in HAR. This is followed by the description of the proposed methodology

chosen for the two HAR methods and the main stages of the online system in Section 7.3. In

Section 7.4, we present the experiments conducted regarding the built HAR dataset, the selection

of the system performance evaluation metric and the developed smartphone app. Moreover, in

Section 7.5, we depict the achieved results and the comparison against our previous system

(L-HAR). Finally in Section 7.6 we summarize the obtained results along with critical a view of

the proposed approach.

7.2 Postural Transitions in HAR Systems

A PT is an event with limited duration determined by its start and end times. Generally,

this duration varies among healthy individuals to some extent. PTs are bounded by other two

activities and represent the transition period between the two. Conversely, BAs such as standing

and walking can prolong for a longer term. Data collection for these two types of activity is also

different as PTs need to be executed repeatedly to get separate samples and BAs, as they are

continuous, allows many window samples to be taken from a single test only limited by its time

extent. Most of the proposed HAR systems in the literature do not include PTs in the set of

studied activities (Section 3.3.1). Some assume, for instance, that the detection of two different

SPs defines the occurrence of a PT (e.g. standing followed by sitting assumes a stand-to-sit

transition between them). In [Lara and Labrador, 2012a], it is pointed out that PTs can be

ignored in some situations if its occurrence is less frequent and duration is much shorter against

other activities.

However, as this assumption is application specific, PTs can directly influence the system

performance in the other cases. Therefore, they should be taken into consideration during

the design and selection of the right recognition algorithms. HAR systems such as the one

presented in [Khan et al., 2010b], combine 7 BAs with 7 PTs in the classification. In cases like

this, however, large multiclass problems may arise which could eventually increase the prediction

of false negatives of the activities we are particularly interested in (e.g. BAs).
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Figure 7.1: Postural Transitions from the 3 studied Static Postures: standing, sitting and lying-
down

Online smartphone-based HAR systems have not yet studied PTs along with other activities.

However, in cases such as in [Zhang et al., 2010] an offline HAR system combines various PTs as

a single class along with other activities for a daily monitoring application. Moreover, in [Rednic

et al., 2013] an approach for performing posture classification is proposed. Even though this is

done using a multi-accelerometer BSN instead of smartphones, they also investigate the effects

of PTs in their system and introduce exponentially weighted voting transition filters in order

to improve by 1% the accuracy of their recognition system. They explore 7 activities usually

performed during explosive ordnance disposal operations (e.g. kneeling, crawling and sitting).

In this work, we present, in contrast, a method that aims for its real-time execution on a single

smartphone and deals with activity information in the vicinity of each event occurrence.

7.3 HAR with Postural Transitions Awareness

This section presents the two proposed posture-aware methods that deal with the occurrence

of PTs in an online activity recognition system. Their difference relies on the way they handle

PTs and the number of activities that are learned in the ML algorithm. These are:

• PTA-6A: This first method, as its name designates, only takes into account the 6 studied

BAs (standing, sitting, lying-down, walking, walking-downstairs and walking-upstairs) for

the ML learning process with SVMs, while PTs are initially disregarded. Following the ML

algorithm, a temporal filtering stage is introduced. It deals with PTs and misclassifications

of BAs based on the classifier output of contiguous window samples.

• PTA-7A: The second method takes into account seven classes for the ML algorithm: the

original 6 BAs plus an additional class which represents all the 6 PTs at once. The PTs

are: StSi, SiSt, SiLi, LiSi, StLi, and LiSt (Refer to Figure 7.1 for an illustration). Similarly

to the previous method, temporal filtering is also applied after prediction, however, PTs

are handled differently provided that they are one of the ML algorithm possible outputs.

The entire recognition algorithm is composed of three main stages which are depicted in

Figure 7.2. Moreover, a pseudocode of the entire recognition process is presented in Algorithm 3.

The first stage, signal conditioning and feature extraction, comprises data acquisition and

signal conditioning from the inertial sensors to obtain the features that characterize each activity
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Figure 7.2: Online HAR algorithm stages. This illustration depict schematically the input and
output of each block.

sample. These features become the input of second stage, multiclass SVM with probability

estimates, where they are evaluated for activity prediction. From each sample an array is

extracted to indicate the probability of belonging to the learned classes. In the third stage,

temporal activity filtering, these probabilities are then joined with the predictions of previous

activity samples and processed by means of temporal filtering. This is achieved by applying a

set of defined heuristic filters that only allow natural sequences of activities. They consider PTs

and also unknown conditions (e.g. when output probabilities are marginal) for this purpose.

Both recognition methods (PTA-6A and PTA-7A) fit in the same pipeline with only change

in the number of trained classes of the MC-L1-SVM.

7.3.1 Signal Conditioning and Feature Extraction

The inputs of the PTA-HAR system are the raw triaxial linear acceleration ar (t) and angular

velocity ωr (t) time signals. These are read at a constant frequency of 50Hz in the process

which performs the signal conditioning: the ProcessInertialSignals() function in Algorithm 3.

