
Shape Optimisation using Traditional and

Morphogenetic Evolutionary Algorithms:

Integrated Representation of Geometry and Physical

Behaviour

Andrew Sherlock

Ph.D.

University of Edinburgh

2003

/tV. f

Declaration

I declare that this thesis has been composed by myself and is all my own work except

where otherwise stated.

111

Acknowledgements

I would like to acknowledge and thank a number of people for their help in making

this thesis possible.

Thanks to members of the Manufacturing Planning Group, who have over the years

provided a stimulating environment in which to work, along with necessary

encouragement, help and sometimes criticism, also to members, formerly, of the

School of Mechanical Engineering, and latterly the School of Engineering and

Electronics. Support from academics, support staff, postgraduates and researchers

over the years has greatly helped my studies.

Thanks to Frank Mill for his (extended) supervision throughout my Ph.D. studies.

Thanks to my parents, Jim and Sheila Sherlock for their support, over the years of

my studies, as well as their encouragement to finally write-up the thesis.

Finally, thanks to my wife, Jess Rogaly, for her tolerance, patience and support

whilst writing this thesis, for her proof reading (although any errors are all my own)

and for the constant cups of tea.

1

Abstract

The primary aim of the work described in this thesis was to develop novel techniques

for shape optimisation that can effectively search through a large generality of

shapes. This would allow a computer to be used in a more creative way to synthesise

shapes for engineering components, given a specification of their desired function.

To achieve this, investigations into the use of novel shape representations and

algorithms for shape optimisation were undertaken. Three examples of work done on

shape optimisation for engineering components, using evolutionary algorithms and

various shape representations, and the problems encountered in linking them together

effectively with the analysis module, are described. These examples are aerofoil

profile optimisation with a genetic algorithm, optimisation of a constructive solid

geometry solid model with genetic programming and structural optimisation of a

voxel shape representation with a genetic algorithm.

One conclusion of these investigations was that, when the set of shapes to be

searched is large and general, it is often difficult to analyse correctly all the possible

shapes. This can cause optimisation algorithms to optimise to shapes that are in

practice sub-optimal. Additionally, there is only limited opportunity for the search

through the set of shapes to be influenced by the analysed performance of the shape.

This thesis argues that using a common representation for both the geometry and

physical behaviour would allow a number of novel and effective algorithms for

shape optimisation to be developed. The representation proposed is based on Chain

models using cell complexes and chains from algebraic topology.

As an example of a new approach to shape optimisation enabled by the new

representation, a novel algorithm that adds a morphogenetic stage to a genetic

algorithm for structural optimisation, is also described. In initial studies this method,

in which a shape is grown in response to both its genetic growth rules and structural

performance, was found to be an effective approach to structural optimisation.

Contents

Abstract 	 . 1

Contents 	 .2

List of Figures 	 .7

Introduction .. 11

1.1 	What is Shape Optimisation? ... 11

1.2 	Search Algorithms as Part of the Design Process ..12

1.3 	Shape Optimisation as Part of the Design Process...13

1.4 	Evolutionary Algorithms in Design ... 15

1.4.1 	Routine Design with Evolutionary Algorithms......................................18

1.4.2 	Creative Design with Evolutionary Algorithms.....................................19

1.5 	Motivation of the Work in this Thesis ... 25

1.6 	Aims & Objectives of Work Described in this Thesis...................................26

1 .7 	Chapter Outline..27

2 	Review of Shape Optimisation Techniques .. 29

2.1 	Summary .. 29

2.2 	Typical Structure of a Shape Optimisation Method 29

2.3 	Optimiser.. 30

2.3.1 	What is Optimisation? .. 31

2.3.2 	Classical Deterministic Optimisation, ... 35

2.3.3 	Gradient Descent Methods .. 40

2.3.4 	Stochastic Techniques.. 46

2 .4 	Geometric Model.. 59

2.5 	Analysis Methods... 62

3 	A Study on Aerofoil Optimisation using a Genetic Algorithm 64

3.1 	Summary 	.. 64

3.2 	Introduction.. 64

3.2.1 	Aims ... 66

3.3 	Implementation... 67

3.3.1 	Shape Representations.. 67

3.3.2 	Evaluator .. 69

3

3.3.3 	Fitness Measure 	 .70

3.3.4 	The Genetic Algorithm... 71

3.4 	Results.. 74

3.4.1 	Aerofoil Parameterisation... 74

3.4.2 	Bézier Representation... 77

3.4.3 	Smooth Bézier Representation... 78

3.5 	Discussion .. 78

3.5.1 	The Genetic Algorithm... 78

3.5.2 	The Shape Representations .. 79

3.5.3 	The Evaluator... 83

3.6 	Conclusions.. 85

4 	Voxel Based Genetic Algorithm Optimisation ... 87

4.1 	Summary .. 87

4.2 	Introduction.. 87

4.2.1 	Voxel Shape Representation .. 87

4.2.2 	Aims ... 88

4.2.3 	Acknowledgement ... 89

4.3 	Experiments.. 89

4.3.1 	Simplified Beam Design ..89

4.3.2 	Annulus Design Problem using Finite Element Analysis.................... 100

4.4 	Conclusions.. 110

5 	Application of Genetic Programming in a Solid Modeller 111

5 .1 	Summary .. 111

5 .2 	Introduction.. 111

5.2.1 	Genetic Programming... 111

5.2.2 	The ACIS 3D Toolkit... 114

5.2.3 	Potential Application of Technique to Practical Problems 114

5.3 	Implementation & Initial Test Problem.. 116

5 .4 	Results.. 120

5 .5 	Discussion .. 120

5.6 	Conclusions.. 121

6 	The Need for a Common Data Structure for Shape Optimisation 122

4

6.1 Summary 	 122

6.2 Form from Function 	 .122

6.3 	Shape Optimisation as a Method of Partially Automating the Generation of
Formfrom Function ...123

6.4 	Overview of The Shape Optimisation Process... 124

6.5 	What Makes a Good Shape Representation? ... 127

6.6 	Ensuring Sufficiently Accurate Analysis... 131

6.7 	Speeding up the Analysis... 134

6.8 	Searching Effectively for the Optimal Shape... 137

6.9 	A Representation for Geometry and Physical Behaviour 137

7 	Chain Models .. 140

7.1 	Summary 	.. 140

7.2 	Chain Models ... 140

7.2.1 	Cells and Complexes.. 141

7.2.2 	Chains... 145

7.3 	Using Chain Models... 148

7.3.1 	Chain models of Geometry... 148

7.3.2 	Chain models of Physical Behaviour... 150

7.3.3 	Implementations of Chain models.. 154

7.4 	Chain Models in Design... 156

7.4.1 	Function Specification.. 156

7.4.2 	Shape Synthesis.. 159

7.5 	Chain Models and Shape Optimisation.. 161

7.5.1 	Opportunity for novel shape optimisation techniques in a Chain Model
Framework.. 162

8 	A Morphogenetic Approach to Shape Optimisation 166

8 .1 	Summary .. 166

8 .2 	Introduction.. 166

8.2.1 	Overview and Motivation... 166

8.2.2 	Morphogenic Evolutionary Computation... 167

8.2.3 	Artificial Life and Structural Analysis and Optimisation 170

8.2.4 	Models of Biological Cellular Development.. 172

8.2.5 	Related Work on Shape & Topology Optimisation 172

5

8.2.6 Aims 	 . 176

8.3 	Implementation...176

8.3.1 	The Design of the Algorithm Used..176

8.3.2 	Overview of the Algorithm Used...177

8.3.3 	Using the Chains Framework...182

8.3.4 	Swann ... 183

8.3.5 	Details of Implementation..187

8.3.6 	Calculating the Stress Threshold..198

8.3.7 	Maintaining Similar Topology...200

8.3.8 	Increasing Mesh Density..201

8.3.9 	The Genetic Algorithm...213

8.4 	Problems Addressed...216

8.5 	Results..218

8.5.1 	Bicycle Frame...219

8.5.2 	Cantilever Beam ... 231

8.5.3 	Arch..242

8.6 	Discussion ..253

8.6.1 	Discussion of Results ...253

8.6.2 	Issues..253

8.6.3 	Further work... 256

8.7 	Conclusions..258

9 	Conclusions ... 259

References ... 263

Appendix A - Results of Aerofoil Optimisation ... 300

A. 1 Aerofoil Parameterisation..300

A.1.l Experiment A..302

A.1.2 Experiment B..305

A.1.2 Experiment C..308

A. 1.4 Experiment D..311

A.1.5 Experiment E..316

A.1.6 Experiment F..321

A.1.7 Experiment G..324

A.1.8 Experiment 11 .327

A.2 Unsmoothed Bézier Representation..330

A.2.1 Experiment I...330

A.3 Smooth Bézier Representation .. 332

A.3.1 Experiment J...332

rA

List of Figures

Figure 2-1 Typical Structure of a Shape Optimisation Application29

Figure 2-2 Example of Landscape ..33

Figure 2-3 Unconstrained Objective Function Minima....................................34

Figure 2-4 Constrained Objective Function Minima..35

Figure 2-5 Poor Performance of Steepest Descent Method in a Valley41

Figure 2-6 Simple One-Point Crossover... 52

Figure 3-1 Aerofoil Parameterisation..67

Figure 3-2 Bézier Representation for Aerofoil ...68

Figure 3-3 Addition of Constraint on ThetaO in Experiment H........................80

Figure 4-1 Typical End Population (with fitnesses) ...92

Figure 4-2 The Smoothing Operator... 94

Figure 4-3 Typical End Population for GA with Smoothing Operator after
1500 Generations (fitnesses are shown).. 94

Figure 4-4 Effectiveness of Various Crossover Operators 96

Figure 4-5 Effectiveness of Various Mutation Operators................................. 98

Figure 4-6 Annulus Axisymmetric Cross-section... 100

Figure 4-7 Results of the Basic Annulus Optimisation after 75 Generations 103

Figure 4-8 Convolution Masks for Triangle Insertion Process....................... 105

Figure 4-9 Final Annulus Cross-Sections from Improved GA....................... 106

Figure 4-10 Results without and with Smoothing Triangles 108

Figure 4-11 The Best Annulus Design from the Final Set of Experiments...... 109

Figure 5-1 A Genetic Programming Chromosome... 112

Figure 5-2 Crossover of GP Tree Chromosomes.. 113

Figure 5-3 Example of a CSG Tree and Solid Model..................................... 115

Figure 5-4 The Test Component... 116

Figure 5-5 2D Example of fitness calculation... 118

Figure 5-6 Example of Compress Operator.. 119

Figure 6-1 Searching for an Optimal Shape.. 125

Figure 7-1 n-Simplices and n-Cubes... 142

Figure 7-2 A Simplicial 2-Complex.. 143
Figure 7-3 A Cubical 2-Complex .. 144

8

Figure 7-4 The Boundary Operator Applied to a 2-Chain.............................. 146

Figure 7-5 The Coboundary Operator Applied to a 1-Chain 147

Figure 7-6 A Chain Model Representation for Geometry in 2 Dimensions 149

Figure 7-7 A Constraint Element for Conservation.. 152

Figure 7-8 A Constraint Element for Balance... 153

Figure 7-9 A Sample Specification for a Bracket... 157

Figure 7-10 A Chain Model Specification for a Bracket.................................. 158

Figure 7-11 Transformation of Abstract Chain Model Specification of Force
to a Spatially Embedded Chain Model.. 160

Figure 7-12 Transformation of Abstract Chain Model Specification of
Displacement to a Spatially Embedded Chain Model................... 160

Figure 7-13 Example of Candidate Bracket with Parameterised Corner and
'Grown' 	Mesh ... 164

Figure 8-1 	The Initial Mesh ..179

Figure 8-2 Overview of the Morphogenetic Stage.. 181

Figure 8-3 A Chain Model Specification for a Bicycle Frame....................... 182

Figure 8-4 The Swarm Application for Growth Stage at Start-Up................. 185

Figure 8-5 Overview of Program Structure .. 187

Figure 8-6 The Element step method.. 189

Figure 8-7 Illustration of Element Status.. 192

Figure 8-8 Illustration of Edge Status... 194

Figure 8-9 Illustration of Node Status... 195

Figure 8-10 Chemical's Effect on an Element's Stress Threshold as a
Function of Distance from the Chemical 198

Figure 8-11 	Display of stressThresholdMultiplier with One Chemical Placed
at (0.3,0.45), strength 1, rate 0.2..199

Figure 8-12 	Example of breakage of useful load bearing section.....................201

Figure 8-13 	Example of Delaunay Triangulation ...202

Figure 8-14 	Addition of New Node and Calculation of Circumcircles............203

Figure 8-15 	New Elements Formed from Convex Cavity................................204

Figure 8-16 	The Element divideSeif method...205

Figure 8-17 	The Edge checkNodelnCircumcircleForElem method206

Figure 8-18 	The Element checkNodelnCircumcircle method208

Figure 8-19 	Partial Mesh before Element Division ..209

Figure 8-20 Convex Cavity formed by Division of Element 1.........................210

Figure 8-21 Mesh following Division of Element 1 ...210

Figure 8-22 Method Calls and Return Values for Division of Element 1211

Figure 8-23 Load Case for Bicycle Frame..216

Figure 8-24 Load Case for Cantilever...217

Figure 8-25 Load Case for Arch ...217

Figure 8-26 Snapshots of Growth of Bicycle Frame A.....................................221

Figure 8-27 Snapshots of Growth of Bicycle Frame B.....................................223

Figure 8-28 Snapshots of Growth of Bicycle Frame C..................................... 225

Figure 8-29 Snapshots of Growth of Bicycle Frame D..................................... 227

Figure 8-30 Chemical Positions for the Optimised Bicycle Frame 229

Figure 8-31 Snapshots of Growth of Optimised Bicycle Frame....................... 230

Figure 8-32 Snapshots of Growth of Cantilever A ... 233

Figure 8-33 Snapshots of Growth of Cantilever B.. 235

Figure 8-34 Snapshots of Growth of Cantilever C.. 237

Figure 8-35 Snapshots of Growth of Cantilever D ... 239

Figure 8-36 Snapshots of Growth of Optimised Cantilever D.......................... 241

Figure 8-37 Snapshots of Growth of Arch A.. 244

Figure 8-38 Snapshots of Growth of Arch B .. 246

Figure 8-39 Snapshots of Growth of Arch C .. 248

Figure 8-40 Snapshots of Growth of Arch D.. 250

Figure 8-41 Snapshots of Growth of Optimised Arch...................................... 252

Figure A-i Best Individual for each Generation for Run Al 303

Figure A-2 Best Individual for each Generation for Run A2 304

Figure A-3 Graph of Fitnesses for each Generation for Run Al 304

Figure A-4 Plot of Best Individual for each Generation for Run B 1............... 306

Figure A-5 Plot of Best Individual for each Generation for Run B2............... 306

Figure A-6 Surface Plot of Cd against Attack Angle and Theta0 307

Figure A-7 Plot of Best Individual for each Generation for Run Cl 310

Figure A-8 Plot of Best Individual for each Generation for Run C2............... 310

Figure A-9 Plot of Best Individual for each Generation for Run Dl 313

Figure A-10 Plot of Best Individual for each Generation for Run D2............... 313

10

Figure A- 11 Graph of Fitness (Cd / C1) against Generation for Run Dl 314

Figure A-12 Graph of C1 against Generation for Run Dl 314

Figure A-13 Graph of Cd against Generation for Run Dl 315

Figure A-14 Plot of Best Individual for each Generation for Run El 318

Figure A-15 Plot of Best Individual for each Generation for Run E2............... 318

Figure A-16 Plot of C1 vs. Thickness and Position of Max Thickness.............. 320

Figure A-17 Plot of Cd vs. Thickness and Position of Max Thickness.............. 320

Figure A-18 Plot of Best Individual for each Generation for Run Fl 323

Figure A-19 Plot of Best Individual for each Generation for Run Gi 326

Figure A-20 Graph of Cd against Generation for Run GI 326

Figure A-21 Plot of Best Individual for each Generation for Run Hi 329

Figure A-22 Plot of Best Individual for each Generation for Run Ii 331

Figure A-23 Plot of Best Individual for each Generation for Run Jl 333

1. 	Introduction 	 11

1 Introduction

1.1 What is Shape Optimisation?

Shape optimisation techniques are an attempt to automatically find the optimal

geometric shape for an engineering component. Shape optimisation programs

integrate optimisation algorithms, geometric modelling and engineering analysis

algorithms into an automated computer-aided design process.

Typically, shape optimisation applications are classified by the behaviour of the

component that is to be optimised. Structural shape optimisation and aerodynamic

shape optimisation are the two problems that have received much attention by

researchers. Work has also been reported in areas such as acoustics [Fisher 1995]

[Soize & Michelucci 2000] [Bangtsson et al. 2003], magneto-statics [Kasper 1993]

and manufacturing cost minimisation [Barton 2002] [Chang & Tang 2001].

Structural optimisation [Vanderplaats 1993] [Hsu 1994] [Sobieszczanski-Sobieski

1986] [Haftka & Grandhi 1986] seeks to find the optimal shape for a component

which is subjected to some external loading. Often it is the weight of the component

that is to be minimised, whilst also ensuring that the maximum stress remains within

the yield stress of the component's material. Sometimes it is the maximum

displacement that is to be minimised, when the component is subjected to a load with

a constraint on weight. Structural optimisation can be further sub-divided into

topology optimisation, size optimisation and structural shape optimisation.

Topology optimisation [Bulman et al. 2001], as its name suggests, looks to find the

best topology for a structure. Often this is to find a topology for a truss structure.

Size optimisation seeks to find the best value for dimensions of a component, for

instance thickness or diameter, where the overall two-dimensional shape is fixed.

Shape optimisation has come to mean finding the optimal shape given a particular

topology. However, throughout this thesis, shape optimisation will be used to refer to

all of topology optimisation, size optimisation and shape optimisation as it is the

1. 	Introduction 	 12

author's opinion that topology and size are merely aspects of a component's shape.

Indeed some researchers are now looking to integrate topology and shape

optimisation [Bremicker et al. 1991] [Cappello & Mancuso 2003].

The typical aim of aerodynamic optimisation [Jameson et al. 1998] is to find a shape

that minimises drag in a given flow whilst, perhaps, remaining within a specified lift

constraint [Quagliarella & Cioppa 1995] [Burgreen et al. 1994]. Examples have also

been described where other aerodynamic quantities, such as pitching moment and

pressure distributions, are optimised [Fillipone 19951. Many applications of

aerodynamic shape optimisation are in the aircraft industry, both for the design of

aircraft components [Doorly et al. 1996b] [Eleshaky & Baysal 1991] and

aeroengines [Burguburu & le Pape 03] [Rogalsky et al. 1999a] [Song et al. 2002],

although Fillipone optimises aerofoil sections for a wind turbine.

Most of the work to date has described shape representations for single criterion

optimisation, although many researchers are interested in multi-criteria problems

[Quagliarella & Vicini 2000] [Seller et al. 1996] [Vicini & Quagliarella 2000]

[Lesieutre et al. 19981. There are many practical design situations where there are a

number of objectives, for instance, an aircraft wing must have an optimised

aerodynamic shape, as well as an optimised structural shape. [Fugsland & Madsen

1999] describe the use of multi-criteria optimisation of wind turbine rotors.

1.2 Search Algorithms as Part of the Design Process

Engineering design is a process which aims to create artefacts that meet a particular

need. Design specifications can be formulated which describe the requirements for

the product. The design process can be seen as a decision making process in which

these specifications are transformed into sufficient information for the creation and

use of the artefact, throughout its lifecycle, from manufacture, through use to,

possibly, its decommissioning. [Gero 1990] characterises design activity as 'a goal-

oriented, constrained, decision-making, exploration and learning activity'.

1. 	Introduction 	 13

[Gero 1990] identifies three classifications of design: routine, innovative and

creative. He defines routine design as 'that design which takes place within a well-

defined state space of potential designs'. This state space of potential designs is

considerably smaller than the space of all possible solutions. Routine design looks to

vary the values of variables in existing 'prototypes'. Innovative design similarly

takes place within a well-defined state space of potential designs, but 'designs

produced are outside the routine or 'normal' space', produced by 'manipulating the

ranges of values for variables'. He defines creative design as 'that design which uses

new variables producing new types and as a result extending or moving the state

space of potential designs'.

Design can be seen as the search for a suitable or optimal design [Gero 1996]

[Renner & Ekárt 2003] within a state space of potential designs. A search problem

consists of a goal state, a search space and a search process. For design, the goal state

is a design which, perhaps optimally, matches the requirements defined by the

specifications. The search space is the set of all those designs that can be formed

from all possible values of the design parameters. Optimisation algorithms, and in

this thesis particularly Evolutionary Algorithms, are one possible search process by

which the goal state can be found from the search space.

1.3 Shape Optimisation as Part of the Design Process

An important area of design research concerns the process of generating the

geometric form for a component, given a desired function or behaviour for that

component [Roy et al. 2001] [Shapiro & Voelcker 1989]. It would be helpful if

computer tools could be developed which could take a desired function and, from

this, produce a geometry that would exhibit such a behaviour. However, specifying

function in a way that can be used to generate form has proved to be difficult [Roy &

Bharadwaj 2002] and so the design of form is still regarded largely as a creative

process undertaken by imaginative humans.

1. 	Introduction 	 14

Recently, 'features' have been proposed as an approach to integrating function and

form [Shah 1991]. Clearly, geometry often plays a uniquely important role in the

representation of an engineering component. It therefore seems reasonable to group

together aspects of a component's geometry into features and to attach information

about the component's function, or possibly manufacturing process, to these features.

There are, however, many different definitions of what constitutes a feature and

equally many different approaches to generating form given the requirement for a

particular set of features. Features only go a short distance toward the automatic

generation of form from function.

The automatic generation of form, given a desired function, therefore seems

problematic. However, the inverse of the geometric design process, namely the

determination of the physical behaviour of a component given a particular geometry,

is becoming increasingly easy for engineers and designers. Previously, engineers

relied on empirical models, or analytic solutions to the equations governing the

behaviour of components. This was restricted to a limited number of shapes and

behaviours. The development of computational tools such as the finite element

method [Desai & Kundu 2001] and computational fluid dynamics [Jameson 2001]

has greatly increased the range of phenomena and shapes that can be analysed.

In the design process, such tools are typically used to assess a prototype design in

order to find where the design is deficient or needs changing. Following the analysis,

the designer either accepts that the design is adequate or changes the design and,

possibly, undertakes a further analysis on the new design. This interactive process

continues until an adequate design is found. Shape optimisation is an attempt to

automate part of this process. Rather than a human designer changing the geometry

of the design in response to the analysis, a computer program is used to make the

changes in order to find an optimal geometry. [Papalambros 2002] reviews the

current state-of-the-art for optimisation in the design process.

1. 	Introduction 	 15

1.4 Evolutionary Algorithms in Design

Evolutionary Algorithms (EAs), such as the Genetic Algorithm [Holland 1975]

[Goldberg 1989] [Davis 1991], Evolution Strategies [Rechenberg 1973] [Schwefel

1981] [Back et al. 1991] [Back 1996], Genetic Programming [Cramer 1985] [Koza

1990] [Koza 1992] and Evolutionary Programming [Fogel et al. 1966] [Fogel 1995]

[Sebald & Fogel 1994], are search techniques which are inspired by an abstract

model of how evolution takes place in biology. They are adaptive stochastic search

techniques. A brief overview of the concepts and processes common to all EAs is

given here to ensure the clarity of the following sections, however, for a more

detailed treatment of EAs, the reader is referred to Section 2.3.4.2.

In an EA a population of individuals is maintained, where each individual represents

a candidate solution. Each individual has a genotype, which is a structure that can be

decoded to form the candidate solution. The genotype consists of a set or string of

genes. A gene has a number of possible values that are its alleles. In order to test the

fitness of an individual, it is necessary to transform the genotype to a phenotype.

Often this process is trivial, but this might not necessarily be the case. Mimicking

natural selection, parents from the population are selected with some bias towards

the better (fitter) solutions. From these parent solutions, offspring solutions are

generated in various ways, by using operators, which recombine or change the

genes. Operators are usually chosen so that that the offspring inherit some of the

attributes of their parents. These are then evaluated, placed in the population, and can

subsequently be chosen as parents themselves. Often at this point, some of the least

fit individuals are culled (i.e. removed) from the population. This process repeats a

number of times generating subsequent generations. This pseudo-Darwinian

selection and breeding is intended to result in those properties that promote greater

fitness being transmitted throughout the population. Selection of the fittest should

result in increasingly good solutions appearing.

Evolutionary algorithms have a number of desirable properties, over other

optimisation algorithms (see Chapter 2), for use in design:

1. 	Introduction 	 16

• No derivatives need to be calculated. EAs are therefore easily integrated with any

form of evaluation routine that may be required.

• They can deal with noisy landscapes. Since EAs do not use gradient information

and make no assumptions about the smoothness of the landscape, they can cope

with problems where small changes in variables can result in relatively large

changes in the objective function, due to discretisation errors, for example. Such

phenomena can often be observed in shape optimisation problems.

• They can cope with discontinuities in the landscape. EAs can optimise even

where the objective function changes discontinuously with design variables.

• Discrete variables can be used. If appropriate operators are used, then EAs can

deal with problems where the variables are not continuous [Deb & Goyal 1997].

An example of when this might be useful is where, for instance, the number of

holes in a component is variable, as well as the sizes of those holes.

• EAs are (potentially) global optimisers. Although care must be taken to initialise

the population correctly and to set EA parameters such as mutation rate and

population size appropriately [Goldberg 1999], EAs can avoid merely finding a

local optimum and can search through a large part of the search space for the

global optimum.

• It is easy to deal with constraints with an EA. Some classical optimisation

techniques have to be restricted to convex search spaces or must make special

provision for dealing with constraints. With EAs these difficulties can be avoided

with simple strategies, such as penalising fitness relative to the extent to which

the constraints are violated, and thereby evolve away from these parts of the

search space. Unfeasible individuals might just not be allowed to breed.

Alternatively, individuals can be repaired to satisfy the constraints.

• EAs can use problem specific operators. EAs are not restricted to simple

operators for moving around the search space. Whereas classical optimisation

1. 	Introduction 	 17

techniques can only move within a local neighbourhood of the current point in

the search space, EA operators can be designed using knowledge that the

designer has about the nature of the problem. This can allow the EA to move

about the search space in a more 'intelligent' way.

These advantages have led to a large body of research being undertaken with EAs in

design. Some of this work is to apply EAs to problems to which classical techniques

could not be applied because gradients could not be calculated or where the

landscape is unsuitable. Alternatively, they have been used in order to search for

global optima through larger search spaces, where, for instance, some of the design

variables are discrete. This allows for the extension of the optimisation paradigm

further into the design process.

The principal disadvantage of genetic algorithms is the need, in general, for a large

number of function evaluations. One way in which this problem can be ameliorated

is by using parailelisation. Because LAs deal with a population of solutions, they can

easily be adapted so that a number of evaluations can take place on different

processors (for shape optimisation a large proportion of the computation takes place

in evaluation). [Cantu-Paz 1997] and [Nowostawski & Poli 1999] cover the use of

parallelism for EAs.

[Renner & Ekárt 2003] gives a recent review of the use of genetic algorithms in

computer-aided design. [Alander 1994] provides a bibliography of genetic

algorithms in computer-aided design although there has been a considerable volume

of research in this area since its compilation. [Giannakoglou 2002] gives a recent

review of the use of stochastic optimisation techniques for aerodynamic optimisation

concentrating primarily on EAs.

[Winter et al. 1995], [Gen & Cheng 1997], [Bentley 1999] [Pan-nee et al. 1993] and

[Parmee 1993] give examples of the use EAs in design.

1. 	Introduction 	 18

1.4.1 Routine Design with Evolutionary Algorithms

Evolutionary Algorithms lend themselves well to parametric or routine design [Gero

1990], where the structure of the design, and the variables allowing variation of the

design within that structure, are well defined. The design process can be seen as the

determination of values for those variables such that some measure of the design's

utility (fitness) is optimised. The variables can be directly encoded as genes, with

values for those variables being alleles for those genes. The genes together form the

chromosome. The search space is thus determined by the range of values that the

genes can take.

The majority of work done with Evolutionary Algorithms in design falls under this

category. The variables to be used, and the ranges of those variables, are predefined

and the EA is required to find values for those variables to optimise some objective.

[Bentley 1999] refers to this as Evolutionary Design Optimisation, and a number of

articles on this topic are included in his book. [Eby et al. 1999a] [Eby et al. 1999b]

look to optimise a flywheel. [Robinson et al. 1999] describe the use of EAs in the

design of satellite booms and load cells.

The number of papers describing work in this area is large and a comprehensive

survey is not given here. However, some examples are [Husbands et al. 1996] who

use genetic algorithms to design an aircraft wingbox. [Annicchiarico & Cerrolaza

1998] use genetic algorithms to optimise a truss structure. [Deb & Goyal 1997] use

examples of the design of a gear train, a spring, a hydrostatic thrust bearing and a

welded beam, and show the ability of a genetic algorithm to cope with mixed discrete

and continuous variables. [Mäkinen et al. 1999] investigate a parallel genetic

algorithm for the multi-disciplinary shape optimisation of aerofoils for both

aerodynamic and electromagnetic (radar cross section) behaviour. [Quagliarella &

Cioppa 1994] [Quagliarella & Cioppa 1995] [Oyamaa et al. 2001] [Doorly et al.

1996b] [Obayashi & Takanashi 1995] [Quagliarella & Vicini 2001] all look at the

aerodynamic optimisation of transonic aerofoils. [Winter et al. 1995] contains a

1. 	Introduction 	 19

number of examples of routine design with genetic algorithms. [Chen 2001] looks to

optimise a structure for crash-worthiness.

Further details on EAs in shape optimisation specifically, for both structural and

aerodynamic behaviour, are given in Section 2.3.4.3 and Section 2.3.4.4.

1.4.2 Creative Design with Evolutionary Algorithms

Whether computers can be creative is a contentious issue. [Boden 1991] discusses at

some length creativity and computers. Reviews of her book in [Haase 1995] [Lustig

1995] [Perkins 1995] [Ram et al. 1995] [Schank & Foster 1995] [Turner 1995] and

her reply [Boden 1995] provide an interesting discussion of the topic, along with

Boden's later paper [Boden 1998].

Boden classifies creativity into three different types: combinatorial, exploratory and

transformational [Boden 19981. Combinatorial creativity involves the juxtaposition

of familiar ideas or structures in novel ways. Exploratory creativity involves the

search through a structured conceptual space. This, she says, can produce novel and

unexpected structures, but they, clearly, 'satisfy the canons of the thinking-style

concerned'. The parallels between this and Gero's routine design [Gero 1990] are

apparent.

Transformational creativity involves 'the transformation of some (one or more)

dimension of the space, so that new structures can be generated which could not have

arisen before'. Again, this matches well with Gero's creative design [Gero 1990].

The line between exploratory and transformational creativity is somewhat unclear, as

recognised by Boden: 'exploration of the space can include minimal 'tweaking' of

fairly superficial constraints. The distinction between a tweak and a transform is to

some extent a matter of judgement'.

Boden suggests that creativity involves 'going beyond the bounds of a

representation' [Boden 1991], so that a novel solution is generated which could not

1. 	Introduction 	 20

have been given by the representation. She does not think that a computer is capable

of this kind of creativity.

[Bentley & Come 2001a] give a number of descriptions of creativity as a process that

have been given by various sources. These include:

In the context of design, [Rosenman 1997] states that 'the lesser the knowledge

about existing relationships between the requirements and the form to satisfy

those requirements, the more a design problem tends towards creative design'.

This is a description which [Bentley 1999] finds useful. It does not explicitly define

what creativity is, but rather presents design on a continuum from creative to routine

based on the a priori knowledge available for transforming the requirements into a

design.

A second definition given by [Bentley & Come 2001a] is that creativity is

'exploring a search space in an innovative and efficient way'.

With this definition, the creativity depends on how innovative or efficient the search

is. This, though, is essentially the same as Gero's routine design and it would seem

difficult to determine the boundary between when a search is being creative and not.

It certainly conflicts with Boden's definition of creativity as 'going beyond the

bounds of a representation', since all the designs produced would be set out by the

representation that defines the search space. It does, though, match with her

exploratory creativity.

A third definition from [Gero 1996] is that creativity involves 'exploring

alternative search spaces'.

Many of the systems for 'creative design' make use of a changing representation in a

number of ways throughout the search. In some of the more advanced EAs, the

number of variables can be changed, the coding can change, redundancy can be

incorporated into the genotype, and various high-level structures can be evolved and

1. 	introduction 	 21

reused [Schoenauer 1996]. Thus the representation can be evolved along with the

design and, arguably, alternative search spaces are explored.

[Bentley 2000] strongly advocates the use of representations that are based on

components, rather than parameterisations, in order to allow evolution to design

more creatively. The number and type of components can be evolved, along with the

way they are arranged. Embryogenies can be used, in which the genotype to

phenotype mapping can be more or less complex [Angeline 19951 [Kumar & Bentley

1999] [Kumar & Bentley 2003b]. This may allow complex structures to be 'grown'

in the phenotype. This is discussed in more detail in Section 8.2.2.

These approaches are more creative than traditional uses of EAs with simple

parametric representations, in the sense of (a) above. Such approaches show promise

for generating form with less prior knowledge about the nature of the form to be

generated.

They would not, however, be seen as creative given Boden's definition of creativity

as 'going beyond the bounds of a representation'. All of the possible designs that can

be generated in these 'creative systems' can be viewed as a single 'super-search-

space'. The system searches through this space. It is certainly true that this new

search space is potentially larger and more general. It may also be more easily

searched. Solutions with complex structures may also be produced. This search space

is, though, implicitly defined when the designer sets up the search - the system

cannot generate a solution that lies outside this space. The efficacy of using search

for design depends on defining a search space with relevant size and generality and a

suitable way of searching the space. The use of evolving and varying representations

may be a useful tool for doing this, but there may be other methods of achieving the

same end result with similar 'creativity'.

(d) A fourth definition from [Goldberg 1999] is 'transferring useful information from

other domains'. He distinguishes between innovation, which involves discovery

1. 	Introduction 	 22

within a discipline, and creativity, which involves use of knowledge from outwith

that discipline.

It seems that, until what it is to be creative can be defined, it will be impossible to

determine whether computers can undertake creative design. [Bentley & Come

2001b] contains a numbei of articles on Creative Evolutionary Systems that describe

their use on a wide range of domains, from art and music, architecture, circuit design

to antenna design.

[Bentley 19991 states that research into creative evolutionary design is concerned

with the preliminary stages of the design process and can be categorized as

conceptual evolutionary design and generative evolutionary design. These are

discussed in the following two sections.

1.4.2.1 Conceptual Design with Evolutionary Algorithms

Conceptual design [Hsu & Liu 2000] [Hsu & Wonn 1998] [Wang et al. 2002b] takes

place early in the design process [Renner & Ekárt 2003]. It commences with a high-

level description of the requirements and then moves to a high-level description of a

solution [MCNeill et al. 1998].

With appropriate design of operators, EAs are able to search through large and

complex search spaces. This has led to some researchers investigating the use of EAs

for conceptual design. The motivation of this research is to allow a computer to

undertake some of the creativity that takes place in the conceptual stages of design.

One of the important requirements for a system that is able to do this is that there is a

very general shape representation available. [Husbands et al. 1996] describe a system

using superquadrics which could generate a number of interesting shapes. [Bentley

1996] [Bentley & Wakefield 1996] developed a system based on 'clipped stretched

cubes' that could be evolved by a genetic algorithm. This has the limitation that

curved shapes cannot be generated, but does produce a shape representation that was

very general and could be applied to the conceptual design of a large variety of

1. 	Introduction 	 23

components. Since the aim of this work was conceptual design, only fast evaluation

of the designs was undertaken measuring such aspects of the parts' behaviour as

stability, extent, surface area, presence of flat surface, optical behaviour (for evolving

prisms) and a particle-flow simulator (for evolving streamlined shapes). From an

aerodynamicist's point of view, these evaluations would seem relatively simplistic

and inaccurate. They do, however, have the merit of speed of execution and easy

integration with the shape representation. To some extent this work can be seen as

addressing very similar objectives as the work in this thesis, namely the use of EAs

to extend the use of computers in the generation of form from function. However, he

approaches this problem by extending preliminary conceptual design using search

(with an EA) with simple evaluation of behaviour. In contrast the work in this thesis

looks to extend detailed shape optimisation with analysis methods used by engineers

towards conceptual design.

[Parmee et al. 2001] introduce an interactive evolutionary design system, which is

aimed at supporting the decision-making processes during conceptual design. The

software is intended for multi-disciplinary design where there may be multiple,

uncertain and ill defined objectives. There are a number of modules (for example

defining preferences among multiple objectives), built around a cluster-oriented

genetic algorithm. An example is given for the conceptual design of an aircraft.

[Parmee 2002] discusses how evolutionary computing can be used in the preliminary

stages of design, where various problems might be encountered, such as criteria that

are either qualitative or quantitative, or variables that may be continuous or integer.

The usefulness of interactivity between the system and the designer is also discussed.

This work is reported in detail in [Cvetkovic 2000] along with [Parmee 1996]

[Cvetkovic & Parmee 1999a] [Cvetkovic & Parmee 1999b].

[Rasheed et al. 1997] use a genetic algorithm to optimise the conceptual design of a

supersonic transport aircraft and a supersonic missile inlet. Variables were used for

conceptual design parameters such as exhaust nozzle radius, engine size, wing area,

wing aspect ratio.

1. 	Introduction 	 24

As discussed in Section 1.2, [Gero 1990] defined innovative design as taking place

within a well-defined state space of potential designs, but 'designs produced are

outside the routine or 'normal' space', produced by 'manipulating the ranges of

values for variables'. The use of EAs that can move outside the existing search space

through the run and thus move towards potentially advantageous designs could be

helpful during early stages of design, before a detailed design is settled upon. [Beck

& Parmee 19991 describe a system that uses a multi-population genetic algorithm

that allows the ranges of the genes to change through the run. A different approach is

given by [Gero & Kazakov 2000] in which a crossover operator (see Section 2.3.4.2)

is able produce designs that are outside the original design space.

1.4.2.2 Generative Design with Evolutionary Algorithms

One approach to searching through the very large space of possibilities during the

early stages of design is to use a generative representation. [Hornby & Pollack 2001]

define a generative system as being a system 'where the genotype is a program for

constructing the final design' (rather than directly describing the design).

[Schoenauer 19961 and [Bentley 2000] suggest that such approaches offer greater

scalability, by allowing hierarchical, recursive and self-similar structures to be

evolved.

[Homby 2003] shows how systems using generative representations can better search

large design spaces, since they can capture some of the properties of the structure of

the search space and thus reuse components of the designs. Examples are given of

generative design of voxel-based structures, neural networks and controllers for

robots. [Hornby & Pollack 2001] use a representation based on Lindenmayer systems

to evolve tables. [Funes & Pollack 1999] evolve Lego structures based on a

generative tree-based representation.

Morphogenic evolutionary computation [Angeline 1995], in which a complex

development process is used to generate the phenotype from the genotype, offers a

number of potential advantages for design, such as better evolvability, and the ability

1. 	Introduction 	 25

to generate solutions with complex structures from relatively simple genotypes.

[Kumar & Bentley 1999] discuss various types of embryogenies and their

advantages. Section 8.2.2 provides more detail on the current state-of-the-art in

morphogenic evolutionary computation.

1.5 Motivation of the Work in this Thesis

A number of difficulties are encountered in setting up a shape optimisation algorithm

to generate a useful shape for an engineering component:

• a well-defined specification of the desired function is required,

• a valid set of possible shapes through which to search must be defined,

• an analysis technique for accurately assessing how well potential shapes meet the

desired function must be provided,

an algorithm must be supplied that can effectively and efficiently search through

the set of possible shapes.

Each of these points is easier to address when the set of shapes is relatively small and

all shapes are kept similar to an initially defined starting shape. Most successful

applications of shape optimisation have, therefore, relied on restricting the set of

possible shapes.

The research reported in this thesis was motivated by the desire to extend the

applicability of shape optimisation in the design process. It was hoped that shape

optimisation techniques could be used so that the generation of geometric form, for a

specified function, becomes more automated. Inevitably, this would mean that the set

of shapes through which to search has to be large and general, and so choosing an

appropriate geometric representation, analysis technique and optimisation algorithm

becomes more problematic.

1. 	Introduction 	 26

The work in this thesis can be seen as attempting to extend shape optimisation from

Gero's [Gero 1990] routine design, to more innovative design. The work described

here has, therefore, investigated shape representations, such as voxel models and

spline models, which are able to represent a large generality of shapes. It has

addressed the problem of accurately analysing a large range of shapes. It has also

looked at modem stochastic global optimisation algorithms, such as genetic

algorithms, which can avoid being trapped in local optima, since, as the size of the

search space of shapes increases, the likelihood that the problem becomes multi-

modal is increased. Following these investigations, the conclusion was drawn that a

common framework for the integrated representation of both geometry and physical

behaviour would be helpful.

1.6 Aims & Objectives of Work Described in this Thesis

This thesis presents the argument that a framework for shape optimisation, with a

common representation of both geometry and physical behaviour, would allow the

development of novel and efficient new algorithms better suited to the semi-

automatic generation of an engineering component's geometry, given a certain

desired behaviour.

The principal, overarching aim of this work was:

To determine whether shape optimisation can be extended, such that it can be used to

increase the automation of the process of shape synthesis for engineering design.

In order to pursue this aim, research was undertaken into the following objectives:

(a) To determine whether evolutionary algorithms, along with novel shape

representations which are able to represent a large generality of shapes, would

enable more automation of the process of determining form from function, and to

identify any obstacles that might be encountered with such an approach.

1. 	Introduction 	 27

To identify a computational framework which could provide an integrated

representation of both component geometry and physical behaviour.

To determine whether a morphogenetic evolutionary algorithm, using the

identified integrated representation of geometry and physical behaviour, shows

any potential to increase the automation of the process of shape generation for

engineering design.

1.7 Chapter Outline

Chapter 2 reviews common approaches to shape optimisation from the literature.

Objective (a) is investigated in Chapters 3, 4 and 5, which describe shape

optimisation work done by the author using novel shape representations and

optimisation algorithms. Chapter 3 gives details of aerofoil shape optimisation work

using various shape representations and analysis methods. In Chapter 4 an adapted

genetic algorithm is used to optimise a voxel shape representation for structural

optimisation. In Chapter 5 genetic programming is used to optimise a CSG solid

model.

Investigations into Objective (a) are concluded in Chapter 6, which, following the

review of optimisation techniques in Chapter 2 and the work described in Chapters 3,

4 and 5, argues that a computational framework which can provide an integrated

representation of both component geometry and physical behaviour is desirable. This

is done by analysing the various approaches described in Chapters 2 to 5 in terms of

the methods that they use to search through the space of possible shapes.

Chapter 7 addresses Objective (b) and describes a possible framework that could be

used for shape optimisation, based on Chain models, which use cell complexes and

chains from algebraic topology. It also describes how existing techniques could be

implemented in such a framework.

1. 	Introduction
	

28

Chapter 8 addresses Objective (c) and describes an approach to shape optimisation

that adds a morphogenetic stage to an evolutionary algorithm for structural

optimisation. In this approach the evolutionary algorithm evolves genes which

modulate the way that a cellular shape 'grows' in response to the stress on it. This is

given as an example of a novel algorithm that can be implemented in the new

framework from Chapter 6.

Conclusions are then drawn in Chapter 9.

2. 	Review of Shape Optimisation Techniques 	 29

2 Review of Shape Optimisation Techniques

2.1 Summary

In this chapter the numerous approaches to shape optimisation for engineering

components are reviewed. The purpose of this review is not merely to list and

describe the techniques, but to classify them in terms of the various methods they use

for the optimiser, geometric model and analysis.

2.2 Typical Structure of a Shape Optimisation Method

Analysis
Opt imiser 	 Geometric 	

(FE or CFD)

Objective function / Sensitivities

Figure 2-1 	Typical Structure of a Shape Optimisation Application

Most approaches that have been used for shape optimisation can be split into three

distinct sections [Hsu 1994]. These are the optimiser, geometric model and analysis

modules. The optimiser changes some variables that affect how the geometric model

is built. The geometric model is then passed to an analysis module where, typically,

the geometry is discretised and the physical behaviour of the shape is approximated.

From this analysis module, the objective function and possible constraints (for

instance, maximum stress or deflection) are calculated. Based on the result of this

2. 	Review of Shape Optimisation Techniques 	 30

analysis, the optimiser again changes the variables over which it is optimising. This

loop continues until some termination criteria are met.

This can be expressed more formally. A representation of the geometry is chosen so

that there are a number of variables that can be changed in order to modify the shape.

We can formulate the shape optimisation problem as:

minimise 	f(x),

subject to 	ge(x)<=0,

gj(x) <=0,

where x is the vector of design variables,f(x) is the objective function and g(x)<=O

and g(x)<=0 are the constraints. Examples of possible objectives to be minimised

are weight, volume, deflection or aerodynamic drag. ge(x)< =0 are explicit

constraints which can be described explicitly as a function of the design variables.

Typically, these are upper and lower bounds on the design variables. g(x)<=0 are

implicit constraints which depend on the design variables but cannot be expressed

explicitly as a function of them. Examples of such constraints are stress,

displacement or resonant frequency. These constraints must be evaluated using some

computational model of the relevant physics.

In the following sections the various different approaches to each of these three

modules in shape optimisation are discussed.

2.3 Optimiser

The optimiser is used to vary the shape design variables (x) that the geometric model

uses to build the shape. The optimiser alters these variables in order to find the best

set of values for the shape design variables.

The geometric model and analysis combined can be thought of as a function mapping

the vector of variables (in ¶ where n is the number of design variables) onto a value

2. 	Review of Shape Optimisation Techniques 	 31

for the objective (in 9j where in is the number of objectives). This obvious similarity

to the problem of optimising an analytic function led to the large body of techniques

used for function optimisation being used for shape optimisation.

In the following sections, firstly some terminology is introduced. A review of

optimisation techniques is then given. The field of optimisation is extremely large

and so it is not possible to give a comprehensive survey of all classes of techniques.

Rather, what follows is a survey of some of the major classes of optimisation

techniques that have been applied to shape optimisation problems. These have been

divided into classical deterministic techniques and stochastic techniques. A brief

description of each technique is given so that an understanding of the algorithm and

data structures used can be gained. The strengths and weaknesses of each method are

discussed.

2.3.1 What is Optimisation?

Optimisation problems have three basic elements:

An objective function which is to be minimised or maximised.

. A set of variables that affect the value of the objective function.

. A set of constraints that restrain the values that the variables can take.

Optimisation aims to find a set of values for the variables which minimises (or

maximises) the objective function whilst respecting the constraints.

2.3.1.1 Some Terminology

Usually, optimisation techniques are used to minimise the objective function rather

than to maximise the objective function. This does not imply a loss of generality

since the maximisation of an objective functionf(x) is equivalent to the minimisation

of —f(x). It is therefore always easy to transform a maximisation problem into a

minimisation problem.

2. 	Review of Shape Optimisation Techniques 	 32

For most optimisation problems there is only one objective function. When there is

more than one objective function the problem is referred to as a multi-objective

optimisation problem. Where there is no objective function and the problem is

merely to find a set of values for the variables, which respects all the constraints, this

is called afeasibility or satisfaction problem.

A problem in which there is only one variable is univariate. Problems with more

than one variable are multivariate. Where the variables take values that are real

numbers the problem is continuous. Where some variables are real numbers and

some integers the problem is a mixed integer problem, and the problem is described

as discrete. When the variables take integer values, but in permutations with each

other, the problem is combinatorial.

Problems that are subject to constraints are constrained. Those not subject to

constraints are unconstrained. It is often useful to distinguish between those

constraints that directly constrain the variables (i.e. xj>15), as explicit constraints,

and those constraints that restrict the value that some response of the system other

than the objective function can take, as implicit constraints. An example of an

implicit constraint in structural optimisation would be to keep the maximum stress

below some value. The maximum stress obviously depends on the variables but not

in an explicit way.

2.3.1.2 Search Spaces and Landscapes

The set of all possible combinations of values for the variables is referred to as the

search space. Each point in the search space is associated with a value for the

objective function. When the variables are continuous, it is possible to consider the

value of the objective function at each point in the search space as a height and

visualise a landscape as in Figure 2-2 below.

)00 	

:001600-

•500-
500

400 	
l400-500

•300-400

300 U 200-300

0100-200

10-100

•-100-0

100

800

700

0

-100

2. 	Review of Shape Optimisation Techniques
	

33

IN 	

- 	 - 	
1.25 	

1 	-

8

Figure 2-2 Example of Landscape

	

F(x,y) = 4(((10 - y) 2 + x2)05 - 10)2 + 0.5(((10 + y) 2 + 	- 10)2 - 5x - 5y

In the example shown in Figure 2-2 there are two variables x and y, each constrained

to have values between —10 and 10. There is a minimum near (8.6, 4.5).

Maxima and Minima

Figure 2-3 shows an unconstrained problem with a single continuous variable. The

global minimum is the point in the search space that has the lowest value for the

objective function. All other points in the search space have higher (or at best the

same) value for the objective function.

2. 	Review of Shape Optimisation Techniques
	

34

f(x)

X

uiooai minimum

Figure 2-3 	Unconstrained Objective Function Minima

A strong local minimum is a point that has the lowest value for the objective function

in its neighbourhood. More rigorously this can be expressed by saying that there is a

distance 8 from the local minimum within which all points have a higher value for

the objective function. When the objective function and its first derivative are

continuous, it can be seen that at a local minima the gradient of the objective

function is zero.

f(x)

x

2. 	Review of Shape Optimisation Techniques 	 35

Figure 2-4 shows the same function, but now with a constraint on the variable. Now

the global minimum lies against the constraint and the gradient at the global

minimum is not zero. This is frequently observed in real optimisation problems.

Figure 2-4 	Constrained Objective Function Minima

2.3.2 Classical Deterministic Optimisation

The majority of research done into shape optimisation has used optimisation

techniques from mathematical programming. These deterministic methods can be

classified into second order, first order or zeroth order techniques depending on the

order of the derivatives of the objective function that are required. Zeroth order

methods require only the calculation of the objective function itself. First order

methods require calculation of the objective function and its first derivatives (often

called sensitivities) over the shape variables. Second order techniques also require

second derivatives.

2. 	Review of Shape Optimisation Techniques 	 36

These techniques are primarily designed to work with continuous variables. Function

minimisation is assumed throughout. Bold variables such as x refer to vectors and

will naturally be used in the discussion of multi-dimensional problems.

Usually, these deterministic optimisers can find optima with fewer design

evaluations than the stochastic methods described later. This is often important in

engineering problems, where the time taken to perform one design evaluation is often

many orders of magnitude greater than the time taken to produce candidate designs.

However, such optimisers can often have difficulties in dealing with local optima,

discrete design variables and noise which, for instance, can be generated when small

changes in the design variables cause changes in finite element mesh topology.

All the major techniques described in this section are local methods. They will move

to a minimum local to the point from which the method is started. When the problem

is multi-modal (i.e. has many peaks and valleys) they cannot be guaranteed to find

the global optimum and will instead find only local optima. It is possible to run these

algorithms from several different initial positions. This can sometimes result in the

global optimum being found. However, the stochastic methods described later in this

section are usually much more effective in finding global optima as they can sample

different areas of the search space and 'jump' out of local minima.

The following sections review some of the major algorithms from classical

optimisation. Firstly, some zeroth order methods are described. Secondly, gradient

based techniques are discussed. Finally, second order methods such as Newton-

Raphson are reviewed.

2.3.2.1 Zeroth Order Methods

This section overviews the most common and important classical techniques that

only require function evaluations and do not need gradient information. Such

techniques are often referred to as direct search methods.

