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Abstract 

The primary aim of the work described in this thesis was to develop novel techniques 

for shape optimisation that can effectively search through a large generality of 

shapes. This would allow a computer to be used in a more creative way to synthesise 

shapes for engineering components, given a specification of their desired function. 

To achieve this, investigations into the use of novel shape representations and 

algorithms for shape optimisation were undertaken. Three examples of work done on 

shape optimisation for engineering components, using evolutionary algorithms and 

various shape representations, and the problems encountered in linking them together 

effectively with the analysis module, are described. These examples are aerofoil 

profile optimisation with a genetic algorithm, optimisation of a constructive solid 

geometry solid model with genetic programming and structural optimisation of a 

voxel shape representation with a genetic algorithm. 

One conclusion of these investigations was that, when the set of shapes to be 

searched is large and general, it is often difficult to analyse correctly all the possible 

shapes. This can cause optimisation algorithms to optimise to shapes that are in 

practice sub-optimal. Additionally, there is only limited opportunity for the search 

through the set of shapes to be influenced by the analysed performance of the shape. 

This thesis argues that using a common representation for both the geometry and 

physical behaviour would allow a number of novel and effective algorithms for 

shape optimisation to be developed. The representation proposed is based on Chain 

models using cell complexes and chains from algebraic topology. 

As an example of a new approach to shape optimisation enabled by the new 

representation, a novel algorithm that adds a morphogenetic stage to a genetic 

algorithm for structural optimisation, is also described. In initial studies this method, 

in which a shape is grown in response to both its genetic growth rules and structural 

performance, was found to be an effective approach to structural optimisation. 
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1 Introduction 

1.1 What is Shape Optimisation? 

Shape optimisation techniques are an attempt to automatically find the optimal 

geometric shape for an engineering component. Shape optimisation programs 

integrate optimisation algorithms, geometric modelling and engineering analysis 

algorithms into an automated computer-aided design process. 

Typically, shape optimisation applications are classified by the behaviour of the 

component that is to be optimised. Structural shape optimisation and aerodynamic 

shape optimisation are the two problems that have received much attention by 

researchers. Work has also been reported in areas such as acoustics [Fisher 1995] 

[Soize & Michelucci 2000] [Bangtsson et al. 2003], magneto-statics [Kasper 1993] 

and manufacturing cost minimisation [Barton 2002] [Chang & Tang 2001]. 

Structural optimisation [Vanderplaats 1993] [Hsu 1994] [Sobieszczanski-Sobieski 

1986] [Haftka & Grandhi 1986] seeks to find the optimal shape for a component 

which is subjected to some external loading. Often it is the weight of the component 

that is to be minimised, whilst also ensuring that the maximum stress remains within 

the yield stress of the component's material. Sometimes it is the maximum 

displacement that is to be minimised, when the component is subjected to a load with 

a constraint on weight. Structural optimisation can be further sub-divided into 

topology optimisation, size optimisation and structural shape optimisation. 

Topology optimisation [Bulman et al. 2001], as its name suggests, looks to find the 

best topology for a structure. Often this is to find a topology for a truss structure. 

Size optimisation seeks to find the best value for dimensions of a component, for 

instance thickness or diameter, where the overall two-dimensional shape is fixed. 

Shape optimisation has come to mean finding the optimal shape given a particular 

topology. However, throughout this thesis, shape optimisation will be used to refer to 

all of topology optimisation, size optimisation and shape optimisation as it is the 
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author's opinion that topology and size are merely aspects of a component's shape. 

Indeed some researchers are now looking to integrate topology and shape 

optimisation [Bremicker et al. 1991] [Cappello & Mancuso 2003]. 

The typical aim of aerodynamic optimisation [Jameson et al. 1998] is to find a shape 

that minimises drag in a given flow whilst, perhaps, remaining within a specified lift 

constraint [Quagliarella & Cioppa 1995] [Burgreen et al. 1994]. Examples have also 

been described where other aerodynamic quantities, such as pitching moment and 

pressure distributions, are optimised [Fillipone 19951. Many applications of 

aerodynamic shape optimisation are in the aircraft industry, both for the design of 

aircraft components [Doorly et al. 1996b] [Eleshaky & Baysal 1991] and 

aeroengines [Burguburu & le Pape 03] [Rogalsky et al. 1999a] [Song et al. 2002], 

although Fillipone optimises aerofoil sections for a wind turbine. 

Most of the work to date has described shape representations for single criterion 

optimisation, although many researchers are interested in multi-criteria problems 

[Quagliarella & Vicini 2000] [Seller et al. 1996] [Vicini & Quagliarella 2000] 

[Lesieutre et al. 19981. There are many practical design situations where there are a 

number of objectives, for instance, an aircraft wing must have an optimised 

aerodynamic shape, as well as an optimised structural shape. [Fugsland & Madsen 

1999] describe the use of multi-criteria optimisation of wind turbine rotors. 

1.2 Search Algorithms as Part of the Design Process 

Engineering design is a process which aims to create artefacts that meet a particular 

need. Design specifications can be formulated which describe the requirements for 

the product. The design process can be seen as a decision making process in which 

these specifications are transformed into sufficient information for the creation and 

use of the artefact, throughout its lifecycle, from manufacture, through use to, 

possibly, its decommissioning. [Gero 1990] characterises design activity as 'a goal-

oriented, constrained, decision-making, exploration and learning activity'. 
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[Gero 1990] identifies three classifications of design: routine, innovative and 

creative. He defines routine design as 'that design which takes place within a well-

defined state space of potential designs'. This state space of potential designs is 

considerably smaller than the space of all possible solutions. Routine design looks to 

vary the values of variables in existing 'prototypes'. Innovative design similarly 

takes place within a well-defined state space of potential designs, but 'designs 

produced are outside the routine or 'normal' space', produced by 'manipulating the 

ranges of values for variables'. He defines creative design as 'that design which uses 

new variables producing new types and as a result extending or moving the state 

space of potential designs'. 

Design can be seen as the search for a suitable or optimal design [Gero 1996] 

[Renner & Ekárt 2003] within a state space of potential designs. A search problem 

consists of a goal state, a search space and a search process. For design, the goal state 

is a design which, perhaps optimally, matches the requirements defined by the 

specifications. The search space is the set of all those designs that can be formed 

from all possible values of the design parameters. Optimisation algorithms, and in 

this thesis particularly Evolutionary Algorithms, are one possible search process by 

which the goal state can be found from the search space. 

1.3 Shape Optimisation as Part of the Design Process 

An important area of design research concerns the process of generating the 

geometric form for a component, given a desired function or behaviour for that 

component [Roy et al. 2001] [Shapiro & Voelcker 1989]. It would be helpful if 

computer tools could be developed which could take a desired function and, from 

this, produce a geometry that would exhibit such a behaviour. However, specifying 

function in a way that can be used to generate form has proved to be difficult [Roy & 

Bharadwaj 2002] and so the design of form is still regarded largely as a creative 

process undertaken by imaginative humans. 



1. 	Introduction 	 14 

Recently, 'features' have been proposed as an approach to integrating function and 

form [Shah 1991]. Clearly, geometry often plays a uniquely important role in the 

representation of an engineering component. It therefore seems reasonable to group 

together aspects of a component's geometry into features and to attach information 

about the component's function, or possibly manufacturing process, to these features. 

There are, however, many different definitions of what constitutes a feature and 

equally many different approaches to generating form given the requirement for a 

particular set of features. Features only go a short distance toward the automatic 

generation of form from function. 

The automatic generation of form, given a desired function, therefore seems 

problematic. However, the inverse of the geometric design process, namely the 

determination of the physical behaviour of a component given a particular geometry, 

is becoming increasingly easy for engineers and designers. Previously, engineers 

relied on empirical models, or analytic solutions to the equations governing the 

behaviour of components. This was restricted to a limited number of shapes and 

behaviours. The development of computational tools such as the finite element 

method [Desai & Kundu 2001] and computational fluid dynamics [Jameson 2001] 

has greatly increased the range of phenomena and shapes that can be analysed. 

In the design process, such tools are typically used to assess a prototype design in 

order to find where the design is deficient or needs changing. Following the analysis, 

the designer either accepts that the design is adequate or changes the design and, 

possibly, undertakes a further analysis on the new design. This interactive process 

continues until an adequate design is found. Shape optimisation is an attempt to 

automate part of this process. Rather than a human designer changing the geometry 

of the design in response to the analysis, a computer program is used to make the 

changes in order to find an optimal geometry. [Papalambros 2002] reviews the 

current state-of-the-art for optimisation in the design process. 
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1.4 Evolutionary Algorithms in Design 

Evolutionary Algorithms (EAs), such as the Genetic Algorithm [Holland 1975] 

[Goldberg 1989] [Davis 1991], Evolution Strategies [Rechenberg 1973] [Schwefel 

1981] [Back et al. 1991] [Back 1996], Genetic Programming [Cramer 1985] [Koza 

1990] [Koza 1992] and Evolutionary Programming [Fogel et al. 1966] [Fogel 1995] 

[Sebald & Fogel 1994], are search techniques which are inspired by an abstract 

model of how evolution takes place in biology. They are adaptive stochastic search 

techniques. A brief overview of the concepts and processes common to all EAs is 

given here to ensure the clarity of the following sections, however, for a more 

detailed treatment of EAs, the reader is referred to Section 2.3.4.2. 

In an EA a population of individuals is maintained, where each individual represents 

a candidate solution. Each individual has a genotype, which is a structure that can be 

decoded to form the candidate solution. The genotype consists of a set or string of 

genes. A gene has a number of possible values that are its alleles. In order to test the 

fitness of an individual, it is necessary to transform the genotype to a phenotype. 

Often this process is trivial, but this might not necessarily be the case. Mimicking 

natural selection, parents from the population are selected with some bias towards 

the better (fitter) solutions. From these parent solutions, offspring solutions are 

generated in various ways, by using operators, which recombine or change the 

genes. Operators are usually chosen so that that the offspring inherit some of the 

attributes of their parents. These are then evaluated, placed in the population, and can 

subsequently be chosen as parents themselves. Often at this point, some of the least 

fit individuals are culled (i.e. removed) from the population. This process repeats a 

number of times generating subsequent generations. This pseudo-Darwinian 

selection and breeding is intended to result in those properties that promote greater 

fitness being transmitted throughout the population. Selection of the fittest should 

result in increasingly good solutions appearing. 

Evolutionary algorithms have a number of desirable properties, over other 

optimisation algorithms (see Chapter 2), for use in design: 
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• No derivatives need to be calculated. EAs are therefore easily integrated with any 

form of evaluation routine that may be required. 

• They can deal with noisy landscapes. Since EAs do not use gradient information 

and make no assumptions about the smoothness of the landscape, they can cope 

with problems where small changes in variables can result in relatively large 

changes in the objective function, due to discretisation errors, for example. Such 

phenomena can often be observed in shape optimisation problems. 

• They can cope with discontinuities in the landscape. EAs can optimise even 

where the objective function changes discontinuously with design variables. 

• Discrete variables can be used. If appropriate operators are used, then EAs can 

deal with problems where the variables are not continuous [Deb & Goyal 1997]. 

An example of when this might be useful is where, for instance, the number of 

holes in a component is variable, as well as the sizes of those holes. 

• EAs are (potentially) global optimisers. Although care must be taken to initialise 

the population correctly and to set EA parameters such as mutation rate and 

population size appropriately [Goldberg 1999], EAs can avoid merely finding a 

local optimum and can search through a large part of the search space for the 

global optimum. 

• It is easy to deal with constraints with an EA. Some classical optimisation 

techniques have to be restricted to convex search spaces or must make special 

provision for dealing with constraints. With EAs these difficulties can be avoided 

with simple strategies, such as penalising fitness relative to the extent to which 

the constraints are violated, and thereby evolve away from these parts of the 

search space. Unfeasible individuals might just not be allowed to breed. 

Alternatively, individuals can be repaired to satisfy the constraints. 

• EAs can use problem specific operators. EAs are not restricted to simple 

operators for moving around the search space. Whereas classical optimisation 
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techniques can only move within a local neighbourhood of the current point in 

the search space, EA operators can be designed using knowledge that the 

designer has about the nature of the problem. This can allow the EA to move 

about the search space in a more 'intelligent' way. 

These advantages have led to a large body of research being undertaken with EAs in 

design. Some of this work is to apply EAs to problems to which classical techniques 

could not be applied because gradients could not be calculated or where the 

landscape is unsuitable. Alternatively, they have been used in order to search for 

global optima through larger search spaces, where, for instance, some of the design 

variables are discrete. This allows for the extension of the optimisation paradigm 

further into the design process. 

The principal disadvantage of genetic algorithms is the need, in general, for a large 

number of function evaluations. One way in which this problem can be ameliorated 

is by using parailelisation. Because LAs deal with a population of solutions, they can 

easily be adapted so that a number of evaluations can take place on different 

processors (for shape optimisation a large proportion of the computation takes place 

in evaluation). [Cantu-Paz 1997] and [Nowostawski & Poli 1999] cover the use of 

parallelism for EAs. 

[Renner & Ekárt 2003] gives a recent review of the use of genetic algorithms in 

computer-aided design. [Alander 1994] provides a bibliography of genetic 

algorithms in computer-aided design although there has been a considerable volume 

of research in this area since its compilation. [Giannakoglou 2002] gives a recent 

review of the use of stochastic optimisation techniques for aerodynamic optimisation 

concentrating primarily on EAs. 

[Winter et al. 1995], [Gen & Cheng 1997], [Bentley 1999] [Pan-nee et al. 1993] and 

[Parmee 1993] give examples of the use EAs in design. 
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1.4.1 Routine Design with Evolutionary Algorithms 

Evolutionary Algorithms lend themselves well to parametric or routine design [Gero 

1990], where the structure of the design, and the variables allowing variation of the 

design within that structure, are well defined. The design process can be seen as the 

determination of values for those variables such that some measure of the design's 

utility (fitness) is optimised. The variables can be directly encoded as genes, with 

values for those variables being alleles for those genes. The genes together form the 

chromosome. The search space is thus determined by the range of values that the 

genes can take. 

The majority of work done with Evolutionary Algorithms in design falls under this 

category. The variables to be used, and the ranges of those variables, are predefined 

and the EA is required to find values for those variables to optimise some objective. 

[Bentley 1999] refers to this as Evolutionary Design Optimisation, and a number of 

articles on this topic are included in his book. [Eby et al. 1999a] [Eby et al. 1999b] 

look to optimise a flywheel. [Robinson et al. 1999] describe the use of EAs in the 

design of satellite booms and load cells. 

The number of papers describing work in this area is large and a comprehensive 

survey is not given here. However, some examples are [Husbands et al. 1996] who 

use genetic algorithms to design an aircraft wingbox. [Annicchiarico & Cerrolaza 

1998] use genetic algorithms to optimise a truss structure. [Deb & Goyal 1997] use 

examples of the design of a gear train, a spring, a hydrostatic thrust bearing and a 

welded beam, and show the ability of a genetic algorithm to cope with mixed discrete 

and continuous variables. [Mäkinen et al. 1999] investigate a parallel genetic 

algorithm for the multi-disciplinary shape optimisation of aerofoils for both 

aerodynamic and electromagnetic (radar cross section) behaviour. [Quagliarella & 

Cioppa 1994] [Quagliarella & Cioppa 1995] [Oyamaa et al. 2001] [Doorly et al. 

1996b] [Obayashi & Takanashi 1995] [Quagliarella & Vicini 2001] all look at the 

aerodynamic optimisation of transonic aerofoils. [Winter et al. 1995] contains a 
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number of examples of routine design with genetic algorithms. [Chen 2001] looks to 

optimise a structure for crash-worthiness. 

Further details on EAs in shape optimisation specifically, for both structural and 

aerodynamic behaviour, are given in Section 2.3.4.3 and Section 2.3.4.4. 

1.4.2 Creative Design with Evolutionary Algorithms 

Whether computers can be creative is a contentious issue. [Boden 1991] discusses at 

some length creativity and computers. Reviews of her book in [Haase 1995] [Lustig 

1995] [Perkins 1995] [Ram et al. 1995] [Schank & Foster 1995] [Turner 1995] and 

her reply [Boden 1995] provide an interesting discussion of the topic, along with 

Boden's later paper [Boden 1998]. 

Boden classifies creativity into three different types: combinatorial, exploratory and 

transformational [Boden 19981. Combinatorial creativity involves the juxtaposition 

of familiar ideas or structures in novel ways. Exploratory creativity involves the 

search through a structured conceptual space. This, she says, can produce novel and 

unexpected structures, but they, clearly, 'satisfy the canons of the thinking-style 

concerned'. The parallels between this and Gero's routine design [Gero 1990] are 

apparent. 

Transformational creativity involves 'the transformation of some (one or more) 

dimension of the space, so that new structures can be generated which could not have 

arisen before'. Again, this matches well with Gero's creative design [Gero 1990]. 

The line between exploratory and transformational creativity is somewhat unclear, as 

recognised by Boden: 'exploration of the space can include minimal 'tweaking' of 

fairly superficial constraints. The distinction between a tweak and a transform is to 

some extent a matter of judgement'. 

Boden suggests that creativity involves 'going beyond the bounds of a 

representation' [Boden 1991], so that a novel solution is generated which could not 
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have been given by the representation. She does not think that a computer is capable 

of this kind of creativity. 

[Bentley & Come 2001a] give a number of descriptions of creativity as a process that 

have been given by various sources. These include: 

In the context of design, [Rosenman 1997] states that 'the lesser the knowledge 

about existing relationships between the requirements and the form to satisfy 

those requirements, the more a design problem tends towards creative design'. 

This is a description which [Bentley 1999] finds useful. It does not explicitly define 

what creativity is, but rather presents design on a continuum from creative to routine 

based on the a priori knowledge available for transforming the requirements into a 

design. 

A second definition given by [Bentley & Come 2001a] is that creativity is 

'exploring a search space in an innovative and efficient way'. 

With this definition, the creativity depends on how innovative or efficient the search 

is. This, though, is essentially the same as Gero's routine design and it would seem 

difficult to determine the boundary between when a search is being creative and not. 

It certainly conflicts with Boden's definition of creativity as 'going beyond the 

bounds of a representation', since all the designs produced would be set out by the 

representation that defines the search space. It does, though, match with her 

exploratory creativity. 

A third definition from [Gero 1996] is that creativity involves 'exploring 

alternative search spaces'. 

Many of the systems for 'creative design' make use of a changing representation in a 

number of ways throughout the search. In some of the more advanced EAs, the 

number of variables can be changed, the coding can change, redundancy can be 

incorporated into the genotype, and various high-level structures can be evolved and 
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reused [Schoenauer 1996]. Thus the representation can be evolved along with the 

design and, arguably, alternative search spaces are explored. 

[Bentley 2000] strongly advocates the use of representations that are based on 

components, rather than parameterisations, in order to allow evolution to design 

more creatively. The number and type of components can be evolved, along with the 

way they are arranged. Embryogenies can be used, in which the genotype to 

phenotype mapping can be more or less complex [Angeline 19951 [Kumar & Bentley 

1999] [Kumar & Bentley 2003b]. This may allow complex structures to be 'grown' 

in the phenotype. This is discussed in more detail in Section 8.2.2. 

These approaches are more creative than traditional uses of EAs with simple 

parametric representations, in the sense of (a) above. Such approaches show promise 

for generating form with less prior knowledge about the nature of the form to be 

generated. 

They would not, however, be seen as creative given Boden's definition of creativity 

as 'going beyond the bounds of a representation'. All of the possible designs that can 

be generated in these 'creative systems' can be viewed as a single 'super-search-

space'. The system searches through this space. It is certainly true that this new 

search space is potentially larger and more general. It may also be more easily 

searched. Solutions with complex structures may also be produced. This search space 

is, though, implicitly defined when the designer sets up the search - the system 

cannot generate a solution that lies outside this space. The efficacy of using search 

for design depends on defining a search space with relevant size and generality and a 

suitable way of searching the space. The use of evolving and varying representations 

may be a useful tool for doing this, but there may be other methods of achieving the 

same end result with similar 'creativity'. 

(d) A fourth definition from [Goldberg 1999] is 'transferring useful information from 

other domains'. He distinguishes between innovation, which involves discovery 
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within a discipline, and creativity, which involves use of knowledge from outwith 

that discipline. 

It seems that, until what it is to be creative can be defined, it will be impossible to 

determine whether computers can undertake creative design. [Bentley & Come 

2001b] contains a numbei of articles on Creative Evolutionary Systems that describe 

their use on a wide range of domains, from art and music, architecture, circuit design 

to antenna design. 

[Bentley 19991 states that research into creative evolutionary design is concerned 

with the preliminary stages of the design process and can be categorized as 

conceptual evolutionary design and generative evolutionary design. These are 

discussed in the following two sections. 

1.4.2.1 Conceptual Design with Evolutionary Algorithms 

Conceptual design [Hsu & Liu 2000] [Hsu & Wonn 1998] [Wang et al. 2002b] takes 

place early in the design process [Renner & Ekárt 2003]. It commences with a high-

level description of the requirements and then moves to a high-level description of a 

solution [MCNeill  et al. 1998]. 

With appropriate design of operators, EAs are able to search through large and 

complex search spaces. This has led to some researchers investigating the use of EAs 

for conceptual design. The motivation of this research is to allow a computer to 

undertake some of the creativity that takes place in the conceptual stages of design. 

One of the important requirements for a system that is able to do this is that there is a 

very general shape representation available. [Husbands et al. 1996] describe a system 

using superquadrics which could generate a number of interesting shapes. [Bentley 

1996] [Bentley & Wakefield 1996] developed a system based on 'clipped stretched 

cubes' that could be evolved by a genetic algorithm. This has the limitation that 

curved shapes cannot be generated, but does produce a shape representation that was 

very general and could be applied to the conceptual design of a large variety of 
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components. Since the aim of this work was conceptual design, only fast evaluation 

of the designs was undertaken measuring such aspects of the parts' behaviour as 

stability, extent, surface area, presence of flat surface, optical behaviour (for evolving 

prisms) and a particle-flow simulator (for evolving streamlined shapes). From an 

aerodynamicist's point of view, these evaluations would seem relatively simplistic 

and inaccurate. They do, however, have the merit of speed of execution and easy 

integration with the shape representation. To some extent this work can be seen as 

addressing very similar objectives as the work in this thesis, namely the use of EAs 

to extend the use of computers in the generation of form from function. However, he 

approaches this problem by extending preliminary conceptual design using search 

(with an EA) with simple evaluation of behaviour. In contrast the work in this thesis 

looks to extend detailed shape optimisation with analysis methods used by engineers 

towards conceptual design. 

[Parmee et al. 2001] introduce an interactive evolutionary design system, which is 

aimed at supporting the decision-making processes during conceptual design. The 

software is intended for multi-disciplinary design where there may be multiple, 

uncertain and ill defined objectives. There are a number of modules (for example 

defining preferences among multiple objectives), built around a cluster-oriented 

genetic algorithm. An example is given for the conceptual design of an aircraft. 

[Parmee 2002] discusses how evolutionary computing can be used in the preliminary 

stages of design, where various problems might be encountered, such as criteria that 

are either qualitative or quantitative, or variables that may be continuous or integer. 

The usefulness of interactivity between the system and the designer is also discussed. 

This work is reported in detail in [Cvetkovic 2000] along with [Parmee 1996] 

[Cvetkovic & Parmee 1999a] [Cvetkovic & Parmee 1999b]. 

[Rasheed et al. 1997] use a genetic algorithm to optimise the conceptual design of a 

supersonic transport aircraft and a supersonic missile inlet. Variables were used for 

conceptual design parameters such as exhaust nozzle radius, engine size, wing area, 

wing aspect ratio. 
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As discussed in Section 1.2, [Gero 1990] defined innovative design as taking place 

within a well-defined state space of potential designs, but 'designs produced are 

outside the routine or 'normal' space', produced by 'manipulating the ranges of 

values for variables'. The use of EAs that can move outside the existing search space 

through the run and thus move towards potentially advantageous designs could be 

helpful during early stages of design, before a detailed design is settled upon. [Beck 

& Parmee 19991 describe a system that uses a multi-population genetic algorithm 

that allows the ranges of the genes to change through the run. A different approach is 

given by [Gero & Kazakov 2000] in which a crossover operator (see Section 2.3.4.2) 

is able produce designs that are outside the original design space. 

1.4.2.2 Generative Design with Evolutionary Algorithms 

One approach to searching through the very large space of possibilities during the 

early stages of design is to use a generative representation. [Hornby & Pollack 2001] 

define a generative system as being a system 'where the genotype is a program for 

constructing the final design' (rather than directly describing the design). 

[Schoenauer 19961 and [Bentley 2000] suggest that such approaches offer greater 

scalability, by allowing hierarchical, recursive and self-similar structures to be 

evolved. 

[Homby 2003] shows how systems using generative representations can better search 

large design spaces, since they can capture some of the properties of the structure of 

the search space and thus reuse components of the designs. Examples are given of 

generative design of voxel-based structures, neural networks and controllers for 

robots. [Hornby & Pollack 2001] use a representation based on Lindenmayer systems 

to evolve tables. [Funes & Pollack 1999] evolve Lego structures based on a 

generative tree-based representation. 

Morphogenic evolutionary computation [Angeline 1995], in which a complex 

development process is used to generate the phenotype from the genotype, offers a 

number of potential advantages for design, such as better evolvability, and the ability 
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to generate solutions with complex structures from relatively simple genotypes. 

[Kumar & Bentley 1999] discuss various types of embryogenies and their 

advantages. Section 8.2.2 provides more detail on the current state-of-the-art in 

morphogenic evolutionary computation. 

1.5 Motivation of the Work in this Thesis 

A number of difficulties are encountered in setting up a shape optimisation algorithm 

to generate a useful shape for an engineering component: 

• a well-defined specification of the desired function is required, 

• a valid set of possible shapes through which to search must be defined, 

• an analysis technique for accurately assessing how well potential shapes meet the 

desired function must be provided, 

an algorithm must be supplied that can effectively and efficiently search through 

the set of possible shapes. 

Each of these points is easier to address when the set of shapes is relatively small and 

all shapes are kept similar to an initially defined starting shape. Most successful 

applications of shape optimisation have, therefore, relied on restricting the set of 

possible shapes. 

The research reported in this thesis was motivated by the desire to extend the 

applicability of shape optimisation in the design process. It was hoped that shape 

optimisation techniques could be used so that the generation of geometric form, for a 

specified function, becomes more automated. Inevitably, this would mean that the set 

of shapes through which to search has to be large and general, and so choosing an 

appropriate geometric representation, analysis technique and optimisation algorithm 

becomes more problematic. 
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The work in this thesis can be seen as attempting to extend shape optimisation from 

Gero's [Gero 1990] routine design, to more innovative design. The work described 

here has, therefore, investigated shape representations, such as voxel models and 

spline models, which are able to represent a large generality of shapes. It has 

addressed the problem of accurately analysing a large range of shapes. It has also 

looked at modem stochastic global optimisation algorithms, such as genetic 

algorithms, which can avoid being trapped in local optima, since, as the size of the 

search space of shapes increases, the likelihood that the problem becomes multi-

modal is increased. Following these investigations, the conclusion was drawn that a 

common framework for the integrated representation of both geometry and physical 

behaviour would be helpful. 

1.6 Aims & Objectives of Work Described in this Thesis 

This thesis presents the argument that a framework for shape optimisation, with a 

common representation of both geometry and physical behaviour, would allow the 

development of novel and efficient new algorithms better suited to the semi-

automatic generation of an engineering component's geometry, given a certain 

desired behaviour. 

The principal, overarching aim of this work was: 

To determine whether shape optimisation can be extended, such that it can be used to 

increase the automation of the process of shape synthesis for engineering design. 

In order to pursue this aim, research was undertaken into the following objectives: 

(a) To determine whether evolutionary algorithms, along with novel shape 

representations which are able to represent a large generality of shapes, would 

enable more automation of the process of determining form from function, and to 

identify any obstacles that might be encountered with such an approach. 
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To identify a computational framework which could provide an integrated 

representation of both component geometry and physical behaviour. 

