

 1

Incremental Evolution of Cellular Automata for

Random Number Generation

Sheng-Uei Guan and Shu Zhang

Department of Electrical & Computer Engineering

National University of Singapore

10 Kent Ridge Crescents, Singapore 119260

{eleguans, engp9594}@nus.edu.sg

Abstract Cellular automata (CA) have been used in pseudorandom number generation

for over a decade. Recent studies show that controllable CA (CCA) can generate better

random sequences than conventional one-dimensional (1-d) CA and compete with two-

dimensional (2-d) CA. Yet the structural complexity of CCA is higher than that of 1-d

PCA. It would be good if CCA can attain good randomness quality with the least

structural complexity. In this paper, we evolve PCA/CCA to their lowest complexity

level using genetic algorithms (GAs). Meanwhile, the randomness quality and output

efficiency of PCA/CCA are also evolved. The evolution process involves two algorithms

 a multi-objective genetic algorithm (MOGA) and an algorithm for incremental

evolution. A set of PCA/CCA are evolved and compared in randomness, complexity, and

efficiency. The results show that without any spacing, CCA could generate good random

number sequences that could pass DIEHARD. And, to obtain the same randomness

quality, the structural complexity of CCA is not higher than that of 1-d CA. Furthermore,

the methodology developed could be used to evolve other CA or serve as a yardstick to

compare different types of CA.

Key words: controllable cellular automata, pseudorandom number generation, multi-

objective optimization, incremental evolution

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/333819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1. Introduction

 The first work to apply cellular automata (CA) in pseudorandom number

generations was done by Wolfram in 1986 when he studied the randomness of a uniform

rule-30 CA. Since then, CA pseudorandom number generators (PRNGs) have been an

active research field. Wolfram’s work [20] has shown that the randomness of patterns

generated by maximum-length CA was significantly better than other widely used

methods, such as linear feedback shift registers (LFSR).

 In the past 10 years, one-dimensional (1-d) CA PRNGs were studied extensively

[1, 11-14, 16-19, 21, 22]. However, the randomness quality of 1-d PCA is unsatisfactory

since they still fail some randomness tests. To further improve the randomness of CA,

some researchers began to employ two-dimensional (2-d) CA in pseudorandom number

generation. Tomassini et al. [15] evolved a 2-d CA that could pass the DIEHARD test [8],

which is said to be the most difficult test suite to pass currently. Based on their work, 2-d

CA appears to be superior to 1-d PCA in pseudorandom number generation.

 Another possibility to improve the randomness of CA is to enhance 1-d PCA by

adding cell control signals on some cells. Some work was done in [21]. In that work, the

idea of controlling the status of CA cells has been proposed. In a later work [22], this idea

was further refined to the concept of controllable CA (CCA). The randomness test results

on the proposed CCA showed that CCA are better than traditional 1-d CA and are

comparable to 2-d CA in randomness. In [22], CCA are handcrafted by studying the

properties of controllable cells. Compared to 1-bit PCA with the same length, the

structural complexity of handcrafted CCA is higher because of the usage of cell control

 3

signals in controllable cells. On the other hand, the output efficiency of CCA is lower

than that of 2-d CA that needs no spacing at all.

 In the present work, we extend upon our previous work to minimize the structural

complexity and maximize the output efficiency of CCA while maintaining their

randomness quality. “Structural complexity” will be elaborated in section 3.1. Our

objective is to find whether or not CCA can outperform other 1-d CA in randomness

while maintaining simplicity and efficiency. The evolution process involved two

algorithms. Fixed-length CCA are evolved using a multi-objective genetic algorithm

(MOGA). An incremental evolutionary algorithm is also applied to search for the

minimal length of CCA to attain a pre-specified target. Here, the target is to pass all the

tests in DIEHARD.

 Section 2 gives an overview on 1-d/2-d CA PRNGs in the literature and

introduces CCA PRNGs. Section 3 describes the evolutionary algorithms MOGA and

an algorithm for incremental evolution. Section 4 delineates the evolution results,

showing that CCA could generate good random number sequences without any spacing

while using only a few controllable cells. Section 5 provides a conclusion.

2. Cellular Automata PRNGs

2.1 Previous Work on CA PRNGs

 Cellular automata (CA) were originally proposed by von Neumann in the early

1950s to explore self-replicating structures [23]. The increasing interests in CA PRNGs

may be due to their simple and cascade structures. CA are regular, locally interconnected,

and modular. These characteristics make CA easier to implement in hardware than other

 4

models. CA can generate random sequences either sequentially or in parallel. In practice,

most CA produce sequences in parallel to obtain higher output efficiency.