2. 	Review of Shape Optimisation Techniques
	

37

Direct search methods are commonly used when:

it is not possible to differentiate the function, or the function is subject to random

error;

• the evaluation of derivatives of the function is very expensive and/or complex;

Hsu, in his review of structural shape optimisation techniques [Hsu 94], concluded

that zeroth order methods have many advantages for three-dimensional shape

optimisation, since often the above conditions are encountered. Often the

determination of derivatives, which are typically calculated either by using finite

differences or by using an analytic method, is expensive (see Section 2.3.3.5). Zeroth

order algorithms, which do not require objective function gradients to be provided,

therefore hold some advantages for shape optimisation. The following sections

review some of the major zeroth order optimisation techniques.

Hooke and Jeeves

In the early 1960s Hooke and Jeeves developed a widely used direct search method

[Hooke & Jeeves 1961] [Lewis et al. 2000]. This method makes moves along one

dimension at a time. The Hooke and Jeeves method uses information gathered in

previous function evaluations in order to determine the direction in which future

moves might be profitable.

Starting from an initial base point, exploratory and pattern moves are undertaken.

Exploratory moves perturb the each of the variables in turn, moving to the new point

in the search space if improvements are made. If after perturbing all the variables no

improved point is found, then a further set of exploratory moves are undertaken with

the size of the perturbation halved. This continues until some minimum size of

perturbation is reached. If after the exploratory move an improved point is found,

then a pattern move is undertaken.

2. 	Review of Shape Optimisation Techniques 	 38

Pattern moves are used to speed up the search process by making larger moves in

those directions that have previously found to be good. Pattern moves are repeated

until no further improvement is found, at which point there is a return to exploratory

moves.

This algorithm can work well for functions where the surface is well behaved and the

dimensionality is fairly low (< 10). It is also easy to incorporate constraints by

making a move a failure if it breaks a constraint.

[Keane 1994] compares the Hooke and Jeeves algorithm to a number of other

optimisation techniques for a problem where the vibrational response of a truss

structure of rods is to be optimised.

Nelder and Mead's Down-Hill Simplex method

Hooke and Jeeves' method attempted to make use of information about past function

evaluations to decide where future exploration should take place in the search space.

[Spendley et al. 1962] used similar ideas to produce a method based around the

regular simplex. Their ideas were extended and refined by problems [Nelder and

Mead 1965] in the mid 1960s to produce the downhill simplex method (unrelated to

the simplex method of linear programming). Thus is a relatively straightforward

multi-dimension search method that works well for low dimensional problems (up to

5 or 6), but becomes inefficient for larger problems [Nelder and Mead 1965].

This method is based around the movement, through stretching and contracting, of a

non-regular simplex. An n dimensional simplex consists of n+1 vertices and all their

connecting line segments and faces. In two dimensions a simplex is a triangle, in

three a tetrahedron. Function evaluations are made at the position of the vertices in

the search space.

[Duvigneau & Visonneau 2001] describe an application of the Nelder-Mead simplex

algorithm to the shape optimisation of airfoils in incompressible, turbulent flows.

[Rogalsky et al. 1999a] describes the application of the Nelder-Mead simplex

2. 	Review of Shape Optimisation Techniques 	 39

algorithm to the optimisation of turbine fan blades and compares the technique with

other approaches. This method is robust and needs no derivatives and hence is easy

to implement, however its convergence to the optimal solution can be slow, needing

many potentially costly evaluations.

2.3.2.2 Powell's Direction Set Method

Many techniques for the optimisation of a multi-dimensional function f(x) have the

following basic framework:

Choose a starting point, Xj, and a direction d.

Find the minimum, x2, of f(x) along direction d from x1 using a 1-dimensional

minimisation technique.

Stop if termination criteria met otherwise choose a new direction d1, replace d by

d1 and x1 by x2, repeat step (b).

There are numerous optimisation algorithms which follow this form, each varying in

the way in which the search direction and the line search is chosen.

A simple algorithm takes the set of unit vectors e1, e2, ... e, of the n-dimensional

space as a set of directions and then, starting from where the last minimisation

reached, minimises in each direction in turn. This is repeated until no further

improvement is found. This simple algorithm is easy to implement, but is often

inefficient where the function has many long narrow valleys that are not parallel to

one of the search directions. In this case the method can take a very large number of

small minimisation steps, cycling through the direction set many times.

To avoid this problem a number of algorithms try to produce a better set of search

directions which either lie along the valley or which avoid interfering with each other

(so that the minimisation in one direction is not undone by the minimisation in the

next direction). Such methods make use of the concept of conjugate directions. At a

particular point for two line minimisation directions p and q to be non-interfering,

2. 	Review of Shape Optimisation Techniques 	 40

changes in the gradient of f(x) along q must be perpendicular to p. The condition for

two vectors, p and q, to be conjugate in this sense for a quadratic function f(x) is that

p.A.q =0, where A is the Hessian matrix off(x), [A u] = cf/dxdxj

A method is needed in order to build such a set of conjugate directions. [Powell

1964] describes a method for creating n mutually conjugate directions during the

optimisation run. [Brent 1973] extends these methods.

[Lesieutre et al. 1998] make use of Powell's direction set method for the multi-

disciplinary optimisation of missile fin planforms.

2.3.3 Gradient Descent Methods

The methods described in this section use gradient information (directional

derivatives) of the objective function in order to choose search directions. They are

useful when the derivatives are defined, can be calculated and are not too

computationally expensive to calculate. They can converge quickly to the minimum

for problems when the objective function can locally be adequately approximated by

a quadratic.

2.3.3.1 Method of Steepest Descent

If gradients can be calculated then an obvious direction in which to search is the

direction in which the gradient is steepest. The direction of steepest descent is - 17j(x)

(the vector of partial first derivatives for the function at the point). Similar to the

direct search methods described previously, a line search is undertaken in the chosen

direction until the minimum is found in that direction. The gradient is then calculated

at this point and the new steepest descent direction chosen as the new search

direction. This is repeated until a termination criterion is met.

2. 	Review of Shape Optimisation Techniques 	 41

This algorithm is simple to implement but it suffers from similar difficulties to those

described in Section 2.3.2.2 with interfering directions as is shown in Figure 2-5.

This can cause the algorithm to take a large number of iterations when the landscape

has long narrow valleys.

r—

Figure 2-5 	Poor Performance of Steepest Descent Method in a Valley

2. 	Review of Shape Optimisation Techniques
	

42

2.3.3.2 Conjugate Gradient Methods

Just as Powell's Direction Set method avoided interfering search directions by using

conjugate directions, conjugate gradient methods look to use conjugate directions in

order to avoid some of the difficulties encountered with the Steepest Descent

methods.

At each iteration, this method chooses a direction based on the direction of steepest

descent but which is conjugate to the previous direction and hence partially (in some

informal sense) to all the previous directions searched. The most commonly used

methods for choosing these conjugate directions are variations of the original

Fletcher-Reeves method [Fletcher and Reeves 1964] [Press et al. 1993].

For a quadratic n-dimensional function, it can be shown that, with the Fletcher-

Reeves method, the minimum will be found in at most n iterations of the algorithm.

However, in most real applications the function will only be approximately quadratic

and so the algorithm may need further iterations.

Conjugate gradient algorithms can perform well. However, their performance can

deteriorate when the objective function is poorly approximated by a quadratic or if

the calculated gradients are inaccurate.

2.3.3.3 The Newton-Raphson method

The Newton-Raphson method addresses the problem of interfering directions with

basic steepest descent method by approximating the function at each iteration by a

quadratic function and then moving in a direction toward the turning point of that

quadratic.

2. 	Review of Shape Optimisation Techniques 	 43

At each iteration f(x) and its first and second derivatives are calculated at the current

point xe,. A quadratic function y(x) is found that matches these values at x. This

gives:

y(x) = ½ (x - 	- x) +(x - xc).gc +f(x)

where Gc is the Hessian matrix (matrix of 2nd derivatives) of f(x) at xc and g is the

gradient vector Vf(x) computed at x. It is straightforward to show [Walsh 1975] that

the minimum value of the quadratic y(x), Xm, is given by:

Xm =x— G'g

A 1D minimisation is then undertaken in the direction toward Xm.

2.3.3.4 Variable Metric (quasi-Newton) Methods

Very often it is impossible or very costly to compute the inverse Hessian matrix

required for the Newton-Raphson method. Quasi-Newton methods iteratively

construct a sequence of positive definite symmetric matrices Hi that become better

and better approximations to the inverse Hessian G'.

The Davidon-Fletcher-Powell algorithm [Acton 1970] uses an updating formula that

can be proved to converge H1 to G 1 in approximately n steps for an n-dimensional

problem [Walsh 1975]. The algorithm starts as steepest descent and converges to

Newton-Raphson whilst avoiding the worst problems of both. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [Acton 1970] uses a more complex update

formula that is generally slightly superior to that given above [Walsh 1975].

Quasi-Newton methods are probably the most widely used algorithms for

minimisation of functions that can be reasonably approximated by quadratic forms

and whose gradients can be calculated at arbitrary points. In these circumstances they

are highly efficient and accurate algorithms. However, if these assumptions do not

hold their performance is much impaired.

2. 	Review of Shape Optimisation Techniques 	 44

2.3.3.5 Gradient Based Methods for Shape Optimisation

There is a vast literature on structural optimisation using first order optimisation

techniques for linear elastic problems. [Vanderplaats 1993] writing in 1993 described

the previous thirty years of structural optimisation using finite element analysis (see

Section 2.5).

Early techniques used finite differences to calculate these gradients. These are

formed by perturbing the design variables and recalculating the objective function

and constraints. Typically this involved recalculation of the finite elements in order

to calculate the constraint sensitivities. n additional function evaluations are required

to calculate the forward difference approximations for each of the n design variables.

Later it was observed that the simultaneous equations solved during the finite

element method:

Ku = P 	 (Equation 2.1)

where: 	K 	is the stiffness matrix

U 	is the vector of node displacements

P 	is the vector of node loads

could be differentiated using the chain-rule with respect to the design variables to

give:

aK 	au a
—u+K---=---- 	 (Equation 2.2) ax, 	ax, ax,

2. 	Review of Shape Optimisation Techniques 	 45

and so:

du 1P aK 1 - K 	- h- 	(Equation 2.3)

where X1 is the i-th design variable. K' has already been calculated in order to solve

Equation 2.1 and so only the terms in the bracket need to be evaluated. If the loads

are assumed to be independent of the design variables then only dK/dX 1 need be

calculated. Analytic methods can be used to determine this term for some types of

variables (for instance thickness) however in general analytic methods are not

available and the semi-analytic method is used and dK/dX 1 found using finite

differences.

These methods can be more efficient than using finite differences to calculate df/dX,

(where f(X) is the objective function) and du/dX, (which is needed to calculate the

sensitivity of the constraints). However they rely on specialised analysis code and so

make integration with standard analysis packages very difficult. Even with analytic

methods, the number of available design variables is still limited.

[Hicks et al. 1974] were the first to use first order optimisation techniques for

aerodynamic optimisation, using the method of Feasible Directions (based on the

conjugate gradient method). Since then a large amount of research has been done in

applying these techniques for various aerodynamic shape design problems. This

work has focused on the efficient calculation of gradients [Anderson &

Venkatakrishnan 19991 [Burgreen et al. 1994] [Burgreen & Baysal 1994]

[Burguburu & le Pape 03] [Sadrehaghighi et al. 1995] [Reuther et al. 1999] and the

handling of constraints.

Common to both aerodynamic and structural optimisation with gradient based

optimisers is the need to efficiently determine the sensitivities of the behaviour under

consideration *to the design variables. Methods of deriving sensitivities for systems

governed by systems of partial differential equations are described in some detail in

2. 	Review of Shape Optimisation Techniques 	 46

[Lewis 97]. For shape optimisation, function evaluations are typically expensive and

so calculation of finite differences where there are a large number of design variables

can be very computationally expensive. In addition, it can be difficult to determine

the appropriate amount to perturb the variables and the accuracy of the

approximation can be poor.

The Newton-Raphson method makes use of the second derivative of the objective

function with respect to the variables. Where these derivatives can be easily

calculated then these methods can be effective. Often though this is not the case and

second order methods can be computationally expensive. [Ariana & Ta'asanb 1999]

provide a detailed study into the nature of the Hessian for aerodynamic optimisation

problems. [Novruzi & Roche 1995] compare Newton's method with the quasi-

Newton method for an electromagnetic shaping problem. They find that while the

number of iterations are fewer for Newton's method than for the Quasi-Newton

method the total computational effort (since the second derivatives must be

calculated) is between 1.2 and 3 times greater depending on the number of variables.

The principal advantage of gradient based shape optimisation is quick convergence

to the local optimum, often resulting in a significant increase in the efficiency of the

shape with relatively few evaluations of the objective function. They are, however,

only local optimisers and so only find shapes in the neighbourhood of the given

initial shape. They also require that the landscape is relatively smooth, having no

discontinuities or noise. This can limit their robustness for the generality of

problems. Finally, the calculation of gradients can be difficult or time consuming

especially as the number of design variables increases. In summary, these are

powerful techniques and are useful if the gradients can be calculated efficiently and

they can be started in the vicinity of the optimal shape.

2.3.4 Stochastic Techniques

As discussed in Section 2.3.2, classical optimisation techniques are often efficient at

finding local optima. However, in many shape optimisation problems the landscape

2. 	Review of Shape Optimisation Techniques 	 47

is multi-modal, the calculation of gradients is expensive and the landscape is not

smooth. To address these problems, the last twenty years has seen a great deal of

research into stochastic optimisers where various random elements are introduced in

order to move out of local optima. The use of stochastic optimisation techniques,

such as evolutionary algorithms [Holland 75] [Michalawicz 1992] and simulated

annealing [Kirkpatrick 1983], in shape optimisation [Chapman et al. 1994] has been

a popular area of research.

Stochastic optimisers are zeroth order optimisers and so require no gradient

information and rely only on function values. Such techniques are also able to cope

with problems with discrete variables or mixtures of continuous and discrete

variables, which makes them considerably more flexible when applying them to

engineering design problems. Their principal disadvantage is that convergence to the

optimum can be slow requiring a large number of objective function evaluations.

2.3.4.1 Simulated Annealing

The method of simulated annealing [Kirkpatrick et al. 1983], was the first stochastic

technique to become popular for practical optimisation. The algorithm uses an

analogy of the annealing of solids. Annealing is the process in which a solid is heated

to a maximum temperature at which all molecules of the solid randomly arrange

themselves in the liquid phase, followed by a gradual cooling. As long as the

maximum temperature is high enough and the cooling process gradual enough, the

molecules settle into a very stable minimum energy lattice.

At each temperature T, as long as the solid is allowed to reach thermal equilibrium,

the probability of being in an energy state E is given by the Boltzmann distribution:

P(E) = 11Z(T). exp(-E/kT)

Where Z is a normalisation function and k is the Boltzmann constant. In the 1950s

Metropolis [Metropolis et al. 1953] developed stochastic simulations of

thermodynamic systems in which systems were assumed to move from energy state

2. 	Review of Shape Optimisation Techniques

E1 to a possible new value E2 with probability exp[-(E2 - E1)/kT]. If E2 < E., this

probability is greater than 1 and so was assigned a probability of 1, i.e. certainty - the

system always moved to a lower energy state but could probabilistically move to a

higher one.

In the early 1980s Kirkpatrick and colleagues [Kirkpatrick et al. 19831 applied this

principle to combinatorial optimisation. The simulated annealing method requires the

following:

a description of a possible solution to the problem,

• one or more operators to make random changes to the current solution to produce

new possible solutions,

an objective function, C, (analogous to energy) to be minimised,

• a control parameter T (analogous to temperature) and an annealing schedule

which controls how T is reduced. New solutions will be accepted or rejected

according to a Boltzmann like probability distribution.

The basic algorithm works like this:

Initialise T.-Generate an initial solution, S. Find the cost of this solution, C.

Use an operator to randomly generate a new solution S, from S. Calculate the

cost of this new solution C.

If (C,,-C,) < 0, i.e. better solution found, then Sc = S,. Otherwise generate a

random number between 0 and 1, random. If exp(-(C - C)iT)> random, then S

= S.

If annealing schedule dictates, reduce T.

(e) Unless stopping criteria met, return to step (b).

2. 	Review of Shape Optimisation Techniques 	 49

As can be seen in step (c), moves which reduce the objective (i.e. good moves which

improve the solution) are always accepted. Moves which increase the objective

function can be accepted with a probability that depends on the size of the reduction

in quality and the temperature T. Initially, T, is set high and so starts off high so poor

moves are often accepted. Over time the temperature is reduced and so the

probability of accepting a poor move is reduced. An annealing schedule describes

how the temperature reduces over time. Correctly designing this schedule for a

particular problem is important to ensure the efficiency of this method.

Typically the algorithm is stopped once T has fallen below some threshold such that

the algorithm has degenerated into random search, or no improvement has been made

for some time.

As well as handling combinatorial problems, simulated annealing can be applied to

problems with continuous variables [Mdllhagga et al 1996]. Simulated annealing can

also be hybridised with a suitable local classical technique by performing some sort

of local search or gradient descent on each move.

The advantages of simulated annealing are that they can be applied to problems with

non-smooth and discontinuous landscapes, they do not get caught in local optima and

they do not require gradients of the objective function. These properties allow

[Hasancebi & Erbatur 2002] to successfully apply simulated annealing to the

simultaneous topology and shape optimisation of a truss structure.

[Reddy & Cagan 1995] apply simulated annealing to truss size and topology

optimisation. They use shape grammars to modify the truss sizes and topology.

These grammars define operators that allow one truss structure can be changed into

another. The operator to use and the size of the 'move' are determined by the

simulated annealing algorithm.

[Lin & Chen 20001 apply simulated annealing to structural problems with a non-

convex design space. They also hybridised the method with local and random search

algorithms.

2. 	Review of Shape Optimisation Techniques 	 50

A disadvantage of simulated annealing is that it can need a large number of function

evaluations to converge to the optimum in comparison to classical gradient

techniques. For shape optimisation problems objective function evaluations are

generally expensive. Therefore, [Leite & Topping 19991 look to parallelise simulated

annealing in order to extend its applicability for structural optimisation.

[Dibakar & Mruthyunjaya 19991 apply simulated annealing to the problem of

determining the kinematic dimensions of a mechanism for a manipulator, so that its

workspace is as close to the desired workspace as possible. This is an interesting

application of stochastic optimisation to an area of design that could not be tackled

with classical optimisation techniques.

[Kasper 1993] compares simulated annealing with evolution strategies for the shape

optimisation in magneto-statics using the finite element method. They use the

example of weight minimisation of a lifting magnet to prove the efficacy of the

methods.

2.3.4.2 Evolutionary Computing

Evolutionary Algorithms (EAs) are adaptive stochastic search techniques. They are

inspired by an abstract model of how evolution takes place in biology. In EAs a

population of candidate solutions is maintained. 'Parents' from this population are

selected with some bias towards the better solutions. From these parent solutions,

offspring solutions are generated in various ways. These are then evaluated, placed in

the population, and can subsequently themselves be chosen as parents. The technique

has attracted a great deal of interest because it has been shown to be highly robust

and to perform well without recourse to fragile domain specific heuristics.

The best known of these techniques is the Genetic Algorithm (GA) [Holland 1975]

[Goldberg 19891 [Davis 1991]. However, there are also the closely related Evolution

Strategies [Rechenberg 1973] [Schwefel 1981] [Back et al. 1991] [Back 1996],

Genetic Programming [Cramer 1985] [Koza 1990] [Koza 1992] and Evolutionary

Programming [Fogel et al. 1966] [Fogel 1995] [Sebald & Fogel 1994]. There are

2. 	Review of Shape Optimisation Techniques 	 51

numerous variations on these algorithms and only a general introduction to this class

of techniques is given here. Whereas classical optimisation techniques are typically

applied as they are without alteration, EAs are a powerful and flexible framework in

which optimisation algorithms can be developed.

There are common concepts and processes used in all evolutionary algorithms. An

EA uses a population of individuals. Each individual contains a structure, the

genotype, which can be decoded to form a candidate solution. Members of the

population are assigned some fitness according to their performance that is assessed

by some evaluator. Individuals are selected (usually stochastically) with some bias

towards fitter individuals. Stochastic operators are applied to selected individuals to

produce new candidate solutions. Operators are usually chosen so that that the

offspring inherit some of the attributes of their parents. The offspring are then

evaluated and placed in the population. Often at this point some of the least fit

individuals are culled (i.e. removed) from the population. This process repeats a

number of times generating subsequent generations. This pseudo-Darwinian

selection and breeding is intended to result in those properties that promote greater

fitness being transmitted throughout the population. Selection of the fittest should

result in increasingly good solutions appearing.

Each individual contains a genotype that encodes the solution that the individual

represents. These genotypes typically consist of strings of numbers and/or characters

that are subsequently interpreted as a solution to the problem. The string of numbers

or characters is often termed the chromosome. Each element of the string is referred

to as a gene and represents some aspect of the solution. A gene has a number of

possible values that are its alleles.

In order to assess the individual's fitness, it is necessary to decode the genotype into

a phenotype, which can be evaluated. The complexity of this transformation from

genotype to phenotype can vary depending on the representation (encoding) chosen.

For many applications the encoding might be direct. For instance, the chromosome

contains a string of values for variables that can be directly evaluated. There are,

1 jj. 7'

(7

2. 	Review of Shape Optimisation Techniques 	 52

however, possibilities for more complicated mappings from genotype to phenotype,

where the values of the genes need to be converted to an evaluatable solution through

a more complicated process. Such a strategy might be used to 'grow' a solution from

some initial conditions using rules of development. The genes might encode for the

initial conditions or modify the rules of development (see Chapter 8)

The choice of population size is important when applying an EA to a problem

[Goldberg 19991. Too small a population can result in the population prematurely

converging to a sub-optimal solution. However, excessively large population sizes

can result in too many evaluations required.

There are a number of ways of producing an initial population. Often a population is

generated by choosing values for the genes at random from the range of possible

values. This results in a random initial population. Alternatively, some possibly good

solutions can be seeded into a random population. An initial population might

entirely contain potentially good solutions.

The operators, crossover and mutation, developed by Holland [Holland 1975], are

widely used. In simple crossover a random a crossover point along the chromosome

Parent 1

Parent 2

Crossover
Point

Child 1 	1 X 1.1 	1.2 	X 131 X TA 	2.5 I x2.6 X 2,7 I 	

x2,

Child 2 	1 X2,1 I X2.2 J 	I X1.6 I X1.7 I 	I

Figure 2-6 	Simple One-Point Crossover

2. 	Review of Shape Optimisation Techniques 	 53

is chosen. Two new chromosomes are created by swapping over the sections lying

after the crossover point (see Figure 2-6).

Crossover can be seen to rearrange existing genes, but does not create new genes.

Mutation changes the value of a gene to some other possible value. The way in

which this is done depends on the representation used. For example, if a bit-string

representation is being used a mutation might involve a bit flip. In a representation

consisting of a string of real numbers, a mutation might involve a small random

move from the current value. Often mutation operators involve the change of only

one gene. However, there may be cases where a mutation involving a change in a

number of genes is desirable.

The typical application of operators when breeding new individuals proceeds as

follows. Crossover (with some high probability) is applied one of the two new

chromosomes foimed is chosen at random. Following crossover, genes on the

resulting chromosome undergo mutation with a low probability. This probability is

chosen so that there is approximately one mutation per chromosome. The resulting

chromosome is then taken for the new child individual.

The operators described here are those which are traditionally used with EAs.

However, many modem users of EAs make use of other operators. For instance, for

some problems, crossover is not useful as it merely acts to disrupt good solutions and

algorithms using only mutation operators can be more efficient. Problem specific

mutation operators are frequently developed so that mutation makes 'sensible'

changes. These mutation operators may be guided by heuristics or make use of local

search methods or even traditional optimisation techniques. Indeed, designing the

encoding and its set of operators together for a problem is often successful.

Some method of selecting which individuals from the population to breed is needed.

Below are given four of the most widely used selection methods.

2. 	Review of Shape Optimisation Techniques 	 54

Breeding Pool selection looks to make the expected number of offspring for an

individual proportional to its relative fitness. The relative fitness of member i is

calculated as follows:

Rel(f,)=f,/1f1

The expected number of offspring for each individual is then calculated by rel(fj) x N

to the nearest integer, where N is the population size. The appropriate number of

copies of each individual are then placed into a 'breeding pool'. Individuals are then

chosen for breeding at random from this pool. The current population is replaced

with the new population that is formed in this way. Thus the fitter individuals are

more likely to contribute towards the next generation.

Some selection strategies only replace a proportion of the current population at each

generation. It may be possible for the fittest individual not to be chosen for breeding

with some (often small) probability and so not make it through to the next generation

or for the operators to disrupt the best solution to a worse solution. To avoid this

many selection schemes employ an elitist strategy in which the best solution in a

generation is always allowed to pass into the next generation.

Roulette wheel selection is based around the analogy of a roulette wheel. The

proportion of the roulette wheel assigned to each individual depends on its relative

fitness, rel(f,). Individuals are selected by generating a random number between 0

and 1 (analogous to spinning the roulette wheel). The individual is chosen by moving

through the population an individual at a time until the cumulative relative fitness of

an individual is greater than the random value. The current individual is chosen for

breeding.

It can be seen that the probability of an individual being selected is proportional to its

relative fitness. Although every individual has some chance of breeding, there is a

considerable bias towards better individuals based on their fitness. One problem that

can often be found with breeding pool and roulette wheel selection is that at the start

2. 	Review of Shape Optimisation Techniques 	 55

of an optimisation run, even though all individuals are poor, some of the better

individuals might be relatively much better than the others. This can lead to too many

individuals being generated from the better, but still poor, individuals and so the

population can converge too quickly.

Ranking schemes can overcome the problems mentioned above. The population is

ranked according to the fitness values of its members. Selection is then performed

using a pre-determined probability distribution function dependant on rank rather

than fitness. This is typically a simple linear function. This can ensure that at the start

of a run no individual is selected too often just because its relative fitness is high.

Also at the end of a run, when fitnesses are often very similar, selection can favour

better individuals.

In tournament selection n individuals are chosen at random and the fittest of these is

selected for breeding. Typically, a value for n of two is chosen. Often this method is

used with a steady state algorithm where only one individual is bred at a time

Evolutionary algorithms have been successfully applied to a wide range of

optimisation problems, often by adapting standard algorithms to produce algorithms

which are well suited to the problem both in terms of parameter settings and

operators. It is also relatively trivial to hybridise EAs with local search and classical

techniques, by for instance, applying gradient descent to each new offspring. This

can produce efficient robust algorithms [Mdllhagga et al. 1996].

A more detailed discussion of EAs in design is given in Section 1.4.

2.3.4.3 Evolutionary Algorithms in Structural Optimisation

There have been a wide variety of ways that EAs have been applied to structural

optimisation. These have varied in the aspect of the structure that is to be optimised,

for example, topology, layout, size or shape. The shape representations used have

also been varied with, for example, parametric solid models, splines or cellular

representations all used (this is covered in more detail in Section 2.4). They have also

2. 	Review of Shape Optimisation Techniques 	 56

varied in the types of behaviour that is to be optimised and hence analysis method

used (this is covered in more detail in 2.5).

[Adeli & Cheng 19931 covers general applications of genetic algorithms to structural

design. [Adeli & Cheng 1994a] investigates constrained optimisation of space

frames, and introduces a Lagrangian Multiplier approach to cope with the

constraints. [Adeli & Cheng 1994b] extend this work to use parallel computers.

A number of researchers have considered the optimisation of truss structures with

genetic algorithms where various parameters are optimised such as cross-section and

size [Leite & Topping 1998] [Jenkins 1992] [Jenkins 1997]. [Chapman et al. 1994]

look to use genetic algorithms for what they term 'preparametric' design. They use a

cellular shape representation with genes determining whether rectangular cells are

filled with material or not. [Annicchiarico & Cerrolaza 1998] use finite element

analysis to analyse the elastic behaviour of a 2-dimensional truss structure. They later

in [Annicchiarico & Cerrolaza 2001] describe work done using 3-spline surfaces to

represent geometry for 3-dimensional shape optimisation again using finite elements

to analyse the shapes' performance. [Cappello & Mancuso 2003] use genetic

algorithms for the combined topology and shape optimisation of trusses and plates

using finite element analysis.

[Schoenauer 19951 uses three shape representations for the topology optimisation of

a cantilever plate. These are a 'natural' bit-array representation, a 'holes'

representation in which rectangular holes can be introduced into the design, and a

Voronoi representation. Analysis is done with the finite element method. The 'holes'

and Voronoi representation are found to outperform the bit-array representation.

[Coello & Christiansen 2000] concern themselves with the multiobjective

optimisation of a truss structure. They look to simultaneously minimise the

structure's weight and maximum deflection. They review a number of ways that

genetic algorithms have been used for multiobjective optimisation and implement a

2. 	Review of Shape Optimisation Techniques 	 57

weighted-sum of objectives method. [Coello 1999] reviews the use of evolutionary

algorithms for multiobjective optimisation.

[Robinson et al. 1999] use EAs in the design of a truss structure for a satellite booms

and for the design of a load cell. [Keane 1994] compares the performance of a GA

with other techniques for the vibrational optimisation of a satellite boom.

[Deb 1997] [Deb & Goyal 1998] [Deb & Goyal 1997] describe a system, GeneAS,

based on genetic algorithms with mixed variables for mechanical component design.

They use examples of the design of a pressure vessel, gear train, a spring, a

hydrostatic thrust bearing and a welded beam, and show the ability of a genetic

algorithm to cope with mixed discrete and continuous variables.

The design of laminates was investigated in [LeRiche et al. 1995]. They developed a

segregated genetic algorithm that uses separate interbreeding populations of

solutions. The fitness function used for each population is different. The penalty for

failing to meet a particular constraint differs for each population. The find that the

segregated genetic algorithm allows solutions to be found which satisfy all

constraints whilst minimising weight.

[Cerrolaza et al. 2000] use -splines for 2-dimensional optimisation of plates. They

use the boundary element method to analyse the Von Mises stress and attempt

successfully to minimise weight.

[Eby et al. 1999a] [Eby et al. 1999b] optimise a flywheel with an 'injection island

genetic algorithm' where the specific energy density of the flywheel is to be

maximised. In this approach the variables are the depth of the flywheel at various

radial distances. The injection island genetic algorithm allows various sub-

populations to breed each with different resolution of the representation. Thus one

population can use a coarse resolution with a correspondingly inexpensive analysis,

whilst another has a finer representation with a more expensive analysis. Good

individuals from a coarse population can be 'injected' into a finer population. This

allows a quick exploration of a large part of the search space with the coarse

2. 	Review of Shape Optimisation Techniques 	 58

representation. Promising areas of the search space can then be explored with

increased accuracy in populations with a finer representation.

Motivated by a similar desire to use a cheap evaluation in the initial stages of an

optimisation run [Gage et al. 1995] use a variable complexity shape representation.

As the run progresses the shape representation complexity can be increased. They

apply this method to the structural optimisation of trusses and aerodynamic

optimisation of low-speed wings.

2.3.4.4 Evolutionary Algorithms in Aerodynamic Optimisation

A number of researchers have described the integration of a genetic algorithm with

computational fluid dynamics for transonic aerofoil shape optimisation [Quagliarella

& Cioppa 19941 [Quagliarella & Cioppa 1995] [Oyamaa et al. 2001] [Doorly et al.

1996b]. [Obayashi & Takanashi 1995] described the use of a genetic algorithm to

find a shape for an aerofoil that meets a specified pressure distribution.

[Quagliarella & Vicini 2001] describe the use of genetic algorithms for the design of

configurations of multiple aerofoils. As well as optimising multiple aerofoils they

also optimise at two design points, one with the aerofoils in a high lift configuration

and one in a low drag cruising configuration [Quagliarella & Vicini 2000] [Vicini &

Quagliarella 2000].

[Doorly et al. 1996a] use genetic algorithms for coupled aerodynamic-structural

design. As previously discussed, one of the disadvantages of genetic algorithms, is

the number of function evaluations that can be required. Analysis using

computational fluid dynamics can be very time-consuming and so parallelisation of

genetic algorithms for aerodynamic optimisation problems has been investigated by

[Marco & Lanteri 2000] [Doorly & Peiró 1997] [Doorly 1995].

[Rogalsky et al. 1999b] compares a genetic algorithm with the downhill simplex

method described in Section 2.3.2.1 and simulated annealing. [Vicini & Quagliarella

1999] hybridise a genetic algorithm with a gradient based optimisation technique that

2. 	Review of Shape Optimisation Techniques 	 59

they apply to multidisciplinary optimisation of both aerofoil profile and wing

planform.

[Mäkinen et al. 1999] investigate a parallel genetic algorithm for the multi-

disciplinary shape optimisation of aerofoils, for both aerodynamic and

electromagnetic (radar cross section) behaviour.

2.4 Geometric Model

Shape optimisation uses a geometric modeller in order to represent the shape. The

area of geometric modelling is very large and, at some point, most forms of

geometric model have been used for shape optimisation. In this section the intention

is to describe some of the geometric modellers that have been used for shape

optimisation and to explain the data structures they use.

Shape optimisation proceeds by using some elements of the geometric model as

design variables. Thus, by changing the variables and rebuilding the model, the shape

can be changed. This approach is natural, however the family of shapes that the

range of variables described is often poorly understood. This is developed further in

Chapter 6.

Early two dimensional shape optimisation work used the co-ordinates of nodes of the

finite element mesh as the design variables [Zienkiewicz & Campbell 1973]. The

boundary nodes (i.e. those on the perimeter) were moved by the optimiser. The shape

representation used was therefore cellular. This seemed a natural representation and

had the advantage of needing only one representation for both the geometry and

analysis. Unfortunately, it proved impossible to ensure that a smooth boundary shape

was maintained. Additionally, as the nodes were moved, the elements in the mesh

become increasingly skewed and hence the results from the finite element analysis

became less accurate. Ensuring that the mesh is sufficiently accurate is also a theme

that is developed in Chapter 6.

2. 	Review of Shape Optimisation Techniques 	 60

Following this, the design model was separated from the analysis model in order to

ensure smoothness of the boundary of the shapes generated. One approach then taken

was to use polynomials to describe the boundary of the shapes [Kristensen & Madsen

1976], [Bhavikatti & Ramakrishnan 1980], [Pedersen & Laursen 1982]. The

variables were chosen to be the coefficients of the polynomials. There were a number

of problems that were found with this approach. Firstly, low order polynomials such

as quadratics, cubics and quartics could only represent a limited family of shapes.

This problem can be reduced by increasing the order of the polynomial. However,

this causes other problems. In order to represent a shape feature with small radius of

curvature requires high order polynomials and these can cause oscillatory 'ripples'

away from the feature. Additionally, polynomials do not allow local control of the

shape; changes in one of the variables (a coefficient of one of the polynomial) causes

a change in the boundary of the whole shape. The ways in which the representation

affects the family of shapes that the optimiser searches through, and the implications

that this has on the optimiser, are discussed in Chapter 6.

Spline curves offer many of the advantages of polynomials, namely boundary

smoothness and a useful separation of geometric model and analysis model. They

also remove some of the problems encountered when using polynomials. The

boundary does not oscillate because the splines are formed from low order

polynomial pieces. Splines also offer good local control when enough control points

are used. These properties of splines that make them highly useful for shape

optimisation are the same reasons that make them so widely used in computer-aided

design.

There are different ways of assigning variables when using spline curves for shape

optimisation. A commonly used and natural assignment is to use the co-ordinates of

the control points as the variables. This allows a very general family of shapes to be

used. However, for some applications, a more restricted family of shapes is desired.

For these cases the 'path' of the control points can be restricted to some line or curve

and the variable used is the position of the control point along this path.

2. 	Review of Shape Optimisation Techniques 	 61

Alternatively, the control points can be restricted to lie within a particular area

[Giannakoglou 2002].

Non-uniform Rational B-Splines (NURBS) [Hearn & Baker 1994] are an extension

to b-splines allowing the exact representation of conic sections. NURBS have been

used by [Schramm & Pilkey 1995] for structural optimisation. Conic patches were

used by [Widmann & Sheppard 19931 as a shape representation for shape

optimisation which allows the number of design variables to increase during the

optimisation.

Most modem commercial CAD packages are built upon Boundary Representation

(B-rep) solid modellers. Examples of such solid modellers are ACTS and Parasolid.

These CAD packages allow the user to build 'parametric' models. As the user builds

the model, some of the dimensions and positions of the component can be specified

as variable. Then, once the model is built, the user can change any variable and the

modeller will rebuild the model with this new value for the variable. The modeller

does this by essentially undoing all the steps, back until the point in the model build

when the variable was used, and then rebuilds the model from there. Such parametric

models are very useful for shape optimisation as they provide an easy 'family of

shapes' through which an optimiser can search. However, as Shapiro & Vossler note

[Shapiro & Vossler 1995], the concept of parametric modelling is far from well

defined. As anyone who has used these techniques will testify, these parametric

models are can often result in non-intuitive shapes being generated. [Raghothama &

Shapiro 20021 suggest a way in which parametric families of shapes might be better

defined.

2. 	Review of Shape Optimisation Techniques 	 62

[Tavakkoli & Dhande 1991] and [Widmann & Sheppard 1994] use the intrinsic

geometrical properties of curves such as their curvature to define shapes. Variables

are used to define the curvature at particular arc lengths. The curvature then varies

linearly between these points. From this the shape of the curve can be constructed in

Cartesian space. Tavakkoli and Dhande apply this to the configuration optimisation

of a truss structure. Widmann and Sheppard use the finite element method to analyse

the shape generated for structural optimisation. [Kodiyalam et al. 1992] use a

constructive solid geometry (CSG) approach to structural shape optimisation.

2.5 Analysis Methods

For each set of values for the design variables, a shape is built in the geometric

model. It is then necessary to evaluate this shape to assess its relevant physical

behaviour (for example its weight, volume, displacement or stress under a given

load). It is then possible to assign a value for the objective function and to establish

whether constraints have been violated. An analysis module is used to do this.

Engineers have developed many computational techniques for modelling the physical

behaviour of models. In principle almost all of these methods could be used for shape

optimisation. This section is not intended to provide a comprehensive review of all

possible modelling techniques, rather it is a survey of the main techniques used for

shape optimisation.

The principal criteria for choosing an analysis technique are that the analysis be as

computationally inexpensive as possible, that it is relatively easy to convert the

geometric model into the analysis model, that the analysis method is capable of

modelling the behaviour of interest and that the method is sufficiently accurate.

These considerations are discussed in much more depth in Chapter 6.

For shape optimisation the most often-used analysis method is the finite element

method [Desai & Kundu 2001]. It is capable of modelling a large number of physical

behaviours that can be described with partial differential equations, from elastic

deformation, resonant frequencies to thermal analyses and others.

2. 	Review of Shape Optimisation Techniques 	 63

The first step in using the finite element analysis for shape optimisation is to take the

geometric model and to generate a mesh of elements. The quality of the mesh (i.e.

the number, shape and distribution of the elements) is very important in ensuring that

the analysis is accurate. Early uses of the finite element method for shape

optimisation relied only on moving the node positions as the geometry changed. This

removes the need for a possibly time-consuming remeshing, but the accuracy of the

solution can be poor as the element shapes become more distorted. This effect can, to

some extent, be mitigated by using higher order elements. Now, though, it is usual to

remesh each shape. It is also becoming increasingly common to use adaptive

meshing techniques to ensure solutions are sufficiently accurate. These techniques

are becoming standard in commercial finite element programs.

The boundary element method is another analysis method that has been frequently

used for shape optimisation. The range of physical behaviours that this method can

analyse is more restricted than for the finite element method. It is unable to model

phenomena such as buckling or calculate mode shapes. However, only the boundary

of the geometry needs to be meshed, rather than the whole geometry as in the finite

element method. It is therefore much easier to produce the mesh. [Cerrolaza et al.

2000] [Meric 1999] [Sandgren & Wu 1988] [Schramm & Pilkey 1994] [Yamazaki et

al. 1993] [Yamazaki et al. 1994] all describe the use of boundary elements for shape

optimisation. [Makerle 2003] provides a bibliography of topology and shape

optimisation with both boundary elements and finite elements.

For aerodynamic optimisation problems there are a number of analysis methods

available. [Jameson 2001] gives a recent review of the techniques for aerodynamic

analysis and design. These methods include finite volume, vortex panel, finite

elements and finite difference methods. He also reviews some of the methods of

mesh generation. With aerodynamic shape optimisation, as with structural

optimisation, the determination of gradients can be time consuming.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 64

3 A Study on Aerofoil Optimisation using a Genetic

Algorithm

3.1 Summary

This chapter reports on a study made on aerofoil shape optimisation using a genetic

algorithm. Fluid analysis was undertaken with a vortex panel method that was

written for this problem. Three shape representations were used, an aerofoil

parameterisation, a four Bézier curve representation and a four Bézier curve

representation with the constraint that the tangent vectors are equal for both Bézier

curves at the joins between curves (C' continuity). A number of optimisation runs

were undertaken with various fitness measures (to maximise lift coefficient,

minimise drag coefficient and minimise drag-lift ratio). The genetic algorithm used

tournament selection, single point crossover and a floating point mutation.

The method worked well with the parametensed aerofoil representation, although a

large number of evaluations were required. However, some difficulties were

encountered. The analysis method used was quick but made certain assumptions

about the flow regime (it could not predict stall) and so there were difficulties in

ensuring that only shapes were generated for which these assumptions were valid.

This was possible with the aerofoil parameterisation. However, with the more

general Bézier spline representations, it proved very difficult to ensure that only

shapes that could be accurately analysed were generated. The algorithm therefore

produced unrealistic results.

3.2 Introduction

Computational fluid dynamics (CFD) is a tool to model fluid flows. The ready

availability of powerful computers and the improved user-friendliness of commercial

CFD programs has meant that CFD is becoming increasingly used by engineers to

analyse the performance of engineering systems in fluid flows. Typically CFD is

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 65

used to 'virtually prototype' a system to test its behaviour before any physical

prototype is produced. This allows changes to be made to the design, based on

information generated in the analysis, more cheaply. [Jameson 2001] offers a

comprehensive review of computational algorithms for aerodynamic analysis and

design.

The aeronautics industry makes heavy use of CFD in the design of aircraft and

aeroengines. Often for such applications, even small improvements in systems'

performance are very valuable. Therefore, they look to make use of optimisation

techniques, in conjunction with CPD analysis, in order to improve the system

performance. The design of aerofoils for wing profiles and turbine blades is one

typical use of such aerodynamic shape optimisation techniques.

Aerofoil design methods can be split into two different categories: inverse

optimisation and direct optimisation. Often the engineer will be able to specify a

desired pressure distribution for the aerofoil, so that it has required lift, drag and

other aerodynamic properties, such as pitching moment. Inverse aerofoil design

techniques use this pressure distribution on the aerofoil surface and then calculate the

corresponding geometry. However, the corresponding geometry may not be a valid

shape (i.e. top and bottom surfaces may cross), the required pressure distribution may

imply a flow which is in some other way undesirable, or the required pressure

distribution might be difficult to determine.

In a direct optimisation method the shape is parameterised into design variables (e.g.

shape parameters or co-ordinates of spline curve control points). Candidate solutions

are evaluated and some form of optimisation technique, numerical or stochastic, is

used to search for an optimal set of values for the design variables. Direct

optimisation is a more powerful technique since it allows a search through a much

greater design space. However it is also much more computationally expensive since

the flow needs to be solved for a large number of shapes.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 66

As discussed in Chapter 2, there is a large range of optimisation techniques. Most of

these have been applied to aerodynamic shape optimisation. However, predominantly

hill-climbing algorithms have been used. These have the disadvantage of having

difficulty distinguishing global optima from local optima. They may therefore often

converge on a local optimum and so find a globally sub-optimal solution. These

methods have difficulty where the search space is highly non-linear or discontinuous

and where design parameters are discrete. Gradient methods or second order Newton

(or quasi-Newton methods) have been used (see Section 2.3.3.5 for examples of

gradient based techniques for aerodynamic optimisation). These require gradient

information that is often found by perturbing each of the design variables by a small

amount and resolving the flow and approximating the gradients with forward

differences. This requires an extra solution of the flow for each design variable. Also,

for this method to be accurate the flow has to be solved to a high degree of accuracy.

The work described in this chapter used a direct approach of optimisation. In this

work a genetic algorithm has been applied as the optimisation procedure. As

discussed in Chapter 1, one of the underlying motivations of the work in this thesis

was to increase the automation of the design process using shape optimisation.

Increasing the generality of space of shapes through which to search would therefore

be important, as would the ability to find the global optimum.

3.2.1 Aims

• To determine whether genetic algorithms, along with a vortex panel fluid

analysis, are effective for optimisation of a large range of aerofoil profiles.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 67

3.3 Implementation

3.3.1 Shape Representations

A program has been written which allows three representations:

an aerofoil parameterisation (illustrated in Figure 3-1),

• a four Bézier curve representation (see Figure 3-2) with the end points of the

curves joining (C O continuity),

• a four Bézier curve representation with the additional constraint that the tangent

vectors at end points of the curves should be equal (C' continuity) [Hearn &

Baker 1994] except at the trailing edge.

3.3.1.1 Aerofoil Parameterisation

Xmax

Attack

Figure 3-1 	Aerofoil Parameterisation

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 68

With the parameterised representation the shape is constructed using a thickness

envelope, wrapped around a mean camber line. The mean camber line is defined as

lying midway between the top and bottom surfaces of the aerofoil and intersecting

the trailing and leading edges. Given these fixed two points, a particular camber line

is constructed given the angle it makes with the chord line at the trailing and leading

edges. The thickness envelope is a function of the maximum thickness of the aerofoil

and the position of the maximum thickness along the chord length. The whole

aerofoil is then rotated about its trailing edge by an attack angle.

The aerofoil parameterisation used values for the angle between the chord and

camber line at trailing and leading edges, maximum thickness, position of maximum

thickness along the chord length and attack angle as the alleles of genes within each

candidate shape's chromosome.

3.3.1.2 Bézier Representation

A cubic Bézier curve has the following equation [Hearn & Baker 1994]

p(u)=(1-u)2 x 1 +3u(1-u)2 x 2 -i-3u 2 (1—u)x 3 +ux4

where u varies from 0 to 1 and Xj to x4 are the control points. The Bézier curve has

some useful properties. It passes through the first control point, x1, when u = 0. It

also passes through the fourth control point, x4, when u = 1. When u = 0 (i.e. at the

Figure 3-2 	Bézier Representation for Aerofoil

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 69

first control point, xj) the tangent to the curve is in the direction of the second control

point, X2. Similarly, when u = 1 (i.e. at the second control point, x2) the tangent to the

curve is in the direction of the third control point, x3.

To represent the aerofoil four Bézier curves were used. The constraint was added that

the end points of adjacent Bézier curves be coincident. In other words, C o continuity

between the Bézier curves was imposed.

3.3.1.3 Smooth Bézier Representation

The Bézier representation from the previous section was modified to impose the

additional constraint that the tangent vectors at the end points of the curves should be

equal (C' continuity) [Hearn & Baker 1994] except at the trailing edge. This was

done by making the control points at the junction between two Bézier curves lie

halfway between the adjacent control points from the adjacent curves.

3.3.2 Evaluator

The evaluator used to calculate lift and drag coefficients was based on the vortex

panel method. It was implemented based on the method descried in [Kuethe & Chow

1986]. This method solves the potential flow and so assumes that the flow is steady,

inviscid and incompressible. It is also unable to predict separation of the boundary

layer and so is not accurate in conditions when the aerofoil would stall.

The primary advantage of this method was that it takes much less time to solve the

flow around the candidate aerofoil than a steady Euler or Navier-Stokes CFD code.

[Jameson 2001] reviews the current literature on the computational costs of the

various mathematical models for solving flows around aerofoils. On a Pentium 3

(300MHz) PC the vortex panel method, with 48 panels, was found to take

approximately 0.017 seconds. In comparison, a finite volume CFD solution of Euler

flow was found to take approximately 5 seconds.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 70

The evaluator required co-ordinates of forty-eight points around the aerofoil. The

method was run with a free air velocity of 80 ms -1 corresponding to a Reynolds

number of about 5x106 .

3.3.3 Fitness Measure

With all optimisations the objective is to minimise some measure of fitness. In this

work three measures of fitness were used.

The first fitness measure was to maximise C1 where:

PA —v

where: 	C1 	is the lift coefficient

fi 	is the lift force (N)

P 	is the fluid density (kg m 3)

V 	is the air speed (m s)

A 	is the aerofoil area (m 2).

This measure was useful primarily to validate the analysis and optimisation code. An

aerofoil with maximal lift would have the largest camber, thickness and attack angle

allowed (since the analysis was unable to predict stall). Therefore if analysis and

optimisation code was correct then these values should be set to their upper

constraints following optimisation.

3. 	A Study on Aerofoil Optirnisation using a Genetic Algorithm 	 71

The second fitness measure was to minimise Cd where:

c= fd
d

PA-
2

where: 	Cd 	is the lift coefficient

fd 	is the drag force (N).

The third fitness measure was to maximise C, / Cd where Cd is the drag coefficient of

the aerofoil and C, is the lift coefficient. This is a realistic design criterion for many

aerofoil applications.

3.3.4 The Genetic Algorithm

A genetic algorithm (GA) was written for this application. The following sections

detail the implementation of this algorithm.

3.3.4.1 Chromosomes

For all three shape representations a chromosome of real numbered genes was used.

Bounds were placed on these values constraining the values for these variables to lie

between a minimum and maximum value.

For the parameterised aerofoil representation there were five genes:

• maximum thickness from camber line,

• position along chord length of maximum thickness,

• camber angle at trailing edge,

• camber angle at leading edge,

• attack angle.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 72

For the unsmoothed Bézier representation there were 24 genes each corresponding to

a co-ordinate for one of the twelve control points. There were twelve control points

since there were four control points for each of the four Bézier curves making sixteen

control points, however four of these control points were on two of the Bézier

curves.

It was decided to use using polar co-ordinates for the position of the control points.

This was because it was easy to ensure that reasonable aerofoil shapes were

generated (i.e. without creating a 'crossing' shape), by placing bounds on the control

points' angular co-ordinate so that the adjacent control points moved successively

'around a circle'. Therefore, for each control point, there was a gene to represent the

radius and one to represent angle. All angles ran from -11 to it radians.

For the smoothed Bézier representation there were six fewer genes since the position

of the control points between Bézier curves (except at the trailing edge) was set by

placing it halfway between adjacent control points.

3.3.4.2 Initialising the Population

For the aerofoil parameterisation the initial population was formed by setting each

gene randomly within the bounds for that variable, with a uniform distribution.

For the Bézier representation, a gene's value was set by deviating from an example

value for a specified aerofoil profile. The size of this deviation was set randomly,

with uniform distribution, and the maximum size of the deviation was set by the user.

Details on the bounds selected, and reasons for the selection of these bounds, for

each experiment undertaken, is given with the results for the experiment in Appendix

A.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 73

3.3.4.3 Selection

Tournament selection was used in this GA. A user-specified proportion of the

population to be bred every generation was chosen. Thus a number of individuals to

breed could be calculated. These individuals were selected by repeatedly choosing

two individuals from the population at random. The individual with the best fitness

was then allowed to breed by placing it in a list of 'parents'.

3.3.4.4 Crossover and Mutation Operators

Each of the individuals in the parents list was taken in turn and crossover applied.

This was done by selecting at random another of the parents and using single point

crossover. A crossover point is chosen at random. A child individual is then

generated by taking genes from the first parent up to the crossover point and from the

second parent after the crossover point.

Mutation was then applied to the child individuals. There was a user defined

mutation rate and mutation amplitude. Each gene was taken in turn and a random

number (from 0 to 1) generated. If this random number was less than the mutation

rate then mutation was applied to this gene. The size of this mutation was in the

range:

[-0.5 * mutationAmplitude * geneRange, 0.5 * mutationAmplitude * geneRange]

with uniform distribution where geneRange is the difference between the value of the

gene's upper and lower bounds.