To determine whether a morphogenetic evolutionary algorithm, using the 

identified integrated representation of geometry and physical behaviour, shows 

any potential to increase the automation of the process of shape generation for 

engineering design. 

1.7 Chapter Outline 

Chapter 2 reviews common approaches to shape optimisation from the literature. 

Objective (a) is investigated in Chapters 3, 4 and 5, which describe shape 

optimisation work done by the author using novel shape representations and 

optimisation algorithms. Chapter 3 gives details of aerofoil shape optimisation work 

using various shape representations and analysis methods. In Chapter 4 an adapted 

genetic algorithm is used to optimise a voxel shape representation for structural 

optimisation. In Chapter 5 genetic programming is used to optimise a CSG solid 

model. 

Investigations into Objective (a) are concluded in Chapter 6, which, following the 

review of optimisation techniques in Chapter 2 and the work described in Chapters 3, 

4 and 5, argues that a computational framework which can provide an integrated 

representation of both component geometry and physical behaviour is desirable. This 

is done by analysing the various approaches described in Chapters 2 to 5 in terms of 

the methods that they use to search through the space of possible shapes. 

Chapter 7 addresses Objective (b) and describes a possible framework that could be 

used for shape optimisation, based on Chain models, which use cell complexes and 

chains from algebraic topology. It also describes how existing techniques could be 

implemented in such a framework. 
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Chapter 8 addresses Objective (c) and describes an approach to shape optimisation 

that adds a morphogenetic stage to an evolutionary algorithm for structural 

optimisation. In this approach the evolutionary algorithm evolves genes which 

modulate the way that a cellular shape 'grows' in response to the stress on it. This is 

given as an example of a novel algorithm that can be implemented in the new 

framework from Chapter 6. 

Conclusions are then drawn in Chapter 9. 
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2 Review of Shape Optimisation Techniques 

2.1 Summary 

In this chapter the numerous approaches to shape optimisation for engineering 

components are reviewed. The purpose of this review is not merely to list and 

describe the techniques, but to classify them in terms of the various methods they use 

for the optimiser, geometric model and analysis. 

2.2 Typical Structure of a Shape Optimisation Method 

Analysis 
Opt imiser 	 Geometric 	

(FE or CFD) 

Objective function / Sensitivities 

Figure 2-1 	Typical Structure of a Shape Optimisation Application 

Most approaches that have been used for shape optimisation can be split into three 

distinct sections [Hsu 1994]. These are the optimiser, geometric model and analysis 

modules. The optimiser changes some variables that affect how the geometric model 

is built. The geometric model is then passed to an analysis module where, typically, 

the geometry is discretised and the physical behaviour of the shape is approximated. 

From this analysis module, the objective function and possible constraints (for 

instance, maximum stress or deflection) are calculated. Based on the result of this 
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analysis, the optimiser again changes the variables over which it is optimising. This 

loop continues until some termination criteria are met. 

This can be expressed more formally. A representation of the geometry is chosen so 

that there are a number of variables that can be changed in order to modify the shape. 

We can formulate the shape optimisation problem as: 

minimise 	f(x), 

subject to 	ge(x)<=0, 

gj(x) <=0, 

where x is the vector of design variables,f(x) is the objective function and g(x)<=O 

and g(x)<=0 are the constraints. Examples of possible objectives to be minimised 

are weight, volume, deflection or aerodynamic drag. ge(x)< =0 are explicit 

constraints which can be described explicitly as a function of the design variables. 

Typically, these are upper and lower bounds on the design variables. g(x)<=0 are 

implicit constraints which depend on the design variables but cannot be expressed 

explicitly as a function of them. Examples of such constraints are stress, 

displacement or resonant frequency. These constraints must be evaluated using some 

computational model of the relevant physics. 

In the following sections the various different approaches to each of these three 

modules in shape optimisation are discussed. 

2.3 Optimiser 

The optimiser is used to vary the shape design variables (x) that the geometric model 

uses to build the shape. The optimiser alters these variables in order to find the best 

set of values for the shape design variables. 

The geometric model and analysis combined can be thought of as a function mapping 

the vector of variables (in ¶ where n is the number of design variables) onto a value 
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for the objective (in 9j  where in is the number of objectives). This obvious similarity 

to the problem of optimising an analytic function led to the large body of techniques 

used for function optimisation being used for shape optimisation. 

In the following sections, firstly some terminology is introduced. A review of 

optimisation techniques is then given. The field of optimisation is extremely large 

and so it is not possible to give a comprehensive survey of all classes of techniques. 

Rather, what follows is a survey of some of the major classes of optimisation 

techniques that have been applied to shape optimisation problems. These have been 

divided into classical deterministic techniques and stochastic techniques. A brief 

description of each technique is given so that an understanding of the algorithm and 

data structures used can be gained. The strengths and weaknesses of each method are 

discussed. 

2.3.1 What is Optimisation? 

Optimisation problems have three basic elements: 

An objective function which is to be minimised or maximised. 

. A set of variables that affect the value of the objective function. 

. A set of constraints that restrain the values that the variables can take. 

Optimisation aims to find a set of values for the variables which minimises (or 

maximises) the objective function whilst respecting the constraints. 

2.3.1.1 Some Terminology 

Usually, optimisation techniques are used to minimise the objective function rather 

than to maximise the objective function. This does not imply a loss of generality 

since the maximisation of an objective functionf(x) is equivalent to the minimisation 

of —f(x). It is therefore always easy to transform a maximisation problem into a 

minimisation problem. 
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For most optimisation problems there is only one objective function. When there is 

more than one objective function the problem is referred to as a multi-objective 

optimisation problem. Where there is no objective function and the problem is 

merely to find a set of values for the variables, which respects all the constraints, this 

is called afeasibility or satisfaction problem. 

A problem in which there is only one variable is univariate. Problems with more 

than one variable are multivariate. Where the variables take values that are real 

numbers the problem is continuous. Where some variables are real numbers and 

some integers the problem is a mixed integer problem, and the problem is described 

as discrete. When the variables take integer values, but in permutations with each 

other, the problem is combinatorial. 

Problems that are subject to constraints are constrained. Those not subject to 

constraints are unconstrained. It is often useful to distinguish between those 

constraints that directly constrain the variables (i.e. xj>15), as explicit constraints, 

and those constraints that restrict the value that some response of the system other 

than the objective function can take, as implicit constraints. An example of an 

implicit constraint in structural optimisation would be to keep the maximum stress 

below some value. The maximum stress obviously depends on the variables but not 

in an explicit way. 

2.3.1.2 Search Spaces and Landscapes 

The set of all possible combinations of values for the variables is referred to as the 

search space. Each point in the search space is associated with a value for the 

objective function. When the variables are continuous, it is possible to consider the 

value of the objective function at each point in the search space as a height and 

visualise a landscape as in Figure 2-2 below. 
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Figure 2-2 Example of Landscape 

	

F(x,y) = 4(((10 - y) 2  + x2)05 - 10)2 + 0.5(((10 + y) 2  + 	- 10)2 - 5x - 5y 

In the example shown in Figure 2-2 there are two variables x and y, each constrained 

to have values between —10 and 10. There is a minimum near (8.6, 4.5). 

Maxima and Minima 

Figure 2-3 shows an unconstrained problem with a single continuous variable. The 

global minimum is the point in the search space that has the lowest value for the 

objective function. All other points in the search space have higher (or at best the 

same) value for the objective function. 
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f(x) 

X 

uiooai minimum 

Figure 2-3 	Unconstrained Objective Function Minima 

A strong local minimum is a point that has the lowest value for the objective function 

in its neighbourhood. More rigorously this can be expressed by saying that there is a 

distance 8 from the local minimum within which all points have a higher value for 

the objective function. When the objective function and its first derivative are 

continuous, it can be seen that at a local minima the gradient of the objective 

function is zero. 



f( x) 

x 
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Figure 2-4 shows the same function, but now with a constraint on the variable. Now 

the global minimum lies against the constraint and the gradient at the global 

minimum is not zero. This is frequently observed in real optimisation problems. 

Figure 2-4 	Constrained Objective Function Minima 

2.3.2 Classical Deterministic Optimisation 

The majority of research done into shape optimisation has used optimisation 

techniques from mathematical programming. These deterministic methods can be 

classified into second order, first order or zeroth order techniques depending on the 

order of the derivatives of the objective function that are required. Zeroth order 

methods require only the calculation of the objective function itself. First order 

methods require calculation of the objective function and its first derivatives (often 

called sensitivities) over the shape variables. Second order techniques also require 

second derivatives. 
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These techniques are primarily designed to work with continuous variables. Function 

minimisation is assumed throughout. Bold variables such as x refer to vectors and 

will naturally be used in the discussion of multi-dimensional problems. 

Usually, these deterministic optimisers can find optima with fewer design 

evaluations than the stochastic methods described later. This is often important in 

engineering problems, where the time taken to perform one design evaluation is often 

many orders of magnitude greater than the time taken to produce candidate designs. 

However, such optimisers can often have difficulties in dealing with local optima, 

discrete design variables and noise which, for instance, can be generated when small 

changes in the design variables cause changes in finite element mesh topology. 

All the major techniques described in this section are local methods. They will move 

to a minimum local to the point from which the method is started. When the problem 

is multi-modal (i.e. has many peaks and valleys) they cannot be guaranteed to find 

the global optimum and will instead find only local optima. It is possible to run these 

algorithms from several different initial positions. This can sometimes result in the 

global optimum being found. However, the stochastic methods described later in this 

section are usually much more effective in finding global optima as they can sample 

different areas of the search space and 'jump' out of local minima. 

The following sections review some of the major algorithms from classical 

optimisation. Firstly, some zeroth order methods are described. Secondly, gradient 

based techniques are discussed. Finally, second order methods such as Newton-

Raphson are reviewed. 

2.3.2.1 Zeroth Order Methods 

This section overviews the most common and important classical techniques that 

only require function evaluations and do not need gradient information. Such 

techniques are often referred to as direct search methods. 
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Direct search methods are commonly used when: 

it is not possible to differentiate the function, or the function is subject to random 

error; 

• the evaluation of derivatives of the function is very expensive and/or complex; 

Hsu, in his review of structural shape optimisation techniques [Hsu 94], concluded 

that zeroth order methods have many advantages for three-dimensional shape 

optimisation, since often the above conditions are encountered. Often the 

determination of derivatives, which are typically calculated either by using finite 

differences or by using an analytic method, is expensive (see Section 2.3.3.5). Zeroth 

order algorithms, which do not require objective function gradients to be provided, 

therefore hold some advantages for shape optimisation. The following sections 

review some of the major zeroth order optimisation techniques. 

Hooke and Jeeves 

In the early 1960s Hooke and Jeeves developed a widely used direct search method 

[Hooke & Jeeves 1961] [Lewis et al. 2000]. This method makes moves along one 

dimension at a time. The Hooke and Jeeves method uses information gathered in 

previous function evaluations in order to determine the direction in which future 

moves might be profitable. 

Starting from an initial base point, exploratory and pattern moves are undertaken. 

Exploratory moves perturb the each of the variables in turn, moving to the new point 

in the search space if improvements are made. If after perturbing all the variables no 

improved point is found, then a further set of exploratory moves are undertaken with 

the size of the perturbation halved. This continues until some minimum size of 

perturbation is reached. If after the exploratory move an improved point is found, 

then a pattern move is undertaken. 
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Pattern moves are used to speed up the search process by making larger moves in 

those directions that have previously found to be good. Pattern moves are repeated 

until no further improvement is found, at which point there is a return to exploratory 

moves. 

This algorithm can work well for functions where the surface is well behaved and the 

dimensionality is fairly low (< 10). It is also easy to incorporate constraints by 

making a move a failure if it breaks a constraint. 

[Keane 1994] compares the Hooke and Jeeves algorithm to a number of other 

optimisation techniques for a problem where the vibrational response of a truss 

structure of rods is to be optimised. 

Nelder and Mead's Down-Hill Simplex method 

Hooke and Jeeves' method attempted to make use of information about past function 

evaluations to decide where future exploration should take place in the search space. 

[Spendley et al. 1962] used similar ideas to produce a method based around the 

regular simplex. Their ideas were extended and refined by problems [Nelder and 

Mead 1965] in the mid 1960s to produce the downhill simplex method (unrelated to 

the simplex method of linear programming). Thus is a relatively straightforward 

multi-dimension search method that works well for low dimensional problems (up to 

5 or 6), but becomes inefficient for larger problems [Nelder and Mead 1965]. 

This method is based around the movement, through stretching and contracting, of a 

non-regular simplex. An n dimensional simplex consists of n+1 vertices and all their 

connecting line segments and faces. In two dimensions a simplex is a triangle, in 

three a tetrahedron. Function evaluations are made at the position of the vertices in 

the search space. 

[Duvigneau & Visonneau 2001] describe an application of the Nelder-Mead simplex 

algorithm to the shape optimisation of airfoils in incompressible, turbulent flows. 

[Rogalsky et al. 1999a] describes the application of the Nelder-Mead simplex 
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algorithm to the optimisation of turbine fan blades and compares the technique with 

other approaches. This method is robust and needs no derivatives and hence is easy 

to implement, however its convergence to the optimal solution can be slow, needing 

many potentially costly evaluations. 

2.3.2.2 Powell's Direction Set Method 

Many techniques for the optimisation of a multi-dimensional function f(x) have the 

following basic framework: 

Choose a starting point, Xj, and a direction d. 

Find the minimum, x2, of f(x) along direction d from x1  using a 1-dimensional 

minimisation technique. 

Stop if termination criteria met otherwise choose a new direction d1, replace d by 

d1 and x1 by x2, repeat step (b). 

There are numerous optimisation algorithms which follow this form, each varying in 

the way in which the search direction and the line search is chosen. 

A simple algorithm takes the set of unit vectors e1, e2, ... e, of the n-dimensional 

space as a set of directions and then, starting from where the last minimisation 

reached, minimises in each direction in turn. This is repeated until no further 

improvement is found. This simple algorithm is easy to implement, but is often 

inefficient where the function has many long narrow valleys that are not parallel to 

one of the search directions. In this case the method can take a very large number of 

small minimisation steps, cycling through the direction set many times. 

To avoid this problem a number of algorithms try to produce a better set of search 

directions which either lie along the valley or which avoid interfering with each other 

(so that the minimisation in one direction is not undone by the minimisation in the 

next direction). Such methods make use of the concept of conjugate directions. At a 

particular point for two line minimisation directions p and q to be non-interfering, 
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changes in the gradient of f(x) along q must be perpendicular to p. The condition for 

two vectors, p and q, to be conjugate in this sense for a quadratic function f(x) is that 

p.A.q =0, where A is the Hessian matrix off(x), [A u] = cf/dxdxj  

A method is needed in order to build such a set of conjugate directions. [Powell 

1964] describes a method for creating n mutually conjugate directions during the 

optimisation run. [Brent 1973] extends these methods. 

[Lesieutre et al. 1998] make use of Powell's direction set method for the multi-

disciplinary optimisation of missile fin planforms. 

2.3.3 Gradient Descent Methods 

The methods described in this section use gradient information (directional 

derivatives) of the objective function in order to choose search directions. They are 

useful when the derivatives are defined, can be calculated and are not too 

computationally expensive to calculate. They can converge quickly to the minimum 

for problems when the objective function can locally be adequately approximated by 

a quadratic. 

2.3.3.1 Method of Steepest Descent 

If gradients can be calculated then an obvious direction in which to search is the 

direction in which the gradient is steepest. The direction of steepest descent is - 17j(x) 

(the vector of partial first derivatives for the function at the point). Similar to the 

direct search methods described previously, a line search is undertaken in the chosen 

direction until the minimum is found in that direction. The gradient is then calculated 

at this point and the new steepest descent direction chosen as the new search 

direction. This is repeated until a termination criterion is met. 



2. 	Review of Shape Optimisation Techniques 	 41 

This algorithm is simple to implement but it suffers from similar difficulties to those 

described in Section 2.3.2.2 with interfering directions as is shown in Figure 2-5. 

This can cause the algorithm to take a large number of iterations when the landscape 

has long narrow valleys. 

r— 

Figure 2-5 	Poor Performance of Steepest Descent Method in a Valley 
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2.3.3.2 Conjugate Gradient Methods 

Just as Powell's Direction Set method avoided interfering search directions by using 

conjugate directions, conjugate gradient methods look to use conjugate directions in 

order to avoid some of the difficulties encountered with the Steepest Descent 

methods. 

At each iteration, this method chooses a direction based on the direction of steepest 

descent but which is conjugate to the previous direction and hence partially (in some 

informal sense) to all the previous directions searched. The most commonly used 

methods for choosing these conjugate directions are variations of the original 

Fletcher-Reeves method [Fletcher and Reeves 1964] [Press et al. 1993]. 

For a quadratic n-dimensional function, it can be shown that, with the Fletcher-

Reeves method, the minimum will be found in at most n iterations of the algorithm. 

However, in most real applications the function will only be approximately quadratic 

and so the algorithm may need further iterations. 

Conjugate gradient algorithms can perform well. However, their performance can 

deteriorate when the objective function is poorly approximated by a quadratic or if 

the calculated gradients are inaccurate. 

2.3.3.3 The Newton-Raphson method 

The Newton-Raphson method addresses the problem of interfering directions with 

basic steepest descent method by approximating the function at each iteration by a 

quadratic function and then moving in a direction toward the turning point of that 

quadratic. 



2. 	Review of Shape Optimisation Techniques 	 43 

At each iteration f(x) and its first and second derivatives are calculated at the current 

point xe,. A quadratic function y(x) is found that matches these values at x. This 

gives: 

y(x) = ½ (x - 	- x) +(x - xc).gc  +f(x) 

where Gc  is the Hessian matrix (matrix of 2nd  derivatives) of f(x) at xc  and g is the 

gradient vector Vf(x) computed at x. It is straightforward to show [Walsh 1975] that 

the minimum value of the quadratic y(x), Xm, is given by: 

Xm =x— G'g 

A 1D minimisation is then undertaken in the direction toward Xm. 

2.3.3.4 Variable Metric (quasi-Newton) Methods 

Very often it is impossible or very costly to compute the inverse Hessian matrix 

required for the Newton-Raphson method. Quasi-Newton methods iteratively 

construct a sequence of positive definite symmetric matrices Hi  that become better 

and better approximations to the inverse Hessian G'. 

The Davidon-Fletcher-Powell algorithm [Acton 1970] uses an updating formula that 

can be proved to converge H1  to G 1  in approximately n steps for an n-dimensional 

problem [Walsh 1975]. The algorithm starts as steepest descent and converges to 

Newton-Raphson whilst avoiding the worst problems of both. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [Acton 1970] uses a more complex update 

formula that is generally slightly superior to that given above [Walsh 1975]. 

Quasi-Newton methods are probably the most widely used algorithms for 

minimisation of functions that can be reasonably approximated by quadratic forms 

and whose gradients can be calculated at arbitrary points. In these circumstances they 

are highly efficient and accurate algorithms. However, if these assumptions do not 

hold their performance is much impaired. 
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2.3.3.5 Gradient Based Methods for Shape Optimisation 

There is a vast literature on structural optimisation using first order optimisation 

techniques for linear elastic problems. [Vanderplaats 1993] writing in 1993 described 

the previous thirty years of structural optimisation using finite element analysis (see 

Section 2.5). 

Early techniques used finite differences to calculate these gradients. These are 

formed by perturbing the design variables and recalculating the objective function 

and constraints. Typically this involved recalculation of the finite elements in order 

to calculate the constraint sensitivities. n additional function evaluations are required 

to calculate the forward difference approximations for each of the n design variables. 

Later it was observed that the simultaneous equations solved during the finite 

element method: 

Ku = P 	 (Equation 2.1) 

where: 	K 	is the stiffness matrix 

U 	is the vector of node displacements 

P 	is the vector of node loads 

could be differentiated using the chain-rule with respect to the design variables to 

give: 

aK 	au a 
—u+K---=---- 	 (Equation 2.2) ax, 	ax, ax, 
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and so: 

du  1P aK 1 - K 	- h- 	(Equation 2.3) 

where X1  is the i-th design variable. K' has already been calculated in order to solve 

Equation 2.1 and so only the terms in the bracket need to be evaluated. If the loads 

are assumed to be independent of the design variables then only dK/dX 1  need be 

calculated. Analytic methods can be used to determine this term for some types of 

variables (for instance thickness) however in general analytic methods are not 

available and the semi-analytic method is used and dK/dX 1  found using finite 

differences. 

These methods can be more efficient than using finite differences to calculate df/dX, 

(where f(X) is the objective function) and du/dX, (which is needed to calculate the 

sensitivity of the constraints). However they rely on specialised analysis code and so 

make integration with standard analysis packages very difficult. Even with analytic 

methods, the number of available design variables is still limited. 

[Hicks et al. 1974] were the first to use first order optimisation techniques for 

aerodynamic optimisation, using the method of Feasible Directions (based on the 

conjugate gradient method). Since then a large amount of research has been done in 

applying these techniques for various aerodynamic shape design problems. This 

work has focused on the efficient calculation of gradients [Anderson & 

Venkatakrishnan 19991 [Burgreen et al. 1994] [Burgreen & Baysal 1994] 

[Burguburu & le Pape 03] [Sadrehaghighi et al. 1995] [Reuther et al. 1999] and the 

handling of constraints. 

Common to both aerodynamic and structural optimisation with gradient based 

optimisers is the need to efficiently determine the sensitivities of the behaviour under 

consideration *to the design variables. Methods of deriving sensitivities for systems 

governed by systems of partial differential equations are described in some detail in 
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[Lewis 97]. For shape optimisation, function evaluations are typically expensive and 

so calculation of finite differences where there are a large number of design variables 

can be very computationally expensive. In addition, it can be difficult to determine 

the appropriate amount to perturb the variables and the accuracy of the 

approximation can be poor. 

The Newton-Raphson method makes use of the second derivative of the objective 

function with respect to the variables. Where these derivatives can be easily 

calculated then these methods can be effective. Often though this is not the case and 

second order methods can be computationally expensive. [Ariana & Ta'asanb 1999] 

provide a detailed study into the nature of the Hessian for aerodynamic optimisation 

problems. [Novruzi & Roche 1995] compare Newton's method with the quasi-

Newton method for an electromagnetic shaping problem. They find that while the 

number of iterations are fewer for Newton's method than for the Quasi-Newton 

method the total computational effort (since the second derivatives must be 

calculated) is between 1.2 and 3 times greater depending on the number of variables. 

The principal advantage of gradient based shape optimisation is quick convergence 

to the local optimum, often resulting in a significant increase in the efficiency of the 

shape with relatively few evaluations of the objective function. They are, however, 

only local optimisers and so only find shapes in the neighbourhood of the given 

initial shape. They also require that the landscape is relatively smooth, having no 

discontinuities or noise. This can limit their robustness for the generality of 

problems. Finally, the calculation of gradients can be difficult or time consuming 

especially as the number of design variables increases. In summary, these are 

powerful techniques and are useful if the gradients can be calculated efficiently and 

they can be started in the vicinity of the optimal shape. 

2.3.4 Stochastic Techniques 

As discussed in Section 2.3.2, classical optimisation techniques are often efficient at 

finding local optima. However, in many shape optimisation problems the landscape 
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is multi-modal, the calculation of gradients is expensive and the landscape is not 

smooth. To address these problems, the last twenty years has seen a great deal of 

research into stochastic optimisers where various random elements are introduced in 

order to move out of local optima. The use of stochastic optimisation techniques, 

such as evolutionary algorithms [Holland 75] [Michalawicz 1992] and simulated 

annealing [Kirkpatrick 1983], in shape optimisation [Chapman et al. 1994] has been 

a popular area of research. 

Stochastic optimisers are zeroth order optimisers and so require no gradient 

information and rely only on function values. Such techniques are also able to cope 

with problems with discrete variables or mixtures of continuous and discrete 

variables, which makes them considerably more flexible when applying them to 

engineering design problems. Their principal disadvantage is that convergence to the 

optimum can be slow requiring a large number of objective function evaluations. 

2.3.4.1 Simulated Annealing 

The method of simulated annealing [Kirkpatrick et al. 1983], was the first stochastic 

technique to become popular for practical optimisation. The algorithm uses an 

analogy of the annealing of solids. Annealing is the process in which a solid is heated 

to a maximum temperature at which all molecules of the solid randomly arrange 

themselves in the liquid phase, followed by a gradual cooling. As long as the 

maximum temperature is high enough and the cooling process gradual enough, the 

molecules settle into a very stable minimum energy lattice. 

At each temperature T, as long as the solid is allowed to reach thermal equilibrium, 

the probability of being in an energy state E is given by the Boltzmann distribution: 

P(E) = 11Z(T). exp(-E/kT) 

Where Z is a normalisation function and k is the Boltzmann constant. In the 1950s 

Metropolis [Metropolis et al. 1953] developed stochastic simulations of 

thermodynamic systems in which systems were assumed to move from energy state 
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E1 to a possible new value E2 with probability exp[-(E2 - E1)/kT]. If E2 < E., this 

probability is greater than 1 and so was assigned a probability of 1, i.e. certainty - the 

system always moved to a lower energy state but could probabilistically move to a 

higher one. 

In the early 1980s Kirkpatrick and colleagues [Kirkpatrick et al. 19831 applied this 

principle to combinatorial optimisation. The simulated annealing method requires the 

following: 

a description of a possible solution to the problem, 

• one or more operators to make random changes to the current solution to produce 

new possible solutions, 

an objective function, C, (analogous to energy) to be minimised, 

• a control parameter T (analogous to temperature) and an annealing schedule 

which controls how T is reduced. New solutions will be accepted or rejected 

according to a Boltzmann like probability distribution. 

The basic algorithm works like this: 

Initialise T.-Generate an initial solution, S. Find the cost of this solution, C. 

Use an operator to randomly generate a new solution S, from S. Calculate the 

cost of this new solution C. 

If (C,,-C,) < 0, i.e. better solution found, then Sc = S,. Otherwise generate a 

random number between 0 and 1, random. If exp(-(C - C)iT)> random, then S 

= S. 

If annealing schedule dictates, reduce T. 

(e) Unless stopping criteria met, return to step (b). 
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As can be seen in step (c), moves which reduce the objective (i.e. good moves which 

improve the solution) are always accepted. Moves which increase the objective 

function can be accepted with a probability that depends on the size of the reduction 

in quality and the temperature T. Initially, T, is set high and so starts off high so poor 

moves are often accepted. Over time the temperature is reduced and so the 

probability of accepting a poor move is reduced. An annealing schedule describes 

how the temperature reduces over time. Correctly designing this schedule for a 

particular problem is important to ensure the efficiency of this method. 

Typically the algorithm is stopped once T has fallen below some threshold such that 

the algorithm has degenerated into random search, or no improvement has been made 

for some time. 

As well as handling combinatorial problems, simulated annealing can be applied to 

problems with continuous variables [Mdllhagga  et al 1996]. Simulated annealing can 

also be hybridised with a suitable local classical technique by performing some sort 

of local search or gradient descent on each move. 

The advantages of simulated annealing are that they can be applied to problems with 

non-smooth and discontinuous landscapes, they do not get caught in local optima and 

they do not require gradients of the objective function. These properties allow 

[Hasancebi & Erbatur 2002] to successfully apply simulated annealing to the 

simultaneous topology and shape optimisation of a truss structure. 

[Reddy & Cagan 1995] apply simulated annealing to truss size and topology 

optimisation. They use shape grammars to modify the truss sizes and topology. 

These grammars define operators that allow one truss structure can be changed into 

another. The operator to use and the size of the 'move' are determined by the 

simulated annealing algorithm. 

[Lin & Chen 20001 apply simulated annealing to structural problems with a non- 

convex design space. They also hybridised the method with local and random search 

algorithms. 
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A disadvantage of simulated annealing is that it can need a large number of function 

evaluations to converge to the optimum in comparison to classical gradient 

techniques. For shape optimisation problems objective function evaluations are 

generally expensive. Therefore, [Leite & Topping 19991 look to parallelise simulated 

annealing in order to extend its applicability for structural optimisation. 

