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Abstract In this paper, we present a family of novel Pseudorandom Number Generators (PRNGs) 

based on Controllable Cellular Automata (CCA) ─ CCA0, CCA1, CCA2 (NCA), CCA3 (BCA), CCA4 

(asymmetric NCA), CCA5, CCA6 and CCA7 PRNGs. The ENT and DIEHARD test suites are used to 

evaluate the randomness of these CCA PRNGs. The results show that their randomness is better than 

that of conventional CA and PCA PRNGs while they do not lose the structure simplicity of 1-d CA. 

Moreover, their randomness can be comparable to that of 2-d CA PRNGs. Furthermore, we integrate 

six different types of CCA PRNGs to form CCA PRNG groups to see if the randomness quality of such 

groups could exceed that of any individual CCA PRNG. Genetic Algorithm (GA) is used to evolve the 

configuration of the CCA PRNG groups. Randomness test results on the evolved CCA PRNG groups 

show that the randomness of the evolved groups is further improved compared with any individual 

CCA PRNG. 
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1. Introduction 

Cellular Automata (CA) was initiated in the early 1950s as a framework for modeling complex 

structures capable of self-reproduction and self-repair. Subsequent developments have taken place in 
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several phases with diverse motivations. One active field is to generate pseudorandom numbers using 

CA. The intensive interest in this field can be attributed to the phenomenal growth of the VLSI 

technology that permits cost-effective realization of the simple structure of local-neighborhood CA. It 

has been proved in [23] that the randomness of the patterns generated by maximum-length CA is 

significantly better than that of LFSR (Linear Feedback Shift Register) based structures.  

In the last decade, one-dimensional (1-d) CA Pseudorandom Number Generators (PRNGs) have 

been extensively studied [4,7,8,9,10,13,14,15,16,18,19,21]. Recent interest is more focused on two-

dimensional (2-d) CA PRNGs [2,11] since it seems that their randomness is better than that of 1-d CA 

PRNGs. But taking into account the design complexity and computation efficiency, it is quite difficult 

to conclude which one is better. Compared to 2-d CA PRNGs, 1-d PRNGs are easier to implement in a 

large scale. In this paper, we propose a family of novel CA PRNGs that obtain the same randomness as 

that of 2-d CA PRNGs without losing the structure simplicity of 1-d CA PRNGs.  

In the following, we first give an overview on CA and CA PRNGs in section 2. We present in 

section 3 the definition of eight different types of controllable cells and the properties of corresponding 

Controllable Cellular Automata (CCA) PRNGs. In section 4, we discuss the randomness of these CCA 

PRNGs and compare their randomness to that of 1-d and 2-d CA PRNGs. Section 5 presents the 

evolutionary approach to optimize the configuration of CCA PRNG groups which can get better 

randomness values than any individual CCA PRNG presented in section 3. Section 6 ends the paper 

with a conclusion. 

 

2. Related Work  

2.1 Cellular Automata  
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A cellular automaton is an array of cells where each cell is in any one of its permissible states. At 

each discrete time step (clock cycle) the evolution of a cell depends on its transition rule, which is a 

function of the present states of its k neighbors for a k-neighborhood CA. The cellular array (grid) is n-

dimensional, where n=1,2,3 is used in practice. We define the state of a CA at time t to be the n-tuple 

formed from the states of the individual cells, ( )tX = ( ) ( )[ ]txtx n,...,1 . The next-state function of a 3-

neighborhood (r=1) CA is computed as: ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )[ ],...,,,...,,,01 11211 txtxtxftxtxftXFtX iiii +−
==+ . 

When each if  is a linear function, f is also a linear function, mapping n-tuples to n-tuples. The 

evolution of the i-th cell in a one-dimensional, 3-neighborhood CA can be represented as a function of 

the present states of the (i-1)-th, (i)-th, and (i+1)-th cells as: ( ) ( ) ( ) ( )( )txtxtxftx iiiii 11 ,,1
+−

=+ , where if  

represents the transition rule for the (i)-th cell.  

Some definitions to characterize the properties of CA are noted below.  

Definition 1. If the rules of a CA cell involve only XOR logic, then they are called linear rules. 

Rules involving XNOR logic are referred to as complemented rules. In this paper, we use a 

combination of both linear and complemented rules. A CA having a combination of XOR and XNOR 

rules is called an additive CA. 

Definition 2. If all the CA cells obey the same rule, then the CA is said to be a uniform CA; 

otherwise, it is a non-uniform or hybrid CA.  

Definition 3. A CA is said to be a Periodic Boundary CA (PBCA) if the extreme cells are adjacent 

to each other. A CA is said to be a null-boundary CA if the extreme cells are only connected to its left 

(right) cell.  
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Programmable CA (PCA) is initially mentioned 

in [18]. It is a non-uniform CA that allows different 

rules to be used at different time steps on the same 

cell. Compared to uniform CA, PCA allows several 

control lines per cell. Through these control lines, 

different rules can be applied to the same cell at different time steps according to the rule control 

signals. Fig. 1 shows a programmable cell structure.  

Generally, transition rule is one of the critical factors that decide the property of CA, whether it is 

uniform CA or PCA. Since there is a lot of work done to explore the properties of different rules, we 

only use those rules that have been proved to be good in random number generation in our work. Here 

we give the Boolean form of these rules and their numbers are given in accordance with Wolfram’s 

convention. The following rules are either additive or linear except rule 30. 

Rule 30: ( ) ( )txtx ii 11
−

=+  XOR ( ( )txi  OR ( )txi 1+
) 

Rule 90: ( ) ( )txtx ii 11
−

=+  XOR ( )txi 1+
 

Rule 105: ( ) ( )txtx ii =+1  XNOR ( ( )txi 1−
 XOR ( )txi 1+

) 

Rule 150: ( ) ( )txtx ii 11
−

=+  XOR ( )txi  XOR ( )txi 1+
  

Rule 165: ( ) ( )txtx ii 11
−

=+  XNOR ( )txi 1+
 

 

2.2 CA Pseudorandom Number Generators 

   From right     From left 

Rule 

Control                                                         

Signals 

Fig. 1 A programmable cell structure 

Cell#i

+



 

5 

In this section, we present several 1-d and 2-d CA PRNGs proposed since the last decade. Before 

we proceed to introduce the generators, we first investigate what properties of CA will affect the 

randomness of the sequences generated by CA PRNGs.  

