260,147 research outputs found

    Combining SysML and Model Transformations to Support Systems Engineering Analysis

    Get PDF
    As modern systems become increasingly complex, there is a growing need to support the systems engineering process with a variety of formal models, such that the team of experts involved in the process can express and share knowledge precisely, succinctly and unambiguously. However, creating such formal models can be expensive and time-consuming, making a broad exploration of different system architectures cost-prohibitive. In this paper, we investigate an approach for reducing such costs and hence enabling broader architecture space exploration through the use of model transformations. Specifically, a method is presented for verifying design alternatives with respect to design requirements through automated generation of analyses from formal models of the systems engineering problem. Formal models are used to express the structure of design alternatives, the system requirements, and experiments to verify the requirements as well as the relationships between the models. These formal models are all represented in a common modeling language, the Object Management Group’s Systems Modeling Language (OMG SysMLTM). To then translate descriptive models of system alternatives into a set of corresponding analysis models, a model transformation approach is used to combine knowledge from the experiment models with knowledge from reusable model libraries. This set of analysis models is subsequently transformed into executable simulations, which are used to guide the search for suitable system alternatives. To facilitate performing this search using commercially available optimization tools, the analyses are represented using the General Algebraic Modeling System (GAMS). The approach is demonstrated on the design of a hydraulic subsystem for a log splitter

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    G\mathcal{G}-SELC: Optimization by sequential elimination of level combinations using genetic algorithms and Gaussian processes

    Full text link
    Identifying promising compounds from a vast collection of feasible compounds is an important and yet challenging problem in the pharmaceutical industry. An efficient solution to this problem will help reduce the expenditure at the early stages of drug discovery. In an attempt to solve this problem, Mandal, Wu and Johnson [Technometrics 48 (2006) 273--283] proposed the SELC algorithm. Although powerful, it fails to extract substantial information from the data to guide the search efficiently, as this methodology is not based on any statistical modeling. The proposed approach uses Gaussian Process (GP) modeling to improve upon SELC, and hence named G\mathcal{G}-SELC. The performance of the proposed methodology is illustrated using four and five dimensional test functions. Finally, we implement the new algorithm on a real pharmaceutical data set for finding a group of chemical compounds with optimal properties.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS199 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Machine learning-guided directed evolution for protein engineering

    Get PDF
    Machine learning (ML)-guided directed evolution is a new paradigm for biological design that enables optimization of complex functions. ML methods use data to predict how sequence maps to function without requiring a detailed model of the underlying physics or biological pathways. To demonstrate ML-guided directed evolution, we introduce the steps required to build ML sequence-function models and use them to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to using ML for protein engineering as well as the current literature and applications of this new engineering paradigm. ML methods accelerate directed evolution by learning from information contained in all measured variants and using that information to select sequences that are likely to be improved. We then provide two case studies that demonstrate the ML-guided directed evolution process. We also look to future opportunities where ML will enable discovery of new protein functions and uncover the relationship between protein sequence and function.Comment: Made significant revisions to focus on aspects most relevant to applying machine learning to speed up directed evolutio
    • …
    corecore