The set of filters used are for this task are: (i) noise reduction, whose transfer function is

represented by H1(), is achieved by applying a third-order median filter and a third-order low-

pass Butterworth filter (cutoff frequency = 20Hz). These filters allow to obtain clean triaxial

acceleration aτ (t) signal. Angular velocity ω (t) is additionally processed with a high pass filter

(0.3Hz cutoff frequency), represented by the transfer function H2(), in order to remove any bias

in the signal. (ii) The segmentation of the acceleration signal into gravity g (t) and acceleration

due to body motion a (t). This is possible by also high-pass filtering the acceleration aτ (t)

with H2() to obtain a (t). g (t) is subsequently found by subtracting a (t) from aτ (t) (Refer to

Section 4.3.2 for more details).

In addition, the OnlinePrediction() function, which is in charge of the recognition of activ-

ities, is periodically executed to obtain and classify window samples (A,G,Ω) extracted from

the filtered triaxial inertial signals (a (t) , g (t) ,ω (t)) over a period T . Its periodicity satisfies

the sliding-windows criteria: a time span of 2.56s and 50% overlap between them. Features are

extracted from these window samples through measures in the time domain (Section 4.3.3), that

we represent with the φ () function, in order to match a reduced set of features from dataset D3T

according to the MC-L1-SVM learning intrinsic feature selection (Section 6.2). In Chapter 6 we
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Algorithm 3: HAR Online Algorithm for the PTA-HAR system

Require:
a: Triaxial linear acceleration
ω: Triaxial angular velocity
g: Gravity
H1(·): Noise reduction transfer function (Section 7.3.1)
H2(·): Body acceleration transfer function (Section 7.3.1)
φ(·): Feature extraction function (Section 7.3.1)
T : Windows size
m: Number of classes

p: activity probability vector p = [p1, . . . ,m]
T

P : Buffer of probability vectors P ∈ Rm×m

P ′: Filtered buffer of probability vectors
z: Buffer of discrete activity predictions z ∈ Rs

Φ(·): Probability filtering function (Section 7.3.3.1)
Ψ(·): Discrete filtering function (Section 7.3.3.2)

function ProcessInertialSignals(ar (t) ,ωr (t))
aτ (t) = H1 (ar (t)) , // Noise Filtering

ω (t) = H2 (H1 (ωr (t)))
a (t) = H2 (aτ (t)) // Body acceleration Extraction

g (t) = aτ (t)− a (t) // Gravity extraction

return a (t) , g (t) ,ω (t)
end

function OnlinePrediction(t,a (t) , g (t) ,ω (t) , B,z)
A = {a (t′) : t′ ∈ [t− T, . . . , t]} , // Window sampling

G = {g (t′) : t′ ∈ [t− T, . . . , t]} ,
Ω = {ω (t′) : t′ ∈ [t− T, . . . , t]}
x = φ (A,G,Ω) // Feature Extraction and Normalization

for c ∈ {1, . . . ,m} do // Multiclass SVM

fc (x) = wc
Tx+ bc // FFP

pi = 1/
(
1 + e(Γcfc(x)+∆c)

)
// Prob. Estimation (Section 7.3.2)

end

P =

[
pT

P(1:end−1,:)

]
// Append probability vector

P ′ = Φ (P ) // Activity probability filtering

c∗ = arg maxc∈[1,...,m] P ′(s−1,c) // MAP

z =

[
c∗

z(1:end−1)

]
// Append last activity prediction

ĉ = Ψ (z) // Discrete filtering and activity estimation

return ĉ
end
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opted to work with this set of features in order to reduce computational costs without noticeably

affecting classification accuracy.

7.3.2 Implementation of the SVM Feed Forward Phase

The ML algorithm chosen to be implemented for the PTA-HAR system was the MC-L1-SVM.

This linear algorithm provides a fast approach for performing activity recognition with a re-

duced set of features without affecting the prediction accuracy as presented in the results of

Section 6.4.3. Model training is performed offline and the SVM FFP is performed online. The

FFP formulation for each class c, as depicted in Equation (6.4), avoids the non-zero weights

(wi = 0) making the computation faster. The outputs of the classifiers are compared after a

normalization procedure. For this, we use probability estimates as we have previously described

in Section 5.2.2 in order to obtain the probability output vector p (x) which represents, for a

given window sample x, the collection of probabilities of being classified as a certain class c:

pc (x) =
1

1 + e(Γcfc(x)+∆c)
, (7.1)

where the Γc and ∆c parameters can be learned for each class by solving the minimization

problem in Equation (5.8). At this point, it is possible to determine which of the classes (activity

c∗) is the one that best represents an input sample x:

c∗ = arg max
c

pc (x) . (7.2)

This classification approach is applicable to the PTA-6A and PTA-7A methods.

7.3.3 Temporal Activity Filtering

The classification approach presented above (Equation (7.2)) produces only a discrete output

that indicates the class that best represents a test input (window sample). Moreover, it is known

that the SVM is itself a static method which only depends on its input x and it is not affected,

for instance, by other factors such as previously predicted samples or how probable the other

activities are during the FFP.

Considering the fact that, in real world situations, activities can be described as a sequence of

correlated events, we take advantage of the SVM with probability estimates in a more extensive

way rather than utilizing just one discrete prediction. Instead, for a window sample, the SVM

prediction of probabilities at time t for all the activities pt = [p1, . . . , pm]T when combined with

the predicted output from neighboring previous samples
{
pt−1, · · · ,pt−s+1

}
as the P ∈ Rs×m

matrix , can be interpreted as m activity probability signals in time. This assumption provides

an advantage to improve the recognition system as we can exploit signal processing techniques

such as filtering to make the overall classification system more robust. We take into account

aspects such as the interrelationship within activities and the notion that only one happens at

a time (e.g. during transitions which is one of our areas of interest).
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Figure 7.3 shows an example of how this output looks. It is noticeable that the probability of

each class increases or decreases depending on the activity performed for each particular time.