Following mutation all the child individuals were then placed into the population and

the population then sorted in order of fitness. The population was then returned to its

original size by culling the least fit individuals.

3. 	.A Study on Aerofoil Optimisation using a Genetic Algorithm 	 74

3.4 Results

A number of different experiments were undertaken. Full details of these

experiments can be found in Appendix A. The following sections give a brief

synopsis of the results of the various experiments undertaken. Each experiment was

repeated 10 times.

3.4.1 Aerofoil Parameterisation

Experiment A

The objective of this run was to maximise lift coefficient (i.e. minimise —C1). This

run was used primarily to validate the analysis and optimisation code. As was

expected, the genetic algorithm consistently produced an aerofoil with the largest

camber, thickness and attack angle allowed within the parameter bounds, with a

value of C1 of 2.54.

Experiment B

The objective of this run was to minimise the drag coefficient. Again, this run was

used primarily to validate the analysis and optimisation code. It was anticipated that

the optimum aerofoil for low drag coefficient would have low or zero camber and

would be at an attack angle very close to zero. However, the aerofoils generated by

the genetic algorithm had a high camber and negative attack angle. The value of drag

coefficient was negative which was clearly incorrect. There was clearly some

problem with the optimisation algorithm or fluid analysis.

Further investigation of the landscape of this problem around the generated aerofoil

was undertaken as detailed in Appendix A. This indicated that the vortex panel

analysis produced unrealistic results when attack angles were negative and camber

angles were high.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 75

This highlighted a problem that was to be frequently encountered with the vortex

panel fluid analysis. It worked well for most shapes, but in some areas of the search

space the values for lift and drag it returned were incorrect. It was also difficult to

predict in which areas it performed poorly.

Experiment C

This experiment was a repeat of Experiment B, attempting to minimise drag, but

restricted the bounds on the camber angles to 100 in order to avoid the problems

encountered with false values for drag coefficient being generated for aerofoils with

negative attack angle and high camber angles. With this restriction, the genetic

algorithm produced an aerofoil shape with low camber and low attack angle. The

calculated drag coefficient of 0.019, averaged over the ten runs, was realistic.

Experiment D

This experiment looked to maximise the lift/drag ratio (i.e. minimise Cd / C1). As this

was the first experiment that attempted to optimise the lift/drag ratio, it was decided

to firstly attempt a simplified problem in which the attack angle was constrained to

be 0°. It should also be noted that the camber angles were not restricted to be below

10°, but were allowed up to 30°.

The aerofoils that the genetic algorithm generated matched well with what was

expected, with a reasonably thin aerofoil with relatively high camber. The lift-drag

ratio of 26.8 was realistic. It was found that runs converged to two slightly different

aerofoils, although with similar fitnesses. It was suspected, therefore, that this genetic

algorithm was, perhaps, prematurely converging to a sub-optimal solution.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 76

Experiment E

This was a repeat of Experiment D with a larger population size of 400. This was to

check that Experiment D had not prematurely converged to a sub-optimal solution.

Contrary to what was expected, for some of the aerofoils that the genetic algorithm

generated were not similar to the results found in Experiment D. For these aerofoils

lift-drag ratio calculated was unrealistic.

Since it was suspected that the vortex panel method was producing inaccurate results

in some parts of the search space, as was the case in Experiment B, an investigation

of the landscape around the generated aerofoil was undertaken (as detailed in

Appendix A). From this investigation, it was apparent that the accurate calculation of

both lift and drag was not possible for values for the position of maximum thickness

above about 85%. More pertinently to the problem encountered on this run, it could

be seen that although the lift was calculated accurately at low values of thickness

(between 2% and 3% of chord length), the calculation of drag was not.

This problem was not encountered when a smaller population size was used because

this inaccuracy only occurs in a small part of the search space (it relies on the other

parameters, such as camber angles, being in certain ranges). With a large population

this area of the search space is more likely to be encountered either when the initial

population was formed or during the optimisation.

Experiment F

This was a repeat of Experiment E with the lower bound on aerofoil thickness raised

from 2% to 3%, in order to avoid the problems encountered with faulty fluid analysis

at small thicknesses. This aerofoil generated by the genetic algorithm closely

matched the solutions found in Experiment D with a lift/drag ratio of 26.7, averaged

over the ten runs.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 77

Experiment G

This run repeated Experiment F but allowed the attack angle to vary from a lower

bound of 4° to an upper bound of 40• The solution again produced unrealistic results.

This was due to the same problem encountered in Experiment B, where the vortex

panel was unable to calculate drag correctly for aerofoils with large camber angles

and negative attack angles.

Experiment H

This run repeated of Experiment G, but with the maximum camber angles restricted

to 100. This run again produced realistic solutions. It should, however, be noted that

this solution was considerably less fit than the aerofoil profile found in Experiment

F. The aerofoils produced had a lift/drag ratio of 11.8, averaged over the ten runs,

compared to 26.7 for Experiment F, despite the fact that this run had a considerably

larger search space (attack angle was not included in Experiment F). This is

discussed further in Section 3.5

3.4.2 Bézier Representation

Experiment I

The population was initialised by perturbing the control points from those of a given

aerofoil profile within a set of specified bounds. The best individual had an

unrealistic fitness of 8.57e-5 (C/Cd of 11700). Numerous runs were undertaken with

various initial base aerofoil profiles, each produced similarly unrealistic results to

these.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 78

3.4.3 Smooth Bézier Representation

Experiment J

It was thought that one possible cause of the analysis problems encountered in

Experiment I was the presence of 'kinks' in the aerofoil shapes. Therefore, a second

Bézier representation was tried in which C 1 continuity was imposed between the

Bézier curves except at the trailing edge. The population was initialised by

perturbing the control points from those of a given aerofoil profile within a set of

specified bounds. The best individual had an unrealistic fitness of 5.55e-8 (C/Cd of

1.8e6). Again numerous runs were undertaken with various initial base aerofoil

profiles, each produced similarly unrealistic results to these.

3.5 Discussion

3.5.1 The Genetic Algorithm

The genetic algorithm performed well on this problem. For problems where the

vortex panel analysis was able to accurately model the flow the optimiser produced

aerofoils which had geometries which looked as though they optimised the criteria

specified and had realistic lift and drag coefficients. In Experiments A, B, C, E, G

and H, the GA consistently found very similar solutions on each run, suggesting that

the algorithm was indeed finding the global optimum. In the case of Experiments D

and F, different runs converged to two slightly different aerofoils, but each had very

similar fitnesses.

The number of evaluations used was large. It is difficult to say how much larger the

number of evaluations used by the GA was above a traditional optimisation

algorithm without implementing such an algorithm. This was not a problem with the

vortex panel method since with this method evaluation was relatively quick. If a

more computationally expensive method was used, as discussed in Section 3.5.3,

then this might be a problem.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 79

3.5.2 The Shape Representations

3.5.2.1 Aerofoil Parameterisation

The aerofoil parameterisation was found to work well. The representation produces a

set of shapes through which the GA seemed to be able to search well.

There were some problems encountered where the analysis method could not

accurately assess the shapes. However, by using bounds on the parameters it was

possible to control the search space over which the optimisation was undertaken.

Those areas of the search space that could not be modelled effectively could

therefore be avoided.

This did, however, throw up an interesting difficulty. In Experiment F an aerofoil

was found with a lift-drag ratio of 26.7. This run used bounds on camber angles of 0 0

And 300 and with attack angle set at 0 0 . The optimal shape was found to have a high

degree of camber. A similar optimisation was undertaken in Experiment H, but with

attack angles allowed to vary from -4° to 4°. However, because the vortex panel

analysis produced inaccurate results for shapes with high camber and negative attack

angles, the camber angles were restricted to below 10°. Experiment H found an

optimal shape with a lift-drag ratio of only 11.8. By adding attack angle as a variable,

the intention had been to increase the size of the search space of shapes and thus

possibly to find a better solution; This, though, had made available part of the search

space that could not be analysed accurately. The subsequent constraint placed on

camber angles made to avoid this area inadvertently also removed the optimal

solution found in Experiment F. This is shown schematically in Figure 3-3.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 80

Area of search space 	 Optimum solution

inaccurately analysed 	 found in Run F

30

/ 	 Area of search space
removed by
constraint on ThetaO

I u 	

J:::i=IIIIIlIII: 	
optimum solution

-.. found in Run H

0
-4 	 0 	 4

Attack Angle (deg)

Figure 3-3 	Addition of Constraint on ThetaO in Experiment H

The main reservation about this representation was that it was relatively simplistic.

The range of potential shapes it could generate was fairly limited. For instance, it

would not be able to produce the shapes of some of the modern aerofoil profiles.

More complicated parameterisations are available, although they typically use more

variables. [Giannakoglou 2002] reports on the use of some of these parameterisations

with genetic algorithms. [Samareh 19991 surveys shape parameterisation techniques

for aerodynamic optimisation problems.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 81

3.5.2.2 Bézier Representations

The intention behind using a Bézier curve representation was to greatly increase the

range of potential shapes that could be produced, so that the ability of the genetic

algorithm to find a global optimum on a multi-modal landscape could be exploited.

However, this proved to be difficult since the vortex panel method analysis was

unable to model accurately many of the shapes generated. For many shapes the

analysis seemed accurate, but for others very high lift coefficients or low drag

coefficients were assigned. If the analysis had assigned poor values for lift and drag

for those shapes that it could not analyse accurately, this might not have been too

much of a problem. The optimisation would then just be to find a shape which

performed well and which could be analysed accurately. Instead, often shapes were

assigned unrealistically good fitness and so the genetic algorithm would evolve

towards those areas of the search space that could not be accurately assessed by the

vortex panel method.

To compound this problem, unlike with the aerofoil parameterisation, it proved to be

difficult to define where the analysis did not work. With the aerofoil parameterisation

it was possible to place bounds on the variables in order to avoid areas of the search

space that could not be analysed. For Bézier representations this proved to be

impossible to do, since it was too difficult to characterise, in terms of the

combinations of the control point co-ordinates, those areas of the search space which

the vortex panel could not accurately analyse.

3.5.2.3 Further Comments on Shape Representations

The approach to using Bézier curves to represent the aerofoil shapes used in this

study combined with the vortex panel method of fluid modelling was unsuccessful.

There are a number of possible solutions to this. An analysis method that is better

able to model these general shapes could be developed (as discussed in the following

section). Alternatively, the positions of the control points could be more tightly

constrained in some way so that only analysable shapes are generated. Indeed, Bézier

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 82

curves and splines have been frequently used successfully in the literature

[Giannakoglou 2002].

Nevertheless, whatever shape representation and analysis code is used a number of

considerations must be taken into account, when deciding on a representation to use:

• The representation should be selected so that the search space is likely to contain

the optimal shape. Often, the designer does not know a priori the likely nature of

the optimal shape. One possible solution to this is to make the search space as

large as possible.

• The analysis code can analyse accurately all the shapes in the search space. The

Bézier representation was found to fail on this point, because the vortex panel

method could not analyse all of the shapes the Bézier representation could

produce. Even in the case of the aerofoil parameterisation, where almost all of the

search space was accurately analysed, the presence of even a small area of the

search space where this was not the case, caused problems.

• It is desirable to keep the number of shapes in the search space as small as

possible. Clearly, the computational cost of searching through the search space

depends on the algorithm employed, the way it searches through space and the

nature of the problem landscape. However, all other things being equal, the

smaller a search space is, the less effort is required to search through it. Often this

means having as few variables as possible. It should be noted that this conflicts

with the first consideration above.

• The optimisation algorithm should find it easy to search through the space of

potential shapes. As an example, consider increasing aerofoil camber to increase

lift. In the aerofoil representation, increasing the camber angle changes the

aerofoil in such a way as to produce an otherwise similar aerofoil with higher lift.

An optimiser with an operator that changes the camber angle can easily explore

the possibilities of increasing lift by increasing camber angle. With the naïve

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 83

Bézier representation used in this study, changing the aerofoil camber can only

be done by moving a number of control points. If the optimiser has no operator

for moving a number of control points at once, then the uncambered aerofoil and

cambered aerofoil (but which are otherwise similar) are far apart in the search

space and it is therefore difficult to move between them.

This topic is covered in more detail in Chapter 6.

3.5.3 The Evaluator

The vortex panel method worked effectively for most reasonably shaped aerofoil

shapes. It makes assumptions about the type of flow being modelled, namely that the

flow is steady, inviscid and incompressible. However, these assumptions are

acceptable for the flow regime for which aerofoils were being designed in this study

(Reynold's number of about 5x106). It had the advantage of being a much quicker

analysis method than available alternatives such as the finite volume method.

Problems were encountered, though, when this method was used to analyse more

unconventional shapes. The vortex panel is not able to model boundary layer

separation and so cannot predict stall. This inability resulted in poor results with the

aerofoil parameterisation when shapes with high camber angles and negative attack

angles were analysed. Similarly, for many of the shapes generated by the Bézier

representation inaccurate results were generated.

If there was a requirement to evaluate more general candidate shapes a different

evaluator is required. An Euler flow solver [Ferziger & Peric 1996] [Versteeg &

Malalasekera 1995], is available which is able to accurately solve the flow around

more general shapes than could be evaluated with the vortex panel flow solver. This

evaluator has been written but at time of writing this thesis had not been fully

integrated with the rest of the shape optimisation application.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 84

The Euler solver assumes that the flow is compressible and inviscid. This solver

takes the co-ordinates of thirty-two points around the candidate shape with a higher

density of points at the trailing edge. A 32 x 32 '0' shaped grid is then produced up

to a distance of about five chord lengths from the aerofoil. This is about the lowest

resolution which can be used, whilst still retaining reasonably accurate results.

The primary disadvantage of this method is the time taken for each evaluation

(approximately 5 seconds on a Pentium 3 PC). If similar numbers of evaluations

were required as were used in the runs described in Section 3.4 (typically thousands)

optimisation would take a considerable length of time. For Experiment F 8400

evaluations were undertaken, with the Euler solver this experiment would take

approximately 12 hours.

The Euler solver iterates towards a solution. It is possible to start an evaluation using

the solution of the flow for a previous similar aerofoil. This will reduce the time

taken to converge. It would therefore be possible to produce a library of solutions for

a range of shapes. The evaluator then selects as its starting conditions the solution

from the most similar aerofoil in this library.

At early stages of the optimisation highly accurate solutions are not required since it

is only necessary to rank aerofoils from good to bad. At first, therefore, the solution

can be stopped when only weak convergence conditions have been achieved. This

will reduce the evaluation times at the beginning of the optimisation. Throughout the

optimisation, the solutions will be required to be increasingly converged so that the

accuracy of the solution will be increased when fine-tuning of shapes is being made

at the end of the optimisation. This will require the solutions of those shapes that

survive during the early stages of the optimisation to be restarted so that increased

convergence can be achieved. It may therefore be advantageous to include the

solutions for all surviving shapes in the library of starting conditions.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 85

For a more general evaluator it may be possible to use full Navier-Stokes solvers

[Ferziger & Peric 1996] [Jameson 2001] [Versteeg & Malalasekera 1995] to evaluate

shapes for shape optimisation [Nemec & Zingg 20011. Use may also be made of

unstructured grids, so that some restrictions imposed on candidate shapes to enable

the structured grid to be used may be lifted.

3.6 Conclusions

A. genetic algorithm was applied to the problem of optimising the shape of an

aerofoil with the aims of investigating the appropriateness of various shape

descriptions for aerofoil shape optimisation and investigating the efficiency of

genetic algorithms for aerofoil shape optimisation

Three shape representations were used, an aerofoil parameterisation, a four Bézier

curve representation and a four Bézier curve representation with C' continuity

imposed at the joins between curves. The aerofoil parameterisation worked well as

long as care was taken to ensure only shapes were generated that the vortex panel

fluid analysis could analyse. Further work would be useful with more sophisticated

aerofoil parametensations (with more variables).

Less success was had with the Bézier curve representations. Many of the shapes that

were produced could not be accurately analysed by the vortex panel method and the

genetic algorithm therefore evolved towards unrealistic shapes. This highlighted the

need to ensure that all the shapes in the search space set up by a shape representation

can be analysed accurately.

3. 	A Study on Aerofoil Optimisation using a Genetic Algorithm 	 86

Fluid analysis was undertaken with a vortex panel method that was written for this

problem. This method had the advantage of being quick and able to model the flow

around 'reasonable' aerofoil shapes but was unable to analyse more general shapes.

The genetic algorithm worked well with the parameterised aerofoil representation.

The GA consistently found the same solution on similar runs, suggesting that the

algorithm was indeed finding the global optimum. This was also checked by

repeating some runs with much larger population sizes.

4. 	Voxel Based Genetic Algorithm Optimisation 	 87

4 Voxel Based Genetic Algorithm Optimisation

4.1 Summary

A voxel-based shape representation, when integrated with an evolutionary algorithm,

offers a number of potential advantages for shape optimisation. Topology need not

be predefined, geometric constraints are easily imposed and, with adequate

resolution, any shape can be approximated to arbitrary accuracy. However, lack of

boundary smoothness, length of chromosome and inclusion of small holes in the final

shape have been stated as problems with this representation. This chapter describes

two experiments performed in an attempt to address some of these problems. Firstly,

a design problem with only a small computational cost of evaluating candidate

shapes was used as a test-bed for designing genetic operators for this shape

representation. Secondly, these operators were refined for a design problem using a

more costly finite element evaluation. It was concluded that the voxel representation

can, with careful design of genetic operators, be useful in shape optimisation.

However, since the boundary of a voxel model is necessarily not smooth, difficulties

were encountered in ensuring that the finite element analysis produced accurate

results.

4.2 Introduction

4.2.1 Voxel Shape Representation

The work described in this chapter involved investigating the possibility of replacing

the usual boundary representation of the shape usually used for shape optimisation

with a cellular representation. The cellular representation chosen in this work used

voxels, which partition the design space into rectangular regions or boxes that are

then assigned a binary full or empty value. This approach was motivated by a

number of potential advantages [Smith 1995a]:

4. 	Voxel Based Genetic Algorithm Optimisation
	

L.
any shape can be represented to an arbitrary accuracy by increasing resolution,

• it is easy to convert existing engineering solutions into voxels,

they map naturally to the representations frequently used by genetic algorithms

(GAs),

domain knowledge can be readily incorporated,

geometric constraints can easily be applied, and,

the topology of candidate shapes is not predefined.

However, Watabe and Okino [Watabe & Okino 1993] state the following objections

to voxels:

• the occurrence of small holes in the final shape,

the long length of the chromosomes,

the expectation that crossover operators would be ineffective, and,

• the lack of smoothness in the shapes' outlines.

4.2.2 Aims

Given the potential advantages of a voxel representation, it was considered

worthwhile addressing these difficulties. Specifically, the aims of this work were:

• to determine the suitability of voxels as a geometric model for use in shape

optimisation, and,

• to design suitable operators for a GA optimiser to use with such a representation.

4. 	Voxel Based Genetic Algorithm Optimisation 	 89

4.2.3 Acknowledgement

The work described in this chapter was done in collaboration with Peter Baron, an

MSc student, under the supervision of the author. It is included in this thesis as it was

instrumental in the development of the arguments put forward in this thesis.

4.3 Experiments

Two experiments were devised in order to investigate the voxel representation.

Firstly, a simplified beam design problem was formulated for which the cost of

evaluation would be small. Using this problem as a test-bed, a number of operators

were designed. Secondly, an annulus design problem was tackled using a finite

element analysis. The computation cost of evaluation in this case was thus much

greater. The usefulness of the operators designed in the first experiment could then

be evaluated with a more difficult design problem.

4.3.1 Simplified Beam Design

A prototypical mechanical engineering problem is that of optimising a beam to

support various loads with a minimal amount of material. Evaluation of the candidate

cross-sections was made using bending theory for symmetrical beams, considering

only normal stresses [Gere and Timoshenko 1984]. This is an oversimplified model,

but is sufficient to test whether the potential problems with a voxel representation

outlined above do pose a problem in practice. The maximum stress constraint

imposed by the physics model used in these experiments is summarised below.

4. 	Voxel Based Genetic Algorithm Optimisation 	 90

I My I <a max 	 for all voxels

where: 	a,, is the maximum stress allowed within any given area (voxel);

M is the bending moment;

y is the distance of the voxel from the neutral axis of the shape;

I is the second moment of area of the candidate cross-section.

The neutral axis of a shape is defined as a horizontal line that passes through the

centre of mass of the shape. As a voxel representation uses areas which are all of

uniform size and density, the centre of mass can be found by taking the average of

the positions of all occupied voxels. The second moment of area is approximated in

the discrete representation by summing the moments of each voxel, that is:

n
1= I ay

i=O

where a is the area of a voxel.

In the real world, the solution to this problem would correspond to an I-beam, but

that also requires a web to connect the two flanges of the beam together. In a design

based on a full calculation with shear stress, the web would be necessary to

counteract this additional stress. However, as shear stress is not represented in this

problem, a connectivity requirement in the form of a repair step was added, whereby

all pixels must be connected to a seed voxel in the centre top edge of the beam. In

addition, a straight web was enforced before the connectivity repair step. This was

found, in formative experiments, to prevent the formation of a crooked web (as the

physics model used does not prevent this), and improve slightly the results obtained.

4. 	Voxel Based Genetic Algorithm Optimisation 	 91

To try to ensure that the alterations and improvements made to the GA will also

prove beneficial to the real-world problem, it was decided not to concentrate on fine-

tuning any of the various parameters available, but rather to focus on the design and

operation of various new operators. Therefore, parametric variations were restricted

to an absolute minimum and were used only to determine the approximate values

required to gain reasonable advantages from the new operators. Therefore in the

following experiments, the following parameter settings remain constant unless

mentioned otherwise:

Beam Dimensions 	=0.05x0.10 m

Bending Moment 	 = 13000 	Nm

Voxel Grid 	 =32x64 	voxels

Maximum Stress Allowed =2x10 8 	Nm 2

4.3.1.1 Experiments Using the Naïve Genetic Algorithm

The first set of experiments with a 2D representation treated the chromosome as a

long one-dimensional binary string that wrapped around at the vertical edges onto

new lines to form the two-dimensional cross-section. Standard two-point crossover

(p = 0.35) and bitwise mutation (,n = 0.001) were used in conjunction with a

generation GA with a population of size 20. GENITOR-style rank-based selection

[Whitley 1989] was used throughout. From the above, the fitness function, F, used

was of the following form:

F=V+_
S
 +max{(S-crO}

1000 ma

where: 	V 	was the count of active voxels (proportional to weight),

S 	the maximum stress of any voxel,

4. 	Voxel Based Genetic Algorithn Optimisation 	 92

CrM, the value of the maximum stress constraint,

k 	the constraint penalty multiplier (set to 5 x 10 5 according to

the results of formative experiments).

With this particular optimisation problem, the difficulty lay not in getting a valid

solution, but in getting a near optimal-mass solution. The first experiments were

relatively unsuccessful in this regard: the results after 2000 generations were full of

small holes and had extremely uneven inner edges. This can be seen in the typical

end-of-run results shown in Figure 4-1 (the numbers represent the fitness values of

each individual).

Figure 4-1 	Typical End Population (with fitnesses)

The stresses were concentrated at the vertical extremes of the beam, so the material

in the middle contributes less towards the beam's ability to withstand the load, and

therefore as we are trying to minimise the mass of the beam, the material is more

usefully employed at the extremes of the beam. The GA, even in this simple standard

form, rapidly removed material from the middle of the cross-section, and in the later

stages of the experiments was observed to be moving material from low stress areas

into high stress areas where holes were left near the extremities.

4. 	Voxel Based Genetic Algorithm Optimisation 	 93

However, this first naïve GA approach took an extremely large number of

evaluations in order to make significant progress, and this is not acceptable as later

experiments would have a greatly increased evaluation time due to the integration of

the finite element package. The rate of improvement was also seen to decrease as the

run continued, levelling off to almost none at all by the end of the run. This means

that the GA was not finding any further improvements to the chromosome, and as the

results are visibly poor, it indicates a general weakness in the operators being

applied.

Attention was therefore concentrated towards improving the GA operators, in order

to achieve greater benefits during the early search period, and to produce better

quality final results.

4.3.1.2 The Smoothing Mutation Operator

The smoothing operator experiments were an attempt to address directly some of the

weaknesses of the voxel representation by devising a new specialised operator,

which should aid the search by reducing the number of small holes and ragged edges

produced by the GA. The new operator was intended to be capable of easy expansion

from two-dimensions to n-dimensions, so that it would continue to be useful in the

case of higher dimensional problems using the voxel representation.

This operator selects an area with both random position and size ranging from 2

pixels to 1/4 of the dimensions of the grid. The most common value for the pixels in

the area selected was then found and written to all of the pixels in that area (see

Figure 4-2).

4. 	Voxel Based Genetic Algorith,n Optimisation

Figure 4-2 	The Smoothing Operator

The GA parameters used were the same as before and the new operator was applied

in addition to the previous mutation and cross-over operators - application of this

operator to 60% of the chromosomes in the population was found, in formative

experiments, to give the best results. The GA configuration was otherwise

unchanged, though the number of generations was limited to 1500 in this case.

855 921 864 860 861 881 858 856 qjq 857

934 857 855 856 261 855 851 3441 121 991

Figure 4-3 	 Typical End Population for GA with Smoothing

Operator after 1500 Generations (fitnesses are

shown)

4. 	Voxel Based Genetic Algorithm Optimisation 	 95

Comparing Figure 4-3 which displays some typical end-of-run population members

with earlier results (shown in Figure 4-1), shows just how effective this domain

specific approach to operator design has been, especially at eliminating isolated holes

and reducing ragged edges.

4.3.1.3 UNB LOX: An N-dimensional Crossover Operator.

The two-point crossover operator that had been used up to this point treated the

chromosome as a one-dimensional string of bits and therefore suffered from a

problem with linkage; voxels that are adjacent in a two-dimensional grid are not

necessarily adjacent in the one-dimensional string. This separation increases the

possibility that useful building blocks (areas of the grid that contribute to a higher

overall fitness evaluation) will be disrupted during the crossover procedure.

[Cartwright & Harris 1993] describe the use of the UNBLOX crossover operator,

which was specifically designed to overcome these limitations with conventional

two-point crossover. This operator swaps a rectangular area of the grid instead of the

sub-string swapped by two-point crossover. If the area overlaps an edge of the grid

then it is made to 'wrap-around' to the opposite side. The size and location of the

area to be swapped are both selected at random, and in this implementation the area

was restricted to a minimum size of two voxels per dimension in order that the

operator would always have some effect when applied.

4. 	Voxel Based Genetic Algorithm Optimisation

The crossover operators were used with the standard probability of 0.3 per

chromosome and no changes were made to the standard algorithm or to any of the

other parameter settings described earlier. The graph in Figure 4-4 shows the results

of three experiments using each of three crossover operators: the UNBLOX operator,

standard two-point crossover and uniform crossovers [Goldberg 89]. The average

fitness, over ten trials, of the best individual in the population is plotted against the

generation.

2400\

2200

12000
Unarm

Jiaoo /Uflblox

t 1600
1400 N

120

1000.

	

8001 	I 	I 	 -I--

Generation (popu2atJon20)

	

Figure 4-4 	Effectiveness of Various Crossover Operators

—Two Point

Uniform

Unblox

4. 	Voxel Based Genetic Algorithm Optimisation 	 97

The results confirm that the UNBLOX operator does indeed perform better than

either the two-point crossover or the uniform crossover techniques on this problem.

The rate of descent of the UNBLOX line is quicker, indicating that the population

converged to good solutions faster with this approach than with the other operators,

and the eventual end result after 1500 generations had a slightly better fitness value

than those produced by the other techniques.

4.3.1.4 Two Dimensional Mutation Operators

A new mutation operator was designed which scrambles the contents of a randomly

selected rectangular area of the voxel grid. It is referred to here as the 'two

dimensional' operator. This operator can be easily modified to work in n-dimensions,

and affects a relatively small area of the chromosome intensively in the selected

rectangular area, in the same way as for the smoothing mutation operator. A second,

somewhat altered, version of this mutation operator was also designed and tested in

these experiments called the 'two-by-two' area mutation operator. This operator uses

a fixed mutation square of two by two voxels and was designed to be applied only if

at least one voxel in the mutation area is already active. It was observed that most of

the modifications need to be made to the surface or interior of the evolving shape and

that very little benefit will result from flipping isolated voxels in the middle of the

void areas. The choice of a fixed two by two area was motivated by the observation

that most of the irregularities on the surfaces would fit into such an area and that with

only sixteen permutations possible (four binary bits), the probability of mutating a

poor quality area into a more fit variation would be reasonably high.

The new operators were again applied, in addition to the original bitwise mutation

operator, with a probability of 0.25 per chromosome of being applied. After each

application, there was a decreased probability of the same operator being applied

again, with the probability of a further application being decreased to one half of its

previous value each time. The experiments were performed ten times for each of the

three alternative mutation combinations, over a period of fifteen hundred

generations.

2450

'S

1050

i 2050

E

1 1650
1 1450

1250

g
GenQrahion (popiaton '20)

—BItwse

—20

Twobyt.0

4. 	Voxel Based Genetic Algorithm Optimisation
	

OR

Figure 4-5 	Effectiveness of Various Mutation Operators

The graph in Figure 4-5 shows the results of three experiments: 2D and bitwise

mutations, two-by-two and bitwise mutations and bitwise mutation alone. The

average fitness, over ten trials, of the best individual in the population is plotted

against the generation.

The addition of the 'two dimensional operator' generally results in better

performance than the bitwise operator alone, though the two lines do meet between

generations 300 to 400. The steeper descent of the two dimensional operator line

indicates that early performance was especially improved, and the final result after

fifteen hundred generations is significantly better than previously. The 'two-by-two'

operator offers a similar rate of improvement during the early stages of the trial, a

slightly better performance between generations 100 to 600 and finally converges

with the 'two dimensional' operator's line at about generation 1000. This seems to

4. 	Voxel Based Genetic Algorithm Optimisation 	 99

indicate that although offering early benefits to the optimisation, it is not better than

the 'two dimensional' operator in the long run.

In conclusion, two new mutation operators were designed with the particular

intention of directly addressing the perceived problems with the prior optimisations.

Both of the new operators were found more effective than the previous uninformed

bitwise mutation, producing benefits to both the rate of early improvement and the

final quality of solution generated.

In the absence of any other clearly distinguishing features, the 'two-by-two' operator

will be used during the further experiments as it offers a speed advantage over the

two dimensional mutation operator outlined above.

4.3.1.5 Conclusions on the Beam Design Problem

The results have shown that although a naïve GA does indeed suffer from the

problems suggested by [Watabe & Okino 19931, a small selection of operators

informed only by domain knowledge about the representation, will effectively solve

each of these difficulties.

The final system uses a normal bitwise mutation operator in addition to the two new

mutation operators, smoothing, and 'two-by-two'. The smoothing operator rapidly

cuts away unwanted areas of material during the early stages of the optimisation and

can help to smooth ragged edges and fill small holes later. The two-by-two mutation

operator is highly effective at both smoothing off ragged edges and at filling in small

holes in the material if they occur in undesirable places. Finally, the two-point

crossover operator has been replaced by the n-dimensional UNBLOX operator.

4. 	Voxel Based Genetic Algorithm Optimisation 	 100

4.3.2 Annulus Design Problem using Finite Element Analysis

The experiments undertaken with the simplified beam design problem outlined in

Section 4.3.1 led to the design of effective GA operators for manipulation of 2D

shapes. This section details further experiments undertaken to apply these operators

to a more difficult design problem. The problem chosen was to design a jet-engine

annulus. The finite element method was chosen as the analysis technique. Initially,

for ease of implementation, the voxel shape description was directly used as the

finite element mesh.

T-1h 	 Rim

Axis of
Rotation

Blade
forces

Figure 4-6 	Annulus Axisymmetric Cross-section

4.3.2.1 The Annulus Design Problem.

The full original specification of this problem came from an industrial source and is

taken from [Smith 1995b]. The problem is to design a jet-engine annulus. This part is

subjected to loading due to rotation and due to the attachment of the turbine blades to

its outer circumference. The part is axisymmetric around the axis of rotation, and

4. 	Voxel Based Genetic Algorithm Optimisation 	 101

consequently it reduces to the two-dimensional shape optimisation problem shown as

Figure 4-6.

The optimisation involved reducing the mass of the annulus whilst observing a series

of four separate stress constraints at discrete locations in the annulus. The constraints

relate to the hoop stresses at the inner and outer circumferences and the radial

stresses along the centre line of the annulus. The stress constraints to be observed

were, in descending order of importance:

Hub hoop stress 	 <1330 MPa

Rim hoop stress 	 <396 MPa

Inner radial stress 	<741 MPa

Outer radial stress 	<334 MPa

4.3.2.2 The Fitness Function

The GA fitness function was defined as an objective (weight of the annulus in kg,

and a factor to minimise the total stress at the four test points, in MPa) plus a sum of

penalty terms if one of the four stress constraints was broken. Therefore, the GA

maximised:

1.

F = 	1000 Si —annulus_weight - (k i max{(S - cr fl(I)) o})

Constraint penalties were applied if any of the four constraints limits Om (j) were

exceeded by the stress, Si, measured (in MPa), The constraints were ordered in

importance by using 4 x k for the most important, 3 x k for the second most

important, 2 x k for the next and 1 x k for the least important constraint.

4. 	Voxel Based Genetic Algorithm Optimisation 	 102

4.3.2.3 Results from the basic system.

Again, a generational GA with a population of size 20 and GENITOR-style rank-

based selection was used. The UNBLOX, smoothing mutation, and 2-by-2 mutation

operators were applied sequentially with probabilities 0.3, 0.8, and 0.8 respectively

(on the basis of formative experiments). A 62 by 27 voxel grid was used to represent

the annulus and the constraint penalty, k, was set to 0.00005. The settings used for

the annulus were:

Dimensions of design space =

Radius of hole 	 =

Blade force 	 =

Young's modulus 	=

Material density 	 =

Revolution speed 	=

0.25 x 0.05 m

0.10 	in

10 105 	Nrad

2.238 x 1011 N m 2

8.221 x 103 kg m 3

1571.0 rads 1

The basic system was first applied without further modifications to the annulus

optimisation. However, the problem as specified was very tightly constrained, which

meant that the attempts to solve this problem using random population initialisation

violated all of the stress constraints by large amounts. Also, the rate of improvement

in the population, when extrapolated beyond the time period allocated to the

experiments indicated that a valid solution would not be found for some considerable

number of generations still to come.

To circumvent this problem, the population was instead initialised with a selection of

variations on the annulus design supplied with the original specification, which were

modified further by an aggressive random mutation operator that added and removed

small areas of material over the surface of the annulus design. This kind of intelligent

initialisation was thought reasonable, as a user will often want to start the GA with

4. 	Voxel Based Genetic Algorithm Optimisation 	 103

Figure 4-7 	Results of the Basic Annulus Optimisation after 75

Generations

existing designs in order to see what improvements can be made. Even when a

totally new shape is being designed, the user would normally have some expectation

about the final form, which could easily be used to initialise the population. The

intelligent initialisation approach meant that the initial population was not

unreasonably far outside of the stress constraints, yet supplied the optimisation with

sufficient variation that the population did not rapidly converge onto a single

solution. Some of the results from this basic system can be seen in Figure 4-7 that

shows six members of the population after seventy-five generations.

The results shown in Figure 4-7 were poor. The lack of symmetry around the

horizontal axis and the uneven edges were just the most visible failings in this set of

results. A second problem was the occurrence of large stresses at the corners of

elements on the edge of the shape.

4. 	Voxel Based Genetic Algorithm Optimisation 	 104

4.3.2.4 Improvements made to the system

4.3.2.4.1 Use of Symmetry

It was known that a solution to the annulus design problem should be symmetric

about a radial axis. It was therefore decided to utilise this domain knowledge and

thus reduce the search space of the problem. The central line of voxels along the axis

of symmetry is not mirrored as it is now enforced by the GA to be always turned on

- this also provides a guaranteed central line of elements for the stress measurements

to be taken from.

4.3.2.4.2 Mesh Improvement

It was found in the initial experiments for the annulus design problem that directly

using the voxel description of the geometry as the finite element mesh caused

problems with high stresses caused by corners in the mesh. It was therefore decided

to attempt to separate the geometry model and mesh. There were several possible

approaches that could have been taken. An approach that was considered was to use

interpolation splines to form a smoothed edge. The voxels would then act as a

'skeleton' and the spline as a 'skin'. A mesh generator could then produce a mesh

whose density could then be independent of the voxel model. However, for this

prototype system, it was decided simply to add triangular elements at the corners.

Whilst this was a far less elegant solution it was much simpler to implement.

These new triangular elements were created by specifying connections between

groups of three nodes in the element connection file. These triangular elements were

added to the shape at all suitable 'steps', which were identified by convolving the

voxels in the shape against a series of four matching template masks. If each square

in the mask matched the value of the voxels surrounding an empty voxel then the

appropriate triangular element was created in the 'step'. The convolution masks and

the triangles which they caused to be inserted are shown in Figure 4-8.

4. 	Voxel Based Genetic Algorithm Optimisation 	 105

Don't Don't
Care Care

Empty

Don't Don't
Empty

Care Care

Figure 4-8 	Convolution Masks for Triangle Insertion Process

4.3.2.4.3 Design of Operator to Remove Holes

The 'two-by-two' mutation operator (which can either fix holes or cause them to

appear) was modified to only mutate areas where, as well as at least one voxel being

turned on, at least one of the four voxels is also turned off. The result of this

modification is that the two by two mutation operator can now only mutate at the

boundaries of the shapes being formed, and consequently it should also help reduce

the number of small protuberances.

4.3.2.5 Results of Improved System

The improved GA for annulus optimisation used the same settings as the basic

system for all parameters, except that the chromosomal grid was set to 21 voxels

high, which is mirrored due to the symmetry used to produce a voxel grid height of

41 voxels. The analysis was permitted to continue for 114 generations and this took

approximately twenty-four hours in total. Some members of the final population

created by the improved GA are shown in Figure 4-9. This displays three of the

twenty individuals and shows a clear improvement in quality over the results

generated previously. The small protuberances have been totally eliminated and only

a few members of the population contain small holes. The rate at which a valid

4. 	Voxel Based Genetic Algorithm Optimisation 	 106

Figure 4-9 	Final Annulus Cross-Sections from Improved GA

solution was found is considerably faster than the basic implementation, and once

found, the GA continued to improve upon this solution even to the very last pass of

this trial.

The annulus shapes produced can be seen to be unusual. It is proposed that the

'overhangs' present at the cob and the thinness of the neck are due to the inadequate

specification used for the annulus and the method used to penalise constraint

violation. Stress constraints were defined for four discrete points in the specification

that was intended to be used with a parameterised shape description. This

specification would be adequate for such a representation. However, with the voxel

representation the optimiser was able to remove material with greater flexibility. At

an optimal solution, one of the stress constraints is just inactive. Removing more

material would then increase the stress to above the maximum value. However the

4. 	Voxel Based Genetic Algorithm Optimisation 	 107

GA could improve the fitness value if, by adding material elsewhere, the position of

high stress was moved from the point at which the constraint was assessed, as long as

the amount of material added was less than that removed. If this explanation is

correct, the problems do not lie with the voxel representation and could be solved by

improving the specification and method of penalising constraint violation. This

highlighted the necessity to express in a formal and unambiguous way what is the

desired behaviour.

After using the finite element package to examine the solutions produced by this

optimisation, it was possible to confirm that the use of the triangular elements to

smooth the boundary worked as expected in reducing the amount of stress in the

regions immediately surrounding a step. Figure 4-10 shows the stress values

calculated by the finite element package for the voxels surrounding steps in two

typical runs and clearly shows how the triangles permit the excess stress to be

distributed more in a more evenly. Darker shades indicate higher stress.

108 4. 	Voxel Based Genetic Algorithm Optimisation

I __ __
I 	I

_

_I I -

I I
I I

TEE
__

J 	I TTET
-r

P

rF
PP- P

flTT F

rrET
rF TF

LIILI

Figure 4-10 	Results without and with Smoothing Triangles

4. 	Voxel Based Genetic Algorithm Optimisation 	 109

Figure 4-11 	The Best Annulus Design from the Final Set of Experiments

4.3.2.6 Conclusions for Annulus Design Problem

It was found that the use of unmodified operators from the beam design problem was

unsuccessful. However when the operators were modified, taking into account

knowledge held about the annulus design problem, the results were more successful.

Difficulties were encountered in the direct use of the voxel shape representation as

the finite element mesh. These were to some extent alleviated by the use of

smoothing triangular elements. However, the full decoupling of the primary voxel-

based shape description and finite element mesh would be desirable.

Due to the flexibility of the voxel representation in removing and adding material

coupled with the GAs ability to exploit the whole search space, it was found that the

specification of the problem needed to be more tightly defined.

4. 	Voxel Based Genetic Algorithm Optimisation 	 110

4.4 Conclusions

Voxels were found to be a viable representation for shape optimisation with an

evolutionary algorithm in 2D problems. They have a number of potential advantages

over other representations such as parameterised boundary descriptions. It is easier to

not predefine the topology (whilst it is possible to represent an arbitrary topology

with a boundary representation, it is much more difficult to parameterise a b-rep

model so that topology can be changed [Shapiro & Vossler 1995]), domain

knowledge is easier to incorporate, geometric constraints can be easily applied and it

is easier to convert existing solutions into such a description in order to 'seed' an

initial population of shapes.

Experiments were undertaken on two design problems, a simplified beam design and

a jet-engine annulus design using finite element analysis. During these experiments a

number of difficulties inherent with this representation were addressed, primarily by

use of specifically designed genetic algorithm operators which utilised domain

knowledge held about the problems tackled. An n-dimensional crossover operator

was used which provided linkage between adjacent rows of voxels and thus avoided

the slow convergence found with a conventional crossover operator. An operator was

designed to remove unwanted holes produced in candidate shapes and to smooth

boundary edges.

The direct use of the voxels as the finite element mesh was found to be inadequate.

Further work required involves the decoupling of the voxel representation and mesh.

The flexibility of the voxel representation along with the genetic algorithm's

exploitation of the whole search space uncovered deficiencies in the specification,

supplied by an industrial collaborator, used for the annulus design problem.

Finally, it should be noted that GA optimisations can easily be modified into

interactive optimisation systems [Tuson et al. 1997] and in this case the computer

would rely on an engineer's practical experience and knowledge of the problem

domain to direct key choices in the optimisation process.

5. 	Application of Genetic Programming in a Solid Modeller 	 111

5 Application of Genetic Programming in a Solid Modeller

5.1 Summary

In this chapter an initial investigation into the use of genetic programming in a

hybrid B-Rep / constructive solid geometry (CSG) solid modeller is described. In a

CSG solid model the solid is represented with a tree structure of Boolean functions,

such as 'union', 'intersection' and 'subtract', acting on a collection of primitive point

sets [Mantyla 1988] [Hearn & Baker 1994]. Genetic programming [Koza 1990] is a

cousin of genetic algorithms, which acts on tree-structure chromosomes, rather than

on the linear chromosomes traditionally used by genetic algorithms.

The ACIS 3D toolkit [Corney 1997] was used as the solid modeller. This toolkit has

an interface based on the Scheme language. The genetic programming algorithm was

implemented using this Scheme interface.

A test problem was used in which the aim was to regenerate a given test component.

Genetic programming was used to manipulate a tree structure with Boolean

operations at internal nodes and the primitive bodies making up the component as the

leaves. The technique was found able to regenerate the test body.

It was hoped that this technique might be used to automate the difficult process of

converting arbitrary B-Rep solid models into CSG models. However, these initial

tests suggested that the computational time required to solve any realistic problem

with this technique would be prohibitive.

5.2 Introduction

5.2.1 Genetic Programming

Genetic programming (GP) is an extension of genetic algorithms in which the

chromosome is a tree structure (see Figure 5-1), rather than the linear chromosomes

5. 	Application of Genetic Programming in a Solid Modeller 	 112

used in traditional genetic algorithms (GAs). The technique was initially developed

by [Cramer 1985] and has been extensively studied by [Koza 1990], [Koza 1992],

[Koza 1994] and [Koza et al. 1999]. GP has been applied to a number of diverse

areas including mechatronics design [Seo et al. 2003], modelling of waste treatment

plants [Hong & Bhamidimarri 2003] and image classification [Agnelli et al. 2002].

[Ryan et al. 2003] demonstrates the current breadth of possible applications of GP.

Output

Fx denotes function x

Fl) 	 Tx denotes terminal x

F2 	(F3

T1 I 	I T21 	I T5 I 	
(Fl

	

F4 	 (F2

.rii

Figure 5-1 	A Genetic Programming Chromosome

In a GP chromosome tree, each node is a function and takes n arguments (in Figure

5-1 n = 2). These arguments are either the outputs from other function nodes or

terminals. Terminals are either inputs to the system or constants. When applying GP

5. 	Application of Genetic Programming in a Solid Modeller 	 113

to controller design, for example, the terminals would be sensor outputs. The set of

available functions could include algebraic and trigonometric functions.

Initially a population of trees is produced at random. As in a GA, each chromosome

is tested and assigned some fitness. Parents are selected with some bias towards the

fittest trees. Crossover is undertaken by choosing at random a node or terminal on

each parent and then two child trees are produced by replacing subtrees on each

F3

F2 	 F4

Crossover
Point 	

F2 	TI 	T3

F1 	 F5

T5T4T2

Parent 1

Crossoer f1

F3 	 T4

T7 	 F5

F4 	 F6

T5 	T5 T1

Parent 2

X
F I

T6 	T5

ChOd 2

Child 1

Figure 5-2 	Crossover of GP Tree Chromosomes

5. 	Application of Genetic Programming in a Solid Modeller 	 114

parent with the subtree from the other parent (see Figure 5-2). Mutation takes place

at random by changing a function to another function, or function (and subtree

below) to a terminal. The child trees are then evaluated and added to the population.

5.2.2 The ACIS 3D Toolkit

ACIS [Corney & Lim 2001] is a B-Rep solid modeller that is widely used as the

solid modelling engine in many CAD packages. For easy prototyping of applications

based on ACIS, a development environment, the ACTS 3D toolkit, is available

[Corney 1997]. This toolkit provides an interface to the data structures and

algorithms in the ACTS solid modelling libraries via the Scheme language. Scheme is

a language that is very similar to LISP, which is a language commonly used for

genetic programming.

Although ACTS is a B-Rep solid modeller, since ACTS provides Boolean solid

operations such as 'union', 'subtract' and 'intersection' and Scheme allows for

manipulation of tree structures, it is possible to use the ACTS 3D Toolkit as a hybrid

CSG/B-Rep solid modeller (see Figure 5-3). [Mantyla 1988] gives an introduction to

CSG solid modelling.

5.2.3 Potential Application of Technique to Practical Problems

If this technique were to prove successful, it might have a number of practical

applications. This might involve the use of a finite element package to assign a

fitness to candidate components. This would then allow components to be evolved

that satisfy loading conditions and stress constraints.

5. 	Application of Genetic Programming in a Solid Modeller 	 115

The GP technique might also be applicable to the problem of translating B-rep solid

models into CSG solid models [Raghothama & Shapiro 2000]. At present, there is no

general method of translating a 13-rep solid model into a CSG model. The GP

optimisation technique is implemented using ACS, a 13-rep solid modeller. It is

Figure 5-3 	Example of a CSG Tree and Solid Model

therefore possible to bring an arbitrary B-rep solid model into ACS. This solid could

then be the target solid for the GP optimisation. If the dimensions, positions and

orientations of the primitives used as the terminals in the chromosome trees were

also optimised along with the tree structure then it may be possible to evolve trees

5. 	Application of Genetic Programming in a Solid Modeller 	 116

which, when evaluated, closely approximate the target body. It is then trivial to

translate the chromosome tree into a CSG tree. A translation of the B-rep model to a

CSG model would then have been achieved.

5.3 Implementation & Initial Test Problem

Genetic programming has been applied in a solid modelling context. This has been

implemented in the ACIS 3D Toolkit in which the programming code is written in

Scheme (a derivative of LISP - the most commonly used language for GP).

--

Figure 5-4 	The Test Component

The function set consisted of the Boolean functions 'unite', 'subtract' and 'intersect'.

Wrappers were added around the 'unite', 'subtract' and 'intersect' Boolean functions

supplied with the ACIS 3D Toolkit so that errors are avoided when null bodies are

created (for example when the intersect function is applied to two separate bodies). If

a null body is created the wrapper returns the first body supplied as an argument to

the function. An additional function 'Return-Body!' is also in the function set. This

5. 	Application of Genetic Programming in a Solid Modeller 	 117

function just returns the body that is its first argument. This allows parts of the tree to

be recessive - they are transmitted with the chromosome but make no contribution to

the final body.

The terminal set consisted of primitive blocks and cylinders of fixed dimensions. The

aim of the optimisation was to create a tree structure using the Boolean functions and

the terminal primitives which, when evaluated, corresponded to a predefined 3-

dimensional solid. A test component (see Figure 5-4) was used as the target body.

This component could be produced by subtracting the primitives from a blank that is

also available in the terminal set.

Each candidate tree was assigned a fitness that was the difference between the

volume of the union of the candidate body and the target body and the intersection

between the two bodies. This corresponds to the sum of the volume in the target

body but not in the candidate body and the volume in the candidate body not in the

target body (demonstrated in Figure 5-5 in the 2-dimensional case).

5. 	Application of Genetic Programming in a Solid Modeller
	

118

7V W_
Candidate

Square

Fitness of candidate square
is area of shaded region

\
Target Square

Figure 5-5 	2D Example of fitness calculation

Genetic operators used are crossover and mutation as described in 5.2.1. In addition,

compress and uncompress operators were available. The compress operator

evaluates a subtree below a given point into a solid (see Figure 5-6). This solid is

then placed in the terminal set. The subtree is then replaced by a reference to this

terminal body. The uncompress operator reverses the compress operator by replacing

a reference to a compressed terminal in a tree with the full subtree which evaluates to

this terminal. The purpose of the compress operator is to allow frequently used

'good' subtrees to be compressed so that they cannot be disrupted by the crossover

operator. [Angeline & Pollack 1992] successfully use similar operators in evolving

programs to play Tic-Tac-Toe. [Koza 1994] describes Automatically Defined

Functions (ADFs) which are similarly motivated by the desire to enable the reuse of

sub-programs.

5. 	Application of Genetic Programming in a Solid Modeller
	 119

*
S

I S
I

S
I

S
I

/
S /

\ Uncompressed

	

I 	 I 	I

	

I 	TI

	

I 	Block 	 Cylinder I 	I
S

	

I 	 I 	 I 	 *
S 	 I 	 I 	 I

S 	 I 	 I 	 I 	I 	 S S 	
I 	 S

S 	
I 	 S * 	 / 	 *

S 	
I 	 S

	

S 	 I 	 *

	

S 	 I 	 S

	

S 	 I 	 S S

T3
Solid 	 -

- I

-

- -

A - - - - - - - - - - -

sub-tree

Compressed to
new terminal solid

Figure 5-6 	Example of Compress Operator

5. 	Application of Genetic Programming in a Solid Modeller 	 120

5.4 Results

With the terminal set included ten primitives - the blank and nine primitives to be

subtracted - the GP scheme consistently found a tree that evaluated to the target in

about 400 to 600 evaluations. This was with a population size of 100, rank based

selection, crossover and mutation rate of about 10%. Since about one hour was

required to undertake one run on a Sun Sparcl0, it was not feasible to undertake a

complete investigation of the optimisation parameters.

