839 research outputs found

    Optimization of 2-d lattice cellular automata for pseudorandom number generation

    Get PDF
    This paper proposes a generalized approach to 2-d CA PRNGs – the 2-d lattice CA PRNG – by introducing vertical connections to arrays of 1-d CA. The structure of a 2-d lattice CA PRNG lies in between that of 1-d CA and 2-d CA grid PRNGs. With the generalized approach, 2-d lattice CA PRNG offers more 2-d CA PRNG variations. It is found that they can do better than the conventional 2-d CA grid PRNGs. In this paper, the structure and properties of 2-d lattice CA are explored by varying the number and location of vertical connections, and by searching for different 2-d array settings that can give good randomness based on Diehard test. To get the most out of 2-d lattice CA PRNGs, genetic algorithm is employed in searching for good neighborhood characteristics. By adopting an evolutionary approach, the randomness quality of 2-d lattice CA PRNGs is optimized. In this paper, a new metric, #rn is introduced as a way of finding a 2-d lattice CA PRNG with the least number of cells required to pass Diehard test. Following the introduction of the new metric #rn, a cropping technique is presented to further boost the CA PRNG performance. The cost and efficiency of 2-d lattice CA PRNG is compared with past works on CA PRNGs

    A Family of Controllable Cellular Automata for Pseudorandom Number Generation

    Get PDF
    In this paper, we present a family of novel Pseudorandom Number Generators (PRNGs) based on Controllable Cellular Automata (CCA) ─ CCA0, CCA1, CCA2 (NCA), CCA3 (BCA), CCA4 (asymmetric NCA), CCA5, CCA6 and CCA7 PRNGs. The ENT and DIEHARD test suites are used to evaluate the randomness of these CCA PRNGs. The results show that their randomness is better than that of conventional CA and PCA PRNGs while they do not lose the structure simplicity of 1-d CA. Moreover, their randomness can be comparable to that of 2-d CA PRNGs. Furthermore, we integrate six different types of CCA PRNGs to form CCA PRNG groups to see if the randomness quality of such groups could exceed that of any individual CCA PRNG. Genetic Algorithm (GA) is used to evolve the configuration of the CCA PRNG groups. Randomness test results on the evolved CCA PRNG groups show that the randomness of the evolved groups is further improved compared with any individual CCA PRNG

    The identification of cellular automata

    Get PDF
    Although cellular automata have been widely studied as a class of the spatio temporal systems, very few investigators have studied how to identify the CA rules given observations of the patterns. A solution using a polynomial realization to describe the CA rule is reviewed in the present study based on the application of an orthogonal least squares algorithm. Three new neighbourhood detection methods are then reviewed as important preliminary analysis procedures to reduce the complexity of the estimation. The identification of excitable media is discussed using simulation examples and real data sets and a new method for the identification of hybrid CA is introduced

    Land-Cover and Land-Use Study Using Genetic Algorithms, Petri Nets, and Cellular Automata

    Get PDF
    Recent research techniques, such as genetic algorithm (GA), Petri net (PN), and cellular automata (CA) have been applied in a number of studies. However, their capability and performance in land-cover land-use (LCLU) classification, change detection, and predictive modeling have not been well understood. This study seeks to address the following questions: 1) How do genetic parameters impact the accuracy of GA-based LCLU classification; 2) How do image parameters impact the accuracy of GA-based LCLU classification; 3) Is GA-based LCLU classification more accurate than the maximum likelihood classifier (MLC), iterative self-organizing data analysis technique (ISODATA), and the hybrid approach; 4) How do genetic parameters impact Petri Net-based LCLU change detection; and 5) How do cellular automata components impact the accuracy of LCLU predictive modeling. The study area, namely the Tickfaw River watershed (711mi²), is located in southeast Louisiana and southwest Mississippi. The major datasets include time-series Landsat TM / ETM images and Digital Orthophoto Quarter Quadrangles (DOQQ’s). LCLU classification was conducted by using the GA, MLC, ISODATA, and Hybrid approach. The LCLU change was modeled by using genetic PN-based process mining technique. The process models were interpreted and input to a CA for predicting future LCLU. The major findings include: 1) GA-based LCLU classification is more accurate than the traditional approaches; 2) When genetic parameters, image parameters, or CA components are configured improperly, the accuracy of LCLU classification, the coverage of LCLU change process model, and/or the accuracy of LCLU predictive modeling will be low; 3) For GA-based LCLU classification, the recommended configuration of genetic / image parameters is generation 2000-5000, population 1000, crossover rate 69%-99%, mutation rate 0.1%-0.5%, generation gap 25%-50%, data layers 16-20, training / testing data size 10000-20000 / 5000-10000, and spatial resolution 30m-60m; 4) For genetic Petri nets-based LCLU change detection, the recommended configuration of genetic parameters is generation 500, population 300, crossover rate 59%, mutation rate 5%, and elitism rate 4%; and 5) For CA-based LCLU predictive modeling, the recommended configuration of CA components is space 6025 * 12993, state 2, von Neumann neighborhood 3 * 3, time step 2-3 years, and optimized transition rules

    Contributions to the analysis and segmentation of remote sensing hyperspectral images

    Get PDF
    142 p.This PhD Thesis deals with the segmentation of hyperspectral images from the point of view of Lattice Computing. We have introduced the application of Associative Morphological Memories as a tool to detect strong lattice independence, which has been proven equivalent to affine independence. Therefore, sets of strong lattice independent vectors found using our algorithms correspond to the vertices of convex sets that cover most of the data. Unmixing the data relative to these endmembers provides a collection of abundance images which can be assumed either as unsupervised segmentations of the images or as features extracted from the hyperspectral image pixels. Besides, we have applied this feature extraction to propose a content based image retrieval approach based on the image spectral characterization provided by the endmembers. Finally, we extended our ideas to the proposal of Morphological Cellular Automata whose dynamics are guided by the morphological/lattice independence properties of the image pixels. Our works have also explored the applicability of Evolution Strategies to the endmember induction from the hyperspectral image data

    Artificial Intelligence Applied to Conceptual Design. A Review of Its Use in Architecture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Conceptual architectural design is a complex process that draws on past experience and creativity to generate new designs. The application of artificial intelligence to this process should not be oriented toward finding a solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions to meet those requirements. This work offers a tour of major research projects that apply artificial intelligence solutions to architectural conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial approaches were oriented toward finding innovative and creative forms, while the latest research focuses on optimizing architectural form.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), and the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/1
    corecore