In general, there are four aspects of CA configuration affecting the randomness: 

• Boundary conditions  null boundary, periodic boundary or mirrored boundary: generally 

periodic boundary condition is better than null boundary condition in random number 

generation [17]. 

• Length of a CA  the total number of cells in a CA: A CA formed from N cells with a 

single rule generally has a cycle length much shorter than 2
N
-1. As the length of the CA 

increases the maximum possible cycle length of the pseudorandom sequence increases.  

• Initial seed  the initial state configuration in CA: Generally, the effect of initial seed on 

randomness is obvious. To counteract its effect, in the following work, we apply the 

randomness test on a set of randomly generated initial seeds instead of only one.  

• Transition rule  obviously, the randomness of the sequences generated by different rules 

varies a lot. 

 

2.2.1 1-d CA PRNGs 

Rule-30 uniform CA has been extensively studied by Wolfram in 1986 [23]. It was the first time 

that computer scientists applied CA in pseudorandom number generation. Wolfram’s work on rule-30 

CA demonstrated its ability to produce fairly random, temporal bit sequences [20]. Wolfram also 

suggested that rule-30 CA can be efficiently implemented in parallel. Later, other rules were also 
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applied in uniform CA PRNGs. Tomassini et al. concluded in [10] that according to the DIEHARD test 

results, rule 105 is the best, followed by rules 165, 90 and 150, with rule 30 coming in the last.  

Following the idea of uniform CA PRNGs, more researchers focus their interest on non-uniform 

CA PRNGs since non-uniform CA PRNGs are better than uniform ones in general. The first non-

uniform CA PRNG was proposed by P. D. Hortensius in 1989 [14]. This non-uniform CA uses rule 90 

and 150.  This CA PRNG is referred to hence as PCA 90-150. Nandi et al. showed in [18] that a PCA 

90-150 built with maximal length CA configurations can generate pseudorandom patterns. Unlike 

uniform rule-30 CA, adjacent cells in non-uniform CA are not correlated in both time and space [14]. 

However, the binary sequences produced by some cells in a non-uniform CA fail some random number 

tests because of distribution problems. Another non-uniform CA PRNG which uses the combination of 

rules 30 and 45 was also proposed by P. D. Hortensius [15]. This generator can evolve to a random 

pattern of outputs, but its bit sequence correlation is much higher than that of the PCA 90-150 [15].  

Later in 1996, Sipper and Tomassini [13] evolved a 50-cell CA with a mélange of rules 90, 150 and 

165. This CA is referred to henceforth as PCA 90-165. Based on their work, Tomassini et al. [10] 

evolved another 50-cell CA with the rule combination 90, 105, 150 and 165 in 1999. This CA is 

referred to henceforth as PCA 90-105. These two 2-bit PCA are evolved using a cellular programming 

evolutionary algorithm while those two CA proposed by P. D. Hortensius are handcrafted. The 

DIEHARD test results show that these two non-uniform CA PRNGs are better than those designed by 

P. D. Hortensius in [14,15]. But they still cannot pass some of the tests in DIEHARD and are inferior 

to the classical generators. 

 

2.2.2 2-d CA PRNGs 
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Work on 1-d CA PRNGs not only shows the suitability of CA in random number generation but 

also raises another question: is it possible to further improve the randomness of CA PRNGs? 

Chowdhury et al. [2] described a methodology for producing pseudorandom numbers by 2-d CA in 

1994. Their results suggest that 2-d CA are superior to 1-d ones of the same size in pseudorandom 

number generation. Following their idea, Tomassini et al. evolved several 8×8 2-d CA PRNGs with 

rules 15, 63, 31 and 47 [11]. DIEHARD test results show that some of the evolved CA PRNGs can 

pass all the tests in DIEHARD. And based on the observation of these evolved 2-d CA PRNGs, they 

can handcraft even better PRNGs.  

Although 2-d CA PRNGs are better than 1-d CA PRNGs in random number generation, they lose 

the structure simplicity in hardware design and computation efficiency in software simulation. 

Therefore, how to find a set of CA PRNGs with good randomness quality and the merits of 1-d CA 

PRNGs becomes an important problem. Under this motivation, we propose a novel CA  Controllable 

CA in the next section.  

 

3. Controllable CA 

3.1 Controllable CA 

In this section, Controllable Cellular Automata (CCA) is introduced. To explain the scheme 

explicitly, several new concepts are defined first to identify the CCA properties.  

Definition 4. A Controllable CA (CCA) is a CA in which the action (how the state of a cell is 

updated in each cycle) of some cells can be controlled via cell control signals.  

Definition 5. If a cell is under the control of cell control signal, it is a controllable cell; otherwise it 

is a basic cell. CCA is the combination of controllable cells and basic cells. Both controllable cells and 
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basic cells could have rule control signals. Fig. 2 shows the non-programmable/programmable 

controllable cell structure. In this paper, we discuss programmable controllable cells only. Therefore, 

controllable programmable cell is referred to henceforth as controllable cell. 

 

 

 

 

 

 

 

 

The action of a controllable cell is decided by its current cell control signal. A controllable cell can 

be normal (when the cell control signal is 0) or activated (when the cell control signal is 1). When the 

controllable cell is normal, the computation of the states of the controllable cell and its neighbors are as 

usual (according to the current rule control signals and the states of its neighbors). When the 

controllable cell is activated, the computation of the states of the controllable cell and its neighbors are 

specified by some predefined action. The action applied to the controllable cell and its neighbors could 

be different. It is the predefined action that decides the properties of controllable cells.  