Even though there is some noise in the forecasted probabilities, it is possible to predict the

performed activities in a way that is very close to the ground truth by the inspection of the

signals analyzed as a whole. The figure also shows two common misclassification examples in

the dataset. The first error type occurs during BAs (check nearby second 9 on the figure) and is

due to similarities between two SPs (standing and sitting) which usually present high interclass

error. The second type occurs during PTs in between two SPs (second 4). This misclassification

is generally characterized by incorrectly predicting PTs as AAs.

In more realistic circumstances, it would be desirable to acknowledge unusual events (un-

known-activity) such as PTs when the system does not match a new window sample to any of

its studied activities. The figure also depicts the expected correct predictions assuming only the

6 BAs as its classification output and the case when the unknown-activity class is also taken

into account. Moreover, the exploration of human habits in real life examples also suggests that

some sequences of events are very unlikely to happen, for instance, that a person walks upstairs

right after lying-down and just before standing.
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Figure 7.3: Misclassification examples during PTs and SPs (PT and BA errors). (Top) Acceleration signals clearly show the transition
between the two postures. (Middle) The output of the multiclass SVM with probability estimates shows how likely each activity is for
each window sample. (Bottom) The prediction of the activities using the MAP approach is compared against the expected output with
the 6BAs with and without considering the unknown-activity (UA).
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We have developed a set of filters to heuristically improve the probabilistic output of the

SVM using temporal information from each prediction and its neighboring samples. This process

is divided in two parts: probability filtering which directly handles the probability signals and

discrete filtering that further filters the activity output after the discretization of probabilities

into activities.

7.3.3.1 Probability Filtering

The visualization of activity probability signals in time provided us with information regarding

the behavior of BAs. SPs are different from AAs with respect to the way their associated activity

probabilities manifest (the normalized SVM output). This signal fluctuates more in AAs. As a

result, the implemented filters are conditioned with the type of activity, whether they are an SP

or not. They are rule-based and use the P matrix as input which is composed of the activity

probability vectors of the last s overlapped windows. This number of windows is selected based

on the filter requirements. In this application s = 5 which is equivalent to a prediction delay of

5.12s.

The filters use probability thresholds to define, for instance, whether a class is considered

active (e.g. pc > threshold) or condition the filtering of an activity based on the value of other

classes. P ′ = Φ (P ) represents the application of the probability filters over the activity sequence

and they are described as follows:

Transition Filter This filter is aimed to remove peaks and transients of dynamic activities

when they appear amongst static ones. This is applied to AAs as they exhibit a spiky behavior

(e.g. during PTs). These usually take a short time (from 2 to 3 seconds), therefore this filter

measures the length of the activation of these dynamic signals for a number of overlapping win-

dows (maximum 3). Their filtering is also conditioned with the intensity of the SPs probability

signals in the selected windows. A high probability in these indicates it is unlikely that an AA

can appear simultaneously.

For the PTA-7A method, the AAs are also filtered when the PT output probability surpasses

a threshold. The transition filter is not applied over the PT class because contrarily to AAs, its

appearance is rather short and it is desired to be kept in such way instead of removing it.

Smoothing Filter This filter targets the probability signals during the occurrence of BAs. It

helps to stabilize signal fluctuations when their probability values are greater than a threshold

(0.2) within the activity sequence. This is aimed to make evident small differences between

activities with high interclass misclassification e.g. standing and sitting or walking and walking-

upstairs. Oscillations are smoothed using a linear interpolation.
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7.3.3.2 Discrete filtering

The next step after the probability signals have been filtered is to define c∗, the most likely

activity for each window sample. This is done using MAP over the probability vector (p′ =

P ′(s−1,:)) extracted from the filtered activity matrix. From this one of the classes is selected as

the predicted activity.

However, under some circumstances, the entire probability vector contains small values.

This indicates that none of the classes seems to be representative of the current activity. To this

end, we have defined a minimum activity threshold which is used to label samples as undefined

(unknown-activity) when none of the classes reaches this value. This is particularly useful during

PTs in the PTA-6A method as they are not learned by the SVM model. But in general, this

approach can be beneficial in real life situations when the HAR system is used while activities

outside the studied set occur. Consequently, these will not be categorized as any of them, instead

the system will show that an unknown event has occurred.

This filter removes sporadic activities that appear for a short time and are unlikely to happen

for only a window sample. It also includes cases when the unknown-activity is detected and its

contiguous activities belong to the same class. The filter allows to relabel them as their neighbors.

The final predicted activity is the result of this discrete filter ĉ = Ψ (z), where z in the buffer

containing the last 3 predicted activities c∗.

7.4 PTA-HAR Experiments

This section presents a collection of experiments carried out for the evaluation of our PTA-HAR

system. It starts with an evaluation of the D3T dataset focused on PTs which are analyzed

in terms of duration and then compared against BAs. Moreover, we review the system error

metric proposed for this work which takes into account the possible detection of the PT and

unknown-activity classes. Finally, we describe the main features of the smartphone application

which has been developed for the online recognition of activities.

