136,696 research outputs found

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    Towards A Theory-Of-Mind-Inspired Generic Decision-Making Framework

    Full text link
    Simulation is widely used to make model-based predictions, but few approaches have attempted this technique in dynamic physical environments of medium to high complexity or in general contexts. After an introduction to the cognitive science concepts from which this work is inspired and the current development in the use of simulation as a decision-making technique, we propose a generic framework based on theory of mind, which allows an agent to reason and perform actions using multiple simulations of automatically created or externally inputted models of the perceived environment. A description of a partial implementation is given, which aims to solve a popular game within the IJCAI2013 AIBirds contest. Results of our approach are presented, in comparison with the competition benchmark. Finally, future developments regarding the framework are discussed.Comment: 7 pages, 5 figures, IJCAI 2013 Symposium on AI in Angry Bird

    Ideas are not replicators but minds are

    Get PDF
    An idea is not a replicator because it does not consist of coded self-assembly instructions. It may retain structure as it passes from one individual to another, but does not replicate it. The cultural replicator is not an idea but an associatively-structured network of them that together form an internal model of the world, or worldview. A worldview is a primitive, uncoded replicator, like the autocatalytic sets of polymers widely believed to be the earliest form of life. Primitive replicators generate self-similar structure, but because the process happens in a piecemeal manner, through bottom-up interactions rather than a top-down code, they replicate with low fidelity, and acquired characteristics are inherited. Just as polymers catalyze reactions that generate other polymers, the retrieval of an item from memory can in turn trigger other items, thus cross-linking memories, ideas, and concepts into an integrated conceptual structure. Worldviews evolve idea by idea, largely through social exchange. An idea participates in the evolution of culture by revealing certain aspects of the worldview that generated it, thereby affecting the worldviews of those exposed to it. If an idea influences seemingly unrelated fields this does not mean that separate cultural lineages are contaminating one another, because it is worldviews, not ideas, that are the basic unit of cultural evolution

    Are Routines Reducible or Mere Cognitive Automatisms? Some contributions from cognitive science to help shed light on change in routines

    Get PDF
    The aim of this article is to understand permanence and changes inside organizational routines. For this purpose, it seems important to explain how individual and collective memorisation occurs, so as to grasp how knowledge can be converted into routines. Although memorisation mechanisms imply a degree of durability, our procedural and declarative knowledge, and our memorisation processes, evolve so that individuals and organisations can project themselves into the future and innovate. Some authors highlight the necessity of dreaming and forgetting (Bergson 1896); others believe that emotions play a role in our memorisation processes (Damasio 1994). These dimensions are not only important at the individual level but also in an organisational context (Lazaric and Denis 2005; Reynaud 2005; Pentland and Feldman 2005).I review the individual dimension of these memorisation processes, with the Anderson’s distinction between procedural knowledge and declarative knowledge. I discuss the notion of cognitive automatisms in order to show why routines should be investigated beyond their first literal assumption (Bargh, 1997). This leads to a clear understanding of the micro level that underpins organisational flexibility and adaptation (notably the motivational triggers). Within organisations, the memorisation mechanisms are at once similar and diverse. Indeed, organisations use their own filters and mechanisms to generate organisational coordination. Organizational memory has its own dimension as it does not merely consist of the sum of individual knowledge and must be able to survive when individuals leave. Routines depend on the organisational memory implemented and on the procedural knowledge and representations of it (individual and collective representations).Knowledge; memorisation; organizations; individuals

    William James and the Evolution of Consciousness

    Get PDF
    Despite having been relegated to the realm of superstition during the dominant years of behaviourism, the investigation and discussion of consciousness has again become scientifically defensible. However, attempts at describing animal consciousness continue to be criticised for lacking independent criteria that identify the presence or absence of the phenomenon. Over one hundred years ago William James recognised that mental traits are subject to the same evolutionary processes as are physical characteristics and must therefore be represented in differing levels of complexity throughout the animal kingdom. James's proposals with regard to animal consciousness are outlined and followed by a discussion of three classes of animal consciousness derived from empirical research. These classes are presented to defend both James's proposals and the position that a theory of animal consciousness can be scientifically supported. It is argued that by using particular behavioural expressions to index consciousness and by providing empirical tests by which to elicit these behavioural expressions a scientifically defensible theory of animal consciousness can be developed

    Towards a quantum evolutionary scheme: violating Bell's inequalities in language

    Get PDF
    We show the presence of genuine quantum structures in human language. The neo-Darwinian evolutionary scheme is founded on a probability structure that satisfies the Kolmogorovian axioms, and as a consequence cannot incorporate quantum-like evolutionary change. In earlier research we revealed quantum structures in processes taking place in conceptual space. We argue that the presence of quantum structures in language and the earlier detected quantum structures in conceptual change make the neo-Darwinian evolutionary scheme strictly too limited for Evolutionary Epistemology. We sketch how we believe that evolution in a more general way should be implemented in epistemology and conceptual change, but also in biology, and how this view would lead to another relation between both biology and epistemology.Comment: 20 pages, no figures, this version of the paper is equal to the foregoing. The paper has meanwhile been published in another book series than the one tentatively mentioned in the comments given with the foregoing versio
    • …
    corecore