A cellular automaton is an array of cells where each cell can be in any one of its

permissible states. At each discrete time step (clock cycle) the change of a cell’s state

depends on its transition rule, which is a function of the present states of its k neighbors

for a k-neighborhood CA. A cellular array (grid) is n-dimensional, where n=1,2,3 is used

in practice. A CA having a combination of XOR and XNOR (~XOR) rules is called an

additive CA [20]. If all the CA cells obey the same rule, then the CA is said to be uniform;

otherwise, it is nonuniform or hybrid [17]. A CA is said to be a periodic boundary CA

(PBCA) if the extreme cells (the first and last cells) are adjacent to each other. A CA is

said to be a null-boundary CA if the extreme cells are connected only to its left (right)

cell [20].

 The first CA used in pseudorandom number generation is a uniform rule-30 CA.

The random sequences were generated by the central cell of CA-30 in consecutive steps.

Wolfram has shown in [20] that the random sequences generated by rule-30 CA could

obtain fairly good randomness. Later, rule-45 CA has been investigated and compared to

rule-30 CA. Conclusively, rule-30 CA has better randomness properties than rule-45 CA

but rule-45 CA generally has much larger cycle length for arbitrary starting states [18].

In both CA, cell spacing (cs) and time spacing (ts) were used to form better random

sequences. Here, time spacing (e.g. ts=1) means that not all the bits generated are

considered as part of the random sequence. For example, a time spacing value of 1 means

that sequences will be generated at half the maximum rate. Cell spacing (e.g. cs=3)

means only certain cells in a row are considered in generating output, where an integer

 5

number (3) indicates how many cells are to be ignored between two successive cells. On

the whole, uniform CA without time spacing could comprise fairly good generators, but

they could not compare well with standard classical PRNGs like congruential and lagged-

fibonacci random number generators [14].

 Following the idea of uniform CA, Hortensius [18] studied rule 90-150

programmable CA (PCA) and rule 30-45 PCA. Their study showed that rule 90-150 PCA

has better potential than rule 30-45 PCA in pseudorandom number generation. These two

PCA are 1-bit PCA where the rule control signal for each programmable cell is 1-bit.

Later in 1996, Sipper and Tomassini [16] evolved a 2-bit 50-cell PCA with a mélange of

rule 90, 150, and 165, where the rule control signal for each programmable cell is 2-bit.

Also, Tomassini et al. [14] evolved another 2-bit 50-cell PCA with the rule combination

90, 105, 150, and 165 in 1999. These two 2-bit PCA were evolved using a cellular

programming evolutionary algorithm while the two 1-bit PCA proposed by Hortensius

were handcrafted. The DIEHARD test results showed that although 2-bit PCA are better

than 1-bit PCA in randomness, they still fail to pass all the tests in DIEHARD with a time

spacing of 1. The randomness of 2-bit PCA with the rule combination 90, 105,150, and

165 will be compared with CCA/1-bit PCA in section 4.

 Tomassini et al. [15] studied extensively the setting of time spacing parameters in

CA. They tested both uniform CA and nonuniform CA under a time spacing parameter of

5, 2, 1, and 0. The results showed that time spacing is critical to generate high-quality

random number sequences. Only those PCA with a time spacing parameter greater than 1

could pass all the tests in DIEHARD. Considering output efficiency, they recommended a

time spacing of 2 for practical use.

 6

 The first work on 2-d CA was done by Chowdhury et al. [6] in 1994. Their results

suggested that 2-d CA are superior to 1-d ones with the same size in pseudorandom

number generation. Following their idea, Tomassini et al. [15] evolved several 8×8 2-d

CA with rule 15, 63, 31, and 47. Their DIEHARD test results showed that some of the

evolved 2-d CA could pass all the tests in DIEHARD. Different from 1-d CA, spacing

was not used in 2-d CA. Obviously, it resulted in higher output efficiency.

2.2 Controllable Cellular Automata PRNGs

 To further improve the randomness quality of nonuniform CA, we proposed

controllable cellular automata (CCA) in [22]. A controllable CA is a CA in which the

action (how the state of a cell is updated in each cycle) of some cells can be controlled

via cell control signals. If a cell is under control via some cell control signal, it is a

controllable cell; otherwise it is a basic cell. CCA is the combination of controllable cells

and basic cells. Both controllable cells and basic cells could have rule control signals.

Here, we discuss programmable controllable cells only. Thus, programmable controllable

cell is referred to henceforth as controllable cell.

 The action of a controllable cell is decided by its current cell control signal. A

controllable cell can be normal (when the cell control signal is 0) or active (when the cell

control signal is 1). When the controllable cell is normal, the computation of the states of

the controllable cell and its neighbors are as usual (according to the current rule control

signals and the states of its neighbors). When the controllable cell is active, the state

computation of the controllable cell and its neighbors are specified by some predefined

 7

Cell control word

Rule control CA

Cell control CA

Rule control word

CCA

Output sequence

 Initial seed

 Fig. 1 A CCA PRNG structure

Initial seed

Initial seed

action. The action applied to the controllable cell and its neighbors could be different. It

is the predefined action that decides the properties of controllable cells.

