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Abstract Cellular automata (CA) have been used in pseudorandom number generation 

for over a decade. Recent studies show that controllable CA (CCA) can generate better 

random sequences than conventional one-dimensional (1-d) CA and compete with two-

dimensional (2-d) CA. Yet the structural complexity of CCA is higher than that of 1-d 

PCA. It would be good if CCA can attain good randomness quality with the least 

structural complexity.  In this paper, we evolve PCA/CCA to their lowest complexity 

level using genetic algorithms (GAs). Meanwhile, the randomness quality and output 

efficiency of PCA/CCA are also evolved. The evolution process involves two algorithms 

 a multi-objective genetic algorithm (MOGA) and an algorithm for incremental 

evolution. A set of PCA/CCA are evolved and compared in randomness, complexity, and 

efficiency. The results show that without any spacing, CCA could generate good random 

number sequences that could pass DIEHARD. And, to obtain the same randomness 

quality, the structural complexity of CCA is not higher than that of 1-d CA.  Furthermore, 

the methodology developed could be used to evolve other CA or serve as a yardstick to 

compare different types of CA.  
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1. Introduction 

 The first work to apply cellular automata (CA) in pseudorandom number 

generations was done by Wolfram in 1986 when he studied the randomness of a uniform 

rule-30 CA. Since then, CA pseudorandom number generators (PRNGs) have been an 

active research field. Wolfram’s work [20] has shown that the randomness of patterns 

generated by maximum-length CA was significantly better than other widely used 

methods, such as linear feedback shift registers (LFSR).  

 In the past 10 years, one-dimensional (1-d) CA PRNGs were studied extensively 

[1, 11-14, 16-19, 21, 22]. However, the randomness quality of 1-d PCA is unsatisfactory 

since they still fail some randomness tests. To further improve the randomness of CA, 

some researchers began to employ two-dimensional (2-d) CA in pseudorandom number 

generation. Tomassini et al. [15] evolved a 2-d CA that could pass the DIEHARD test [8], 

which is said to be the most difficult test suite to pass currently.  Based on their work, 2-d 

CA appears to be superior to 1-d PCA in pseudorandom number generation.  

 Another possibility to improve the randomness of CA is to enhance 1-d PCA by 

adding cell control signals on some cells. Some work was done in [21]. In that work, the 

idea of controlling the status of CA cells has been proposed. In a later work [22], this idea 

was further refined to the concept of controllable CA (CCA). The randomness test results 

on the proposed CCA showed that CCA are better than traditional 1-d CA and are 

comparable to 2-d CA in randomness. In [22], CCA are handcrafted by studying the 

properties of controllable cells. Compared to 1-bit PCA with the same length, the 

structural complexity of handcrafted CCA is higher because of the usage of cell control 
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signals in controllable cells. On the other hand, the output efficiency of CCA is lower 

than that of 2-d CA that needs no spacing at all.  

 In the present work, we extend upon our previous work to minimize the structural 

complexity and maximize the output efficiency of CCA while maintaining their 

randomness quality. “Structural complexity” will be elaborated in section 3.1. Our 

objective is to find whether or not CCA can outperform other 1-d CA in randomness 

while maintaining simplicity and efficiency. The evolution process involved two 

algorithms. Fixed-length CCA are evolved using a multi-objective genetic algorithm 

(MOGA). An incremental evolutionary algorithm is also applied to search for the 

minimal length of CCA to attain a pre-specified target. Here, the target is to pass all the 

tests in DIEHARD.  

 Section 2 gives an overview on 1-d/2-d CA PRNGs in the literature and 

introduces CCA PRNGs. Section 3 describes the evolutionary algorithms  MOGA and 

an algorithm for incremental evolution. Section 4 delineates the evolution results, 

showing that CCA could generate good random number sequences without any spacing 

while using only a few controllable cells. Section 5 provides a conclusion. 

 

2. Cellular Automata PRNGs  

2.1 Previous Work on CA PRNGs 

 Cellular automata (CA) were originally proposed by von Neumann in the early 

1950s to explore self-replicating structures [23]. The increasing interests in CA PRNGs 

may be due to their simple and cascade structures. CA are regular, locally interconnected, 

and modular. These characteristics make CA easier to implement in hardware than other 
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models.  CA can generate random sequences either sequentially or in parallel. In practice, 

most CA produce sequences in parallel to obtain higher output efficiency.     