The structure of a CCA is shown in Fig. 3. It has L cells in total. M (M<=L) cells are controllable 

cells and the remaining L-M cells are basic cells. Here, all the basic cells are programmable cells. Thus, 

in this CCA, there are L rule control bits and M cell control bits.  Compared to an L-cell PCA that has 

L rule control bits, the adding cost of CCA is the M cell control bits. All the CCA PRNGs discussed in 

Cell # i 

Cell control signal 

Rule control signal 

From left From right 

Cell # i 

Cell control signal 

From left From right 

Fig. 2 A controllable cell structure 

(a) Programmable controllable cell   (b) Non-programmable controllable cell 
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this paper are based on this structure. The only difference among them is that they have different types 

of controllable cells. In our work, the rule (cell) control signals are generated by a CA called as rule 

(cell) control CA. Some of our earlier work on CCA has been published in a conference paper [19]. In 

the next sub-section, we will present eight different types of controllable cells and discuss the 

randomness of the corresponding CCA PRNGs.  

 

  

 

 

 

 

3.2 Eight Different Types of CCA 

The simplest action that an activated controllable cell can do is to keep its state during the CA 

computation process. In the meantime, the states of its neighbors are computed as usual. This type of 

controllable cell is recorded as a Type 0 controllable cell. A CCA with this type of controllable cells is 

referred to as CCA0. If the state of an activated controllable cell is complemented and the computation 

of its neighbors’ states is as usual, we name it as a Type 1 controllable cell.  A CCA with Type 1 

controllable cells is referred to as CCA1. CCA0 and CCA1 are the simplest CCA we discuss in this 

paper. Note that Type 0 and Type 1 controllable cells can be equivalent to 2-bit programmable cells 

under certain transition rules; we may question why these two types of controllable cells are proposed 

and how is their performance compared to 1-bit and 2-bit PCA. This question will be discussed later in 

section 4.2 with the aid of some randomness test results on controllable cells and basic cells. In the 

… … 

Rule control signals 

Cell control signals 

Cell #1 Cell # j Cell # L Cell # i … … … 

Fig. 3 The structure of a CCA 
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following, we will introduce several other different types of controllable cells first, which perform 

more complex actions than the type 0 and type 1 controllable cells. 

 A Type 2 controllable cell is defined as: when the controllable cell is activated, it keeps its latest 

state; while its neighbors will bypass it. This means the activated controllable cell won’t be involved in 

the state computation of its neighbors. In this way, the neighborhood relationship is dynamically 

changed during the CA computation process. A CCA with this type of controllable cells is referred to 

as CCA2 or Neighbor-changing CA (NCA). CCA2 cannot be simulated by any PCA due to its 

neighbor-changing behavior. 

A Type 3 controllable cell is defined as: when the controllable cell is activated, it keeps its latest 

state; while its neighbors will treat it as a mirror. For example, if the state of the right (left) neighbor of 

an activated cell is 1, then the right (left) neighbor will use its own state 1 as the state of its left (right) 

neighbor. In other words, we can say that the right (left) neighbor replaces the activated controllable 

cell with itself as its left (right) neighbor. A CCA with this type of controllable cells are referred to as 

CCA3 or Boundary-changing CA (BCA). 

By modifying a Type 2 controllable cell slightly, we get a Type 4 controllable cell defined as the 

following: the right neighbor of an activated controllable cell will bypass it while the left neighbor still 

uses it in the CA computation. This is to break the symmetry between the right neighbor and the left 

neighbor. A CCA with this type of controllable cells is referred to as CCA4 or asymmetric NCA. 

Except Type 1 controllable cell, activated controllable cells keep their states unchanged during the 

CCA computation process. It is a waste of the 1-bit memory of the controllable cell. We slightly 

modified Type 2 controllable cells as the following: an activated controllable cell will do the transition 

according to a transition rule while its neighbors will do the action as defined in Type 2. Setting the 
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rule to 30, 105 and 165 respectively, we get Type 5, Type 6 and Type 7 controllable cells. The 

corresponding CCA are referred to as CCA5, CCA6 and CCA7 individually. Obviously different 

choice of transition rules will affect the randomness of these types of CCA. In this paper we will 

discuss these three rules only which are proved to be among the best additive transition rules in random 

number generation [14].  

In the next section, we will discuss the randomness of these eight CCA PRNGs presented above 

and compare their randomness to PCA PRNGs and 2-d CA PRNGs. 

 

4. The Randomness of CCA PRNGs 

Before we apply the randomness tests on the controllable cells and CCA PRNGs, we firstly 

introduce two randomness test suites used and one randomness evaluation function. The result of this 

function is a real value calculated based on the randomness test results. It is used as a yardstick to 

compare the randomness of controllable cells and CCA PRNGs.  

 

4.1 Introduction to Randomness Tests 

There are two widely used randomness test suites  ENT and DIEHARD. The former is designed 

according to the criteria set by Knuth [1]; the latter is devised by G. Marsaglia [3]. A detailed 

introduction to these two tests is given in the appendix A. In this sub-section, we introduce how we 

evaluate the randomness of CCA PRNGs using the ENT test suite.  

Tomassini et al. used entropy to evaluate the randomness of 2-d CA PRNGs in [11]. But our ENT 

test results on the CCA PRNGs show that some generators obtaining good entropy values can still fail 

the chi-square test. To get a better evaluation on the randomness of CCA PRNGs, we use the results of 
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three tests (chi-square, entropy and Serial Correlation Coefficient (SCC)) instead of entropy only. We 

introduce a function F here to get an overall evaluation on the randomness based on the results of these 

three tests. Using such a “global” function, we can easily differentiate “good” random sequences from 

“bad” ones. Although F is empirically designed, it is only used as a guideline. DIEHARD is used to 

further evaluate the randomness of “good” random sequences.  

As we have introduced in Appendix A, if a sequence cannot pass the chi-square test, it is thought to 

be non-satisfactory in randomness. That is to say, the chi-square test result is an important indication to 

the randomness of the sequences tested. Thus, we feel that the chi-square test is more important than 

entropy and SCC in evaluating the randomness of CCA PRNGs. It is difficult to decide which one is 

more important between entropy and SCC because they are testing different aspects of randomness. 