 Fig. 1 shows the structure of a CCA PRNG. The running sequence of a CCA

PRNG is described as follows. Initial seeds and transition rules are input to the rule/cell

control CA and CCA to initialize them. The two control CA run synchronously with

CCA to generate rule/cell control signals for CCA cells. Output sequences are generated

by CCA cells. Here, rules 90 and 150 are used as the transition rules in CCA. Rule 30 is

used in the rule control CA and rule 105 is used in the cell control CA.

 We have presented eight types of CCA in [22]. The following is a brief

introduction to them. If an active controllable cell keeps its state and the states of its

neighbors are computed as usual, it is a type 0 controllable cell. If the state of an active

controllable cell is complemented and the computation of its neighbors’ states is as usual,

it is a type 1 controllable cell. CCA containing type 0 or type 1 controllable cells are

referred to as CCA0 or CCA1. If an active controllable cell keeps its latest state while its

neighbors bypass it, it is a type 2 controllable cell. CCA with this type of controllable

cells are referred to as CCA2 or neighbor-changing CA (NCA).

 8

 If an active controllable cell keeps its latest state while its neighbors treat it as a

mirror, it is a type 3 controllable cell. CCA with this type of controllable cells are referred

to as CCA3 or boundary-changing CA (BCA). If the right neighbors of an active

controllable cell bypass it while the left neighbors still use it in the CA computation and

the active controllable cell itself keeps its state, it is a type 4 controllable cell. CCA with

this type of controllable cells are referred to as CCA4.

 Type 2 controllable cells can also be modified as follows: an active controllable

cell will make transitions according to some transition rules while its neighbors will

perform the action as defined in type 2. Setting the rule to 30, 105, and 165 respectively,

we get type 5, type 6, and type 7 controllable cells. The corresponding CCA are referred

to as CCA5, CCA6, and CCA7 individually. Obviously, different transition rule choices

will affect the randomness of these types of CCA. We have shown in [22] that the

properties of these three types are similar. Therefore, we will study only CCA5 among

these three generators.

3. Evolution of CCA/PCA PRNGs

3.1 Objectives

 In our earlier work [22], CCA have been shown to outperform 1-bit PCA and

uniform CA and be comparable to 2-d CA in terms of randomness/cycle length. These

CCA are handcrafted. Their structural complexity is higher than that of a 1-bit PCA with

the same length because the structure of a controllable cell is more complex than that of

1-bit programmable cell. Compared to 2-d CA in which no spacing is used to generate

output bits, the CCA we tested use cell spacing at 2 and time spacing at 1. It would be

 9

interesting to know whether the structural complexity and output efficiency of CCA can

be optimized while their randomness quality is maintained in the meantime.

 Basically, the structural complexity of CA is decided by three factors. They are

the length of CA (L: total number of cells in CA), number of controllable/programmable

cells in CA (CN), and controllable/programmable cell type. For CCA with a specified

controllable cell type, the length of CCA and number of controllable cells decide the

complexity. For PCA, the length of PCA and the programmable cell type (1-bit or 2-bit)

decide the complexity. Specially, for uniform CA, the structural complexity depends on

the length of CA only. When cell spacing and time spacing are used, the output efficiency

of CA is decided by the amount of spacing. In practice, cell spacing and time spacing

should be made as low as possible to avoid low bit rate. Here, we set the upper bound of

spacing parameter to 7.

 For a certain type of CCA, we aim at both maximizing their output efficiency and

minimizing their structural complexity while maintaining good randomness quality. To

evaluate the randomness of individual CCA, we apply the ENT test suite [24] and

DIEHARD test suite to the sequences generated. Three tests are chosen from ENT to

indicate randomness. They are entropy, serial correlation coefficient (SCC), and chi-

square. The average entropy, SCC, and chi-square values are calculated to evaluate the

randomness of each CCA tested.

 The evolution of CCA involves two evolutionary algorithms MOGA and

incremental evolution. MOGA is used to minimize the number of controllable cells, cell

spacing, and time spacing parameter for a fixed-length CCA. Incremental evolution is

applied to find the minimal length of a CCA to pass DIEHARD. In the evolution process,

 10

these two algorithms are interleaved with each other. Incremental evolution decides the

length of the CCA to be evolved in MOGA. MOGA evolves the CCA at specified length

and finds whether or not the evolved CCA could pass DIEHARD. The DIEHARD test

results will be used as feedback to incremental evolution, which decides whether to adjust

the length of CCA and continue the evolution process or to end the evolution process.

3.2 Evolution of Fixed-length CCA PRNGs

 MOGA are widely used to solve engineering problems where simultaneous

optimization of multiple, often competing, objectives is required. Various schemes have

been developed in recent years [3, 9]. These techniques could be divided into two

categories: population-based approach and Pareto-based approach. On the whole, the

population-based approach has a common deficiency that it tends to generate solutions

such that one of the objectives is extremely good but the other objectives are not so [9].