A cellular automaton is an array of cells where each cell can be in any one of its 

permissible states. At each discrete time step (clock cycle) the change of a cell’s state 

depends on its transition rule, which is a function of the present states of its k neighbors 

for a k-neighborhood CA. A cellular array (grid) is n-dimensional, where n=1,2,3 is used 

in practice. A CA having a combination of XOR and XNOR (~XOR) rules is called an 

additive CA [20]. If all the CA cells obey the same rule, then the CA is said to be uniform; 

otherwise, it is nonuniform or hybrid [17]. A CA is said to be a periodic boundary CA 

(PBCA) if the extreme cells (the first and last cells) are adjacent to each other. A CA is 

said to be a null-boundary CA if the extreme cells are connected only to its left (right) 

cell [20].  

 The first CA used in pseudorandom number generation is a uniform rule-30 CA. 

The random sequences were generated by the central cell of CA-30 in consecutive steps. 

Wolfram has shown in [20] that the random sequences generated by rule-30 CA could 

obtain fairly good randomness. Later, rule-45 CA has been investigated and compared to 

rule-30 CA. Conclusively, rule-30 CA has better randomness properties than rule-45 CA 

but rule-45 CA generally has much larger cycle length for arbitrary starting states [18].  

In both CA, cell spacing (cs) and time spacing (ts) were used to form better random 

sequences. Here, time spacing (e.g. ts=1) means that not all the bits generated are 

considered as part of the random sequence. For example, a time spacing value of 1 means 

that sequences will be generated at half the maximum rate. Cell spacing (e.g. cs=3) 

means only certain cells in a row are considered in generating output, where an integer 
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number (3) indicates how many cells are to be ignored between two successive cells. On 

the whole, uniform CA without time spacing could comprise fairly good generators, but 

they could not compare well with standard classical PRNGs like congruential and lagged-

fibonacci random number generators [14].  

 Following the idea of uniform CA, Hortensius [18] studied rule 90-150 

programmable CA (PCA) and rule 30-45 PCA. Their study showed that rule 90-150 PCA 

has better potential than rule 30-45 PCA in pseudorandom number generation. These two 

PCA are 1-bit PCA where the rule control signal for each programmable cell is 1-bit.  

Later in 1996, Sipper and Tomassini [16] evolved a 2-bit 50-cell PCA with a mélange of 

rule 90, 150, and 165, where the rule control signal for each programmable cell is 2-bit. 

Also, Tomassini et al. [14] evolved another 2-bit 50-cell PCA with the rule combination 

90, 105, 150, and 165 in 1999. These two 2-bit PCA were evolved using a cellular 

programming evolutionary algorithm while the two 1-bit PCA proposed by Hortensius 

were handcrafted. The DIEHARD test results showed that although 2-bit PCA are better 

than 1-bit PCA in randomness, they still fail to pass all the tests in DIEHARD with a time 

spacing of 1. The randomness of 2-bit PCA with the rule combination 90, 105,150, and 

165 will be compared with CCA/1-bit PCA in section 4.  

 Tomassini et al. [15] studied extensively the setting of time spacing parameters in 

CA. They tested both uniform CA and nonuniform CA under a time spacing parameter of 

5, 2, 1, and 0. The results showed that time spacing is critical to generate high-quality 

random number sequences. Only those PCA with a time spacing parameter greater than 1 

could pass all the tests in DIEHARD. Considering output efficiency, they recommended a 

time spacing of 2 for practical use.  
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 The first work on 2-d CA was done by Chowdhury et al. [6] in 1994. Their results 

suggested that 2-d CA are superior to 1-d ones with the same size in pseudorandom 

number generation. Following their idea, Tomassini et al. [15] evolved several 8×8 2-d 

CA with rule 15, 63, 31, and 47.  Their DIEHARD test results showed that some of the 

evolved 2-d CA could pass all the tests in DIEHARD. Different from 1-d CA, spacing 

was not used in 2-d CA. Obviously, it resulted in higher output efficiency. 

 

2.2 Controllable Cellular Automata PRNGs 

 To further improve the randomness quality of nonuniform CA, we proposed 

controllable cellular automata (CCA) in [22].  A controllable CA is a CA in which the 

action (how the state of a cell is updated in each cycle) of some cells can be controlled 

via cell control signals. If a cell is under control via some cell control signal, it is a 

controllable cell; otherwise it is a basic cell. CCA is the combination of controllable cells 

and basic cells. Both controllable cells and basic cells could have rule control signals. 