Taking into account these factors, we use a function F as follows to evaluate the overall randomness of 

the CCA PRNGs. We give entropy and SCC the same ratio while giving chi-square test a slightly 

higher ratio to emphasize it.  

F = (entropy –7) * 30% + (1-|SCC|) * 30% + f (chi-square)*40%             (1) 

 

f (chi-square) =  

 

The result of F is a real value between 0 and 1. We call this value as randomness value henceforth. 

A higher randomness value represents better randomness and the optimal value is 1. For the chi-square 

test, a test result falling in 10-90% is considered as random and gets 1 in the adjusted result. Otherwise 

a test result beyond this area is considered nonrandom and gets 0 in the adjusted result.  

0; if chi-square >90% or <10% 

 

 

1; if 10% < chi-square < 90%  
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For the entropy test, 7 is deducted from the original entropy test results and the adjusted value most 

likely falls within [0, 1]. It is based on our observation from the ENT test results of CCA PRNGs under 

10000 initial seeds. Generally, there is no sequence getting an entropy value less than 7. To emphasize 

the difference of the randomness of tested CCA PRNGs, we deduct the common value (7) they 

obtained from the original test results. The optimal value of the adjusted entropy test result is 1. The 

larger the adjusted entropy value is, the better randomness the sequence gets.  

For the SCC test, the results can be positive and negative. Only the absolute value is meaningful 

and the sign does not affect the randomness. Generally, absolute SCC test values fall into [0, 1]. 

Contrary to the other two tests in which a better random sequence gets a larger adjusted result, a 

smaller absolute result gets a better randomness in the SCC test. To adjust an SCC value to the same 

direction as the other two tests, we deduct its absolute value from 1. 

 

4.2 Randomness Test Results of CCA PRNGs 

To compare the randomness of controllable cells and basic cells, we design a test as follows. All the 

CCA PRNGs have the same structure: they have 16 cells in total; the 9
th

 cell is controllable cell and the 

rest are basic cells. The rule combination for CCA/PCA PRNG is 90,150. The rule control CA uses 

rule 105 and cell control CA used rule 165. CCA PRNGs generate random number sequences as 

follows: each cell generates a random bit sequence. At each time step, the state of a cell is recorded. A 

cell’s randomness value (F value) is the ENT test result on the sequence it generated. Each CCA PRNG 

runs 10000 cycles to generate 16 random bit sequences. This test is repeated 10000 times. Each time a 

set of initial seeds (for rule control CA, cell control CA and tested CCA/PCA) is randomly generated. 
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An F value is calculated for each set of initial seed. Thus, for each cell, 10000 F values are obtained. 

The final result for each cell is the average F value and the variance of F values. 

Fig. 4 shows the test results on CCA0/CCA1/CCA2 PRNGs and PCA 90-150 PRNGs. We can see 

that all the PCA cells obtain a randomness value about 0.2. The basic cells in CCA0 have a randomness 

value about 0.56 while the controllable cell gets a much lower value which is just a little higher than 

that of PCA cells. Note that CCA0 and CCA1 get similar test results, which means that the 

‘complement’ action of a controllable cell is not useful to improve its randomness in this case. 

Although the randomness of a controllable cell is worse than that of a basic cell, it improves the overall 

randomness of CCA0 and CCA1.  Referring to Fig. 4 (b), we can see that the variance of CCA0 and 

CCA1 cells, whether they are basic or controllable cells, is much lower than that of PCA cells. It means 

that the controllable cell can also improve the overall performance stability of CCA0 and CCA1 

PRNGs.   

 

 

 

 

 

 

 

 

 

         (a) Randomness value        (b) Randomness value variance 

  Fig. 4 Comparison of PCA/CCA0/CCA1/CCA2 randomness and variance 

         Notes: results are based on 10000 initial seeds. 
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The shortcoming of CCA0 and CCA1 is that the randomness of controllable cells is worse than that 

of basic cells. As shown in Fig. 4, we can see that for CCA2, the randomness of a controllable cell is 

similar to that of a basic cell and the F value and variance of CCA2 cells are higher than that of CCA0 

and CCA1 cells. It shows that CCA2 exhibits a more stable and better randomness quality.  

We have questioned in section 3.2 why CCA0 and CCA1 are proposed although they can be 

equivalent to specified 2-bit PCA. Now we have the answer inside the randomness test results from Fig. 

4. The use of one single controllable cell can enhance significantly the randomness quality of CCA0 

and CCA2. Also because the randomness of Type 0 and 1 controllable cells is worse than that of those 

basic cells in CCA0 and CCA1, we should avoid choosing Type 0/Type 1 controllable cells when we 

choose the output cells in CCA0/CCA1 PRNGs. It is easy to do in CCA0 and CCA1 because we can 

differentiate controllable cells and basic cells according to their different structures. But in 2-bit PCA 

in which all the cells have uniform structures, we cannot easily decide which cell should not be chosen 

as output cells.  

The randomness test results on Type 0, Type 1 and Type 2 controllable cells tell us that the action 

of controllable cells decides the properties of CCA. A good ‘action’ is crucial to generate good random 

number sequences. In the following, we will discuss other types of controllable cells whose 

randomness is comparable to Type 2 controllable cells. Fig. 5 shows the randomness values of the cells 

in CCA2/CCA3/CCA4 PRNG. The test results show that in all these three generators, the controllable 

cells get similar F value as basic cells. The randomness quality of CCA3 is a little lower than that of 

CCA2, whether it is the F value or the variance. The F values of CCA4 cells are a little higher than 

those of CCA2 and the variance of CCA4 cells is also higher than that of CCA2. We may conclude that 

CCA2 and CCA4 are both good in random number generation and CCA4 may perform slightly better.  
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Fig. 6 shows the randomness values of the cells in CCA5, CCA6 and CCA7 PRNGs. The cells in 

CCA5, CCA6 and CCA7 get similar F value which is lower than that of CCA4. The variance of CCA4 

cells is lower than that of CCA5-7 cells too. It shows that CCA4 performs the best among all the CCA 

(a) Randomness value     (b) Randomness value variance 

Fig. 6 Comparison of CCA4/CCA5/CCA6/CCA7 randomness and variance 

          Notes: results are based on 10000 initial seeds. 