7.4.1 The HAR Dataset with Postural Transitions

From the D3T dataset, relevant information regarding the duration of PTs against the other

activities was extracted. During the experiments, every patient performed twice each PT pro-

ducing a total of 60 labels for each PT. This comprises in time 9% of the entire recorded

experimental data. Figure 7.4 depicts the average duration of the 6 PTs. Overall, they all have

a duration of 3.73s ± 1.17 seconds but it can be clearly noticed that their duration is different for

each PT. Even inverse transitions (e.g. LiSi and SiLi) have different durations. Some PTs, such

as StLi which has the longest average duration (4.9s), are actually a sequence of other two (StSi

and SiLi) as it can be observed from the experimental video data. These figures were useful for

defining conditions that allow the filtering of transitions that are described in Section 7.3.3.

In the particular case of SiSt and StSi PTs, the duration results are slightly different to
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Figure 7.4: Transition times in seconds for the 6 studied PTs

the ones found in [Najafi et al., 2002] where the transition duration between these two PTs

was not very significant and supported their finding that the type of transition did not have a

specific role for the fall risk evaluation. Although the mean duration of these two transitions

all together in our experiment is very close to their estimations in low fall-risk patients (2.98s

for us against 2.92s for them), we found that StSi takes in average considerably more time than

SiSt. In comparison to their approach, we selected a higher number of participants which seems

to provide a more representative statistical measurement.

On the other hand, the rest of activities (BAs) took instead longer times (17.3s ± 5.7 in

average). This is important given that, in general, the execution time of activities in real life

takes longer than PTs which have nearly-fixed duration. This element is also fundamental for

the filtering of activities of our system.

7.4.2 Online System Error Estimation and Performance Evaluation

The method for the evaluation of the online system error requires some modifications given that

PTs are now taken into account. Table 7.1 explains our error assessment method during the

occurrence of PTs and BAs. It defines the conditions when a prediction is considered correct or

not. It also takes into account the detection of the unknown-activity.

From these conditions we have developed an error metric to evaluate the system performance

as a function of the predicted activity ĉt and the ground truth targets of the labeled data in the

vicinity of time t: yt−1, yt, and yt+1. It is valid for PTA-6A and PTA-7A methods, and it has
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Ground-Truth Prediction Error Evaluation

Basic Activities

A1 - A1 - A1 A1 - A1 - A1 Correct
A1 - A1 - A1 A1 - A2 - A1 Incorrect
A1 - A1 - A1 A1 - UA - A1 Incorrect
A1 - A1 - A1 A1 - PT - A1 Incorrect1

Postural Transitions

A1 - PT - A2 A1 - A1∨A2 - A2 Correct
A1 - PT - A2 A1 - A3 - A2 Incorrect
A1 - PT - A2 A1 - UA - A2 Correct
A1 - PT - A2 A1 - PT - A2 Correct1

Table 7.1: Classification error assessment conditions for BAs and PTs. A = Activity, U =
Unknown. 1 Only applicable to the PTA-7A method

the following formulation:

ε (ĉt, yt−1, y, yt+1)


0 if


yt = ĉt ∨(
yt = PT ∧ yt−1 6= yt+1 ∧ (ĉt = yt−1 ∨ ĉt = yt+1)

)
∨(

yt = PT ∧ ĉt = UA
)

1 otherwise,

(7.3)

Notice that the error function penalizes the detection of either unknown-activity or PT

during the occurrence of BAs as on this dataset we expect them to occur only during transitions.

Consequently, any aim to reduce the error in PTs can reduce the overall performance as it can

have unfavorable effects in the predictions of BAs.

Moreover, we make use of the confusion matrix for evaluating the system classification perfor-

mance. As we presented in Section 2.5.4.1, in a typical confusion matrix C ∈ Rm×m, the number

of actual classes matches the number of predicted classes. For the evaluation of our methods,

however, we slightly modify this idea because the number of classes of our ground truth (7

classes: 6 BAs plus the PT class) is different to the number of possible outputs of the HAR

system: the unknown-activity is incorporated. This produces a confusion matrix C′ ∈ Rm×m+1.

To make the C′ still informative, we preserve in its diagonal the correct classifications, and

the misclassifications outside from it except on its last column C′(:,c+1) which corresponds to the

predicted unknown activities. This column is instead used to allocate the correct predictions,

based on the proposed error metric, of the unknown-activity class that occur during PTs so they

do not appear as misclassifications outside the diagonal. In a similar way, we assign as true

positives of the PT class the samples predicted during PTs that match the ground-truth of any

of the neighboring window samples, so they do not appear outside the diagonal either.

108



7.4 PTA-HAR Experiments

Figure 7.5: HARApp smartphone user interface

7.4.3 HARApp: The Android App for HAR

We developed HARApp, a smartphone application based on the PTA-HAR system. An An-

droid OS equipped smartphone was selected for this task (SGSII). The code for the application

user interface was written in Java and the most expensive tasks such as signal processing, ML

algorithm and activity filtering were written in C for allowing faster performance. The NDK

facilitated to embed these native code components into the application.