When the terminal set included fourteen primitives - the blank, nine primitives to be

subtracted and four blocks to compose the main body of the component - then GP

scheme was presented with two possible ways to build the component. These were to

subtract blocks from the blank or to build the main body of the component by uniting

the four blocks and subtracting the other primitives from this union. This slowed the

UP scheme. Between 700 and 1000 evaluations were then required to produce a tree

which, when evaluated, corresponded to the test component.

5.5 Discussion

Genetic programming proved to be able to generate the target component. It did

better than randomly generating the trees which was not able to produce the test

component. However, it required a large number of evaluations and therefore took a

long time even for this simple problem. Therefore, it was concluded that the

computational effort required to convert an arbitrary B-Rep solid model into a CSG

tree for any realistic models would be prohibitive.

5. 	Application of Genetic Programming in a Solid Modeller 	 121

5.6 Conclusions

This chapter showed that genetic programming techniques could be applied to the

generation of constructive solid geometry trees to optimise solid models. The

approach was able, given a set of primitive solids, to evolve a CSG tree that

evaluated to a test component constructed from those primitives. However, the

computational cost of doing this suggested that the approach would not scale up to

the problem of converting arbitrary B-rep models into CSG trees.

6. 	The Need for a Common Data Structure for Shape Optimisation 	122

6 The Need for a Common Data Structure for Shape

Optimisation

6.1 Summary

Building on the review of common approaches to shape optimisation given in

Chapter 2, and the examples given in Chapters 3 to 5, it is argued in this chapter that

a common data structure for shape representation and analysis would allow novel

and efficient shape optimisation algorithms to be developed. Such a common data

structure would increase the ability of shape optimisation to be used as a way of

partly automating the process of geometry generation.

Firstly, the process of generating form from function is described and then the role

that search and shape optimisation algorithms could play in this are discussed. An

analysis of the shape optimisation process is then given. Finally, the argument is put

forward that a common data structure for optimiser, shape representation and

analysis would help in the realisation of search algorithms which are able to generate

form for a desired function.

6.2 Form from Function

As briefly described in Section 1.2, an important area of design research concerns the

process of generating the geometric form for a component given a desired function or

behaviour for that component.

Modem current design practices use computers extensively. Product data

management tools store all relevant information generated about a part or assembly

throughout the design process. The part's geometry is generated, usually in three

dimensions, using Computer-Aided Design (CAD) packages. Analysis of the

component's physical behaviour is undertaken using virtual testing techniques such

as finite element analysis or computational fluid dynamics.

6. 	The Need for a Common Data Structure for Shape Optimisation 	123

In each of these applications, geometry clearly has an important role. Indeed, the

CAD model of geometry is often seen as the model of the part. Analysis techniques

take this model, transform it, and the results are stored with the CAD model.

Manufacturing information is similarly generated and can be stored with the CAD

model. Traditionally, engineering drawings are used as the primary method of storing

and communicating information about mechanical parts. However, the synthesis of

the geometry itself is primarily a creative process, in which human designers create

appropriate geometries. CAD packages can be used to facilitate this process, but they

only play a passive role. It would be helpful if computer tools could be developed

which could take a desired function and from this produce a geometry, which would

exhibit the required behaviour [Roy et al. 2001].

In contrast, computers are playing an increasingly important role in analysing the

physical behaviour of a mechanical component given a specified geometry (i.e.

performing the inverse of form from function, determining function for a given

form). Previously, engineers relied on analytic solutions to the equations governing

the behaviour of components. This was restricted to a limited number of shapes and

behaviours. The development of computational tools such as the finite element

method and computational fluid dynamics (CFD), have greatly increased the range of

phenomena and shapes which can be analysed. This has enabled designers to check,

quickly and inexpensively, whether a component behaves as expected. The designer

can then enter into a further design iteration, changing the geometry to improve it or

other aspects of the design. This interactive process continues until an adequate

design is found.

6.3 Shape Optimisation as a Method of Partially Automating the

Generation of Form from Function

In a limited number of application domains, it has proved to be possible to specify a

desired behaviour and from that to deduce an appropriate geometry. For instance, for

some aerodynamic problems it is possible to specify a desired pressure distribution

over an aerofoil profile, and then to use an inverse technique to produce the required

6. 	The Need for a Common Data Structure for Shape Optimisation 	124

geometry. However, even in the limited range of applications where such inverse

techniques are available, they cannot cope with geometric constraints (for example to

accommodate engine-mounting points) or rely on an idealisation of the physical

behaviour.

In contrast to inverse approaches, which for most applications are not available,

approaches that search for a shape that meets the desired specification might be

much more widely applicable. The designer must in some way define a set of shapes

through which to search, supply a method of assessing any of these shapes' ability to

meet the desired specification and an algorithm to effectively search through the set

of shapes is needed.

Shape optimisation might be one way in which this is done. It automates the process

of changing the geometry in response to information about the components generated

by the analysis. Rather than a human designer changing the geometry of the design in

response to the analysis, a computer program is used to make the changes in order to

find an optimal geometry.

However, applications of shape optimisation have tended to rely on keeping the set

of shapes through which to search quite small. The shapes only vary parametrically

in some relatively small way from an initial geometry supplied by a designer.

Clearly, this defeats our purpose of semi-automatically generating geometries

meeting a specified function, for which it is desirable that the space of shapes be

large and general.

The following sections analyse the process of shape optimisation and try to identify

where the difficulties lie in expanding the applicability of shape optimisation to the

process of determining form from function.

6.4 Overview of The Shape Optimisation Process

Shape optimisation is used as a part of the process of designing a component. It

concentrates particularly on the geometry of the part. An engineer when attempting

6. 	The Need for a Common Data Structure for Shape Optimisation 	125

Set of all shapes

q) Set of actual fitnesses

P Representation space

omp
Set of shapes available in representation

Set of discretisations

Set of simulated fitnesses

Figure 6-1 	Searching for an Optimal Shape

to find a shape for a particular component is faced with an infinite set of possible

shapes I(see Figure 6-1). Each shape within Ecan be assigned a 'fitness', a measure

of its ability to do the job for which the component is intended. Often this is a single

number, but may be a vector of numbers in the case of a multi-objective design. Each

point in E, therefore, is mapped to a 'fitness' vector in the n-space 0, where n is the

number of objectives. Many of the shapes in I will violate some design constraint

and will thus have a poor fitness in 'P. The designer wants to find the shape, cr01, 1 , in I

which maps to the highest fitness in 'P.

6 	The Need for a Common Data Structure for Shape Optimisation 	126

To some extent finding o4 has been the concern of engineers for many years (or at

least finding some sufficiently good a). In shape optimisation we are primarily

concerned with using computers to find o01 . We therefore need to translate L the set

of possible shapes, , the set of fitnesses, and the mapping between them, onto a

computer. We then need to automate the process of searching through the set of

possible shapes. Sections 6.3 to 6.5 deal with each of these translation processes.

In Figure 6-1, the set of shapes through which the shape optimisation algorithm

searches is shown as Ecomp. Optimisation algorithms, however, do not optimise over

sets of shapes but rather optimise the values of a number of variables. This is shown

as the set P. Each member p of P represents a particular set of values for these

variables. Typically, these variables take real number values although certain

applications such as the one described in Chapter 4 can take Boolean values. A set of

values, p, for variables in P is translated into a shape by a CAD package, where the

shape is typically represented using a B-Rep model, spline curves or other geometric

model.

Once a shape has been represented, it is necessary to analyse its behaviour. Finite

element analysis is frequently used for structural analysis. Finite volume or vortex

panel schemes for computational fluid dynamics are frequently used for fluid

analyses. Both of these techniques require the shape (or the space around the shape)

to be discretised. This is shown in Figure 6-1 as a mapping from Ecomp to zi, the set of

discretisations.

The analysis method then takes a particular discretisation 8 in zi and calculates the

physical behaviour. From this a value for the fitness of the shape Øsjmul in Pü,,i can

be calculated. Some shape optimisation techniques use specially developed analysis

techniques in order also to provide the sensitivities of the shape to the design

variables [Pourazady & Fu 1996].

6. 	The Need for a Common Data Structure for Shape Optimisation 	127

The optimiser completes the loop. Given the fitness of the candidate shape (and

possibly sensitivities) it chooses which point in P to try next. This loop continues

until some termination criteria are met.

6.5 What Makes a Good Shape Representation?

Choosing an effective shape representation is critical to obtaining good results from

the shape optimisation process. There are a number of potentially opposing factors

that need to be addressed in formulating a good shape representation:

• The representation should be selected so that Ecomp contains or,,p i.e. the set of

shapes available in the representation contains the optimal shape.

• The number of shapes in the search space (i.e. the size of Ecomp) should be as

small as possible so that the computational cost of searching through the space

can be kept low.

The analysis code can analyse faithfully all the shapes in Ecom,.

• The optimisation algorithm should find it easy to search through the space of

potential shapes.

• It should be possible to both efficiently store and compute the representation.

Each of these points is developed below.

The representation should be selected so that Ecomp contains a. Only in a trivial

case, where q,,pt is known from the outset, is the choice of representation easy. The

designer must use knowledge he has of the problem to determine a class of shapes

that might contain o. This is because there is no shape representation,

implementable on a finite computer, which can model every possible shape in E.

This is true on two levels. Firstly, any computer representation of shape can only

operate up to a finite resolution. The designer must use some scheme for representing

the shape, which has sufficient accuracy, in his judgement, to approximate the real

6. 	The Need for a Common Data Structure for Shape Optimisation 	128

practical component shape, taking into account the degree of 'fine-tuning' to the

optimal performance needed, as well as the manufacturing tolerances possible.

Secondly, whichever shape representation (or combination of shape representations)

is used, there will be some shapes in E that cannot be represented. For example, a B-

Spline shape representation cannot exactly represent a conic [Hearn & Baker 1994].

A voxel representation cannot represent a shape with boundary smoothness. Non-

uniform rational b-splines (NURBs) cannot be used to represent fractal shapes. In

addition to this, the need to parameterise the shape representation, in order to

produce a family of shapes, will further remove some of the shapes that could have

been represented by a particular shape representation. Even when more exotic

evolutionary algorithms are used, which can vary their representation during the

search (see Sections 1.4.2 and 8.2.2), the set of shapes that can be generated is still

smaller than the set of all possible shapes. The family of shapes to be searched,

therefore, contains the designer's implicit view of what an optimal shape will be like.

Often it is useful to choose a representation that is as general as possible in order to

maximise the chance that it contains q p,

This was demonstrated in Chapter 3 where the aerofoil parameterisation could be

optimised but the aerofoils produced were probably sub-optimal because the

representation had insufficient power to express the truly optimum shape. In Chapter

4, voxels produced a very general shape representation, with a large number of

possible shapes. However, it was clear from the outset that the representation could

not generate the optimal shape because such a shape would not have the 'stepped'

boundary implied by the voxel representation. An ad hoc solution to this was to

smooth the boundary with triangular elements, but nevertheless this was a weakness

with representation.

The second point in the above list was that the number of shapes in the search space

should be as small as possible so that the computational cost of searching through the

space can be kept low. For most of the problems in shape optimisation the number of

shapes in the search space can (simplistically) be stated as a where a is the accuracy

6 	The Need for a Common Data Structure for Shape Optimisation 	129

to which a variable should be resolved and n is the number of variables. For instance

in the aerofoil parameterisation in Chapter 3, the thickness could vary from 3% to

8%. If the accuracy of this value was required within ±0.001%, a would be (8-3) I

0.001 = 5000. For the voxel representation with a 62 by 41 grid in Chapter 4, a = 2
25 (on or off) and n = 2542 and so the search space size is an enormous 242. Since the

search space size increases exponentially with the number of variables, it is sensible

to have as few variables as possible. Clearly, the computational cost of searching

through the search space depends on the algorithm employed, the way it searches

through space and the nature of the problem landscape. However, all other things

being equal, the smaller a search space is, the less effort is required to search through

it.

From this perspective, it can be seen that one of the problems with the voxel

representation was that the vast majority of shapes in the search space that was

formed, were not reasonable shapes for the annulus. They contained numerous holes

or were disjoint. The success of the genetic operators, which were designed to move

the search away from such shapes, was because of this.

One approach that researchers have used to restrict the size of the search space is to

start with a coarse shape representation in which a fairly broad but undetailed set of

shapes can be searched initially. When a promising area of the search space is

identified, the representation can be refined. [Kohli & Carey 19931 present such a

shape refinement approach. One of the advantages of evolutionary algorithms is their

ability to optimise with more complex representations than traditional optimisation

techniques. This has been exploited, in shape optimisation, by several researchers

[Eby et al. 1999b] [Gage et al. 1995] [Raich & Ghaboussi 2000] [Vekeria & Parmee

1997], others are detailed in Section 1.4.2. These approaches allow the evolution to

modify not only the parameter values, but also the set of parameters themselves, so

that the overall structure (or topology) of the parameterisation can also be evolved. It

should be noted that, whilst variable complexity representations may allow a greater

generality of shapes to be present in 1comp, and they provide a potentially efficient

6. 	The Need for a Common Data Structure for Shape Optimisation 	130

method of searching through this space of possible shapes, they cannot represent

every shape in I for the reasons given above.

The first two points in the above list clearly oppose each other. Where it is not clear

what the optimal shape is like, it would be helpful to have as large a search space as

possible in order to increase the chance that the search space contains the optimum

shape. However, this needs to be set against the computational cost of having to

search through an unduly large search space. Clearly, some compromise needs to be

found.

Modern CAD packages now allow designers to parameterise their models. This has

proved to be a powerful tool allowing engineers to produce 'families' of parts by

changing a number of design variables. When a variable is changed, the model is

rebuilt with this new value for the variable. There are, however, problems with this

approach. Variables can position aspects of the geometry, for instance a hole, relative

to some other part of the geometry, for instance an edge. If during a parameter update

the edge disappears or is merged with another edge then it becomes impossible to

place the hole. Updates of variables in the CAD model can have unexpected effects.

[Shapiro & Vossler 1995] demonstrate these problems in a number of leading CAD

packages; these problems are still evident in modern packages. They argue that this

is because the concept of parameterised families of CAD models is mathematically

ill defined.

From a practical point of view, it can often be difficult to assess the broad range of

shapes that can be generated within a single parameterised model. Where a

parameterised part has a large number of variables, it can become impossible to

predict the interactions of all the variables with each other. This can make it difficult

to ensure that it is possible to analyse accurately all the shapes in the search space

1comp.

This was demonstrated in Chapter 3 where the vortex panel method could not

accurately model flows around most of the shapes generated by the Bézier curve

6 	The Need for a Common Data Structure for Shape Optimisation 	131

representation. Even with the more tightly controlled aerofoil parameterisation, there

were some shapes that could not be accurately analysed. It might be argued that this

merely implies that a better analysis method be chosen or that some better

discretisation method be used. This will mitigate the problems, however, no analysis

method can model all possible shapes and so some consideration must be made as to

how to ensure that all shapes that can be generated can be analysed. Other issues to

be considered for a successful analysis are given in Section 6.6.

Integration is an important consideration in dealing with shape representations

because very often it is likely that use will be made of third party software for

evaluation purposes. Examples are the use of finite element packages to help

estimate likely stress distributions, fluid flows or thermal transfer characteristics, or

analysis tools based on other methods, such as the boundary element method, or

bespoke methods for manufacturing cost estimating. Sometimes it is necessary to

communicate with several different software modules to perform multi-criteria

evaluations.

[Samareh 1999] surveys shape parameterisation techniques for aerodynamic

optimisation problems.

6.6 Ensuring Sufficiently Accurate Analysis

Usually the analysis of a particular shape is undertaken using a computer simulation,

for example using the finite element method, boundary element method or

computational fluid dynamics. It is necessary that shapes in Icomp are discretised for

use with these methods (or for CFD the space around the shape). Each shape, a, in

Ecomp, therefore maps to a discretisation, 8, in A. The analysis code then uses the

discretisation to produce a value for the fitness of the shape.

For a computer-aided shape optimisation to be successful it is necessary that the

mapping from a shape, a, to its corresponding discretisation, 8, and so to Øsjmul, be

faithful to the mapping of the shape to its actual fitness, çb. This can be accomplished

6 	The Need for a Common Data Structure for Shape Optimisation 	132

with a combination of two techniques. Firstly, adaptive meshing techniques can be

used. This can be viewed as a search for the most suitable discretisation in zl which

remains a valid discretisation of the candidate shape o•. This search is directed by the

analysis code. Adaptive meshing techniques allow for a more robust mapping from

the candidate shape, or, to simulated fitness, Øsjmuj. Secondly, as discussed in the

previous section, the representation used could be defined so that only shapes that

can be adequately analysed can be produced. In other words, for all shapes in E iq,

the corresponding Øsjmul adequately approximates 0.

It is important to choose an appropriate analysis method. It is obvious that the

analysis method should model the phenomena that are important for the aspect of the

design that is being optimised. However, at some level all analysis methods make use

of mathematical models that necessarily use some simplifications. For instance,

models of elasticity make the simplification of assuming homogeneous material. The

vortex panel method used in Chapter 3 assumed the flow was inviscid and

incompressible.

One consideration that becomes more apparent when using analysis for shape

optimisation than for other aspects in design, is that the simplifications used in the

analysis should be valid for all of the shapes being considered in the search space.

For instance, when designing aerofoils it is reasonable to assume that an efficient

shape will be smooth and streamlined and so there will be no separation and viscous

effects will be minimised. Therefore, for manual design purposes it would be

reasonable to use a CFD method that made these assumptions for the limited number

of shapes under consideration. However, for shape optimisation to be effective using

the same method, these simplifications should be valid for all the shapes in the search

space. It is not trivial to ensure this, after all, if the behaviour of the shapes could be

determined beforehand then the analysis would not be required. The break down of

the simplifications used in the analysis was the cause of the problems with the Bézier

representations in Chapter 3.

6. 	The Need for a Common Data Structure for Shape Optimisation 	133

The break down in these simplifications can cause the optimiser to move towards

solutions for which the simulation gives a good score, but which in practice are poor.

It may be possible to recognise when a simulation is inaccurate and either discard

that result (this would be equivalent to adding a constraint on the confidence in the

simulation result) or, alternatively, add a penalty to the objective function.

[Ellman et al. 1993] and [Gelsey et al. 1998] address similar concerns about

ensuring that the model being used is appropriate for shape optimisation. [Gelsey et

al. 1998] look to estimate by how much a model's assumptions are being violated.

This information can then be supplied to the search algorithm as a 'model constraint

function'. This can be used to penalise those designs that cannot be modelled

accurately. [Eliman et al. 1993] state the philosophy behind the work they describe

is that 'artefact performance models should be chosen in the light of the design

decisions they are required to support'. The aim is to use cheaply evaluated models,

where appropriate, to allow quick exploration of the search space and more

expensive models when these are needed. They introduce the concept of 'Gradient

Magnitude Model Selection' which is intended to be used with hiliclimbing

optimisation algorithms. Models are selected based on the requirements of the

hillclimber. They illustrate their approach on a yacht design problem.

For some problems the objective function is non-smooth, i.e. small changes in the

variables can result in 'jumps' in the objective function. This may be due to

discretisation errors that are inevitable when using some types of simulation. These

can be caused when, for instance, a change in a variable causes a change in the mesh

topology of an unstructured mesh and thus a sudden, possibly small, change in the

objective function. If this 'noise' is large, it may make some optimisation algorithms

unsuitable for the problem. It may be possible to reduce this noise by increasing the

accuracy of the simulation, but at the cost of increasing the time taken to undertake

the simulation. Similarly, it may be computationally expensive and/or difficult to

compute the derivatives of the objective function accurately. The need for adaptive

mesh refinement for shape optimisation applications motivates the work described in

6. 	The Need for a Common Data Structure for Shape Optimisation 	134

[Banichuk et al. 1995], [Canales et al. 1994], [Kodiyalam & Thanedar 1993] and

[Kodiyalam & Parthasarathy 1993].

6.7 Speeding up the Analysis

The time taken to evaluate the objective function can often be great. There are a

number of ways that this difficulty can be overcome.

One method is to use an optimisation technique that only uses a small number of

objective function evaluations. This, however, will probably reduce the confidence

with which the global optimum is found. Those algorithms which require very few

objective function evaluations will often only find local optima and since the

evaluation time is great it is not possible to start the algorithm from a large number

of points in the search space.

At the beginning of an optimisation when the approximate region of the optimum in

the search space is being sought, it may be possible to undertake a simulation which

is less accurate (and thus less time-consuming) than the full simulation. Over time, as

the optimiser approaches the optimum, the accuracy of the simulation can be

increased. A related approach might identify those solutions that can be seen to be

obviously bad due to some prior knowledge the engineer has about the problem.

These bad solutions need not be fully evaluated and can be given a 'bad' score.

Whilst both these approaches might save simulation time it may be difficult to

implement them with some optimisation techniques, where continuity of the search

space is required.

[Eby et al. 1999a] [Eby et al. 1999b] optimise a flywheel with an injection island

genetic algorithm (iiGA) based on similar ideas, this is described in more detail in

Section 2.3.4.3. In their iiGA various sub-populations are used each with different

resolution of the representation, with fit individuals able to move from lower to

higher populations. This allows lower sub-populations to search the search space

extensively, with a quick, low accuracy evaluation. Higher populations search a

smaller, fitter, part of the search space more intensively with a more expensive,

6. 	The Need for a Common Data Structure for Shape Optimisation 	135

higher accuracy analysis. Extensions of these ideas are reported in [Hu & Goodman

2002] [Hu et al. 2003] in which the concept of 'Hierarchical Fair Competition' is

introduced. This approach is motivated by the desire to avoid premature convergence

to local optima. Again, a hierarchy of populations is used with a number of levels. A

larger number of low-level populations are used than higher populations. Solutions

migrate from lower to higher populations when its fitness is sufficiently high to pass

an 'admission threshold'. Solutions thus pass from lower levels, through intermediate

levels up to higher levels. By altering the relative effort apportioned to lower or

higher level populations, the relative amounts of 'exploration' and 'exploitation' can

be changed.

[Vekeria & Parmee 1997] also make use of an iiGA, along with the use of a Dynamic

Shape Refinement, with which the resolution of the representation can be varied.

They report significant improvements in both reduction of computational expense

and in the quality of the design, over a single level representation.

[Younsi et al. 1996] use multi-mesh for structural shape optimisation in three

dimensions. The system uses several meshing levels along with error estimation, in

order to reduce the computational cost of the finite element analysis.

[Rasheed & Hirsh 2000] introduce an interesting approach that attempts to speed up

a genetic algorithm when evaluation is expensive, making use of informed operators.

Instead of just generating one random mutation, a number of mutations are made, the

solutions thus generated are ranked using a less expensive reduced model, and the

best is then kept as the result of the mutation. The authors report that this can

significantly speed-up the GA optimiser in several engineering domains.

It may be possible to parallelise the optimisation algorithm and/or the simulation so

that a number of computers/processors are used at the same time. Some optimisation

algorithms readily lend themselves to parallelisation. It is very easy, for example, to

use a genetic algorithm in whicha number of solutions are simultaneously evaluated

on separate processors. It may also be possible to run a number of local optimisers

6. 	The Need for a Common Data Structure for Shape Optimisation 	136

from different starting positions in the search space on a number of computers. Any

parallelisation of the problem, however, makes the optimisation harder to implement.

[Wang et al. 2002a] investigate the use of hierarchical parallel evolutionary

algorithms for aerospace optimisation. In this approach, several sub-populations are

simultaneously evolved. Some populations are considered to be 'low' in the

hierarchy. These are run with coarse and quick CFD evaluation and are primarily

intended to explore the search space. At certain intervals, good solutions from these

lower populations are migrated to higher level populations. These higher populations

use more computationally expensive, but higher fidelity, CFD analysis and are

intended to refine the shape.

It may be possible to separate the problem into independent sub-problems, for which

a full simulation is unnecessary. The global solution can then be found by combining

the optima of the sub-problems.

Some approaches use response surfaces. Rather than computing the objective

function for each point required by the optimiser, the response of a smaller number

of shapes is calculated and a model of the response surface (landscape) is built by

extrapolation. Often polynomials are used to model the response surface. The

optimiser is then used to find the optimum point on this surface. This method can be

useful where full simulations are very computationally expensive, but clearly, they

require that the method chosen to model the landscape is appropriate to the particular

problem. [Otto et al. 1996] describe a so-called surrogate approach to the

optimisation of multi-element aerofoils. [Ratle 2001] use kriging to approximate the

landscape for evolutionary optimisation. [Seller et al. 19941 use response surfaces to

enable multi-disciplinary optimisation. [Liu & Batill 2000] use an artificial neural

network to approximate landscapes for multi-disciplinary optimisation. [El-Beltagy

& Keane 2001] describe the use of a Guassian Processes approximation model to

provide an approximation to the results that would be given by detailed analysis

code. They apply this to the structural optimisation of a satellite boom.

6. 	The Need for a Common Data Structure for Shape Optimisation 	137

6.8 Searching Effectively for the Optimal Shape

Once a set of shapes through which to search, and an analysis routine that can

faithfully calculate the objective function, have been defined, then an optimisation

algorithm is required which can search for the best shape. The optimisation algorithm

can be thought of as sampling the search space, and from the information acquired

about the objective function at the sample points, it chooses where next to sample.

Each optimisation algorithm differs in the way in which it chooses which points to

sample and in the way that it then chooses subsequent points in the search space.

The performance of an optimisation algorithm can be judged in a number of ways.

All other things being equal, an algorithm that uses a smaller number of evaluations

is better. Also, the ability of the algorithm to robustly find an optimum for a class of

problems is also useful. An algorithm might prove very efficient at a particular

problem instance, but might be ineffective for problems that are apparently similar.

Robustness is therefore an important performance measure.

Traditional optimisers rely on local 'move' operators and only have one active

sample point and so are susceptible to being caught in local optima. They may,

however, quickly find these local optima. Optimisers such as genetic algorithms have

a number of sample points active in a 'population'. They also can make use of

'move' operators that may move out of the locality of active points and so are more

likely to find the global optimum.

For an optimisation algorithm to be effective, it is necessary that the algorithm,

representation and nature of the problem be well matched. In other words, the move

operators must be helpful in searching through search space.

6.9 A Representation for Geometry and Physical Behaviour

The previous sections have identified a number of issues related to undertaking

effective shape optimisation, namely representing a family of shapes, ensuring an

accurate analysis and searching effectively. All of these issues can be seen as

6. 	The Need for a Common Data Structure for Shape Optimisation 	138

difficulties encountered at the interface between each of the modules (optimiser,

representation and analysis) used for shape optimisation.

Producing a family of shapes through which to search is a process that happens at the

interface of the optimisation module and the geometric model. Transferring a vector

of usually real numbers as variables into a geometric model is a process that is

mathematically ill defined as Shapiro and Vossler noted [Shapiro & Vossler 1995]. It

is difficult to predict the range of shapes that a parameterisation will generate for

most non-trivial multivariate parameterisations [Hoffmann & Kim 2001]. There is no

well-defined process of transformation which can be guaranteed to be robust,

although [Raghothama & Shapiro 20021 present a method based on topological

categories which may be useful for the systematic generation of part shapes.

Ensuring an accurate analysis is a problem encountered at the interface between the

geometric model and analysis model. [Palmer & Shapiro 19941 argue that the

separation of the geometric model and physical model of behaviour is a considerable

block on the development of computational tools for the synthesis of geometry with a

given physical behaviour. Geometric models can be used for the calculation of

various spatial properties of a component such as volume, surface area and

interference. They can also be used to provide the spatial data for use by analysis

techniques, but are not themselves able to represent the information (i.e. stresses,

pressures and heat) which are generated. Geometric models are not able to represent

such spatially distributed properties because they are not part of the mathematical

model which solid models represent. Geometric modelling and physical modelling

are therefore distinct from each other. Bridging this gap is an active area of research

as can be seen with the attempts to move to meshfree analysis [Botkin et al. 2002]

[Grindeanu et al. 2002] [Lu & Chen 2002].

Producing an optimisation algorithm that can effectively search for the optimal

shape, is a problem that involves all of the three shape optimisation modules. The

optimiser in a shape optimisation application is aiming to change the shape of a

component in order to improve its performance. Clearly, for almost all components

6. 	The Need for a Common Data Structure for Shape Optimisation 	139

the way a shape should be changed depends on the current performance of the

component: where stresses are too high material should be added, where stresses are

low material can be removed. However, the optimisers generally deal only with

vectors of real numbers - there is no way to make use of the information on the

current spatial performance of the component. This becomes most clear when

considering the information flow in a typical shape optimisation application. Almost

all of the computing time is spent in analysing the component, but the only

information returned to the optimiser is a value for the objective (i.e. mass, volume,

or displacement) and whether or not the constraints are violated (i.e. maximum Von

Mises Stress or displacement). All the information about where in the component the

stress is high is discarded because the optimiser has no mechanism for using it.

The aim of this thesis was to try to establish whether shape optimisation could be

used to semi-automate the process of moving from function to form. At present, as

has been discussed, the shape optimisation process is far from automatic. There is

inevitably a good deal of ad hoc integration between geometric model and analysis

model. To address these problems what is needed is a computer language in which

shape optimisation applications can be built. This language would be able to deal

with the process of shape optimisation from optimisation, geometry, physics and

discretisation to a numerical solution in an automated and consistent way. Such a

language needs computer representations that can represent geometry, discretisation

and physical behaviour in a common representation. This would also offer

opportunities to develop algorithms that could make use of the information on the

shape's current physical behaviour in order to modify the shape, and thus search the

space of possible shapes more effectively.

7. 	Chain Models 	 140

7 Chain Models

7.1 Summary

The previous chapter argued that a common data structure is desirable for shape

optimisation. However, what should this data structure be? In this chapter, Chain

models, first proposed by Palmer and Shapiro [Palmer & Shapiro 1994], are put

forward as such a data structure. Chain models are first described, and then other

applications in which Chain models have been used are given to demonstrate their

wide applicability. Then it is shown how existing shape optimisation techniques

could be implemented within a Chain model framework. Finally, there is a

discussion describing how Chain models could enable the development of novel and

effective shape optimisation algorithms.

7.2 Chain Models

Chain models were first proposed by Palmer and Shapiro [Palmer & Shapiro 1994].

They argued that the lack of a unified computational model of geometry and physical

behaviour has led to a large range of inconsistent and incompatible CAD and

engineering analysis tools. This has limited the extent to which CAD tools have been

used in practice. They say 'it seems clear that formalisation of the relationship

between form and function is a prerequisite to taking full advantage of computers in

automating design and analysis of engineering systems'. They present Chain models

as a unified computational model of physical behaviour that links explicitly and

consistently geometric and physical representations. Chain models use the algebraic-

topological concepts of cells, cell complexes, chains and operations on them to

model these physical systems.

For full details on Chain Models the reader is referred to [Palmer & Shapiro 1994].

The following sections attempt to précis the important concepts from this paper and

to show how Chain models might be applied to design in general and shape

optimisation in particular.

7 	Chain Models 	 141

The principal aim of Chain models is to model physical objects. Common to most

models of a physical object is that they consist of distributions in time and space of

various physical quantities (mass, energy, force, momentum, charge, velocity,

temperature etc.). Therefore [Palmer & Shapiro 1994] offer the following two

definitions:

Definition 1 A system (or object) is a set of quantities {Q} distributed in space and

time.

Definition 2 A physical system (object) is a system that satisfies some physical

laws, which are constraints on the values of these distributions.

Thus, a physical system has a state that can be characterised as a distribution of

relevant quantities at a particular point in time. The distribution of these quantities is

constrained by physical laws. Often it is necessary to refer to all objects that exhibit

the same physical behaviour and so the following definition is given:

Definition 3 A physical behaviour is the class of all physical objects (or systems)

satisfying a given set of physical laws. A given physical object is said to exhibit a

behaviour if it is in the class.

7.2.1 Cells and Complexes

Chain models look to represent these distributions in Euclidean space, E. Therefore,

some way of distinguishing regions of space is required. Chain models use the

concepts of cells and cell-complexes from algebraic topology for this purpose.

Definition 4 An n-cell c is a set that is homeomorphic to a closed unit n-ball 1?.

The closed unit n-ball is a subset of 9I': B n = {x(=- 91' I 11x112 :!~ 1). An n-cell c is said to

have dimension n.

7. 	Chain Models 	 142

/t\/.\J
n-simplices up to n=3

_

n-cubes up to n=3

Figure 7-1
	n-Simplices and n-Cubes

An n-cell is therefore topologically equivalent to an n-ball. Some function h defines

the cell c: c = {x I h(x) E B"} so that h can be seen as a representation of c.

Definition 5 The boundary of an n-cell c is the set c) = {x I 11h(x)J1 2 = 11, where h

is a homeomorphism defining c.

Figure 7-1 shows some possible cell types: n-simplices and n-cubes, up to n = 3.

Cells define simple regions of space. To represent more complicated regions we need

to define cell complexes:

Definition 6 A cell complex K is a set of cells that satisfy the following properties:

The boundary of each n-cell c is a finite union of (n - 1)-cells in K: c[c) =

The intersection of any two cells ci c in K is either empty, or is a unique cell in

K.

7. 	Chain Models
	 143

Definition 7 A cell complex K is said to decompose a region R if R is equal to the

union of the cells of K.

A cell complex can therefore be used to decompose a possibly complicated domain

into a number of simpler cells. This is clearly an approach that is frequently used in

geometric modelling and analysis tools such as finite elements, finite differences and

finite volumes. The complex consists of all the 2-cells (triangles or quadrilaterals), 1-

cells (edges) forming the boundary of the 2-cells, and the 0-cells (nodes) forming the

boundary of the 1-cells. Figure 7-2 shows a simplicial 2-complex and Figure 7-3

shows a cubical 2-complex.

Figure 7-2 	A Simplicial 2-Complex

7. 	Chain Models
	 144

Figure 7-3 	A Cubical 2-Complex

Definition 8 The faces of an n-cell CE K are the (n - 1)-cells in K comprising its

boundary. If is a face of c, then c is a coface off.

Definition 9 An oriented cell is a pair c = (u, o), where u is an (unoriented) cell,

and oE{1,-1}.

Definition 9 allows for the relative orientation between a cell and one of its faces to

be defined. Given an oriented cell ci = (u , o) and one of its faces a faces cj = (u , o)

the relative orientation is defined as o(c 1 , c) = 0, o1 and thus takes values —1 or 1.

7. 	Chain Models 	 145

7.2.2 Chains

Cells and cell complexes provide the means to decompose space into simple regions.

Definitions of faces and orientation provide sufficient structure to represent the

relationship between these regions. We now need some way of representing physical

quantities within these regions. Chain models use chains defined over cell

complexes for this purpose.

Definition 10 A p-chain ch defined over a complex K, and a vector space G, is a

formal sum 	I g,c1 of p-cells of K with coefficients g 1 E G. We use the notation
c.Ep—cells(K)

ch(c1) for the value of the coefficient associated with the cell c, in ch.

Thus a chain associates with every p-cell in the complex K an element of G. G could

be any abelian group, but in Chain models G is typically the integers, real numbers or

polynomials, or vectors or tensors of these. For example, we might represent the

mass associated with cells in a 3-complex K with a 3-chain where the elements of G

are scalar real numbers. Another example might be to represent the displacement of

0-cells as a 0-chain where the elements of G are vectors of real numbers.

Chains have useful computational properties for the purpose of calculation. For

example, suppose we have a dimension p, a cell complex K and a group G, and G is a

field, then the set of all p-chains over K, Ch(K,G,p) form a vector space and so vector

operators can be used on chains. (A field is defined as a set of elements that satisfy

the field axioms for both addition and multiplication, namely:

commutativity 	a + b = b + a

associativity 	(a + b) + c = a + (b + c)

distributivity 	a (b + c) = ab + ac

identity 	 a+0=a

inverse 	 a + (-a) =0

a b = b a

(ab)c=a(bc)

(a + b) c = ac + bc

a. 1=a

a. a 1 = 1 =a1 .a (a#0)

7. 	Chain Models
	 146

The real numbers and complex numbers are examples of fields, however the integers

are not).

Chains support two operators:

Definition 11 The boundary 'ch) of a p-chain ch E Ch(K,G,p) is a (p - 1)-chain

defined as follows: [ch) = gj c , where g. = 	a(cf, c)ch(cf).
cf€cofaces(c1)

Performing the boundary operator on a p-chain ch produces a (p - 1)-chain over each

(p - 1)-cell, c, in the complex K, by taking each coface of ci and summing the

oriented values of the p-chain ch on these cofaces. This is shown in Figure 7-4

2

Figure 7-4 	The Boundary Operator Applied to a 2-Chain

7. 	Chain Models
	 147

Definition 12 The coboundary (ch) of a p-chain ch e Ch(K,G,p) is a (p + 1)-chain

defined as follows: 5(ch) = , gi c1 where g i 	a(f, c.)ch(f).
fEfaees(C,)

Similarly to applying the boundary operator, performing the coboundary operator on

a p-chain ch produces a (p + 1)-chain over each (p + 1)-cell, ci in the complex K, by

taking each face of c, and summing the oriented values of the p-chain ch on these

faces as shown in Figure 7-5.

in

1

Figure 7-5 	The Coboundary Operator Applied to a 1-Chain

The last definition given by Palmer and Shapiro allows any function which can be

applied to the elements of G to be extended to chains by applying the function cell by

cell to the elements of G associated with each cell.

7. 	Chain Models 	 148

Definition 13 Given a function f: G —* S. and a chain ch = 	 we define
CE p—celLs(K)

f(ch)= 	f(g 1)c
CE p—cells(K)

They finish by defining equality between two chains chi and ch2 to be true when they

are both defined over the same complex, K, and elements, G, and chi(c1) = ch2(c1) for

each cell c, in K.

7.3 Using Chain Models

The above thirteen definitions have defined cells, cell complexes, chains and various

useful operators (boundary, coboundary, addition, multiplication by a scalar, function

application and equality). These are useful tools for representing physical objects.

The following sections show how these concepts might be applied to geometry and

physical behaviour, with which we are interested for shape optimisation.

7.3.1 Chain models of Geometry

Chain models can be used to represent geometry and to calculate various properties

of the geometry. Any solid S can be represented by a 3-cell complex that decomposes

the solid. It can be shown that any 2-cell in this complex either has one or two 3-cell

cofaces in K. Also the 3-cells can be oriented consistently so that for any two

adjacent 3-cells a and b sharing a 2-cell face c o(a,c) = -o(a,c).

With each 'full' 3-cell within the solid, an integer of 1 is associated. 0 is associated

with those 3-cells that are 'empty' (in this case since K decomposes S there will be

no 'empty' cells). In this way Scan be defined as a 3-chain X i ac where ai = 1 and c1

are the 3-cells in K. Applying the boundary operator to this chain produces a 2-chain

whereby each 2-cell, c, is associated with j o('cj,c) where c is a coface of c (there

will be two cofaces). Internal 2-cells will have two 3-cell cofaces (which will be

coherently oriented) and so will have a coefficient of 0. Whereas external 2-cells will

Z 	Chain Models
	 149

1

Figure 7-6 	A Chain Model Representation for Geometry in 2 Dimensions

have only one 3-cell coface and so the coefficient will be non-zero. Thus, using this

Chain model, the calculation of a solid's boundary is done by applying the boundary

operator. Figure 7-6 demonstrates this, but for a two dimensional shape.

It is possible to represent geometry in a variety of ways with Chain models. A two

dimensional surface might be modelled with a triangular mesh of faces. This requires

an appropriate 2-complex. A 0-chain could be used to represent the corners of the

triangles and a 2-chain could be used to represent the triangles' surface normals.

Alternatively the surface might be represented with b-spline patches with a 2-chain

used to represent the spline polynomials. In fact, any representation of geometry then

could be used by a b-rep model could be implemented in a Chain model.

7. 	Chain Models 	 150

7.3.2 Chain models of Physical Behaviour

7.3.2.1 Physical Behaviour

As well as using Chain models to model geometry, we are also interested in using

them to model physical behaviour. [Palmer & Shapiro 1994] give the following three

definitions which are reformulations of definitions 1 to 3 in terms of Chain models.

Definition 14 A system (a distribution of quantities in time and space) is a set of

chains, Q, defined over a cell complex K time and space.

Definition 15 A physical system is a pair S = (Q, C), where Q is a system satisfying

a set C of chain constraints on Q.

Definition 16 A physical behaviour PB(C) is the set (equivalence class) of all

physical systems (Q, C) that satisfy C, i.e. PB(C) = {(Q, C1) I C1 = C}.

In other words, we have defined a system as a set of chains representing a

distribution of physical quantities defined over a cell complex. A physical system is a

system along with a set of constraints on its chains. A physical behaviour is the set of

all physical systems that satisfy a particular set of chain constraints.

7. 	Chain Models 	 151

7.3.2.2 Constraint Elements

So what is the nature of these chain constraints? Clearly, there are many possible

constraints we might put on a chain. However, if we are interested in constraints

which model physical laws and which are easy to compute, the nature of the

constraints we need is restricted. Specifically, Palmer and Shapiro state the following

conditions:

Constraints can be imposed only on chain coefficients associated with incident

cells or adjacent cells

. All cells in the decomposition of space are similar in the sense of being able to

'implement' the specified constraints.

They go on to state that most physical laws can be placed into two categories, both of

which act locally and so allow constraints to be defined consistently with the first

condition (i.e. that they are imposed on chain coefficients associated with incident or

adjacent cells). These categories of physical laws are:

Structural laws (conservation, balance, equilibrium), which are based on

topological invariants and can be expressed using operations of boundary and

coboundary; clearly, these operations constrain incident cells.

Constitutive laws (such as Ohm's and Hooke's), that represent phenomenological

(macro) constraints corresponding to material properties; these are obtained and

defined by local measurements.

7. 	Chain Models 	 152

They go on to describe constraint elements which are used as an abstract

specification of the relationship between chains. For a particular physical law

(balance or conservation, for example), a constraint element can be produced which

specifies the constraints on chains in order to meet that law.

Fh

Figure 7-7 A Constraint Element for Conservation

after [Palmer & Shapiro 1994]

Figure 7-7 and Figure 7-8 illustrate constraint elements for the structural laws,

conservation and balance respectively. For the conservation constraint element the

constraint has the form
d
—2 - chain =8(1 - chain). For the balance constraint
dt

element the constraint has the form bf= -(sf), where bf is a 2-chain representing the

body force and sf is a 1-chain representing force through the 1-cells.

7. 	Chain Models
	 153

Surface for:

Body

	 /urface force

force
Surface force

/surface force

Figure 7-8 A Constraint Element for Balance

after [Palmer & Shapiro 1994]

It can be seen that these constraints rely only on the boundary and coboundary

operators and could be applied to any cell type. Constraint elements for constitutive

laws are more difficult to derive as they also depend on the cell type. Palmer and

Shapiro derive, at some length, a chain constraint for elasticity, which relates force

through a set of faces to the deformation of a cell. Such a chain constraint makes use

of both structural and constitutive chain constraints.

7. 	Chain Models
	

154

7.3.2.3 Physical Elements

Definition 17 A physical element is

The cell complex K generated by a single n-cell of a particular cell type (e.g,

simplex, cube).

A set of p-chains on K that represent physical state.

A set of constraints elements defining the constraints on the p-chains of K.

Physical elements are a computational model of a physical behaviour. They define

the behaviour in a single n-cell of a system. Given a region decomposed into a

complex, the physical element can be applied to each n-cell in the complex and so

model the behaviour of the region. As [Palmer & Shapiro 1994] state:

'Physical elements can be viewed as 'object oriented' components for

building computational models of physical systems. They are object

oriented in the sense that 1) physical behaviour is defined in terms of

a few definitions (like the notion of 'class' in object oriented

programming) which may then be 'instantiated' by applying to

regions of space, 2) they interact through predefined, well defined

interfaces, which simplifies working with them - previously defined

models of physics (say of fluid flow) need not be redefined when a

new physical element (say of elasticity) is introduced. In fact, once

each of these types of element has been defined, we may represent

systems that contain interactions between elastic solids and fluids

without introducing additional elements.'

7.3.3 Implementations of Chain models

[Palmer 1995] describes CHAINS; a computer language for modelling physical

systems based on chain models. As an example of how the language can be used to

7. 	Chain Models 	 155

build models of physical systems, a program producing a finite element solution to

plane strain is developed.

[Egli & Stewart 2000] describe the development of an application programming

interface (API) for building chain models of physical systems. They illustrate the use

of their API with a diverse range of examples such as tissue modelling with a mass-

spring network, a simulation of a waving flag and a Cattmull-Clark sub-division for

the recursive refinement of surfaces.

Although the use of Chain models in these applications does not enable the

development of analysis code that would not otherwise be possible, it does raise the

semantic level at which an analysis problem can be described.

If you consider a traditional implementation of the finite element method for

structural analysis, a human has had to take the basic concepts of distributions such

displacement, stress and strain, and represent these using a general purpose

programming language such as FORTRAN or C using the data structures (such as

floating point numbers) available in such a language. An execution path has then to

be created to manipulate these primitives in a way that is consistent with the finite

element method. The knowledge about how the simulation is undertaken is thus only

implicit in the code. Hence, when later the code needs to be integrated with other

code (perhaps to combine the code with a finite volume model of fluid dynamics), it

is very difficult to reuse the code and much rewriting is needed.

In contrast, a language such as CHAINS, which makes use of Chain models, is able

to explicitly deal with concepts such as, for example, physical quantities, equilibrium

and conservation of mass. For CHAINS these form the data structures that the

language manipulates. Thus a simulation built in such a language documents itself -

the code shows explicitly which physical quantities are to be manipulated and how

this is to be done in terms of high-level algebraic topological operations. It is the

computer's job to 'compile' this code into a form that is executable by a computer.

For a traditional implementation of the finite element method in FORTRAN, say, in

7. 	Chain Models 	 156

essence a human programmer is required for the first step in this compilation process

from physical model to code based on FORTRAN data structures (the FORTRAN

compiler deals with the rest of the compilation into machine code). The need for this

is removed in CHAINS.

7.4 Chain Models in Design

In addition to the analysis and simulation applications of Chain models described in

previous sections, [Palmer & Shapiro 1994] describe some other possible uses of

Chain models in the design process. These are formal function specification and

shape synthesis. They illustrate both of these applications using a bracket design

problem taken from [Shapiro & Voelcker 1989]. Since their discussion of this use of

Chain models is highly pertinent to the argument put forward by this thesis, namely

that Chain models would be highly useful for shape optimisation, much of the

following sections are drawn from their paper.

7.4.1 Function Specification

Typically the design specification for a bracket would relate how the bracket must

interface with other parts, the forces to which it will be subjected, maximum

deflections etc. (see Figure 7-9). The bracket has three holes with given diameters

through which they interface with other parts, applied loads or constrained

movement on those nodes and a physical behaviour relating the deflections to the

applied loads [Palmer & Shapiro 19941 argue that while such specifications are

common, they are rarely stated in a formal way which would enable them to be

amenable to representation on a computer. Chain models provide such a formalism

for defining a design specification.

7. 	Chain Models 	 157

dl

force

d2
	

MI

force
constrained

Figure 7-9 	A Sample Specification for a Bracket

after [Palmer & Shapiro 19941

[Palmer & Shapiro 1994] give a possible chain model specification, shown in Figure

7-10. Each hole is represented with a 0-cell. 0-chains are defined for positions (x),

deflections (u) and forces (f). 1-cells are formed with pairs of the 0-cells forming a

cell complex. 1-chains are formed using the coboundary operator to form the 1-

chains: relative position dr = ax), relative displacement du = u) and relative force

df= J). Once these cells and chains are defined, constraints can be set on the values

that these chains can take. For instance, values for required forces or displacements

can be defined or bounded. These types of constraints are similar to loading

158 7. 	Chain Models

0-chains d,x,uf / U 1 	 1-chains

d1 x 1 •

dx3 du3 df3

d3 X3

d2 X2

f27/

U3

Figure 7-10
	

A Chain Model Specification for a Bracket

after [Palmer & Shapiro 19941

conditions applied to finite element models and similarly should be well-posed, so

that the problem is not over-constrained (i.e. either displacements or forces are

defined but not both).

In addition to such common constraints, [Palmer & Shapiro 1994] argue that the

chain model of function specification can support much more general constraints.

Constraints can be placed on the relationship between chains such as force (j),

relative force (dJ), displacements (u) and relative displacements (du). For instance,

du.df can be constrained to be below some bound.

7. 	Chain Models 	 159

7.4.2 Shape Synthesis

The previous section showed how a chain model could be used to produce a formal

design specification for the bracket discussed. It specifies displacements and forces

but does not model the geometry. It is still necessary to generate a geometry for the

bracket. This can be seen as a systematic transformation from the specification chain

model to a more detailed chain model which specifies the geometry embedded in

space that is still consistent with the specification.

The specification cell complex needs first to be transformed. The holes will need to

be transformed from the 0-cells into a 1-complex representing the bracket's boundary

around the hole. The chains also need to be transformed from 0-chains on the node to

1-chains. Figure 7-11 and Figure 7-12 show how this might be done.

The bracket's geometry will be represented by a 2-complex, the boundary of which

is already partially defined by the 1-complexes representing the holes. The geometry

synthesis problem is now to find a 2-complex embedded in space, with appropriate

chains representing the physical behaviour, defined over it. If the bracket is to be

made of an elastic material, cubical elastic physical elements might be used. The

chain model formed will satisfy the design specification, geometry and will be

physically realisable.

The question remains how this 2-complex should be found. [Palmer & Shapiro 1994]

discuss the approach given by [Shimada & Gossard 1992] whereby the holes are

connected by 'support regions'. The size of these regions is proportional to the forces

applied. Alternatively, the whole design area around then holes might be filled as

described in [Bremicker et al. 1991] and shape optimisation undertaken.

7. 	Chain Models 	 160

Forces

- Concentrated force at
Specification centre of hole

7df2

Force transformed into
Transformation I 	• df42' 	2v uniform force on hole

,7 	74f surface

Force transformed into
Transformation 2 force on hole surface

-" proportional to area and
df4 contact direction

df,+df2 +df3 +df4 =f=coboundary(I)

Figure 7-11 	 Transformation of Abstract Chain Model Specification

of Force to a Spatially Embedded Chain Model

after [Palmer & Shapiro 19941

Displacements

U 	 Rigid body
Specification 	 displacement on hole

du,
du2 	

Displacement
Transformation I

d,3 	transformed into rigid
body displacement on
hole surface

Transformation 2 	
Hole undergoes

• 	• 	 translation and rotation

Figure 7-12 	 Transformation of Abstract Chain Model Specification

of Displacement to a Spatially Embedded Chain Model

after [Palmer & Shapiro 19941

7 	Chain Models 	 161

7.5 Chain Models and Shape Optimisation

Chain models and shape optimisation have complementary roles. In chain models,

we have a have a formal way of specifying desired behaviour, of representing

geometry and of calculating behaviour. Referring back to Section 6.9 it can be seen

that these were some of the properties that were required for a common data structure

for shape optimisation. Therefore, Chain models could possibly be a method of

formalising the process of undertaking shape optimisation.

In Section 7.4.2 Chain models were shown to be capable of constituting a formal

design specification and the process of synthesising geometry could be seen as a

systematic transformation of this specification chain model to a chain model

embedded in space which represents both the geometry and the physical behaviour of

the component. Shape optimisation is one possible tool that could be used to

facilitate this transformation of chain models.

How might shape optimisation and chain models be integrated into a formal

geometry synthesis process?

The use of Chain models by themselves does not solve the problem of producing

sensible geometries, decomposing that geometry into a reasonable mesh and ensuring

an accurate analysis. As discussed in Section 7.3.3 languages for physical analysis

(such as CHAINS) based on Chain models allow physical simulations to be written

at a high semantic level in a formal and consistent manner and thus enable greater

code reuse and interoperability. Similarly, a language for shape optimisation based

on the Chain model formalism could allow shape optimisation algorithms to be

written in which the geometry definition, discretisation and subsequent analysis of

physical behaviour could be developed at a high level in a consistent way.