Hence, we use the Pareto-based approach.

 Different from the population-based approaches, the Pareto-based approach

performs selection/reproduction by referring not only to the objective values themselves

but also to the dominance property of them. Among several proposed schemes, we

choose Fonseca and Fleming’s [2] as our basic algorithm. In their scheme, the rank of

each individual is defined by one plus the number of individuals in the current population

that dominates it. The encoding of chromosome and setting of algorithm parameters are

discussed below.

 For each fixed-type CCA, we consider the value of six objectives: number of

controllable cells, cell spacing parameter, time spacing parameter, entropy value, SCC

 11

value, and chi-square value. The first three objectives are to be minimized and the last

three are to be maximized (SCC value is revised to 1-SCC during the evolution process to

ensure that a larger SCC value means better randomness). Each chromosome has L+3+3

(L is the length of CCA) bits. The first L bits stand for CCA configuration that decides

the number and position of controllable cells in CCA. The next three bits represent the

cell spacing parameter as a binary number. It is 3 because we set the upper bound of

spacing to 7. The last three bits represents the time spacing parameter.

 The detail of the algorithm is presented in Algorithm 1. The input of MOGA

consists of P chromosomes that are passed from incremental evolution. The output is P

chromosomes in the last generation. The total population size P is 80. The stopping

criterion is the maximum stagnation steps, which is 200. If the best chromosome keeps

unchanged for 200 continuous evolution steps, the process will be stopped. The 1-point

crossover rate is set at 0.95. The bit mutation rate is set at 0.05. During reproduction, half

of both the better-performing parent and child chromosomes will be copied into the next

generation.

Input: P chromosomes that are received from incremental evolution

//evolution
While (stopping criteria is not true) do

 Calculate the objective values of each chromosome;

 Calculate the Pareto-rank of each chromosome;

 Perform crossover and mutation to generate P child chromosomes;

 Calculate the objective values of each child chromosome;

 Calculate the Pareto-rank of each child chromosome;

 Copy the first half of parent chromosomes and first half of child

 chromosomes to the next generation;

End while

Output: P chromosomes in the last generation

Algorithm 1: Evolution of fixed-length CCA PRNGs

 12

Input: none

Set the initial length of CA as L1 (L1=50);

Randomly initialize P (P=80) CA;

Evolve CA using Algorithm 1;

While (the evolved CA fail to pass DIEHARD)

• Increase the length of CA according to the incremental evolution

algorithm described in Algorithm 3, record the current length of CA

Lc;

• Evolve P CA with the length adjusted using Algorithm 1;

End while;

While (the evolved CA pass DIEHARD)

• Decrease the length of CA according to the incremental evolution

algorithm, record the current length of CA Lc;

• Evolve P CA with the length adjusted using Algorithm 1;

End while;

While (the evolved CA fail to pass DIEHARD)

• Increase the length of CA by 1;

• Evolve P CA with the length adjusted using Algorithm 1;

End while;

Output: The non-dominated chromosomes in the last population to form the

candidate group for preference selection.

3.3 Incremental Evolution of CCA/PCA PRNGs

 Incremental evolution could be used to find the minimal length of CA to pass

DIEHARD where CA could be PCA or CCA. The proposed incremental evolutionary

algorithm is able to decide at each stage whether to add or delete cells from CA and how

cells should be added or deleted. A general description of the evolutionary algorithm on

CA PRNGs is presented in Algorithm 2, where MOGA and the incremental evolution

algorithm collaborate to determine the minimal length with which CA could pass

DIEHARD.

Algorithm 2: Evolution of CA PRNGs

 In the beginning of the evolution, CA will start with a small number of cells (50

cells). MOGA is then used to optimize the 50-cell CA. We already know that 50-cell

CCA cannot pass DIEHARD and CA with more cells will have better randomness quality.

 13

Input: current length Lc, decrease/increase flag

Si=10; Sd=5;

Switch (flag)

{

 case ‘+’:

 Increase the length of CA from Lc to Lc+Si;

 Update Lc with Lc+Si;

 Break;

 case ‘−’:

 Decrease the length of CA from Lc to Lc-Sd;

 Update Lc with Lc-Sd;

 Break;

};

Update Lc with Lc+Si or Lc-Sd;

Output: current length Lc

Hence, an incremental evolution algorithm is applied to increase the length of CA at a

higher rate (Si= 10) until a length with which CA could pass DIEHARD is found.

Apparently, this length may not be the minimal length we are looking for. Thus, the

incremental evolution algorithm is applied again to decrease the length of CA at a lower

rate (Sd=5) until a point where the length of CA is close to and yet less than the minimal

length to pass DIEHARD. From this point, the length of CA is increased by 1 until we

find the minimal length of CA to pass DIEHARD.