 

(a) Randomness value     (b) Randomness value variance 

Fig. 5 Comparison of CCA2/CCA3/CCA4 randomness and variance 

       Notes: results are based on 10000 initial seeds. 
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presented (CCA0-CCA7). The variance of CCA5 cells is the highest. According to the F values and 

variance of CCA0-CCA7 cells, we may say that CCA4 is the best among CCA0-CCA7. 

 

 

 

 

 

 

 

 

Till now, all the random number sequences are sequentially generated by one cell from each 

PCA/CCA PRNGs. But generally CCA PRNGs generate pseudorandom numbers in parallel. To 

evaluate the randomness of CCA PRNGs in parallel, we not only use ENT but also use a more 

complete test suite ─ DIEHARD to evaluate the randomness of them. Table 1 shows the ENT test 

results of CCA PRNGs both in the byte and bit mode. The structures of CCA PRNGs are the same as 

in Fig. 4-6. They are tested under one identical randomly generated initial seed. The site spacing 

parameter ss is the number of sites between two consecutive output cells in CA. The time spacing 

parameter ts is the number of time steps between output numbers. We can see that CCA2 and CCA4 

get better results than the other generators no matter in the byte mode or the bit mode. The SCC results 

in the byte mode show the correlation of bytes and the SCC results in the bit mode show the correlation 

of bits. 

 CCA0 CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7 

chi-square 50% 25% 75% 50% 25% 75% 25% 75% 

SCC 0.1230 0.1245 0.0912 0.0987 0.0901 0.1020 0.1090 0.1087 

 

byte  

mode entropy 7.8920 7.8942 7.9226 7.9042 7.9267 7.9080 7.9034 7.9078 

chi-square 50% 25% 75% 50% 25% 75% 25% 75% 

SCC 0.0239 0.0246 0.0131 0.0187 0.0114 0.0209 0.0198 0.0187 

 

bit  

mode entropy 0.9913 0.9910 0.9973 0.9951 0.9981 0.9930 0.9932 0.9938 

Table 1 ENT test results of CCA0-7 PRNGs in the byte & bit mode 

Notes: each CCA runs 10000 cycles; ts=0; ss=1. 
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In DIEHARD, the CCA PRNGs structure and test conditions are different from those in the ENT 

test. Table 2 shows the DIEHARD test results of the CCA PRNGs presented in this paper. All the 

tested CCA PRNGs have the same structures and rule combinations. Each CCA has 64 cells. The 

reason why we don’t use 16 cells is that DIEHARD is very difficult to pass for small-length CA and 64 

is widely used in real applications. The number of controllable cell in CCA PRNGs is kept to its 

L=64, P=16, ss=2, ts=1 Test name 

CCA0 CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7 

1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                games 

13. Minimum distance 

14. Overlapping Permu 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 

 

number of tests passed 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

 

16 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

 

16 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

 

18 

Table 2 DIEHARD test results of CCA0-7 PRNGs (L=64 cells) 

 Notes: P: number of output bits generated by CA in each cycle;  

                       Count the ones 1: count the ones for specific bytes; 

   Count the ones 2: count the ones for a stream of bytes. 
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minimum ─ 1. Only the 32th cell is controllable and all the remaining cells are basic cells. The rule 

combination is 90 and 150. The rule control CA uses rule 105. The cell control CA uses rule 165.  It is 

the same as the setting in the ENT test. Site (cell) spacing and time spacing are used in PCA and CCA 

PRNGs to remove correlation. The random number sequences generated by CCA/PCA PRNGs are 

10M bytes. The test conditions and CCA PRNGs structures described in this paragraph will be applied 

to all the following DIEHARD tests presented in this paper. Referring to Table 2, we can see that 

CCA2-CCA7 can pass the entire tests in DIEHARD. It shows that CCA PRNGs are potentially good 

PRNGs. 

 

4.3 CCA PRNGs vs 1-bit PCA/2-bit PCA/2-d CA PRNGs 

We have shown in the last sub-section that according to the ENT test results, CCA PRNGs are 

better than PCA 90-150 PRNGs. To confirm this, we use DIEHARD to compare their randomness. 

Table 3 shows the DIEHARD test results of CCA and PCA PRNGs under different conditions. Since 

CCA2 and CCA4 get the best randomness among all the CCA PRNGs, we use these two CCA PRNGs 

as examples in the following tests to compare the quality of the CCA PRNGs with other CA PRNGs.   

We first test the CCA PRNGs without time spacing. Referring to Table 3, we can see that when 

ts=0, CCA2/CCA4 outperform PCA 90-150 PRNGs under ss=1, 2 or 3. But they still cannot pass all 

the tests in DIEHARD. M. Tomassini suggested in [10] that time spacing is crucial to generate a very 

high quality random number sequence. Our test results are in accord with his suggestion. With a time 

spacing of 1, CCA2/CCA4 PRNGs can pass all the tests in DIEHARD. Since under all the 

circumstances, CCA2/CCA4 PRNGs pass more tests than PCA 90-150 PRNGs, we can conclude with 

confidence that CCA are better than PCA 90-150 in random number generation. 