Chains would also allow a formal way to define a specification and objective for the

optimisation. Shape optimisation can be reformulated then as the systematic

transformation of the chain model specification into an optimal chain model fully

embedded in space which satisfies the constraint elements necessary for the physical

7. 	Chain Models 	 162

behaviour of interest - or indeed behaviours of interest. Chain models would make

the specification and analysis for multi-disciplinary optimisation much easier to

implement. This would be possible without the difficulties of integrating various

incompatible analysis routines.

7.5.1 Opportunity for novel shape optimisation techniques in a Chain

Model Framework

It is possible to formulate any of the current approaches to shape optimisation in the

Chain model framework. The Chain model framework would provide a useful

formalisation of the process in terms of transformations of Chain models from

specification to full geometry. However, one of the primary motivations behind

looking for a common data structure for shape optimisation was the desire to develop

novel shape optimisation algorithms that could be useful in the design process.

Therefore, this section looks at the possibilities for novel algorithms for shape

optimisation, which are facilitated by Chain models.

The main opportunity that Chain models offer for the development of new

algorithms is that they allow access to information about the spatial performance of a

shape. They make it possible for the shape to be changed in response to the

behaviour of the component calculated in the analysis.

As discussed in the previous section, shape optimisation can be viewed as the

systematic transformation of the chain model specification into an optimal chain

model fully embedded in space. Since optimisation is a process of searching for a

solution, this transformation will be the result of a repeated loop. The specification

Chain model is transformed into a partial geometry definition in some way. This

partial geometry Chain model is converted to some full geometry Chain model. This

geometry model might itself be set up so that analysis can take place (i.e. it has

appropriate chains defined for the desired analysis) or a further transformation might

be needed. The results of this analysis are used to change the geometry shape. With a

traditional optimisation technique, this will involve calculating an objective function

7. 	Chain Models 	 163

and whether constraints are violated and reporting this information to the optimiser

which will vary parameters used to build the geometry Chain model. With Chain

models, though, there is the possibility of using more of the information in the

analysis Chain model to change the geometry model. The loop changing geometry,

undertaking an analysis and subsequently changing the geometry can be repeated

numerous times until some termination criteria is met.

How might the information present in the analysis Chain model be used to change

the shape? It is perhaps easiest to demonstrate with an example, the bracket design

problem described in Section 7.4.1. This is not intended to be a description of a

necessarily good algorithm for the design of this bracket. Rather it is to show the

types of possibilities that become available when using Chain models.

Figure 7-10 shows a Chain model specification for the bracket, with perhaps

constraints on the deflection of the holes, a stress constraint and a desire to minimise

weight. Figure 7-11 and Figure 7-12 show how this specification might be

transformed into a partial definition of the bracket geometry for the holes. We now

need to move from this partial definition of geometry to a 2-chain fully embedded in

space with Chains defined on it to model elasticity, with minimum weight and

meeting the constraints on deflection and stress.

7. 	Chain Models
	 164

A

X.

(0,0)

Figure 7-13 	 Example of Candidate Bracket with

Parameterised Corner and 'Grown' Mesh

Figure 7-13 shows one way that this might be achieved. Two additional features are

added to the partial geometry, a 'corner' to the bottom left hand side and a spline

curve to the upper right. The full geometry is represented by the simplicial Chains,

these are formed by meshing the area partially enclosed by the partial geometry

model. Loads and displacements can be transferred from the holes to the appropriate

nodes and an analysis done. The geometry can be changed in one of three ways:

7. 	Chain Models 	 165

Similar to a traditional shape optimisation the corner dimensions and position are

under the control of a hill-climbing optimiser. The optimiser can change the

corner dimensions and then the area is remeshed and so on.

The simplicial cells can be removed if the stress on them is below some threshold

value and a further analysis undertaken and so on. This will remove material

from those areas in which it is being underused.

The spline control points can be moved in or out depending on the stress of the

cells with which it is adjacent. The area can be remeshed and another analysis

done and so on. Thus, that section can become thicker or thinner as necessary

depending on the results of the analysis.

All three of these geometry-changing methods might be used at once. For example,

(a) might be used as an outer loop, (b) as an intermediate loop and (c) as an inner

loop. Again, it should be stressed that this is not intended to be an example of a

'good' algorithm for this problem. Instead, it demonstrates some of the ways in

which analysis information might be used to influence the geometry using the Chain

model framework.

Another use for Chain models in shape optimisation might be to develop further the

'object-oriented' nature of physical elements so that they might act more like

'intelligent agents'. For instance, an instantiation of a physical element might deduce

that the approximation that it represents might be inaccurate in its current

configuration and so change itself. For instance, an instantiation of a physical

element equivalent to a solid finite element might transform itself into a shell

element when its size in the third dimension drops below some value. Similarly, it

might be possible that Chains can be made 'intelligent' so that they can automatically

change themselves in response to their internal condition or the environment around

them. For example, the spline in Figure 7-13 might be made 'intelligent' so that it

can change its shape in response to its environment.

8. 	A Morphogenetic Approach to Shape Optimisation 	 166

8 A Morphogenetic Approach to Shape Optimisation

8.1 Summary

This chapter describes a novel approach to shape optimisation inspired by the way in

which biology produces load-bearing structures. It is programmed using the Chain

model framework [Palmer & Shapiro 1994] described in the previous chapter. It

demonstrates how novel algorithms can be developed in this framework which can

access all of the information generated by the analysis software and use this

information to change the shape of the component to be optimised.

This approach uses a cellular shape representation, where cells from the Chain model

framework are given some of the abilities of biological cells. They can divide, move,

pass messages to neighbours and die. They are also allowed to respond to the stress

upon them. This allows them to die where stress is low and in this way remove

redundant material.

Each cell is programmed as an independent agent in the Swarm programming

language. The behaviour of the cells is influenced by various parameters that can be

thought of as analogues of biological genes. A genetic algorithm is used to evolve

these genes towards producing good shapes.

The approach was applied to the problem of finding shapes for bicycle frames,

arches and a cantilever beam. Realistic high performance shapes were produced

demonstrating the possible usefulness of such an approach.

8.2 Introduction

8.2.1 Overview and Motivation

In the approaches to using genetic algorithms for shape optimisation described in

previous chapters, the genes explicitly encode for the components' shape. For

8. 	A Morphogenetic Approach to Shape Optimisation 	 167

example, a gene represents a dimension in a parameterised CAD model or defines

whether a voxel is filled or not. For these approaches, the generation of the shape

from the chromosome is trivial. In this chapter, a morphogenetic approach is used so

that the genes do not explicitly encode for the shape, but instead change the

behaviour of the cells and hence influence the shape generated during a growth stage

in which the cells can respond to the calculated stress on them.

As described in Chapter 6, the primary motivation behind this work was to attempt to

make more use of the information generated by the finite element analysis. The

analysis produces large amounts of data on the local performance of a component at

particular positions. In contrast to most approaches to shape optimisation, this

approach looks to make use of this information so that the shape optimisation

algorithms can change the shape in response to this information, in order to improve

the component's performance.

A second motivation was the desire to establish whether the concept of 'intelligent

cells' discussed in Section 7.5.1 could be used in a useful way. This, therefore,

determined that control of the shape generation should be 'bottom-up'. Cells respond

to their internal state and to the environment to generate the shape and are not

controlled by a centralised algorithm.

This work did not attempt to produce a definitive algorithm for shape or topological

optimisation using morphogenesis. Instead, it was intended as a study into whether

such an approach shows any promise for shape optimisation.

8.2.2 Morphogenic Evolutionary Computation

[Angeline 1995] defines morphogenic evolutionary computation (MEC)

(morphogenic being a synonym of morphogenetic) as 'evolutionary computations

that distinguish between the representation that is evolved and the representation that

is evaluated by the fitness function'. Typically, MEC uses evolutionary algorithms,

along with a growth stage, to produce a solution to a problem. Just as biological

embryology takes a genotype and, through a complex development process, produces

8. 	A Morphogenetic Approach to Shape Optimisation 	 168

a physical phenotype, morphogenic evolutionary computation uses a more

complicated mapping from genotype to phenotype than those typically used in

evolutionary computation. An evolutionary algorithm is used to manipulate the

genotype. The genotype is then developed into a phenotype by some non-trivial

process. The phenotype is then evaluated.

Angeline reviews the relatively few pieces of research undertaken which use a

morphogenetic development stage in evolutionary computation [Angeline 1995]. He

introduces a formal description of morphogenic evolutionary computation and

describes its potential advantages over standard evolutionary computation.

The advantages he identified were firstly evolvability. Using morphogenesis, it may

be possible to make reproduction operators more effective at moving through the

search space to good solutions. Secondly, there was the possibility of producing

solutions with large structures with relatively simple genomes.

He identified three types of development used for morphogenic evolutionary

computation: translative, generative and adaptive development functions.

Translative development is essentially a fairly trivial mapping from a genome to a

larger structure. Generative development involves a recursive function whereby

repeated application of some growth rules produces the required structure. Examples

given of generative development functions were Lindemayer (L-) systems and

production rules. Adaptive development functions may be recursive like generative

development, but they also involve some adaptation of how the development takes

place during evolution. The work described in this chapter does not neatly fit into

any of these categories, since in this work the growth of the structure itself is

influenced by the structure's performance during the growth stage.

[Bentley & Kumar 19991 classify embryogenies (an embryogeny being the growth

process by which a genotype becomes a phenotype) for evolutionary algorithms into

three types, external, explicit and implicit. In external embryogenies, the growth

process is generally hand-coded. The embryogeny is not itself evolved, but instead is

8. 	A Morphogenetic Approach to Shape Optimisation 	 169

fixed. Parameters are evolved which feed into the embryogeny, which then generates

the phenotype. Dawkins' Biomorphs [Dawkins 1986] [Dawkins 1987] can be seen as

using an external embryogeny.

For explicit embryogenies, the steps in the growth process are given by explicit

instructions, which are evolved. These instructions are executed to form the

phenotype. Such embryogenies might make use of tree structures of instructions and

be amenable to evolution using genetic programming.

[Bentley & Kumar 19991 explain implicit embryogenies as having no explicit set

rules defining the embryogeny. Instead, they are closer to natural embryogenies that

use 'indirect chains of interacting rules'. These rules are evolved and, through their

application to the elements of the growing solution, form the phenotype.

[Bentley & Kumar 1999] give a list of advantages of a morphogenic stage, namely:

. Reduction of the search space. A relatively small number of genes can be used

to generate a phenotype with a much larger (more complex) structure.

. Better enumeration of the search space. The genotype space can be designed to

be easier to search through than the phenotype space, making the search more

efficient. This can be compared with some of the ideas developed in Section 6.8.

• More complex solutions in the solution space. The use of growth rules can

allow for the generation of more complex phenotype structures than could

otherwise be evolved.

• Repetition. The use of a morphogenic stage, if properly designed, might allow

for the use of repeating structures, exploiting symmetry and segmentation.

• Adaptation. Phenotypes can be grown so that they can meet constraints, change

in varying conditions, and correct malfunctions in the design. Of the advantages

given, the work described in this chapter perhaps looks to exploit this advantage

the most.

8. 	A Morphogenetic Approach to Shape Optimisation 	 170

They give two potential disadvantages of morphogenic evolutionary computation:

• They can be hard to design.

• They can be hard to evolve. Bentley and Kumar cite pleiotropy (one gene

causing numerous phenotypical traits) and the disruption of child solutions as

potential problems.

Morphogenic evolutionary computation has been applied in a number of application

areas. [Jakobi 19951 [Jakobi 1996] describes its use for the generation of Artificial

Neural Networks (ANNs) for robot controllers. His approach would be termed

generative by Angeline and implicit by Bentley and Kumar. [Broughton et al. 1999]

describe an explicit embryogeny, using genetic programming and Lindenmeyer (L-)

systems, to evolve three-dimensional structures. [Hornby & Pollack 2001] [Hornby

2003] describe the use of an evolutionary algorithm that evolves L-systems. These L-

systems are used as a generative encoding to produce voxel-based objects. The

system is used to evolve table designs. [Bentley & Kumar 1999] compare an external

embryogeny, an explicit embryogeny and an implicit embryogeny on a problem in

which tessellating tiles are to be evolved. They found that their implicit embryogeny

performed best. [Kumar & Bentley 2003b] attempt, with success, to evolve the

shapes of letters of the alphabet, finding an implicit embryogeny to scale well.

[Eggenberger 1996] uses development processes such as cell division and cell

differentiation, to create neural control structures for real-world agents using an

artificial evolutionary system. [de Garis 1994] uses an implicit embryogeny using

cellular automata to grow very large neural nets.

8.2.3 Artificial Life and Structural Analysis and Optimisation

[Hajela 1998] reviews some of the recent applications of artificial life to structural

analysis and design. This included evolutionary algorithms for optimisation. An

approach to using cellular automata (CAs) for structural analysis was put forward.

The motivation for this was that specialised massively parallel hardware for

8. 	A Morphogenetic Approach to Shape Optimisation 	 171

implementing CAs might allow for very quick analysis of large structural problems.

The rules in the CAs were evolved using a GA with a fitness depending on how well

the CAs were able to approximate stress results from a finite element analysis

[Hajela & Kim 2001].

[Kita & Toyoda 2000] use cellular automata for topology optimisation. The design

domain is decomposed into a rectangular grid of cellular automata. Cell thicknesses

are used as the design variables. These thickness variables are updated based on local

rules and on the stress calculated by a finite element analysis.

[Taura & Nagasaka 1999] use a morphogenic approach to 'growing' shapes. They

use an unusual shape representation. A unit sphere is used on which points are

placed. A free form object is then formed around the centre of this sphere. The

density of points in a particular area of the sphere determines how far the free form

object is pulled in that direction. Initially only a few points are on the sphere, but

rules are used to generate new points or remove points on the sphere which are

analogous to cell division or cell death. A genetic algorithm is used to evolve these

rules for particular design applications.

An interesting approach to producing triangular meshes for a two-dimensional

domain is described in [Saitou & Jakiela 1994]. Each element is thought of

analogously to a biological cell. It can grow outwards or reproduce on one of its

sides to fill the domain with a high quality mesh. The cell has an internal state and

variables describing how far it is from other cells or the boundary. The behaviour of

the cell is determined by rules that are determined by a classifier system evolved by a

genetic algorithm. The fitness given by the quality of the mesh, in terms of element

size and shape and the proportion of the desired area which is meshed. The method

could produce good meshes for constant shape. However, it was hoped that once the

rules were found for meshing a particular shape then it would be possible to reuse

these rules for different shapes. However, it seemed that there was some sensitivity

of the rules to the specific shape. [Langham & Grant 1999] describe a similar

application in which rules are evolved for mesh generation.

8. 	A Morphogenetic Approach to Shape Optimisation 	 172

8.2.4 Models of Biological Cellular Development

Some work has been done in biology on computational modelling of development.

[Agarwal 1994] and [Agarwal 1995] describes a 'Cell Programming Language'

which is used to model phenomena exhibited by interactions between cells.

[Fleischer 1995] has developed a simulator of biological multi-cellular development.

Chemical, mechanical influence and cell lineage factors and other biologically

feasible mechanisms can influence cell development. This was applied to synthetic

biology in order to explore questions of pattern formation and morphogenesis,

artificial evolution of neural networks and computer graphics. modelling. The work

described for modelling the development of cellular structures was much more

detailed and biologically realistic than the one described in this chapter. However, as

is discussed in Section 8.6.3, such modelling could be the basis of further

investigation following on from the work reported in this chapter.

[Kumar & Bentley 2003a] [Kumar & Bentley 2003c] describe the development of an

'Evolutionary Development System' (EDS) which attempts to model aspects of the

biological process of development. The system represents cells, embryos, genes, cell

cytoplasm, cell walls, proteins, receptors, transcription factors and cis-regulatory

regions. The use a genetic algorithm to evolve the genes. In [Kumar & Bentley

2003c] individuals are grown within this biologically plausible model and assigned a

fitness according to how well they achieve a particular shape. Experiments were

undertaken comparing different modes of cell division, where the shape to be

generated was a straight line and a sphere. They concluded that different methods of

oriented cell division do affect the final developed solution.

8.2.5 Related Work on Shape & Topology Optimisation

[Baumgartner & Mattheck 1994] and [Mattheck et al. 19941 note that living

biological load bearing structures, such as bones and trees, seem to have developed

mechanisms for growing and changing their shape in order to adapt to the conditions

found in their environment. Such mechanisms have evolved in order that organisms

8. 	A Morpho genetic Approach to Shape Optimisation 	 173

may meet the need for simultaneously lightweight and reliable structures. He states

that the axiom of constant stress is the principal rule that determines this growth. In

other words, the growth that takes place tends to equalise the stress throughout the

biological load carrying structure. Thus, material grows where there are stress

concentrations that might cause failure and less material is used where underloaded,

reducing the weight of the structure.

Clearly for many engineered mechanical components, reliability and minimum

weight are desirable. These are the aims of many shape optimisation techniques.

Mattheck therefore attempts to mimic such mechanisms for the generation of shapes

for mechanical components. He describes two complementary techniques inspired by

this biological analogy, which they term Soft Kill Option (SKO) and Computer Aided

Optimisation (CAO).

SKO simulates the adaptive mineralisation of bones, whereby increased

mineralisation takes place where the stress is high. This leads to the distribution of

stiff, high strength matrices which are well-adapted to the particular loading that is

experienced. SKO takes this process and looks to apply it to find optimal topologies

for complex loading situations. SKO takes an initially rectangular finite element

mesh covering the whole of the proposed design area with a constant Young's

Modulus. The stresses due to the loading are then determined using the finite element

method. The Young's Modulus of each element is then changed as a function of the

stress. Areas of higher stress are given higher Young's Modulus; areas of lower

stress are given lower Young's Modulus. The function used is not given in the paper.

This is repeated several times until a clear distinction between areas of high and low

Young's Modulus is achieved. The shape of the structure is then determined by

calculating an isoline of the Young's Modulus. Areas of high Young's modulus are

inside the structure, whilst areas of low modulus are outside.

The second method, Computer Aided Optimisation (CAO), simulates surface

swelling of the structure according to the stress distribution, similar to the way that

trees grow. This leads to a more homogenised distribution of stresses on the surface.

8. 	A Morphogenetic Approach to Shape Optimisation 	 174

Again, the whole of the design area is meshed with rectangular finite elements. The

stresses are calculated for the load case required. The next step involves replacing the

mechanical loading with a fictitious temperature field, where the temperature is

determined from the stress calculated, previously. High stresses result in high

temperatures and vice versa. This thermoelastic problem is then solved with the heat

expansion coefficient set at zero for everywhere except the surface layer. Thus, a

fictitious 'thermal' surface expansion takes place based on the magnitude of the

stresses calculated. The expanded shape is then used in a further iteration of this

process. This loop is continued until a constant surface stress is achieved.

[Mattheck et al. 1994] describe the use of SKO to determine topology firstly and

then CAO to produce homogenous surface stresses of optimisation of a cantilever

beam.

The CAO method is not specifically aimed at the typical shape optimisation problem

of minimising volume whilst remaining within a stress constraint. Instead, CAO

reduces stress concentrations on the surface in order to increase reliability. [Chen &

Tsai 1993] extend the simulated biological growth approach so that it can be used for

two different design procedures: minimising volume subject to a maximum stress

constraint and minimising maximum stress subject to an area constraint.

A very similar approach to the SKO called the Hard Kill Method (I{KM) is described

in [Bulman et al. 2001]. In this method, rather than the element's Young's modulus

being varied linearly with the Von Mises stress on the element, the Young's modulus

is reduced to a very small value if its stress is below some value. Thus, an element

that is being underused is 'killed' (although it actually remains in the mesh with a

low Young's modulus).

A similar approach, Evolutionary Shape Optimisation (ESO), is a technique for

topology optimisation developed by Me and Steven [Xie & Steven 1997] [Querin et

al. 2000]. Despite its name, ESO does not use evolutionary algorithms; instead,

'evolutionary' refers to the gradual removal of material to achieve an optimal design.

8. 	A Morpho genetic Approach to Shape Optimisation 	 - 175

The basic process that is used in ESO is to start with an initial rectangular finite

element mesh. An analysis is then undertaken. Elements are then removed depending

on this analysis. A further analysis is then done and further elements are removed.

This repeats, gradually improving the topology.

The decision on which elements to remove depends on the criteria that is being

optimised. Typically in topology optimisation, the objective is to minimise

compliance of a structure for a given volume of material. With this objective, ESO

removes material where the stress is low. ESO has been applied to a number of other

problems including buckling [Rong et al. 2001] and frequency response optimisation

[Zhao et al. 1998] [Xie & Steven 1996] The ESO method has the advantage that it is

easy to integrate with standard finite element packages. [Tanskanen 2002] provides a

theoretical study of ESO.

A disadvantage of SKO, 11KM and ESO is that they generate shapes with an

unsmooth boundary. There have been a number of approaches to producing smooth

geometry from the mesh. [Chen et al. 20021 describes an approach to ESO, which

they call Nodal Evolutionary Shape Optimisation (NESO). In this approach rather

than elements being removed, nodes are allowed to migrate from low stress areas

into high stress areas. Remeshing is undertaken when element shapes become invalid

and boundary smoothness is maintained.

The techniques described above all look to change the shape based on information

generated by the analysis routine. These partially addressed the aim of this work to

utilise the information generated by the FE analysis. However, they are essentially

'one-shot' methods in that only one of the possible trajectories through the space of

possible shapes is taken, from an initial shape in which the whole of the design area

is filled to a better shape.

The work described in this chapter seeks to make use of a growth stage, in which the

shape is taken through a sensible trajectory through the space of possible shapes

informed by the analysis. However, it seeks to avoid the 'one-shot' nature of the

8. 	A Morphogenetic Approach to Shape Optimisation 	 176

described techniques by moderating the behaviour of the growth by a number of

factors. These factors are controlled by a genetic algorithm and the shape space is

thus searched through a number of different trajectories.

8.2.6 Aims

• To determine whether a morphogenetic evolutionary algorithm shows any

promise as an effective approach to shape optimisation.

• To determine whether the information generated in the finite element analysis on

a shape's performance can be used to influence the shapes generated by a

morphogenetic genetic algorithm approach to shape optimisation.

• To establish whether the use of 'intelligent cells', where finite element are

endowed with simple behaviours, can result in emergent behaviour which

produces efficient shapes.

8.3 Implementation

8.3.1 The Design of the Algorithm Used

It was decided not to mimic biological morphogenesis too closely. This was for a

number of reasons. Firstly, to imitate the complexity of biological morphogenesis

seemed too computationally expensive. Secondly, the determination of the details of

organism growth is still an area of much research for developmental biologists [Sole

et al. 1999] and an area in which the author has only limited knowledge. Thirdly, it is

necessary that the loads can be applied to the component throughout the shape

generation process. This would not be possible if the initial shape was 'small'.

Finally, from a pragmatic point of view it seemed that certain engineering rules-of-

thumb might be useful. Namely, that material should be removed from low stress

areas where material was not being efficiently used and that material should be added

in areas where stress is too high.

8. 	A Morpho genetic Approach to Shape Optimisation 	 177

The purpose of the morphogenetic stage was to provide a method of producing a set

of shapes that followed a sensible trajectory through the space of possible shapes,

which was informed by the results of the analysis undertaken. Bearing this in mind, it

was necessary to design the morphogenetic stage so that it was able to respond to

information generated about the shapes' performance and, in general, move towards

improved shapes. Many aspects of the morphogenetic stage should be fixed to enable

this, however certain aspects should be variable so that by setting these variables at

differing values the exact operation of this stage could be controlled. This would

enable a large number of varying trajectories through the shape space to be followed.

These variables would be under the control of a genetic algorithm.

It was decided that a cellular shape representation would be used. This was for a

number of reasons. This representation would be easily implementable in the Chains

framework described in Chapter 7. Secondly, biological morphogenesis is clearly

cellular in nature. Thirdly, since the data from the finite element analysis would be

available for each element, a cellular representation would make it easy to integrate

this information. It was therefore decided to use a triangular cellular shape

representation. This would then be used as the finite element mesh.

Finally, the nature of the development stage needed to be decided on. It was decided

to copy some of the features of ESO since these would be simple to implement and

had proven themselves to be successful for topology optimisation. During the growth

stage, cells would be forced to die if their stress falls below some threshold (Von

Mises) stress value. This threshold would be slowly increased throughout out the run

until a constraint on area was achieved.

8.3.2 Overview of the Algorithm Used

The algorithm naturally split into two parts: the genetic algorithm and the shape

development stage. The genetic algorithm was used to evolve values for some of the

variables that were used in the growth stage. Thus, the genetic algorithm (GA)

formed an outer loop, evolving individuals whose genes varied the way in which the

8. 	A Morpho genetic Approach to Shape Optimisation 	 178

shape development stage produced the shape. When an individual in the GA's

population is evaluated, the values for genes are passed into the cells and then the

morphogenetic stage is allowed to run. Following this, the best fitness (typically —(5

where Sis the maximum deflection) that is achieved through the growth stage is used

as the individual's fitness. The GA is described in more detail in Section 8.3.8.4.

Below is given a brief overview of the mechanics of the algorithm used for the

morphogenetic stage. Much greater detail on the actual implementation is given in

Section 8.3.5.

Each cell was implemented as a two-dimensional triangular cell (2-cell) from the

Chains framework. As discussed in the previous chapter, each 2-cell is bounded by

edges (1-cells), which in turn are bounded by nodes (0-cells). The complex formed

by all of these Chains cells is used as the shape representation. Each of these cells is

implemented as an agent in the Swarm programming language described in Section

8.3.4. Only the triangular 2-cells are 'active' agents so that they are able to act

independently. The 1-cell edges and 0-cell nodes could, however, act to check their

status and act if they were currently invalid - this is explained further in Section

8.3.5.

8. 	A Morphogenetic Approach to Shape Optimisation 	 179

Figure 8-1 	The Initial Mesh

As shown in Figure 8-1, an initial mesh of triangular cells was used which filled the

whole proposed design area. Loads were applied to this mesh and a two dimensional

static elastic analysis undertaken using the Ansys finite element package by

importing the mesh via node and element files. Quadratic elements were used. Ansys

returns the Von Mises stress and each element is informed of the Von Mises stress on

it. Each element is then allowed to 'act'. Possible actions are to, kill, divideSeif,

smooth or boundarySmooth. Once all the consequences of these actions have been

completed, cells check their status to ensure that they still form a valid cell complex

and any necessary actions are then undertaken to kill any 'hanging' edges, 'isolated'

nodes or kill any cells which only contact each other through one node.

8. 	A Morphogenetic Approach to Shape Optimisation 	 180

The basic execution path followed during the morphogenetic growth stage is shown

in Figure 8-2.

Elements die if the stress on them is below some threshold value. This threshold

value changes through time, starting quite low and is increased until the shape drops

below a constraint on the area of the shape. This threshold stress is moderated by a

number of factors such as position, whether the cell is at the edge of the shape and

whether the death of an element would result in a change in the topology of the

shape. The strength of these factors are under the influence of genes which are the

same for each cell.

Elements divideSeif if the stress gradient across them is above some threshold value.

This action was needed because the shape representation and the analysis mesh are

the same. It is therefore necessary to try to ensure that the analysis produces

sufficiently accurate results. Thus, the split action acts in a rudimentary way as an

adaptive meshing routine, which is controlled from the 'bottom-up'. Cells split in a

way that is similar to approaches used in Delaunay triangulation [Filipiak 1996]. The

cell schedules itself to die along with any other cells with nodes within its

circumcircle. A new node is placed at the centroid of the splitting cell and new cells

are created using this node and those nodes surrounding the newly formed 'hole'.

Section 8.3.8 describes this in some detail.

The smooth action is undertaken by every cell following any other actions. Again,

this is to ensure that the mesh is sufficient to enable the finite element analysis to

produce accurate results. The 'smooth' action takes each of the nodes of the cell and

moves it towards the centroid of those nodes with which it shares an edge.

8. 	A Morpho genetic Approach to Shape Optimisation 	 181

Start

Run Finite Element
Analysis

Inform Elements of von
Mise's stress

I Allow Elements to 'step' I

All elements,edges and
nodes check state and act

(call checkSeif)

All elements, edges
& nodes OK? 	No

Yes

Nodes smooth and
boundarySmoorh

Delete any killed
elements, edges and nodes

Increase stress threshold

Minimum area
	 No

reached?

Yes

End

Figure 8-2 	Overview of the Morphogenetic Stage

8. 	A Morpho genetic Approach to Shape Optimisation
	

182

The smoothBoundary action aims to produce a smooth outer boundary for the shape.

Like smooth, smoothBoundary is used following all other cell actions. Those cells

that have an external edge move their external nodes towards the centroid of the two

nodes that share a common edge to the node being moved.

This loop continues until a minimum area for the shape is reached.

8.3.3 Using the Chains Framework

The object structure of the program written was implemented so that it mapped onto

the data structures discussed in the previous chapter. It should be noted however that

due to time constraints it was not possible to code the finite element analysis in the

Chains framework. Instead, Ansys was used to undertake the finite element analysis

and the results read back into the cells.

UJ

d1 x
1d] X1

Ul

0-chains d,x,uf
1-chains dx,du,df

dx2 du2 df2

dx4 du4 df4

cfrj duj dfj 	 d3 X3

13

dx3 du3 df3

d2 X2

12

4
4

Figure 8-3 	A Chain Model Specification for a Bicycle Frame

8. 	A Morphogeneric Approach to Shape Optimisation 	 183

The cells in this chapter are an attempt to extend the physical elements described in

7.3.2.3 to give them 'initiative'. This ties in with the idea of intelligent physical

elements described in last chapter.

Three problems are addressed in this chapter, the design of a bicycle frame, a load

bearing arch and a cantilever beam. The process of shape and topology optimisation

of each of these can be thought of transformation of a Chain model specification as

shown in Figure 8-3 to a Chain model fully embedded in space.

8.3.4 Swarm

It was decided to implement the morphogenetic shape optimisation software in

'Swarm' [Burkhart 1994] [Minar et al. 1996]. Swarm is a software package for

multi-agent simulation of complex adaptive systems. It was developed by the Santa

Fe Institute. It has been used by researchers from a large number of disciplines,

including ecology [Booth 1997] [Pepper & Smuts 1999], politics [Johnson 1998],

biology [Kreft et al. 1998], economics [Luna & Perrone 2001] [Luna and Stefansson

2000] and manufacturing [Krothapalli & Deshmukh 1997] to implement a large

variety of agent based models.

Swarm provides libraries to implement simulations of collections of concurrently

interacting agents in a discrete-event simulation. Swarm provides the necessary

machinery to effect those actions at the appropriate time. Along with the scheduling

libraries, Swarm provides a number of other libraries of components for building

models, controlling experiments on those models, and for displaying and analysing

data generated by the experiments.

In recent years, there has been a great interest in the study of complexity. One

approach to the study of complexity has been agent-based modelling using computer

programs. This has been undertaken in a wide range of disciplines in which complex

systems are encountered. The Santa Fe Institute is a research institute whose primary

interests are in complexity theory. The motivation behind their development of

Swarm was to provide a set of standard tools for undertaking computer simulations

8. 	A Morpho genetic Approach to Shape Optimisation 	 184

of complex systems. Swarm programmers are thus able to concentrate primarily on

the behaviour of their agents and the interactions between them, rather than

implement complicated discrete-event machinery. This reduces duplication of

programming effort, increases the quality of programs generated and allows for the

publishing of models in a standard form allowing other researchers to reproduce

results.

The forms of models that Swarm looks to support are multi-agent discrete-event

simulations. The fundamental unit in such a simulation is an agent, which can

execute events and can generate events that affect itself and other agents. Typically, a

Swarm simulation will have a collection of many interacting agents. A discrete

model of time is used rather than a continuous time model. Events take place at a

single point in time.

At the core of a Swarm model is a swarm. A swarm consists of a collection of agents

and a schedule of actions to be executed by those agents. The swarm therefore

constitutes a 'mini-simulation', complete with agents, a representation of time and

the scheduling machinery to effect the actions on those agents.

An important feature of Swarm is the ability to produce hierarchical models. A

swarm itself can be an agent and can thus be contained in a super-swarm. An

example of this would be a model of a forest. At the top-level, the forest is modelled

as a swarm of trees. Below this level, each tree could be modelled as a swarm

containing a collection of the cells of that tree.

Object oriented (00) languages naturally lend themselves to the agent based

modelling implemented by Swarm. The Swarm libraries are written in Objective C.

In 00 programming 'classes' define the types of 'objects' that can be used. A class

defines the behaviour of a type of object. It defines which instance variables are used

to describe the state of an object of that type. It also describes the methods that can

be executed by an object of that type. An object, then, is a particular instantiation of a

class and has its own values for the state variables. In Swarm models, agents are

8. 	A Morphogenetic Approach to Shape Optimisation 	 185

modelled as objects. Classes are thus used to define the generic behaviour of each

type of agent.

Swarm models are typically written in the Objective C or Java programming

languages. For this project, Objective C was used. In building a typical Swarm

simulation, the agents must first be created. A class is built for each type of agent and

then each agent is instantiated from the appropriate class. A swarm (often termed the

'model swarm') is then created in which the agents are placed. A schedule of actions

is then needed to define which actions are to be executed by which agents at which

point in time. Once this done the swarm can be executed.

Figure 8-4 	The Swarm Application for Growth Stage at Start-Up

8. 	A Morpho genetic Approach to Shape Optimisation 	 186

The model swarm in essence acts as a self-contained simulated world. For this to be

of use to the modeller it is necessary to monitor the model swarm in some way.

Typically in a Swarm application, this is done by placing the models swarm in an

observer swarm as a sub-swarm. Along with the model swarm, the observer swarm

can contain various other agents who can acquire data from the model swarm via

probes, store that information in a file or display it in graphs or other displays.

Swarm provides objects for saving data, interfacing to statistical packages,

displaying graphs and other graphical representations of the model.

Probes are an important feature of Swarm. When writing code in standard object

oriented programming it is not necessary to be able to observe the inner state of an

object, so long as the object behaves as required. For modelling purposes, though,

this is very important. Swarm provides probes for this purpose. Probes can read or

set any of the state variables of an object (agent) or call any of the methods of an

object. As long as the object has been declared as a SwarmObject, then any object in

Swarm is 'probable' without the need for any additional user code.

8. 	A Morphogenetic Approach to Shape Optimisation 	 187

8.3.5 Details of Implementation

This section describes the implementation of the program as programmed in Swarm.

Figure 8-5 shows the principal objects in the program. These objects are explained in

further detail below.

Figure 8-5 	Overview of Program Structure

8.3.5.1 ShapeOptControlSwarm

The control swarm controls (Shape OptControlSwarm) the operation of the program.

It is responsible for creating the model swarm (ShapeOptModelSwann). It owns an

object GridGen, for generating the mesh, writing the mesh in the Ansys format and

obtaining stress results from Ansys. It also owns DisplayManager that is responsible

for displaying the current state of the model, along with graphs displaying fitness,

area and deflection. The control swarm also manages the schedule of events for these

objects.

8. 	A Morphogenetic Approach to Shape Optimisation 	 188

8.3.5.2 ShapeOptModelSwarm

The model swarm owns the model of the component. For this application the shape

representation is a cell complex. The model swarm therefore owns collections of the

cells that form this complex and is responsible for the creation and destruction of

these cells. The model swarm manages the schedule of events for the cells in this

complex. The model swarm also keeps track on the current stress threshold below

which the cells (elements) die.

8.3.5.3 Elements

All the elements in the mesh that form part of the shape representation are of this

class. Elements are the primary 'agents' in this approach. An element maintains a list

of the edges that form its faces. Below are given some of the principal methods

implemented by the Element class, that are relevant to the basic execution flow given

in Section 8.3.2 and illustrated in Figure 8-2.

Step

The step method on the Elements (2-cells) is the driving method for the growth of the

shape.

Figure 8-6 shows the algorithm implemented by the Element step method. Firstly,

getCeliStatus is called to calculate the current status of an element (see below). If the

element is not in a valid state then kill is called. Then getStressThreshold is called to

determine the stress threshold for this element (see Section 8.3.6). Depending on the

status of the element status and the stress on the element then a number of actions

can take place. The three primary actions that an element can undertake are to kill,

kill With CheckForContact or to divideSelf.

8. 	A Morphogenetic Approach to Shape Optimisation 	 189

Figure 8-6 	The Element step method

8. 	A Morphogenetic Approach to Shape Optimisation 	 190

The basic logic is as follows. Firstly, elements execute the kill method when the

stress on them drops below the threshold value. However, this should not happen if

the death of the element would cause the topology of the shape to change (see

Section 8.3.7). Therefore, before the kill method is executed, a check is made to

establish whether this topology change takes place, using the

kill WithCheckForContact method. Secondly, it is necessary sometimes for an

element to die which would cause the topology change, because that part of the shape

is carrying so little load. When this is the case, the kill method can be called without

the check being made. Thirdly, it is preferable that internal elements are less likely to

die than external elements, so that the generation of holes does not become

excessive. Internal elements, therefore, have a lower stress threshold than external

elements. Again, a check is made to ensure that a change in topology would not be

changed by the element's death. Finally, if no other action takes place, divideSeif is

called if the stress gradient across the element is greater than some value (for all runs

documented this value was 2).

The criteria for choosing the action that the step method calls are described below.

The tests for these actions are done in the order given.

If the element is external (status 1) and the stress of the element is less than the

stress threshold then the action kill WithCheckForContact is called.

Else if the stress of the element is less than (stressThreshold *

rProportionForKillWithoutCheck) then the cell is 'killed' without the check for

contact being done. rP roportionForKill WithoutCheck is variable under control of

the genetic algorithm and typically takes a value of 0.01 to 0.6 and is usually less

than the value of rProportionForHole described below. This allows elements to

die that would change the topology if the stress on them is suitable low.

Else if the stress of the element stress is less than (stressThreshold *

rProportionForHole) 	then 	kill WithCheckForContact 	is 	called.

rProportionForHole is variable under control of the genetic algorithm and

8. 	A Morphogenetic Approach to Shape Optimisation 	 191

typically takes a value of 0.05 to 0.8. rProportionForHole is less than 1 and so,

in effect, the stress threshold for internal cells is lower than for external edges,

ensuring that holes are only created where the stress is much lower than

elsewhere.

(d) If the 'stress gradient' (determined by calling getStressGradient) is greater than

rSplitThreshold, which typically takes the value of 2, then the divideSeif method

is called. This is intended to increase the density of the mesh in those areas where

the stress is changing rapidly and is a crude attempt at adaptive meshing (see

Section 8.3.8).

getCeliStatus

This method calculates the status of an element, which is determined as follows:

Status 0 if element is enclosed i.e. the element has no external edges in its face list.

(Case A in Figure 8-7).

Status 1 if element is external i.e. the element has one external edge in its boundary

list (Case B in Figure 8-7).

Status 2 if element is a 'corner' i.e. the element has two or more external edges in its

boundary list (Case C in Figure 8-7).

Status 3 if element is isolated i.e. has three external edges. This will usually result in

the element 'dying'.

Status 4 if element is ill-defined i.e. has fewer than three edges in its boundary list.

This will usually result in the element dying.

8. 	A Morpho genetic Approach to Shape Optimisation 	 192

Figure 8-7 	Illustration of Element Status

checkSeif

This method is used to undertake any action required to maintain the validity of an

element. getCellStatus is called and if the element is a 'corner' (status 2), isolated

(status 3) or ill-defined (status 4) then the kill method is called.

kill

This method begins the process of an element dying. This involves informing edges

in the element's face list that the element is to be removed from their coface list, and

informing the model swarm that this element is to be killed at the end of the time

step.

8. 	A Morphogenetic Approach to Shape Optimisation 	 193

kill With CheckForCon tact

This method checks whether this element dying would cause any node to change its

status to 'contact'. If this does not happen then the kill method is called. See Section

8.3.7 for more details.

divideSeif

This method causes the current element to divide itself. This is done to increase the

density of the mesh in this area. This is done by the addition of a node at the centroid

of the current element and then undertaking a local Delaunay retriangulation. This is

described in more detail in Section 8.3.8.

8.3.5.4 Edges

All the edges in the mesh, which form part of the shape representation, are of this

class. An edge maintains a list of the nodes that form its faces and a list of the

elements that form its cofaces. Below are listed are some of the methods that the

Edge class implements:

getCellStatus

This method calculates the status of an edge, which is determined as follows:

Status 0 if edge is enclosed i.e. the edge has two elements in its coface list. (Case A

in Figure 8-8 - these are the red edges on the display).

Status 1 if edge is external i.e. the edge has only one element in its coface list (Case

B in Figure 8-8 - these are the blue edges on the display).

Status 2 if edge is isolated i.e. the edge has no elements in its coface list (Case C in

Figure 8-8 - these are the green edges on the display).

Status 3 if edge is ill-defined i.e. has fewer than two nodes in its face list

8. 	A Morphogenetic Approach to Shape Optimisation 	 194

Figure 8-8 	Illustration of Edge Status

checkSeif

This method is used to undertake any action required to maintain the validity of an

edge. getCeliStatus is called and if the edge is isolated (status 2) or ill-defined (status

3) then the kill method is called.

kill

This method begins the process of an edge dying. This involves informing elements

in the coface list of the edge that the edge is to removed from their face list. The

nodes in the face list of the edge are also informed that the edge is to removed from

their coface list. The model swarm is then informed that this edge is to be killed at

the end of the time step.

8. 	A Morphogenetic Approach to Shape Optimisation 	 195

Figure 8-9 	Illustration of Node Status

8.3.5.5 Nodes

All the nodes in the mesh that forms part of the shape representation are of this class.

Nodes have chains for x position, y position and z position (for this two dimensional

problem all z positions are set at 0). A node maintains a list of the edges that form its

cofaces. Below are listed are some of the methods that the Node class implements:

getCeliStatus

This method calculates the status of a node, which is determined as follows:

Status 0 if node is enclosed i.e. none of the edges in its coface list are external (Case

C in Figure 8-9 - these are the red nodes on the display).

8. 	A Morphogenetic Approach to Shape Optimisation 	 196

Status 1 if node is external i.e. two of the edges in its coface list are external (Case B

in Figure 8-9 - these are the blue nodes on the display).

Status 2 if node is in 'contact' i.e. more than two of the edges in its coface are

external (Case A in Figure 8-9 - these are the green nodes on the display). Since

mesh topologies where a node is in 'contact' are not valid, a cell in this condition

will normally die.

Status 3 if node is 'isolated' i.e. there are no edges in its coface list.

checkSeif

This method is used to undertake any action required to maintain the validity of a

node. getCeliStatus is called and if the node is in 'contact' (status 2) or 'isolated'

(status 3) then the kill method is called.

kill

This method begins the process of a node dying. This involves informing edges in

the coface list of the node that the node is to removed from their boundary list, and

informing the model swarm that this node is to be killed at the end of the time step.

smooth

This method moves the node to the centroid of its adjacent nodes. It goes through

each of the edges in the coface list of the node and from these edges 'gets' the other

nodes which forms the face of these edges. The x and y position of the original node

is then set at the centroid of these nodes.

boundarySmooth

The boundarySmooth method aims to produce a smooth outer boundary for the

shape. Those cells which are not external (status 1) do nothing when this method is

called. Otherwise, the method is similar to the smooth method, except only nodes

attached to the two external edges are retrieved. It was also found that moving to the

8. 	A Morpho genetic Approach to Shape Optimisation
	

197

centroid of these two nodes caused excessive smoothing and so the node was only

moved part way towards this centroid i.e.

[xci 	 [x21

YC 	 Y1 	L2iJ

[x 	[X 	["l
I ' I=(1-a)I 	I - I
[Y] 	[Y] [Y

l

where 1XI] 	
is the position of the first adjacent node

[X2 1
I 	I 	is the position of the second adjacent node
LY2 J

[x 1
_Y C 	

is the position of the centroid of the two adjacent nodes

[x 1

[YnI i

[]

is the original position of this node
Yn

xn
s the new position of this node

1
 j

a 	is the proportion of the way to move the node from its original

position to the centroid of the adjacent nodes. Experimentally

a value of 1/40 for a was found to work well.

8. 	A Morphogeneric Approach to Shape Optimisation 	 198

8.3.6 Calculating the Stress Threshold

In this approach to shape optimisation, the primary way in which the shape is

generated is through the death of elements and the subsequent smoothing and

splitting of those elements. Elements die when the stress on them drops below some

threshold value. This threshold value depends on the current time, the status of the

element (whether it is internal or external) and its position.

The global current stress threshold is calculated by the model swarm. Each time a

new finite element analysis is undertaken, the current stress threshold is increased by

a constant amount. This global stress threshold is reduced by each element according

to its position. This is done by using four 'chemicals' deposited in the environment.

The position, strength and spread of this chemical are under the control of the genetic

algorithm. This gives the genetic algorithm the ability to change how the shape

develops in different parts of the design area. This was a crude attempt to mimic

chemotaxis in biological development [Gilbert 1994].

stress 1 flresliol(
Multiplier

1

Chemical
Strength

Chemical Die-Away Rate 	 Distance from Chemical

Figure 8-10 	 Chemical's Effect on an Element's Stress Threshold

as a Function of Distance from the Chemical

8. 	A Morpho genetic Approach to Shape Optimisation
	

199

Each element calculates the amount by which each chemical modulates its stress

threshold as shown if Figure 8-10. Each chemical has a position, strength (between 0

and 1) and die away rate. The effect of the chemical is at a maximum at a distance of

0 from the chemical's position, with a stress threshold multiplier of (1 - chemical

strength). This effect drops linearly from this maximum to zero at a distance of

'chemical die away rate'. An element's stress threshold multiplier for chemical 1 is

therefore given by:

srressThresholdMultiplier1 =

(1 - chetnStrength 1
) + chemStrength1 * distanceFrom Chemical 1

chemDieA wayRare 1

1

distanceFro,nCheniical1 < chemDieA wayRate 1

otherwise

There are four such chemicals and the total stressThresholdMultiplier for each

element is found by summing the four individual stressThresholdMultipliers, with a

minimum of 0.

Figure 8-11 	Display of stress ThresiwidMultiplier with One Chemical

Placed at (0.3,0.45), strength 1, rate 0.2

8. 	A Morpho genetic Approach to Shape Optimisation 	 200

8.3.7 Maintaining Similar Topology

This approach works by repeatedly increasing the stress threshold, calculating

stresses, killing appropriate elements, increasing the stress threshold, calculating

stresses, killing appropriate elements and so on. This continues until the area of the

shape drops below some target value. Ideally, the stress threshold should only

increase very slowly so that only a few elements die at any step, so that this process

approximates a continuous dying of cells with a constant load applied. However, this

would necessitate very many finite element analyses to be done with a large

computational cost. The stress threshold therefore increases in fairly large discrete

steps.

Early in the development of this approach, a problem was discovered. Often it was

found that early in the run there would be generated a 'wide' load bearing section of

the shape. Because the section is wide, the stress on it would be relatively low.

Consequently, cells in this section would fairly soon drop below the stress threshold

and die. Because the stress threshold increases in fairly large discrete steps,

frequently the whole load bearing section would die even though it was usefully

carrying a load and merely needed to be thinner.

To overcome this, in the normal round of cell deaths a check would be made to

ensure that the death of a cell would not cause a 'contact' node (see Section 8.3.5.3)

which would indicate the breakage of a load bearing section. Thus the section could

become thinner, but would not be allowed to break.

Clearly, there needed to still be some mechanism for 'breaking' sections of the shape

that were not contributing to the performance of the component. Therefore, if the

stress on an element is below a threshold, typically between 5% to 50% of the

normal stress threshold, then the cell can be killed without this check. The exact

value of this threshold is variable and is given by multiplying the cells normal stress

threshold by rPropKillWithoutCheck (a variable under control of the genetic

algorithm).

8. 	A Morphogenetic Approach to Shape Optimisation 	 201

Figure 8-12 	Example of breakage of useful load bearing section

8.3.8 Increasing Mesh Density

There is no separation between the shape representation and the finite element mesh

in this approach. In order to ensure reasonable accuracy from the finite element

analyses it was decided that some form of adaptive meshing was required, even

though this would not change the boundary geometry of the shape generated.

Where the stress gradient over an element is above some threshold value an element

triggers the divideSeif method. This method implements a node insertion and local

Delaunay retriangulation based on the algorithm described by [Watson 1981] and

[Filipiak 1996].

8. 	A Morpho genetic Approach to Shape Optimisation 	 202

Delaunay triangulation is used widely for the generation of unstructured meshes for

the finite element method and has been studied extensively in the literature

[Schewchuk 1997]. Given a set of points on a plane, the Voronoi tessellation is

formed from the set of Voronoi polygons. These polygons are the regions around

each point, which are closer to that point than to any of the other points. This is

shown in Figure 8-13. The Delaunay triangulation is the dual of the Voronoi

tessellation.

lygons in green
riangles in blue

Figure 8-13 	Example of Delaunay Triangulation

8. 	A Morpho genetic Approach to Shape Optimisation 	 203

Delaunay triangulations have some useful properties:

• None of the points (nodes) are contained in the circumcircle of any triangle (the

circumcircle of a triangle is the circle passing through all three of its vertices).

• In two dimensions only, given a set of points to triangulate, the Delaunay

triangulation is the triangulation that maximises the minimum angle for all

triangular elements. This is a very useful property for generating high quality

finite elements.

The most widely used algorithm for Delaunay triangulation is the Bowyer-Watson

algorithm [Watson 1981]. This method starts with an initial simple Delaunay

triangulation (often a single triangle) and successively adds new points into this

triangulation.

iew node

Triangles' circumcircles containing new node

Figure 8-14 	Addition of New Node and Calculation of Circumcircles

8. 	A Morpho genetic Approach to Shape Optimisation 	 204

The algorithm repeats the following steps:

Add a new point

Find the existing triangles whose circumcircle contains the new point (see Figure

8-14).

Delete these triangles, creating a convex cavity.

Join the new point to all the vertices on the boundary of the cavity (Figure 8-15)

and create appropriate elements.

It was decided that the element divideSeif method should implement this algorithm. It

should be noted that there is no 'top-down' control in the implementation of this

algorithm. The dividing element creates the new node, then it needs to determine the

e

New elements

Convex cavity in green

Figure 8-15 	New Elements Formed from Convex Cavity

8. 	A Morpho genetic Approach to Shape Optimisation 	 205

edges that constitute the convex cavity that the insertion of this node should cause,

kill the elements and edges within this cavity and then kill itself. This takes place by

calling the methods described below, which 'spread' out from the original element

through the edges to adjacent elements. The methods needed to do this are in both

the Element and Edge classes. These are listed below:

8.3.8.1 Explanation of Element Method divideSeif

I 	Start 	1
1

Create new node at
centroid of element

"V

Call
checkNodelnCircumCircleFromElem on
each edge passing new node as argument

Append together lists of edges (forming
convex cavity) returned by edges

Create new edges from new node to
nodes around convex cavity of edges

Create new elements

kill self

REnd 	I
Figure 8.16 	The Element divideSeif method

8. 	A Morpho genetic Approach to Shape Optimisation

This method (see Figure 8-16) creates a new node at the centroid of the element. It

then calls checkNodelnCircumCjrcleFromElem (described below) on each of the

edges in its face list. The lists of edges returned by these three calls are then

appended together to form a list of edges which make up the convex cavity in the

mesh. New edges can be then formed by traversing around the list of edges so

formed creating new edges between the new node and the nodes on the edges in the

convex cavity. New elements can then be formed using these edges. The element

then calls kill on itself.