Algorithm 3: Incremental evolution algorithm

 The incremental evolution algorithm is presented in Algorithm 3. Initially, the

growth of cells will be at a faster rate as the tested CA may be quite far from the required

number of cells at the beginning. If the evolved CA manage to pass DIEHARD, the

evolution process will return to the previous step. At this time, the growth of cells will

slow down until the evolution process manages to find the point whereby CA can pass

DIEHARD.

 14

 The increasing/decreasing size (Si/Sd) in CA length could be adjusted

dynamically during the evolution. This size depends on the performance of tested CA.

The initial size could be set to a large number. Here, we set Si at 10 and Sd at 5 in the

beginning. And then Si/Sd could be decreased while the length of CA is closer to the

minimal length to pass DIEHARD.

 The process to decide whether or not the evolved CA can pass DIEHARD

includes three steps. First, MOGA evolution generates a group of non-dominated

chromosomes. Second, one chromosome is selected according to the predefined

preference set, which will be discussed in section 4.1. Third, the selected chromosome is

tested under DIEHARD. If it fails to pass DIEHARD, we think that the evolved CA most

likely cannot pass DIEHARD. Once the minimal length of CA to pass DIEHARD is

found (assume the length is L), the evolution process will check the randomness of (L-1)-

cell CA again. 10 chromosomes that obtain the best randomness quality among the

evolved (L-1)-cell CA are tested under DIEHARD. If none of the chromosomes tested

could pass DIEHARD, we think that the minimal length found is valid. Because

exhaustive searching is impossible, we could not exclude the possibility that some (L-1)-

cell CA could pass DIEHARD. Given the resource constraints, we feel that the minimal

length (L) found is acceptable under the above-mentioned validation scheme.

 The process to increase or decrease the length of CA involves both algorithms.

When the length of CA is changed, the chromosomes evolved using MOGA should be

adjusted too. One method is to generate initial population randomly in MOGA evolution

no matter what the length of CA is. But this method somehow wastes the evolution effort

from previous generations. It is natural to keep the evolved chromosomes from the

 15

previous generations as the initial population for the current generation. The problem is

that the length of chromosomes has changed during the transition from the last generation

to the current one. When the length is decreased, we could just truncate the superfluous

bits from the chromosomes. Which bits to be deleted is decided randomly. Note that

modification is only applied to the first L bits in the chromosome. The six bits encoding

cell spacing and time spacing will not be changed. Similarly, bits are randomly generated

and added to the chromosomes in the last generation when the length of CA is increased.

 In the next section, we first present the evolution results on fixed-length CCA and

then present the incremental evolution results on CCA/PCA. Moreover, the evolved CCA

are compared to 1-d/2-d CA not only in randomness but also in complexity and efficiency.

4. Evolution Results

4.1 Evolution Results on 50-cell CCA PRNGs

 The evolution results on fixed-length CCA PRNGs are a group of non-dominated

chromosomes from which we can extract the number and location of controllable cells in

CCA, cell spacing parameter, and time spacing parameter. One chromosome is selected

from the non-dominated group according to the predefined preference. The preferences

are set as follows. The selection process includes two steps.

 Step 1: choose chromosomes from a group of non-dominated chromosomes in the

last generation using the chi-square value as preference. Maintaining the randomness

quality of CCA is a pre-requisite requirement. Hence, we must ensure that the selected

chromosomes could generate good random number sequences. In this step, we use the

chi-square value alone to evaluate randomness. Only those non-dominated chromosomes

 16

that obtain a chi-square value at 1 are chosen as the final candidates. Further check on

randomness quality will be done in the next step using the entropy and SCC values. In

the next step, one chromosome will be chosen from the final candidates as the best

chromosome evolved.

 Step 2: choose the best chromosome. The following rules are applied in

descending priority order to choose one chromosome from the final candidates:

Rule 1: compare cell spacing & time spacing parameter: a smaller value is

preferred because it means better output efficiency. The sum of cell

spacing and time spacing parameter is first compared and then if the sum

is equal, the one with the smallest time spacing parameter will be chosen.

Rule 2: compare the number of controllable cells: a smaller value is preferred

because it means less structural complexity.

Rule 3: compare 1-SCC and entropy values: the higher the sum of (1-SCC) and

entropy value is, the better randomness quality the chromosome obtains.

Generally, the final candidates obtain similar entropy and SCC values.

The reason that entropy and SCC values are set to the lowest priority is

because we think obtaining high output efficiency and low structural

complexity are more important than obtaining slightly better entropy and

SCC values for CCA.

 The chromosomes in the final candidate group will first be compared according to

rule 1. If only one chromosome is selected, it will be the best solution. If more than one

chromosome is selected, these chromosomes will be compared under rule 2 and so on.