 

20 

 

 

 

Considering that CCA use more control bits than PCA, we may suspect that whether we can further 

improve PCA’s random quality with more control bits. 2-bit PCA PRNGs, which use two control bits 

per programmable cell, may be a good example to be compared with CCA PRNGs. In a 2-bit PCA, 4 

rules are available for each cell during CA computation. Here, we use PCA 90-105 as an example of 2-

bit PCA. PCA90-105 is chosen because its performance has been proved to be good [10]. Table 4 

presents the DIEHARD test results of PCA 90-150, CCA2, CCA4 and PCA 90-105 in 50 cells. It 

P=32, ss=1, ts=0 P=16, ss=2, ts=0 P=8, ss=3, ts=0 P=16, ss=2, ts=1 Test name 

PCA 

90-

150 

CCA2 

/CCA4 

PCA 

90-

150 

CCA2 

/CCA4 

PCA 

90-

150 

CCA2 

/CCA4 

PCA 

90-

150 

CCA2 

/CCA4 

1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                throws 

13. Minimum distance 

14. Overlapping Perm. 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 
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Table 3 DIEHARD test results of 1-bit PCA/CCA2/CCA4 PRNGs (L=64 cells) 

Notes: P: number of output bits generated by CA in each cycle; 

                              Count the ones 1: count the ones for specific bytes; 

                              Count the ones 2: count the ones for a stream of bytes. 
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shows that with a time spacing of 1 and site spacing of 2, both CCA2/CCA4 and PCA 90-105 PRNGs 

can pass all the tests in DIEHARD while the PCA 90-150 PRNG fails one test. Table 4 also presents 

the DIEHARD test results of CA PRNGs in 16 and 32 cells. CCA2/CCA4 PRNGs also get better 

randomness than PCA 90-150 PRNGs. When the length of CA is 32, CCA2/CCA4 PRNGs can pass 

one more test than the 2-bit PCA 90-105 PRNG. 

 

 

 

L=50, P=16, 

ss=2, ts=1 

L=32, P=16,  

ss=1, ts=1 

L=16, P=8, 

ss=1,ts=1 

Test name 

1-bit 

PCA 

90-150 

2-bit 

PCA 

90-

105 

CCA2/

CCA4 

1-bit 

PCA 

90-150 

2-bit 

PCA 

90-

105 

CCA2 

/CCA4 

1-bit 

PCA 

90-150 

2-bit 

PCA 

90-

105 

CCA2 

/CCA4 

1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                throws 

13. Minimum distance 

14. Overlapping Permu 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 

 

Number of tests passed 
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Table 4 DIEHARD test results of 1-bit PCA 90-150/2-bit PCA 90-105/CCA2/CCA4 PRNGs 

  Notes: P: number of output bits generated by CA in each cycle;  

                        Count the ones 1: count the ones for specific bytes; 

                        Count the ones 2: count the ones for a stream of bytes. 

 



 

22 

M. Tomassini et al. evolved several 2-d CA PRNGs in [11]. They showed that some of the evolved 

8×8 2-d CA PRNGs could pass all the tests in DIEHARD. Table 5 shows the DIEHARD test results of 

theirs and ours. We can see that CCA2/CCA4 PRNG with a time spacing of 1 can pass all the tests in 

DIEHARD too. Thus, we may say that according to the DIEHARD test results, CCA PRNGs can 

compete with 2-d CA PRNGs.  

Test name 
1-d CCA2/CCA4 

L=50, P=16,ss=2,ts=1 
2-d CA PRNG (8×8) 

Tomassini et al. 
1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                throws 

13. Minimum distance 

14. Overlapping Permu 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 

 

Number of tests passed 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 
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Pass 

Pass 

Pass 
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Pass 
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Except statistical tests, cycle length (the length of a CA’s state cycle) is also important to determine 

the suitability of a CA for random number generation. Tomassini et al. calculated the cycle length of 

their evolved 2-d 4*4 CCA PRNGs over 20 initial seeds [11]. To facilitate the comparison with their 

Table 5 DIEHARD test results of 2-d CA/1-d CCA2/CCA4 PRNGs 

  Notes: P: number of output bits generated by CA in each cycle;  

                         Count the ones 1: count the ones for specific bytes; 

                         Count the ones 2: count the ones for a stream of bytes. 
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results, we test CCA PRNGs over 20 initial seeds too. Considering the fairness for comparison and 

computation load of calculating the cycle length of a CA with large size, we only test small-size (L=16) 

CA here. We realize that the length of CA and the number of initial seeds tested may not be large 

enough to get the cycle length of CA. But the results presented here are meaningful for comparison 

purpose.  

Table 6 shows the cycle lengths of 1-bit PCA 90-150, 2-bit PCA 90-105, CCA0, CCA2, CCA4 and 

2-d CA PRNGs. The results show that the average cycle length of PCA 90-150 is the smallest. The 

average cycle length of CCA0 is slightly greater than PCA 90-105, but less than CCA2 and CCA4. The 

average cycle length of 2-d CA is greater than CCA0 but less than CCA2 and CCA4. It means that 

CCA PRNGs can be better than or comparable to 2-d CA PRNGs.  

Type(No. of cells) Avg. cycle length Max cycle length Max/Avg. Log2 (Avg. cycle) 

PCA 90-150 (16) 

PCA 90-105 (16) 

CCA0 (16) 

CCA2 (16) 

CCA4 (16) 

2-d CA (4×4) 

2521 

2943 

3179 

15411 

15567 

4778 

65536 

65536 

65536 

65536 

65536 

65536 

26.0 

25.8 

20.6 

4.25 

4.21 

13.72 

11.3 

11.4 

11.6 

13.96 

13.97 

12.22 

 

 

 

5. Evolutionary Approach to Groups of CCA PRNGs 

We have discussed the randomness of a set of CCA PRNGs in the last two sections. Randomness 

test results show that except CCA0 and CCA1 PRNGs, these CCA PRNGs’ randomness is in the same 

range. In this section, we discuss how to integrate these PRNGs into CCA PRNG groups to generate 

random number sequences with better randomness quality. We select all the CCA PRNGs except 

Table 6 Average and maximum cycle lengths of PCA/CCA PRNGs 

Notes: results are based on 20 initial seeds. 
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CCA0 and CCA1 as the basic generators to be used in a CCA PRNG group. These CCA PRNGs are: 

CCA2 (PRNG 0), CCA3 (PRNG 1), CCA4 (PRNG 2), CCA5 (PRNG 3), CCA6 (PRNG 4) and CCA7 

(PRNG 5). A simple function ─ MOD is used to integrate the sequences generated by the PRNGs in 

the group. A new sequence is generated as the output of the CCA PRNG group by applying MOD to 

the sequences generated by the generators in this CCA PRNG group. 