The app was structured according to Algorithm 3. Two separate threads process the

main functions: ProcessInertialSignals() periodically receives from the OS the inertial sig-

nals for conditioning which get stored in a circular buffer. In parallel, the execution of the

OnlinePrediction() function controls the prediction of activities which is triggered by sched-

uled interruptions every 1.28 sec (half window sample). The duration of a complete cycle of this

function, from window sampling to activity estimation, takes in average about 152 ms for the

PTA-6A method and 162 ms for the PTA-7A using a SGSII smartphone. These times are simi-

lar as they share the same feature extraction process which takes nearly 92% of the processing

time. The remaining time is dedicated to the SVM, which only varies in the number of predicted

classes per method, and the filtering stages. The app consumes around 6 MB of memory and

4.2% of the CPU available time.

The multiclass SVM prediction is performed in real-time although the model parameters

(wc and bc) are learned offline and loaded into the app beforehand. Furthermore, the online

prediction can be visualized through the touchscreen of the smartphone. Although this is rarely

possible during operation as the device is located on the waist which restricts this visualiza-

tion. Figure 7.5 shows a screenshot of the HARApp graphical interface. A log file also records

the predicted activities and their associated timestamps for subsequent analysis. Moreover, a

communications interface allows to access live prediction data from any other device through a

Wi-Fi connection.
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7.5 Results

In this section we present the experimental results obtained for the two HAR methods. For

this, we make use of the error metric defined in section Section 7.4. We have divided this

evaluation first by giving a global overview of the methods performance and then we go further

into detail with the analysis of the activities through the use of confusion matrices and measures

of specificity and sensitivity.

7.5.1 System Error Evaluation

To evaluate the performance of the proposed methods, we took our previous L-HAR system

presented in chapter Chapter 6 as a reference point. This is is equivalent to PTA-HAR system

with the PTA-6A method without applying temporal activity filtering. We first learned the D2T

dataset which only considered the 6 BAs and was generated using W1 sampling (Section 4.3.2).

A system error of 3.39% was achieved (Section 6.4.4). Then, we applied the same procedure to

D3T , which contains PT labels and W2 window sampling, and obtained an recognition error of

7.72% using the proposed error metric. This showed an increase of the system error by 4.33%

percentage points mainly due to the misclassifications that occurred in PTs. This finding showed

how the first offline approach fails to work online when it is under a large number of transitory

events between activities such as PTs. In this dataset they cover nearly 9% of the available

data. Although this is a rather small portion, it is influential in the overall system performance.

Henceforth, we consider separately the effect of PTs and BAs in the system and work only

on the D3T dataset. We assess the two proposed methods (PTA-6A and PTA-7A). This evalu-

ation is presented in Table 7.2 where we include the overall system error and also the error of

intermediate stages of the processing. In this way, it is possible to have an idea how the different

stages of the algorithm are progressively affecting the overall classification performance. The

three stages are: no filtering (SVM output), probability filtering, and discrete filtering. On the

table, every row represents these stages of the algorithm and the columns each HAR method.

From the table, it can be also noticed that the error in the PTA-6A method without filtering

is the highest achieved (7.72%). As we decompose this, we can see that this is mainly due to a

large error of 41.34% in the classification of PTs. BAs error instead remains much lower with a

4.46%. We can also observe that the temporal activity filters widely improve the classification

of PTs reaching a minimum error of 5.77%. BAs instead improve only slightly after filtering.

The final error of the PTA-6A method is 3.34% which nearly matches the one achieved with

L-HAR and D2T that did not take into account PTs.

Alternatively, the PTA-7A method presents a different behavior. As PTs are learned, its

recognition error is much lower from the first beginning when they are classified by the SVM

(2.12%) instead of the value obtained with the previous method which was much larger (41.34%).

However, the classification error of BAs is always slightly higher when compared to the previous

method. Primarily because the addition of the extra class in the learning stage causes some
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Filter BAs PTs Overall
PTA-6A

No Filtering 4.46% 41.34% 7.72%
Probability 3.45% 18.24% 4.76%
Discrete 3.10% 5.77% 3.34%

PTA-7A
No Filtering 4.60% 2.12% 4.39%
Probability 3.63% 0.61% 3.36%
Discrete 3.51% 0.61% 3.25%

Table 7.2: System error based on filtering stage and type of activity

BAs to get misclassified as PTs as it would be expected. The temporal filtering does help to

improve all BAs but its effect is minor. This method is showing that the learning of postural

transitions can be helpful to the classification of activities. The final error of both methods is

similar, being slightly lower for the PTA-7A by only 0.09%.

7.5.2 Activity Classification Performance

The confusion matrices for the first HAR method PTA-6A are shown in Table 7.3. They depict

the classification results of the system before and after the activity temporal filters. The first

noticeable difference between them is the matrix size as the unknown-activity appears only after

filtering. Additionally, it is evident that the number of false negatives for the PT class is quite

large before filtering. In particular, dynamic activities such as walking-upstairs provide most of

these misclassifications indicating that the system was incorrectly predicting them during the

occurrence of PTs. Therefore the temporal activity filters have helped to minimize this error.

It is also noticeable the reduction of interclass misclassifications between similar activities such

as in the static postures sitting and standing, and also between walking and walking-upstairs.