Normally, the sum of entropy and (1-SCC) values will not be identical for two

 17

chromosomes. Hence, we could ensure that only one chromosome is selected out of the

non-dominated chromosomes.

 The objective values of the best solutions for CCA0-CCA5 are shown in Table 1.

The entropy and SCC values are average values. The chi-square value encodes the pass

rate: 100% means all the sequences tested can pass the chi-square test. Each CCA/PCA

has 50 cells. Referring to Table 1, we can see that all the tested CCA can pass chi-square

at 100% while the 1-bit and 2-bit PCA pass at lower rates (83% and 92%). The entropy

and SCC values obtained by the evolved CCA and 2-bit PCA are in the same range while

those of 1-bit PCA are worse. Note that except 1-bit PCA that uses time spacing at 1, the

others require no spacing.

Table 1. Objective values of evolved 50-cell CCA/PCA PRNGs

 Compared to PCA with the same length, the structural complexity of CCA is

higher due to the usage of several controllable cells as indicated in Table 1. Yet the

output efficiency of CCA is higher. The output efficiency of the evolved CCA2 is two

times that of the 1-bit PCA PRNG with the same length. That is to say, to compete with

CCA in randomness and output efficiency, the length of 1-bit PCA should be increased.

Number of

control bits Per

PCA/CCA

cs

ts

entropy

SCC

chi-square

CCA0 58 0 0 7.872323 0.012145 1.0 (100%)

CCA1 58 0 0 7.876290 0.017982 1.0 (100%)

CCA2 58 0 0 7.892309 0.012624 1.0 (100%)

CCA3 56 0 0 7.883857 0.009930 1.0 (100%)

CCA4 58 0 0 7.886308 0.003207 1.0 (100%)

CCA5 59 0 0 7.889176 0.005018 1.0 (100%)

1-bit PCA 50 0 1 7.758143 0.041355 0.83 (83%)

2-bit PCA 100 0 0 7.872308 0.020187 0.92 (92%)

Legends: cs: cell spacing parameter; ts: time spacing parameter. Number of control

bits: total number of rule control bits and cell control bits per CCA/PCA.

 18

But this will in turn increase the cost of 1-bit PCA. The randomness quality of 2-bit PCA

is closer to CCA0/CCA1/CCA5. The complexity of a 2-bit programmable cell is at same

level as a controllable cell because both of them use 2-bit control signals. Therefore, we

think that the structural complexity of 2-bit PCA is similar to that of CCA.

 Table 2 shows the DIEHRAD test results of the evolved 50-cell CCA and PCA

PRNGs. We can see that CCA2 fail only one test while 1-bit PCA fails 7 tests. The other

CCA/PCA obtain some performance between CCA2 and 1-bit PCA.

Table 2. DIEHARD test results of CCA/PCA PRNGs

L=50

Test name CCA0

cs=0

ts=0

CCA1

cs=0

ts=0

CCA2

cs=0

ts=0

CCA3

cs=0

ts=0

CCA4

cs=0

ts=0

CCA5

cs=0

ts=0

1-bit

PCA

cs=0

ts=1

2-bit

PCA

cs=0

ts=0

1. Overlapping sum

2. Runs up 1

Runs Down 1

Runs up 2

Runs Down 2

3. 3D sphere

4. A parking lot

5. Birthday Spacing

6. Count the ones 1

7. Binary Rank 6*8

8. Binary Rank 31*31

9. Binary Rank 32*32

10. Count the ones 2

11. Bitstream test

12. Craps wins

games

13. Minimum distance

14. Overlapping Permu

15. Squeeze

16. OPSO test

17. OQSO test

18. DNA test

number of tests passed

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Fail

Pass

15

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Fail

Fail

14

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

17

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Fail

Pass

15

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

16

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Fail

Fail

14

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Fail

Pass

Fail

Fail

Fail

11

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fail

Fail

Pass

15

Legends: cs: cell spacing parameter; ts: time spacing parameter;

L: total number of cells in CCA.

 19

4.2 Evolution Results from Incremental Evolution

 The evolution results from incremental evolution on CCA and PCA PRNGs are

shown in Figure 2. CCA2 and CCA4 can pass DIEHARD with 55 cells. Next, CCA3 can

pass at a minimum number of 58 cells. CCA5, CCA0 and CCA1 can pass with 67, 73,

and 74 cells individually. The minimum number of cells required for 1-bit PCA is

remarkably higher than that of CCA. 1-bit PCA needs 109 cells with time spacing at 1 to

pass DIEHARD while 2-bit PCA needs 71 cells without any spacing. The configurations

of CCA/PCA to pass DIEHARD are shown in Table 3.