8.3.8.2 Explanation of Edge Method checkNodelnCircumcircleForElem:

node from: element

Start

Has this method a1read ... 1' es 	Return list containing
been called this timestep?

	
just this edge

No

Call checkNodelnCircumcircle on
element in coface list which is not calling

element

Return list of edges returned by called
element

Figure 8-17 	The Edge checkNodelnCircumcircleForElem method

8. 	A Morpho genetic Approach to Shape Optimisation 	 207

This method (see Figure 8-17) is called by an element. It takes the new node and the

calling element as arguments and returns a list of edges that should lie on the convex

cavity. If the checkIJodeInCircumcircleForElem has already been called for this edge

then a list containing only this edge is returned. Otherwise,

checkNodelnCircumcircle is called on the element in the coface list that is not the

calling element. The list of edges (which are on the convex cavity) returned by this

element are then returned by the edge.

8. 	A Morpho genetic Approach to Shape Optimisation 	 208

8.3.8.3 Explanation of Element Method checkNodelnCircumcircle: node

from: edge

Start

Is the new node in this 	No 	
Return list containing

element's circurncircle? 	 just calling edge

Yes

Call
checkNodelnCircurnCircleFromElem

on edges in face list except calling edge

Append together lists of edges (forming
convex cavity) returned by edges

kill self

Return list of edges 	
]

Figure 8-18 	The Element checkNodelnCircumcircle method

This method is called by an edge. It takes the new node and the calling edge as

arguments. If the node is not within the circumcircle of the element then a list

containing only the calling edge is returned. If the node is within the circumcircle

then checkNodelnCircumCircleFromElem is called on the two edges in the boundary

list of the element other than the calling edge. The element calls kill on itself. The

lists of edges returned by the two calls to checkNodelnCircumCircleFromElem on

the edges are then appended together and returned.

8. 	A Morpho genetic Approach to Shape Optimisation 	 209

8.3.8.4 Worked Example of Element Division

This section attempts to explain how element division works, by undertaking a

worked example. Figure 8-19 shows a partial mesh before element 1 has divided.

Elements are labelled 1 to 6 and edges a to f. Figure 8-20 shows the convex cavity

formed by the division of element 1. Figure 8-21 shows the mesh following the

completion of the division of element 1.

ments labelled 1 to 6
'a' to f

Figure 8-19 	Partial Mesh before Element Division

NE.,: edges in rd g' to

New elements 7 to 10

8. 	A Morphogenetic Approach to Shape Optimisation 	 210

ments labelled 1 to 6
esl 	 to 'f'

Figure 8-20 	Convex Cavity formed by Division of Element 1

Figure 8-21 	Mesh following Division of Element 1

8. 	A Morpho genetic Approach to Shape Optimisation 	 211

46k

eidt 	 k flDrdeBn Ban I
dirJeii Banl 	 N

a Eofr

OxrOrainrde 	 Edas C

RBaiiBan1
Edge a 	 EcOe b 	 Edge c

	

dxdt~rorcumrde- Edga a / 	 dajd'1XrOranDrTJe 	a

nNwIXIS 	/
/ 	 d'xlrOandite&b

	

BaTal 2 	 Beral 3 	BGTUI 4

d'trOimrdeRxn Ban2 	
b

Nide IøAflX 	 'e Nxt rwak

Ee

deUtrOraj,i 	
a 	

dekxrOra,iorde: at
Nxt m

BaTal5 	 Baral6 	 HhilirxiixkemiIuJc]s
1 11111 irkhl-.111 - 111111 iJ 	iJt

Figure 8-22 	Method Calls and Return Values for Division of Element 1

Figure 8-22 shows the path of method calls following a call to Element 1 to

divideSeif. Element 1 firstly creates a node, newnode at its centroid. The method

checkNodelnCircumcircleForElem is called on Edges a, b and c, passing newnode

and Element 1 as arguments. These edges call the method checkNodelnCircumcircle

on Elements 2, 3 and 4 respectively.

8. 	A Morphogenetic Approach to Shape Optimisation 	 212

For Elements 3 and 4, the new node does not lie within their circumcircle. No further

action is therefore required and so Element 3 returns a list containing just Edge b

back to Edge b, whilst Element 4 returns a list containing just Edge c back to Edge c.

Edge b and Edge c return these lists to Element 1.

In the case of Element 2, the new node does lie within its circumcircle. Element 2

therefore executes its kill method. Element 2 also needs to establish whether any

further elements need to be removed and to find those edges that will form the

resulting convex cavity. Therefore, checkNodelnCircumcircleForElem is called on

Edges e and f, passing newnode and Element 2 as arguments. These edges call the

method checkNodelnCircumcircle on Elements 5 and 6 respectively.

For Elements 5 and 6, the new node does not lie within their circumcircle. No further

action is therefore required and so Element 5 returns a list containing just Edge e

back to Edge e, whilst Element 6 returns a list containing just Edge f back to Edge f.
Edge e and Edgef return these lists to Element 2.

Element 2 appends these two lists together, to form a list containing both Edge e and

Edgef This list is returned to Edge a, which in turn returns it to Element 1.

Element 1 appends the lists returned from Edge a, Edge b and Edge c together, to

form a list containing Edges e, f, b and c. This list now contains those edges that

bound the convex cavity. New edges g, h, i and j can be then formed by traversing

around the list of edges creating new edges between the new node and the nodes on

the edges in the convex cavity. New elements 7 to 10 can then be formed using these

edges. Element 1 then calls kill on itself.

8. 	A Morpho genetic Approach to Shape Optimisation 	 213

8.3.9 The Genetic Algorithm

The genetic algorithm was written in Matlab. The vast majority of computing effort

required for this approach was in the growth and finite element analysis of the mesh.

The relative slowness of Matlab as an interpreted programming language was

therefore not a problem. Each individual in the population has an array of real

numbers as its chromosome. Each of these real numbers corresponds to a variable

used in the shape growth simulation. In order to evaluate an individual, Matlab runs

the Swarm model in batch mode, with the variables passed on the command line. The

best fitness that the shape achieves is returned by Swarm. The following variables

were manipulated by the GA:

propHole propKillWithoutCheck rChemSens

rChemOXpos rChemOYpos rChemOStr rChemORate

rChemlXpos rCheml Ypos rChemlStr rChemlRate

rChem2Xpos rChem2 Ypos rChem2Str rChem2Rate

rChem3XPos rChem3Ypos rChem3Str rChem3Rate

propHole determines the proportion of the global stress threshold below which an

internal element will die. This can take any value from 0 to 1. Higher values for this

variable result in more internal holes being produced in the shape.

propKillWithoutCheck determines the proportion of the global stress threshold below

which an element will die without checking whether this would cause a change in the

topology. This can take any value from 0 to 1. Lower values for this variable result in

a shape with more trusses.

8. 	A Morphogenetic Approach to Shape Optimisation 	 214

There are four chemicals that can be used to influence the generation of the shape as

described in Section 8.3.6. Each of these is determined with four variables for x-

position (i.e. rChemOXPos), y-position (i.e. rChemOYpos), strength (i.e. rChemOStr)

which takes a value from 0 to 1 and dispersion rate (i.e. rChemORate). There is also

a variable rChemSens that varies the sensitivity of the shape to the chemicals.

The genetic algorithm was run with a rank based selection scheme. A fixed number

of new individuals were generated per generation. Normalised Geometric Ranking

[Joines & Houck 1994] was used. In this scheme the probability of selection is given

by:

P[Selecting the ith individual] = q'. (1 - q)Tl

where:

q 	is the probability of selecting the best individual

r 	the rank of the i's' individual where 1 is the best

P 	is the population size

q' 	q/(1-q)"

Simple single point crossover was used. Non-uniform mutation [Michalewicz 1992]

[Michalewicz & Schoenauer 1996] [Michalewicz & Fogel 20001 was applied at a

rate of about one per individual. This applied a random disturbance to the value of a

gene based on a uniform distribution. The width of this distribution was narrowed

through the generations. The mutation works as follows:

A gene, x7 , is chosen for randomly for mutation.

1x1 + A(t, u(i) - x 1 ,if random binary number =0
S 	

Lx +(t,x —l(i),if random binary number= 1

where t 	is the current generation

8. 	A Morphogenetic Approach to Shape Optimisation 	 215

u(i) 	is the upper bound for gene i

1(i) 	is the lower bound for gene i

[Janikow & Michalewicz 1991] used the following function for &

(t,y)
=y.r.[11Jb

	

where r 	is a random number from 0 to 1

is the current generation

	

T 	is the maximal generation

	

b 	is a parameter determining the degree of non-uniformity

For the experiments shown in the results, b was set at 1.

8. 	A Morphogenetic Approach to Shape Optimisation 	 216

8.4 Problems Addressed

Three problems were addressed. These were a frame for a bicycle, a cantilever beam

and a load-bearing arch. The loadings and dimensions for these problems are shown

in Figure 8-23, Figure 8-24 and Figure 8-25. The material was AISI 1020 steel with a

Young's modulus of 200 GPa and a yield stress of 350 MPa. For each of the

problems, an area constraint was chosen so that the stress on the components would

be approximately 100 MIPa. For the bicycle frames and arches this corresponded to

an area of 0.07 m2 and for the cantilever 0.14 m2 .

100 ON

A 300N

600

1000W

300W

A

1000

Figure 8-23 	Load Case for Bicycle Frame

I 000W

Figure 8-24 	Load Case for Cantilever

600

8. 	A Morphogenetic Approach to Shape Optimisation 	 217

Figure 8-25 	Load Case for Arch

8. 	A Morpho genetic Approach to Shape Optimisation 	 218

8.5 Results

Various optimisation runs were undertaken with various genetic algorithm and

growth stage parameters for each of the load cases. Many of these runs were

undertaken during the simultaneous development of the both the approach and the

software. Because of the time taken to do a run, it was not possible to undertake a

systematic study on the best parameters to use. Therefore, in this section just one run

is documented for each of the load cases. The aim of the work in this chapter

(Section 8.2.6) was to determine whether a morphogenetic evolutionary algorithm

shows any promise as an effective approach to shape optimisation. Therefore, the

runs chosen were those which were indicative of the current status of the software.

Some of the members of the initial population are shown, demonstrating the diversity

of shapes which the morphogenetic process can generate. The best individual

generated following optimisation by the genetic algorithm is then shown.

8. 	A Morphogenetic Approach to Shape Optimisation 	 219

8.5.1 Bicycle Frame

The load case for the bicycle frame was given in Section 8.4. The genetic algorithm

was run with the following settings.

Fitness - deflection
Constraint Area <0.07 m2

Population size 20
Number of new individuals per generation 5
Number of mutations per generation 5
Number of generations 20

Parameter Min Max
propHole 0.01 0.8
propKillWithoutCheck 0.05 0.5
rChemSens 0 0.3
rChemOXPos 0 1
rChem0YPos 0 0.6
rChem0Str 0 1
rChem0Rate 0 0.6
rChemlXPos 0 1
rChemlYPos 0 0.6
rChemlStr 0 1
rChemlRate 0 0.6
rChem2XPos 0 1
rChem2YPos 0 . 	 0.6
rChem2Str 0 1
rChem2Rate 0 0.6
rChem3XPos 0 1
rChem3YPos 0 0.6
rChem3Str 0 1
rChem3Rate 0 0.6

8. 	A Morpho genetic Approach to Shape Optimisation 	 220

8.5.1.1 Initial Population

Below are shown some of the members of the initial population.

Bicycle Frame A

Fitness -0.000928
Max Deflection (mm) 0.928

Parameter Value
propHole 0.1416
propKillWithoutCheck 0.3715
rChemSens 0.2901
rChemOXpos 0.3481
rChem0Ypos 0.5953
rChem0Str 0.9292
rChem0Rate 0.2674
rChemlXpos 0.5858
rChemlYpos 0.5986
rChemlStr 0.6996
rChemlRate 0.3802
rChem2Xpos 0.5031
rChem2Ypos 0.0822
rChem2Str 0.0205
rChem2Rate 0.0872
rChem3Xpos 0.0213
rChem3Ypos 0.3946
rChem3Str 0.9576
rChem3Rate 0.2516

Figure 8-26 shows snapshots of the growth of bicycle frame A from the initial

population. As can be seen the growth stage generates reasonable looking shapes

even with parameters set at random. This bicycle frame had a low value for propHole

and so few holes were generated through the development. propKillWithoutCheck

took a moderate value and so it was reasonably easy for the topology to change

through the development. The sensitivity to the chemicals is quite high and so the

shape has been somewhat influenced by the chemicals.

8. 	A Morpho generic Approach to Shape Optiinisarion 	 221

Figure 8-26 	Snapshots of Growth of Bicycle Frame A

8. 	A Morphogenetic Approach to Shape Optimisation 	 222

Bicycle Frame B

Fitness -0.000634
Max Deflection (mm) 0.634

Parameter Value
propHole 0.7577
propKillWithoutCheck 0.3515
rChemSens 0.0626
rChemOXpos 0.9974
rChemOYpos 0.5483
rChemOStr 0.5631
rChemORate 0.5343
rChemlXpos 0.2918
rChemlYpos 0.2094
rChemlStr 0.1678
rChemlRate 0.2167
rChem2Xpos 0.4135
rChem2Ypos 0.3720
rChem2Str 0.5672
rChem2Rate 0.4138
rChem3Xpos 0.6431
rChem3Ypos 0.4486
rChem3Str 0.8057
rChem3Rate 0.3307

Figure 8-27 shows snapshots of the growth of bicycle frame B from the initial

population. This bicycle had a high value for propHole and so many holes were

generated through the development. propKillWithoutCheck took a moderate value

and so it was reasonably easy for the topology to change through the development.

Therefore, sections formed by the formation of the holes were easily broken. The

sensitivity to the chemicals is low and so they have little effect. As can be seen, the

shape has a considerably higher section from the seat post to head-set than bicycle

frame A. The bottom bracket is also raised on a truss platform.

8. 	A Morpho genetic Approach to Shape Optiinisalion 	 223

Figure 8-27 Snapshots of Growth of Bicycle Frame B

8. 	A Morpho genetic Approach to Shape Optimisation 	 224

Bicycle Frame C

Fitness -0.000653
Max Deflection (mm) 0.653

Parameter Value
propHole 0.3010
propKillWithoutCheck 0.2032
rChemSens 0.0490
rChem0Xpos 0.7665
rChemOYpos 0.1465
rChemOStr 0.8437
rChem0Rate 0.3422
rChemlXpos 0.9759
rChemlYpos 0.3794
rChemlStr 0.3865
rChemlRate 0.0132
rChem2Xpos 0.2298
rChem2Ypos 0.2021
rChem2Str 0.7163
rChem2Rate 0.5181
rChem3Xpos 0.9264
rChem3Ypos 0.4283
rChem3Str 0.2774
rChem3Rate 0.1194

Figure 8-28 shows snapshots of the growth of bicycle frame C from the initial

population. This bicycle frame had a fairly low value for propHole and so few holes

were generated through the development. propKillWithoutCheck took a low value

and so the topology remained similar through the development. The sensitivity to the

chemicals is low and so they have little effect. As can be seen the shape has a

considerably lower section from the seat post to the beam section from the head-set

to the bottom bracket than bicycle frames A or B. The section from the bottom

bracket to the back wheel is also fairly high.

8. 	A Morpizo genetic Approach to Shape Optiinisation 	 225

Figure 8-28 	Snapshots of Growth of Bicycle Frame C

8. 	A Morphogenetic Approach to Shape Optimisation 	 226

Bicycle Frame D

Fitness -0.000952
Max Deflection (mm) 0.952

Parameter Value
propHole 0.2631
propKillWithoutCheck 0.0892
rChemSens 0.2107
rChemOXPos 0.2805
rChemOYPos 0.5088
rChemOStr 0.2381
rChem0Rate 0.7271
rChemlXPos 0.5125
rChemlYPos 0.6488
rChemlStr 0.2180
rChemlRate 0.2659
rChem0XPos 0.0854
rChem0YPos 0.5923
rChemOStr 0.3570
rChem0Rate 0.0979
rChemlXPos 0.3245
rChemlYPos 0.9597
rChemlStr 0.3320
rChemlRate 0.6702

Figure 8-29 shows snapshots of the growth of bicycle frame D from the initial

population. This bicycle frame had a fairly low value for propHole and so few holes

were generated through the development. propKillWithoutCheck took a very low

value and so the topology remained similar through the development. The main

observation to be made about this bicycle frame is that the sensitivity to the

chemicals was high, with rChemSens at 0.2107 - towards the upper bound of 0.3.

This resulted in the section from the headset to the bottom bracket staying quite wide

through the development of the shape.

A Morphogenetic Approach to Shape Optimisation 	 227

Figure 8-29 Snapshots of Growth of Bicycle Frame D

8. 	A Morpho genetic Approach to Shape Optimisation 	 228

8.5.1.2 Results of GA Optimisation

This was the best individual found during the optimisation run.

Fitness -0.000547
Max Deflection (mm) 0.547
Max Von Mises Stress (x10 6 Nm2) 111
Mean Von Mises Stress (x106 Nm2) 371
Area (m) 0.069

Parameter Value
propHole 0.3805
propKillWithoutCheck 0.2901
rChemSens 0.1560
rChemoXpos 0.4868
rChem0Ypos 0.5541
rChem0Str 0.9585
rChemORate 0.0197
rChemlXpos 0.5118
rChemlYpos 0.5177
rChemlStr 0.2334
rChemlRate 0.2597
rChemoXpos 0.7431
rChemoYpos 0.2651
rChemOStr 0.5389
rChem0Rate 0.3657
rChemlXpos 0.7714
rChemlYpos 0.3471
rChemlStr 0.1151
rChemlRate 0.5341

Figure 8-31 shows snapshots of the growth of the optimised bicycle frame. The

maximum deflection was 0.547mm which represented about a 15% improvement

over the best individual in the initial population (bicycle frame B). This bicycle

frame had a value for propHole around the middle of the range of values for this

parameter and so a reasonable number of holes were generated through the

development. propKill WithoutCheck similarly took a midrange value. The sensitivity

to the chemicals was also midrange and so the chemicals did have some influence

over the development of the shape. Figure 8-30 shows the position of the chemicals

8. 	A Morpho genetic Approach to Shape Optimisation 	 229

for this shape. As can be seen, they lie between the seat post, bottom bracket and

back wheel. Consequently, cells in this area were more likely to be retained, which

has resulted in the section from the bottom bracket up to the section from seat post to

back wheel being more vertical than for other shapes. This may have increased the

stiffness of the shape.

Figure 8-30 	Chemical Positions for the Optimised Bicycle Frame

8. 	A Morpho genetic Approach to Shape Optirnisation 	 230

Figure 8-31 Snapshots of Growth of Optimised Bicycle Frame

8. 	A Morphogenetic Approach to Shape Optimisation 	 231

8.5.2 Cantilever Beam

The load case for the cantilever beam was given in Section 8.4. The genetic

algorithm was run with the following settings.

Fitness -deflection
Constraint area <0.14 m2

Population size 20
Number of Crossovers per generation 5
Number of Mutations per generation 5
Number of Generations 20

Parameter Nfin Max
propHole 0.01 0.8
propKillWithoutCheck 0.05 0.6
rChemSens 0 0.3
rChemOXpos 0 1
rChem0Ypos 0 0.6
rChemOStr 0 1
rChem0Rate 0 0.6
rChemlXpos 0 1
rChemlYpos 0 0.6
rChemlStr 0 1
rChemlRate 0 0.6
rChemOXpos 0 1
rChem0Ypos 0 0.6
rChem0Str 0 1
rChem0Rate 0 0.6
rChemlXpos 0 1
rChemlYpos 0 0.6
rChemlStr 0 1
rChemlRate 0 0.6

8. 	A Morpho genetic Approach to Shape Optimisation 	 232

Initial Population

Below are shown some of the members of the initial population.

Cantilever A

Fitness -0.001846
Displacement (mm) 1.846

Parameter Value
propHole 0.6257
propKillWithoutCheck 0.4293
rChemSens 0.0460
rChemoXpos 0.4414
rChemoYpos 0.2922
rChem0Str 0.3827
rChem0Rate 0.0962
rChemlXpos 0.7306
rChemlYpos 0.0774
rChemlStr 0.2338
rChemlRate 0.5040
rChemoXpos 0.8435
rChemoYpos 0.1380
rChem0Str 0.1916
rChem0Rate 0.3094
rChemlXpos 0.6002
rChemlYpos 0.4763
rChemlStr 0.5612
rChemlRate 0.0846

Figure 8-32 shows snapshots of the growth of cantilever A from the initial

population. As can be seen, the growth stage generates reasonable looking shapes

even with parameters set at random. This cantilever had a high value for propHole

and so numerous holes were generated through the development.

propKillWithoutCheck took a moderate value and so it was reasonably easy for the

topology to change through the development. The sensitivity to the chemicals was

low and so the shape was not much affected by the chemicals.

8. 	A Morpho genetic Approach to Shape Optimisation 	 233

Figure 8-32 	Snapshots of Growth of Cantilever A

8. 	A Morpho genetic Approach to Shape Optimisation 	 234

Cantilever B

Fitness -0.001993
Displacement (mm) 1.993

Parameter Value
propHole 0.1655
propKillWithoutCheck 0.4528
rChemSens 0.0140
rChemOXPos 0.4907
rChem0YPos 0.3598
rChemOStr 0.6170
rChem0Rate 0.4419
rChemlXPos 0.8986
rChemlYPos 0.5297
rChemlStr 0.5102
rChemlRate 0.5415
rChem2XPos 0.3571
rChem2YPos 0.5716
rChem2Str 0.9401
rChem2Rate 0.5077
rChem3XPos 0.5331
rChem3YPos 0.2335
rChem3Str 0.2661
rChem3Rate 0.2685

Figure 8-33 shows snapshots of the growth of cantilever B from the initial

population. The main difference between this cantilever and cantilever A is that

propHole is much smaller and so fewer holes were generated through the

development. Consequently, the development of the shape was changed. More of the

material was removed from the left of the design domain before holes appeared in

the right hand side. The cross-trusses are therefore attached further to the right for

cantilever B than for cantilever A.

8. 	A Morphogenetic Approach to Shape Optimisation 	 235

Figure 8-33 	Snapshots of Growth of Cantilever B

8. 	A Morpho genetic Approach to Shape Optimisation 	 236

Cantilever C

Fitness -0.002105
Displacement (mm) 2.105

Parameter Value
propHole 0.2144
propKillWithoutCheck 0.1885
rChemSens 0.0347
rChem0XPos 0.6458
rChemOYPos 0.4066
rChem0Str 0.9179
rChemORate 0.4775
rChemlXPos 0.3325
rChemlYPos 0.4028
rChemlStr 0.7692
rChemlRate 0.1936
rChem2XPos 0.1193
rChem2YPos 0.0983
rChem2Str 0.7568
rChem2Rate 0.0818
rChem3XPos 0.1010
rChem3YPos 0.0213
rChem3Str 0.2083
rChem3Rate 0.2543

Figure 8-34 shows snapshots of the growth of cantilever C from the initial

population. For this cantilever very few holes were generated and so material was

successively removed from the left, resulting in a two truss structure.

8. 	A Morplzogenetic Approach to Shape Optirnisation 	 237

Figure 8-34 Snapshots of Growth of Cantilever C

8. 	A Morpho genetic Approach to Shape Optimisation 	 238

Cantilever D

Fitness -0.001828
Displacement (mm) 1.828

Parameter Value
propHole 0.6539
propKillWithoutCheck 0.1903
rChemSens 0.0003
rChem0Xpos 0.1272
rChem0Ypos 0.5361
rChem0Str 0.5338
rChem0Rate 0.2318
rChemlXpos 0.5543
rChemlYpos 0.5830
rChemlStr 0.9587
rChem iRate 0.0209
rChem2Xpos 0.6658
rChem2Ypos 0.3000
rChem2Str 0.7951
rChem2Rate 0.2480
rChem3Xpos 0.5079
rChem3Ypos 0.5254
rChem3Str 0.7991
rChem3Rate 0.3160

Figure 8-35 shows snapshots of the growth of cantilever D from the initial

population. This cantilever had a high value for propHole and so numerous holes

were generated throughout the development. propKill WithoutCheck was low and so

the sections that formed when holes appeared were only removed when the stress on

them was very low. This resulted in a shape with numerous trusses. This shape had

the best fitness (i.e. lowest maximum deflection) in the initial population.

A Morpho generic Approach to Shape Optimisation 	 239

Figure 8-35 	Snapshots of Growth of Cantilever D

8. 	A Morpho genetic Approach to Shape Optimisation 	 240

8.5.2.1 Results of GA Optimisation

Below is shown the best cantilever found during the optimisation run.

Fitness -0.001695
Max Deflection (mm) 1.695
Max Von Mises Stress (x10 6 Nm2) 384
Mean Von Mises Stress (x10 6 Nm2) 109
Area (m) 0.139

Parameter Value
propHole 0.4868
propKillWithoutCheck 0.5410
rChemSens 0.0058
rChemOXpos 0.8059
rChemoYpos 0.2556
rChem0Str 0.9412
rChem0Rate 0.3447
rChemlXpos 0.6683
rChemlYpos 0.3138
rChemlStr 0.6261
rChemlRate 0.3622
rChem2Xpos 0.6254
rChem2Ypos 0.1971
rChem2Str 0.6428
rChem2Rate 0.2337
rChem3Xpos 0.1911
rChem3Ypos 0.0671
rChem3Str 0.8573
rChem3Rate 0.4112

Figure 8-36 shows snapshots of the growth of the optimised cantilever. The

maximum deflection was 1.695mm which represented a 9% improvement over the

best individual in the initial population (cantilever D). This cantilever had a value for

propHole around the middle of the range of values for this parameter and so a

reasonable number of holes were generated through the development.

propKillWithoutCheck similarly took a midrange value. The sensitivity to the

chemicals was very low and so the chemicals had very little influence over the

development of the shape.

A Morpho genetic Approach to Shape Optiinisation 	 241

Figure 8-36 	Snapshots of Growth of Optimised Cantilever D

8. 	A Morpho genetic Approach to Shape Optimisation 	 242

8.5.3 Arch

The load case for the arch was given in Section 8.4. The genetic algorithm was run

with the following settings.

Fitness -deflection
Constraint area <0.07 m2

Population size 15
Number of Crossovers per generation 3
Number of Mutations per generation 3
Number of Generations 20

Parameter Min Max
propHole 0.05 0.8
propKillWithoutCheck 0.01 0.5
rChemSens 0 0
rChem0Xpos 0 0
rChem0Ypos 0 0
rChemOStr 0 0
rChem0Rate 0 0
rChemlXpos 0 0
rChemlYpos 0 0
rChemlStr 0 0
rChemlRate 0 0
rChem2Xpos 0 0
rChem2Ypos 0 0
rChem2Str 0 0
rChem2Rate 0 0
rChem3Xpos 0 0
rChem3Ypos 0 0
rChem3Str 0 0
rChem3Rate 0 0

As can be seen the chemicals are not used for this problem. This was because the

problem was symmetric and it was found in initial tests that any use of chemicals

resulted in impaired performance. Consequently, there were only two parameters.

Even with two parameters a large variety of shapes could be produced.

8. 	A Morpho genetic Approach to Shape Optimisation 	 243

8.5.3.1 Initial Population

Below are shown some of the members of the initial population.

Arch A

Fitness -0.681
Deflection (mm) 0.681

Parameter Value
propHole 0.6002
propKillWithoutCheck 0.1998
rChemSens 0
rChemOXpos 0
rChem0Ypos 0
rChem0Str 0
rChem0Rate 0
rChemlXpos 0
rChemlYpos 0
rChemlStr 0
rChemlRate 0
rChem0Xpos 0
rChem0Ypos 0
rChem0Str 0
rChem0Rate 0
rChemlXpos 0
rChemlYpos 0
rChemlStr 0
rChemlRate 0

Figure 8-37 shows snapshots of the growth of arch A from the initial population.

This arch had a high value for propHole and so numerous holes were generated

through the development. propKill WithoutCheck took a moderate value and so it was

reasonably easy for the topology to change through the development. It can be seen

that an arch is developed as expected. The load is supported by two trusses up to the

arch.

A Morpho genetic Approach to Shape Optimisation 	 244

Figure 8-37 	Snapshots of Growth of Arch A

8. 	A Morpho genetic Approach to Shape Optimisation 	 245

Arch B

Fitness -0.000723
Deflection (mm) 0.723

Parameter Value
propHole 0.4781
propKillWithoutCheck 0.3576
rChemSens 0
rChemoXpos 0
rChemOYpos 0
rChem0Str 0
rChem0Rate 0
rChemlXpos 0
rChemlYpos 0
rChemlStr 0
rChemlRate 0
rChemoXpos 0
rChemoYpos 0
rChemOStr 0
rChem0Rate 0
rChemlXpos 0
rChemlYpos 0
rChemlStr 0
rChemlRate 0

Figure 8-38 shows snapshots of the growth of arch B from the initial population. This

arch had a mid-range value for propHole and a moderate number of holes were

generated through the development. propKillWithoutCheck also took a midrange

value and so it was reasonably easy for the topology to change through the

development. It can be seen that this shape is fairly similar to arch A, although the

angle of the trusses is wider.

8. 	A Morpizo genetic Approach to Shape Optimisation 	 246

Figure 8-38 	Snapshots of Growth of Arch B

8. 	A Morpho genetic Approach to Shape Optimisation 	 247

Arch C

Fitness -0.000835
Deflection (mm) 0.835

Parameter Value
propHole 0.7210
propKillWithoutCheck 0.3215
rChemSens 0
rChemOXpos 0
rChemoYpos 0
rChemOStr 0
rChemORate 0
rChemlXpos 0
rChemlYpos 0
rChemlStr 0
rChemlRate 0
rChemOXpos 0
rChemoYpos 0
rChemOStr 0
rChemORate 0
rChemlXpos 0
rChemlYpos 0
rChemlStr 0
rChemlRate 0

Figure 8-39 shows snapshots of the growth of arch C from the initial population. This

arch had a high value for propHole and so a large number of holes were generated

through the development. propKill WithoutCheck took a midrange value and so it was

reasonably easy for the topology to change through the development. It can be seen

that the height of the arch is similar to those of arches A and B. However the load is

supported by three trusses.

A Morpizo genetic Approach to Shape Optimisation 	 248

Figure 8-39 	Snapshots of Growth of Arch C

8. 	A Morpho genetic Approach to Shape Optimisation 	 249

Arch D

Fitness -0.00073
Deflection (nun) 0.73

Parameter Value
propHole 0.2764
propKillWithoutCheck 0.2311
rChemSens 0
rChemOXPos 0
rChemOYPos 0
rChem0Str 0
rChemORate 0
rChemlXPos 0
rChemlYPos 0
rChemlStr 0
rChem iRate 0
rChem0XPos 0
rChemOYPos 0
rChem0Str 0
rChem0Rate 0
rChemlXPos 0
rChemlYPos 0
rChemlStr 0
rChemlRate 0

Figure 8-40 shows snapshots of the growth of arch D from the initial population.

This arch had low value for propHole and few holes were generated. The shape was

primarily formed by moving existing boundaries inwards. This has resulted in a

shape with a higher arch and only one truss supporting the load.

8. 	A Morpho genetic Approach to Shape Optimisation 	 250

Figure 8-40 	Snapshots of Growth of Arch D

8. 	A Morpho genetic Approach to Shape Optimisation 	 251

8.5.3.2 Results of GA Optimisation

Below is shown the best arch found during the optimisation run.

Fitness -5 .5600e-004
Max Deflection (mm) 0.556
Max Von Mises Stress (x10 6 Nm2) 153
Mean Von Mises Stress (x106 Nm2) 84
Area (m) 0.069

Parameter Value
propHole 0.6005
propKillWithoutCheck 0.4546
rChemSens 0
rChem0XPos 0
rChem0YPos 0
rChem0Str 0
rChemORate 0
rChemlXPos 0
rChemlYPos 0
rChemlStr 0
rChem iRate 0
rChemOXPos 0
rChem0YPos 0
rChemOStr 0
rChem0Rate 0
rChemlXPos 0
rChemlYPos 0
rChemlStr 0
rChemlRate 0

Figure 8-41 shows snapshots of the growth of the optimised arch. This arch had a

fairly high value for propHole and so a large number of holes were generated

through the development. propKill WithoutCheck took a high value and so it was easy

for the topology to change through the development. It can be seen that this arch is

similar to arch C, but with a slightly higher arch and better formed trusses.

8. 	A Morphogenetic Approach to Shape Optimisation 	 252

Figure 8-41 	Snapshots of Growth of Optimised Arch

8. 	A Morpho genetic Approach to Shape Optimisation 	 253

8.6 Discussion

8.6.1 Discussion of Results

This morphogenic cellular approach to shape and topology optimisation worked well

for the three test cases. Shapes were produced which met the objectives (namely

minimising deflection whilst remaining within a constraint on the area). The shapes

qualitatively matched with what would be expected of optimal shapes for those load

cases and were qualitatively similar to those reported by others doing similar

optimisations [Chen et al. 2002] [Baumgartner & Mattheck 1994] [Mattheck et al.

1994] [Chen & Tsai 1993].

It was clear that the shape was primarily determined by the development stage. It was

interesting that the choice of the variables represented by the genes often had a

considerable effect on the shape early in the run, but later in the run the shapes

tended to converge back towards similar shapes. The variables did, though, modulate

the final shapes to a reasonable degree, whilst still keeping them 'sensible'. In other

words, the shapes were sufficiently different that the variation in parameters

produced functionally different shapes.

The method can be seen to be effective at taking a Chain model of the specification

of the design required (with loading points, forces, specified displacements at built in

points and constraints on area) and producing a cellular model which minimises the

required behaviour of displacement, as was discussed in Chapter 7. This was done

using a combination of search using the GA and by utilising information generated

about the shapes' performance through the development stage.

8.6.2 Issues

The main concern over this approach was in ensuring the quality of the mesh and

hence the accuracy of the analysis. The crude adaptive meshing routines that the cells

were given provided a reasonable quality of mesh in, most areas. There were,

8. 	A Morpho genetic Approach to Shape Optimisation 	 254

however, circumstances when the mesh looked inadequate. This happened when, for

instance, a section was becoming thinner. The cells would recognise that the stress

gradient over them was high and divide forming new cells, but, because the stress in

that area was low, they would die in the next time step. The cells could only divide

once during a time step and so were dying as quickly as they could be generated by

the cell division. This could lead to some truss sections only being one element thick

during some stages of the development and the results would therefore be somewhat

inaccurate. At the end of the development when the area constraint was achieved and

the stress threshold stopped increasing, the cell division did then increase the quality

of the mesh.

To some extent, these problems were caused by the desire, which was present from

the outset, to apply no 'top-down' control to the cells. One of the motivations of this

work was to see if shapes could be generated from the 'bottom-up', with as little

external interference as possible. It may be possible to periodically extract the

boundary and, possibly, fit this with a spline and then remesh the interior. This

would, however, go against the bottom-up philosophy of this approach. Another

possible solution to the mesh quality problems would be to increase mesh density

from the start of the run. This would increase the time taken to produce a shape.

Nevertheless, the shapes generated by the development stage did seem to be robust to

the inaccuracy of the analysis.

The area constraints were chosen for each of the problems so that feasible shapes

could be produced in which the Von Mises stress was around 100 MPa (giving a

factor of safety of about three for the steel used). The mean stress was indeed found

to be around the stress expected. The maximum stress, however, was often found to

be higher at around the yield stress (350 MPa) for the material. This occurred at the

loading points and was thought to be because the loads were applied at single nodes

and therefore caused locally high stresses. This could have been avoided by applying

the loads in a more realistic way.

8. 	A Morpho genetic Approach to Shape Optimisation 	 255

Another concern was the extent to which the genetic algorithm was able to evolve

the shapes. As mentioned earlier, the shapes tended to converge towards the end of

the development. In other words, the number of trusses and overall layout of the

shapes tended to be similar at the end of a run. However, small events towards the

start of the development stage, such as the death of a single cell, could have a large

impact later in the run on the shape generated. This was mainly by changing the

angle of trusses or where they attached to other sections. This was the main way in

which the variety in the shapes was generated. It was thought that this sensitivity to

small events might make the search space very noisy and difficult to optimise

(although a genetic algorithm would certainly be one of the better ways to optimise

in such a search space). Unfortunately, it was not possible to undertake any

systematic study of the search space or over genetic operators. This was due to both

time constraints on the work and because optimisation runs were very time

consuming. Nevertheless, it was possible to conclude that, in the runs given in the

results, the GA did improve the shapes generated.

The speed of the development stage was the main limitation of the approach as a

single shape development could take three or four minutes. This was because the

analysis had to be called frequently. It was therefore not possible to evolve more than

a few hundred shapes in a particular run. This was mitigated by the fact that good

quality solutions were available almost immediately (typically at least one of the first

few shapes generated would be good). Also, no user intervention was required and

the space of possible shapes that could be generated was very large and general.

Therefore, the aim stated in Chapter 1, that the use of search techniques be extended

further into the design process of generating form from function, was to some extent

achieved.

One of the ideas postulated in Section 7.5.1 was that the physical elements described

could be made autonomous and to some extent intelligent. In the work, some first

steps were made to investigate these ideas. By imparting the elements with some

simple behaviours it was possible, with little top-down control (the only top down

control was the setting of the stress-threshold), to generate efficient shapes.

8. 	A Morpho genetic Approach to Shape Optimisation 	 256

8.6.3 Further work

This was a preliminary study into whether this morphogenetic approach to shape

optimisation shows any promise. This early work does indeed indicate that this may

be an effective approach. There is clearly, though, need for further work before this

can be concluded with any certainty.

The role of evolution in manipulating the genotype, so that good shapes are grown,

needs a great deal more investigation. At present, due to time constraints, only a

limited study has been made of the EA. The design of operators and the choice of the

rules of development, along with what parameters to allow the EA to manipulate,

needs further investigation.

The mesh-based shape representation is very general, and can represent a great many

shapes with varying topologies. Despite this generality, the combination of the EA

and the development appears to perform well at searching through this space. Further

work into the variety of shapes that can be generated, both within a particular run,

and under various load cases, would be interesting.

One area where further work could be undertaken is to try other methods of

developing the shapes. At present, the development is heavily influenced by the

stress. Further work might include other biologically plausible mechanisms for

influencing cell behaviour such as cell signalling. This could well help the

evolvability of the representation.

At present, new cells can only be created through cell division within the current

boundaries of the shape. The primary motor for changing the shape is through cell

death. Further work could involve cells dividing out of the existing boundaries so

that 'swelling' can take place in high stress areas.

It was also thought that the addition of the 'chemicals' in the environment could be

made interactive. This could allow a designer to influence the retention of cells in

8. 	A Morpho genetic Approach to Shape Optimisation 	 257

certain areas without over-constraining the shapes generated. This would allow the

search to be influenced by the designer's intuitions.

Another area of further work would be to investigate how the approach scales when

finer meshes are used. The majority of the computation effort takes place in the finite

element analysis. The solution time for a linear elastic problem is approximately

proportional to nb2 where n is the number of elements and b is the semi-bandwidth

[Desai & Kundu 2001]. Calculating the semi-bandwidth is not necessarily easy,

however [Desai & Kundu 2001] give an example, with a two-dimensional problem,

where computational cost is proportional to n2 . The computational costs of cell

actions are likely to be proportional to the number of cells (although this is not

certain). The cell action costs are, though, likely to be dominated by the analysis

costs. With some small alterations to the current software, it may be possible to start

with a coarse mesh, with low computational costs, and increase the number of

elements considerably during the run. This would enable detailed alterations of the

shape at the end of the run, without incurring excessive runs for initial parts of the

growth.

For all the test cases tried so far, the effect of the removal of material is primarily

local. It would be interesting to investigate how the system could be adapted to

problems (such as the annulus problem from Chapter 4) where there is a rotational

load. In such cases, addition or removal of material at the rim, for example, would

have a considerable affect at the hub. For such problems, it may be helpful to mimic

cell differentiation, which is exploited by biological development. This would allow

cell behaviour to vary according to position. Cells at the hub, for instance, might

evolve to behave differently than those at the rim.

8. 	A Morphogenetic Approach to Shape Optimisation 	 258

8.7 Conclusions

This work used a genetic algorithm to evolve shapes for three load cases, a bicycle

frame, a cantilever beam and an arch. The approach was novel because it used a

development stage in which the shape was 'grown' so that the genes did not encode

the shape explicitly, but rather influenced the behaviour of a development stage of a

cellular shape representation. The development stage made use of information

generated by a finite element analysis to guide the generation of the shapes with the

genes modulating the exact execution of the process.

• This work did not attempt to produce a definitive algorithm for shape or

topological optimisation using morphogenesis. It did, however, establish that

such an approach is feasible and shows promise for shape optimisation.

The approach was able to use the information generated in the finite element

analysis on a shape's performance, in an effective way, to influence the shapes

generated by a morphogenetic evolutionary algorithm approach to shape

optimisation.

• The approach was able to make use of 'intelligent cells', where finite elements

are endowed with simple behaviours, to produce efficient shapes, with very little

'top-down' control.

9. 	Conclusions 	 259

9 Conclusions

The primary aim of this thesis was to determine whether shape optimisation could be

extended, such that it can be used to increase the automation of the process of shape

synthesis for engineering design.

In order to investigate this, there were three objectives:

(a) To determine whether evolutionary algorithms, along with novel shape

representations, which are able to represent a large generality of shapes, would

enable more automation of the process of determining form from function, and to

identify any obstacles that might be encountered with such an approach.

Investigations were undertaken into the use of evolutionary algorithms with general

shape representations. Firstly, an aerofoil optimisation was undertaken with a

parametric aerofoil representation and a Bézier representation. Fluid analysis was

done with a vortex panel method and a genetic algorithm optimiser was used. The

genetic algorithm worked well with the parametric representation, but failed with the

more general Bézier representation because the vortex panel method was unable to

accurately model many of the Bézier shapes.

Secondly, a voxel shape representation was used with a genetic algorithm for

structural optimisation. This was applied to two problems: the design of a beam

cross-section and the optimisation of the axisymmetric cross-section of a jet engine

annulus. Specialised genetic operators were developed for this representation. This

method proved reasonably successful. Two problems were encountered. There were

some difficulties in ensuring that the analysis of the shapes with the finite element

method was sufficiently accurate because of the 'stepped' boundary formed by

voxels. Problems were also encountered because the problem specification (in terms

of stress constraints at particular parts of the design), which was supplied by an

industrial collaborator, was not sufficiently rigorous. Because the voxel

9. 	Conclusions 	 260

representation was very general, it was able to find shapes which met the

specification as stated, but which would be undesirable in some other way.

Thirdly, genetic programming was used to generate CSG models. Initial tests were to

evolve towards a target three-dimensional body. This proved successful but

computationally expensive. Therefore, it was concluded that this method would have

not be suitable for the automatic translation of B-Rep solid models to CSG models,

an application for which this approach was hoped to be suited.

The conclusions drawn from these studies on general shape representations and

various evolutionary algorithms, were that evolutionary algorithms along with some

novel shape representations, did show some promise for allowing a designer to use

shape optimisation to search for shape designs from a large, general set of possible

shapes. However, a number of issues were identified which acted as obstacles to this.

Briefly, these were the need to establish an effective shape representation, the need to

be able to analyse the all of the shapes in the search space with sufficient accuracy,

and the ability to search through these shapes effectively. It was argued that some

steps could be made to addressing these issues if a common representation for

geometry representation and analysis could be established. This would also offer

opportunities to develop algorithms that could make use of the information on the

shapes' current physical behaviour in order to modify the shape, and thus search the

space of possible shapes more effectively.

9. 	Conclusions 	 261

To identify a computational framework which could provide an integrated

representation of both component geometry and physical behaviour.

Chain models, based on chains and cells from algebraic topology, were put forward

as a possible common representation for both geometry and physical behaviour. With

the use of Chain models, shape optimisation could be reformulated as a systematic

transformation of Chain models specifying required function into Chain models

representing both geometry and physical behaviour.

To determine whether a morpho genetic evolutionary algorithm, using the

identified integrated representation of geometry and physical behaviour, shows

any potential to increase the automation of the process of shape synthesis for

engineering design.

A novel shape optimisation technique was developed using the Chain model

framework. This approach used an evolutionary algorithm along with a

morphogenetic stage in which a cellular model of the shape was 'grown'. The cells

were implemented in the Swarm agent-based modelling language and were free to

behave independently based on the stress on them and their genes, which were

evolved by the evolutionary algorithm. The generation of the shape could in this way

make use of all of the information generated in the finite element analysis to

influence the shape produced. Shapes were grown for three test cases: a bicycle

frame, a cantilever beam and an arch. The approach proved successful and generated

good quality shapes without intervention by the user to set up shape

parametensation. Therefore, it was concluded that is a promising method extending

the use of computers to automatically synthesise geometry for engineering design.

9. 	Conclusions 	 262

In conclusion, the argument presented by this thesis, was that a framework for shape

optimisation with a common representation for both geometry and physical

behaviour would allow the development of novel and efficient new algorithms better

suited to the semi-automatic generation of the geometry for a component given a

certain desired behaviour. This was shown by investigations into aerodynamic and

structural optimisation, which demonstrated a number of difficulties that could be

alleviated by use of such a common representation. Chain models were identified as

an appropriate representation. Finally, a morphogenetic approach to shape

optimisation was developed, based on this representation, which showed the ability

to search effectively through a large set of possible shapes, to produce high quality

shapes for a number of structural shape optimisation problems.

References 	 263

References

[Abbot et al. 1945] Abbott, I.H.; Von Doenhoff, A.E & Stivers, L.Jr., (1945),

Summary of Airfoil Data, NACA Report 824 NACA-ACR-L5C05 NACA-WR-L-

560.

[Acton 1970] Acton, F.S., (1970), Numerical Methods That Work, Mathematical

Association of America, Washington, DC, 1990 corrected edition.

[Adeli & Cheng 1993] Adeli, H. & Cheng, N., (1993), 'Integrated Genetic

Algorithms for Optimisation of Space Structures', Journal of Aerospace

Engineering, vol. 6(4), pp. 315-328.

[Adeli & Cheng 1994a] Adeli, H. & Cheng, N., (1994), 'Augmented Lagrangian

Genetic Algorithm for Structural Optimization', Journal of Aerospace

Engineering, vol. 7(1), pp. 104-118.

[Adeli & Cheng 1994b] Adeli, H. & Cheng, N., (1994), 'Concurrent Genetic

Algorithms for Optimization of Large Structures', Journal of Aerospace

Engineering, vol. 7(3), pp.276-296.

[Agarwal 1994] Agarwal, P., (1994), 'The Cell Programming Language', Artificial

Life, vol. 29(1), pp. 37-77.

[Agarwal 1995] Agarwal, P., (1995), 'Cellular Segregation and Engulfment

Simulations using the Cell Programming Language', Journal of Theoretical

Biology, vol. 176(1), September 1995, pp. 79-89.

[Agnelli et al. 2002] Agnelli, D.; Bollini, A. & Lombardi, L., (2002), 'Image

Classification: an Evolutionary Approach', Pattern Recognition Letters, vol. 23(1-

3), January 2002, pp. 303-309.

References
	 264

[Alander 1994] Alander, J.T., (1994), Indexed Bibliography of Genetic Algorithms

in Computer Aided Design, Report 94-1-CAD, University of Vaasa, Department of

Information Technology and Production Economics, ftp://ftp.uwasa.fi/cs/report94-1.

[Anderson & Venkatakrishnan 1999] Anderson, W.K. & Venkatakrishnan, V.,

(1999), 'Aerodynamic Design Optimization on Unstructured Grids with a

Continuous Adjoint Formulation', Computers & Fluids, vol. 28, pp. 443-480.

[Angeline 1995] Angeline, P.J. (1995), 'Morphogenic Evolutionary

Computations: Introduction, Issues and Examples', in Proc. of Evolutionary

Programming 1V The Fourth Annual Conference on Evolutionary Programming,

McDonnell, J. R.; Reynolds, R.G. & Fogel, D.G. (eds.), pp. 387-401, MIT Press,

ISBN 0-262-13317-2.

[Angeline & Pollack 1992] Angeline, P.J. & Pollack, J.B., (1992), 'Evolutionary

Induction of Subroutines', in Proc. of the 14th Annual Cognitive Science

Conference, pp. 236-241.

[Annicchiarico & Cerrolaza 1998] Annicchiarico, W. & Cerrolaza, M., (1998),

'Optimization of Finite Element Bidimensional Models: an Approach Based on

Genetic Algorithms', Finite Elements in Analysis and Design, vol. 29, pp. 231-257.

[Annicchiarico & Cerrolaza 2001] Annicchiarico, W. & Cerrolaza, M., (2001),

'Structural Shape Optimization 3D Finite-Element Models Based on Genetic

Algorithms and Geometric Modeling', Finite Elements in Analysis and Design,

vol. 37, pp. 403-415.

[Ariana & Ta'asanb 1999] Ariana, E. & Ta'asanb, S., (1999), 'Analysis of the

Hessian for Aerodynamic Optimization: Inviscid Flow', Computers & Fluids, vol.

28, pp. 853-877.

References 	 - 	 265

[Back 1996] Back, T., (1996), Evolutionary Algorithms in Theory and Practice,

Oxford University Press, New York.

[Back et al. 1991] Back, T., Hoffmeister, F. & Schwefel, H.-P., (1991), 'A Survey of

Evolution Strategies', in Proc. of the 4th International Conference on Genetic

Algorithms, Belew, R.K. & Booker, L.B. (eds.), Morgan Kaufmann Publishers Inc.,

San Francisco.

[Bangtsson et al. 2003] Bangtsson, E.; Noreland, D. & Berggren, M., 'Shape

Optimization of an Acoustic Horn', Computer Methods in Applied Mechanics and

Engineering, vol. 192, PP. 1533-157 1.

[Banichuk et al. 1995] Banichuk, N.V.; Barthold, F.J.; Falk, A. & Stein, E., (1995),

'Mesh Refinement for Shape Optimization', Structural Optimization, vol. 9, pp.

46-51, Springer-Verlag.

[Barton 20021 Barton, A.C., (2002), Integrating Manufacturing Issues into

Structural Optimization, Ph.D. Thesis, University of Sydney, Sydney, Australia.

[Baumgartner & Mattheck 1994] Baumgartner, A. & Mattheck, C., (1994), 'A New

Design of a Bicycle Frame: An Example for an Effective Layout Procedure

Based on F.E.-Simulation of Biological Growth', Advances in Design Automation,

vol. 69(2), ASMIE.

[Beck & Parmee 1999] Beck, M.A. & Parmee, I.C., (1999), 'Design Exploration:

Extending the Bounds of the Search Space', in Proc. of IEEE Congress on

Evolutionary Computation, Washington D.C., PP. 519-526.

[Bentley 1996] Bentley, P.J., (1996), Generic Evolutionary Design of Solid Objects

using a Genetic Algorithm, Ph.D. Thesis, University of Huddersfield, Huddersfield,

LWA

References 	 266

[Bentley 19991 Bentley, P.J., (ed.), (1999), Evolutionary Design by Computers,

Morgan Kaufmann Publishers Inc., San Francisco, CA.

[Bentley 2000] Bentley, P.J., (2000), 'Exploring Component-Based

Representations - The Secret of Creativity by Evolution? ',in Proc. of the Fourth

International Conference on Adaptive Computing in Design and Manufacture

(ACDM 2000), April 26th - 28th, 2000, University of Plymouth, UK.

[Bentley & Come 2001a] Bentley, P.J. & Come, D.W., (2001), 'An Introduction to

Creative Evolutionary Systems', in Creative Evolutionary Systems, Bentley, P.J. &

Come, D.W. (eds.), Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 1-75.

[Bentley & Come 2001b] Bentley, P.J. & Come, D.W., (2001), Creative

Evolutionary Systems, Morgan Kaufmann Publishers Inc., San Francisco, CA.

[Bentley & Kumar 1999] Bentley, P.J. & Kumar, 5., (1999), 'Three Ways to Grow

Designs: A Comparison of Embryogenies for an Evolutionary Design Problem',

in Genetic and Evolutionary Computation Conference (GECCO '99), July 14-17,

1999, Orlando, Florida USA, pp. 35-43, RN/99/2.