Here, we discuss programmable controllable cells only. Thus, programmable controllable 

cell is referred to henceforth as controllable cell.  

 The action of a controllable cell is decided by its current cell control signal. A 

controllable cell can be normal (when the cell control signal is 0) or active (when the cell 

control signal is 1). When the controllable cell is normal, the computation of the states of 

the controllable cell and its neighbors are as usual (according to the current rule control 

signals and the states of its neighbors). When the controllable cell is active, the state 

computation of the controllable cell and its neighbors are specified by some predefined 
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action. The action applied to the controllable cell and its neighbors could be different. It 

is the predefined action that decides the properties of controllable cells.  

 

 

 

 

 

 

 Fig. 1 shows the structure of a CCA PRNG. The running sequence of a CCA 

PRNG is described as follows. Initial seeds and transition rules are input to the rule/cell 

control CA and CCA to initialize them. The two control CA run synchronously with 

CCA to generate rule/cell control signals for CCA cells. Output sequences are generated 

by CCA cells. Here, rules 90 and 150 are used as the transition rules in CCA. Rule 30 is 

used in the rule control CA and rule 105 is used in the cell control CA.   

 We have presented eight types of CCA in [22]. The following is a brief 

introduction to them. If an active controllable cell keeps its state and the states of its 

neighbors are computed as usual, it is a type 0 controllable cell. If the state of an active 

controllable cell is complemented and the computation of its neighbors’ states is as usual, 

it is a type 1 controllable cell.  CCA containing type 0 or type 1 controllable cells are 

referred to as CCA0 or CCA1. If an active controllable cell keeps its latest state while its 

neighbors bypass it, it is a type 2 controllable cell. CCA with this type of controllable 

cells are referred to as CCA2 or neighbor-changing CA (NCA).  
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 If an active controllable cell keeps its latest state while its neighbors treat it as a 

mirror, it is a type 3 controllable cell. CCA with this type of controllable cells are referred 

to as CCA3 or boundary-changing CA (BCA). If the right neighbors of an active 

controllable cell bypass it while the left neighbors still use it in the CA computation and 

the active controllable cell itself keeps its state, it is a type 4 controllable cell. CCA with 

this type of controllable cells are referred to as CCA4. 

 Type 2 controllable cells can also be modified as follows: an active controllable 

cell will make transitions according to some transition rules while its neighbors will 

perform the action as defined in type 2. Setting the rule to 30, 105, and 165 respectively, 

we get type 5, type 6, and type 7 controllable cells. The corresponding CCA are referred 

to as CCA5, CCA6, and CCA7 individually. Obviously, different transition rule choices 

will affect the randomness of these types of CCA. We have shown in [22] that the 

properties of these three types are similar. Therefore, we will study only CCA5 among 

these three generators.  

  

3. Evolution of CCA/PCA PRNGs  

3.1 Objectives 

 In our earlier work [22], CCA have been shown to outperform 1-bit PCA and 

uniform CA and be comparable to 2-d CA in terms of randomness/cycle length.  These 

CCA are handcrafted. Their structural complexity is higher than that of a 1-bit PCA with 

the same length because the structure of a controllable cell is more complex than that of 

1-bit programmable cell. Compared to 2-d CA in which no spacing is used to generate 

output bits, the CCA we tested use cell spacing at 2 and time spacing at 1. It would be 
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interesting to know whether the structural complexity and output efficiency of CCA can 

be optimized while their randomness quality is maintained in the meantime. 

  Basically, the structural complexity of CA is decided by three factors. They are 

the length of CA (L: total number of cells in CA), number of controllable/programmable 

cells in CA (CN), and controllable/programmable cell type. For CCA with a specified 

controllable cell type, the length of CCA and number of controllable cells decide the 

complexity. For PCA, the length of PCA and the programmable cell type (1-bit or 2-bit) 

decide the complexity. Specially, for uniform CA, the structural complexity depends on 

the length of CA only. When cell spacing and time spacing are used, the output efficiency 

of CA is decided by the amount of spacing. In practice, cell spacing and time spacing 

should be made as low as possible to avoid low bit rate. Here, we set the upper bound of 

spacing parameter to 7.   