Fig. 2 Evolution results from incremental evolution

 20

Table 3. Configuration of CCA/PCA PRNGs

 CCA0 CCA1 CCA2 CCA3 CCA4 CCA5 1-bit

PCA

2-bit

PCA

cn 14 14 12 10 11 16 / /

ncb 87 88 77 68 66 83 109 142

cs 0 0 0 0 0 0 0 0

ts 0 0 0 0 0 0 1 0

L 73 74 55 58 55 67 109 71

 Referring to Table 3, we can see that the evolved 55-cell CCA2/CCA4 and 58-cell

CCA3 could pass DIEHARD without any spacing. Tomassini et al. have shown in [15]

that 64-cell 2-d CA could pass DIEHARD without spacing while it is unknown whether

or not 2-d CA with fewer cells could pass DIEHARD. Thus, we may claim that CCA2-

CCA4 could compete with 2-d CA not only in randomness quality but also in output

efficiency. The performance of CCA0/CCA1/CCA5 is similar to that of 2-bit PCA and

better than that of 1-bit PCA.

4.3 Discussions

 We have shown that the evolved CCA can compete with conventional 1-d/2-d CA

in randomness, structure simplicity, and output efficiency. And the performance of

different types of CCA varies greatly. CCA2/CCA4 obviously outperform CCA0/CCA1.

One possible reason may lie in that the action embedded in type 0/1 controllable cells is

not so powerful as that of type 2/4 controllable cells. That is to say, the performance of

CCA depends much on the action of controllable cells. It is worth to explore whether

there are some other controllable cell actions that could lead to better CCA performance.

Legends: cn: no. of controllable cells; cs: cell spacing parameter; ts: time spacing

parameter. ncb: number of control bits per CCA/PCA, including rule control bits and

cell control bits per each CCA/PCA.

 21

 We have discussed how to adjust the length of CA during incremental evolution

in section 3.3. In Algorithm 2, the new cells are randomly initialized and added to the

chromosomes when the length of CA is increased. According to our previous experiment

results, we find that having too many or too few controllable cells could degrade the

randomness of CCA. Thus, when adding new cells (bits) to the chromosomes, we could

first check the number of controllable cells included in the chromosomes and then decide

whether to add basic cells or controllable cells. If the ratio of controllable cells to basic

cells is low, we could add a few more controllable cells to the chromosomes. Otherwise,

we could add basic cells. Moreover, we could also choose the location for the cells to be

added. Generally, the number of connected controllable cells will not be greater than 4.

Hence, we could interleave basic cells and controllable cells when adding bits to the

chromosomes. Similarly, we could also choose the location and type of cells to be deleted

when the length of CCA is decreased.

5. Conclusion

 In this paper, we have discussed the randomness, structural complexity, and

output efficiency of CCA/PCA. These three aspects are evolved together to find some

CCA that could generate good random number sequences at a low complexity and high

output efficiency. The evolution process involves two algorithms. MOGA is employed to

evolve fixed-length CCA. An incremental evolutionary algorithm is applied to find the

minimal length of CCA/PCA to pass DIEHARD. The merit of incremental evolution lies

in its self-adjusting ability, which saves time and effort for searching and computation.

 22

 This evolution process is also applied to 1-bit/2-bit PCA. The comparison on

CCA and 1-d PCA shows that CCA outperform PCA not only in randomness but also in

structure simplicity and efficiency. Besides, CCA could compete with the evolved 2-d

CA in the literature in both randomness and output efficiency. Comparison among CCA

shows that CCA2/CCA4 outperform the other types of CCA. Some future work could be

done to explore what leads to the good performance of these two CCA. The methodology

developed here is not limited to CCA/PCA only, it can be used to evolve other CA

PRNGs or serve as a yardstick to compare their performance.

Acknowledgement The authors would like to thank Tai Lim Lee for his initial implementation

work on incremental evolution.

References

[1] Barry Shackleford, Motoo Tanaka, Richard J. Carter, and Greg Snider, High-performance

cellular automata random number generators for embedded probabilistic computing systems, In

Proc. of the 2002 NASA/DOD Conference on Evolvable Hardware, 2002.

[2] C. M. Fonseca and P. J. Fleming, Genetic algorithm for multiobjective optimization:

formation, discussion and generalization, In Proc. of the 5th

ICGA, 1993, pp. 416-423.

[3] Carlos A. Coello Coello, An updated survey of evolutionary multiobjective optimization

techniques: state of the art and future trends, In Proc. of the 1999 Congress on Evolutionary

Computation, Vol. 1, 1999, pp. 3-13.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley, 1989.

[5] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed.

Reading, Mass.: Addison-Wesley, 1998.

[6] D. R. Chowdhury, I. S. Gupta and P. Pal Chaudhuri, A class of two-dimensional cellular

automata and applications in random pattern testing, Journal of Electrical Testing: Theory and

Applications, Vol. 5, 1994, pp. 65-80.