After filtering, the false negatives of the standing class produced by sitting samples become

nearly zero (from 18 to 1), however, the opposite case, which has a reduction of 26% in the

number of misclassification, still preserve some errors.

Table 7.4 shows the results for the PTA-7A method. The addition of the PT class into

the learned SVM model shows how most of the PT samples are correctly classified even before

applying temporal activity filtering as opposed to the previous method which had a large number

of false negatives of the PT class. Moreover, after filtering, small improvements are still evident:

for instance, the number of false negatives for the PT class is further reduced (from 7 to 2), and

also the interclass misclassification of static postures is also diminished. The SVM output is,

however, generating some false positives of the PT class. This means that some actual BAs are

being confused with PTs. Therefore, the addition of an additional activity (PT) into the model

is producing an increase on the BAs error which can be unfavorable in applications where the

occurrence of BAs is larger than PTs. This explains why the BAs error with the PTA-7A method

is higher than with the PTA-6A. Notice also that in our model, transitions are considered as a

single class but for some other applications it might be needed to learn them separately. This
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can decrease even further the recognition performance of BAs as the number of classes of the

classifier increases.

Method PTA-6A
Activity WK WU WD SI ST LD PT
WK 542 0 3 1 0 0 0
WU 32 523 2 0 2 0 0
WD 3 4 498 0 4 0 0
SI 0 4 0 481 71 1 0
ST 3 3 0 18 588 0 0
LD 0 0 0 0 0 604 0
PT 12 101 1 18 4 0 193

Method PTA-6A
Activity WK WU WD SI ST LD PT UA
WK 545 0 0 0 0 0 0 1
WU 28 514 1 0 1 0 0 15
WD 0 0 505 0 3 0 0 1
SI 0 0 0 504 52 0 0 1
ST 0 1 0 1 610 0 0 0
LD 0 0 0 0 0 604 0 0
PT 0 10 0 9 0 0 310 0

Table 7.3: PTA-6A Confusion Matrices. Before and after filtering

Method PTA-6A
Activity WK WU WD SI ST LD PT
WK 539 1 3 2 0 0 1
WU 28 513 2 1 1 0 14
WD 2 5 498 0 4 0 0
SI 0 3 0 486 68 0 0
ST 1 0 0 19 591 0 1
LD 0 0 0 0 0 604 0
PT 3 2 0 2 0 0 322

Method PTA-6A
Activity WK WU WD SI ST LD PT UA
WK 542 1 0 1 0 0 1 1
WU 26 510 1 0 1 0 16 5
WD 0 0 506 0 3 0 0 0
SI 0 0 0 499 57 0 1 0
ST 0 0 0 3 607 0 2 0
LD 0 0 0 0 0 604 0 0
PT 0 0 0 2 0 0 327 0

Table 7.4: PTA-7A Confusion Matrix. Before and after filtering

The sensitivity and specificity measures for each activity were also estimated and presented

in table Table 7.5. In this way, we can analyze separately how the actual positives and negatives

are correctly classified. For the 6 BAs we obtained a high specificity, also something similar

occur with the classes sensitivity except for the classes walking-upstairs and sitting which have

a smaller value. They are being mostly misclassified as walking and standing respectively which

are similar activities. It is also visible that the detection of PTs is working well as the sensitivity
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Activity Sensitivity Specificity
PTA-6A PTA-7A PTA-6A PTA-7A

WK 99.82% 99.27% 99.11% 99.18%
WU 91.95% 91.23% 99.65% 99.97%
WD 99.21% 99.41% 99.97% 99.97%
SI 90.48% 89.58% 99.68% 99.81%
ST 99.67% 99.18% 99.67% 98.03%
LD 100.0% 100.0% 100.0% 100.0%
PT - 99.39% - 99.41%

Table 7.5: Sensitivity and Specificity

and sensitivity are above 99%. This is only applicable to the PTA-7A as in the other method

PTs are not learned.

7.6 Summary

In this chapter, we presented a fully operational HAR system for the recognition of activities

using smartphones (PTA-HAR). We showed through two different methods how to achieve

online recognition while taking into account the effect of postural transitions in the overall

system classification performance. Although, these transitory events are usually disregarded in

most applications, they become relevant when their incidence is high (e.g. sports activities and

housekeeping), as well as the need to explore and evaluate them.

The two proposed methods (PTA-6A and PTA-7A) exploit correlation between contiguous

activities to reduce misclassifications, in particular during transitory events. This is achieved

through the filtering of activities which are interpreted as probability signals that change over

time.

Results have shown that the two proposed methods of the PTA-HAR system have similar

classification performance and are therefore suitable options for HAR applications. They have

also confirmed to be more appropriate for online classification than L-HAR which does not

consider activity temporal filtering. Moreover, here we provide some considerations in order to

guide the selection of the most suitable method depending on its application:

• When the precise detection of PTs is required, the PTA-7A approach is the only one that

can be applied, though most HAR applications are only concerned about the detection of

BAs. The PTA-6A method instead avoids learning these events but still prevents problems

that could arise in the presence of PTs during classification.