[Dibakar & Mruthyunjaya 19991 apply simulated annealing to the problem of 

determining the kinematic dimensions of a mechanism for a manipulator, so that its 

workspace is as close to the desired workspace as possible. This is an interesting 

application of stochastic optimisation to an area of design that could not be tackled 

with classical optimisation techniques. 

[Kasper 1993] compares simulated annealing with evolution strategies for the shape 

optimisation in magneto-statics using the finite element method. They use the 

example of weight minimisation of a lifting magnet to prove the efficacy of the 

methods. 

2.3.4.2 Evolutionary Computing 

Evolutionary Algorithms (EAs) are adaptive stochastic search techniques. They are 

inspired by an abstract model of how evolution takes place in biology. In EAs a 

population of candidate solutions is maintained. 'Parents' from this population are 

selected with some bias towards the better solutions. From these parent solutions, 

offspring solutions are generated in various ways. These are then evaluated, placed in 

the population, and can subsequently themselves be chosen as parents. The technique 

has attracted a great deal of interest because it has been shown to be highly robust 

and to perform well without recourse to fragile domain specific heuristics. 

The best known of these techniques is the Genetic Algorithm (GA) [Holland 1975] 

[Goldberg 19891 [Davis 1991]. However, there are also the closely related Evolution 

Strategies [Rechenberg 1973] [Schwefel 1981] [Back et al. 1991] [Back 1996], 

Genetic Programming [Cramer 1985] [Koza 1990] [Koza 1992] and Evolutionary 

Programming [Fogel et al. 1966] [Fogel 1995] [Sebald & Fogel 1994]. There are 
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numerous variations on these algorithms and only a general introduction to this class 

of techniques is given here. Whereas classical optimisation techniques are typically 

applied as they are without alteration, EAs are a powerful and flexible framework in 

which optimisation algorithms can be developed. 

There are common concepts and processes used in all evolutionary algorithms. An 

EA uses a population of individuals. Each individual contains a structure, the 

genotype, which can be decoded to form a candidate solution. Members of the 

population are assigned some fitness according to their performance that is assessed 

by some evaluator. Individuals are selected (usually stochastically) with some bias 

towards fitter individuals. Stochastic operators are applied to selected individuals to 

produce new candidate solutions. Operators are usually chosen so that that the 

offspring inherit some of the attributes of their parents. The offspring are then 

evaluated and placed in the population. Often at this point some of the least fit 

individuals are culled (i.e. removed) from the population. This process repeats a 

number of times generating subsequent generations. This pseudo-Darwinian 

selection and breeding is intended to result in those properties that promote greater 

fitness being transmitted throughout the population. Selection of the fittest should 

result in increasingly good solutions appearing. 

Each individual contains a genotype that encodes the solution that the individual 

represents. These genotypes typically consist of strings of numbers and/or characters 

that are subsequently interpreted as a solution to the problem. The string of numbers 

or characters is often termed the chromosome. Each element of the string is referred 

to as a gene and represents some aspect of the solution. A gene has a number of 

possible values that are its alleles. 

In order to assess the individual's fitness, it is necessary to decode the genotype into 

a phenotype, which can be evaluated. The complexity of this transformation from 

genotype to phenotype can vary depending on the representation (encoding) chosen. 

For many applications the encoding might be direct. For instance, the chromosome 

contains a string of values for variables that can be directly evaluated. There are, 

1 jj. 7'  

(7 
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however, possibilities for more complicated mappings from genotype to phenotype, 

where the values of the genes need to be converted to an evaluatable solution through 

a more complicated process. Such a strategy might be used to 'grow' a solution from 

some initial conditions using rules of development. The genes might encode for the 

initial conditions or modify the rules of development (see Chapter 8) 

The choice of population size is important when applying an EA to a problem 

[Goldberg 19991. Too small a population can result in the population prematurely 

converging to a sub-optimal solution. However, excessively large population sizes 

can result in too many evaluations required. 

There are a number of ways of producing an initial population. Often a population is 

generated by choosing values for the genes at random from the range of possible 

values. This results in a random initial population. Alternatively, some possibly good 

solutions can be seeded into a random population. An initial population might 

entirely contain potentially good solutions. 

The operators, crossover and mutation, developed by Holland [Holland 1975], are 

widely used. In simple crossover a random a crossover point along the chromosome 

Parent 1 

Parent 2 

Crossover 
Point 

Child 1 	1 X 1.1 	1.2 	X 131 X TA 	2.5 I x2.6 X 2,7  I  ... . 	

x2, 

Child 2 	1 X2,1  I X2.2 J 	I X1.6 I X1.7 I 	I 

Figure 2-6 	Simple One-Point Crossover 
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is chosen. Two new chromosomes are created by swapping over the sections lying 

after the crossover point (see Figure 2-6). 

Crossover can be seen to rearrange existing genes, but does not create new genes. 

Mutation changes the value of a gene to some other possible value. The way in 

which this is done depends on the representation used. For example, if a bit-string 

representation is being used a mutation might involve a bit flip. In a representation 

consisting of a string of real numbers, a mutation might involve a small random 

move from the current value. Often mutation operators involve the change of only 

one gene. However, there may be cases where a mutation involving a change in a 

number of genes is desirable. 

The typical application of operators when breeding new individuals proceeds as 

follows. Crossover (with some high probability) is applied one of the two new 

chromosomes foimed is chosen at random. Following crossover, genes on the 

resulting chromosome undergo mutation with a low probability. This probability is 

chosen so that there is approximately one mutation per chromosome. The resulting 

chromosome is then taken for the new child individual. 

The operators described here are those which are traditionally used with EAs. 

However, many modem users of EAs make use of other operators. For instance, for 

some problems, crossover is not useful as it merely acts to disrupt good solutions and 

algorithms using only mutation operators can be more efficient. Problem specific 

mutation operators are frequently developed so that mutation makes 'sensible' 

changes. These mutation operators may be guided by heuristics or make use of local 

search methods or even traditional optimisation techniques. Indeed, designing the 

encoding and its set of operators together for a problem is often successful. 

Some method of selecting which individuals from the population to breed is needed. 

Below are given four of the most widely used selection methods. 



2. 	Review of Shape Optimisation Techniques 	 54 

Breeding Pool selection looks to make the expected number of offspring for an 

individual proportional to its relative fitness. The relative fitness of member i is 

calculated as follows: 

Rel(f,)=f,/1f1  

The expected number of offspring for each individual is then calculated by rel(fj) x N 

to the nearest integer, where N is the population size. The appropriate number of 

copies of each individual are then placed into a 'breeding pool'. Individuals are then 

chosen for breeding at random from this pool. The current population is replaced 

with the new population that is formed in this way. Thus the fitter individuals are 

more likely to contribute towards the next generation. 

Some selection strategies only replace a proportion of the current population at each 

generation. It may be possible for the fittest individual not to be chosen for breeding 

with some (often small) probability and so not make it through to the next generation 

or for the operators to disrupt the best solution to a worse solution. To avoid this 

many selection schemes employ an elitist strategy in which the best solution in a 

generation is always allowed to pass into the next generation. 

Roulette wheel selection is based around the analogy of a roulette wheel. The 

proportion of the roulette wheel assigned to each individual depends on its relative 

fitness, rel(f,). Individuals are selected by generating a random number between 0 

and 1 (analogous to spinning the roulette wheel). The individual is chosen by moving 

through the population an individual at a time until the cumulative relative fitness of 

an individual is greater than the random value. The current individual is chosen for 

breeding. 

It can be seen that the probability of an individual being selected is proportional to its 

relative fitness. Although every individual has some chance of breeding, there is a 

considerable bias towards better individuals based on their fitness. One problem that 

can often be found with breeding pool and roulette wheel selection is that at the start 
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of an optimisation run, even though all individuals are poor, some of the better 

individuals might be relatively much better than the others. This can lead to too many 

individuals being generated from the better, but still poor, individuals and so the 

population can converge too quickly. 

Ranking schemes can overcome the problems mentioned above. The population is 

ranked according to the fitness values of its members. Selection is then performed 

using a pre-determined probability distribution function dependant on rank rather 

than fitness. This is typically a simple linear function. This can ensure that at the start 

of a run no individual is selected too often just because its relative fitness is high. 

Also at the end of a run, when fitnesses are often very similar, selection can favour 

better individuals. 

In tournament selection n individuals are chosen at random and the fittest of these is 

selected for breeding. Typically, a value for n of two is chosen. Often this method is 

used with a steady state algorithm where only one individual is bred at a time 

Evolutionary algorithms have been successfully applied to a wide range of 

optimisation problems, often by adapting standard algorithms to produce algorithms 

which are well suited to the problem both in terms of parameter settings and 

operators. It is also relatively trivial to hybridise EAs with local search and classical 

techniques, by for instance, applying gradient descent to each new offspring. This 

can produce efficient robust algorithms [Mdllhagga  et al. 1996]. 

A more detailed discussion of EAs in design is given in Section 1.4. 

2.3.4.3 Evolutionary Algorithms in Structural Optimisation 

There have been a wide variety of ways that EAs have been applied to structural 

optimisation. These have varied in the aspect of the structure that is to be optimised, 

for example, topology, layout, size or shape. The shape representations used have 

also been varied with, for example, parametric solid models, splines or cellular 

representations all used (this is covered in more detail in Section 2.4). They have also 
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varied in the types of behaviour that is to be optimised and hence analysis method 

used (this is covered in more detail in 2.5). 

[Adeli & Cheng 19931 covers general applications of genetic algorithms to structural 

design. [Adeli & Cheng 1994a] investigates constrained optimisation of space 

frames, and introduces a Lagrangian Multiplier approach to cope with the 

constraints. [Adeli & Cheng 1994b] extend this work to use parallel computers. 

A number of researchers have considered the optimisation of truss structures with 

genetic algorithms where various parameters are optimised such as cross-section and 

size [Leite & Topping 1998] [Jenkins 1992] [Jenkins 1997]. [Chapman et al. 1994] 

look to use genetic algorithms for what they term 'preparametric' design. They use a 

cellular shape representation with genes determining whether rectangular cells are 

filled with material or not. [Annicchiarico & Cerrolaza 1998] use finite element 

analysis to analyse the elastic behaviour of a 2-dimensional truss structure. They later 

in [Annicchiarico & Cerrolaza 2001] describe work done using 3-spline surfaces to 

represent geometry for 3-dimensional shape optimisation again using finite elements 

to analyse the shapes' performance. [Cappello & Mancuso 2003] use genetic 

algorithms for the combined topology and shape optimisation of trusses and plates 

using finite element analysis. 

[Schoenauer 19951 uses three shape representations for the topology optimisation of 

a cantilever plate. These are a 'natural' bit-array representation, a 'holes' 

representation in which rectangular holes can be introduced into the design, and a 

Voronoi representation. Analysis is done with the finite element method. The 'holes' 

and Voronoi representation are found to outperform the bit-array representation. 

[Coello & Christiansen 2000] concern themselves with the multiobjective 

optimisation of a truss structure. They look to simultaneously minimise the 

structure's weight and maximum deflection. They review a number of ways that 

genetic algorithms have been used for multiobjective optimisation and implement a 
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weighted-sum of objectives method. [Coello 1999] reviews the use of evolutionary 

algorithms for multiobjective optimisation. 

[Robinson et al. 1999] use EAs in the design of a truss structure for a satellite booms 

and for the design of a load cell. [Keane 1994] compares the performance of a GA 

with other techniques for the vibrational optimisation of a satellite boom. 

[Deb 1997] [Deb & Goyal 1998] [Deb & Goyal 1997] describe a system, GeneAS, 

based on genetic algorithms with mixed variables for mechanical component design. 

They use examples of the design of a pressure vessel, gear train, a spring, a 

hydrostatic thrust bearing and a welded beam, and show the ability of a genetic 

algorithm to cope with mixed discrete and continuous variables. 

The design of laminates was investigated in [LeRiche et al. 1995]. They developed a 

segregated genetic algorithm that uses separate interbreeding populations of 

solutions. The fitness function used for each population is different. The penalty for 

failing to meet a particular constraint differs for each population. The find that the 

segregated genetic algorithm allows solutions to be found which satisfy all 

constraints whilst minimising weight. 

[Cerrolaza et al. 2000] use -splines for 2-dimensional optimisation of plates. They 

use the boundary element method to analyse the Von Mises stress and attempt 

successfully to minimise weight. 

[Eby et al. 1999a] [Eby et al. 1999b] optimise a flywheel with an 'injection island 

genetic algorithm' where the specific energy density of the flywheel is to be 

maximised. In this approach the variables are the depth of the flywheel at various 

radial distances. The injection island genetic algorithm allows various sub-

populations to breed each with different resolution of the representation. Thus one 

population can use a coarse resolution with a correspondingly inexpensive analysis, 

whilst another has a finer representation with a more expensive analysis. Good 

individuals from a coarse population can be 'injected' into a finer population. This 

allows a quick exploration of a large part of the search space with the coarse 
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representation. Promising areas of the search space can then be explored with 

increased accuracy in populations with a finer representation. 

Motivated by a similar desire to use a cheap evaluation in the initial stages of an 

optimisation run [Gage et al. 1995] use a variable complexity shape representation. 

As the run progresses the shape representation complexity can be increased. They 

apply this method to the structural optimisation of trusses and aerodynamic 

optimisation of low-speed wings. 

2.3.4.4 Evolutionary Algorithms in Aerodynamic Optimisation 

A number of researchers have described the integration of a genetic algorithm with 

computational fluid dynamics for transonic aerofoil shape optimisation [Quagliarella 

& Cioppa 19941 [Quagliarella & Cioppa 1995] [Oyamaa et al. 2001] [Doorly et al. 

1996b]. [Obayashi & Takanashi 1995] described the use of a genetic algorithm to 

find a shape for an aerofoil that meets a specified pressure distribution. 

[Quagliarella & Vicini 2001] describe the use of genetic algorithms for the design of 

configurations of multiple aerofoils. As well as optimising multiple aerofoils they 

also optimise at two design points, one with the aerofoils in a high lift configuration 

and one in a low drag cruising configuration [Quagliarella & Vicini 2000] [Vicini & 

Quagliarella 2000]. 

[Doorly et al. 1996a] use genetic algorithms for coupled aerodynamic-structural 

design. As previously discussed, one of the disadvantages of genetic algorithms, is 

the number of function evaluations that can be required. Analysis using 

computational fluid dynamics can be very time-consuming and so parallelisation of 

genetic algorithms for aerodynamic optimisation problems has been investigated by 

[Marco & Lanteri 2000] [Doorly & Peiró 1997] [Doorly 1995]. 

[Rogalsky et al. 1999b] compares a genetic algorithm with the downhill simplex 

method described in Section 2.3.2.1 and simulated annealing. [Vicini & Quagliarella 

1999] hybridise a genetic algorithm with a gradient based optimisation technique that 
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they apply to multidisciplinary optimisation of both aerofoil profile and wing 

planform. 

[Mäkinen et al. 1999] investigate a parallel genetic algorithm for the multi-

disciplinary shape optimisation of aerofoils, for both aerodynamic and 

electromagnetic (radar cross section) behaviour. 

2.4 Geometric Model 

Shape optimisation uses a geometric modeller in order to represent the shape. The 

area of geometric modelling is very large and, at some point, most forms of 

geometric model have been used for shape optimisation. In this section the intention 

is to describe some of the geometric modellers that have been used for shape 

optimisation and to explain the data structures they use. 

Shape optimisation proceeds by using some elements of the geometric model as 

design variables. Thus, by changing the variables and rebuilding the model, the shape 

can be changed. This approach is natural, however the family of shapes that the 

range of variables described is often poorly understood. This is developed further in 

Chapter 6. 

Early two dimensional shape optimisation work used the co-ordinates of nodes of the 

finite element mesh as the design variables [Zienkiewicz & Campbell 1973]. The 

boundary nodes (i.e. those on the perimeter) were moved by the optimiser. The shape 

representation used was therefore cellular. This seemed a natural representation and 

had the advantage of needing only one representation for both the geometry and 

analysis. Unfortunately, it proved impossible to ensure that a smooth boundary shape 

was maintained. Additionally, as the nodes were moved, the elements in the mesh 

become increasingly skewed and hence the results from the finite element analysis 

became less accurate. Ensuring that the mesh is sufficiently accurate is also a theme 

that is developed in Chapter 6. 
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Following this, the design model was separated from the analysis model in order to 

ensure smoothness of the boundary of the shapes generated. One approach then taken 

was to use polynomials to describe the boundary of the shapes [Kristensen & Madsen 

1976], [Bhavikatti & Ramakrishnan 1980], [Pedersen & Laursen 1982]. The 

variables were chosen to be the coefficients of the polynomials. There were a number 

of problems that were found with this approach. Firstly, low order polynomials such 

as quadratics, cubics and quartics could only represent a limited family of shapes. 

This problem can be reduced by increasing the order of the polynomial. However, 

this causes other problems. In order to represent a shape feature with small radius of 

curvature requires high order polynomials and these can cause oscillatory 'ripples' 

away from the feature. Additionally, polynomials do not allow local control of the 

shape; changes in one of the variables (a coefficient of one of the polynomial) causes 

a change in the boundary of the whole shape. The ways in which the representation 

affects the family of shapes that the optimiser searches through, and the implications 

that this has on the optimiser, are discussed in Chapter 6. 

Spline curves offer many of the advantages of polynomials, namely boundary 

smoothness and a useful separation of geometric model and analysis model. They 

also remove some of the problems encountered when using polynomials. The 

boundary does not oscillate because the splines are formed from low order 

polynomial pieces. Splines also offer good local control when enough control points 

are used. These properties of splines that make them highly useful for shape 

optimisation are the same reasons that make them so widely used in computer-aided 

design. 

There are different ways of assigning variables when using spline curves for shape 

optimisation. A commonly used and natural assignment is to use the co-ordinates of 

the control points as the variables. This allows a very general family of shapes to be 

used. However, for some applications, a more restricted family of shapes is desired. 

For these cases the 'path' of the control points can be restricted to some line or curve 

and the variable used is the position of the control point along this path. 
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Alternatively, the control points can be restricted to lie within a particular area 

[Giannakoglou 2002]. 

Non-uniform Rational B-Splines (NURBS) [Hearn & Baker 1994] are an extension 

to b-splines allowing the exact representation of conic sections. NURBS have been 

used by [Schramm & Pilkey 1995] for structural optimisation. Conic patches were 

used by [Widmann & Sheppard 19931 as a shape representation for shape 

optimisation which allows the number of design variables to increase during the 

optimisation. 

Most modem commercial CAD packages are built upon Boundary Representation 

(B-rep) solid modellers. Examples of such solid modellers are ACTS and Parasolid. 

These CAD packages allow the user to build 'parametric' models. As the user builds 

the model, some of the dimensions and positions of the component can be specified 

as variable. Then, once the model is built, the user can change any variable and the 

modeller will rebuild the model with this new value for the variable. The modeller 

does this by essentially undoing all the steps, back until the point in the model build 

when the variable was used, and then rebuilds the model from there. Such parametric 

models are very useful for shape optimisation as they provide an easy 'family of 

shapes' through which an optimiser can search. However, as Shapiro & Vossler note 

[Shapiro & Vossler 1995], the concept of parametric modelling is far from well 

defined. As anyone who has used these techniques will testify, these parametric 

models are can often result in non-intuitive shapes being generated. [Raghothama & 

Shapiro 20021 suggest a way in which parametric families of shapes might be better 

defined. 
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[Tavakkoli & Dhande 1991] and [Widmann & Sheppard 1994] use the intrinsic 

geometrical properties of curves such as their curvature to define shapes. Variables 

are used to define the curvature at particular arc lengths. The curvature then varies 

linearly between these points. From this the shape of the curve can be constructed in 

Cartesian space. Tavakkoli and Dhande apply this to the configuration optimisation 

of a truss structure. Widmann and Sheppard use the finite element method to analyse 

the shape generated for structural optimisation. [Kodiyalam et al. 1992] use a 

constructive solid geometry (CSG) approach to structural shape optimisation. 

2.5 Analysis Methods 

For each set of values for the design variables, a shape is built in the geometric 

model. It is then necessary to evaluate this shape to assess its relevant physical 

behaviour (for example its weight, volume, displacement or stress under a given 

load). It is then possible to assign a value for the objective function and to establish 

whether constraints have been violated. An analysis module is used to do this. 

Engineers have developed many computational techniques for modelling the physical 

behaviour of models. In principle almost all of these methods could be used for shape 

optimisation. This section is not intended to provide a comprehensive review of all 

possible modelling techniques, rather it is a survey of the main techniques used for 

shape optimisation. 

The principal criteria for choosing an analysis technique are that the analysis be as 

computationally inexpensive as possible, that it is relatively easy to convert the 

geometric model into the analysis model, that the analysis method is capable of 

modelling the behaviour of interest and that the method is sufficiently accurate. 

These considerations are discussed in much more depth in Chapter 6. 

For shape optimisation the most often-used analysis method is the finite element 

method [Desai & Kundu 2001]. It is capable of modelling a large number of physical 

behaviours that can be described with partial differential equations, from elastic 

deformation, resonant frequencies to thermal analyses and others. 
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The first step in using the finite element analysis for shape optimisation is to take the 

geometric model and to generate a mesh of elements. The quality of the mesh (i.e. 

the number, shape and distribution of the elements) is very important in ensuring that 

the analysis is accurate. Early uses of the finite element method for shape 

optimisation relied only on moving the node positions as the geometry changed. This 

removes the need for a possibly time-consuming remeshing, but the accuracy of the 

solution can be poor as the element shapes become more distorted. This effect can, to 

some extent, be mitigated by using higher order elements. Now, though, it is usual to 

remesh each shape. It is also becoming increasingly common to use adaptive 

meshing techniques to ensure solutions are sufficiently accurate. These techniques 

are becoming standard in commercial finite element programs. 

The boundary element method is another analysis method that has been frequently 

used for shape optimisation. The range of physical behaviours that this method can 

analyse is more restricted than for the finite element method. It is unable to model 

phenomena such as buckling or calculate mode shapes. However, only the boundary 

of the geometry needs to be meshed, rather than the whole geometry as in the finite 

element method. It is therefore much easier to produce the mesh. [Cerrolaza et al. 

2000] [Meric 1999] [Sandgren & Wu 1988] [Schramm & Pilkey 1994] [Yamazaki et 

al. 1993] [Yamazaki et al. 1994] all describe the use of boundary elements for shape 

optimisation. [Makerle 2003] provides a bibliography of topology and shape 

optimisation with both boundary elements and finite elements. 

For aerodynamic optimisation problems there are a number of analysis methods 

available. [Jameson 2001] gives a recent review of the techniques for aerodynamic 

analysis and design. These methods include finite volume, vortex panel, finite 

elements and finite difference methods. He also reviews some of the methods of 

mesh generation. With aerodynamic shape optimisation, as with structural 

optimisation, the determination of gradients can be time consuming. 
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3 A Study on Aerofoil Optimisation using a Genetic 

Algorithm 

3.1 Summary 

This chapter reports on a study made on aerofoil shape optimisation using a genetic 

algorithm. Fluid analysis was undertaken with a vortex panel method that was 

written for this problem. Three shape representations were used, an aerofoil 

parameterisation, a four Bézier curve representation and a four Bézier curve 

representation with the constraint that the tangent vectors are equal for both Bézier 

curves at the joins between curves (C' continuity). A number of optimisation runs 

were undertaken with various fitness measures (to maximise lift coefficient, 

minimise drag coefficient and minimise drag-lift ratio). The genetic algorithm used 

tournament selection, single point crossover and a floating point mutation. 

The method worked well with the parametensed aerofoil representation, although a 

large number of evaluations were required. However, some difficulties were 

encountered. The analysis method used was quick but made certain assumptions 

about the flow regime (it could not predict stall) and so there were difficulties in 

ensuring that only shapes were generated for which these assumptions were valid. 

This was possible with the aerofoil parameterisation. However, with the more 

general Bézier spline representations, it proved very difficult to ensure that only 

shapes that could be accurately analysed were generated. The algorithm therefore 

produced unrealistic results. 

3.2 Introduction 

Computational fluid dynamics (CFD) is a tool to model fluid flows. The ready 

availability of powerful computers and the improved user-friendliness of commercial 

CFD programs has meant that CFD is becoming increasingly used by engineers to 

analyse the performance of engineering systems in fluid flows. Typically CFD is 
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used to 'virtually prototype' a system to test its behaviour before any physical 

prototype is produced. This allows changes to be made to the design, based on 

information generated in the analysis, more cheaply. [Jameson 2001] offers a 

comprehensive review of computational algorithms for aerodynamic analysis and 

design. 

The aeronautics industry makes heavy use of CFD in the design of aircraft and 

aeroengines. Often for such applications, even small improvements in systems' 

performance are very valuable. Therefore, they look to make use of optimisation 

techniques, in conjunction with CPD analysis, in order to improve the system 

performance. The design of aerofoils for wing profiles and turbine blades is one 

typical use of such aerodynamic shape optimisation techniques. 

Aerofoil design methods can be split into two different categories: inverse 

optimisation and direct optimisation. Often the engineer will be able to specify a 

desired pressure distribution for the aerofoil, so that it has required lift, drag and 

other aerodynamic properties, such as pitching moment. Inverse aerofoil design 

techniques use this pressure distribution on the aerofoil surface and then calculate the 

corresponding geometry. However, the corresponding geometry may not be a valid 

shape (i.e. top and bottom surfaces may cross), the required pressure distribution may 

imply a flow which is in some other way undesirable, or the required pressure 

distribution might be difficult to determine. 

In a direct optimisation method the shape is parameterised into design variables (e.g. 

shape parameters or co-ordinates of spline curve control points). Candidate solutions 

are evaluated and some form of optimisation technique, numerical or stochastic, is 

used to search for an optimal set of values for the design variables. Direct 

optimisation is a more powerful technique since it allows a search through a much 

greater design space. However it is also much more computationally expensive since 

the flow needs to be solved for a large number of shapes. 
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As discussed in Chapter 2, there is a large range of optimisation techniques. Most of 

these have been applied to aerodynamic shape optimisation. However, predominantly 

hill-climbing algorithms have been used. These have the disadvantage of having 

difficulty distinguishing global optima from local optima. They may therefore often 

converge on a local optimum and so find a globally sub-optimal solution. These 

methods have difficulty where the search space is highly non-linear or discontinuous 

and where design parameters are discrete. Gradient methods or second order Newton 

(or quasi-Newton methods) have been used (see Section 2.3.3.5 for examples of 

gradient based techniques for aerodynamic optimisation). These require gradient 

information that is often found by perturbing each of the design variables by a small 

amount and resolving the flow and approximating the gradients with forward 

differences. This requires an extra solution of the flow for each design variable. Also, 

for this method to be accurate the flow has to be solved to a high degree of accuracy. 

The work described in this chapter used a direct approach of optimisation. In this 

work a genetic algorithm has been applied as the optimisation procedure. As 

discussed in Chapter 1, one of the underlying motivations of the work in this thesis 

was to increase the automation of the design process using shape optimisation. 

Increasing the generality of space of shapes through which to search would therefore 

be important, as would the ability to find the global optimum. 

3.2.1 Aims 

• To determine whether genetic algorithms, along with a vortex panel fluid 

analysis, are effective for optimisation of a large range of aerofoil profiles. 
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3.3 Implementation 

3.3.1 Shape Representations 

A program has been written which allows three representations: 

an aerofoil parameterisation (illustrated in Figure 3-1), 

• a four Bézier curve representation (see Figure 3-2) with the end points of the 

curves joining (C O  continuity), 

• a four Bézier curve representation with the additional constraint that the tangent 

vectors at end points of the curves should be equal (C' continuity) [Hearn & 

Baker 1994] except at the trailing edge. 