[Bentley & Wakefield 1996] Bentley, P.J. & Wakefield, J.P., (1996), 'The Evolution

of Solid Object Designs using Genetic Algorithms', in Modern Heuristic Search

Methods, Rayward-Smith, V. (ed.), Chapter 12, John Wiley & Sons Inc., pp. 199-

215.

[Bhavikatti & Ramakrishnan 1980] Bhavikatti, S.S. & Ramakrishnan, C.V., (1980),

'Optimum Shape Design of Rotating Disks', Computational Structures, vol. 11,

pp. 397-401.

[Boden 199 1] Boden, M.A., (1991), The Creative Mind; Myths And Mechanisms,

Basic Books, New York.

References
	 267

[Boden 1995] Boden, M.A., (1995), 'Modelling Creativity: Reply to Reviewers',

Artificial Intelligence, vol. 79(1), November 1995, pp. 161-182.

[Boden 1998] Boden, M.A., (1998), 'Creativity and Artificial Intelligence',

Artificial Intelligence, vol. 103(1-2), August 1998, pp. 347-356.

[Booth 1997] Booth, G. (1997), 'Gecko: A Continuous 2D World for Ecological

Modeling', Artificial Life, vol. 3, pp. 147-163.

[Botkin et al. 2002] Botkin, M.E; Wang, H-P.; Kim N.H. & Choi, K.K., (2002),

'Shape Optimization of Two-Dimensional Automotive Components using a

Meshfree Method', 9th AIAAJISSMO Symposium on Multidisciplinary Analysis and

Optimization, 4-6 September 2002, Atlanta, Georgia, AIAA 2002-5541.

[Bremicker et al. 19911 Bremicker M.; Chirehdast, M.; Kikuchi, N. & Papalambros,

P.Y., (1991), 'Integrated Topology and Shape Optimization in Structural

Design', Mechanical Structures and Machines, vol. 19(4), pp. 551-587.

[Brent 1973] Brent, R., (1973), Algorithms for Minimisation without Derivatives,

Prentice-Hall.

[Broughton et al. 1999] Broughton, T.; Coates, P. & Jackson, H., (1999), 'Exploring

Three-Dimensional Design Worlds using Lindenmeyer Systems and Genetic

Programming', in Evolutionary Design by Computers, Bentley, P. (ed.), Kaufmann.

[Bulman et al. 2001] Bulman, S.; Sienz, J. & Hinton, E., (2001), 'Comparisons

Between Algorithms for Structural Topology Optimization using a Series of

Benchmark Studies', Computers & Structures, vol. 79(12), May 2001, pp. 1203-

1218.

References

[Burgreen & Baysal 1994] Burgreen, G.W.& Baysal, 0., (1994), 'Aerodynamic

Shape Optimization Using Preconditioned Conjugate Gradient Methods', AMA

Journal, vol. 32(11), Nov. 1994, PP. 2145-2152.

[Burgreen et al. 1994] Burgreen, G.W.; Baysal, 0. & Eleshaky, M.E., (1994),

'Improving the Efficiency of Aerodynamic Shape Optimization', AJAA Journal,

vol. 32(1), pp. 69-76.

[Burguburu & le Pape 2003] Burguburu, S. & le Pape, A., (2003), 'Improved

Aerodynamic Design of Turbomachinery Bladings by Numerical Optimization',

Aerospace Science and Technology, in press.

[Burkhart 1994] Burkhart, R., (1994), 'The Swarm Multi-Agent Simulation

System', (OOPSLA) 1994 Workshop on 'The Object Engine', 7th September 1994.

[Canales et al. 1994] Canales, J.; Tárrago; J.A. & Hernández, A., (1994), 'An

Adaptive Mesh Refinement Procedure for Shape Optimal Design', Advances in

Engineering Software, vol. 18(2), Pp. 131-145.

[Cantu-Paz 1997] Cantu-Paz, E., (1997), A Survey on Parallel Genetic Algorithms,

ILLIGAL report 97003, University of Illinois at Urbana-Champain.

[Cappello & Mancuso 20031 Cappello, F. & Mancuso, A., (2003), 'A Genetic

Algorithm for Combined Topology and Shape Optimisations', Computer-Aided

Design, in press.

[Cartwright & Harris 1993] Cartwright, H.M. & Harris, S.P., (1993), 'The

Application of the Genetic Algorithm to Two-Dimensional Strings: The Source

Apportionment Problem', in Proc. of the Fifth International Conference on

Genetic Algorithms, Forrest, S. (ed.), San Mateo, Morgari Kaufmann.

References
	 269

[Cerrolaza et al. 20001 Cerrolaza, M.; Annicchiarico, W. & Martinez, M., (2000),

'Optimization of 2D Boundary Element Models Using 3-splines and Genetic

Algorithms', Engineering Analysis with Boundary Elements, vol. 24(5), May 2000,

pp. 427-440.

[Chang & Tang 2001] Chang, K.-H. & Tang, P.-S., (2001), 'Integration of Design

and Manufacturing for Structural Shape Optimization', Advances in Engineering

Software, vol. 32(7), July 2001, PP. 555-567.

[Chapman et al. 19941 Chapman, C.D.; Saitou, K. & Jakiela, M.J., (1994), 'Genetic

Algorithms as an Approach to Configuration and Topology Design', Journal of

Mechanical Design, vol. 116, pp. 1005-1012, ASMIE.

[Chen 2001] Chen, S-Y., (2001), 'An Approach for Impact Structure

Optimization using the Robust Genetic Algorithm', Finite Elements in Analysis

and Design, vol. 37, pp. 431-446.

[Chen et al. 2002] Chen, Y.-M.; Bhaskar, A. & Keane, A. J., 'A Parallel Nodal-

based Evolutionary Structural Optimization Algorithm', Structural &

Multidisciplinary Optimization, vol. 23, pp. 241-251.

[Chen & Tsai 1993] Chen, J.L. & Tsai, W.C., (1993), 'Shape Optimization by

Using Simulated Biological Growth Approaches', AIAA Journal, vol. 31(11), pp.

2143-2147.

[Coello 1999] Coello, C.A.C., (1999), 'Comprehensive Survey of Evolutionary-

Based Multiobjective Optimization Techniques', Knowledge and Information

Systems, vol. 1(3), pp. 269-308.

[Coello & Christiansen 2000] Coello, C.A. & Christiansen, A.D., (2000),

'Multiobjective Optimization of Trusses using Genetic Algorithms', Computers

& Structures, vol. 75(6), May 2000, pp. 647-660.

References
	 270

[Corney 1997] Corney, J., (1997), 3D Modeling with the ACIS Kernel and Toolkit,

Wiley, ISBN 0471965359.

[Corney & Lim 2001] Corney, J. & Lim, T., (2001), 3D Modeling with ACS, Saxe-

Coburg Publications, ISBN 1-874672-14-8.

[Cramer 1985] Cramer, N.L., (1985), 'A Representation for the Adaptive

Generation of Simple Sequential Programs', in Proc. of an International

Conference on Genetic Algorithms and the Applications, Grefenstette, J.J. (ed.),

CMU.

[Cvetkovic 2000] Cvetkovic, D., (2000), Evolutionary Multi-Objective Decision

Support Systems for Conceptual Design, Ph.D. Thesis, School of Computing,

University of Plymouth.

[Cvetkovic & Parmee 1999a] Cvetkovic, D. & Parmee, I.C., (1999), 'Genetic

Algorithm-based Multi-objective Optimisation and Conceptual Engineering

Design', in Proc. Congress on Evolutionary Computation - CEC99, Washington

D.C., USA, 1999, vol. 1, pp. 29-36, IEEE.

[Cvetkovic & Parmee 1999b] Cvetkovic, D. & Parmee, I.C., (1999), 'Genetic

Algorithms based Systems for Conceptual Engineering Design', in Proc. of the

12th International Conference on Engineering Design ICED'99, Lindemann, U.;

Birkhofer, H.; Meerkamm, H. & Vajna, S. (eds.), MUnchen, Germany, August 1999,

TU MUnchen, vol. 2, pp. 1035-1038.

[Davis 1991] Davis, L. (ed.), (1991), Handbook of Genetic Algorithms, Van

Nostrand Reinhold, New York.

[Dawkins 1986] Dawkins, R., (1986), The Blind Watchmaker, Penguin, London.

References 	 271

[Dawkins 1987] Dawkins, R., (1989). 'The Evolution of Evolvability', in Proc.

Artificial Life IV, Langton, C. (ed.), Addison-Wesley.

[Deb 1997] Deb, K., (1997), 'GeneAS: a Robust Optimal Design Technique for

Mechanical Component Design', in Evolutionary Algorithms in Engineering

Applications, Springer, Berlin, pp. 497-514.

[Deb & Goyal 1997] Deb, K. & Goyal, M, (1997), 'Optimizing Engineering

Designs using a Combined Genetic Search', in Proc. Seventh International

Conference on Genetic Algorithms, Back, T. (ed.), pp. 52 1-528.

[Deb & Goyal 1998] Deb, K. & Goyal, M, (1998), 'A Robust Optimization

Procedure for Mechanical Component Design Based on Genetic Adaptive

Search', Journal of Mechanical Design, vol. 120(2), pp. 162-164, ASME.

[Desai & Kundu 2001] Desai, C. S. & Kundu, T., (2001), Introductory Finite

Element Method, CRC Press, Boca Raton, FL, ISBN 0849302439.

[Dibakar & Mruthyunjaya 1999] Dibakar, S. & Mruthyunjaya, T.S., (1999),

'Synthesis of Workspaces of Planar Manipulators with Arbitrary Topology

using Shape Representation and Simulated Annealing', Mechanism and Machine

Theory, vol. 34(3), April 1999, pp. 391-420.

[Doorly 1995] Doorly, D. J., (1995), 'Parallel Genetic Algorithms for

Optimization in CFD', in Genetic Algorithms in Engineering and Computer

Science, Winter, G.; Périaux, J.; Galan M. & Cuesta, P. (eds.), Wiley.

[Doorly & Peiró 1997] Doorly, D.J. & Peiró, J., (1997), 'Supervised Parallel

Genetic Algorithms in Aerodynamic Optimisation', in Proc. 13th AMA CFD

Conference, June 30-July 2, Snowmass Co., U.S.A., AIAA 97-1852.

References
	 272

[Doorly et al. 1996a] Doorly, D.J.; Peiró, J. & Oesterle, J-P., (1996), 'Optimisation

of Aerodynamic and Coupled Aerodynamic-Structural Design Using Parallel

Genetic Algorithms', in Proc. 6th AIAAJNASA/USAF Multidisciplinary Analysis &

Optimization Symposium, September 4-6, Bellevue, Seattle, WA, U.S.A., AIAA 96-

4027.

[Doorly et al. 1996b] Doorly, D.J.; Peiró, J.; Kuan, T. & Oesterle, J-P., (1996),

'Optimisation of Airfoils using Parallel Genetic Algorithms', in Proc. of the 15th

AIAA International Conference on Numerical Methods in Fluid Mechanics, June 24-

28, Monterey, CA, U.S.A..

[Duvigneau & Visonneau 20011 Duvigneau, R. & Visonneau M., (2001), Shape

Optimization of Incompressible and Turbulent Flows using the Simplex Method,

AIAA 2001-2533, Sept. 2001, Anaheim, CA.

[Eby et al. 1999a] Eby, D.; Averill, R.C.; Goodman, E.D. & Punch, W.F., (1999),

'The Optimization of Flywheels Using an Injection Island Genetic Algorithm',

in Evolutionary Design by Computers, Bentley, P. (ed.), Morgan Kaufmann, San

Francisco, 1999, pp. 167-190.

[Eby et al. 1999b] Eby, D.; Averill, R.C.; Punch, W.F. & Goodman, E.D., (1999),

'Optimal Design of Flywheels using an Injection Island Genetic Algorithm',

Artificial Intelligence for Engineering Design Analysis and Manufacturing, vol.

13(5), November 1999, pp. 327-340.

[Eggenberger 1996] Eggenberger, P., (1996), 'Cell Interactions as a Control Tool

of Developmental Processes for Evolutionary Robotics', From Animals to

Animats 4, Maes, P. et al. (eds.), Cambridge, MA, MIT Press.

[Egli & Stewart 2000] Egli, R. & Stewart, N.F., (2000), 'A Framework for System

Specification using Chains on Cell Complexes', Computer-Aided Design, vol.

32(7), June 2000, pp. 447-459.

References 	 273

[El-Beltagy & Keane 2001] El-Beltagy, M.A. & Keane, A.J., (2001), 'Evolutionary

Optimization for Computationally Expensive Problems using Gaussian

Processes', in Proc. International Conference on Artificial Intelligence IC-AI'2001,

Arabnia, H., (ed.), pp. 708-714, CSREA Press, Las Vegas.

[Eleshaky & Baysal 1991] Eleshaky, M.E. & Baysal, 0., (1991), 'Airfoil Shape

Optimization using Sensitivity Analysis on Viscous Flow Equations',

Multidisciplinary Applications of Computational Fluid Dynamics, FED-vol. 129,

ASIME.

[Ellman et al. 1993] Eliman, T.; Keane, J. & Schwabacher, M., (1993), 'Intelligent

Model Selection for Hillclimbing Search in Computer-Aided Design', in Proc. of

the Eleventh National Conference on Artificial Intelligence, Washington, D.C.

[Ferziger & Peric 1996] Ferziger, J.H. & Peric, M., (1996), Computational methods

for Fluid Dynamics, Springer.

[Filipiak 1996] Filipiak, M. (1996), Technology Watch Report on Mesh Generation,

Edinburgh Parallel Computing Centre, University of Edinburgh, UK.

[Fillipone 1995] Fillipone, A., (1995), 'Airfoil Inverse Design and Optimization

by Means of Viscous-Inviscid Techniques', Journal of Wind Engineering and

Industrial Aerodynamics, vol. 56, pp. 123-136.

[Fisher 1995] Fisher, K.A., (1995), 'The Application of Genetic Algorithms to

Optimising the Design of an Engine Block for Low Noise', in Proc. of the First

lEE/IEEE International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications, 12-14 September 1995, pp. 18-22, Conference

Publication No. 414, WE.

References
	 274

[Fleischer 1995] Fleischer, K., (1995), A Multiple-Mechanism Developmental

Model for Defining Self-Organizing Geometric Structures, Ph.D. Thesis, California

Institute of Technology.

[Fletcher & Reeves 19641 Fletcher, R. & Reeves, C., (1964), 'Function

Minimisation by Conjugate Gradients', The Computer Journal, vol. 7, pp. 163—

[Fogel 1995] Fogel D.B., (1995), Evolutionary Computation: Toward a New

Philosophy of Machine intelligence, IEEE Press, Piscataway, NJ.

[Fogel et al. 1966] Fogel, L.J., Owens, A.J. & Walsh, M.J., (1966), Artificial

Intelligence through Simulated Evolution, Wiley, New York.

[Fugsland & Madsen 1999] Fugsland, P. & Madsen, H.A., (1999), 'Optimization

Method for Wind Turbine Rotors', Journal of Wind Engineering and Industrial

Aerodynamics, vol. 80, pp. 191-206.

[Funes & Pollack 1999] Furies, P. & Pollack, J., (1999), 'The Evolution of

Buildable Objects', in Evolutionary Design by Computers, Bentley, P. (ed.),

Morgan Kaufmann, San Francisco.

[Gage et al. 1995] Gage, P.; Kroo, I. & Sobieski, I., (1995), 'A Variable-

Complexity Genetic Algorithm for Topological Design', AMA Journal, vol.

33(11), pp. 2212-2217.

[de Garis 1994] de Garis, H., (1994), 'An Artificial Brain', New Generation

Computing, vol. 12(2), Springer Verlag.

[Gelsey et al. 1998] Gelsey, A., Schwabacher, M. & Smith, D., (1998), 'Using

Modeling Knowledge to Guide Design Space Search', Artificial Intelligence, vol.

101 (1-2), pp. 35-62.

References 	 275

[Gen & Cheng 1997] Gen, M. & Cheng, R., (1997), Genetic Algorithms and

Engineering Design, Wiley Series in Engineering and Automation, John Wiley &

Sons Inc., New York.

[Gere & Timoshenko 1984] Gere, J.M. & Timoshenko, S.P., (1984), Mechanics of

Materials, 2' Edition, Brooks/Cole Engineering Division.

[Gero 1990] Gero, J.S., (1990), 'Design Prototypes: a Knowledge Representation

Schema for Design', Al Magazine, vol. 11(4), pp. 26-36.

[Gero 19961 Gero, J.S., (1996), 'Computers and Creative Design', The Global

Design Studio, Tan, M. & Teh, R. (eds.), National University of Singapore, pp. 11-

19.

[Gero 1998] Gero, J. S., (1998), 'Adaptive Systems in Designing: New Analogies

from Genetics and Developmental Biology', in Adaptive Computing in Design and

Manufacture, Parmee, I. (ed.), Springer, London, pp. 3-12.

[Gero & Kazakov 1996] Gero, J.S. & Kazakov, V., (1996), 'Evolving Building

Blocks for Design using Genetic Engineering: A Formal Approach', in Advances

in Formal Design Methods for CAD, Gero, J.S. (ed.), Chapman and Hall, London,

pp. 31-50.

[Gero & Kazakov 2000] Gero, J.S. & Kazakov, V., (2000), 'Adaptive Enlargement

of State Spaces in Evolutionary Designing', Artificial Intelligence for Engineering

Design Analysis and Manufacturing, vol. 14(1), pp. 31-3 8.

[Giannakoglou 2002] Giannakoglou, K.C., (2002), 'Design of Optimal

Aerodynamic Shapes using Stochastic Optimization Methods and

Computational Intelligence', Progress in Aerospace Sciences, vol. 38, pp. 43-76.

References
	 276

[Gilbert 19941 Gilbert, S.F., (1994), Developmental Biology, Sineauer Associates

Inc., ISBN 0-87893-249-6.

[Goldberg 1989] Goldberg,. D.E., (1989), Genetic Algorithms in Search,

Optimization and Machine Learning, Addison-Wesley, New York, ISBN 0-201-

15767-5.

[Goldberg 1999] Goldberg, D.E., (1999), 'The Race, the Hurdle, and the Sweet

Spot: Lessons from Genetic Algorithms For the Automation of Design

Innovation and Creativity', in Evolutionary Design by Computers, Bentley, P.

(ed.), Morgan Kaufmann, San Francisco.

[Grindeanu et al. 2002] Gnndeanu, I.; Kim, N.H.; Choi, K.K. & Chen, J.S., (2002),

'CAD-Based Shape Optimization Using a Meshfree Method', Concurrent

Engineering: Research and Applications, vol. 10, pp. 55-66.

[Haase 19951 Haase, K.B., (1995), 'Too Many Ideas, Just One Word: a Review of

Margaret Boden's the Creative Mind: Myths and Mechanisms: (Basic Books,

New York, 1991); 303 pages', Artificial Intelligence, vol. 79(1), November 1995,

[Haftka & Grandhi 1986] Haftka, R.T. & Grandhi, R.V., (1986), 'Structural Shape

Optimization - A Survey', Journal of Computer Methods in Applied Mechanics and

Engineering, vol. 57(1), August 1986, pp. 91-106.

[Hajela 1998] Hajela, P., (1998), Implications of Artificial Life Simulations in

Structural Analysis and Design, invited paper at the AIAAIASMEIASCE/AHS

SDM meeting, April 1998, Long Beach, California, AIAA 98-1775.

[Hajela & Kim 20011 Hajela, P. & Kim, B., 'Research Paper: On the Use of

Energy Minimization for CA Based Analysis in Elasticity', Structural and

Multidisciplinary Optimisation, vol. 23(1), pp. 24-33.

References
	 277

[Hasançebi & Erbatur 2002] Hasancebi, 0. & Erbatur, F., (2002), 'Layout

Optimisation of Trusses using Simulated Annealing', Advances in Engineering

Software, vol. 33(7-10), July-October 2002, pp. 681-696.

[Hearn & Baker 1994] Hearn, D. & Baker, M.P., (1994), Computer Graphics,

Prentice Hall, ISBN 0-13-159690-X.

[Hicks et al. 1974] Hicks, R.M.; Murman, E.M. & Vanderplaats, G.N., (1974), An

Assessment of Airfoil Design by Numerical Optimization, NASA TM X-3092.

[Hoffmann & Kim 2001] Hoffmann, C. M. & Kim, K.-J., (2001), 'Towards Valid

Parametric CAD Models', Computer-Aided Design, vol. 33(1), January 2001, pp.

[Holland 1975] Holland, J.H., (1975), Adaptation in Natural and Artificial Systems,

The University of Michigan Press, Ann Arbor.

[Hong & Bhamidimarri 2003] Hong, Y.-S. & Bhamidimarn, R., (2003),

'Evolutionary Self-organising Modelling of a Municipal Wastewater Treatment

Plant', Water Research, vol. 37(6), March 2003, pp. 1199-1212.

[Hooke & Jeeves 1961] Hooke, R. & Jeeves, T., (1961), 'Direct Search Solutions to

Numerical Problems', Journal of the Association of Computing Machinery, vol. 8,

pp. 212-229.

[Hornby 20031 Hornby, G.S., (2003), Generative Representations for Evolutionary

Design Automation, Ph.D. Dissertation, Brandeis University, Dept. of Computer

Science.

[Hornby & Pollack 2001] Hornby, G.S. & Pollack, J.B., (2001), 'The Advantages of

Generative Grammatical Encodings for Physical Design', in Proc. 2001 Congress

on Evolutionary Computation CEC2001.

References 	 278

[Hsu 19941 Hsu, Y-H, (1994), 'A Review of Structural Shape Optimization',

Computers in Industry, vol. 25(1), pp. 3-13.

[Hsu & Liu 2000] Hsu, W. & Liu, B., (2000), 'Conceptual Design: Issues and

Challenges', Computer-Aided Design, vol. 32(14), December 2000, pp. 849-850.

[Hsu & Worm 1998] Hsu, W. & Woon, I.M.Y., (1998), 'Current Research in the

Conceptual Design of Mechanical Products', Computer-Aided Design, vol. 30(5),

April 1998, pp. 377-389.

[Hu & Goodman 2002] Hu, J. & Goodman, E.D., (2002), 'Hierarchical Fair

Competition Model for Parallel Evolutionary Algorithms', in Proc. Congress on

Evolutionary Computation CEC 2002, IEEE World Congress on Computational

Intelligence, Honolulu, Hawaii, May 2002.

[Hu et al. 2003] Hu, J.; Goodman, E. D.; Seo, K.; Fan, Z. & Rosenberg, R. C.,

(2003), 'HFC: A Continuing EA Framework for Scalable Evolutionary

Synthesis', in Proc. of the 2003 AAAJ Spring Symposium - Computational Synthesis.

From Basic Building Blocks to High Level Functionality, March 24-26 2003,

Stanford, California, pp. 106-113.

[Husbands et al. 1996] Husbands, P.; Jeremy, G.; Mcllh agga, M. & Ives, R., (1996),

'Two Applications of Genetic Algorithms to Component Design', Selected Papers:

AISB Workshop on Evolutionary Computing, Fogarty, T.C. (ed.), Lecture Notes in

Computer Science, No. 1143, pp. 50-61, Springer Verlag.

[Jakobi 1995] Jakobi, N., (1995), Harnessing Morphogenesis, Presented at The

International Conference on Information Processing in Cells and Tissues, Liverpool,

UK.

References
	 279

[Jakobi 1996] Jakobi, N., (1996), 'Encoding Scheme Issues for Open-Ended

Artificial Evolution', Parallel Problem Solving from Nature (PPSN) IV, Voigt, H-

M; Ebeling, W.; Rechenberg, I. & Schwefel, H-P (eds.), pp. 52-61, Springer, Berlin.

[Jameson et al. 19981 Jameson, A.; Alonso, J.J.; Reuther, J.J.; Martinelli, L. &

Vassberg, J. C., (1998), Aerodynamic Shape Optimization Techniques Based On

Control Theory, AIAA 98-2538.

[Jameson 2001] Jameson, A., (2001), 'A Perspective on Computational

Algorithms for Aerodynamic Analysis and Design', Progress in Aerospace

Sciences, vol. 37(2), February 2001, pp. 197-243.

[Janikow & Michalewicz 1991] Janikow, C. & Michalewicz, Z., (1991), 'An

Experiment Comparison of Binary and Floating Point Representations in

Genetic Algorithms', in Proc. 4tht International Conference of Genetic Algorithms,

Belew, R.K. & Booker, L.B. (eds.), Morgan Kaufmann Publishers, San Mateo, CA.

[Jenkins 1992] Jenkins, W.M., (1992), 'Plane Frame Optimum Design

Environment Based on Genetic Algorithm', Journal of Structural Engineering,

vol. 118(11), pp. 3103-3112, ASCE.

[Jenkins 1997] Jenkins, W.M., (1997), 'On the Application of Natural Algorithms

to Structural Design Optimization', Engineering Structures, vol. 19(4), pp.302-

308.

[Johnson 1998] Johnson, P., (1998), Adaptive Agents versus Rational Actors: Social

Science Implications, Annual Meeting of the American Political Science

Association, 3-6 September 1998, Marriott Copley Place and Sheraton Boston Hotel

and TowerBoston.

References
	 280

[Joines & Houck 19941 Joines, J. & Houck, C., (1994), 'on the Use of Non-

Stationary Penalty Functions to Solve Constrained Optimization Problems with

Genetic Algorithms', in Proc. IEEE International Symposium Evolutionary

Computation, Orlando, Fl, pp. 579-584.

[Kasper 19931 Kasper, M., (1993), 'Optimization of FEM Models by Stochastic

Methods', International Journal of Applied Electromagnetics in Materials, vol. 4,

pp. 107-113.

[Keane 1994] Keane, A.J., (1994), 'Experiences with Optimizers in Structural

Design', in Proc. of the Conference on Adaptive Computing in Engineering Design

and Control 94, Parmee, I.C. (ed.), Plymouth, U.K., Sept. 1994, pp. 14-27.

[Kirkpatrick et al. 1983] Kirkpatrick, S.; Gelatt, C.D. Jr. & Vecchi, M.P., (1983),

'Optimization by Simulated Annealing', Science, vol. 220, pp. 671-680.

[Kita & Toyoda 20001 Kita, E. & Toyoda, T., (2000), 'Structural Design Using

Cellular Automata', Structural & Multidisciplinary Optimization, vol. 19(1), pp.

64-73.

[Kodiyalam et al. 1992] Kodiyalam, S.; Kumar, V. & Finnigan, P.M., (1992),

'Constructive Solid Geometry Approach to Three-Dimensional Structural

Shape Optimization', AIAA Journal, vol. 30(5), May 1992, pp. 1408-1415.

[Kodiyalam & Parthasarathy 1992] Kodiyalam, S. & Parthasarathy, V.N., (1992),

'Optimized/Adapted Finite Elements for Structural Shape Optimization', Finite

Elements in Analysis and Design, vol. 12(1), September 1992, pp. 1-11.

[Kodiyalam & Thanedar 1993] Kodiyalam, S. & Thanedar, P.B., (1993), 'Some

Practical Aspects of Shape Optimization and its Influence on Intermediate

Mesh Refinement', Finite Elements in Analysis and Design, vol. 15(2), December

1993, pp. 125-133.

References
	 281

[Kohli & Carey 1993] Kohli, H.S. & Carey, G.F., (1993), 'Shape Optimization

using Adaptive Shape Refinement', Journal for Numerical Methods in

Engineering, vol. 36, PP. 2435-2451.

[Koza 1990] Koza, J., (1990), Genetic Programming: A Paradigm for Genetically

Breeding Populations of Computer Programs to Solve Problems, Technical Report

STAN-CS-90-1314, Department of Computer Science, Stanford University.

[Koza 1992] Koza, J., (1992), Genetic Programming: On the Programming of

Computers by Means of Natural Selection, MIT Press.

[Koza 1994] Koza, J., (1994), Genetic Programming II: Automatic Discovery of

Reusable Programs, MIT Press.

[Koza et al. 1999] Koza, J., Bennett, F.H, Andre, D, & Keane, M.A, (1999), Genetic

Programming III: Darwinian Invention and Problem Solving, Morgan Kaufmann.

[Kreft et al. 1998] Kreft, J-U.; Booth, G. & Wimpenny, J.W.T., (1998), 'BacSim: a

Simulator for Individual-based Modelling of Bacterial Colony Growth',

Microbiology, vol. 144, pp. 3275-3287.

[Kristensen & Madsen 1976] Kristensen, E.S. & Madsen, N.F., (1976), 'On the

Optimum Shape of Fillets in Plates Subjected to Multiple In-Plane Loading

Cases', International Journal of Numerical Methods in Engineering, vol. 10, pp.

1007-1009.

[Krothapalli & Deshmukh 1997] Krothapalli, N.K.C. & Deshmukh, A.V., (1997),

'Effects of Negotiation Mechanisms on Performance of Agent Based

Manufacturing Systems', in Proc. of the Seventh International Conference on

Flexible Automation and Intelligent Manufacturing, pp. 704-717.

References 	 282

[Kuethe & Chow 1986] Kuethe, A.M. & Chow, C.-Y., (1986), Foundations of

Aerodynamics, Fourth Edition, Wiley, ISBN 0-471-85954-0.

[Kumar & Bentley 2003a] Kumar, S. & Bentley, P.J., (2003), 'Biologically Inspired

Evolutionary Development', in Proc. International Conference on Evolvable

Systems: from biology to hardware (ICES 2003), Trondheim, Norway.

[Kumar & Bentley 2003b] Kumar, S. & Bentley, P.J., (2003), 'Computational

Embryology: Past, Present and Future', in Advances in Evolutionary Computing,

Theory and Applications, Ghosh & Tsutsui (eds.), Springer, pp. 461-478.

[Kumar & Bentley 2003c] Kumar, S. & Bentley, P.J., (2003), 'Mechanisms of

Oriented Cell Division in Computational Development', in Proc. First Australian

Conference on Artificial Life (ACAL 2003), Canberra, Australia.

[Langham & Grant 1999] Langham, A.E. & Grant, P.W., (1999), 'Evolving Rules

for a Self-organizing Finite Element Mesh Generation Algorithm', in Proc. 1999

Congress on Evolutionary Computation, Washington D.C., USA, July 1999, pp.

161-168, IEEE Computer Science.

[Leite & Topping 1998] Leite, J.P.B. & Topping, B.H.V., (1999), 'Improved

Genetic Operators for Structural Engineering Optimisation', Advances in

Engineering Software, vol. 29(7-9), pp. 529-562.

[Leite & Topping 1999] Leite, J.P.B. & Topping, B.H.V., (1999), 'Parallel

Simulated Annealing for Structural Optimization', Computers & Structures, vol.

73(1-5), October 1999, pp. 545-564.

[LeRiche et al. 1995] Le Riche, R.G.; Knopf-Lenoir, C. & Haftka, R.T., (1995), 'A

Segregated Genetic Algorithm for Constrained Structural Optimization', in

Proc. of the Sixth International Conference on Genetic Algorithms, Eshelman, L.

(ed.), pp. 558-565, Morgan Kaufmann, San Francisco.

References

[Lesieutre et al. 1998] Lesieutre, D.; Dillenius, M. & Lesieutre T., (1998),

'Multidisciplinary Design Optimization of Missile Configurations and Fin

Planforms for Improved Performance', in Proc. 7th Symposium on

Multidisciplinary Analysis and Optimization, September 2-4 1998, St. Louis, AIAA

:iIJ

[Lewis 1997] Lewis, R.M., (1997), A Nonlinear Programming Perspective on

Sensitivity Calculations for Systems Governed by State Equations, NASA CR-

201659, ICASE Report No. 97-12, February 1997, pp. 37.

[Lewis et al. 20001 Lewis, R.M.; Torczon, V. & Trosset, M.W., (2000), 'Direct

Search Methods: Then and Now', Journal of Computational and Applied

Mathematics, vol. 124(1-2), pp. 191-207.

[Lin & Chen 2000] Lin, C-Y. & Chen, W-T., (2000), 'Stochastic Multistage

Algorithms for Multimodal Structural Optimization', Computers & Structures,

vol.74(2), January 2000, pp. 233-241.

[Liu & Batill 2000] Liu, W. & Batill, S.M., (2000), Gradient-Enhanced Neural

Network Response Surface Approximations, AIAA Multidisciplinary Analysis and

Optimization Conference and Exhibit, Long Beach, California, September 2000,

AIAA 2000-4923.

[Lu & Chen 2002] Lu, H. & Chen, J. S., (2002), 'Adaptive Meshfree Particle

Method', in Lecture Notes in Computational Science and Engineering, vol. 26, pp.

251-267.

[Luna & Perrone 2001] Luna, F. & Perrone, A., (2001), 'Agent-Based Methods in

Economics and Finance: Simulations in Swarm', in Advances in Computational

Economics, vol. 17, Amman, H. & Nagurney, A (eds.), Kluwer Academic

Publishers, ISBN 0-7923-7419-3.

References
	

NE

[Luna & Stefansson 2000] Luna, F. & Stefannson, B., (2000), 'Economic

Simulations in Swarm: Agent-Based Modelling and Object Oriented

Programming', in Advances in Computational Economics, vol. 14, Amman, H. &

Nagumey, A. (eds.), Kluwer Academic Publishers, ISBN 0-7923-8665-5.

[Lustig 1995] Lustig, R., (1995), 'The Creative Mind: Myths and Mechanisms:

Margaret Boden, (Basic Books, New York, 1991); 303 pages', Artificial

Intelligence, vol. 79(1), November 1995, PP. 83-96.

[Mcllhagga et al. 1996] Mdllhagga, M.; Husbands, P. & Ives, R., (1996), 'A

Comparison of Optimisation Techniques on a Wingbox Optimisation Problem',

in Parallel Problem Solving from Nature (PPSN) IV, Voigt, H-M; Ebeling, W.;

Rechenberg, I. & Schwefel, H-P (eds.), Springer, Berlin.

[MeNeill et al. 1998] McNeill, T.; Gero, J.S. & Warren, J., (1998). 'Understanding

Conceptual Electronic Design using Protocol Analysis', Research in Engineering

Design, vol. 10, pp. 129-140.

[Mackerle 2003] Mackerle, J., (2003), 'Topology and Shape Optimization of

Structures using FEM and BEM: A Bibliography (1999-2001)', Finite Elements

in Analysis and Design, vol. 39(3), January 2003, pp. 243-253.

[Mäkinen et al. 1999] Makinen; R.A.E., Periaux, J. & Toivanen, J., (1999),

'Multidisciplinary Shape Optimization in Aerodynamics and Electromagnetics

using Genetic Algorithms', International Journal for Numerical Methods in Fluids,

vol. 30, pp. 149-159.

[Mantyla 1988] Mantyla, M., (1988), An Introduction to Solid Modeling, Computer

Science Press, Maryland, U.S.A..

References 	 285

[Marco & Lanteri 2000] Marco, N. & Lanteri, S., (2000), 'A Two-level

Parallelization Strategy for Genetic Algorithms Applied to Optimum Shape

Design', Parallel Computing, vol. 26(4), March 2000, pp. :377-397 .

[Mattheck et al. 19941 Mattheck, C.; Baumgartner, A. & Walther, F., (1994),

'Optimization Procedures by use of the Finite Element Method', Engineering

Systems Design and Analysis, vol. 64(4), ASME.

[Meric 1999] Meric, R.A., (1999), 'Boundary Elements and Optimization for

Linearized Compressible Flows Around Immersed Airfoils', Engineering

Analysis with Boundary Elements, vol. 23, pp. 591-596.

[Metropolis et al. 1953] Metropolis, N.; Rosenbiuth, A.W.; Rosenbiuth, M.N.;

Teller, A.H. & Teller, E., (1953), 'Equation of State Calculations by Fast

Computing Machines', Journal of Chem. Phys., vol. 21(6), pp. 1087-1092.

[Michalewicz 1992] Michalewicz, Z., (1992), Genetic Algorithms + Data Structures

= Evolution Programs, Springer Verlag.

[Michalewicz & Fogel 2000] Michalewicz, Z. & Fogel, D.B., (2000), How to Solve

It: Modern Heuristics, Springer-Verlag, Berlin, ISBN 3-540-66061-5.

[Michalewicz & Schoenauer 1996] Michalewicz, Z. & Schoenauer, M., (1996),

'Evolutionary Algorithms for Constrained Parameter Optimization Problems',

Evolutionary Computation, vol. 4(1), pp. 1-32.

[Minar et al. 19961 Minar, N.; Burkhart, R.; Langton, C. & Askenazi, M., (1996),

The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations,

Santa Fe Institute Working Paper 96-06-042.

[Nelder & Mead 1965] Nelder, J. & Mead, R., (1965), 'A Simplex Method for

Function Minimisation', The Computer Journal, vol. 7, pp. 308-313.

References 	 286

[Nemec & Zingg 2001] Nemec, M. & Zingg, D.W., (2001), 'Towards Efficient

Aerodynamic Shape Optimization Based on the Navier—Stokes Equations', in

Proc. 15th AIAA Computational Fluid Dynamics Conference, June 11-14 2001,

Anaheim, CA, AIAA 200 1-2532.

[Novruzi & Roche 19951 Novruzi, A. & Roche, J.R., (1995), Second Order

Derivatives, Newton Method, Application to Shape Optimization, Rapport de

Recherche RR2555, Institute National De Recherche en Informatique en

Automatique, France, ISSN 0249-6399.

[Nowostawski & Poli 1999] Nowostawski, M. & Poli R., (1999), 'Parallel Genetic

Algorithm Taxonomy', in Proc. of the Third International Conference on

Knowledge-based Intelligent Information Engineering Systems, KES'99.

[Obayashi & Takanashi 1995] Obayashi, S. & Takanashi, S., (1995), 'Genetic

Algorithm for Aerodynamic Inverse Optimization Problems', in Proc. of the

First JEEJIEEE International Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications, 12-14 September 1995, pp. 7-12, Conference

Publication No. 414, lEE.

[Otto et al. 1996] Otto, J.C.; Landman, D. & Paters, A.T., (1996), A Surrogate

Approach To the Experimental Optimization of Multi-Element Airfoils, AIAA96-

4138-CP.

[Oyamaa et al. 2001] Oyamaa, A.; Obayashi, S. & Nakamurac, T., (2001), 'Real-

Coded Adaptive Range Genetic Algorithm Applied to Transonic Wing

Optimization', Applied Soft Computing, vol. 1, pp. 179-187.

[Palmer 1995] Palmer, R.S., (1995), 'Chain Models and Finite Element Analysis:

An Executable Chains Formulation of Plane Stress', Computer-Aided Geometric

Design, vol. 12(7), pp. 733-770.

References
	 287

[Palmer & Shapiro 1994] Palmer, R.S. & Shapiro, V., (1994), 'Chain Models of

Physical Behavior for Engineering Analysis and Design', Research in

Engineering Design, vol. 5(3).

[Papalambros 2002] Papalambros, P.Y., (2002), 'The Optimization Paradigm in

Engineering Design: Promises and Challenges', Computer-Aided Design, vol. 34,

pp. 939-951.

[Parmee 1993] Parmee, I.C., (1993), 'The Concrete Arch Dam - An Evolutionary

Model of the Design Process', in Proc. of the International Conference on Neural

Nets & Genetic Algorithms, Innsbruck, Austria, Springer-Verlag Wien.

[Parmee 1996] Parmee, I.C., (1996), 'Towards an Optimal Engineering Design

Process using Appropriate Adaptive Search Strategies', Journal of Engineering

Design, vol. 7(4), December, pp 341-362.

[Parmee 2002] Parmee, I.C., (2002), 'Evolutionary Computing Strategies for

Preliminary Design Search and Exploration', in Proc. US United Engineering

Foundation's 'Optimisation in Industry' Conference, Tuscany, Italy, 2001; Springer-

Verlag, London.

[Parmee et al. 1993] Parmee, I.C.; Denham, M.J, & Roberts, A., (1993),

'Evolutionary Engineering Design using the Genetic Algorithm', in Proc.

International Conference on Engineering Design '93, August 17-19 1993, The

Hague.

[Parmee et al. 2001] Parmee, I.C.; Cvetkovic, D.; Bonham, C. & Packham, I.,

(2001), 'Introducing Interactive Evolutionary Systems for Ill-defined, Multi-

objective Design Environments', Journal of Advances in Engineering Software,

vol. 32(6), pp. 429-441, Elsevier.

References

[Pedersen & Laursen 1982] Pedersen, P. & Laursen, C.L., (1982), 'Design for

Minimum Stress Concentration by Finite Elements and Linear Programming',

Journal of Structural Mechanics, vol. 10, PP. 375-391.

[Pepper & Smuts 1999] Pepper, J.W. & Smuts, B. (1999), 'The Evolution of Co-

operation in an Ecological Context: an Agent-based Model', in Dynamics in

Human and Primate Societies: Agent-Based Modeling of Social and Spatial

Processes, Kohler, T. & Gumerman, G. (eds.), Santa Fe Institute and Oxford

University Press.

[Perkins 1995] Perkins, D., (1995), 'An Unfair Review of Margaret Boden's The

Creative Mind from the Perspective of Creative Systems: (Basic Books, New

York, 1991); 303 pages', Artificial Intelligence, vol. 79(1), November 1995, PP. 97-

109.

[Pourazady & Fu 1996] Pourazady, M. & Fu, Z., (1996), 'An Integrated Approach

to Structural Shape Optimization', Computers & Structures, vol. 60(2), July 1996,

pp. 279-289.

[Powell 1964] Powell, M., (1964), 'An Efficient Method for Finding the

Minimum of Functions of Several Variables Without Calculating Derivatives',

The Computer Journal, vol. 7, pp. 155-162.

[Press et al. 1993] Press, W.H.; Flannery, B.P.; Teukolsky, S.A. & Vetterling, W.T.,

(1993), Numerical Recipes in C The Art of Scientific Computing, 2'' Edition,

February 1993, Cambridge University Press, ISBN: 0521431085.

[Quagliarella & Cioppa 1994] Quagliarella, D. & Cioppa, A.D., (1994), Genetic

Algorithms Applied to the Aerodynamic Design of Transonic Airfoils, AIAA Paper

94-1896-CP.

References
	 289

[Quagliarella & Cioppa 1995] Quagliarella, D. & Cioppa, A.D., (1995), 'Genetic

Algorithms Applied to the Aerodynamic Design of Transonic Airfoils', Journal

of Airc raft, vol. 32(4), pp. 889-890.

[Quagliarella & Vicini 2000] Quagliarella, D. & Vicini, A., (2000), 'GAs for

Aerodynamic Shape Design II: Multiobjective Optimization and Multi-criteria

Design', in Genetic Algorithms for Optimisation in Aeronautics and

Turbomachinery, Von Karman Institute Lecture Series 2000-07, May 2000.

[Quagliarella & Vicini 2001] Quagliarella, D. & Vicini A., (2001), 'Viscous Single

and Multicomponent Airfoil design with Genetic Algorithms', Finite Elements in

Analysis and Design, vol. 37, pp. 365-380.

[Querin et al. 20001 Querin, 0. M.; Steven G. P. & Xie, Y. M., 'Evolutionary

Structural Optimisation using an Additive Algorithm', Finite Elements in

Analysis and Design, vol. 34(3-4), February 2000, pp. 291-308.

[Raich & Ghaboussi 2000] Raich, A.M. & Ghaboussi, J., (2000), 'Evolving

Structural Design Solutions using an Implicit Redundant Genetic Algorithm',

Structural Multidisciplinary Optimization, vol. 20(3), pp. 222-231.

[Raghothama & Shapiro 2000] Raghothama, S. & Shapiro, V., (2000), 'Consistent

Updates in Dual Representation Systems', Computer-Aided Design, vol. 32(8-9),

August 2000, pp. 463-477.

[Raghothama & Shapiro 2002] Raghothama, S. & Shapiro, V., (2002), 'Topological

Framework for Part Families', in Proc. of the Seventh ACM Symposium on Solid

Modeling and Applications 2002, SaarbrUcken, Germany, pp. 1-12, ACM Press,

New York, ISBN 1-58113-506-8.

References

[Ram et al. 1995] Ram, A.; Wills, L.; Domeshek, E.; Nersessian, N. & Kolodner, J.,

(1995), 'Understanding the Creative Mind: a Review of Margaret Boden's

Creative Mind', Artificial Intelligence, vol. 79(1), November 1995, pp. 111-128.

[Rasheed & Hirsh 2000] Rasheed, K. & Hirsh, H., (2000), 'Informed Operators:

Speeding up Genetic-Algorithm-Based Design Optimization using Reduced

Models', in Proc. Genetic and Evolutionary Computation Conference

(GECCO '2000).

[Rasheed et al. 1997] Rasheed, K.; Hirsh, H. & Gelsey, A., (1997), 'A Genetic

Algorithm for Continuous Design Space Search', Artificial Intelligence in

Engineering, vol. 11(3), pp. 295-305.

[Ratle 2001] Ratle, A., (2001), 'Kriging as a Surrogate Fitness Landscape in

Evolutionary Optimization', Artificial Intelligence for Engineering Design

Analysis and Manufacturing, vol. 15, pp. 37-49.

[Rechenberg 1973] Rechenberg, I., (1973), Evolutionsstrategie: Optimierung

technischer Systeme nach Prinzipien der Biologischen Evolution, Fromman-

Holzboog, Stuttgart.

[Reddy & Cagan 1995] Reddy, G. & Cagan, J., (1995), 'An Improved Shape

Annealing Algorithm for Truss Topology Generation', Journal of Mechanical

Design, vol. 117, pp. 315-321, ASME.

[Renner & Ekárt 2003] Renner, G. & Ekárt, A., (2003), 'Genetic Algorithms in

Computer Aided Design', Computer-Aided Design, vol. 35(8), July 2003, pp. 709-

726.

References
	 291

[Reuther et al. 1999] Reuther, J.; Alonso, J.J.; Rimlinger, M.J. & Jameson, A.,

(1999), 'Aerodynamic Shape Optimization of Supersonic Aircraft

Configurations via an Adjoint Formulation on Distributed Memory Parallel

Computers', Computers & Fluids, vol. 28, pp. 675-700.

[Robinson et al. 1999] Robinson, G.; El-Beltagy, M.A. & Keane, A., (1999),

'Optimization in Mechanical Design', in Evolutionary Design by Computers,

Bentley, P. (ed.), Morgan Kaufmann, San Francisco, 1999.

[Rogaisky et al. 1999a] Rogaisky, T.; Derksen, R.W. & Kocabiyik, 5., (1999), 'An

Aerodynamic Design Technique for Optimizing Fan Blade Spacing', in Proc. of

the 7th Annual Conference of the Computational Fluid Dynamics Society of Canada,

May 30 - June 1, pp. 2-34.

[Rogalsky et al. 1999b] Rogalsky, T.; Derksen, R.W. & Kocabiyik, S., (1999),

'Differential Evolution in Aerodynamic Optimization', in Proc. of the 46th

Annual Conference of the Canadian Aeronautics and Space Institute, May 2-5, pp.

29-36.

[Rong et al. 2001] Rong, J.H.; Xie, Y.M. & Yang, X.Y., (2001), 'An Improved

Method for Evolutionary Structural Optimisation against Buckling', Computers

& Structures, vol. 79(3), January 2001, pp. 253-263.

[Rosenman 1997] Rosenman, M.A., (1997), 'The Generation of Form using an

Evolutionary Approach', in Evolutionary Algorithms in Engineering Applications,

Dasgupta, D. & Michalewicz, Z. (eds.), Springer-Verlag, Southampton and Berlin,

pp.69-85.

[Roy & Bharadwaj 2002] Roy, U. & Bharadwaj, B., (2002), 'Design with Part

Behaviors: Behavior Model, Representation and Applications', Computer-Aided

Design, vol. 34(9), August 2002, pp. 613-636.

References
	 292

[Roy et al. 2001] Roy, U.; Pramanik, N.; Sudarsan, R.; Sriram, R. D. & Lyons, K.

W., (2001), 'Function-to-form Mapping: Model, Representation and

Applications in Design Synthesis', Computer-Aided Design, vol. 33(10), September

2001, Pp. 699-7 19.

[Ryan et al. 2003] Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R. & Costa, E.

(eds.), (2003), Genetic Programming: 6th European Conference, EuroGP 2003,

Essex, UK, April 14-16, 2003, Lecture Notes in Computer Science, vol. 2610,

Springer-Verlag Heidelberg.

[Sadrehaghighi et al. 19951 Sadrehaghighi, I.; Smith, R.E. & Tiwari, S.N., (1995),

'Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils', Journal of

Aircraft, vol. 32(6), December 1995, pp. 1234.

[Saitou & Jakiela 1994] Saitou, K. & Jakiela, M.J., (1994), 'Meshing of

Engineering Domains by Meitotic Cell Division', in Artificial Life IV: Proc. of the

Fourth International Workshop on the Synthesis and Simulation of Living Systems,

July 1994, Cambridge, Massachusetts, The MIT Press.

[Samareh 1999] Samareh, J.A., (1999), 'A Survey of Shape Parameterization

Techniques', in CEAS/AIAAJICASE/NASA Langley International Forum on

Aeroelasticily and Structural Dynamics, June 22-25, Williamsburg, VA, NASA/CP-

1999-209136, pp. 333-343.

[Sandgren & Wu 1988] Sandgren, E. & Wu, S.J., (1988), 'Shape Optimization

using the Boundary Element Method with Substructuring', International Journal

for Numerical Methods in Engineering, vol. 26, pp. 1913-1924.

[Schank & Foster 1995] Schank, R.C. & Foster, D.A., (1995), 'The Engineering of

Creativity: a Review of Boden's the Creative Mind', Artificial Intelligence, vol.

79(1), November 1995, pp. 129-143.

References
	 293

[Schewchuk 1997] Schewchuk, J.R., (1997), Delaunay Refinement Mesh

Generation, Ph.D. Thesis, School of Computer Science, Carnegie Mellon University,

Pittsburgh.

[Schoenauer 1995] Schoenauer, M., (1995), 'Shape Representations for

Evolutionary Optimization and Identification in Structural Mechanics', in

Genetic Algorithms in Engineering and Computer Science, Winter, G.; Periaux, J.;

Galan M. & Cuesta, P. (eds.), pp. 443-464, Wiley.

[Schoenauer 1996] Schoenauer, M., (1996), 'Shape Representations and Evolution

Schemes', in Proc. 5th Annual Conference on Evolutionary Programming, Fogel,

L.J.; Angeline, P.J. & Back, T. (eds.), MIT Press, pp. 121-129.

[Schramm & Pilkey 1994] Schramm, U. & Pilkey, W.D., (1994), 'Higher Order

Boundary Elements for Shape Optimization using Rational B-splines', in

Engineering Analysis with Boundary Elements, vol. 14(3), pp. 255-266.

[Schramm & Pilkey 1995] Schramm, U. & Pilkey, W.D., (1995), 'The Coupling of

Geometric Descriptions and Finite Elements using NURBs - A Study in Shape

Optimization', Finite Elements in Analysis and Design, vol. 15(1), December 1993,

pp. 11-34.

[Schwefel 1981] Schwefel, H-P., (1981), Numerical Optimization of Computer

Models, Wiley, Chichester.

[Sebald & Fogel 19941 Sebald, A.V. & Fogel, L.J. (eds.), (1994), Proceedings of the

Third Annual Conference on Evolutionary Programming, World Scientific

Publishers, River Edge, NJ.

References
	 YTIJ

[Seller et al. 1994] Sellar, R.S.; Batill, S.M. & Renaud, J.E., (1994), 'Optimization

of Mixed Discrete/Continuous Design Variable Systems Using Neural

Networks', AIAAJUSAF/NASA/ISSMO Symposium on Multidisciplinary Analysis

and Optimization, Panama City, Florida, Sept. 1994, AIAA-94-4348.