• The method selection is also a trade-off between having a simpler learning algorithm and

system accuracy. The PTA-6A method is in particular easier to implement as the learning

stage does not require PTs. For example, in applications with a larger number of activities

(e.g. by adding activities such as bent, reclined, lying down facing up/down, etc.), the

recording of transitions between basic activities becomes more complex as the number of
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possible PTs increases quadratically in a proportion of υ(υ− 1), where υ is the number of

studied BAs (υ = 3 SPs in our case). This, therefore affects the learning on the PTA-7A

method.

• The method selection can be also associated with the number of PTs that occur with

respect to the time extent of other activities. If they do not occur too often or the time

between PTs is rather large, then we can be less rigorous about learning transitions and

use the PTA-6A approach.

• Some datasets only include information about BAs and do not have transitions labeled.

This limits the study to use only the PTA-6A method.

The adaptation of the unknown-activity class into the system was useful for the performance

of the PTA-6A approach as PTs were detected as unfamiliar events. Furthermore, this concept

can be extended to real life applications such as in the monitoring of activities where there are

chances to perform different activities that are not known in advance. It is preferable to have

a system that notifies that an activity seems unknown rather than always classifying it only

as one of the studied group of activities. Furthermore, the repeated detection of this unknown

events can be also an indication that the system is not working correctly. For example, if the

sensor is not located in the right position or if the activities performed by a new user seem not

to be recognized properly, etc. This idea should be further studied and it is proposed as a future

direction of research.

This work explored probability estimates as a measure of how likely an activity is to be

carried out. This has shown to be useful for performing filtering techniques when it is also

combined with the idea of interrelationship between different activities. Henceforth, it would

be interesting to explore novel approaches to make the recognition of activities more robust by

applying probabilistic approaches such as Markov chains on smartphones. These can, for exam-

ple, define the PTs as transitions between states (BAs) and use activity probability estimates

as the observations or input to the system.
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Chapter 8

Conclusions

8.1 Achievements

In this thesis we presented a collection of contributions related to the recognition of human

activities in the AmI framework. We exploited existing commercial hardware (smartphones)

and state-of-the-art ML algorithms (SVMs) in order to contribute with the design of human-

centered services that improve people’s QoL. In particular, here we summarize our most relevant

achievements:

• We developed a HAR system for the real-time classification of BAs using a single waist-

mounted smartphone device (PTA-HAR). It can provide activity information to other

context-aware applications within the same device or externally located through wireless

communications (e.g. for daily monitoring systems for the elderly and physical activity

trackers for athletes). The system also handles PTs through learning and filtering in order

to improve the classification performance during transitions between BAs. Human body

motion signals are continuously captured through the device’s accelerometer and gyro-

scope. These signals are then processed and segmented into windows to extract relevant

activity features in the time and frequency domain. The features become the input of

an ML algorithm: a multiclass linear SVM (MC-L1-SVM) which allows to make activity

predictions. Finally, consecutive predictions in time are post-processed in order to mini-

mize classification errors through a filtering module (Table 7.2) which is aware of PTs and

considers the relationship between contiguous activities in real-life.

• We proposed a novel hardware-friendly SVM intended to predict activities using only fixed-

point arithmetic (HF-SVM) to be applied to mobile devices for lower power consumption

or hardware without floating-point units (e.g. low-cost disposable wearable sensors). We

found that the classification of the selected BAs allows a reduction of the number repre-

sentation of the sensor data (e.g. from 32 to 6 bits) without substantially damaging the

system performance (Figure 5.3). In this way, we can control over model complexity and

accuracy in order to improve recognition speed and reduce battery consumption against
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typical floating-point based SVM formulations.

• We presented a multiclass linear SVM algorithm (MC-L1-L2-SVM) to be applied in smartphone-

based HAR. Its advantages against non-linear approaches include its faster prediction abil-

ity, memory-reduced learned model, and distinctive embedded mechanism of performing

feature selection that discards irrelevant or noisy features during the training process (Ta-

ble 6.7). The method also allows to trade-off dimensionality reduction against classification

accuracy. Moreover, we provided along with this algorithm a novel and flexible training

approach (EX-SMO) that only requires any of the widely known QP solvers available such

as SMO for its implementation.

8.2 Future Work

There is still room for improvement in our work which can be addressed from two different

perspectives: i) by solving current limitations of our proposed systems, and ii) by extending our

achievements through complementary and novel applications. In the first case, some issues have

arisen such as the limited number of activities the system can deal with, the fixed smartphone

position on the waist, and the adoption of novel approaches to deal users with distinct differences

in their motion patterns (e.g. people with walking difficulties) into the system. On the second

case, new ideas about how to exploit HAR information in order to provide new services can be

explored. These include the development of context-aware apps for health and sports monitoring,

elderly care and understanding interaction between users using similar systems. In this section

we focus on some of these aspects and propose them as future research directions:

• For a new user, the performance of the proposed HAR system can be improved if his

motion data is integrated into the learned model. Although this can be done, for instance,

through retraining after following a controlled sequence of activities, this process can be

tedious for the user. But considering that during a normal day it is possible to gather large

amounts of data, we can explore semi-supervised learning strategies which can allow to

combine this unlabeled data with already existing labeled trained data in order to produce

considerable improvements in the system learning accuracy. This can bring advantages to

new users, specially those with particular conditions such as very slow motion or physical

disabilities which are normally difficult to incorporate in the training and the ML algorithm

generalization capability is not sufficient to include them.

• The proposed HAR systems are specific to be used with waist-mounted smartphones.