3.3.1.1 Aerofoil Parameterisation 

Xmax 

Attack 

Figure 3-1 	Aerofoil Parameterisation 
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With the parameterised representation the shape is constructed using a thickness 

envelope, wrapped around a mean camber line. The mean camber line is defined as 

lying midway between the top and bottom surfaces of the aerofoil and intersecting 

the trailing and leading edges. Given these fixed two points, a particular camber line 

is constructed given the angle it makes with the chord line at the trailing and leading 

edges. The thickness envelope is a function of the maximum thickness of the aerofoil 

and the position of the maximum thickness along the chord length. The whole 

aerofoil is then rotated about its trailing edge by an attack angle. 

The aerofoil parameterisation used values for the angle between the chord and 

camber line at trailing and leading edges, maximum thickness, position of maximum 

thickness along the chord length and attack angle as the alleles of genes within each 

candidate shape's chromosome. 

3.3.1.2 Bézier Representation 

A cubic Bézier curve has the following equation [Hearn & Baker 1994] 

p(u)=(1-u)2 x 1  +3u(1-u)2  x 2  -i-3u 2  (1—u)x 3  +ux4  

where u varies from 0 to 1 and Xj to x4 are the control points. The Bézier curve has 

some useful properties. It passes through the first control point, x1, when u = 0. It 

also passes through the fourth control point, x4, when u = 1. When u = 0 (i.e. at the 

Figure 3-2 	Bézier Representation for Aerofoil 
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first control point, xj) the tangent to the curve is in the direction of the second control 

point, X2.  Similarly, when u = 1 (i.e. at the second control point, x2) the tangent to the 

curve is in the direction of the third control point, x3. 

To represent the aerofoil four Bézier curves were used. The constraint was added that 

the end points of adjacent Bézier curves be coincident. In other words, C o  continuity 

between the Bézier curves was imposed. 

3.3.1.3 Smooth Bézier Representation 

The Bézier representation from the previous section was modified to impose the 

additional constraint that the tangent vectors at the end points of the curves should be 

equal (C' continuity) [Hearn & Baker 1994] except at the trailing edge. This was 

done by making the control points at the junction between two Bézier curves lie 

halfway between the adjacent control points from the adjacent curves. 

3.3.2 Evaluator 

The evaluator used to calculate lift and drag coefficients was based on the vortex 

panel method. It was implemented based on the method descried in [Kuethe & Chow 

1986]. This method solves the potential flow and so assumes that the flow is steady, 

inviscid and incompressible. It is also unable to predict separation of the boundary 

layer and so is not accurate in conditions when the aerofoil would stall. 

The primary advantage of this method was that it takes much less time to solve the 

flow around the candidate aerofoil than a steady Euler or Navier-Stokes CFD code. 

[Jameson 2001] reviews the current literature on the computational costs of the 

various mathematical models for solving flows around aerofoils. On a Pentium 3 

(300MHz) PC the vortex panel method, with 48 panels, was found to take 

approximately 0.017 seconds. In comparison, a finite volume CFD solution of Euler 

flow was found to take approximately 5 seconds. 
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The evaluator required co-ordinates of forty-eight points around the aerofoil. The 

method was run with a free air velocity of 80 ms -1  corresponding to a Reynolds 

number of about 5x106 . 

3.3.3 Fitness Measure 

With all optimisations the objective is to minimise some measure of fitness. In this 

work three measures of fitness were used. 

The first fitness measure was to maximise C1 where: 

PA —v 

where: 	C1 	is the lift coefficient 

fi 	is the lift force (N) 

P 	is the fluid density (kg m 3) 

V 	is the air speed (m s) 

A 	is the aerofoil area (m 2). 

This measure was useful primarily to validate the analysis and optimisation code. An 

aerofoil with maximal lift would have the largest camber, thickness and attack angle 

allowed (since the analysis was unable to predict stall). Therefore if analysis and 

optimisation code was correct then these values should be set to their upper 

constraints following optimisation. 
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The second fitness measure was to minimise Cd where: 

c= fd 
d 

PA- 
2 

where: 	Cd 	is the lift coefficient 

fd 	is the drag force (N). 

The third fitness measure was to maximise C, / Cd where Cd is the drag coefficient of 

the aerofoil and C, is the lift coefficient. This is a realistic design criterion for many 

aerofoil applications. 

3.3.4 The Genetic Algorithm 

A genetic algorithm (GA) was written for this application. The following sections 

detail the implementation of this algorithm. 

3.3.4.1 Chromosomes 

For all three shape representations a chromosome of real numbered genes was used. 

Bounds were placed on these values constraining the values for these variables to lie 

between a minimum and maximum value. 

For the parameterised aerofoil representation there were five genes: 

• maximum thickness from camber line, 

• position along chord length of maximum thickness, 

• camber angle at trailing edge, 

• camber angle at leading edge, 

• attack angle. 
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For the unsmoothed Bézier representation there were 24 genes each corresponding to 

a co-ordinate for one of the twelve control points. There were twelve control points 

since there were four control points for each of the four Bézier curves making sixteen 

control points, however four of these control points were on two of the Bézier 

curves. 

It was decided to use using polar co-ordinates for the position of the control points. 

This was because it was easy to ensure that reasonable aerofoil shapes were 

generated (i.e. without creating a 'crossing' shape), by placing bounds on the control 

points' angular co-ordinate so that the adjacent control points moved successively 

'around a circle'. Therefore, for each control point, there was a gene to represent the 

radius and one to represent angle. All angles ran from -11 to it radians. 

For the smoothed Bézier representation there were six fewer genes since the position 

of the control points between Bézier curves (except at the trailing edge) was set by 

placing it halfway between adjacent control points. 

3.3.4.2 Initialising the Population 

For the aerofoil parameterisation the initial population was formed by setting each 

gene randomly within the bounds for that variable, with a uniform distribution. 

For the Bézier representation, a gene's value was set by deviating from an example 

value for a specified aerofoil profile. The size of this deviation was set randomly, 

with uniform distribution, and the maximum size of the deviation was set by the user. 

Details on the bounds selected, and reasons for the selection of these bounds, for 

each experiment undertaken, is given with the results for the experiment in Appendix 

A. 
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3.3.4.3 Selection 

Tournament selection was used in this GA. A user-specified proportion of the 

population to be bred every generation was chosen. Thus a number of individuals to 

breed could be calculated. These individuals were selected by repeatedly choosing 

two individuals from the population at random. The individual with the best fitness 

was then allowed to breed by placing it in a list of 'parents'. 

3.3.4.4 Crossover and Mutation Operators 

Each of the individuals in the parents list was taken in turn and crossover applied. 

This was done by selecting at random another of the parents and using single point 

crossover. A crossover point is chosen at random. A child individual is then 

generated by taking genes from the first parent up to the crossover point and from the 

second parent after the crossover point. 

Mutation was then applied to the child individuals. There was a user defined 

mutation rate and mutation amplitude. Each gene was taken in turn and a random 

number (from 0 to 1) generated. If this random number was less than the mutation 

rate then mutation was applied to this gene. The size of this mutation was in the 

range: 

[-0.5 * mutationAmplitude * geneRange, 0.5 * mutationAmplitude * geneRange] 

with uniform distribution where geneRange is the difference between the value of the 

gene's upper and lower bounds. 

Following mutation all the child individuals were then placed into the population and 

the population then sorted in order of fitness. The population was then returned to its 

original size by culling the least fit individuals. 
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3.4 Results 

A number of different experiments were undertaken. Full details of these 

experiments can be found in Appendix A. The following sections give a brief 

synopsis of the results of the various experiments undertaken. Each experiment was 

repeated 10 times. 

3.4.1 Aerofoil Parameterisation 

Experiment A 

The objective of this run was to maximise lift coefficient (i.e. minimise —C1). This 

run was used primarily to validate the analysis and optimisation code. As was 

expected, the genetic algorithm consistently produced an aerofoil with the largest 

camber, thickness and attack angle allowed within the parameter bounds, with a 

value of C1 of 2.54. 

Experiment B 

The objective of this run was to minimise the drag coefficient. Again, this run was 

used primarily to validate the analysis and optimisation code. It was anticipated that 

the optimum aerofoil for low drag coefficient would have low or zero camber and 

would be at an attack angle very close to zero. However, the aerofoils generated by 

the genetic algorithm had a high camber and negative attack angle. The value of drag 

coefficient was negative which was clearly incorrect. There was clearly some 

problem with the optimisation algorithm or fluid analysis. 

Further investigation of the landscape of this problem around the generated aerofoil 

was undertaken as detailed in Appendix A. This indicated that the vortex panel 

analysis produced unrealistic results when attack angles were negative and camber 

angles were high. 
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This highlighted a problem that was to be frequently encountered with the vortex 

panel fluid analysis. It worked well for most shapes, but in some areas of the search 

space the values for lift and drag it returned were incorrect. It was also difficult to 

predict in which areas it performed poorly. 

Experiment C 

This experiment was a repeat of Experiment B, attempting to minimise drag, but 

restricted the bounds on the camber angles to 100  in order to avoid the problems 

encountered with false values for drag coefficient being generated for aerofoils with 

negative attack angle and high camber angles. With this restriction, the genetic 

algorithm produced an aerofoil shape with low camber and low attack angle. The 

calculated drag coefficient of 0.019, averaged over the ten runs, was realistic. 

Experiment D 

This experiment looked to maximise the lift/drag ratio (i.e. minimise Cd / C1). As this 

was the first experiment that attempted to optimise the lift/drag ratio, it was decided 

to firstly attempt a simplified problem in which the attack angle was constrained to 

be 0°. It should also be noted that the camber angles were not restricted to be below 

10°, but were allowed up to 30°. 

The aerofoils that the genetic algorithm generated matched well with what was 

expected, with a reasonably thin aerofoil with relatively high camber. The lift-drag 

ratio of 26.8 was realistic. It was found that runs converged to two slightly different 

aerofoils, although with similar fitnesses. It was suspected, therefore, that this genetic 

algorithm was, perhaps, prematurely converging to a sub-optimal solution. 
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Experiment E 

This was a repeat of Experiment D with a larger population size of 400. This was to 

check that Experiment D had not prematurely converged to a sub-optimal solution. 

Contrary to what was expected, for some of the aerofoils that the genetic algorithm 

generated were not similar to the results found in Experiment D. For these aerofoils 

lift-drag ratio calculated was unrealistic. 

Since it was suspected that the vortex panel method was producing inaccurate results 

in some parts of the search space, as was the case in Experiment B, an investigation 

of the landscape around the generated aerofoil was undertaken (as detailed in 

Appendix A). From this investigation, it was apparent that the accurate calculation of 

both lift and drag was not possible for values for the position of maximum thickness 

above about 85%. More pertinently to the problem encountered on this run, it could 

be seen that although the lift was calculated accurately at low values of thickness 

(between 2% and 3% of chord length), the calculation of drag was not. 

This problem was not encountered when a smaller population size was used because 

this inaccuracy only occurs in a small part of the search space (it relies on the other 

parameters, such as camber angles, being in certain ranges). With a large population 

this area of the search space is more likely to be encountered either when the initial 

population was formed or during the optimisation. 

Experiment F 

This was a repeat of Experiment E with the lower bound on aerofoil thickness raised 

from 2% to 3%, in order to avoid the problems encountered with faulty fluid analysis 

at small thicknesses. This aerofoil generated by the genetic algorithm closely 

matched the solutions found in Experiment D with a lift/drag ratio of 26.7, averaged 

over the ten runs. 
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Experiment G 

This run repeated Experiment F but allowed the attack angle to vary from a lower 

bound of 4° to an upper bound of 40•  The solution again produced unrealistic results. 

This was due to the same problem encountered in Experiment B, where the vortex 

panel was unable to calculate drag correctly for aerofoils with large camber angles 

and negative attack angles. 

Experiment H 

This run repeated of Experiment G, but with the maximum camber angles restricted 

to 100.  This run again produced realistic solutions. It should, however, be noted that 

this solution was considerably less fit than the aerofoil profile found in Experiment 

F. The aerofoils produced had a lift/drag ratio of 11.8, averaged over the ten runs, 

compared to 26.7 for Experiment F, despite the fact that this run had a considerably 

larger search space (attack angle was not included in Experiment F). This is 

discussed further in Section 3.5 

3.4.2 Bézier Representation 

Experiment I 

The population was initialised by perturbing the control points from those of a given 

aerofoil profile within a set of specified bounds. The best individual had an 

unrealistic fitness of 8.57e-5 (C/Cd of 11700). Numerous runs were undertaken with 

various initial base aerofoil profiles, each produced similarly unrealistic results to 

these. 
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3.4.3 Smooth Bézier Representation 

Experiment J 

It was thought that one possible cause of the analysis problems encountered in 

Experiment I was the presence of 'kinks' in the aerofoil shapes. Therefore, a second 

Bézier representation was tried in which C 1  continuity was imposed between the 

Bézier curves except at the trailing edge. The population was initialised by 

perturbing the control points from those of a given aerofoil profile within a set of 

specified bounds. The best individual had an unrealistic fitness of 5.55e-8 (C/Cd of 

1.8e6). Again numerous runs were undertaken with various initial base aerofoil 

profiles, each produced similarly unrealistic results to these. 

3.5 Discussion 

3.5.1 The Genetic Algorithm 

The genetic algorithm performed well on this problem. For problems where the 

vortex panel analysis was able to accurately model the flow the optimiser produced 

aerofoils which had geometries which looked as though they optimised the criteria 

specified and had realistic lift and drag coefficients. In Experiments A, B, C, E, G 

and H, the GA consistently found very similar solutions on each run, suggesting that 

the algorithm was indeed finding the global optimum. In the case of Experiments D 

and F, different runs converged to two slightly different aerofoils, but each had very 

similar fitnesses. 

The number of evaluations used was large. It is difficult to say how much larger the 

number of evaluations used by the GA was above a traditional optimisation 

algorithm without implementing such an algorithm. This was not a problem with the 

vortex panel method since with this method evaluation was relatively quick. If a 

more computationally expensive method was used, as discussed in Section 3.5.3, 

then this might be a problem. 
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3.5.2 The Shape Representations 

3.5.2.1 Aerofoil Parameterisation 

The aerofoil parameterisation was found to work well. The representation produces a 

set of shapes through which the GA seemed to be able to search well. 

There were some problems encountered where the analysis method could not 

accurately assess the shapes. However, by using bounds on the parameters it was 

possible to control the search space over which the optimisation was undertaken. 

Those areas of the search space that could not be modelled effectively could 

therefore be avoided. 

This did, however, throw up an interesting difficulty. In Experiment F an aerofoil 

was found with a lift-drag ratio of 26.7. This run used bounds on camber angles of 0 0  

And 300  and with attack angle set at 0 0 . The optimal shape was found to have a high 

degree of camber. A similar optimisation was undertaken in Experiment H, but with 

attack angles allowed to vary from -4° to 4°. However, because the vortex panel 

analysis produced inaccurate results for shapes with high camber and negative attack 

angles, the camber angles were restricted to below 10°. Experiment H found an 

optimal shape with a lift-drag ratio of only 11.8. By adding attack angle as a variable, 

the intention had been to increase the size of the search space of shapes and thus 

possibly to find a better solution; This, though, had made available part of the search 

space that could not be analysed accurately. The subsequent constraint placed on 

camber angles made to avoid this area inadvertently also removed the optimal 

solution found in Experiment F. This is shown schematically in Figure 3-3. 
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Figure 3-3 	Addition of Constraint on ThetaO in Experiment H 

The main reservation about this representation was that it was relatively simplistic. 

The range of potential shapes it could generate was fairly limited. For instance, it 

would not be able to produce the shapes of some of the modern aerofoil profiles. 

More complicated parameterisations are available, although they typically use more 

variables. [Giannakoglou 2002] reports on the use of some of these parameterisations 

with genetic algorithms. [Samareh 19991 surveys shape parameterisation techniques 

for aerodynamic optimisation problems. 
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3.5.2.2 Bézier Representations 

The intention behind using a Bézier curve representation was to greatly increase the 

range of potential shapes that could be produced, so that the ability of the genetic 

algorithm to find a global optimum on a multi-modal landscape could be exploited. 

However, this proved to be difficult since the vortex panel method analysis was 

unable to model accurately many of the shapes generated. For many shapes the 

analysis seemed accurate, but for others very high lift coefficients or low drag 

coefficients were assigned. If the analysis had assigned poor values for lift and drag 

for those shapes that it could not analyse accurately, this might not have been too 

much of a problem. The optimisation would then just be to find a shape which 

performed well and which could be analysed accurately. Instead, often shapes were 

assigned unrealistically good fitness and so the genetic algorithm would evolve 

towards those areas of the search space that could not be accurately assessed by the 

vortex panel method. 

To compound this problem, unlike with the aerofoil parameterisation, it proved to be 

difficult to define where the analysis did not work. With the aerofoil parameterisation 

it was possible to place bounds on the variables in order to avoid areas of the search 

space that could not be analysed. For Bézier representations this proved to be 

impossible to do, since it was too difficult to characterise, in terms of the 

combinations of the control point co-ordinates, those areas of the search space which 

the vortex panel could not accurately analyse. 

3.5.2.3 Further Comments on Shape Representations 

The approach to using Bézier curves to represent the aerofoil shapes used in this 

study combined with the vortex panel method of fluid modelling was unsuccessful. 

There are a number of possible solutions to this. An analysis method that is better 

able to model these general shapes could be developed (as discussed in the following 

section). Alternatively, the positions of the control points could be more tightly 

constrained in some way so that only analysable shapes are generated. Indeed, Bézier 
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curves and splines have been frequently used successfully in the literature 

[Giannakoglou 2002]. 

Nevertheless, whatever shape representation and analysis code is used a number of 

considerations must be taken into account, when deciding on a representation to use: 

• The representation should be selected so that the search space is likely to contain 

the optimal shape. Often, the designer does not know a priori the likely nature of 

the optimal shape. One possible solution to this is to make the search space as 

large as possible. 

• The analysis code can analyse accurately all the shapes in the search space. The 

Bézier representation was found to fail on this point, because the vortex panel 

method could not analyse all of the shapes the Bézier representation could 

produce. Even in the case of the aerofoil parameterisation, where almost all of the 

search space was accurately analysed, the presence of even a small area of the 

search space where this was not the case, caused problems. 

• It is desirable to keep the number of shapes in the search space as small as 

possible. Clearly, the computational cost of searching through the search space 

depends on the algorithm employed, the way it searches through space and the 

nature of the problem landscape. However, all other things being equal, the 

smaller a search space is, the less effort is required to search through it. Often this 

means having as few variables as possible. It should be noted that this conflicts 

with the first consideration above. 

• The optimisation algorithm should find it easy to search through the space of 

potential shapes. As an example, consider increasing aerofoil camber to increase 

lift. In the aerofoil representation, increasing the camber angle changes the 

aerofoil in such a way as to produce an otherwise similar aerofoil with higher lift. 

An optimiser with an operator that changes the camber angle can easily explore 

the possibilities of increasing lift by increasing camber angle. With the naïve 
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Bézier representation used in this study, changing the aerofoil camber can only 

be done by moving a number of control points. If the optimiser has no operator 

for moving a number of control points at once, then the uncambered aerofoil and 

cambered aerofoil (but which are otherwise similar) are far apart in the search 

space and it is therefore difficult to move between them. 

This topic is covered in more detail in Chapter 6. 

3.5.3 The Evaluator 

The vortex panel method worked effectively for most reasonably shaped aerofoil 

shapes. It makes assumptions about the type of flow being modelled, namely that the 

flow is steady, inviscid and incompressible. However, these assumptions are 

acceptable for the flow regime for which aerofoils were being designed in this study 

(Reynold's number of about 5x106). It had the advantage of being a much quicker 

analysis method than available alternatives such as the finite volume method. 

Problems were encountered, though, when this method was used to analyse more 

unconventional shapes. The vortex panel is not able to model boundary layer 

separation and so cannot predict stall. This inability resulted in poor results with the 

aerofoil parameterisation when shapes with high camber angles and negative attack 

angles were analysed. Similarly, for many of the shapes generated by the Bézier 

representation inaccurate results were generated. 

If there was a requirement to evaluate more general candidate shapes a different 

evaluator is required. An Euler flow solver [Ferziger & Peric 1996] [Versteeg & 

Malalasekera 1995], is available which is able to accurately solve the flow around 

more general shapes than could be evaluated with the vortex panel flow solver. This 

evaluator has been written but at time of writing this thesis had not been fully 

integrated with the rest of the shape optimisation application. 
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The Euler solver assumes that the flow is compressible and inviscid. This solver 

takes the co-ordinates of thirty-two points around the candidate shape with a higher 

density of points at the trailing edge. A 32 x 32 '0' shaped grid is then produced up 

to a distance of about five chord lengths from the aerofoil. This is about the lowest 

resolution which can be used, whilst still retaining reasonably accurate results. 

The primary disadvantage of this method is the time taken for each evaluation 

(approximately 5 seconds on a Pentium 3 PC). If similar numbers of evaluations 

were required as were used in the runs described in Section 3.4 (typically thousands) 

optimisation would take a considerable length of time. For Experiment F 8400 

evaluations were undertaken, with the Euler solver this experiment would take 

approximately 12 hours. 

The Euler solver iterates towards a solution. It is possible to start an evaluation using 

the solution of the flow for a previous similar aerofoil. This will reduce the time 

taken to converge. It would therefore be possible to produce a library of solutions for 

a range of shapes. The evaluator then selects as its starting conditions the solution 

from the most similar aerofoil in this library. 

At early stages of the optimisation highly accurate solutions are not required since it 

is only necessary to rank aerofoils from good to bad. At first, therefore, the solution 

can be stopped when only weak convergence conditions have been achieved. This 

will reduce the evaluation times at the beginning of the optimisation. Throughout the 

optimisation, the solutions will be required to be increasingly converged so that the 

accuracy of the solution will be increased when fine-tuning of shapes is being made 

at the end of the optimisation. This will require the solutions of those shapes that 

survive during the early stages of the optimisation to be restarted so that increased 

convergence can be achieved. It may therefore be advantageous to include the 

solutions for all surviving shapes in the library of starting conditions. 
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For a more general evaluator it may be possible to use full Navier-Stokes solvers 

[Ferziger & Peric 1996] [Jameson 2001] [Versteeg & Malalasekera 1995] to evaluate 

shapes for shape optimisation [Nemec & Zingg 20011. Use may also be made of 

unstructured grids, so that some restrictions imposed on candidate shapes to enable 

the structured grid to be used may be lifted. 

3.6 Conclusions 

A. genetic algorithm was applied to the problem of optimising the shape of an 

aerofoil with the aims of investigating the appropriateness of various shape 

descriptions for aerofoil shape optimisation and investigating the efficiency of 

genetic algorithms for aerofoil shape optimisation 

Three shape representations were used, an aerofoil parameterisation, a four Bézier 

curve representation and a four Bézier curve representation with C' continuity 

imposed at the joins between curves. The aerofoil parameterisation worked well as 

long as care was taken to ensure only shapes were generated that the vortex panel 

fluid analysis could analyse. Further work would be useful with more sophisticated 

aerofoil parametensations (with more variables). 

Less success was had with the Bézier curve representations. Many of the shapes that 

were produced could not be accurately analysed by the vortex panel method and the 

genetic algorithm therefore evolved towards unrealistic shapes. This highlighted the 

need to ensure that all the shapes in the search space set up by a shape representation 

can be analysed accurately. 
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Fluid analysis was undertaken with a vortex panel method that was written for this 

problem. This method had the advantage of being quick and able to model the flow 

around 'reasonable' aerofoil shapes but was unable to analyse more general shapes. 

The genetic algorithm worked well with the parameterised aerofoil representation. 

The GA consistently found the same solution on similar runs, suggesting that the 

algorithm was indeed finding the global optimum. This was also checked by 

repeating some runs with much larger population sizes. 
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4 Voxel Based Genetic Algorithm Optimisation 

4.1 Summary 

A voxel-based shape representation, when integrated with an evolutionary algorithm, 

offers a number of potential advantages for shape optimisation. Topology need not 

be predefined, geometric constraints are easily imposed and, with adequate 

resolution, any shape can be approximated to arbitrary accuracy. However, lack of 

boundary smoothness, length of chromosome and inclusion of small holes in the final 

shape have been stated as problems with this representation. This chapter describes 

two experiments performed in an attempt to address some of these problems. Firstly, 

a design problem with only a small computational cost of evaluating candidate 

shapes was used as a test-bed for designing genetic operators for this shape 

representation. Secondly, these operators were refined for a design problem using a 

more costly finite element evaluation. It was concluded that the voxel representation 

can, with careful design of genetic operators, be useful in shape optimisation. 

However, since the boundary of a voxel model is necessarily not smooth, difficulties 

were encountered in ensuring that the finite element analysis produced accurate 

results. 

4.2 Introduction 

4.2.1 Voxel Shape Representation 

The work described in this chapter involved investigating the possibility of replacing 

the usual boundary representation of the shape usually used for shape optimisation 

with a cellular representation. The cellular representation chosen in this work used 

voxels, which partition the design space into rectangular regions or boxes that are 

then assigned a binary full or empty value. This approach was motivated by a 

number of potential advantages [Smith 1995a]: 
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L.  
any shape can be represented to an arbitrary accuracy by increasing resolution, 

• it is easy to convert existing engineering solutions into voxels, 

they map naturally to the representations frequently used by genetic algorithms 

(GAs), 

domain knowledge can be readily incorporated, 

geometric constraints can easily be applied, and, 

the topology of candidate shapes is not predefined. 

However, Watabe and Okino [Watabe & Okino 1993] state the following objections 

to voxels: 

• the occurrence of small holes in the final shape, 

the long length of the chromosomes, 

the expectation that crossover operators would be ineffective, and, 

• the lack of smoothness in the shapes' outlines. 

4.2.2 Aims 

Given the potential advantages of a voxel representation, it was considered 

worthwhile addressing these difficulties. Specifically, the aims of this work were: 

• to determine the suitability of voxels as a geometric model for use in shape 

optimisation, and, 

• to design suitable operators for a GA optimiser to use with such a representation. 
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4.3 Experiments 

Two experiments were devised in order to investigate the voxel representation. 

Firstly, a simplified beam design problem was formulated for which the cost of 

evaluation would be small. Using this problem as a test-bed, a number of operators 

were designed. Secondly, an annulus design problem was tackled using a finite 

element analysis. The computation cost of evaluation in this case was thus much 

greater. The usefulness of the operators designed in the first experiment could then 

be evaluated with a more difficult design problem. 

4.3.1 Simplified Beam Design 

A prototypical mechanical engineering problem is that of optimising a beam to 

support various loads with a minimal amount of material. Evaluation of the candidate 

cross-sections was made using bending theory for symmetrical beams, considering 

only normal stresses [Gere and Timoshenko 1984]. This is an oversimplified model, 

but is sufficient to test whether the potential problems with a voxel representation 

outlined above do pose a problem in practice. The maximum stress constraint 

imposed by the physics model used in these experiments is summarised below. 



4. 	Voxel Based Genetic Algorithm Optimisation 	 90 

I My I <a max 	 for all voxels 

where: 	a,, is the maximum stress allowed within any given area (voxel); 

M is the bending moment; 

y is the distance of the voxel from the neutral axis of the shape; 

I is the second moment of area of the candidate cross-section. 

The neutral axis of a shape is defined as a horizontal line that passes through the 

centre of mass of the shape. As a voxel representation uses areas which are all of 

uniform size and density, the centre of mass can be found by taking the average of 

the positions of all occupied voxels. The second moment of area is approximated in 

the discrete representation by summing the moments of each voxel, that is: 

n 
1= I ay 

i=O 

where a is the area of a voxel. 