 For a certain type of CCA, we aim at both maximizing their output efficiency and 

minimizing their structural complexity while maintaining good randomness quality. To 

evaluate the randomness of individual CCA, we apply the ENT test suite [24] and 

DIEHARD test suite to the sequences generated. Three tests are chosen from ENT to 

indicate randomness. They are entropy, serial correlation coefficient (SCC), and chi-

square. The average entropy, SCC, and chi-square values are calculated to evaluate the 

randomness of each CCA tested.  

 The evolution of CCA involves two evolutionary algorithms  MOGA and 

incremental evolution. MOGA is used to minimize the number of controllable cells, cell 

spacing, and time spacing parameter for a fixed-length CCA. Incremental evolution is 

applied to find the minimal length of a CCA to pass DIEHARD. In the evolution process, 
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these two algorithms are interleaved with each other. Incremental evolution decides the 

length of the CCA to be evolved in MOGA. MOGA evolves the CCA at specified length 

and finds whether or not the evolved CCA could pass DIEHARD. The DIEHARD test 

results will be used as feedback to incremental evolution, which decides whether to adjust 

the length of CCA and continue the evolution process or to end the evolution process.  

 

3.2 Evolution of Fixed-length CCA PRNGs 

 MOGA are widely used to solve engineering problems where simultaneous 

optimization of multiple, often competing, objectives is required. Various schemes have 

been developed in recent years [3, 9].  These techniques could be divided into two 

categories: population-based approach and Pareto-based approach. On the whole, the 

population-based approach has a common deficiency that it tends to generate solutions 

such that one of the objectives is extremely good but the other objectives are not so [9]. 

Hence, we use the Pareto-based approach.  

 Different from the population-based approaches, the Pareto-based approach 

performs selection/reproduction by referring not only to the objective values themselves 

but also to the dominance property of them. Among several proposed schemes, we 

choose Fonseca and Fleming’s [2] as our basic algorithm. In their scheme, the rank of 

each individual is defined by one plus the number of individuals in the current population 

that dominates it. The encoding of chromosome and setting of algorithm parameters are 

discussed below.  

 For each fixed-type CCA, we consider the value of six objectives: number of 

controllable cells, cell spacing parameter, time spacing parameter, entropy value, SCC 
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value, and chi-square value. The first three objectives are to be minimized and the last 

three are to be maximized (SCC value is revised to 1-SCC during the evolution process to 

ensure that a larger SCC value means better randomness). Each chromosome has L+3+3 

(L is the length of CCA) bits. The first L bits stand for CCA configuration that decides 

the number and position of controllable cells in CCA. The next three bits represent the 

cell spacing parameter as a binary number. It is 3 because we set the upper bound of 

spacing to 7. The last three bits represents the time spacing parameter. 

 

 The detail of the algorithm is presented in Algorithm 1. The input of MOGA 

consists of P chromosomes that are passed from incremental evolution. The output is P 

chromosomes in the last generation. The total population size P is 80. The stopping 

criterion is the maximum stagnation steps, which is 200. If the best chromosome keeps 

unchanged for 200 continuous evolution steps, the process will be stopped. The 1-point 

crossover rate is set at 0.95. The bit mutation rate is set at 0.05. During reproduction, half 

of both the better-performing parent and child chromosomes will be copied into the next 

generation.  

Input: P chromosomes that are received from incremental evolution  

//evolution 
While (stopping criteria is not true) do 

 Calculate the objective values of each chromosome; 

 Calculate the Pareto-rank of each chromosome; 

 Perform crossover and mutation to generate P child chromosomes; 

 Calculate the objective values of each child chromosome; 

 Calculate the Pareto-rank of each child chromosome; 

 Copy the first half of parent chromosomes and first half of child 

 chromosomes to the next generation; 

End while 

Output: P chromosomes in the last generation 

Algorithm 1: Evolution of fixed-length CCA PRNGs 
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Input: none 

Set the initial length of CA as L1 (L1=50); 

Randomly initialize P (P=80) CA; 

Evolve CA using Algorithm 1;  

While (the evolved CA fail to pass DIEHARD) 

• Increase the length of CA according to the incremental evolution 

algorithm described in Algorithm 3, record the current length of CA 

Lc; 

• Evolve P CA with the length adjusted using Algorithm 1; 

End while; 

While (the evolved CA pass DIEHARD) 

• Decrease the length of CA according to the incremental evolution 

algorithm, record the current length of CA Lc; 

• Evolve P CA with the length adjusted using Algorithm 1; 

End while; 

While (the evolved CA fail to pass DIEHARD) 

• Increase the length of CA by 1; 

• Evolve P CA with the length adjusted using Algorithm 1; 

End while; 

Output: The non-dominated chromosomes in the last population to form the 

candidate group for preference selection. 