 In each CCA PRNG group, each basic generator can either be used or not used. The objective of 

our study is to find which generators will be present in the evolved CCA PRNG groups and their 

distributions in the results. We know the effect of initial seeds on the randomness of CCA PRNGs. To 

find the distribution of good CCA PRNG groups for a wide range of initial seeds, we search under T 

(T=100) randomly generated initial seeds. The search space is 64 under one initial seed.  It is so small 

that even exhaustive search will work well here. Yet taking into account that the searching process will 

repeat T times and the software simulation on CCA transitions is quite time-consuming, we use 

Genetic Algorithm (GA) in our work to evolve CCA PRNG groups under each initial seed. Another 

reason that we use GA here is that this method is scalable. We consider six CCA PRNGs here only, but 

we may have more variations of CCA developed in the future. A CCA PRNG group may use more 

generators than six as presented here. Using GA, the algorithm can be easily modified and used in the 

future work.  

To simplify the evolution process, we do not evolve the structure of any individual CCA PRNG 

here. All the CCA PRNGs have the same structures. Each CCA has 16 cells where the 9th cell is a 

controllable cell and the remaining are basic cells. The rule combinations are the same as the setting in 

the previous ENT and DIEHARD tests. Each PRNG generates an 8-bit integer as output number every 

cycle and runs C cycles to generate a random number sequence. C is set to 10000 here.  
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Algorithm 1: Evolving CCA PRNG groups under T initial seeds (T=100) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for t =1 to T do  

//initialization 

 randomly generate the initial population with a fixed size P (P=8); 

for i = 0 to 5 do  

initialize PRNG i with a randomly generated initial seed; 

PRNG i runs 10000 cycles to generate a random number sequence i; 

end for (i) 

//evolution 

while (stopping criteria is not true) 

//Fitness calculation 

for m = 1 to P do 

calculate each chromosome’s fitness: the sequences of the selected PRNGs are 

integrated using the MOD function to generate a new sequence, F value of this 

sequence is the fitness value of the chromosome; 

end for (m) 

//crossover & mutation 

scale fitness value using the windowing method; 

roulette-wheel select parent chromosomes, do 1-point crossover to generate  8 child 

chromosomes; 

do mutation on the child chromosomes, mutation rate is 0.01; 

//selection 

calculate child chromosomes’ fitness; 

copy the best P* RATE (RATE=0.5)  parent chromosomes to the next generation; 

copy the best P-P*RATE child chromosomes to the next generation; 

end while (evolution) 

record the best chromosome’s fitness value and configuration; 

end for 
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The evolutionary approach is presented in Algorithm 1. Each chromosome has six bits to encode 

the configuration of a CCA PRNG group with each bit identifying one CCA PRNG from PRNG 0 to 

PRNG 5 in sequence. 1 means this PRNG is included in this CCA PRNG group; 0 means it is not 

included. Population size P is set to 8 because the search space is small (2
6
) for one test. The fitness of 

a CCA PRNG group is the F value (introduced in section 4.1) of the sequence it generated. The 

stopping criteria is maximal stagnation times, which is set to 50. If the best chromosome’s fitness has 

not been improved for 50 generations continuously, the evolution process will stop. Crossover rate is 

set to 1.0 and we use one-point crossover here since the length of chromosomes is small. Mutation rate 

is set to 0.01 for all the bits in the chromosome. The selection RATE is set to 0.5. 

The statistics of the evolution results under 100 initial seeds is as follows. The distribution of each 

individual CCA PRNG being selected in the best chromosomes is: PRNG 0: 51; PRNG 1: 50; PRNG 2: 

52; PRNG 3: 49; PRNG 4: 45; PRNG 5: 45. The result shows that no CCA PRNG is predominant and 

each CCA PRNG has similar possibility to be used in the evolved CCA PRNG groups. Our test is 

based on 100 initial seeds which may be not large enough to get a final conclusion but we think it is a 

valuable indication at least.  

The evolution result for each initial seed is a 6-bit chromosome indicating which generators are 

used in the corresponding CCA PRNG group. We present some evolved CCA PRNG groups (evolved 

group 1 to 3, chosen from the 100 evolved groups) in Appendix B as examples. Fig. 7 shows the 

randomness values of evolved CCA PRNG groups and their randomness variance based on 10000 

initial seed runs. The test condition is the same as the previous ENT test described in section 4.2. We 

can see that the evolved three CCA PRNG groups get a randomness value close to 1 and the variance 

of the randomness values is around 0.05 while the best variance obtained by individual CCA PRNG is 
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around 0.17. The highly decreased variance of evolved CCA PRNG groups means that the performance 

stability of evolved CCA PRNG is better than each individual CCA PRNG.  

 

 

 

 

 

 

 

 

 

 

Table 7 shows the DIEHARD test results of the evolved CCA PRNG groups (evolved group 1-3). 

We can see that all PRNGs except CCA2 and CCA4 fail all the tests in DIEHARD, while the evolved 

CCA PRNG groups (1 to 3) can pass 13 tests. It is evident that the randomness of the evolved CCA 

PRNG groups is highly improved. Table 8 shows the cycle lengths of these evolved CCA PRNG 

groups. The results are calculated as average values over 20 random initial seeds. The results show that 

the average cycle length of each evolved CCA PRNG group is greater than that of any individual CCA 

PRNG. And all the tested CCA PRNG groups get a cycle length value close to the maximum value. It 

is highly improved even compared to the value got by the best individual CCA PRNG. This matches 

with the conclusion we have derived from the ENT and DIEHARD tests that the randomness of each 

evolved CCA PRNG group exceeds that of any individual CCA PRNG. 