Although this position allows some degree of variability, it is important to explore if it

is also possible to place the device in different body parts such as shirt or pants pockets

and even worn around the arms (e.g. with armbands for running). In the first case some

problems may arise due to the free and continuous motion of the devices with respect to

the body position which can be hard to control (e.g. for distinguishing between standing
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and sitting activities). Moreover, now that its is becoming increasingly popular the use of

wearable devices such as smartwatches with embedded inertial sensors, it is interesting to

investigate how to combine them with our current smartphone-based system in order to

improve the recognition or to add new activities that involve upper limbs such as typing,

brushing teeth and writing.

• The outcome of the presented HAR system can be used in higher-level context-aware

applications. For example, when combined with location-based services such as GPS or

home presence sensors for achieving indoor and outdoor activity detection. Also, if activity

information is merged with vital sign sensors, it is possible develop apps for medical diag-

nostic and monitoring of ill patients during their daily life without third-party supervision.

Likewise, it is possible to merge activity information with smartphone connectivity status

such as incoming calls/messages, in order to control the smartphone behavior when some

specific activities are occurring, e.g. to avoid receiving phone calls while users are running

or sleeping, and to automatically produce unavailability responses. Later, when users ac-

tivity has changed, the information can be provided in a timely manner. On the other

hand, we also propose the study of the interaction between two or more users wearing the

HAR recognition system in order to infer collective behavior such as chatting, dancing,

playing sports, etc. In conclusion, there is a wide range of new possibilities and services

that need to be explored where HAR can contribute in their development.
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AA Ambulation Activity

AAL Ambient Assisted Living

ADL Activities of Daily Living

ADT Android Development Tools

AmI Ambient Intelligence

ANN Artificial Neural Networks

API Application Programming Interface

BA Basic Activity

BDM Bayesian Decision Making

BSN Body Sensor Network

CA Complex Activity

CCQP Convex Constrained Quadratic Programming

cHMM Continuous Emissions HMM

CPU Central Processing Unit

DFT Discrete Fourier Transform

DT Decision Tree

DTW Dynamic Time Warping

EDGE Enhanced Data rates for GSM Evolution

ESANN European Symposium on Artificial Neural

Networks

EX-SMO Extended SMO

FFP Feed-Forward Phase

FFT Fast Fourier Transform

FN False Negatives

FP False Positives

GDA Gaussian Discriminant Analysis

GK-SVM SVM with Gaussian Kernel

GMM Gaussian Mixture Models

GMR Gaussian Mixture Regression

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

GUI Graphical User Interface

HAR Human Activity Recognition

HARApp Human Activity Recognition Application

HF-HAR Hardware-Friendly HAR System

HF-SVM Hardware-Friendly SVM

HMM Hidden Markov Models

k-NN k-Nearest Neighbors

KCV k-Fold Cross Validation

KKT Karush-Kuhn-Tucker

L-HAR Linear HAR System

L1-L2-SVM L1-L2-Norm SVM

L1-SVM L1-Norm SVM

L2-SVM L2-Norm SVM

LD lying-down

LDA Linear Discriminant Analysis

LiSi lie-to-sit

LiSt lie-to-stand

LK-SVM SVM with Laplacian Kernel

LR Logistic Regression

LSM Least Squares Method

LUT Look-Up-Table

LVQ Learning Vector Quantization

MAP Maximum A Posteriori Probability

MC-GK-SVM MultiClass GK-SVM

MC-HF-SVM MultiClass HF-SVM

MC-L1-L2-SVM MultiClass L1-L2-SVM

MC-L1-SVM MultiClass L1-SVM

MC-L2-SVM MultiClass L2-SVM

MC-LK-SVM Multiclass LK-SVM

MEMS Microelectromechanical Systems

ML Machine Learning

MLP Multilayer Perceptron

MMS Multimedia Messaging Service

NB Naive Bayes

NDK Native Development Kit

NFC Near Field Communication
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OS Operating System

OVA one-vs-all

OVO one-vs-one

PCA Principal Component Analysis

PD Parkinson’s disease

PDA Personal Digital Assistant

PerComp Pervasive Computing

PET Positron Emission Tomography

PT Postural Transition

PTA-6A PTA-HAR with 6 BAs

PTA-7A PTA-HAR with 6 BAs + 6 PTs

PTA-HAR Postural Transition Aware HAR System

QoL Quality of Life

QP Quadratic Programming

RBF Radial Basis Function

RF Random Forest

RL Reinforcement Learning

SDK Software Development Kit

SGSII Samsung Galaxy SII

SI sitting

SiLi sit-to-lie

SIM Subscriber Identity Module

SiSt sit-to-stand

SLT Statistical Learning Theory

SMA Signal Magnitude Area

SMLP Simplex Method for Linear Programming

SMO Sequential Minimal Optimization

SMS Short Message Service

SP Static Posture

SRM Structural Risk Minimization

ST standing

STD Standard Deviation

StLi stand-to-lie

StSi stand-to-sit

SVM Support Vector Machine

TN True Negatives

TP True Positives

UA unknown-activity

UbiComp Ubiquitous Computing

USB Universal Serial Bus

WD walking-downstairs

WEKA Waikato Environment for Knowledge Analysis

WK walking

WU walking-upstairs
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