 

3.3 Incremental Evolution of CCA/PCA PRNGs 

 Incremental evolution could be used to find the minimal length of CA to pass 

DIEHARD where CA could be PCA or CCA.  The proposed incremental evolutionary 

algorithm is able to decide at each stage whether to add or delete cells from CA and how 

cells should be added or deleted.  A general description of the evolutionary algorithm on 

CA PRNGs is presented in Algorithm 2, where MOGA and the incremental evolution 

algorithm collaborate to determine the minimal length with which CA could pass 

DIEHARD. 

Algorithm 2: Evolution of CA PRNGs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the beginning of the evolution, CA will start with a small number of cells (50 

cells). MOGA is then used to optimize the 50-cell CA. We already know that 50-cell 

CCA cannot pass DIEHARD and CA with more cells will have better randomness quality. 
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Input: current length Lc, decrease/increase flag  

Si=10; Sd=5; 

Switch (flag) 

{  

 case ‘+’: 

  Increase the length of CA from Lc to Lc+Si; 

  Update Lc with Lc+Si; 

  Break; 

 case ‘−’: 

  Decrease the length of CA from Lc to Lc-Sd; 

  Update Lc with Lc-Sd; 

  Break; 

}; 

Update Lc with Lc+Si or Lc-Sd; 

Output: current length Lc 

Hence, an incremental evolution algorithm is applied to increase the length of CA at a 

higher rate (Si= 10) until a length with which CA could pass DIEHARD is found. 

Apparently, this length may not be the minimal length we are looking for. Thus, the 

incremental evolution algorithm is applied again to decrease the length of CA at a lower 

rate (Sd=5) until a point where the length of CA is close to and yet less than the minimal 

length to pass DIEHARD. From this point, the length of CA is increased by 1 until we 

find the minimal length of CA to pass DIEHARD. 

Algorithm 3: Incremental evolution algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The incremental evolution algorithm is presented in Algorithm 3. Initially, the 

growth of cells will be at a faster rate as the tested CA may be quite far from the required 

number of cells at the beginning.  If the evolved CA manage to pass DIEHARD, the 

evolution process will return to the previous step.  At this time, the growth of cells will 

slow down until the evolution process manages to find the point whereby CA can pass 

DIEHARD.   
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 The increasing/decreasing size (Si/Sd) in CA length could be adjusted 

dynamically during the evolution. This size depends on the performance of tested CA. 

The initial size could be set to a large number. Here, we set Si at 10 and Sd at 5 in the 

beginning. And then Si/Sd could be decreased while the length of CA is closer to the 

minimal length to pass DIEHARD.  

  The process to decide whether or not the evolved CA can pass DIEHARD 

includes three steps. First, MOGA evolution generates a group of non-dominated 

chromosomes. Second, one chromosome is selected according to the predefined 

preference set, which will be discussed in section 4.1. Third, the selected chromosome is 

tested under DIEHARD. If it fails to pass DIEHARD, we think that the evolved CA most 

likely cannot pass DIEHARD. Once the minimal length of CA to pass DIEHARD is 

found (assume the length is L), the evolution process will check the randomness of (L-1)-

cell CA again. 10 chromosomes that obtain the best randomness quality among the 

evolved (L-1)-cell CA are tested under DIEHARD. If none of the chromosomes tested 

could pass DIEHARD, we think that the minimal length found is valid. Because 

exhaustive searching is impossible, we could not exclude the possibility that some (L-1)-

cell CA could pass DIEHARD. Given the resource constraints, we feel that the minimal 

length (L) found is acceptable under the above-mentioned validation scheme.   

 The process to increase or decrease the length of CA involves both algorithms. 