(a) Randomness value     (b) Randomness value variance 

Fig. 7 Comparison of CCA4/evolved groups 1-3 in randomness and variance 

Notes: results are based on 10000 initial seeds. 
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 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7 Evolved 

Group1 

Evolved 

Group 2 

Evolved 

Group 3 

Avg. cycle length 15411 8602 15567 9179 9943 8582 50203 52107 50890 

Max Cycle length 65536 65536 65536 65536 65536 65536 65536 65536 65536 

Max/Avg. 4.25 7.62 6.55 7.14 6.59 7.64 1.31 1.26 1.29 

Log2 (Avg. cycle) 13.96 13.1 13.34 13.21 13.33 13.11 15.67 15.72 15.69 

 

 

 

L=16, P=8, ss=1,ts=0 

Test name CCA 

2 

CCA

3 

CCA

4 

CCA 

5 

CCA

6 

CCA

7 

Evolved 

Group1 

Evolved 

Group 2 

Evolved 

Group 3 

1. Overlapping sum 

2. Runs up 1 

    Runs Down 1 

    Runs up 2 

    Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

                throws 

13. Minimum distance 

14. Overlapping Permu 

15. Squeeze  

16. OPSO test 

17. OQSO test 

18. DNA test 

 

Number of tests passed 
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Fail 

Fail 

Fail 

Fail 

Pass 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 

Fail 
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Fail 
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 Table 7 DIEHARD test results of individual CCA PRNGs and three evolved CCA PRNG groups 

Notes: P: number of output bits generated by CA in each cycle; 

              Count the ones 1: count the ones for specific bytes; 

                   Count the ones 2: count the ones for a stream of bytes. 

Table 8 Cycle lengths of individual CCA PRNGs and evolved CCA PRNG groups 

Notes: results are based on 20 initial seeds for 16-cell CCA PRNGs. 
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6. Conclusion  

In this paper, we have discussed several CCA PRNGs and compared them with 1-bit/2-bit PCA 

PRNGs and 2-d CA PRNGs. We find that CCA are better in random number generation than PCA 

while not losing structure simplicity.  They can compete with 2-d CA PRNGs while their computation 

efficiency and wiring cost are less than that of 2-d generators. We have also compared the randomness 

of several different types of CCA PRNGs. CCA0 and CCA1 have the simplest configurations but their 

randomness is the worst. CCA4 get the best randomness quality among all the tested generators 

considering the results from DIEHARD and cycle length. All of them can pass the entire tests in 

DIEHARD with proper site and time spacing. Further, these CCA PRNGs are evolved together to 

generate better randomness sequences. Evolution results show that each CCA PRNG has similar 

possibility to be integrated with other CCA PRNGs as a group. The randomness of the evolved CCA 

PRNG groups is better than any individual CCA PRNG and their randomness is more stable under 

different initial seed settings. 

In addition to random number generation, CCA may be used in other applications such as BIST 

(Built-In Self-Test) or error correcting codes due to their suitability in VLSI design. Also, we may use 

CCA in stream cipher and private/public cipher systems. Moreover, the usage of controllable cells in 

CCA makes them possible for some applications where conventional CA cannot work. For example, if 

a CA cell is malfunctioning, a CCA2 with neighbor changing property can easily bypass this node 

without bringing the system down.  
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APPENDIX A 

1. ENT Test 

ENT is a Pseudorandom Number Sequence Test Program, which applies various tests to sequences 

of bytes stored in files and reports the results of those tests [22].  This program is useful for evaluating 

pseudorandom number generators for encryption. ENT performs a variety of tests on the input stream 

of bytes in in_file and produces output as follows on the standard output stream: 

• Entropy: the information density of the contents of the file, expressed as a number of bits of 

character. The optimal value is 8. Larger value means better randomness. 

• Chi-square Test: the most commonly used test for the randomness of data, sensitive to 

errors in pseudorandom sequence generators. This test is calculated for the stream of bytes 

in the file and expressed an absolute number and a percentage that indicates how frequently 

a truly random sequence would exceed the value calculated. “Good” results are between 

10%-90%, with extremities on both sides representing non-satisfactory random sequences. 

• Serial Correlation Coefficient (SCC): measures the extent to which each byte in the file 

depends upon the previous byte. For random sequences, this value should be close to 0. 

Whether the value is positive or negative does not affect the randomness and smaller 

absolute value means better randomness. 

 

2. DIEHARD 

DIEHARD seems to be the most powerful test for randomness. Generally, a PRNG which can pass 

DIEHARD can be considered as good. The DIEHARD battery of tests consists of 18 different, 

independent statistical tests. Results of tests are so called “P-value” which is a real number between 0 

and 1. For any given test, a smaller P-value means a better test result with the exception that a P value 

less than 0.025 or larger than 0.975 means that the PRNG has failed the test at the .05 level. A 

complete description of all the tests in DIEHARD is available in [3]. 
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APPENDIX B 

PRNG 0: CCA2; PRNG 1: CCA3; PRNG 2: CCA4;  

PRNG 3: CCA5; PRNG 4: CCA6; PRNG 5: CCA7; 

 

The configuration of Evolved Group 1: 100101 

PRNG 0’s F value: 0.935413 

PRNG 1’s F value: 0.928216 

PRNG 2’s F value: 0.947436 

PRNG 3’s F value: 0.936831 

PRNG 4’s F value: 0.922905 

PRNG 5’s F value: 0.926204 

Evolved Group 1’s F value: 0.952342  

 

The configuration of Evolved Group 2: 110011 

PRNG 0’s F value: 0.946413 

PRNG 1’s F value: 0.942163 

PRNG 2’s F value: 0.947930 

PRNG 3’s F value: 0.940311 

PRNG 4’s F value: 0.932789 

PRNG 5’s F value: 0.938680 

Evolved Group 2’s F value: 0.957789  

 

The configuration of Evolved Group 3: 011010 

PRNG 0’s F value: 0.946262 

PRNG 1’s F value: 0.942324 

PRNG 2’s F value: 0.946734 

PRNG 3’s F value: 0.939023 

PRNG 4’s F value: 0.938903 
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PRNG 5’s F value: 0.947892 

Evolved Group 3’s F value: 0.955089 

  