In the real world, the solution to this problem would correspond to an I-beam, but 

that also requires a web to connect the two flanges of the beam together. In a design 

based on a full calculation with shear stress, the web would be necessary to 

counteract this additional stress. However, as shear stress is not represented in this 

problem, a connectivity requirement in the form of a repair step was added, whereby 

all pixels must be connected to a seed voxel in the centre top edge of the beam. In 

addition, a straight web was enforced before the connectivity repair step. This was 

found, in formative experiments, to prevent the formation of a crooked web (as the 

physics model used does not prevent this), and improve slightly the results obtained. 
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To try to ensure that the alterations and improvements made to the GA will also 

prove beneficial to the real-world problem, it was decided not to concentrate on fine-

tuning any of the various parameters available, but rather to focus on the design and 

operation of various new operators. Therefore, parametric variations were restricted 

to an absolute minimum and were used only to determine the approximate values 

required to gain reasonable advantages from the new operators. Therefore in the 

following experiments, the following parameter settings remain constant unless 

mentioned otherwise: 

Beam Dimensions 	=0.05x0.10 m 

Bending Moment 	 = 13000 	Nm 

Voxel Grid 	 =32x64 	voxels 

Maximum Stress Allowed =2x10 8 	Nm 2  

4.3.1.1 Experiments Using the Naïve Genetic Algorithm 

The first set of experiments with a 2D representation treated the chromosome as a 

long one-dimensional binary string that wrapped around at the vertical edges onto 

new lines to form the two-dimensional cross-section. Standard two-point crossover 

(p = 0.35) and bitwise mutation (,n = 0.001) were used in conjunction with a 

generation GA with a population of size 20. GENITOR-style rank-based selection 

[Whitley 1989] was used throughout. From the above, the fitness function, F, used 

was of the following form: 

F=V+_
S 
 +max{(S-crO} 

1000 ma 

where: 	V 	was the count of active voxels (proportional to weight), 

S 	the maximum stress of any voxel, 
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CrM, the value of the maximum stress constraint, 

k 	the constraint penalty multiplier (set to 5 x 10 5  according to 

the results of formative experiments). 

With this particular optimisation problem, the difficulty lay not in getting a valid 

solution, but in getting a near optimal-mass solution. The first experiments were 

relatively unsuccessful in this regard: the results after 2000 generations were full of 

small holes and had extremely uneven inner edges. This can be seen in the typical 

end-of-run results shown in Figure 4-1 (the numbers represent the fitness values of 

each individual). 

Figure 4-1 	Typical End Population (with fitnesses) 

The stresses were concentrated at the vertical extremes of the beam, so the material 

in the middle contributes less towards the beam's ability to withstand the load, and 

therefore as we are trying to minimise the mass of the beam, the material is more 

usefully employed at the extremes of the beam. The GA, even in this simple standard 

form, rapidly removed material from the middle of the cross-section, and in the later 

stages of the experiments was observed to be moving material from low stress areas 

into high stress areas where holes were left near the extremities. 
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However, this first naïve GA approach took an extremely large number of 

evaluations in order to make significant progress, and this is not acceptable as later 

experiments would have a greatly increased evaluation time due to the integration of 

the finite element package. The rate of improvement was also seen to decrease as the 

run continued, levelling off to almost none at all by the end of the run. This means 

that the GA was not finding any further improvements to the chromosome, and as the 

results are visibly poor, it indicates a general weakness in the operators being 

applied. 

Attention was therefore concentrated towards improving the GA operators, in order 

to achieve greater benefits during the early search period, and to produce better 

quality final results. 

4.3.1.2 The Smoothing Mutation Operator 

The smoothing operator experiments were an attempt to address directly some of the 

weaknesses of the voxel representation by devising a new specialised operator, 

which should aid the search by reducing the number of small holes and ragged edges 

produced by the GA. The new operator was intended to be capable of easy expansion 

from two-dimensions to n-dimensions, so that it would continue to be useful in the 

case of higher dimensional problems using the voxel representation. 

This operator selects an area with both random position and size ranging from 2 

pixels to 1/4 of the dimensions of the grid. The most common value for the pixels in 

the area selected was then found and written to all of the pixels in that area (see 

Figure 4-2). 
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Figure 4-2 	The Smoothing Operator 

The GA parameters used were the same as before and the new operator was applied 

in addition to the previous mutation and cross-over operators - application of this 

operator to 60% of the chromosomes in the population was found, in formative 

experiments, to give the best results. The GA configuration was otherwise 

unchanged, though the number of generations was limited to 1500 in this case. 

855 921 864 860 861 881 858 856 qjq 857 

934 857 855 856 261 855 851 3441 121 991 

Figure 4-3 	 Typical End Population for GA with Smoothing 

Operator after 1500 Generations (fitnesses are 

shown) 
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Comparing Figure 4-3 which displays some typical end-of-run population members 

with earlier results (shown in Figure 4-1), shows just how effective this domain 

specific approach to operator design has been, especially at eliminating isolated holes 

and reducing ragged edges. 

4.3.1.3 UNB LOX: An N-dimensional Crossover Operator. 

The two-point crossover operator that had been used up to this point treated the 

chromosome as a one-dimensional string of bits and therefore suffered from a 

problem with linkage; voxels that are adjacent in a two-dimensional grid are not 

necessarily adjacent in the one-dimensional string. This separation increases the 

possibility that useful building blocks (areas of the grid that contribute to a higher 

overall fitness evaluation) will be disrupted during the crossover procedure. 

[Cartwright & Harris 1993] describe the use of the UNBLOX crossover operator, 

which was specifically designed to overcome these limitations with conventional 

two-point crossover. This operator swaps a rectangular area of the grid instead of the 

sub-string swapped by two-point crossover. If the area overlaps an edge of the grid 

then it is made to 'wrap-around' to the opposite side. The size and location of the 

area to be swapped are both selected at random, and in this implementation the area 

was restricted to a minimum size of two voxels per dimension in order that the 

operator would always have some effect when applied. 
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The crossover operators were used with the standard probability of 0.3 per 

chromosome and no changes were made to the standard algorithm or to any of the 

other parameter settings described earlier. The graph in Figure 4-4 shows the results 

of three experiments using each of three crossover operators: the UNBLOX operator, 

standard two-point crossover and uniform crossovers [Goldberg 89].  The average 

fitness, over ten trials, of the best individual in the population is plotted against the 

generation. 
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The results confirm that the UNBLOX operator does indeed perform better than 

either the two-point crossover or the uniform crossover techniques on this problem. 

The rate of descent of the UNBLOX line is quicker, indicating that the population 

converged to good solutions faster with this approach than with the other operators, 

and the eventual end result after 1500 generations had a slightly better fitness value 

than those produced by the other techniques. 

4.3.1.4 Two Dimensional Mutation Operators 

A new mutation operator was designed which scrambles the contents of a randomly 

selected rectangular area of the voxel grid. It is referred to here as the 'two 

dimensional' operator. This operator can be easily modified to work in n-dimensions, 

and affects a relatively small area of the chromosome intensively in the selected 

rectangular area, in the same way as for the smoothing mutation operator. A second, 

somewhat altered, version of this mutation operator was also designed and tested in 

these experiments called the 'two-by-two' area mutation operator. This operator uses 

a fixed mutation square of two by two voxels and was designed to be applied only if 

at least one voxel in the mutation area is already active. It was observed that most of 

the modifications need to be made to the surface or interior of the evolving shape and 

that very little benefit will result from flipping isolated voxels in the middle of the 

void areas. The choice of a fixed two by two area was motivated by the observation 

that most of the irregularities on the surfaces would fit into such an area and that with 

only sixteen permutations possible (four binary bits), the probability of mutating a 

poor quality area into a more fit variation would be reasonably high. 

The new operators were again applied, in addition to the original bitwise mutation 

operator, with a probability of 0.25 per chromosome of being applied. After each 

application, there was a decreased probability of the same operator being applied 

again, with the probability of a further application being decreased to one half of its 

previous value each time. The experiments were performed ten times for each of the 

three alternative mutation combinations, over a period of fifteen hundred 

generations. 
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Figure 4-5 	Effectiveness of Various Mutation Operators 

The graph in Figure 4-5 shows the results of three experiments: 2D and bitwise 

mutations, two-by-two and bitwise mutations and bitwise mutation alone. The 

average fitness, over ten trials, of the best individual in the population is plotted 

against the generation. 

The addition of the 'two dimensional operator' generally results in better 

performance than the bitwise operator alone, though the two lines do meet between 

generations 300 to 400. The steeper descent of the two dimensional operator line 

indicates that early performance was especially improved, and the final result after 

fifteen hundred generations is significantly better than previously. The 'two-by-two' 

operator offers a similar rate of improvement during the early stages of the trial, a 

slightly better performance between generations 100 to 600 and finally converges 

with the 'two dimensional' operator's line at about generation 1000. This seems to 
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indicate that although offering early benefits to the optimisation, it is not better than 

the 'two dimensional' operator in the long run. 

In conclusion, two new mutation operators were designed with the particular 

intention of directly addressing the perceived problems with the prior optimisations. 

Both of the new operators were found more effective than the previous uninformed 

bitwise mutation, producing benefits to both the rate of early improvement and the 

final quality of solution generated. 

In the absence of any other clearly distinguishing features, the 'two-by-two' operator 

will be used during the further experiments as it offers a speed advantage over the 

two dimensional mutation operator outlined above. 

4.3.1.5 Conclusions on the Beam Design Problem 

The results have shown that although a naïve GA does indeed suffer from the 

problems suggested by [Watabe & Okino 19931, a small selection of operators 

informed only by domain knowledge about the representation, will effectively solve 

each of these difficulties. 

The final system uses a normal bitwise mutation operator in addition to the two new 

mutation operators, smoothing, and 'two-by-two'. The smoothing operator rapidly 

cuts away unwanted areas of material during the early stages of the optimisation and 

can help to smooth ragged edges and fill small holes later. The two-by-two mutation 

operator is highly effective at both smoothing off ragged edges and at filling in small 

holes in the material if they occur in undesirable places. Finally, the two-point 

crossover operator has been replaced by the n-dimensional UNBLOX operator. 
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4.3.2 Annulus Design Problem using Finite Element Analysis 

The experiments undertaken with the simplified beam design problem outlined in 

Section 4.3.1 led to the design of effective GA operators for manipulation of 2D 

shapes. This section details further experiments undertaken to apply these operators 

to a more difficult design problem. The problem chosen was to design a jet-engine 

annulus. The finite element method was chosen as the analysis technique. Initially, 

for ease of implementation, the voxel shape description was directly used as the 

finite element mesh. 

 

T-1h 	 Rim 

 

Axis of 
Rotation 

Blade 
forces 

Figure 4-6 	Annulus Axisymmetric Cross-section 

4.3.2.1 The Annulus Design Problem. 

The full original specification of this problem came from an industrial source and is 

taken from [Smith 1995b]. The problem is to design a jet-engine annulus. This part is 

subjected to loading due to rotation and due to the attachment of the turbine blades to 

its outer circumference. The part is axisymmetric around the axis of rotation, and 
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consequently it reduces to the two-dimensional shape optimisation problem shown as 

Figure 4-6. 

The optimisation involved reducing the mass of the annulus whilst observing a series 

of four separate stress constraints at discrete locations in the annulus. The constraints 

relate to the hoop stresses at the inner and outer circumferences and the radial 

stresses along the centre line of the annulus. The stress constraints to be observed 

were, in descending order of importance: 

Hub hoop stress 	 <1330 MPa 

Rim hoop stress 	 <396 MPa 

Inner radial stress 	<741 MPa 

Outer radial stress 	<334 MPa 

4.3.2.2 The Fitness Function 

The GA fitness function was defined as an objective (weight of the annulus in kg, 

and a factor to minimise the total stress at the four test points, in MPa) plus a sum of 

penalty terms if one of the four stress constraints was broken. Therefore, the GA 

maximised: 

1. 

 
F = 	1000 Si —annulus_weight - (k i max{(S - cr fl(I) ) o}) 

Constraint penalties were applied if any of the four constraints limits Om (j) were 

exceeded by the stress, Si, measured (in MPa), The constraints were ordered in 

importance by using 4 x k for the most important, 3 x k for the second most 

important, 2 x k for the next and 1 x k for the least important constraint. 
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4.3.2.3 Results from the basic system. 

Again, a generational GA with a population of size 20 and GENITOR-style rank-

based selection was used. The UNBLOX, smoothing mutation, and 2-by-2 mutation 

operators were applied sequentially with probabilities 0.3, 0.8, and 0.8 respectively 

(on the basis of formative experiments). A 62 by 27 voxel grid was used to represent 

the annulus and the constraint penalty, k, was set to 0.00005. The settings used for 

the annulus were: 

Dimensions of design space = 

Radius of hole 	 = 

Blade force 	 = 

Young's modulus 	= 

Material density 	 = 

Revolution speed 	= 

0.25 x 0.05 m 

0.10 	in 

10   105 	Nrad 

2.238 x 1011  N m 2  

8.221 x 103  kg m 3  

1571.0 rads 1  

The basic system was first applied without further modifications to the annulus 

optimisation. However, the problem as specified was very tightly constrained, which 

meant that the attempts to solve this problem using random population initialisation 

violated all of the stress constraints by large amounts. Also, the rate of improvement 

in the population, when extrapolated beyond the time period allocated to the 

experiments indicated that a valid solution would not be found for some considerable 

number of generations still to come. 

To circumvent this problem, the population was instead initialised with a selection of 

variations on the annulus design supplied with the original specification, which were 

modified further by an aggressive random mutation operator that added and removed 

small areas of material over the surface of the annulus design. This kind of intelligent 

initialisation was thought reasonable, as a user will often want to start the GA with 
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Figure 4-7 	Results of the Basic Annulus Optimisation after 75 

Generations 

existing designs in order to see what improvements can be made. Even when a 

totally new shape is being designed, the user would normally have some expectation 

about the final form, which could easily be used to initialise the population. The 

intelligent initialisation approach meant that the initial population was not 

unreasonably far outside of the stress constraints, yet supplied the optimisation with 

sufficient variation that the population did not rapidly converge onto a single 

solution. Some of the results from this basic system can be seen in Figure 4-7 that 

shows six members of the population after seventy-five generations. 

The results shown in Figure 4-7 were poor. The lack of symmetry around the 

horizontal axis and the uneven edges were just the most visible failings in this set of 

results. A second problem was the occurrence of large stresses at the corners of 

elements on the edge of the shape. 
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4.3.2.4 Improvements made to the system 

4.3.2.4.1 Use of Symmetry 

It was known that a solution to the annulus design problem should be symmetric 

about a radial axis. It was therefore decided to utilise this domain knowledge and 

thus reduce the search space of the problem. The central line of voxels along the axis 

of symmetry is not mirrored as it is now enforced by the GA to be always turned on 

- this also provides a guaranteed central line of elements for the stress measurements 

to be taken from. 

4.3.2.4.2 Mesh Improvement 

It was found in the initial experiments for the annulus design problem that directly 

using the voxel description of the geometry as the finite element mesh caused 

problems with high stresses caused by corners in the mesh. It was therefore decided 

to attempt to separate the geometry model and mesh. There were several possible 

approaches that could have been taken. An approach that was considered was to use 

interpolation splines to form a smoothed edge. The voxels would then act as a 

'skeleton' and the spline as a 'skin'. A mesh generator could then produce a mesh 

whose density could then be independent of the voxel model. However, for this 

prototype system, it was decided simply to add triangular elements at the corners. 

Whilst this was a far less elegant solution it was much simpler to implement. 

These new triangular elements were created by specifying connections between 

groups of three nodes in the element connection file. These triangular elements were 

added to the shape at all suitable 'steps', which were identified by convolving the 

voxels in the shape against a series of four matching template masks. If each square 

in the mask matched the value of the voxels surrounding an empty voxel then the 

appropriate triangular element was created in the 'step'. The convolution masks and 

the triangles which they caused to be inserted are shown in Figure 4-8. 
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Figure 4-8 	Convolution Masks for Triangle Insertion Process 

4.3.2.4.3 Design of Operator to Remove Holes 

The 'two-by-two' mutation operator (which can either fix holes or cause them to 

appear) was modified to only mutate areas where, as well as at least one voxel being 

turned on, at least one of the four voxels is also turned off. The result of this 

modification is that the two by two mutation operator can now only mutate at the 

boundaries of the shapes being formed, and consequently it should also help reduce 

the number of small protuberances. 

4.3.2.5 Results of Improved System 

The improved GA for annulus optimisation used the same settings as the basic 

system for all parameters, except that the chromosomal grid was set to 21 voxels 

high, which is mirrored due to the symmetry used to produce a voxel grid height of 

41 voxels. The analysis was permitted to continue for 114 generations and this took 

approximately twenty-four hours in total. Some members of the final population 

created by the improved GA are shown in Figure 4-9. This displays three of the 

twenty individuals and shows a clear improvement in quality over the results 

generated previously. The small protuberances have been totally eliminated and only 

a few members of the population contain small holes. The rate at which a valid 
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Figure 4-9 	Final Annulus Cross-Sections from Improved GA 

solution was found is considerably faster than the basic implementation, and once 

found, the GA continued to improve upon this solution even to the very last pass of 

this trial. 

The annulus shapes produced can be seen to be unusual. It is proposed that the 

'overhangs' present at the cob and the thinness of the neck are due to the inadequate 

specification used for the annulus and the method used to penalise constraint 

violation. Stress constraints were defined for four discrete points in the specification 

that was intended to be used with a parameterised shape description. This 

specification would be adequate for such a representation. However, with the voxel 

representation the optimiser was able to remove material with greater flexibility. At 

an optimal solution, one of the stress constraints is just inactive. Removing more 

material would then increase the stress to above the maximum value. However the 
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GA could improve the fitness value if, by adding material elsewhere, the position of 

high stress was moved from the point at which the constraint was assessed, as long as 

the amount of material added was less than that removed. If this explanation is 

correct, the problems do not lie with the voxel representation and could be solved by 

improving the specification and method of penalising constraint violation. This 

highlighted the necessity to express in a formal and unambiguous way what is the 

desired behaviour. 

After using the finite element package to examine the solutions produced by this 

optimisation, it was possible to confirm that the use of the triangular elements to 

smooth the boundary worked as expected in reducing the amount of stress in the 

regions immediately surrounding a step. Figure 4-10 shows the stress values 

calculated by the finite element package for the voxels surrounding steps in two 

typical runs and clearly shows how the triangles permit the excess stress to be 

distributed more in a more evenly. Darker shades indicate higher stress. 
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Figure 4-10 	Results without and with Smoothing Triangles 
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Figure 4-11 	The Best Annulus Design from the Final Set of Experiments 

4.3.2.6 Conclusions for Annulus Design Problem 

It was found that the use of unmodified operators from the beam design problem was 

unsuccessful. However when the operators were modified, taking into account 

knowledge held about the annulus design problem, the results were more successful. 

Difficulties were encountered in the direct use of the voxel shape representation as 

the finite element mesh. These were to some extent alleviated by the use of 

smoothing triangular elements. However, the full decoupling of the primary voxel-

based shape description and finite element mesh would be desirable. 

Due to the flexibility of the voxel representation in removing and adding material 

coupled with the GAs ability to exploit the whole search space, it was found that the 

specification of the problem needed to be more tightly defined. 
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4.4 Conclusions 

Voxels were found to be a viable representation for shape optimisation with an 

evolutionary algorithm in 2D problems. They have a number of potential advantages 

over other representations such as parameterised boundary descriptions. It is easier to 

not predefine the topology (whilst it is possible to represent an arbitrary topology 

with a boundary representation, it is much more difficult to parameterise a b-rep 

model so that topology can be changed [Shapiro & Vossler 1995]), domain 

knowledge is easier to incorporate, geometric constraints can be easily applied and it 

is easier to convert existing solutions into such a description in order to 'seed' an 

initial population of shapes. 

Experiments were undertaken on two design problems, a simplified beam design and 

a jet-engine annulus design using finite element analysis. During these experiments a 

number of difficulties inherent with this representation were addressed, primarily by 

use of specifically designed genetic algorithm operators which utilised domain 

knowledge held about the problems tackled. An n-dimensional crossover operator 

was used which provided linkage between adjacent rows of voxels and thus avoided 

the slow convergence found with a conventional crossover operator. An operator was 

designed to remove unwanted holes produced in candidate shapes and to smooth 

boundary edges. 

The direct use of the voxels as the finite element mesh was found to be inadequate. 

Further work required involves the decoupling of the voxel representation and mesh. 

The flexibility of the voxel representation along with the genetic algorithm's 

exploitation of the whole search space uncovered deficiencies in the specification, 

supplied by an industrial collaborator, used for the annulus design problem. 

Finally, it should be noted that GA optimisations can easily be modified into 

interactive optimisation systems [Tuson et al. 1997] and in this case the computer 

would rely on an engineer's practical experience and knowledge of the problem 

domain to direct key choices in the optimisation process. 
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5 Application of Genetic Programming in a Solid Modeller 

5.1 Summary 

In this chapter an initial investigation into the use of genetic programming in a 

hybrid B-Rep / constructive solid geometry (CSG) solid modeller is described. In a 

CSG solid model the solid is represented with a tree structure of Boolean functions, 

such as 'union', 'intersection' and 'subtract', acting on a collection of primitive point 

sets [Mantyla 1988] [Hearn & Baker 1994]. Genetic programming [Koza 1990] is a 

cousin of genetic algorithms, which acts on tree-structure chromosomes, rather than 

on the linear chromosomes traditionally used by genetic algorithms. 

The ACIS 3D toolkit [Corney 1997] was used as the solid modeller. This toolkit has 

an interface based on the Scheme language. The genetic programming algorithm was 

implemented using this Scheme interface. 

A test problem was used in which the aim was to regenerate a given test component. 

Genetic programming was used to manipulate a tree structure with Boolean 

operations at internal nodes and the primitive bodies making up the component as the 

leaves. The technique was found able to regenerate the test body. 

It was hoped that this technique might be used to automate the difficult process of 

converting arbitrary B-Rep solid models into CSG models. However, these initial 

tests suggested that the computational time required to solve any realistic problem 

with this technique would be prohibitive. 

5.2 Introduction 

5.2.1 Genetic Programming 

Genetic programming (GP) is an extension of genetic algorithms in which the 

chromosome is a tree structure (see Figure 5-1), rather than the linear chromosomes 
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used in traditional genetic algorithms (GAs). The technique was initially developed 

by [Cramer 1985] and has been extensively studied by [Koza 1990], [Koza 1992], 

[Koza 1994] and [Koza et al. 1999]. GP has been applied to a number of diverse 

areas including mechatronics design [Seo et al. 2003], modelling of waste treatment 

plants [Hong & Bhamidimarri 2003] and image classification [Agnelli et al. 2002]. 

[Ryan et al. 2003] demonstrates the current breadth of possible applications of GP. 

Output 

Fx denotes function x 

Fl ) 	 Tx denotes terminal x 

F2 	( F3 

T1 I 	I T21 	I T5 I 	
(Fl 

	

F4 	 ( F2 

.rii 

Figure 5-1 	A Genetic Programming Chromosome 

In a GP chromosome tree, each node is a function and takes n arguments (in Figure 

5-1 n = 2). These arguments are either the outputs from other function nodes or 

terminals. Terminals are either inputs to the system or constants. When applying GP 
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to controller design, for example, the terminals would be sensor outputs. The set of 

available functions could include algebraic and trigonometric functions. 

Initially a population of trees is produced at random. As in a GA, each chromosome 

is tested and assigned some fitness. Parents are selected with some bias towards the 

fittest trees. Crossover is undertaken by choosing at random a node or terminal on 

each parent and then two child trees are produced by replacing subtrees on each 
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Figure 5-2 	Crossover of GP Tree Chromosomes 
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parent with the subtree from the other parent (see Figure 5-2). Mutation takes place 

at random by changing a function to another function, or function (and subtree 

below) to a terminal. The child trees are then evaluated and added to the population. 

5.2.2 The ACIS 3D Toolkit 

ACIS [Corney & Lim 2001] is a B-Rep solid modeller that is widely used as the 

solid modelling engine in many CAD packages. For easy prototyping of applications 

based on ACIS, a development environment, the ACTS 3D toolkit, is available 

[Corney 1997]. This toolkit provides an interface to the data structures and 

algorithms in the ACTS solid modelling libraries via the Scheme language. Scheme is 

a language that is very similar to LISP, which is a language commonly used for 

genetic programming. 

Although ACTS is a B-Rep solid modeller, since ACTS provides Boolean solid 

operations such as 'union', 'subtract' and 'intersection' and Scheme allows for 

manipulation of tree structures, it is possible to use the ACTS 3D Toolkit as a hybrid 

CSG/B-Rep solid modeller (see Figure 5-3). [Mantyla 1988] gives an introduction to 

CSG solid modelling. 

5.2.3 Potential Application of Technique to Practical Problems 

If this technique were to prove successful, it might have a number of practical 

applications. This might involve the use of a finite element package to assign a 

fitness to candidate components. This would then allow components to be evolved 

that satisfy loading conditions and stress constraints. 
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The GP technique might also be applicable to the problem of translating B-rep solid 

models into CSG solid models [Raghothama & Shapiro 2000]. At present, there is no 

general method of translating a 13-rep solid model into a CSG model. The GP 

optimisation technique is implemented using ACS, a 13-rep solid modeller. It is 

Figure 5-3 	Example of a CSG Tree and Solid Model 

therefore possible to bring an arbitrary B-rep solid model into ACS. This solid could 

then be the target solid for the GP optimisation. If the dimensions, positions and 

orientations of the primitives used as the terminals in the chromosome trees were 

also optimised along with the tree structure then it may be possible to evolve trees 
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which, when evaluated, closely approximate the target body. It is then trivial to 

translate the chromosome tree into a CSG tree. A translation of the B-rep model to a 

CSG model would then have been achieved. 

5.3 Implementation & Initial Test Problem 

Genetic programming has been applied in a solid modelling context. This has been 

implemented in the ACIS 3D Toolkit in which the programming code is written in 

Scheme (a derivative of LISP - the most commonly used language for GP). 

-- 

Figure 5-4 	The Test Component 

The function set consisted of the Boolean functions 'unite', 'subtract' and 'intersect'. 

Wrappers were added around the 'unite', 'subtract' and 'intersect' Boolean functions 

supplied with the ACIS 3D Toolkit so that errors are avoided when null bodies are 

created (for example when the intersect function is applied to two separate bodies). If 

a null body is created the wrapper returns the first body supplied as an argument to 

the function. An additional function 'Return-Body!' is also in the function set. This 
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function just returns the body that is its first argument. This allows parts of the tree to 

be recessive - they are transmitted with the chromosome but make no contribution to 

the final body. 

The terminal set consisted of primitive blocks and cylinders of fixed dimensions. The 

aim of the optimisation was to create a tree structure using the Boolean functions and 

the terminal primitives which, when evaluated, corresponded to a predefined 3-

dimensional solid. A test component (see Figure 5-4) was used as the target body. 

This component could be produced by subtracting the primitives from a blank that is 

also available in the terminal set. 

Each candidate tree was assigned a fitness that was the difference between the 

volume of the union of the candidate body and the target body and the intersection 

between the two bodies. This corresponds to the sum of the volume in the target 

body but not in the candidate body and the volume in the candidate body not in the 

target body (demonstrated in Figure 5-5 in the 2-dimensional case). 
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Figure 5-5 	2D Example of fitness calculation 

Genetic operators used are crossover and mutation as described in 5.2.1. In addition, 

compress and uncompress operators were available. The compress operator 

evaluates a subtree below a given point into a solid (see Figure 5-6). This solid is 

then placed in the terminal set. The subtree is then replaced by a reference to this 

terminal body. The uncompress operator reverses the compress operator by replacing 

a reference to a compressed terminal in a tree with the full subtree which evaluates to 

this terminal. The purpose of the compress operator is to allow frequently used 

'good' subtrees to be compressed so that they cannot be disrupted by the crossover 

operator. [Angeline & Pollack 1992] successfully use similar operators in evolving 

programs to play Tic-Tac-Toe. [Koza 1994] describes Automatically Defined 

Functions (ADFs) which are similarly motivated by the desire to enable the reuse of 

sub-programs. 
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5.4 Results 

With the terminal set included ten primitives - the blank and nine primitives to be 

subtracted - the GP scheme consistently found a tree that evaluated to the target in 

about 400 to 600 evaluations. This was with a population size of 100, rank based 

selection, crossover and mutation rate of about 10%. Since about one hour was 

required to undertake one run on a Sun Sparcl0, it was not feasible to undertake a 

complete investigation of the optimisation parameters. 