When the length of CA is changed, the chromosomes evolved using MOGA should be 

adjusted too. One method is to generate initial population randomly in MOGA evolution 

no matter what the length of CA is. But this method somehow wastes the evolution effort 

from previous generations. It is natural to keep the evolved chromosomes from the 
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previous generations as the initial population for the current generation. The problem is 

that the length of chromosomes has changed during the transition from the last generation 

to the current one. When the length is decreased, we could just truncate the superfluous 

bits from the chromosomes. Which bits to be deleted is decided randomly. Note that 

modification is only applied to the first L bits in the chromosome. The six bits encoding 

cell spacing and time spacing will not be changed. Similarly, bits are randomly generated 

and added to the chromosomes in the last generation when the length of CA is increased.  

 In the next section, we first present the evolution results on fixed-length CCA and 

then present the incremental evolution results on CCA/PCA. Moreover, the evolved CCA 

are compared to 1-d/2-d CA not only in randomness but also in complexity and efficiency.  

 

4. Evolution Results 

4.1 Evolution Results on 50-cell CCA PRNGs 

 The evolution results on fixed-length CCA PRNGs are a group of non-dominated 

chromosomes from which we can extract the number and location of controllable cells in 

CCA, cell spacing parameter, and time spacing parameter. One chromosome is selected 

from the non-dominated group according to the predefined preference. The preferences 

are set as follows. The selection process includes two steps. 

 Step 1: choose chromosomes from a group of non-dominated chromosomes in the 

last generation using the chi-square value as preference. Maintaining the randomness 

quality of CCA is a pre-requisite requirement. Hence, we must ensure that the selected 

chromosomes could generate good random number sequences. In this step, we use the 

chi-square value alone to evaluate randomness. Only those non-dominated chromosomes 
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that obtain a chi-square value at 1 are chosen as the final candidates. Further check on 

randomness quality will be done in the next step using the entropy and SCC values.  In 

the next step, one chromosome will be chosen from the final candidates as the best 

chromosome evolved. 

 Step 2: choose the best chromosome. The following rules are applied in 

descending priority order to choose one chromosome from the final candidates: 

Rule 1: compare cell spacing & time spacing parameter: a smaller value is 

preferred because it means better output efficiency. The sum of cell 

spacing and time spacing parameter is first compared and then if the sum 

is equal, the one with the smallest time spacing parameter will be chosen. 

Rule 2: compare the number of controllable cells: a smaller value is preferred 

because it means less structural complexity. 

Rule 3:  compare 1-SCC and entropy values: the higher the sum of (1-SCC) and 

entropy value is, the better randomness quality the chromosome obtains. 

Generally, the final candidates obtain similar entropy and SCC values. 

The reason that entropy and SCC values are set to the lowest priority is 

because we think obtaining high output efficiency and low structural 

complexity are more important than obtaining slightly better entropy and 

SCC values for CCA.  

 The chromosomes in the final candidate group will first be compared according to 

rule 1. If only one chromosome is selected, it will be the best solution. If more than one 

chromosome is selected, these chromosomes will be compared under rule 2 and so on. 

Normally, the sum of entropy and (1-SCC) values will not be identical for two 
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chromosomes. Hence, we could ensure that only one chromosome is selected out of the 

non-dominated chromosomes.   

 The objective values of the best solutions for CCA0-CCA5 are shown in Table 1. 

The entropy and SCC values are average values. The chi-square value encodes the pass 

rate: 100% means all the sequences tested can pass the chi-square test. Each CCA/PCA 

has 50 cells. Referring to Table 1, we can see that all the tested CCA can pass chi-square 

at 100% while the 1-bit and 2-bit PCA pass at lower rates (83% and 92%). The entropy 

and SCC values obtained by the evolved CCA and 2-bit PCA are in the same range while 

those of 1-bit PCA are worse.  Note that except 1-bit PCA that uses time spacing at 1, the 

others require no spacing.  

Table 1. Objective values of evolved 50-cell CCA/PCA PRNGs 

 

 

 Compared to PCA with the same length, the structural complexity of CCA is 

higher due to the usage of several controllable cells as indicated in Table 1. Yet the 

output efficiency of CCA is higher. The output efficiency of the evolved CCA2 is two 

times that of the 1-bit PCA PRNG with the same length. That is to say, to compete with 

CCA in randomness and output efficiency, the length of 1-bit PCA should be increased. 