 23

[7] Dragan Cvetkovic, Ian Parmee, Preference and application in evolutionary multiobjective

optimization, IEEE Transactions on Evolutionary Computation, Vol. 6, Issue 1, Feb. 2002, pp.

42-57.

[8] G. Marsaglia, “Diehard”, http://stat.fsu.edu/~geo/diehard.html, 1998.

[9] Hisashi Tamaki, Hajime Kita and Shigenobu Kobayashi, Multi-objective optimization by

genetic algorithms: a review, In Proc. of IEEE International Conference on Evolutionary

Computation, 1996, pp. 517-522.

[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan, A fast and elitist

multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation,

Vol. 6, No.2, April 2002, pp. 182-197.

[11] M. Matsumoto, Simple cellular automata as pseudorandom m-sequence generators for built-

in self-test, ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, 1998, pp. 31-42.

[12] M. Mihaljevic, Security examination of a cellular automata based pseudorandom bit

generator using an algebraic replica approach, In Proceedings of Applied Algebra, Algorithms

and Error Correcting Codes, Lecture notes in Computer Science, Vol. 1255, 1997, pp. 250-262.

[13] M. Mihaljevic and Hideki Imai, A family of fast keystream generators based on

programmable linear cellular automata over GF(q) and time-variant table, IEICE Trans.

Fundamentals, Vol. E82-A, No. 1, 1999, pp. 32-39.

[14] Marco Tomassini, Moshe Sipper, Mose Zolla and Mathieu Perrenoud, Generating high-

quality random numbers in parallel by cellular automata, Future Generation Computer Systems,

Vol. 16, 1999, pp. 291-305.

[15] Marco Tomassini, Moshe Sipper and Mathieu Perrenoud, On the generation of high-quality

random numbers by two-dimensional cellular automata, IEEE Trans. Comput., Vol. 49, 2000, pp.

1146-1151.

[16] Moshe Sipper and Marco Tomassini, Generating parallel random number generators by

cellular programming, International Journal. Modern Physics, Vol. 7, No.2, 1996, pp.181-190.

[17] P. D. Hortensius, R.D. Mcleod, and H.C. Card, Parallel random number generation for VLSI

system using cellular automata, IEEE Trans. Comput., Vol. 38, 1989, pp. 1466-1473.

[18] P. D. Hortensius, R. D. Mcleod, Werner Pries, D. Michael Miller and H. C. Card, Cellular

automata-based pseudorandom number generators for built-in self-test, IEEE Transactions on

Computer-Aided Design, Vol. 8, No. 8, 1989, pp. 842-859.

[19] S. Nandi, B. K. Kar, and P. Pal Chaudhuri, Theory and applications of cellular automata in

cryptography, IEEE Trans. Computers. 43, 1994, pp. 1346-1357.

 24

[20] S. Wolfram, Theory and Applications of Cellular Automata: Including Selected Papers 1983-

1986, World Scientific publishing Co., Inc., River Edge, NJ. 1986.

[21] Sheng-Uei Guan and Shu Zhang, "An Encryption Method based on Dynamic Cellular

Automata", Proceedings the International ICSC Congress on Intelligent Systems and Applications,

University of Wollongong, Australia, # 1514-074(CD number: ISBN 3-906454-24-X), December

12-15, 2000.

[22] Sheng-Uei Guan and Shu Zhang, A family of controllable cellular automata for

pseudorandom number generation, to appear in International Journal of Modern Physics,

Computer.

[23] Von Neumann, J., “The general and logical theory of automata”, In J. von Neumann

Collected Works”, A. Taub, Ed.

[24] ENT test suite, http://www.fourmilab.ch/random

Appendix

1. The configurations of the evolved CCA0-CCA5 with the minimal length to pass

DIEHARD are presented in Table 4.

Table 4 The configurations of evolved CCA0-CCA5

 Configuration

73-cell CCA0 00000110001000010000001000000010100000001000000001000000101100

00000101000

74-cell CCA1 00010100000001001000000011000000100000101000000100000000100010

001000000010

55-cell CCA2 0100100000000001001100000001100001000001000000011010000

58-cell CCA3 0010011000010000001010000000000100000000010000001000010000

55-cell CCA4 0010110000000000100100000100010000000010000101000010000

67-cell CCA5 00000001000110000000010000010001000000010001100011100010001000

11000

Rules used in CCA0-CCA5: rule 90 and 150; rule control CA uses rule 30; cell control

CA uses rule 105.

Legends: ‘1’ stands for a controllable cell; ‘0’ stands for a basic cell.

 25

2. The configurations of the 1-bit/2-bit PCA evolved to pass DIEHARD:

109-cell 1-bit PCA: uses rule 90 and 150; rule control CA uses rule 30.

71-cell 2-bit PCA: uses rule 90, 105, 150, and 165. rule control CA1 uses rule 30; rule

control CA2 uses rule 105.