When the terminal set included fourteen primitives - the blank, nine primitives to be 

subtracted and four blocks to compose the main body of the component - then GP 

scheme was presented with two possible ways to build the component. These were to 

subtract blocks from the blank or to build the main body of the component by uniting 

the four blocks and subtracting the other primitives from this union. This slowed the 

UP scheme. Between 700 and 1000 evaluations were then required to produce a tree 

which, when evaluated, corresponded to the test component. 

5.5 Discussion 

Genetic programming proved to be able to generate the target component. It did 

better than randomly generating the trees which was not able to produce the test 

component. However, it required a large number of evaluations and therefore took a 

long time even for this simple problem. Therefore, it was concluded that the 

computational effort required to convert an arbitrary B-Rep solid model into a CSG 

tree for any realistic models would be prohibitive. 
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5.6 Conclusions 

This chapter showed that genetic programming techniques could be applied to the 

generation of constructive solid geometry trees to optimise solid models. The 

approach was able, given a set of primitive solids, to evolve a CSG tree that 

evaluated to a test component constructed from those primitives. However, the 

computational cost of doing this suggested that the approach would not scale up to 

the problem of converting arbitrary B-rep models into CSG trees. 
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6 The Need for a Common Data Structure for Shape 

Optimisation 

6.1 Summary 

Building on the review of common approaches to shape optimisation given in 

Chapter 2, and the examples given in Chapters 3 to 5, it is argued in this chapter that 

a common data structure for shape representation and analysis would allow novel 

and efficient shape optimisation algorithms to be developed. Such a common data 

structure would increase the ability of shape optimisation to be used as a way of 

partly automating the process of geometry generation. 

Firstly, the process of generating form from function is described and then the role 

that search and shape optimisation algorithms could play in this are discussed. An 

analysis of the shape optimisation process is then given. Finally, the argument is put 

forward that a common data structure for optimiser, shape representation and 

analysis would help in the realisation of search algorithms which are able to generate 

form for a desired function. 

6.2 Form from Function 

As briefly described in Section 1.2, an important area of design research concerns the 

process of generating the geometric form for a component given a desired function or 

behaviour for that component. 

Modem current design practices use computers extensively. Product data 

management tools store all relevant information generated about a part or assembly 

throughout the design process. The part's geometry is generated, usually in three 

dimensions, using Computer-Aided Design (CAD) packages. Analysis of the 

component's physical behaviour is undertaken using virtual testing techniques such 

as finite element analysis or computational fluid dynamics. 
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In each of these applications, geometry clearly has an important role. Indeed, the 

CAD model of geometry is often seen as the model of the part. Analysis techniques 

take this model, transform it, and the results are stored with the CAD model. 

Manufacturing information is similarly generated and can be stored with the CAD 

model. Traditionally, engineering drawings are used as the primary method of storing 

and communicating information about mechanical parts. However, the synthesis of 

the geometry itself is primarily a creative process, in which human designers create 

appropriate geometries. CAD packages can be used to facilitate this process, but they 

only play a passive role. It would be helpful if computer tools could be developed 

which could take a desired function and from this produce a geometry, which would 

exhibit the required behaviour [Roy et al. 2001]. 

In contrast, computers are playing an increasingly important role in analysing the 

physical behaviour of a mechanical component given a specified geometry (i.e. 

performing the inverse of form from function, determining function for a given 

form). Previously, engineers relied on analytic solutions to the equations governing 

the behaviour of components. This was restricted to a limited number of shapes and 

behaviours. The development of computational tools such as the finite element 

method and computational fluid dynamics (CFD), have greatly increased the range of 

phenomena and shapes which can be analysed. This has enabled designers to check, 

quickly and inexpensively, whether a component behaves as expected. The designer 

can then enter into a further design iteration, changing the geometry to improve it or 

other aspects of the design. This interactive process continues until an adequate 

design is found. 

6.3 Shape Optimisation as a Method of Partially Automating the 

Generation of Form from Function 

In a limited number of application domains, it has proved to be possible to specify a 

desired behaviour and from that to deduce an appropriate geometry. For instance, for 

some aerodynamic problems it is possible to specify a desired pressure distribution 

over an aerofoil profile, and then to use an inverse technique to produce the required 
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geometry. However, even in the limited range of applications where such inverse 

techniques are available, they cannot cope with geometric constraints (for example to 

accommodate engine-mounting points) or rely on an idealisation of the physical 

behaviour. 

In contrast to inverse approaches, which for most applications are not available, 

approaches that search for a shape that meets the desired specification might be 

much more widely applicable. The designer must in some way define a set of shapes 

through which to search, supply a method of assessing any of these shapes' ability to 

meet the desired specification and an algorithm to effectively search through the set 

of shapes is needed. 

Shape optimisation might be one way in which this is done. It automates the process 

of changing the geometry in response to information about the components generated 

by the analysis. Rather than a human designer changing the geometry of the design in 

response to the analysis, a computer program is used to make the changes in order to 

find an optimal geometry. 

However, applications of shape optimisation have tended to rely on keeping the set 

of shapes through which to search quite small. The shapes only vary parametrically 

in some relatively small way from an initial geometry supplied by a designer. 

Clearly, this defeats our purpose of semi-automatically generating geometries 

meeting a specified function, for which it is desirable that the space of shapes be 

large and general. 

The following sections analyse the process of shape optimisation and try to identify 

where the difficulties lie in expanding the applicability of shape optimisation to the 

process of determining form from function. 

6.4 Overview of The Shape Optimisation Process 

Shape optimisation is used as a part of the process of designing a component. It 

concentrates particularly on the geometry of the part. An engineer when attempting 
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Set of all shapes 

q) Set of actual fitnesses 

P Representation space 
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Set of shapes available in representation 

Set of discretisations 

Set of simulated fitnesses 

Figure 6-1 	Searching for an Optimal Shape 

to find a shape for a particular component is faced with an infinite set of possible 

shapes I(see Figure 6-1). Each shape within Ecan be assigned a 'fitness', a measure 

of its ability to do the job for which the component is intended. Often this is a single 

number, but may be a vector of numbers in the case of a multi-objective design. Each 

point in E, therefore, is mapped to a 'fitness' vector in the n-space 0, where n is the 

number of objectives. Many of the shapes in I will violate some design constraint 

and will thus have a poor fitness in 'P. The designer wants to find the shape, cr01, 1 , in I 

which maps to the highest fitness in 'P. 
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To some extent finding o4  has been the concern of engineers for many years (or at 

least finding some sufficiently good a). In shape optimisation we are primarily 

concerned with using computers to find o01 . We therefore need to translate L the set 

of possible shapes, , the set of fitnesses, and the mapping between them, onto a 

computer. We then need to automate the process of searching through the set of 

possible shapes. Sections 6.3 to 6.5 deal with each of these translation processes. 

In Figure 6-1, the set of shapes through which the shape optimisation algorithm 

searches is shown as Ecomp. Optimisation algorithms, however, do not optimise over 

sets of shapes but rather optimise the values of a number of variables. This is shown 

as the set P. Each member p of P represents a particular set of values for these 

variables. Typically, these variables take real number values although certain 

applications such as the one described in Chapter 4 can take Boolean values. A set of 

values, p, for variables in P is translated into a shape by a CAD package, where the 

shape is typically represented using a B-Rep model, spline curves or other geometric 

model. 

Once a shape has been represented, it is necessary to analyse its behaviour. Finite 

element analysis is frequently used for structural analysis. Finite volume or vortex 

panel schemes for computational fluid dynamics are frequently used for fluid 

analyses. Both of these techniques require the shape (or the space around the shape) 

to be discretised. This is shown in Figure 6-1 as a mapping from Ecomp to zi, the set of 

discretisations. 

The analysis method then takes a particular discretisation 8 in zi and calculates the 

physical behaviour. From this a value for the fitness of the shape Øsjmul  in Pü,,i  can 

be calculated. Some shape optimisation techniques use specially developed analysis 

techniques in order also to provide the sensitivities of the shape to the design 

variables [Pourazady & Fu 1996]. 
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The optimiser completes the loop. Given the fitness of the candidate shape (and 

possibly sensitivities) it chooses which point in P to try next. This loop continues 

until some termination criteria are met. 

6.5 What Makes a Good Shape Representation? 

Choosing an effective shape representation is critical to obtaining good results from 

the shape optimisation process. There are a number of potentially opposing factors 

that need to be addressed in formulating a good shape representation: 

• The representation should be selected so that Ecomp contains or,,p  i.e. the set of 

shapes available in the representation contains the optimal shape. 

• The number of shapes in the search space (i.e. the size of Ecomp) should be as 

small as possible so that the computational cost of searching through the space 

can be kept low. 

The analysis code can analyse faithfully all the shapes in Ecom,. 

• The optimisation algorithm should find it easy to search through the space of 

potential shapes. 

• It should be possible to both efficiently store and compute the representation. 

Each of these points is developed below. 

The representation should be selected so that Ecomp contains a. Only in a trivial 

case, where q,,pt  is known from the outset, is the choice of representation easy. The 

designer must use knowledge he has of the problem to determine a class of shapes 

that might contain o. This is because there is no shape representation, 

implementable on a finite computer, which can model every possible shape in E. 

This is true on two levels. Firstly, any computer representation of shape can only 

operate up to a finite resolution. The designer must use some scheme for representing 

the shape, which has sufficient accuracy, in his judgement, to approximate the real 
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practical component shape, taking into account the degree of 'fine-tuning' to the 

optimal performance needed, as well as the manufacturing tolerances possible. 

Secondly, whichever shape representation (or combination of shape representations) 

is used, there will be some shapes in E that cannot be represented. For example, a B-

Spline shape representation cannot exactly represent a conic [Hearn & Baker 1994]. 

A voxel representation cannot represent a shape with boundary smoothness. Non-

uniform rational b-splines (NURBs) cannot be used to represent fractal shapes. In 

addition to this, the need to parameterise the shape representation, in order to 

produce a family of shapes, will further remove some of the shapes that could have 

been represented by a particular shape representation. Even when more exotic 

evolutionary algorithms are used, which can vary their representation during the 

search (see Sections 1.4.2 and 8.2.2), the set of shapes that can be generated is still 

smaller than the set of all possible shapes. The family of shapes to be searched, 

therefore, contains the designer's implicit view of what an optimal shape will be like. 

Often it is useful to choose a representation that is as general as possible in order to 

maximise the chance that it contains q p, 

This was demonstrated in Chapter 3 where the aerofoil parameterisation could be 

optimised but the aerofoils produced were probably sub-optimal because the 

representation had insufficient power to express the truly optimum shape. In Chapter 

4, voxels produced a very general shape representation, with a large number of 

possible shapes. However, it was clear from the outset that the representation could 

not generate the optimal shape because such a shape would not have the 'stepped' 

boundary implied by the voxel representation. An ad hoc solution to this was to 

smooth the boundary with triangular elements, but nevertheless this was a weakness 

with representation. 

The second point in the above list was that the number of shapes in the search space 

should be as small as possible so that the computational cost of searching through the 

space can be kept low. For most of the problems in shape optimisation the number of 

shapes in the search space can (simplistically) be stated as a where a is the accuracy 
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to which a variable should be resolved and n is the number of variables. For instance 

in the aerofoil parameterisation in Chapter 3, the thickness could vary from 3% to 

8%. If the accuracy of this value was required within ±0.001%, a would be (8-3) I 

0.001 = 5000. For the voxel representation with a 62 by 41 grid in Chapter 4, a = 2 
25 (on or off) and n = 2542 and so the search space size is an enormous 242.  Since the 

search space size increases exponentially with the number of variables, it is sensible 

to have as few variables as possible. Clearly, the computational cost of searching 

through the search space depends on the algorithm employed, the way it searches 

through space and the nature of the problem landscape. However, all other things 

being equal, the smaller a search space is, the less effort is required to search through 

it. 

From this perspective, it can be seen that one of the problems with the voxel 

representation was that the vast majority of shapes in the search space that was 

formed, were not reasonable shapes for the annulus. They contained numerous holes 

or were disjoint. The success of the genetic operators, which were designed to move 

the search away from such shapes, was because of this. 

One approach that researchers have used to restrict the size of the search space is to 

start with a coarse shape representation in which a fairly broad but undetailed set of 

shapes can be searched initially. When a promising area of the search space is 

identified, the representation can be refined. [Kohli & Carey 19931 present such a 

shape refinement approach. One of the advantages of evolutionary algorithms is their 

ability to optimise with more complex representations than traditional optimisation 

techniques. This has been exploited, in shape optimisation, by several researchers 

[Eby et al. 1999b] [Gage et al. 1995] [Raich & Ghaboussi 2000] [Vekeria & Parmee 

1997], others are detailed in Section 1.4.2. These approaches allow the evolution to 

modify not only the parameter values, but also the set of parameters themselves, so 

that the overall structure (or topology) of the parameterisation can also be evolved. It 

should be noted that, whilst variable complexity representations may allow a greater 

generality of shapes to be present in 1comp,  and they provide a potentially efficient 
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method of searching through this space of possible shapes, they cannot represent 

every shape in I for the reasons given above. 

The first two points in the above list clearly oppose each other. Where it is not clear 

what the optimal shape is like, it would be helpful to have as large a search space as 

possible in order to increase the chance that the search space contains the optimum 

shape. However, this needs to be set against the computational cost of having to 

search through an unduly large search space. Clearly, some compromise needs to be 

found. 

Modern CAD packages now allow designers to parameterise their models. This has 

proved to be a powerful tool allowing engineers to produce 'families' of parts by 

changing a number of design variables. When a variable is changed, the model is 

rebuilt with this new value for the variable. There are, however, problems with this 

approach. Variables can position aspects of the geometry, for instance a hole, relative 

to some other part of the geometry, for instance an edge. If during a parameter update 

the edge disappears or is merged with another edge then it becomes impossible to 

place the hole. Updates of variables in the CAD model can have unexpected effects. 

[Shapiro & Vossler 1995] demonstrate these problems in a number of leading CAD 

packages; these problems are still evident in modern packages. They argue that this 

is because the concept of parameterised families of CAD models is mathematically 

ill defined. 

From a practical point of view, it can often be difficult to assess the broad range of 

shapes that can be generated within a single parameterised model. Where a 

parameterised part has a large number of variables, it can become impossible to 

predict the interactions of all the variables with each other. This can make it difficult 

to ensure that it is possible to analyse accurately all the shapes in the search space 

1comp. 

This was demonstrated in Chapter 3 where the vortex panel method could not 

accurately model flows around most of the shapes generated by the Bézier curve 
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representation. Even with the more tightly controlled aerofoil parameterisation, there 

were some shapes that could not be accurately analysed. It might be argued that this 

merely implies that a better analysis method be chosen or that some better 

discretisation method be used. This will mitigate the problems, however, no analysis 

method can model all possible shapes and so some consideration must be made as to 

how to ensure that all shapes that can be generated can be analysed. Other issues to 

be considered for a successful analysis are given in Section 6.6. 

Integration is an important consideration in dealing with shape representations 

because very often it is likely that use will be made of third party software for 

evaluation purposes. Examples are the use of finite element packages to help 

estimate likely stress distributions, fluid flows or thermal transfer characteristics, or 

analysis tools based on other methods, such as the boundary element method, or 

bespoke methods for manufacturing cost estimating. Sometimes it is necessary to 

communicate with several different software modules to perform multi-criteria 

evaluations. 

[Samareh 1999] surveys shape parameterisation techniques for aerodynamic 

optimisation problems. 

6.6 Ensuring Sufficiently Accurate Analysis 

Usually the analysis of a particular shape is undertaken using a computer simulation, 

for example using the finite element method, boundary element method or 

computational fluid dynamics. It is necessary that shapes in Icomp  are discretised for 

use with these methods (or for CFD the space around the shape). Each shape, a, in 

Ecomp, therefore maps to a discretisation, 8, in A. The analysis code then uses the 

discretisation to produce a value for the fitness of the shape. 

For a computer-aided shape optimisation to be successful it is necessary that the 

mapping from a shape, a, to its corresponding discretisation, 8, and so to Øsjmul, be 

faithful to the mapping of the shape to its actual fitness, çb. This can be accomplished 
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with a combination of two techniques. Firstly, adaptive meshing techniques can be 

used. This can be viewed as a search for the most suitable discretisation in zl which 

remains a valid discretisation of the candidate shape o•. This search is directed by the 

analysis code. Adaptive meshing techniques allow for a more robust mapping from 

the candidate shape, or, to simulated fitness, Øsjmuj.  Secondly, as discussed in the 

previous section, the representation used could be defined so that only shapes that 

can be adequately analysed can be produced. In other words, for all shapes in E iq, 

the corresponding Øsjmul  adequately approximates 0. 

It is important to choose an appropriate analysis method. It is obvious that the 

analysis method should model the phenomena that are important for the aspect of the 

design that is being optimised. However, at some level all analysis methods make use 

of mathematical models that necessarily use some simplifications. For instance, 

models of elasticity make the simplification of assuming homogeneous material. The 

vortex panel method used in Chapter 3 assumed the flow was inviscid and 

incompressible. 

One consideration that becomes more apparent when using analysis for shape 

optimisation than for other aspects in design, is that the simplifications used in the 

analysis should be valid for all of the shapes being considered in the search space. 

For instance, when designing aerofoils it is reasonable to assume that an efficient 

shape will be smooth and streamlined and so there will be no separation and viscous 

effects will be minimised. Therefore, for manual design purposes it would be 

reasonable to use a CFD method that made these assumptions for the limited number 

of shapes under consideration. However, for shape optimisation to be effective using 

the same method, these simplifications should be valid for all the shapes in the search 

space. It is not trivial to ensure this, after all, if the behaviour of the shapes could be 

determined beforehand then the analysis would not be required. The break down of 

the simplifications used in the analysis was the cause of the problems with the Bézier 

representations in Chapter 3. 
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The break down in these simplifications can cause the optimiser to move towards 

solutions for which the simulation gives a good score, but which in practice are poor. 

It may be possible to recognise when a simulation is inaccurate and either discard 

that result (this would be equivalent to adding a constraint on the confidence in the 

simulation result) or, alternatively, add a penalty to the objective function. 

[Ellman et al. 1993] and [Gelsey et al. 1998] address similar concerns about 

ensuring that the model being used is appropriate for shape optimisation. [Gelsey et 

al. 1998] look to estimate by how much a model's assumptions are being violated. 

This information can then be supplied to the search algorithm as a 'model constraint 

function'. This can be used to penalise those designs that cannot be modelled 

accurately. [Eliman et al. 1993] state the philosophy behind the work they describe 

is that 'artefact performance models should be chosen in the light of the design 

decisions they are required to support'. The aim is to use cheaply evaluated models, 

where appropriate, to allow quick exploration of the search space and more 

expensive models when these are needed. They introduce the concept of 'Gradient 

Magnitude Model Selection' which is intended to be used with hiliclimbing 

optimisation algorithms. Models are selected based on the requirements of the 

hillclimber. They illustrate their approach on a yacht design problem. 

For some problems the objective function is non-smooth, i.e. small changes in the 

variables can result in 'jumps' in the objective function. This may be due to 

discretisation errors that are inevitable when using some types of simulation. These 

can be caused when, for instance, a change in a variable causes a change in the mesh 

topology of an unstructured mesh and thus a sudden, possibly small, change in the 

objective function. If this 'noise' is large, it may make some optimisation algorithms 

unsuitable for the problem. It may be possible to reduce this noise by increasing the 

accuracy of the simulation, but at the cost of increasing the time taken to undertake 

the simulation. Similarly, it may be computationally expensive and/or difficult to 

compute the derivatives of the objective function accurately. The need for adaptive 

mesh refinement for shape optimisation applications motivates the work described in 
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[Banichuk et al. 1995], [Canales et al. 1994], [Kodiyalam & Thanedar 1993] and 

[Kodiyalam & Parthasarathy 1993]. 

6.7 Speeding up the Analysis 

The time taken to evaluate the objective function can often be great. There are a 

number of ways that this difficulty can be overcome. 

One method is to use an optimisation technique that only uses a small number of 

objective function evaluations. This, however, will probably reduce the confidence 

with which the global optimum is found. Those algorithms which require very few 

objective function evaluations will often only find local optima and since the 

evaluation time is great it is not possible to start the algorithm from a large number 

of points in the search space. 

At the beginning of an optimisation when the approximate region of the optimum in 

the search space is being sought, it may be possible to undertake a simulation which 

is less accurate (and thus less time-consuming) than the full simulation. Over time, as 

the optimiser approaches the optimum, the accuracy of the simulation can be 

increased. A related approach might identify those solutions that can be seen to be 

obviously bad due to some prior knowledge the engineer has about the problem. 

These bad solutions need not be fully evaluated and can be given a 'bad' score. 

Whilst both these approaches might save simulation time it may be difficult to 

implement them with some optimisation techniques, where continuity of the search 

space is required. 

[Eby et al. 1999a] [Eby et al. 1999b] optimise a flywheel with an injection island 

genetic algorithm (iiGA) based on similar ideas, this is described in more detail in 

Section 2.3.4.3. In their iiGA various sub-populations are used each with different 

resolution of the representation, with fit individuals able to move from lower to 

higher populations. This allows lower sub-populations to search the search space 

extensively, with a quick, low accuracy evaluation. Higher populations search a 

smaller, fitter, part of the search space more intensively with a more expensive, 
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higher accuracy analysis. Extensions of these ideas are reported in [Hu & Goodman 

2002] [Hu et al. 2003] in which the concept of 'Hierarchical Fair Competition' is 

introduced. This approach is motivated by the desire to avoid premature convergence 

to local optima. Again, a hierarchy of populations is used with a number of levels. A 

larger number of low-level populations are used than higher populations. Solutions 

migrate from lower to higher populations when its fitness is sufficiently high to pass 

an 'admission threshold'. Solutions thus pass from lower levels, through intermediate 

levels up to higher levels. By altering the relative effort apportioned to lower or 

higher level populations, the relative amounts of 'exploration' and 'exploitation' can 

be changed. 

[Vekeria & Parmee 1997] also make use of an iiGA, along with the use of a Dynamic 

Shape Refinement, with which the resolution of the representation can be varied. 

They report significant improvements in both reduction of computational expense 

and in the quality of the design, over a single level representation. 

[Younsi et al. 1996] use multi-mesh for structural shape optimisation in three 

dimensions. The system uses several meshing levels along with error estimation, in 

order to reduce the computational cost of the finite element analysis. 

[Rasheed & Hirsh 2000] introduce an interesting approach that attempts to speed up 

a genetic algorithm when evaluation is expensive, making use of informed operators. 

Instead of just generating one random mutation, a number of mutations are made, the 

solutions thus generated are ranked using a less expensive reduced model, and the 

best is then kept as the result of the mutation. The authors report that this can 

significantly speed-up the GA optimiser in several engineering domains. 

It may be possible to parallelise the optimisation algorithm and/or the simulation so 

that a number of computers/processors are used at the same time. Some optimisation 

algorithms readily lend themselves to parallelisation. It is very easy, for example, to 

use a genetic algorithm in whicha number of solutions are simultaneously evaluated 

on separate processors. It may also be possible to run a number of local optimisers 
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from different starting positions in the search space on a number of computers. Any 

parallelisation of the problem, however, makes the optimisation harder to implement. 

[Wang et al. 2002a] investigate the use of hierarchical parallel evolutionary 

algorithms for aerospace optimisation. In this approach, several sub-populations are 

simultaneously evolved. Some populations are considered to be 'low' in the 

hierarchy. These are run with coarse and quick CFD evaluation and are primarily 

intended to explore the search space. At certain intervals, good solutions from these 

lower populations are migrated to higher level populations. These higher populations 

use more computationally expensive, but higher fidelity, CFD analysis and are 

intended to refine the shape. 

It may be possible to separate the problem into independent sub-problems, for which 

a full simulation is unnecessary. The global solution can then be found by combining 

the optima of the sub-problems. 

Some approaches use response surfaces. Rather than computing the objective 

function for each point required by the optimiser, the response of a smaller number 

of shapes is calculated and a model of the response surface (landscape) is built by 

extrapolation. Often polynomials are used to model the response surface. The 

optimiser is then used to find the optimum point on this surface. This method can be 

useful where full simulations are very computationally expensive, but clearly, they 

require that the method chosen to model the landscape is appropriate to the particular 

problem. [Otto et al. 1996] describe a so-called surrogate approach to the 

optimisation of multi-element aerofoils. [Ratle 2001] use kriging to approximate the 

landscape for evolutionary optimisation. [Seller et al. 19941 use response surfaces to 

enable multi-disciplinary optimisation. [Liu & Batill 2000] use an artificial neural 

network to approximate landscapes for multi-disciplinary optimisation. [El-Beltagy 

& Keane 2001] describe the use of a Guassian Processes approximation model to 

provide an approximation to the results that would be given by detailed analysis 

code. They apply this to the structural optimisation of a satellite boom. 
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6.8 Searching Effectively for the Optimal Shape 

Once a set of shapes through which to search, and an analysis routine that can 

faithfully calculate the objective function, have been defined, then an optimisation 

algorithm is required which can search for the best shape. The optimisation algorithm 

can be thought of as sampling the search space, and from the information acquired 

about the objective function at the sample points, it chooses where next to sample. 

Each optimisation algorithm differs in the way in which it chooses which points to 

sample and in the way that it then chooses subsequent points in the search space. 

The performance of an optimisation algorithm can be judged in a number of ways. 

All other things being equal, an algorithm that uses a smaller number of evaluations 

is better. Also, the ability of the algorithm to robustly find an optimum for a class of 

problems is also useful. An algorithm might prove very efficient at a particular 

problem instance, but might be ineffective for problems that are apparently similar. 

Robustness is therefore an important performance measure. 

Traditional optimisers rely on local 'move' operators and only have one active 

sample point and so are susceptible to being caught in local optima. They may, 

however, quickly find these local optima. Optimisers such as genetic algorithms have 

a number of sample points active in a 'population'. They also can make use of 

'move' operators that may move out of the locality of active points and so are more 

likely to find the global optimum. 

For an optimisation algorithm to be effective, it is necessary that the algorithm, 

representation and nature of the problem be well matched. In other words, the move 

operators must be helpful in searching through search space. 

6.9 A Representation for Geometry and Physical Behaviour 

The previous sections have identified a number of issues related to undertaking 

effective shape optimisation, namely representing a family of shapes, ensuring an 

accurate analysis and searching effectively. All of these issues can be seen as 
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difficulties encountered at the interface between each of the modules (optimiser, 

representation and analysis) used for shape optimisation. 

Producing a family of shapes through which to search is a process that happens at the 

interface of the optimisation module and the geometric model. Transferring a vector 

of usually real numbers as variables into a geometric model is a process that is 

mathematically ill defined as Shapiro and Vossler noted [Shapiro & Vossler 1995]. It 

is difficult to predict the range of shapes that a parameterisation will generate for 

most non-trivial multivariate parameterisations [Hoffmann & Kim 2001]. There is no 

well-defined process of transformation which can be guaranteed to be robust, 

although [Raghothama & Shapiro 20021 present a method based on topological 

categories which may be useful for the systematic generation of part shapes. 

Ensuring an accurate analysis is a problem encountered at the interface between the 

geometric model and analysis model. [Palmer & Shapiro 19941 argue that the 

separation of the geometric model and physical model of behaviour is a considerable 

block on the development of computational tools for the synthesis of geometry with a 

given physical behaviour. Geometric models can be used for the calculation of 

various spatial properties of a component such as volume, surface area and 

interference. They can also be used to provide the spatial data for use by analysis 

techniques, but are not themselves able to represent the information (i.e. stresses, 

pressures and heat) which are generated. Geometric models are not able to represent 

such spatially distributed properties because they are not part of the mathematical 

model which solid models represent. Geometric modelling and physical modelling 

are therefore distinct from each other. Bridging this gap is an active area of research 

as can be seen with the attempts to move to meshfree analysis [Botkin et al. 2002] 

[Grindeanu et al. 2002] [Lu & Chen 2002]. 