 

  

Number of 

control bits Per 

PCA/CCA 

 

cs 

 

ts 

 

entropy 

 

SCC 

 

chi-square 

CCA0 58 0 0 7.872323 0.012145 1.0 (100%) 

CCA1 58 0 0 7.876290 0.017982 1.0 (100%) 

CCA2 58 0 0 7.892309 0.012624 1.0 (100%) 

CCA3 56 0 0 7.883857 0.009930 1.0 (100%) 

CCA4 58 0 0 7.886308 0.003207 1.0 (100%) 

CCA5 59 0 0 7.889176 0.005018 1.0 (100%) 

1-bit PCA 50 0 1 7.758143 0.041355 0.83 (83%) 

2-bit PCA 100 0 0 7.872308 0.020187 0.92 (92%) 

Legends: cs: cell spacing parameter; ts: time spacing parameter. Number of control 

bits: total number of rule control bits and cell control bits per CCA/PCA.  
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But this will in turn increase the cost of 1-bit PCA. The randomness quality of 2-bit PCA 

is closer to CCA0/CCA1/CCA5. The complexity of a 2-bit programmable cell is at same 

level as a controllable cell because both of them use 2-bit control signals. Therefore, we 

think that the structural complexity of 2-bit PCA is similar to that of CCA. 

 Table 2 shows the DIEHRAD test results of the evolved 50-cell CCA and PCA 

PRNGs. We can see that CCA2 fail only one test while 1-bit PCA fails 7 tests. The other 

CCA/PCA obtain some performance between CCA2 and 1-bit PCA.  

Table 2. DIEHARD test results of CCA/PCA PRNGs 

 

 

 

L=50  

 

Test name CCA0 

cs=0 

ts=0 

CCA1 

cs=0 

ts=0 

CCA2 

cs=0 

ts=0 

CCA3 

cs=0 

ts=0 

CCA4 

cs=0 

ts=0 

CCA5 

cs=0 

ts=0 

1-bit 

PCA 

cs=0 

ts=1 

2-bit 

PCA 

cs=0 

ts=0 

1. Overlapping sum 

2. Runs up 1 

Runs Down 1 

Runs up 2 

Runs Down 2 

3. 3D sphere 

4. A parking lot 

5. Birthday Spacing 

6. Count the ones 1 

7. Binary Rank 6*8 

8. Binary Rank 31*31 

9. Binary Rank 32*32 

10. Count the ones 2 

11. Bitstream test 

12. Craps wins 

games 

13. Minimum distance 

14. Overlapping Permu 

15. Squeeze 

16. OPSO test 

17. OQSO test 

18. DNA test 

 

number of tests passed 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Pass 

Fail 

Fail 
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Legends: cs: cell spacing parameter; ts: time spacing parameter;  

L: total number of cells in CCA. 
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4.2 Evolution Results from Incremental Evolution 

 The evolution results from incremental evolution on CCA and PCA PRNGs are 

shown in Figure 2. CCA2 and CCA4 can pass DIEHARD with 55 cells. Next, CCA3 can 

pass at a minimum number of 58 cells. CCA5, CCA0 and CCA1 can pass with 67, 73, 

and 74 cells individually. The minimum number of cells required for 1-bit PCA is 

remarkably higher than that of CCA. 1-bit PCA needs 109 cells with time spacing at 1 to 

pass DIEHARD while 2-bit PCA needs 71 cells without any spacing. The configurations 

of CCA/PCA to pass DIEHARD are shown in Table 3.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Evolution results from incremental evolution 
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Table 3. Configuration of CCA/PCA PRNGs 

 

 CCA0 CCA1 CCA2 CCA3 CCA4 CCA5 1-bit 

PCA 

2-bit 

PCA 

cn 14 14 12 10 11 16 / / 

ncb 87 88 77 68 66 83 109 142 

cs 0 0 0 0 0 0 0 0 

ts 0 0 0 0 0 0 1 0 

L 73 74 55 58 55 67 109 71 

 

 

  

 Referring to Table 3, we can see that the evolved 55-cell CCA2/CCA4 and 58-cell 

CCA3 could pass DIEHARD without any spacing. Tomassini et al. have shown in [15] 

that 64-cell 2-d CA could pass DIEHARD without spacing while it is unknown whether 

or not 2-d CA with fewer cells could pass DIEHARD. Thus, we may claim that CCA2-

CCA4 could compete with 2-d CA not only in randomness quality but also in output 

efficiency. The performance of CCA0/CCA1/CCA5 is similar to that of 2-bit PCA and 

better than that of 1-bit PCA.  