[Seller et al. 1996] Sellar, R.S.; Stelmack, M.; Batill, S.M. & Renaud, J.E., (1996),

'Response Surface Approximations for Discipline Coordination in

Multidisciplinary Design Optimization', AIAA/ASME/ASCFJAHS/ASC 37th

Structures, Structural Dynamics and Materials Conference, Salt Lake City, Utah,

April 1996, AIAA-96-1383.

[Seo et al. 2003] Seo, K.; Fan, Z.; Hu, J.; Goodman, E.D. & Rosenberg, R.C.,

(2003), 'Toward a Unified and Automated Design Methodology for Multi-

domain Dynamic Systems using Bond Graphs and Genetic Programming',

Mechatronics, In Press.

[Shah 1991] Shah, J.J., (1991), 'Conceptual Development of Form Features and

Feature Modelers', Research in Engineering Design, vol. 2, pp. 93-108.

[Shapiro & Voelcker 1989] Shapiro, V. & Voelcker, H., (1989), 'On the Role of

Geometry in Mechanical Design', Research in Engineering Design, vol. 1(1), pp.

69-73.

[Shapiro & Vossler 1995] Shapiro, V. & Vossler D.L., (1995), 'What is a

Parametric Family of Solids?', in Proc. of the 3rdACM1IEEE Symposium on Solid

Modeling and Applications, Salt Lake City, Utah, May 17-19, 1995.

[Shimada & Gossard 1992] Shimada, K. & Gossard, D., (1992), 'Automated Shape

Generation of Components in Mechanical Assemblies', in Proc. ASME Design

Automation Conference, Tempe, AZ, September 1992.

References
	 295

[Smith 1995a] Smith, R., (1995), A First Investigation into a Voxel Based Shape

Representation, Internal Report No.20, Manufacturing Planning Group, Department

of Mechanical Engineering, University of Edinburgh, UK.

[Smith 1995b] Smith, R., (1995), A Parameterised Rolls Royce Annulus, Internal

Report No. 21, Manufacturing Planning Group, Department of Mechanical

Engineering, University of Edinburgh, UK.

[Sobieszczanski-Sobieski 1986] Sobieszczanski-Sobieski, J, (1986), 'Structural

Optimization: Challenges and Opportunities', International Journal of Vehicle

Design, vol. 7(3-4), pp. 242-263.

[Soize & Michelucci 20001 Soize, C. & Michelucci, J-C., (2000), 'Structural Shape

Parametric Optimization for an Internal Structural-Acoustic Problem',

Aerospace Science and Technology, vol. 4(4), June 2000, pp. 263-275.

[Sole et al. 1999] Sole, R.V.; Salazar-Cuidad, I. & Garcia-Fernandez, J., (1999),

Phase Transitions in a Gene Network Model of Morphogenesis, Santa Fe Institute

Working Paper 99-11-075.

[Song et al. 2002] Song, W.; Keane, A.; Rees, J.; Bhaskar, A. & Bagnall, S., (2002),

'Turbine Blade Fir-tree Root Design Optimisation using Intelligent CAD and

Finite Element Analysis', Computers & Structures, vol. 80(24), September 2002,

pp. 1853-1867.

[Spendley et al. 19621 Spendley, W.; Hext, G.R. & Himsworth, F.R., (1962),

'Sequential Application of Simplex Designs in Optimisation and Evolutionary

Operation', Technometrics, vol. 4(4), pp. 441-461.

[Tanskanen 2002] Tanskanen, P., (2002), 'The Evolutionary Structural

Optimization Method: Theoretical Aspects', Computer Methods in Applied

Mechanics and Engineering, vol. 191(47-48), November 2002, pp. 5485-5498.

References 	 296

[Taura & Nagasaka 1999] Taura, T. & Nagasaka, I, (1999), 'Adaptive-Growth-

Type 3D Representation for Configuration Design', Artificial Intelligence for

Engineering Design Analysis and Manufacturing, vol. 13(3), June 1999, pp. 171-

184.

[Tavakkoli & Dhande 1991] Tavakkoli, S. & Dhande, S.G, (1991), 'Shape Synthesis

and Optimization Using Intrinsic Geometry', Journal of Mechanical Design,

Transactions of the ASME, vol. 113(4), pp. 379-386.

[Turner 1995] Turner, S.R., (1995), 'The Creative Mind: Margaret Boden, (Basic

Books, New York, 1991); 303 pages', Artificial Intelligence, vol. 79(1), November

1995, pp. 145-159.

[Tuson et al. 1997] Tuson, A.; Ross, P. & Duncan, T., (1997), 'On Interactive

Neighbourhood Search Schedulers', 16' Workshop of the UK Planning and

Scheduling SIG.

[Vanderplaats 1993] Vanderplaats, G.N., (1993), 'Thirty Years of Modern

Structural Optimization', Advances in Engineering Software, vol. 16, pp. 81-88.

[Vekeria & Parmee 1997] Vekeria, H.D. & Parmee, I.C., (1997), 'Reducing

Computational Expense Associated with Evolutionary Detailed Design', in Proc.

of IEEE international Conference on Evolutionary Computation '97, Indiana

University, Indianapolis, 13-16 April, 1997.

[Versteeg & Malalasekera 1995] Versteeg, H.G. & Malalasekera, W., (1995), An

Introduction to Computational Fluid Dynamics, Longman.

[Vicini & Quagliarella 1999] Vicini, A. & Quagliarella, D., (1999), 'Airfoil and

Wing Design using Hybrid Optimization Strategies', AIAA Journal, Vol. 37(5),

May 1999.

References
	 297

[Vicini & Quagliarella 2000] Vicini, A., Quagliarella, D., (2000), 'A Multiobjective

Approach to Transonic Wing Design by Means of Genetic Algorithms', NATO

RTO AVT Symposium on Aerodynamic Design and Optimization, Ottawa, Canada,

October 1999, RTO-MT-35, June 2000.

[Walsh 1975] Walsh G., (1975), Methods of Optimization, Wiley.

[Wang et al. 2002a] Wang, J.F.; Periaux, J. & Sefrioui M., (2002), 'Parallel

Evolutionary Algorithms for Optimization Problems in Aerospace

Engineering', Journal of Computational and Applied Mathematics, vol. 149, pp.

155-169.

[Wang et al. 2002b] Wang, L.; Shen, W.; Xie, H.; Neelamkavil, J. & Pardasani, A.,

(2002), 'Collaborative Conceptual Design - State of the Art and Future Trends',

Computer-Aided Design, vol. 34(13), November 2002, pp. 981-996.

[Watabe & Okino 1993] Watabe, H. & Okino, N., (1993), 'A Study on Genetic

Shape Design', in Proc. of the Fifth International Conference on Genetic

Algorithms, Forrest, S. (ed.), pp. 445-450. San Mateo, Morgan Kauffman.

[Watson 1981] Watson, D.F., (1981), 'Computing the n-dimensional Delaunay

Tessellation with Application to Voronoi Polytopes', The Computer Journal, vol.

24, pp. 167-172.

[Whitley 19891 Whitley, D., (1989), 'The GENITOR Algorithm: Why Rank

Based Allocation of Reproductive Trials is Best', in Proc. of the Third

International Conference on Genetic Algorithms, pp. 116-121.

[Widmann & Sheppard 1993] Widmann, J.M. & Sheppard, S.D., (1993), 'Shape

Optimization using a Variable Number of Conic Patches', Advances in Design

Automation, vol. 65-1, ASME.

References
	 QM

[Widmann & Sheppard 1994] Widmann, J.M. & Sheppard, S.D., (1994), 'Intrinsic

Geometry for Shape Optimal Design with Analysis Model Compatibility', in

Proc. 1994 ASME Design Technical Conference, Minneapolis, Sept. 11-14,

Advances in Design Automation, vol. 2, pp. 273-281, ASMIE.

[Winter et al. 1995] Winter, G.; Périaux, J.; Galan M. & Cuesta, P. (eds.), (1995),

Genetic Algorithms in Engineering and Computer Science, Wiley.

[Xie & Steven 1996] Me, Y.M. & Steven, G.P., (1996), 'Evolutionary Structural

Optimization for Dynamic. Problems', Computers & Structures, vol. 58(6), March

1996, pp. 1067-1073.

[Xie & Steven 1997] Xie, Y. M. & Steven, G. P., (1997), Evolutionary Structural

Optimization, Springer, ISBN 3540761535.

[Yamazaki et al. 1993] Yamazaki, K.; Sakamoto, J. & Kitano, M., (1993), 'An

Efficient Shape Optimization Technique of a Two-dimensional Body based on

the Boundary Element Method', Computers & Structures, vol. 48(6), September

1993, pp. 1073-1081.

[Yamazaki et al. 1994] Yamazaki, K.; Sakamoto, J. & Kitano, M., (1994), 'Three-

Dimensional Shape Optimization Using the Boundary Element Method', AIAA

Journal, vol. 32(6), pp. 1295-1301.

[Younsi et al. 19961 Younsi, R.; Knopf-Lenoir, C. & Selman, A., (1996), 'Multi-

mesh and Adaptivity in 3D Shape Optimization', Computers & Structures, vol.

61(6), December 1996, pp. 1125-1133.

[Zhao et al. 1998] Zhao, C.; Steven, G. P. & Xie, Y. M., (1998), 'A Generalized

Evolutionary Method for Natural Frequency Optimization of Membrane

Vibration Problems in Finite Element Analysis', Computers & Structures, vol.

66(2-3), January 1998, pp. 353-364.

References
	 299

[Zienkiewicz & Campbell 1973] Zienkiewicz, O.C. & Campbell, J.S., (1973),

'Shape Optimization and Sequential Linear Programming', in Optimal

Structural Design, Callagher, R.H. & Zienkiewicz, O.C. (eds.), Wiley, New York,

pp. 109-126.

Appendix A 	Results of Aerofoil Optimisation 	 300

A. Appendix A - Results of Aerofoil Optimisation

This Appendix provides a more detailed description of the results of the experiments

conducted on aerofoil optimisation from Chapter 3, which were summarised in

Section 3.4.

A. 1 Aerofoil Parameterisation

Below, the results of a number of experiments undertaken with the aerofoil

parameterisation are given, along with a short discussion of each. The genetic

algorithm was set up to minimise and so low fitnesses are good. It should also be

noted that since the genetic algorithm is a stochastic algorithm, the results of an

experiment might not be the same each time it is done. Consequently, each

experiment was repeated ten times and the results are given for each run.

Experiments were undertaken with various fitness measures, population sizes,

mutation rates and mutation amplitudes. Fitness measures varied dependent on what

properties of the aerofoil were to be optimised. For Experiments A, B and C, the

population size was set at 50. These experiments were intended to validate the

genetic algorithm and vortex panel method, by maximising lift (Experiment A) or

minimising drag (Experiments B and C) for which the optimal solution was known to

lie at the extreme of the parameter ranges. Preliminary tests showed that a population

size of 50 was sufficient to avoid premature convergence for these experiments.

Later experiments were more challenging for the genetic algorithm, and therefore

population sizes were increased, as described with each set of results below.

Appendix A 	Results of Aerofoil Optimisation
	 301

The proportion of population to breed per generation was set as 10%, since

preliminary tests indicated that this avoided premature convergence of the

population. The mutation rate was set so that on average there would be one mutation

per new individual created. The mutation amplitude was varied for each experiment;

lower amplitudes were desirable for those problems where the optimal solution lay

away from the parameter bounds, so that adequate 'fine-tuning' of aerofoil

parameters could take place.

Appendix A 	Results of Aerofoil Optimisation
	 302

A.1.1 Experiment A

Fitness -C1

Population size 50
Proportion of population to breed per generation 0.1

Mutation rate 0.2
Mutation amplitude 0.5

Parameter Min Max
Thickness from camber line (% of chord length) 2 8
Position of maximum thickness (% of chord length) 55 80
Camber angle, thetaO, at trailing edge (deg) 0 30
Camber angle, thetal, at leading edge (deg) 0 30
Angle of attack (deg) -8 8

The objective of this experiment was to maximise lift coefficient (i.e. minimise —C1).

This experiment was used primarily to validate the analysis and optimisation code.

An aerofoil with maximal lift would have the largest camber, thickness and attack

angle allowed within the parameter bounds. The experiment was repeated ten times

with varying seeds for the random number generator. Every run consistently found

exactly the following best solution:

Thickness from camber line (% of chord length) 8.00
Position of maximum thickness (% of chord length) 55.00
Camber angle, theta0, at trailing edge (deg) 30.00
Camber angle, thetal, at leading edge (deg) 30.00
Angle of attack (deg) 8.00
Fitness (-C l) -2.54

Number of Evaluations 600

As was expected these values were at the extremes of the parameter bounds. In this

implementation of the genetic algorithm, mutations could vary the parameters to be

outwith the bounds, but these values would subsequently be 'repaired' to lie on the

bound. Consequently, it was 'easy' for the genetic algorithm to find extrema which

Appendix A 	Results of Aerofoil Optimisation
	

303

lie at the boundary of the search-space, and hence each of the ten runs produced

exactly the same result. The lift coefficient generated had a reasonable value based

on data for similar aerofoils at similar attack angles [Abbot et al. 1945]. Figure A-i

and Figure A-2 show the best individual from a number of generations throughout

two particular runs, Al and A2. Figure A-3 shows a plot of individual fitnesses,

along with minimum, mean and maximum fitnesses for the run Al.

I/AS AlMA
nelcSJgo40 F4nu 	-1.890.40 -1.890.44 -1.890.50 -1.97E4O)

Pd
Aa6wAata 0.2

.pAà 50

0422551627.94 255 04.41 04.32501627.94509004.41 04.2290.1627.9425.900441 03.90509225.7215935044

GNo: 	1 2 3 5

-2190.40 -a320.40 •a4.40 -2190.50 2540.40

90467592259015935050 04017592945025029050 50490a94305030(09446 5053905000324650W 50.50555094.9)94805050

10 15 25 40 50

-1040.50 -1540.50 0.50E.00 0(50.50

9)505000319)94000&00 90 94503050089) 5000509)905000505089 00509)00008046940050 905050505000 0)500050

94 150 0 0 0

0500.40 0..00 0000.40 O90E.CI)

94500050445050460050 94500050505000505050 00505050505000505094 00505050005000465050 00 00 MM MOB 00,00 MOD

0 0 6 0 0

Figure A-i 	Best Individual for each Generation for Run Al

Appendix A 	Results of Aerofoil Optimisation
	 ml

4/AS 75410
r 	•210) .2(50.051 2(50.50

7 plot

ON
aW 50

06225255079 OC93 GS 76 2&252a5079 04.93 GIN31312$225035 M46 79.72 	5050

1 2 3 5

1548.00

50.465004204718715005) 07.3150,0450(5110740850 07.635050500827.5008.50 07.705050505031.0525008 505055.083005)50505050

10 IS 25 40 50

.0510.00 2540.00 0..50 0,.05) 0480.00

50505008305030070331 50505050505030080850 50505050500750507550 505050 30505050305050505050

08 150 0 0 0

0030.50 0480.50 0.50 0480.50 0(00.50

08505050305075505050 50507550500830505050 48150505050505010 505050505050(5010 500850505030105048150

0 0 0 0 0

Figure A-2 	Best Individual for each Generation for Run A2

Figure A-3 	Graph of Fitnesses for each Generation for Run Al

Appendix A 	Results of Aerofoil Optimisation
	

305

A.1.2 Experiment B

Fitness Cd
Population size 50
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutation amplitude 0.5

Parameter Min Max
Thickness from camber line (% of chord length) 2 8
Position of maximum thickness (% of chord length) 55 80
Camber angle, thetaO, at trailing edge (deg) 0 30
Camber angle, thetal, at leading edge (deg) 0 30
Angle of attack (deg) -4 4

The objective of this experiment was to minimise the drag coefficient. The

experiment was repeated ten times with varying seeds for the random number

generator. Every run consistently found exactly the following best solution (for

similar reasons as those discussed under Experiment A):

Thickness from camber line (% of chord length) 2.00
Position of maximum thickness (% of chord length) 55.00
Camber angle, thetaO, at trailing edge (deg) 30.00
Camber angle, theta I, at leading edge (deg) 30.00
Angle of attack (deg) -4.00
Fitness -5.86e-2
Number of Evaluations 1100

This solution was not as expected. It was anticipated that the optimum aerofoil for

low drag coefficient would have low or zero camber and would be at an attack angle

very close to zero. Figure A-4 and Figure A-5 show the best individual from a

number of generations throughout two particular runs, BI and B2. From these

figures, it can be seen that the aerofoil generated had a high camber and negative

attack angle. The value of drag coefficient was negative which is clearly unrealistic.

There was clearly some problem with the optimisation algorithm or fluid analysis.

Appendix A 	Results of Aerofoil Optimisation
	

306

4/ASGMA
F... 	.1 64E02 -1 64-M -23E-01 .232602

wk~ 05

0011 34501W14.01$2 010351 	501501425-03.00 0210015423.75251l -113.25 02j0015421.252011 0225

60100. 	 1 2 3 5

.30102 .3240-00 .470102 400107

02I00151121.Th2571 -11325 010004.0101(014250352 02525&0130001425-01,01 01710100300227.13.04(0 01270201000)30010401

10 15 25 110 01

4000(02 00102 001.01 1101.01 1101.01

MOD 01013110130rn 0101 02 M 55M320230020400 0100 010101010)0102 00 	0111010)010100 ODD OD

01 1112 0 0 0

1101.00 3X(.00 001.00 1101.10 0(011.01

01000101010125000001 01010101010001(00100 0)0001000000000001.2 01010101010000.2 00010000000106000100

0 0 0 0 0

Figure A-4 	Plot of Best Individual for each Generation for Run Bi

4/05/11411*
dc AWOn F0111: 	 400103 401.03 .1.0102 .1.0102

S.

05
ON

s15 	40)

0162 77.56 23.52 07.20 ,0207 021277,56235207.20-0107 01276101114112544011,00 01127630110402644-64.00
G.N., 	1 2 3 5

-370142 -1701402 -1101-02 -5.44042 40102

07.3001732171204444.00 07.23017301712114404.00 2561590233000100411.02

==

010125003100221004.00 020125013256 31 	04.00
10 15 25 40 56

-50142 -50102 001.01 001.401 1101.01

523225633601320161401 02010001010030010400 WJD0101000000000100 01010001015601010101 00000100010101000156
00 156 0 0 0

001.56 11119.01 001.01 001.01 0301.01

01013000000001010000 00010101000100560101 00000000010101010101 56010101005600010156 00000101010030000156

o 0 0 2 0

Figure A-S 	Plot of Best Individual for each Generation for Run B2

Appendix A 	Results of Aerofoil Optimisation 	 307

.3

Figure A-6 	Surface Plot of Cd against Attack Angle and ThetaO

Since the camber angle and attack angle of the fittest seemed to be wrong, it was

decided to investigate how the drag coefficient varied with camber angle and the

attack angle. All parameters other than theta0 and attack angle were held constant at

the values for the best solution. A scan was undertaken calculating the drag

coefficient whilst varying thetaO from 0° to 30° and attack angle between —4° to 4°.

Looking at Figure A-6 it can be seen that the drag coefficient varies with the attack

angle as expected (it is at minimum at an attack angle of zero) with values of thetaO

up to about 15°. However, above thetaO of 15°, the drag coefficient continues

decreasing as the attack angle decreases to values below zero, which is clearly

incorrect. It can also be seen that the smoothness of the surface in this region is

reduced.

Appendix A 	Results of Aerofoil Optimisation 	 308

This highlighted a problem that was to be frequently encountered with the vortex

panel fluid analysis. It worked well for most shapes, but in some areas of the search

space, the values for lift and drag it returned were incorrect. It was also difficult to

predict in which areas it performed poorly.

A.1.2 Experiment C

This run was a repeat of Experiment B but with reduced upper-bounds on the camber

angles in order to avoid the problems encountered with false values for drag

coefficient being generated for aerofoils with negative attack angle and high camber

angles.

Fitness Cd
Population size 50
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutation amplitude 0.5

Parameter Min Max
Thickness from camber line (% of chord length) 2 8
Position of maximum thickness (% of chord length) 55 80
Camber angle, thetaO, at trailing edge (deg) 0 10
Camber angle, thetal, at leading edge (deg) 0 10
Angle of attack (deg) -4 4

The experiment was repeated ten times with varying seeds for the random number

generator. The best solution for each run was:

Run Title Cl C2 C3 C4 CS
Thickness from camber line
(% of chord length)

8.00 8.00 8.00 8.00 8.00

Position of maximum thickness
(% of chord length)

57.85 57.49 57.74 58.03 58.25

Camber angle, thetaO,
at trailing edge (deg)

0.00 0.00 0.00 0.00 0.00

Camber angle, thetal,
at leading edge (deg)

0.00 0.00 0.00 0.00 0.00

Angle of attack (deg) 0.93 1.02 0.92 0.85 0.87
Fitness

(
10) 1.92 1.92 1 	1.92 1.92 1.93

Number of Evaluations 2100 2100 1 	21001 2100 2100

Appendix A 	Results of Aerofoil Optimisation

Run Title C6 C7 C8 C9 CIO
Thickness from camber line
(% of chord length)

8.00 8.00 8.00 8.00 7.93

Position of maximum thickness
(% of chord length)

57.92 57.85 57.56 57.36 56.14

Camber angle, thetaO,
at trailing edge (deg)

0.00 0.00 0.00 0.00 0.00

Camber angle, theta!,
at leading edge (deg)

0.00 0.00 0.00 0.00 0.00

Angle of attack (deg) 0.86 0.90 1.02 1.10 0.85
Fitness

(
10) 1 	1.92 1.92 1 	1.92 1.92 1.93

Number of Evaluations 1 	2100 2100 1 	2100 2100 2100

The average Cd found was 0.01922 with a standard deviation of 0.0042.

It can be seen that all the runs converged to very similar aerofoils. With the

restriction on the camber angles added, the genetic algorithm and analysis produced

an aerofoil shape with minimum drag coefficient that looked as expected (low

camber and low attack angle) with a realistic drag coefficient. Figure A-7 and Figure

A-8 show the best individual from a number of generations for runs Cl and C2.

Appendix 'A 	Results of Aerofoil Optimisation
	 310

I45W4A
210202 1402 102 1402W 147002

S

07.93 W.025140014301WW59 07504001431.025050 07W5040511.025050

GmNw 1 2 3 5

140002 1420-02

07.50503103430L025053

22102

W,01502150.3250505023

202002

50505025505001.025050

251-02

MM921 07505142031301.325050
10 15 02 40 0

25102 7.5102

40505021505050505062

13102

505050210525050507053

1.52002

50500733505001505012

1.12002

50.509.12505050505012 50505150505050075050
40 150 102 150 775

1.8002 1.8002 13102 1,120.02 08080

5050 	33505050505053

c

080057,MMODWOOODS3 03,40035001500153 MMMODCOODMWMW OBOB5733MWOOMM.93

30 30 30 450 0

Figure A-7 	Plot of Best Individual for each Generation for Run Cl

UASJ7IM6
F4.o 	2 ASE -02 240002 245002 245002

02

02

07.1756.50501450420211 07.1750505014024242119 07.170253501402424M19 07.375&5050145012-00110

1 2 3 5

2400-50 23102

505056.50501450.42-0115

221-02

50020150015010500207

224002

00505650505007.370202

2240 102

0?,17%50021401420219 00505650025050370207

10 15 02 40 60

2.320-50 2.110W 204002 .51-02 3.920-02

5004515002505002008 04500002505006.505002 50505150505001505007 505057,400250505007.03 50505610015050025057

50 150 13 100 375

1.80-02 1,0302 1.5102 1.8002 0.51.50

5050574550500250003 025007.40505050500402 505007.40015002505003

zII•
505057,45505002030102 50505050020202500250

51 250 51 80 0

Figure A-8 	Plot of Best Individual for each Generation for Run C2

Appendix A 	Results of Aerofoil Optimisation
	 311

A.1..4 Experiment D

This experiment looked to maximise the lift/drag ratio (i.e. minimise Cd I Q.

Candidate aerofoils were penalised heavily for negative values for C1. As this was the

first experiment that attempted to optimise the lift/drag ratio, it was decided to firstly

attempt a simplified problem in which the attack angle was constrained to be 0°. It

should also be noted that the camber angles were not restricted to be below 100 but

were allowed up to 300• Since the optimal aerofoil was expected not to lie at the

extreme of the aerofoil parameter bounds, the mutation amplitude was set lower at

0.05 so that more 'fine-tuning' of aerofoil parameters was possible.

Fitness Q1 C1
Population size 200
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutation amplitude 0.05

Parameter Min Max
Thickness from camber line (% of chord length) 2 8
Position of maximum thickness (% of chord length) 55 80
Camber angle, thetaO, at trailing edge (deg) 0 30
Camber angle, thetal, at leading edge (deg) 0 30
Angle of attack (deg) 0 0

The experiment was repeated ten times with varying seeds for the random number

generator. The best solution for each run was:

Run Title Dl D2 D3 D4 D5
Thickness from camber line
(% of chord length)

3.52 4.53 4.50 4.55 3.43

Position of maximum thickness
(% of chord length)

80.00 80.00 80.00 80.00 80.00

Camber angle, theta0,
at trailing edge (deg)

20.15 19.78 19.79 19.75 20.17

Camber angle, thetal,
at leading edge (deg)

25.00 22.92 23.04 23.03 25.34

Angle of attack (deg) 0 0 0 0 0
Fitness

(
10) 3.74 3.74 1 	3.73 3.74 3.71

C/Cd 26.74 26.741 26.81 26.74 26.95
Number of Evaluations 8200 82001 8200 1 	8200 1 	8200

Appendix A 	Results of Aerofoil Optimisation
	 312

Run Title D6 D7 D8 D9 D10
Thickness from camber line
(% of chord length)

3.41 4.55 4.52 3.43 4.55

Position of maximum thickness
(% of chord length)

80.00 80.00 80.00 80.00 80.00

Camber angle, theta0,
at trailing edge (deg)

20.23 19.76 19.77 20.20 19.74

Camber angle, thetal,
at leading edge (deg)

25.27 23.03 23.03 25.28 23.02

Angle of attack (deg) 0 0 0 0 0
Fitness

(
10) 3.71 1 	3.74 3.74 1 	3.72 1 	3.74

C/Cd 26.95 1 	26.74 26.741 26.88 1 	26.74
Number of Evaluations 8200 8200 8200 8200 8200

The average C/ Cd found was 26.803 with a standard deviation of 0.09.

It can be seen that all the runs converged to aerofoils with a reasonably low

thickness, relatively high camber and maximum thickness as close to the leading

edge as the bounds allowed. This matched well with what was expected and the lift-

drag ratio was realistic.

The runs converged to two slightly different shapes, both with very similar fitnesses.

Runs Dl, D5, D6 and D9 produced an aerofoil with thickness between 3.41% and

3.52%, camber angle, thetal, between 25.00° and 25.28° and lift-drag ratio between

26.74 and 26.95. Runs D2, D3, D4, D7, D8 and D10 produced a thicker aerofoil with

thickness between 4.50% and 4.55%, camber angle, thetal, between 22.92° and

23.03° and lift-drag ratio between 26.74 and 26.81.

Figure A-9 and Figure A-10 show the best individual from a number of generations

for runs Dl and D2. Figure A-il shows a plot of minimum, mean and maximum

fitnesses for run Di. Figure A-12 shows a plot of minimum, mean and maximum lift

coefficients for run Di. Figure A-13 shows a plot of minimum, mean and maximum

drag coefficients for run Dl

Appendix A 	Results of Aerofoil Optimisation
	 313

4/A5/684&
# 	4.102 410102 4.10102 001-02

1 ~ (0
Am Pkt

15
0

w4d— 2M

01087303504101510101 0104710316.4701510101 01017103114701010101 01087103104701010101

1 2 3 5

4.10102 410102 4.10102 (1(002 4.04602

0104710311470151 910) 0104700150470151(0101 01087103164701510101 010191(0010111020193 018491(00003 1a9) 01(0

10 15 01 40 01

4,00 02 10002 10042 100.02 1001-02

==

0115010301550102010 0179910101750101 0101 017901(00155015101(0 04160101911503710101 018491010155017701(0

50 101 120 150 179

3001402 3.01002 171102 174002 000.02

01010101911501770101 01020101011501020102 0101010191152184017) 010201010115710101(0 010101(0010201010101

00 030 303 40) 0

Figure A-9 	Plot of Best Individual for each Generation for Run Dl

4105)606
—W Abmth. FIne,, 	4400-02 4.401-02 4.401-01 1.401-02

900 P64

08

(0167110190821010101 0116791019012101(010 01167910191025.01(001 011615101901250101(0

1 2 3 5

4,401-02 3.00-02 30002 3.00-02 3.841402

011778(0(0132501(0(0 08(02901190121500101 04011500100121500150 0101290110502110(001 04467902196403500101

10 15 20 40 00

381002 379002 315002 315002 174602

0402010110500325(0(0 08,400101118422630101 080001(01908220101(0 6853010110720301(001 080201(01978030201(0

01 101 129 1 s 175

374602 374042 3740-02 374002 0(00.01

0803(002 10790301(001 0102010119 78 030301(0 04 03(001197803035001 04 03(0(0157803030101 (00102(0(0(001(00101

202 250 00 403 0

Figure A-lO 	Plot of Best Individual for each Generation for Run D2

Appendix A 	Results of Aerofoil Optimisation
	 314

Figure All 	Graph of Fitness (Cdl C1) against Generation for Run Dl

04g

Figure A-12 	Graph of C1 against Generation for Run Dl

Appendix A 	Results of Aerofoil Optimisation
	 315

Figure A-13 	Graph of Cd against Generation for Run Dl

Appendix A 	Results of Aerofoil Optimisation
	 316

A.1.5 Experiment E

This was a repeat of Experiment D with a larger population size. Since the runs in

Experiment D had converged to two slightly different aerofoil shapes, it was decided

to check that Experiment D had not prematurely converged to a sub-optimal solution.

This experiment looked to maximise the lift/drag ratio (i.e., minimise Cd I Q.

Candidate aerofoils were penalised heavily for negative values for C,.

Fitness C/ C,
Population size 400
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutation amplitude 0.05

Parameter Min Max
Thickness from camber line (% of chord length) 2 8
Position of maximum thickness (% of chord length) 55 80
Camber angle, theta0, at trailing edge (deg) 0 30
Camber angle, thetal, at leading edge (deg) 0 30
Angle of attack (deg) 0 0

The experiment was repeated ten times with varying seeds for the random number

generator. The best solution for each run was:

Run Title El E2 E3 E4 E5
Thickness from camber line
(% of chord length)

2.00 2.47 3.43 4.49 3.45

Position of maximum thickness
(% of chord length)

68.29 63.76 80.00 80.00 80.00

Camber angle, theta0,
at trailing edge (deg)

28.55 27.86 20.25 19.79 20.16

Camber angle, thetal,
at leading edge (deg)

19.30 21.17 24.89 22.97 25.28

Angle of attack (deg) 0 0 0 0 0
Fitness

(
10) 9.42 203 1 	37400 37400 37200

C/Cd 1 06e 4926 26.74 26.74 26.88
Number of Evaluations 8400 84001 8400 8400 8400

Appendix A 	Results of Aerofoil Optimisation 	 317

Run Title E6 E7 E8 E9 D10

Thickness from camber line
(% of chord length)

2.22 3.45 4.49 3.35 2.00

Position of maximum thickness
(% of chord length)

60.68 80.00 80.00 80.00 65.64

Camber angle, thetaO,
at trailing edge (deg)

28.85 20.14 19.81 20.37 28.59

Camber angle, thetal,
at leading edge (deg)

12.60 25.35 22.85 24.63 22.86

Angle of attack (deg) 0 0 0 0 0

Fitness(10 6)
113 37200 37500 37400 2310

C/Cd 8850 26.88 26.67 1 	26.74 432.9

Number of Evaluations 1 	84001 8400 84001 8400 1 	8400

Figure A-14 and Figure A-iS shows the best individual from a number of

generations throughout Run El and Run E2. Runs E3, E4, ES, E7, E8 and E9

converged to aerofoil shapes similar to those found in Experiment D. However, Runs

El, E2, E6 and ElO produced an aerofoil with an unrealistic lift-drag ratio. It was

suspected that the vortex panel method was producing inaccurate results in some

parts of the search space as was found in Experiment B.

Since the thickness of the wrong 'optimal' solution from the run was against the

lower bound, it was decided to investigate how the drag and lift coefficient varied

with thickness and position of maximum thickness. A scan was undertaken

calculating lift and drag with varying thickness from 1 to 20 of chord length and

position of maximum thickness from 50 to 95 (both as a percentage of chord length).

All other variables were held constant at the values for the best solution. The results

of this are shown in Figure A-16 and Figure A-17.

Appendix A 	Results of Aerofoil Optimisation

I/ASII01A
225525 122502 125E 02 102

6(2I4402

0.V Pbt
Awdu~ 0.2

478

05340578787112852578 02.345578057111787878 053478782671158525.78 02.3405780571 12.780578

1 2 3 5

322502 12SE.02 122502 1 876.03 5.255-03

0533.7823.7112.259)11] 933493782571128539378 053425787132.25(9)19] 250)25212159325125 02.0)05217802153278(1]

10 15 126 40 8)

1.67E 03 1,87502 5.67504 7,93502 5425-25

02.0368,21250215330525 02252521785213.330378

==
33.015330)25 (07825212593193303.03 00503257813320)25

9) 125 125 325 175

547802 0..78 5(25.25 O.78 0.65.25

0525052928,25151325.25 25.0)0)0)2525782503 0503052592.1130525050) 050)0525250325030525 05250592050)050)92.0

On 0 0 0 0

Figure A-14 	Plot of Best Individual for each Generation for Run El

L40SA5MA
F8.n 	4.44002 4.44602 4.445-25 (446-25

25

4C(P(O1

-425

92927631336315.560)93 0)9)7631256316160125 3126, 63 07631786315.169278

G.No' 	1 2 3 5

4325.25 3-02 2.976402 2.925-25 2.37102

05.9378.79249310059325 934862.58259321549225 02436158258516130525 02483.7828,251673050) 01486358932516730).0

10 15 20 48 8)

2.81E.02 2675.02 544003 2.34543 572501

==

02.4844.19252516733)92 05756195038521.5725CO 78766(51058521.45059) 0541027629.2517.090532 78486(12052517022502

25 125 125 153 179

2825.04 0.256.8) 0.06.78

(0247637627.0425.179325 252505250)9)05252525 25250525258525250525 252525252525782525(78 02782525257825252525

1103 0 0 2 0

Figure A-15 	Plot of Best Individual for each Generation for Run E2

Appendix A 	Results of Aerofoil Optimisation
	 319

By considering Figure A-16 and Figure A-17, it was apparent that the accurate

calculation of both lift and drag was not possible for values for the position of

maximum thickness above about 85%. More pertinently to the problem encountered

on this run, it could be seen than although the lift was calculated accurately at low

values of thickness, the calculation of drag was not.

This problem was not encountered when a smaller population size was used because

this inaccuracy only occurs in a small part of the search space (it relies on the other

parameters, such as camber angles, being in certain ranges). With a large population

this area of the search space is more likely to be encountered, either when the initial

population was formed, or during the optimisation.

320 Appendix A 	Results of Aerofoil Optimisation

p

Figure A-16 	Plot of C, vs. Thickness and Position of Max Thickness

Figure A-17 	Plot of Cd vs. Thickness and Position of Max Thickness

Appendix A 	Results of Aerofoil Optimisation
	 321

A.1.6 Experiment F

This was a repeat of Experiment E with the lower bound on aerofoil thickness raised

from 2% to 3% in order to avoid the problems encountered with faulty fluid analysis

at small thicknesses. The upper bound on the position of maximum thickness was

also raised from 80% to 82%.

Fitness C/ C,
Population size 400
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutationanplitude 0.05

Parameter Nfin Max
Thickness from camber line (% of chord length) 3 8
Position of maximum thickness (% of chord length) 55 82
Camber angle, thetaO, at trailing edge (deg) 0 30
Camber angle, thetal, at leading edge (deg) 0 30
Angle of attack (deg) 0 0

The experiment was repeated ten times with varying seeds for the random number

generator. The best solution for each run was:

Run Title Fl F2 F3 F4 F5
Thickness from camber line
(% of chord length)

3.11 4.48 3.64 4.47 4.48

Position of maximum thickness
(% of chord length)

79.09 79.99 79.98 80.00 79.98

Camber angle, theta0,
at trailing edge (deg)

20.69 19.81 20.06 19.82 19.80

Camber angle, thetal,
at leading edge (deg)

23.09 22.90 24.98 22.82 22.93

Angle of attack (deg) 0 0 0 0 0
Fitness

(
10) 3.77 1 	3.74 3.75 3.75 3.74

C/Cd 26.521 26.74 26.67 26.67 26.74
Number of Evaluations 124001 8400 8400 8400 8400

Appendix A 	Results of Aerofoil Optimisation
	 322

Run Title F6 F7 F8 F9 FlO
Thickness from camber line
(% of chord length)

4.50 4.79 3.58 3.35 4.54

Position of maximum thickness
(% of chord length)

79.98 79.99 79.80 80.00 79.98

Camber angle, thetaO,
at trailing edge (deg)

19.77 19.43 19.81 19.87 19.75

Camber angle, thetal,
at leading edge (deg)

23.03 23.14 22.85 25.15 23.03

Angle of attack (deg) 0 0 0 0 0
Fitness (

iø 374 377 375 3.77 3.74

C/Cd 26.74 26.52 26.67 26.52 26.74
Number of Evaluations 1 	8400 8400 8400 1 	8400 1 	8400

The average C/Cd found was 26.653 with a standard deviation of 0.097.

These results matched the solutions found in Experiment D. Figure A-18 shows the

best individual from a number of generations throughout the Run Fl. Again, as in

Run D, the runs converged to two slightly different shapes, both with very similar

fitnesses.

323 Appendix A 	Results of Aerofoil Optimisation

11AS113144
Fb,e 	&2-O2 12EO2 4.X(02 4-02

, 	 2144O3
1444

y pla

AMDA~4* 0.05

- 400

oa2576431a92n94 MOD oa2o7a4318922zs4MOO 03,207431a9234 MOD

GNo. 	1 2 3 5

4.2CI02 4202 4 . 20E -(4.102 4130.02

0325 	31a039490w

==
0325704310922294(9190

==
(0320711431892229419100 9)78121884225300(0 oa0079.121a0225.949090

10 (5 25 40 60

4 . 09E 02 4,6002 387040 3.74]2 . 	 378(40

034977.561&9225.94MOD o34977.0010922234(01W 04.73786516.92229490(0 11311789020692294(0(0 3011 9.902(16972.9490(0

80 100 125 150 175

377(02 177002 377(40 030E.O3 000E.00

03.11 79.902(16322030(100 03.1179.032(16923.070300 03.1178900363210900.30 011300(10000.30030000.00 90(090.90909090000390

200 250 300 0 0

Figure A-18 	Plot of Best Individual for each Generation for Run Fl

Appendix A 	Results of Aerofoil Optimisation
	

324

A.1.7 Experiment G

This run repeated Experiment F but allowed the attack angle to vary from a lower

bound of 4° to an upper bound of 4°. Again, this experiment looked to maximise the

lift/drag ratio (i.e. minimise Cd / C1). Candidate aerofoils were penalised heavily for

negative values for C1.

Fitness Q1 CI
Population size 400
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutation amplitude 0.05

Parameter Nfin Max
Thickness from camber line (% of chord length) 3 8
Position of maximum thickness (% of chord length) 55 82
Camber angle, thetaO, at trailing edge (deg) 0 30
Camber angle, thetal, at leading edge (deg) 0 1 	30
Angle of attack (deg) -4 1 	4

The experiment was repeated ten times with varying seeds for the random number

generator. The best solution for each run was:

Run Title GI G2 G3 G4 G5
Thickness from camber line
(% of chord length)

6.74 4.68 5.08 4.51 4.44

Position of maximum thickness
(% of chord length)

64.53 67.05 57.76 76.67 73.00

Camber angle, theta0,
at trailing edge (deg)

15.17 18.76 16.17 21.97 26.56

Camber angle, thetal,
at leading edge (deg)

22.88 22.77 19.05 16.57 24.98

Angle of attack (deg) -2.70 -2.54 -2.98 -2.60 -2.24
Fitness

(
10) 17.6 5.79 22.9 2.51 30.2

C/Cd (106) 0.568 1.73 0.437 3.98 0.331
Number of Evaluations 8400 8400 84001 84001 8400

Appendix A 	Results of Aerofoil Optimisation
	

325

Run Title 06 07 G8 G9 GlO
Thickness from camber line
(% of chord length)

3.00 6.92 5.63 6.02 3.46

Position of maximum thickness
(% of chord length)

70.85 63.69 76.62 72.62 78.88

Camber angle, thetaO,
at trailing edge (deg)

19.17 20.16 28.06 21.85 22.52

Camber angle, theta!,
at leading edge (deg)

24.08 23.06 19.97 27.43 28.47

Angle of attack (deg) -2.56 -2.72 -2.35 -2.48 -2.32
Fitness

(
10) 2.66 10.0 12.1 8.32 1 	14.6

C11Cd(106) 3.76 0.999 0.826 1.201 0.684
Number of Evaluations 84001 84001 8400 84001 8400

Figure A-19 shows the best individual from a number of generations throughout the

Run Gi. This solution again produced unrealistic results. This was due to the same

problem encountered in Experiment B where the vortex panel was unable to

calculate drag correctly for aerofoils with large camber angles and negative attack

angles. This can be seen by considering Figure A-20 which shows the drag

coefficient against generation.

326 Appendix A 	Results of Aerofoil Optimisation

Fs 	150404 1 	04 1 	04 100404
S. 27 aLsO)
s 1012

400

704727140718125400204 001271 46130264064 (012714013aI400484 (0127116l381 04400I

GINO_ 	I 2 2 5

1504-54 1.04 1.404 01-04

I(01271461301044004 044173(004421618.5204 0441 734004421648027$ (0(0040319(017)24103 04505203790417)2.0I$3

tO 16 25 40 60

5404-04 710604 170600 (.70641 1 706.00

(409052(fl194017)2.0193 (r 746403161722040210 (674045315172206.0275 0474645315172104.0470 067461631517720404?0

04 104 125 100 175

1.7(0.06 OC4X.00 0..00 0066.00

(074s4$310122(00410 (0000004(000060406(0 040400060604250404(02 0404060440(006042504 04040600042500040404

202) 0 0 0 0

Figure A-19 	Plot of Best Individual for each Generation for Run Gi

Figure A-20 	Graph of Cd against Generation for Run Gi

Appendix A 	Results of Aerofoil Optimisation
	 327

A.1.8 Experiment H

This run repeated of Experiment G, but with the maximum camber angles restricted

to 100, in order to avoid the problems with the faulty fluid analysis at high camber

angles and negative attack angles.

Fitness CJ C1
Population size 400
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutation amplitude 0.05

Parameter Nfin Max
Thickness from camber line (% of chord length) 3 8
Position of maximum thickness (% of chord length) 55 82
Camber angle, theta0, at trailing edge (deg) 01 10
Camber angle, thetal, at leading edge (deg) 0 10
Angle of attack (deg) -4 4

The experiment was repeated ten times with varying seeds for the random number

generator. The best solution for each run was:

Run Title Hi H2 H3 H4 H5
Thickness from camber line
(% of chord length)

7.87 8.00 8.00 8.00 8.00

Position of maximum thickness
(% of chord length)

73.84 74.11 55.66 65.12 73.91

Camber angle, theta0,
At trailing edge (deg)

10.00 10.00 10.00 10.00 10.00

Camber angle, thetal,
At leading edge (deg)

10.00 10.00 10.00 10.00 10.00

Angle of attack (deg) -0.31 -0.14 -0.32 -0.49 -0.23
Fitness

(
10) 8.23 8.26 8.97 8.77 8.21

C/Cd 12.15 12.11 11.15 11.40 12.18
Number of Evaluations 8400 8400 84001 8400 1 	8400

Appendix A 	Results of Aerofoil Optimisation
	 328

Run Title 116 H7 H8 H9 H10
Thickness from camber line
(% of chord length)

8.00 8.00 8.00 8.00 8.00

Position of maximum thickness
(% of chord length)

55.66 65.35 73.90 73.81 73.93

Camber angle, thetaO,
At trailing edge (deg)

10.00 10.00 10.00 10.00 10.00

Camber angle, thetal,
At leading edge (deg)

10.00 10.00 10.00 10.00 10.00

Angle of attack (deg) -0.32 -0.45 -0.23 -0.20 -0.23
Fitness

(
10) 8.97 1 	8.78 1 	8.21 1 	8.22 8.21

C1Cd(106) 11.15 11.39 1 	12.18 1 	12.17 12.18
Number of Evaluations 8400 8400 1 	84001 84001 8400

The average C/Cd found was 11.806 with a standard deviation of 0.467.

The runs converged to two slightly different shapes. All runs converged to aerofoils

with a maximum thickness of 8.00% (except Hi with 7.87%), and camber angles,

thetal and theta2, of 10°. However, runs Hi, 112, H5, H8, H9 and 1110 produced

aerofoils with the position of maximum thickness at between 73.81% to 73.93% of

chord length, attack angle of between -0.14° and -0.31°, and lift-drag ratio between

12.11 and 12.18. Runs H3, 114, H6 and 117 produced an aerofoil with the position of

maximum thickness at between 55.66% to 65.35% of chord length, attack angle of

between -0.32° and -0.49°, and a worse lift-drag ratio between 11.15 and 11.39. This

would seem to indicate that runs H3, 114, 116 and H7 had converged prematurely to a

sub-optimal solution.

It should be noted that all these solutions were considerably worse than the aerofoil

profile found in Experiment F which had a fitness of 3.77e-2 (C/ Cd = 26.5), despite

the fact that this experiment had a considerably larger search space (attack angle was

not included in Experiment F). This is discussed further in Section 3.5. Figure A-21

shows the best individual from a number of generations throughout Run Hi.

Appendix A 	Results of Aerofoil Optimisation 	 329

4/ASAOMA
F8neu 	1.01 109(01 142041 1.07(01

8' 214403
,. 	193

y Pd

N
'-Th cT 0 -Th

09AN 	401

0742S1.704309040956 076261.700913oao415G 07.62 71135

G.No 	1 2 3 5

1.07E-01 a72Eo2 472(02 8.72(42 802(02

(88)79351a09082(0998

)

07.5174.1510.0909870911

)

0751 74.75100909870111

)

07.5174.1510099(070911 (090974091512(0956(10.11

10 	• 15 25 40 09

051E42 8NL432 829(02 8.2.02 823E02

07,5174.750899100142.10 07.5174.15100910.0900.10 08017584100910004110 07.8773.841009100942.30 07.0771841001100909.09

Nt) 151) 13 150 175

823042 0090.09 0090.00 0(510.09

u7.877384108)1001'(51.31

c. .

0809089(08099(4209.09 09010801080908510009 09.9(09.0909.0909.9(0101 00010801000100095142

209 0 0 0 	. 0

Figure A-21 	Plot of Best Individual for each Generation for Run Hi

Appendix A 	Results of Aerofoil Optimisation
	

330

4.2 Unsmoothed Bézier Representation

A.2.1 Experiment I

An experiment was undertaken using the unsmoothed Bézier representation. The

population was initialised by perturbing the control points from those of a given

aerofoil profile. The size of this perturbation was user-defined as a proportion of the

range of the relevant parameter (a value of 0.5 was used for Experiment I). The given

aerofoil profile and specified bounds are given below:

Parameter Lower Bound Sample Aerofoil Upper Bound

Control Point 1 Radius (m) 1 1 1
Control Point 1 Angle (rad) -0.5 It -0.5 ,n -0.5 it
Control Point 2 Radius (m) 0.2 0.25 0.5
Control Point 2 Angle (rad) 0.4 it 0.42 it 0.44 it
Control Point 3 Radius (m) 0.2 0.25 0.5
Control Point 3 Angle (rad) 0.31 it 0.32 It 0.35 it
Control Point 4 Radius (m) 0.2 0.25 0.5
Control Point 4 Angle (rad) 0.23 it 0.25 it 0.27 it
Control Point 5 Radius (m) 0.2 0.25 0.5
Control Point 5 Angle (rad) 0.14 it 0.16 It 0.18 It
Control Point 6 Radius (m) 0.2 0.25 0.5
Control Point 6 Angle (rad) 0.06 it 0.08 it 0.10 it
Control Point 7 Radius (m) 0.2 0.25 0.5
Control Point 7 Angle (rad) -0.02 ii 0.00 it 0.02 it
Control Point 8 Radius (m) 0.1 0.2 0.3
Control Point 8 Angle (rad) -0.1 it -0.08 it -0.06 it
Control Point 9 Radius (m) 0.1 0.2 0.3
Control Point 9 Angle (rad) -0.18 it -0.16 ii -0.14 it
Control Point 10 Radius (m) 0.1 0.2 0.3
Control Point 10 Angle (rad) -0.277T -0.25 it -0.23 it
Control Point 11 Radius (m) 0.1 0.2 0.3
Control Point 11 Angle (rad) -0.35 it -0.33 it -0.31 it

Control Point 12 Radius (m) 0.1 0.2 0.3
Control Point 12 Angle (rad) -0.44 it -0.42 it -0.40 it

Appendix A 	Results of Aerofoil Optimisation 	 331

Experiment I used the following genetic algorithm parameters:

Fitness CJ C1
Population size 400
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutation amplitude 1.0

Figure A-22 shows the best individuals generated through the run. The best

individual had an unrealistic fitness of 8.57e-5 (C/Cd of 11700). Numerous runs

were undertaken with various initial base aerofoil profiles, each produced similarly

unrealistic results to these.

4/4575W.
F*.s 	4.48(03 4.403 4.48(03 448(43

. 22.44.03
158

i44e 02
.---- .- -.---- 	 ..- - -..--.

ON --
'35

2 2 5

4.48(-03 37E04 6376-04 637(44 1.61(44

10 15 25 40 05

1.(-04 1.44 1.44 1.44 0.57(05

05 135 125 150 175

9576-05 676L.35 0..8(0.35

235 0 0 0 0

Figure A-22 	Plot of Best Individual for each Generation for Run 11

Appendix A 	Results of Aerofoil Optimisation
	 332

A.3 Smooth Bézier Representation

A.3..1 Experiment J

It was thought that one possible cause of the analysis problems encountered in

Experiment I was the presence of 'kinks' in the aerofoil shapes. Therefore, a second

Bézier representation was tried in which C1 continuity was imposed between the

Bézier curves except at the trailing edge, as described in Section 3.3.1.3.

The population was initialised by perturbing the control points from those of a given

aerofoil profile within a set of specified bounds, in the same was as described in

Section A.2.1 for Experiment I. It should be noted that, with this representation, the

position of control points 4,8 and 12 are not set independently of the other control

points, but instead are 'repaired' to lie halfway between adjacent control points.

The following run was undertaken using the smooth Bézier representation.

Fitness CJ C1
Population size 400
Proportion of population to breed per generation 0.1
Mutation rate 0.2
Mutation amplitude 0.01

Figure A-23 shows the best individuals generated through the run. The best

individual had an unrealistic fitness of 5.55e-8 (Cl/Cd of 1.8e6). Again, numerous

runs were undertaken with various initial base aerofoil profiles, each produced

similarly unrealistic results to these.

Appendix A 	Results of Aerofoil Optimisation
	

333

4/A$IGt4A
F 	1la0 1.I.01 1 111-01 7X .02

ate 224403
m. 104

yPloI -

lalt 52 - •---
am -

ON
0un 111

Gsi14. 	1 2 3 5

111U2 3115-02 1.215-02 7103 ORE

10 15 25 40 02

5.05 5-05 624E-M 52115

11 102 125 150 175

52E06 5211.50 55ma 0C11.02

250 300 1 	 0 0

Figure A-23 	Plot of Best Individual for each Generation for Run Ji