Producing an optimisation algorithm that can effectively search for the optimal 

shape, is a problem that involves all of the three shape optimisation modules. The 

optimiser in a shape optimisation application is aiming to change the shape of a 

component in order to improve its performance. Clearly, for almost all components 
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the way a shape should be changed depends on the current performance of the 

component: where stresses are too high material should be added, where stresses are 

low material can be removed. However, the optimisers generally deal only with 

vectors of real numbers - there is no way to make use of the information on the 

current spatial performance of the component. This becomes most clear when 

considering the information flow in a typical shape optimisation application. Almost 

all of the computing time is spent in analysing the component, but the only 

information returned to the optimiser is a value for the objective (i.e. mass, volume, 

or displacement) and whether or not the constraints are violated (i.e. maximum Von 

Mises Stress or displacement). All the information about where in the component the 

stress is high is discarded because the optimiser has no mechanism for using it. 

The aim of this thesis was to try to establish whether shape optimisation could be 

used to semi-automate the process of moving from function to form. At present, as 

has been discussed, the shape optimisation process is far from automatic. There is 

inevitably a good deal of ad hoc integration between geometric model and analysis 

model. To address these problems what is needed is a computer language in which 

shape optimisation applications can be built. This language would be able to deal 

with the process of shape optimisation from optimisation, geometry, physics and 

discretisation to a numerical solution in an automated and consistent way. Such a 

language needs computer representations that can represent geometry, discretisation 

and physical behaviour in a common representation. This would also offer 

opportunities to develop algorithms that could make use of the information on the 

shape's current physical behaviour in order to modify the shape, and thus search the 

space of possible shapes more effectively. 
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7 Chain Models 

7.1 Summary 

The previous chapter argued that a common data structure is desirable for shape 

optimisation. However, what should this data structure be? In this chapter, Chain 

models, first proposed by Palmer and Shapiro [Palmer & Shapiro 1994], are put 

forward as such a data structure. Chain models are first described, and then other 

applications in which Chain models have been used are given to demonstrate their 

wide applicability. Then it is shown how existing shape optimisation techniques 

could be implemented within a Chain model framework. Finally, there is a 

discussion describing how Chain models could enable the development of novel and 

effective shape optimisation algorithms. 

7.2 Chain Models 

Chain models were first proposed by Palmer and Shapiro [Palmer & Shapiro 1994]. 

They argued that the lack of a unified computational model of geometry and physical 

behaviour has led to a large range of inconsistent and incompatible CAD and 

engineering analysis tools. This has limited the extent to which CAD tools have been 

used in practice. They say 'it seems clear that formalisation of the relationship 

between form and function is a prerequisite to taking full advantage of computers in 

automating design and analysis of engineering systems'. They present Chain models 

as a unified computational model of physical behaviour that links explicitly and 

consistently geometric and physical representations. Chain models use the algebraic-

topological concepts of cells, cell complexes, chains and operations on them to 

model these physical systems. 

For full details on Chain Models the reader is referred to [Palmer & Shapiro 1994]. 

The following sections attempt to précis the important concepts from this paper and 

to show how Chain models might be applied to design in general and shape 

optimisation in particular.  
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The principal aim of Chain models is to model physical objects. Common to most 

models of a physical object is that they consist of distributions in time and space of 

various physical quantities (mass, energy, force, momentum, charge, velocity, 

temperature etc.). Therefore [Palmer & Shapiro 1994] offer the following two 

definitions: 

Definition 1 A system (or object) is a set of quantities {Q} distributed in space and 

time. 

Definition 2 A physical system (object) is a system that satisfies some physical 

laws, which are constraints on the values of these distributions. 

Thus, a physical system has a state that can be characterised as a distribution of 

relevant quantities at a particular point in time. The distribution of these quantities is 

constrained by physical laws. Often it is necessary to refer to all objects that exhibit 

the same physical behaviour and so the following definition is given: 

Definition 3 A physical behaviour is the class of all physical objects (or systems) 

satisfying a given set of physical laws. A given physical object is said to exhibit a 

behaviour if it is in the class. 

7.2.1 Cells and Complexes 

Chain models look to represent these distributions in Euclidean space, E. Therefore, 

some way of distinguishing regions of space is required. Chain models use the 

concepts of cells and cell-complexes from algebraic topology for this purpose. 

Definition 4 An n-cell c is a set that is homeomorphic to a closed unit n-ball 1?. 

The closed unit n-ball is a subset of 9I': B n  = {x(=-  91' I 11x112 :!~ 1 ). An n-cell c is said to 

have dimension n. 
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/t\/.\J 
n-simplices up to n=3 

_ 

n-cubes up to n=3 

Figure 7-1 
	n-Simplices and n-Cubes 

An n-cell is therefore topologically equivalent to an n-ball. Some function h defines 

the cell c: c = {x I h(x) E B"} so that h can be seen as a representation of c. 

Definition 5 The boundary of an n-cell c is the set c) = {x I 11h(x)J1 2  = 11, where h 

is a homeomorphism defining c. 

Figure 7-1 shows some possible cell types: n-simplices and n-cubes, up to n = 3. 

Cells define simple regions of space. To represent more complicated regions we need 

to define cell complexes: 

Definition 6 A cell complex K is a set of cells that satisfy the following properties: 

The boundary of each n-cell c is a finite union of (n - 1)-cells in K: c[c) = 

The intersection of any two cells ci  c in K is either empty, or is a unique cell in 

K. 
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Definition 7 A cell complex K is said to decompose a region R if R is equal to the 

union of the cells of K. 

A cell complex can therefore be used to decompose a possibly complicated domain 

into a number of simpler cells. This is clearly an approach that is frequently used in 

geometric modelling and analysis tools such as finite elements, finite differences and 

finite volumes. The complex consists of all the 2-cells (triangles or quadrilaterals), 1-

cells (edges) forming the boundary of the 2-cells, and the 0-cells (nodes) forming the 

boundary of the 1-cells. Figure 7-2 shows a simplicial 2-complex and Figure 7-3 

shows a cubical 2-complex. 

Figure 7-2 	A Simplicial 2-Complex 
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Figure 7-3 	A Cubical 2-Complex 

Definition 8 The faces of an n-cell CE K are the (n - 1)-cells in K comprising its 

boundary. If  is a face of c, then c is a coface off. 

Definition 9 An oriented cell is a pair c = (u, o), where u is an (unoriented) cell, 

and oE{1,-1}. 

Definition 9 allows for the relative orientation between a cell and one of its faces to 

be defined. Given an oriented cell ci = (u , o) and one of its faces a faces cj = (u , o) 

the relative orientation is defined as o( c 1  , c ) = 0, o1  and thus takes values —1 or 1. 
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7.2.2 Chains 

Cells and cell complexes provide the means to decompose space into simple regions. 

Definitions of faces and orientation provide sufficient structure to represent the 

relationship between these regions. We now need some way of representing physical 

quantities within these regions. Chain models use chains defined over cell 

complexes for this purpose. 

Definition 10 A p-chain ch defined over a complex K, and a vector space G, is a 

formal sum 	I  g,c1  of p-cells of K with coefficients g 1  E G. We use the notation 
c.Ep—cells(K) 

ch(c1) for the value of the coefficient associated with the cell c, in ch. 

Thus a chain associates with every p-cell in the complex K an element of G. G could 

be any abelian group, but in Chain models G is typically the integers, real numbers or 

polynomials, or vectors or tensors of these. For example, we might represent the 

mass associated with cells in a 3-complex K with a 3-chain where the elements of G 

are scalar real numbers. Another example might be to represent the displacement of 

0-cells as a 0-chain where the elements of G are vectors of real numbers. 

Chains have useful computational properties for the purpose of calculation. For 

example, suppose we have a dimension p, a cell complex K and a group G, and G is a 

field, then the set of all p-chains over K, Ch(K,G,p) form a vector space and so vector 

operators can be used on chains. (A field is defined as a set of elements that satisfy 

the field axioms for both addition and multiplication, namely: 

commutativity 	a + b = b + a 

associativity 	(a + b) + c = a + (b + c) 

distributivity 	a (b + c) = ab + ac 

identity 	 a+0=a 

inverse 	 a + (-a) =0 

a b = b a 

(ab)c=a(bc) 

(a + b) c = ac + bc 

a. 1=a 

a. a 1  = 1 =a1  .a (a#0) 
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The real numbers and complex numbers are examples of fields, however the integers 

are not). 

Chains support two operators: 

Definition 11 The boundary 'ch) of a p-chain ch E Ch(K,G,p) is a (p - 1)-chain 

defined as follows: [ch) = gj c , where g. = 	a(cf, c )ch(cf). 
cf€cofaces(c1 ) 

Performing the boundary operator on a p-chain ch produces a (p - 1)-chain over each 

(p - 1)-cell, c, in the complex K, by taking each coface of ci  and summing the 

oriented values of the p-chain ch on these cofaces. This is shown in Figure 7-4 

2 

Figure 7-4 	The Boundary Operator Applied to a 2-Chain 
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Definition 12 The coboundary (ch) of a p-chain ch e Ch(K,G,p) is a (p + 1)-chain 

defined as follows: 5(ch) = , gi c1  where g i 	a(f, c. )ch(f). 
fEfaees(C,) 

Similarly to applying the boundary operator, performing the coboundary operator on 

a p-chain ch produces a (p + 1)-chain over each (p + 1)-cell, ci  in the complex K, by 

taking each face of c, and summing the oriented values of the p-chain ch on these 

faces as shown in Figure 7-5. 

in 

1 

Figure 7-5 	The Coboundary Operator Applied to a 1-Chain 

The last definition given by Palmer and Shapiro allows any function which can be 

applied to the elements of G to be extended to chains by applying the function cell by 

cell to the elements of G associated with each cell. 
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Definition 13 Given a function f: G —* S. and a chain ch = 	 we define 
CE p—celLs(K) 

f(ch)= 	f(g 1 )c 
CE p—cells(K) 

They finish by defining equality between two chains chi and ch2 to be true when they 

are both defined over the same complex, K, and elements, G, and chi(c1) = ch2(c1) for 

each cell c, in K. 

7.3 Using Chain Models 

The above thirteen definitions have defined cells, cell complexes, chains and various 

useful operators (boundary, coboundary, addition, multiplication by a scalar, function 

application and equality). These are useful tools for representing physical objects. 

The following sections show how these concepts might be applied to geometry and 

physical behaviour, with which we are interested for shape optimisation. 

7.3.1 Chain models of Geometry 

Chain models can be used to represent geometry and to calculate various properties 

of the geometry. Any solid S can be represented by a 3-cell complex that decomposes 

the solid. It can be shown that any 2-cell in this complex either has one or two 3-cell 

cofaces in K. Also the 3-cells can be oriented consistently so that for any two 

adjacent 3-cells a and b sharing a 2-cell face c o(a,c) = -o(a,c). 

With each 'full' 3-cell within the solid, an integer of 1 is associated. 0 is associated 

with those 3-cells that are 'empty' (in this case since K decomposes S there will be 

no 'empty' cells). In this way Scan be defined as a 3-chain X i ac where ai = 1 and c1  

are the 3-cells in K. Applying the boundary operator to this chain produces a 2-chain 

whereby each 2-cell, c, is associated with j  o('cj,c) where c is a coface of c (there 

will be two cofaces). Internal 2-cells will have two 3-cell cofaces (which will be 

coherently oriented) and so will have a coefficient of 0. Whereas external 2-cells will 
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1 

Figure 7-6 	A Chain Model Representation for Geometry in 2 Dimensions 

have only one 3-cell coface and so the coefficient will be non-zero. Thus, using this 

Chain model, the calculation of a solid's boundary is done by applying the boundary 

operator. Figure 7-6 demonstrates this, but for a two dimensional shape. 

It is possible to represent geometry in a variety of ways with Chain models. A two 

dimensional surface might be modelled with a triangular mesh of faces. This requires 

an appropriate 2-complex. A 0-chain could be used to represent the corners of the 

triangles and a 2-chain could be used to represent the triangles' surface normals. 

Alternatively the surface might be represented with b-spline patches with a 2-chain 

used to represent the spline polynomials. In fact, any representation of geometry then 

could be used by a b-rep model could be implemented in a Chain model. 
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7.3.2 Chain models of Physical Behaviour 

7.3.2.1 Physical Behaviour 

As well as using Chain models to model geometry, we are also interested in using 

them to model physical behaviour. [Palmer & Shapiro 1994] give the following three 

definitions which are reformulations of definitions 1 to 3 in terms of Chain models. 

Definition 14 A system (a distribution of quantities in time and space) is a set of 

chains, Q, defined over a cell complex K time and space. 

Definition 15 A physical system is a pair S = (Q, C), where Q is a system satisfying 

a set C of chain constraints on Q. 

Definition 16 A physical behaviour PB(C) is the set (equivalence class) of all 

physical systems (Q, C  ) that satisfy C, i.e. PB(C) = {(Q, C1) I C1  = C}. 

In other words, we have defined a system as a set of chains representing a 

distribution of physical quantities defined over a cell complex. A physical system is a 

system along with a set of constraints on its chains. A physical behaviour is the set of 

all physical systems that satisfy a particular set of chain constraints. 
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7.3.2.2 Constraint Elements 

So what is the nature of these chain constraints? Clearly, there are many possible 

constraints we might put on a chain. However, if we are interested in constraints 

which model physical laws and which are easy to compute, the nature of the 

constraints we need is restricted. Specifically, Palmer and Shapiro state the following 

conditions: 

Constraints can be imposed only on chain coefficients associated with incident 

cells or adjacent cells 

. All cells in the decomposition of space are similar in the sense of being able to 

'implement' the specified constraints. 

They go on to state that most physical laws can be placed into two categories, both of 

which act locally and so allow constraints to be defined consistently with the first 

condition (i.e. that they are imposed on chain coefficients associated with incident or 

adjacent cells). These categories of physical laws are: 

Structural laws (conservation, balance, equilibrium), which are based on 

topological invariants and can be expressed using operations of boundary and 

coboundary; clearly, these operations constrain incident cells. 

Constitutive laws (such as Ohm's and Hooke's), that represent phenomenological 

(macro) constraints corresponding to material properties; these are obtained and 

defined by local measurements. 
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They go on to describe constraint elements which are used as an abstract 

specification of the relationship between chains. For a particular physical law 

(balance or conservation, for example), a constraint element can be produced which 

specifies the constraints on chains in order to meet that law. 

Fh 

Figure 7-7 A Constraint Element for Conservation 

after [Palmer & Shapiro 1994] 

Figure 7-7 and Figure 7-8 illustrate constraint elements for the structural laws, 

conservation and balance respectively. For the conservation constraint element the 

constraint has the form 
d  
—2 - chain =8(1 - chain). For the balance constraint 
dt 

element the constraint has the form bf= -(sf), where bf is a 2-chain representing the 

body force and sf is a 1-chain representing force through the 1-cells. 
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Surface for: 

Body 

	 /urface force 

force 
Surface force 

/surface force 

Figure 7-8 A Constraint Element for Balance 

after [Palmer & Shapiro 1994] 

It can be seen that these constraints rely only on the boundary and coboundary 

operators and could be applied to any cell type. Constraint elements for constitutive 

laws are more difficult to derive as they also depend on the cell type. Palmer and 

Shapiro derive, at some length, a chain constraint for elasticity, which relates force 

through a set of faces to the deformation of a cell. Such a chain constraint makes use 

of both structural and constitutive chain constraints. 
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7.3.2.3 Physical Elements 

Definition 17 A physical element is 

The cell complex K generated by a single n-cell of a particular cell type (e.g, 

simplex, cube). 

A set of p-chains on K that represent physical state. 

A set of constraints elements defining the constraints on the p-chains of K. 

Physical elements are a computational model of a physical behaviour. They define 

the behaviour in a single n-cell of a system. Given a region decomposed into a 

complex, the physical element can be applied to each n-cell in the complex and so 

model the behaviour of the region. As [Palmer & Shapiro 1994] state: 

'Physical elements can be viewed as 'object oriented' components for 

building computational models of physical systems. They are object 

oriented in the sense that 1) physical behaviour is defined in terms of 

a few definitions (like the notion of 'class' in object oriented 

programming) which may then be 'instantiated' by applying to 

regions of space, 2) they interact through predefined, well defined 

interfaces, which simplifies working with them - previously defined 

models of physics (say of fluid flow) need not be redefined when a 

new physical element (say of elasticity) is introduced. In fact, once 

each of these types of element has been defined, we may represent 

systems that contain interactions between elastic solids and fluids 

without introducing additional elements.' 

7.3.3 Implementations of Chain models 

[Palmer 1995] describes CHAINS; a computer language for modelling physical 

systems based on chain models. As an example of how the language can be used to 
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build models of physical systems, a program producing a finite element solution to 

plane strain is developed. 

[Egli & Stewart 2000] describe the development of an application programming 

interface (API) for building chain models of physical systems. They illustrate the use 

of their API with a diverse range of examples such as tissue modelling with a mass-

spring network, a simulation of a waving flag and a Cattmull-Clark sub-division for 

the recursive refinement of surfaces. 

Although the use of Chain models in these applications does not enable the 

development of analysis code that would not otherwise be possible, it does raise the 

semantic level at which an analysis problem can be described. 

If you consider a traditional implementation of the finite element method for 

structural analysis, a human has had to take the basic concepts of distributions such 

displacement, stress and strain, and represent these using a general purpose 

programming language such as FORTRAN or C using the data structures (such as 

floating point numbers) available in such a language. An execution path has then to 

be created to manipulate these primitives in a way that is consistent with the finite 

element method. The knowledge about how the simulation is undertaken is thus only 

implicit in the code. Hence, when later the code needs to be integrated with other 

code (perhaps to combine the code with a finite volume model of fluid dynamics), it 

is very difficult to reuse the code and much rewriting is needed. 

In contrast, a language such as CHAINS, which makes use of Chain models, is able 

to explicitly deal with concepts such as, for example, physical quantities, equilibrium 

and conservation of mass. For CHAINS these form the data structures that the 

language manipulates. Thus a simulation built in such a language documents itself - 

the code shows explicitly which physical quantities are to be manipulated and how 

this is to be done in terms of high-level algebraic topological operations. It is the 

computer's job to 'compile' this code into a form that is executable by a computer. 

For a traditional implementation of the finite element method in FORTRAN, say, in 
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essence a human programmer is required for the first step in this compilation process 

from physical model to code based on FORTRAN data structures (the FORTRAN 

compiler deals with the rest of the compilation into machine code). The need for this 

is removed in CHAINS. 

7.4 Chain Models in Design 

In addition to the analysis and simulation applications of Chain models described in 

previous sections, [Palmer & Shapiro 1994] describe some other possible uses of 

Chain models in the design process. These are formal function specification and 

shape synthesis. They illustrate both of these applications using a bracket design 

problem taken from [Shapiro & Voelcker 1989]. Since their discussion of this use of 

Chain models is highly pertinent to the argument put forward by this thesis, namely 

that Chain models would be highly useful for shape optimisation, much of the 

following sections are drawn from their paper. 

7.4.1 Function Specification 

Typically the design specification for a bracket would relate how the bracket must 

interface with other parts, the forces to which it will be subjected, maximum 

deflections etc. (see Figure 7-9). The bracket has three holes with given diameters 

through which they interface with other parts, applied loads or constrained 

movement on those nodes and a physical behaviour relating the deflections to the 

applied loads [Palmer & Shapiro 19941 argue that while such specifications are 

common, they are rarely stated in a formal way which would enable them to be 

amenable to representation on a computer. Chain models provide such a formalism 

for defining a design specification. 
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Figure 7-9 	A Sample Specification for a Bracket 

after [Palmer & Shapiro 19941 

[Palmer & Shapiro 1994] give a possible chain model specification, shown in Figure 

7-10. Each hole is represented with a 0-cell. 0-chains are defined for positions (x), 

deflections (u) and forces (f). 1-cells are formed with pairs of the 0-cells forming a 

cell complex. 1-chains are formed using the coboundary operator to form the 1-

chains: relative position dr = ax), relative displacement du = u) and relative force 

df= J). Once these cells and chains are defined, constraints can be set on the values 

that these chains can take. For instance, values for required forces or displacements 

can be defined or bounded. These types of constraints are similar to loading 
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Figure 7-10 
	

A Chain Model Specification for a Bracket 

after [Palmer & Shapiro 19941 

conditions applied to finite element models and similarly should be well-posed, so 

that the problem is not over-constrained (i.e. either displacements or forces are 

defined but not both). 

In addition to such common constraints, [Palmer & Shapiro 1994] argue that the 

chain model of function specification can support much more general constraints. 

Constraints can be placed on the relationship between chains such as force (j), 

relative force (dJ), displacements (u) and relative displacements (du). For instance, 

du.df can be constrained to be below some bound. 
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7.4.2 Shape Synthesis 

The previous section showed how a chain model could be used to produce a formal 

design specification for the bracket discussed. It specifies displacements and forces 

but does not model the geometry. It is still necessary to generate a geometry for the 

bracket. This can be seen as a systematic transformation from the specification chain 

model to a more detailed chain model which specifies the geometry embedded in 

space that is still consistent with the specification. 

The specification cell complex needs first to be transformed. The holes will need to 

be transformed from the 0-cells into a 1-complex representing the bracket's boundary 

around the hole. The chains also need to be transformed from 0-chains on the node to 

1-chains. Figure 7-11 and Figure 7-12 show how this might be done. 

The bracket's geometry will be represented by a 2-complex, the boundary of which 

is already partially defined by the 1-complexes representing the holes. The geometry 

synthesis problem is now to find a 2-complex embedded in space, with appropriate 

chains representing the physical behaviour, defined over it. If the bracket is to be 

made of an elastic material, cubical elastic physical elements might be used. The 

chain model formed will satisfy the design specification, geometry and will be 

physically realisable. 

The question remains how this 2-complex should be found. [Palmer & Shapiro 1994] 

discuss the approach given by [Shimada & Gossard 1992] whereby the holes are 

connected by 'support regions'. The size of these regions is proportional to the forces 

applied. Alternatively, the whole design area around then holes might be filled as 

described in [Bremicker et al. 1991] and shape optimisation undertaken. 
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Figure 7-11 	 Transformation of Abstract Chain Model Specification 

of Force to a Spatially Embedded Chain Model 

after [Palmer & Shapiro 19941 

Displacements 
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Figure 7-12 	 Transformation of Abstract Chain Model Specification 

of Displacement to a Spatially Embedded Chain Model 

after [Palmer & Shapiro 19941 
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7.5 Chain Models and Shape Optimisation 

Chain models and shape optimisation have complementary roles. In chain models, 

we have a have a formal way of specifying desired behaviour, of representing 

geometry and of calculating behaviour. Referring back to Section 6.9 it can be seen 

that these were some of the properties that were required for a common data structure 

for shape optimisation. Therefore, Chain models could possibly be a method of 

formalising the process of undertaking shape optimisation. 

In Section 7.4.2 Chain models were shown to be capable of constituting a formal 

design specification and the process of synthesising geometry could be seen as a 

systematic transformation of this specification chain model to a chain model 

embedded in space which represents both the geometry and the physical behaviour of 

the component. Shape optimisation is one possible tool that could be used to 

facilitate this transformation of chain models. 

How might shape optimisation and chain models be integrated into a formal 

geometry synthesis process? 

The use of Chain models by themselves does not solve the problem of producing 

sensible geometries, decomposing that geometry into a reasonable mesh and ensuring 

an accurate analysis. As discussed in Section 7.3.3 languages for physical analysis 

(such as CHAINS) based on Chain models allow physical simulations to be written 

at a high semantic level in a formal and consistent manner and thus enable greater 

code reuse and interoperability. Similarly, a language for shape optimisation based 

on the Chain model formalism could allow shape optimisation algorithms to be 

written in which the geometry definition, discretisation and subsequent analysis of 

physical behaviour could be developed at a high level in a consistent way. 

Chains would also allow a formal way to define a specification and objective for the 

optimisation. Shape optimisation can be reformulated then as the systematic 

transformation of the chain model specification into an optimal chain model fully 

embedded in space which satisfies the constraint elements necessary for the physical 
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behaviour of interest - or indeed behaviours of interest. Chain models would make 

the specification and analysis for multi-disciplinary optimisation much easier to 

implement. This would be possible without the difficulties of integrating various 

incompatible analysis routines. 

7.5.1 Opportunity for novel shape optimisation techniques in a Chain 

Model Framework 

It is possible to formulate any of the current approaches to shape optimisation in the 

Chain model framework. The Chain model framework would provide a useful 

formalisation of the process in terms of transformations of Chain models from 

specification to full geometry. However, one of the primary motivations behind 

looking for a common data structure for shape optimisation was the desire to develop 

novel shape optimisation algorithms that could be useful in the design process. 

Therefore, this section looks at the possibilities for novel algorithms for shape 

optimisation, which are facilitated by Chain models. 

The main opportunity that Chain models offer for the development of new 

algorithms is that they allow access to information about the spatial performance of a 

shape. They make it possible for the shape to be changed in response to the 

behaviour of the component calculated in the analysis. 

As discussed in the previous section, shape optimisation can be viewed as the 

systematic transformation of the chain model specification into an optimal chain 

model fully embedded in space. Since optimisation is a process of searching for a 

solution, this transformation will be the result of a repeated loop. The specification 

Chain model is transformed into a partial geometry definition in some way. This 

partial geometry Chain model is converted to some full geometry Chain model. This 

geometry model might itself be set up so that analysis can take place (i.e. it has 

appropriate chains defined for the desired analysis) or a further transformation might 

be needed. The results of this analysis are used to change the geometry shape. With a 

traditional optimisation technique, this will involve calculating an objective function 
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and whether constraints are violated and reporting this information to the optimiser 

which will vary parameters used to build the geometry Chain model. With Chain 

models, though, there is the possibility of using more of the information in the 

analysis Chain model to change the geometry model. The loop changing geometry, 

undertaking an analysis and subsequently changing the geometry can be repeated 

numerous times until some termination criteria is met. 

How might the information present in the analysis Chain model be used to change 

the shape? It is perhaps easiest to demonstrate with an example, the bracket design 

problem described in Section 7.4.1. This is not intended to be a description of a 

necessarily good algorithm for the design of this bracket. Rather it is to show the 

types of possibilities that become available when using Chain models. 

Figure 7-10 shows a Chain model specification for the bracket, with perhaps 

constraints on the deflection of the holes, a stress constraint and a desire to minimise 

weight. Figure 7-11 and Figure 7-12 show how this specification might be 

transformed into a partial definition of the bracket geometry for the holes. We now 

need to move from this partial definition of geometry to a 2-chain fully embedded in 

space with Chains defined on it to model elasticity, with minimum weight and 

meeting the constraints on deflection and stress. 



7. 	Chain Models 
	 164 

A 

X. 

(0,0) 

Figure 7-13 	 Example of Candidate Bracket with 

Parameterised Corner and 'Grown' Mesh 

Figure 7-13 shows one way that this might be achieved. Two additional features are 

added to the partial geometry, a 'corner' to the bottom left hand side and a spline 

curve to the upper right. The full geometry is represented by the simplicial Chains, 

these are formed by meshing the area partially enclosed by the partial geometry 

model. Loads and displacements can be transferred from the holes to the appropriate 

nodes and an analysis done. The geometry can be changed in one of three ways: 
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Similar to a traditional shape optimisation the corner dimensions and position are 

under the control of a hill-climbing optimiser. The optimiser can change the 

corner dimensions and then the area is remeshed and so on. 

The simplicial cells can be removed if the stress on them is below some threshold 

value and a further analysis undertaken and so on. This will remove material 

from those areas in which it is being underused. 

The spline control points can be moved in or out depending on the stress of the 

cells with which it is adjacent. The area can be remeshed and another analysis 

done and so on. Thus, that section can become thicker or thinner as necessary 

depending on the results of the analysis. 

All three of these geometry-changing methods might be used at once. For example, 

(a) might be used as an outer loop, (b) as an intermediate loop and (c) as an inner 

loop. Again, it should be stressed that this is not intended to be an example of a 

'good' algorithm for this problem. Instead, it demonstrates some of the ways in 

which analysis information might be used to influence the geometry using the Chain 

model framework. 