  

4.3 Discussions 

 We have shown that the evolved CCA can compete with conventional 1-d/2-d CA 

in randomness, structure simplicity, and output efficiency. And the performance of 

different types of CCA varies greatly. CCA2/CCA4 obviously outperform CCA0/CCA1. 

One possible reason may lie in that the action embedded in type 0/1 controllable cells is 

not so powerful as that of type 2/4 controllable cells. That is to say, the performance of 

CCA depends much on the action of controllable cells. It is worth to explore whether 

there are some other controllable cell actions that could lead to better CCA performance.  

Legends: cn: no. of controllable cells; cs: cell spacing parameter; ts: time spacing 

parameter. ncb: number of control bits per CCA/PCA, including rule control bits and 

cell control bits per each CCA/PCA. 

 



 

 21 

 We have discussed how to adjust the length of CA during incremental evolution 

in section 3.3. In Algorithm 2, the new cells are randomly initialized and added to the 

chromosomes when the length of CA is increased. According to our previous experiment 

results, we find that having too many or too few controllable cells could degrade the 

randomness of CCA. Thus, when adding new cells (bits) to the chromosomes, we could 

first check the number of controllable cells included in the chromosomes and then decide 

whether to add basic cells or controllable cells. If the ratio of controllable cells to basic 

cells is low, we could add a few more controllable cells to the chromosomes. Otherwise, 

we could add basic cells. Moreover, we could also choose the location for the cells to be 

added. Generally, the number of connected controllable cells will not be greater than 4. 

Hence, we could interleave basic cells and controllable cells when adding bits to the 

chromosomes. Similarly, we could also choose the location and type of cells to be deleted 

when the length of CCA is decreased.   

 

5. Conclusion 

 In this paper, we have discussed the randomness, structural complexity, and 

output efficiency of CCA/PCA. These three aspects are evolved together to find some 

CCA that could generate good random number sequences at a low complexity and high 

output efficiency. The evolution process involves two algorithms. MOGA is employed to 

evolve fixed-length CCA. An incremental evolutionary algorithm is applied to find the 

minimal length of CCA/PCA to pass DIEHARD. The merit of incremental evolution lies 

in its self-adjusting ability, which saves time and effort for searching and computation.  
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 This evolution process is also applied to 1-bit/2-bit PCA. The comparison on 

CCA and 1-d PCA shows that CCA outperform PCA not only in randomness but also in 

structure simplicity and efficiency. Besides, CCA could compete with the evolved 2-d 

CA in the literature in both randomness and output efficiency. Comparison among CCA 

shows that CCA2/CCA4 outperform the other types of CCA. Some future work could be 

done to explore what leads to the good performance of these two CCA. The methodology 

developed here is not limited to CCA/PCA only, it can be used to evolve other CA 

PRNGs or serve as a yardstick to compare their performance.  
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Appendix 

1. The configurations of the evolved CCA0-CCA5 with the minimal length to pass 

DIEHARD are presented in Table 4.  

Table 4 The configurations of evolved CCA0-CCA5 

 Configuration 

73-cell CCA0 00000110001000010000001000000010100000001000000001000000101100

00000101000 

74-cell CCA1 00010100000001001000000011000000100000101000000100000000100010

001000000010 

55-cell CCA2 0100100000000001001100000001100001000001000000011010000 

58-cell CCA3 0010011000010000001010000000000100000000010000001000010000 

55-cell CCA4 0010110000000000100100000100010000000010000101000010000 

67-cell CCA5 00000001000110000000010000010001000000010001100011100010001000

11000 

 

 

Rules used in CCA0-CCA5: rule 90 and 150; rule control CA uses rule 30; cell control 

CA uses rule 105.  

 

 

Legends: ‘1’ stands for a controllable cell; ‘0’ stands for a basic cell. 
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2. The configurations of the 1-bit/2-bit PCA evolved to pass DIEHARD:  

109-cell 1-bit PCA: uses rule 90 and 150; rule control CA uses rule 30. 

71-cell 2-bit PCA: uses rule 90, 105, 150, and 165. rule control CA1 uses rule 30; rule 

control CA2 uses rule 105.  