Another use for Chain models in shape optimisation might be to develop further the 

'object-oriented' nature of physical elements so that they might act more like 

'intelligent agents'. For instance, an instantiation of a physical element might deduce 

that the approximation that it represents might be inaccurate in its current 

configuration and so change itself. For instance, an instantiation of a physical 

element equivalent to a solid finite element might transform itself into a shell 

element when its size in the third dimension drops below some value. Similarly, it 

might be possible that Chains can be made 'intelligent' so that they can automatically 

change themselves in response to their internal condition or the environment around 

them. For example, the spline in Figure 7-13 might be made 'intelligent' so that it 

can change its shape in response to its environment. 
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8 A Morphogenetic Approach to Shape Optimisation 

8.1 Summary 

This chapter describes a novel approach to shape optimisation inspired by the way in 

which biology produces load-bearing structures. It is programmed using the Chain 

model framework [Palmer & Shapiro 1994] described in the previous chapter. It 

demonstrates how novel algorithms can be developed in this framework which can 

access all of the information generated by the analysis software and use this 

information to change the shape of the component to be optimised. 

This approach uses a cellular shape representation, where cells from the Chain model 

framework are given some of the abilities of biological cells. They can divide, move, 

pass messages to neighbours and die. They are also allowed to respond to the stress 

upon them. This allows them to die where stress is low and in this way remove 

redundant material. 

Each cell is programmed as an independent agent in the Swarm programming 

language. The behaviour of the cells is influenced by various parameters that can be 

thought of as analogues of biological genes. A genetic algorithm is used to evolve 

these genes towards producing good shapes. 

The approach was applied to the problem of finding shapes for bicycle frames, 

arches and a cantilever beam. Realistic high performance shapes were produced 

demonstrating the possible usefulness of such an approach. 

8.2 Introduction 

8.2.1 Overview and Motivation 

In the approaches to using genetic algorithms for shape optimisation described in 

previous chapters, the genes explicitly encode for the components' shape. For 
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example, a gene represents a dimension in a parameterised CAD model or defines 

whether a voxel is filled or not. For these approaches, the generation of the shape 

from the chromosome is trivial. In this chapter, a morphogenetic approach is used so 

that the genes do not explicitly encode for the shape, but instead change the 

behaviour of the cells and hence influence the shape generated during a growth stage 

in which the cells can respond to the calculated stress on them. 

As described in Chapter 6, the primary motivation behind this work was to attempt to 

make more use of the information generated by the finite element analysis. The 

analysis produces large amounts of data on the local performance of a component at 

particular positions. In contrast to most approaches to shape optimisation, this 

approach looks to make use of this information so that the shape optimisation 

algorithms can change the shape in response to this information, in order to improve 

the component's performance. 

A second motivation was the desire to establish whether the concept of 'intelligent 

cells' discussed in Section 7.5.1 could be used in a useful way. This, therefore, 

determined that control of the shape generation should be 'bottom-up'. Cells respond 

to their internal state and to the environment to generate the shape and are not 

controlled by a centralised algorithm. 

This work did not attempt to produce a definitive algorithm for shape or topological 

optimisation using morphogenesis. Instead, it was intended as a study into whether 

such an approach shows any promise for shape optimisation. 

8.2.2 Morphogenic Evolutionary Computation 

[Angeline 1995] defines morphogenic evolutionary computation (MEC) 

(morphogenic being a synonym of morphogenetic) as 'evolutionary computations 

that distinguish between the representation that is evolved and the representation that 

is evaluated by the fitness function'. Typically, MEC uses evolutionary algorithms, 

along with a growth stage, to produce a solution to a problem. Just as biological 

embryology takes a genotype and, through a complex development process, produces 
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a physical phenotype, morphogenic evolutionary computation uses a more 

complicated mapping from genotype to phenotype than those typically used in 

evolutionary computation. An evolutionary algorithm is used to manipulate the 

genotype. The genotype is then developed into a phenotype by some non-trivial 

process. The phenotype is then evaluated. 

Angeline reviews the relatively few pieces of research undertaken which use a 

morphogenetic development stage in evolutionary computation [Angeline 1995]. He 

introduces a formal description of morphogenic evolutionary computation and 

describes its potential advantages over standard evolutionary computation. 

The advantages he identified were firstly evolvability. Using morphogenesis, it may 

be possible to make reproduction operators more effective at moving through the 

search space to good solutions. Secondly, there was the possibility of producing 

solutions with large structures with relatively simple genomes. 

He identified three types of development used for morphogenic evolutionary 

computation: translative, generative and adaptive development functions. 

Translative development is essentially a fairly trivial mapping from a genome to a 

larger structure. Generative development involves a recursive function whereby 

repeated application of some growth rules produces the required structure. Examples 

given of generative development functions were Lindemayer (L-) systems and 

production rules. Adaptive development functions may be recursive like generative 

development, but they also involve some adaptation of how the development takes 

place during evolution. The work described in this chapter does not neatly fit into 

any of these categories, since in this work the growth of the structure itself is 

influenced by the structure's performance during the growth stage. 

[Bentley & Kumar 19991 classify embryogenies (an embryogeny being the growth 

process by which a genotype becomes a phenotype) for evolutionary algorithms into 

three types, external, explicit and implicit. In external embryogenies, the growth 

process is generally hand-coded. The embryogeny is not itself evolved, but instead is 
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fixed. Parameters are evolved which feed into the embryogeny, which then generates 

the phenotype. Dawkins' Biomorphs [Dawkins 1986] [Dawkins 1987] can be seen as 

using an external embryogeny. 

For explicit embryogenies, the steps in the growth process are given by explicit 

instructions, which are evolved. These instructions are executed to form the 

phenotype. Such embryogenies might make use of tree structures of instructions and 

be amenable to evolution using genetic programming. 

[Bentley & Kumar 19991 explain implicit embryogenies as having no explicit set 

rules defining the embryogeny. Instead, they are closer to natural embryogenies that 

use 'indirect chains of interacting rules'. These rules are evolved and, through their 

application to the elements of the growing solution, form the phenotype. 

[Bentley & Kumar 1999] give a list of advantages of a morphogenic stage, namely: 

. Reduction of the search space. A relatively small number of genes can be used 

to generate a phenotype with a much larger (more complex) structure. 

. Better enumeration of the search space. The genotype space can be designed to 

be easier to search through than the phenotype space, making the search more 

efficient. This can be compared with some of the ideas developed in Section 6.8. 

• More complex solutions in the solution space. The use of growth rules can 

allow for the generation of more complex phenotype structures than could 

otherwise be evolved. 

• Repetition. The use of a morphogenic stage, if properly designed, might allow 

for the use of repeating structures, exploiting symmetry and segmentation. 

• Adaptation. Phenotypes can be grown so that they can meet constraints, change 

in varying conditions, and correct malfunctions in the design. Of the advantages 

given, the work described in this chapter perhaps looks to exploit this advantage 

the most. 
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They give two potential disadvantages of morphogenic evolutionary computation: 

• They can be hard to design. 

• They can be hard to evolve. Bentley and Kumar cite pleiotropy (one gene 

causing numerous phenotypical traits) and the disruption of child solutions as 

potential problems. 

Morphogenic evolutionary computation has been applied in a number of application 

areas. [Jakobi 19951 [Jakobi 1996] describes its use for the generation of Artificial 

Neural Networks (ANNs) for robot controllers. His approach would be termed 

generative by Angeline and implicit by Bentley and Kumar. [Broughton et al. 1999] 

describe an explicit embryogeny, using genetic programming and Lindenmeyer (L-) 

systems, to evolve three-dimensional structures. [Hornby & Pollack 2001] [Hornby 

2003] describe the use of an evolutionary algorithm that evolves L-systems. These L-

systems are used as a generative encoding to produce voxel-based objects. The 

system is used to evolve table designs. [Bentley & Kumar 1999] compare an external 

embryogeny, an explicit embryogeny and an implicit embryogeny on a problem in 

which tessellating tiles are to be evolved. They found that their implicit embryogeny 

performed best. [Kumar & Bentley 2003b] attempt, with success, to evolve the 

shapes of letters of the alphabet, finding an implicit embryogeny to scale well. 

[Eggenberger 1996] uses development processes such as cell division and cell 

differentiation, to create neural control structures for real-world agents using an 

artificial evolutionary system. [de Garis 1994] uses an implicit embryogeny using 

cellular automata to grow very large neural nets. 

8.2.3 Artificial Life and Structural Analysis and Optimisation 

[Hajela 1998] reviews some of the recent applications of artificial life to structural 

analysis and design. This included evolutionary algorithms for optimisation. An 

approach to using cellular automata (CAs) for structural analysis was put forward. 

The motivation for this was that specialised massively parallel hardware for 
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implementing CAs might allow for very quick analysis of large structural problems. 

The rules in the CAs were evolved using a GA with a fitness depending on how well 

the CAs were able to approximate stress results from a finite element analysis 

[Hajela & Kim 2001]. 

[Kita & Toyoda 2000] use cellular automata for topology optimisation. The design 

domain is decomposed into a rectangular grid of cellular automata. Cell thicknesses 

are used as the design variables. These thickness variables are updated based on local 

rules and on the stress calculated by a finite element analysis. 

[Taura & Nagasaka 1999] use a morphogenic approach to 'growing' shapes. They 

use an unusual shape representation. A unit sphere is used on which points are 

placed. A free form object is then formed around the centre of this sphere. The 

density of points in a particular area of the sphere determines how far the free form 

object is pulled in that direction. Initially only a few points are on the sphere, but 

rules are used to generate new points or remove points on the sphere which are 

analogous to cell division or cell death. A genetic algorithm is used to evolve these 

rules for particular design applications. 

An interesting approach to producing triangular meshes for a two-dimensional 

domain is described in [Saitou & Jakiela 1994]. Each element is thought of 

analogously to a biological cell. It can grow outwards or reproduce on one of its 

sides to fill the domain with a high quality mesh. The cell has an internal state and 

variables describing how far it is from other cells or the boundary. The behaviour of 

the cell is determined by rules that are determined by a classifier system evolved by a 

genetic algorithm. The fitness given by the quality of the mesh, in terms of element 

size and shape and the proportion of the desired area which is meshed. The method 

could produce good meshes for constant shape. However, it was hoped that once the 

rules were found for meshing a particular shape then it would be possible to reuse 

these rules for different shapes. However, it seemed that there was some sensitivity 

of the rules to the specific shape. [Langham & Grant 1999] describe a similar 

application in which rules are evolved for mesh generation. 
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8.2.4 Models of Biological Cellular Development 

Some work has been done in biology on computational modelling of development. 

[Agarwal 1994] and [Agarwal 1995] describes a 'Cell Programming Language' 

which is used to model phenomena exhibited by interactions between cells. 

[Fleischer 1995] has developed a simulator of biological multi-cellular development. 

Chemical, mechanical influence and cell lineage factors and other biologically 

feasible mechanisms can influence cell development. This was applied to synthetic 

biology in order to explore questions of pattern formation and morphogenesis, 

artificial evolution of neural networks and computer graphics. modelling. The work 

described for modelling the development of cellular structures was much more 

detailed and biologically realistic than the one described in this chapter. However, as 

is discussed in Section 8.6.3, such modelling could be the basis of further 

investigation following on from the work reported in this chapter. 

[Kumar & Bentley 2003a] [Kumar & Bentley 2003c] describe the development of an 

'Evolutionary Development System' (EDS) which attempts to model aspects of the 

biological process of development. The system represents cells, embryos, genes, cell 

cytoplasm, cell walls, proteins, receptors, transcription factors and cis-regulatory 

regions. The use a genetic algorithm to evolve the genes. In [Kumar & Bentley 

2003c] individuals are grown within this biologically plausible model and assigned a 

fitness according to how well they achieve a particular shape. Experiments were 

undertaken comparing different modes of cell division, where the shape to be 

generated was a straight line and a sphere. They concluded that different methods of 

oriented cell division do affect the final developed solution. 

8.2.5 Related Work on Shape & Topology Optimisation 

[Baumgartner & Mattheck 1994] and [Mattheck et al. 19941 note that living 

biological load bearing structures, such as bones and trees, seem to have developed 

mechanisms for growing and changing their shape in order to adapt to the conditions 

found in their environment. Such mechanisms have evolved in order that organisms 
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may meet the need for simultaneously lightweight and reliable structures. He states 

that the axiom of constant stress is the principal rule that determines this growth. In 

other words, the growth that takes place tends to equalise the stress throughout the 

biological load carrying structure. Thus, material grows where there are stress 

concentrations that might cause failure and less material is used where underloaded, 

reducing the weight of the structure. 

Clearly for many engineered mechanical components, reliability and minimum 

weight are desirable. These are the aims of many shape optimisation techniques. 

Mattheck therefore attempts to mimic such mechanisms for the generation of shapes 

for mechanical components. He describes two complementary techniques inspired by 

this biological analogy, which they term Soft Kill Option (SKO) and Computer Aided 

Optimisation (CAO). 

SKO simulates the adaptive mineralisation of bones, whereby increased 

mineralisation takes place where the stress is high. This leads to the distribution of 

stiff, high strength matrices which are well-adapted to the particular loading that is 

experienced. SKO takes this process and looks to apply it to find optimal topologies 

for complex loading situations. SKO takes an initially rectangular finite element 

mesh covering the whole of the proposed design area with a constant Young's 

Modulus. The stresses due to the loading are then determined using the finite element 

method. The Young's Modulus of each element is then changed as a function of the 

stress. Areas of higher stress are given higher Young's Modulus; areas of lower 

stress are given lower Young's Modulus. The function used is not given in the paper. 

This is repeated several times until a clear distinction between areas of high and low 

Young's Modulus is achieved. The shape of the structure is then determined by 

calculating an isoline of the Young's Modulus. Areas of high Young's modulus are 

inside the structure, whilst areas of low modulus are outside. 

The second method, Computer Aided Optimisation (CAO), simulates surface 

swelling of the structure according to the stress distribution, similar to the way that 

trees grow. This leads to a more homogenised distribution of stresses on the surface. 
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Again, the whole of the design area is meshed with rectangular finite elements. The 

stresses are calculated for the load case required. The next step involves replacing the 

mechanical loading with a fictitious temperature field, where the temperature is 

determined from the stress calculated, previously. High stresses result in high 

temperatures and vice versa. This thermoelastic problem is then solved with the heat 

expansion coefficient set at zero for everywhere except the surface layer. Thus, a 

fictitious 'thermal' surface expansion takes place based on the magnitude of the 

stresses calculated. The expanded shape is then used in a further iteration of this 

process. This loop is continued until a constant surface stress is achieved. 

[Mattheck et al. 1994] describe the use of SKO to determine topology firstly and 

then CAO to produce homogenous surface stresses of optimisation of a cantilever 

beam. 

The CAO method is not specifically aimed at the typical shape optimisation problem 

of minimising volume whilst remaining within a stress constraint. Instead, CAO 

reduces stress concentrations on the surface in order to increase reliability. [Chen & 

Tsai 1993] extend the simulated biological growth approach so that it can be used for 

two different design procedures: minimising volume subject to a maximum stress 

constraint and minimising maximum stress subject to an area constraint. 

A very similar approach to the SKO called the Hard Kill Method (I{KM) is described 

in [Bulman et al. 2001]. In this method, rather than the element's Young's modulus 

being varied linearly with the Von Mises stress on the element, the Young's modulus 

is reduced to a very small value if its stress is below some value. Thus, an element 

that is being underused is 'killed' (although it actually remains in the mesh with a 

low Young's modulus). 

A similar approach, Evolutionary Shape Optimisation (ESO), is a technique for 

topology optimisation developed by Me and Steven [Xie & Steven 1997] [Querin et 

al. 2000]. Despite its name, ESO does not use evolutionary algorithms; instead, 

'evolutionary' refers to the gradual removal of material to achieve an optimal design. 
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The basic process that is used in ESO is to start with an initial rectangular finite 

element mesh. An analysis is then undertaken. Elements are then removed depending 

on this analysis. A further analysis is then done and further elements are removed. 

This repeats, gradually improving the topology. 

The decision on which elements to remove depends on the criteria that is being 

optimised. Typically in topology optimisation, the objective is to minimise 

compliance of a structure for a given volume of material. With this objective, ESO 

removes material where the stress is low. ESO has been applied to a number of other 

problems including buckling [Rong et al. 2001] and frequency response optimisation 

[Zhao et al. 1998] [Xie & Steven 1996] The ESO method has the advantage that it is 

easy to integrate with standard finite element packages. [Tanskanen 2002] provides a 

theoretical study of ESO. 

A disadvantage of SKO, 11KM and ESO is that they generate shapes with an 

unsmooth boundary. There have been a number of approaches to producing smooth 

geometry from the mesh. [Chen et al. 20021 describes an approach to ESO, which 

they call Nodal Evolutionary Shape Optimisation (NESO). In this approach rather 

than elements being removed, nodes are allowed to migrate from low stress areas 

into high stress areas. Remeshing is undertaken when element shapes become invalid 

and boundary smoothness is maintained. 

The techniques described above all look to change the shape based on information 

generated by the analysis routine. These partially addressed the aim of this work to 

utilise the information generated by the FE analysis. However, they are essentially 

'one-shot' methods in that only one of the possible trajectories through the space of 

possible shapes is taken, from an initial shape in which the whole of the design area 

is filled to a better shape. 

The work described in this chapter seeks to make use of a growth stage, in which the 

shape is taken through a sensible trajectory through the space of possible shapes 

informed by the analysis. However, it seeks to avoid the 'one-shot' nature of the 
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described techniques by moderating the behaviour of the growth by a number of 

factors. These factors are controlled by a genetic algorithm and the shape space is 

thus searched through a number of different trajectories. 

8.2.6 Aims 

• To determine whether a morphogenetic evolutionary algorithm shows any 

promise as an effective approach to shape optimisation. 

• To determine whether the information generated in the finite element analysis on 

a shape's performance can be used to influence the shapes generated by a 

morphogenetic genetic algorithm approach to shape optimisation. 

• To establish whether the use of 'intelligent cells', where finite element are 

endowed with simple behaviours, can result in emergent behaviour which 

produces efficient shapes. 

8.3 Implementation 

8.3.1 The Design of the Algorithm Used 

It was decided not to mimic biological morphogenesis too closely. This was for a 

number of reasons. Firstly, to imitate the complexity of biological morphogenesis 

seemed too computationally expensive. Secondly, the determination of the details of 

organism growth is still an area of much research for developmental biologists [Sole 

et al. 1999] and an area in which the author has only limited knowledge. Thirdly, it is 

necessary that the loads can be applied to the component throughout the shape 

generation process. This would not be possible if the initial shape was 'small'. 

Finally, from a pragmatic point of view it seemed that certain engineering rules-of-

thumb might be useful. Namely, that material should be removed from low stress 

areas where material was not being efficiently used and that material should be added 

in areas where stress is too high. 
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The purpose of the morphogenetic stage was to provide a method of producing a set 

of shapes that followed a sensible trajectory through the space of possible shapes, 

which was informed by the results of the analysis undertaken. Bearing this in mind, it 

was necessary to design the morphogenetic stage so that it was able to respond to 

information generated about the shapes' performance and, in general, move towards 

improved shapes. Many aspects of the morphogenetic stage should be fixed to enable 

this, however certain aspects should be variable so that by setting these variables at 

differing values the exact operation of this stage could be controlled. This would 

enable a large number of varying trajectories through the shape space to be followed. 

These variables would be under the control of a genetic algorithm. 

It was decided that a cellular shape representation would be used. This was for a 

number of reasons. This representation would be easily implementable in the Chains 

framework described in Chapter 7. Secondly, biological morphogenesis is clearly 

cellular in nature. Thirdly, since the data from the finite element analysis would be 

available for each element, a cellular representation would make it easy to integrate 

this information. It was therefore decided to use a triangular cellular shape 

representation. This would then be used as the finite element mesh. 

Finally, the nature of the development stage needed to be decided on. It was decided 

to copy some of the features of ESO since these would be simple to implement and 

had proven themselves to be successful for topology optimisation. During the growth 

stage, cells would be forced to die if their stress falls below some threshold (Von 

Mises) stress value. This threshold would be slowly increased throughout out the run 

until a constraint on area was achieved. 

8.3.2 Overview of the Algorithm Used 

The algorithm naturally split into two parts: the genetic algorithm and the shape 

development stage. The genetic algorithm was used to evolve values for some of the 

variables that were used in the growth stage. Thus, the genetic algorithm (GA) 

formed an outer loop, evolving individuals whose genes varied the way in which the 



8. 	A Morpho genetic Approach to Shape Optimisation 	 178 

shape development stage produced the shape. When an individual in the GA's 

population is evaluated, the values for genes are passed into the cells and then the 

morphogenetic stage is allowed to run. Following this, the best fitness (typically —(5 

where Sis the maximum deflection) that is achieved through the growth stage is used 

as the individual's fitness. The GA is described in more detail in Section 8.3.8.4. 

Below is given a brief overview of the mechanics of the algorithm used for the 

morphogenetic stage. Much greater detail on the actual implementation is given in 

Section 8.3.5. 

Each cell was implemented as a two-dimensional triangular cell (2-cell) from the 

Chains framework. As discussed in the previous chapter, each 2-cell is bounded by 

edges (1-cells), which in turn are bounded by nodes (0-cells). The complex formed 

by all of these Chains cells is used as the shape representation. Each of these cells is 

implemented as an agent in the Swarm programming language described in Section 

8.3.4. Only the triangular 2-cells are 'active' agents so that they are able to act 

independently. The 1-cell edges and 0-cell nodes could, however, act to check their 

status and act if they were currently invalid - this is explained further in Section 

8.3.5. 
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Figure 8-1 	The Initial Mesh 

As shown in Figure 8-1, an initial mesh of triangular cells was used which filled the 

whole proposed design area. Loads were applied to this mesh and a two dimensional 

static elastic analysis undertaken using the Ansys finite element package by 

importing the mesh via node and element files. Quadratic elements were used. Ansys 

returns the Von Mises stress and each element is informed of the Von Mises stress on 

it. Each element is then allowed to 'act'. Possible actions are to, kill, divideSeif, 

smooth or boundarySmooth. Once all the consequences of these actions have been 

completed, cells check their status to ensure that they still form a valid cell complex 

and any necessary actions are then undertaken to kill any 'hanging' edges, 'isolated' 

nodes or kill any cells which only contact each other through one node. 
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The basic execution path followed during the morphogenetic growth stage is shown 

in Figure 8-2. 

Elements die if the stress on them is below some threshold value. This threshold 

value changes through time, starting quite low and is increased until the shape drops 

below a constraint on the area of the shape. This threshold stress is moderated by a 

number of factors such as position, whether the cell is at the edge of the shape and 

whether the death of an element would result in a change in the topology of the 

shape. The strength of these factors are under the influence of genes which are the 

same for each cell. 

Elements divideSeif if the stress gradient across them is above some threshold value. 

This action was needed because the shape representation and the analysis mesh are 

the same. It is therefore necessary to try to ensure that the analysis produces 

sufficiently accurate results. Thus, the split action acts in a rudimentary way as an 

adaptive meshing routine, which is controlled from the 'bottom-up'. Cells split in a 

way that is similar to approaches used in Delaunay triangulation [Filipiak 1996]. The 

cell schedules itself to die along with any other cells with nodes within its 

circumcircle. A new node is placed at the centroid of the splitting cell and new cells 

are created using this node and those nodes surrounding the newly formed 'hole'. 

Section 8.3.8 describes this in some detail. 

The smooth action is undertaken by every cell following any other actions. Again, 

this is to ensure that the mesh is sufficient to enable the finite element analysis to 

produce accurate results. The 'smooth' action takes each of the nodes of the cell and 

moves it towards the centroid of those nodes with which it shares an edge. 
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Figure 8-2 	Overview of the Morphogenetic Stage 
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The smoothBoundary action aims to produce a smooth outer boundary for the shape. 

Like smooth, smoothBoundary is used following all other cell actions. Those cells 

that have an external edge move their external nodes towards the centroid of the two 

nodes that share a common edge to the node being moved. 

This loop continues until a minimum area for the shape is reached. 

8.3.3 Using the Chains Framework 

The object structure of the program written was implemented so that it mapped onto 

the data structures discussed in the previous chapter. It should be noted however that 

due to time constraints it was not possible to code the finite element analysis in the 

Chains framework. Instead, Ansys was used to undertake the finite element analysis 

and the results read back into the cells. 
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Figure 8-3 	A Chain Model Specification for a Bicycle Frame 
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The cells in this chapter are an attempt to extend the physical elements described in 

7.3.2.3 to give them 'initiative'. This ties in with the idea of intelligent physical 

elements described in last chapter. 

Three problems are addressed in this chapter, the design of a bicycle frame, a load 

bearing arch and a cantilever beam. The process of shape and topology optimisation 

of each of these can be thought of transformation of a Chain model specification as 

shown in Figure 8-3 to a Chain model fully embedded in space. 

8.3.4 Swarm 

It was decided to implement the morphogenetic shape optimisation software in 

'Swarm' [Burkhart 1994] [Minar et al. 1996]. Swarm is a software package for 

multi-agent simulation of complex adaptive systems. It was developed by the Santa 

Fe Institute. It has been used by researchers from a large number of disciplines, 

including ecology [Booth 1997] [Pepper & Smuts 1999], politics [Johnson 1998], 

biology [Kreft et al. 1998], economics [Luna & Perrone 2001] [Luna and Stefansson 

2000] and manufacturing [Krothapalli & Deshmukh 1997] to implement a large 

variety of agent based models. 

Swarm provides libraries to implement simulations of collections of concurrently 

interacting agents in a discrete-event simulation. Swarm provides the necessary 

machinery to effect those actions at the appropriate time. Along with the scheduling 

libraries, Swarm provides a number of other libraries of components for building 

models, controlling experiments on those models, and for displaying and analysing 

data generated by the experiments. 

In recent years, there has been a great interest in the study of complexity. One 

approach to the study of complexity has been agent-based modelling using computer 

programs. This has been undertaken in a wide range of disciplines in which complex 

systems are encountered. The Santa Fe Institute is a research institute whose primary 

interests are in complexity theory. The motivation behind their development of 

Swarm was to provide a set of standard tools for undertaking computer simulations 
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of complex systems. Swarm programmers are thus able to concentrate primarily on 

the behaviour of their agents and the interactions between them, rather than 

implement complicated discrete-event machinery. This reduces duplication of 

programming effort, increases the quality of programs generated and allows for the 

publishing of models in a standard form allowing other researchers to reproduce 

results. 

The forms of models that Swarm looks to support are multi-agent discrete-event 

simulations. The fundamental unit in such a simulation is an agent, which can 

execute events and can generate events that affect itself and other agents. Typically, a 

Swarm simulation will have a collection of many interacting agents. A discrete 

model of time is used rather than a continuous time model. Events take place at a 

single point in time. 

At the core of a Swarm model is a swarm. A swarm consists of a collection of agents 

and a schedule of actions to be executed by those agents. The swarm therefore 

constitutes a 'mini-simulation', complete with agents, a representation of time and 

the scheduling machinery to effect the actions on those agents. 

An important feature of Swarm is the ability to produce hierarchical models. A 

swarm itself can be an agent and can thus be contained in a super-swarm. An 

example of this would be a model of a forest. At the top-level, the forest is modelled 

as a swarm of trees. Below this level, each tree could be modelled as a swarm 

containing a collection of the cells of that tree. 

Object oriented (00) languages naturally lend themselves to the agent based 

modelling implemented by Swarm. The Swarm libraries are written in Objective C. 

In 00 programming 'classes' define the types of 'objects' that can be used. A class 

defines the behaviour of a type of object. It defines which instance variables are used 

to describe the state of an object of that type. It also describes the methods that can 

be executed by an object of that type. An object, then, is a particular instantiation of a 

class and has its own values for the state variables. In Swarm models, agents are 
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modelled as objects. Classes are thus used to define the generic behaviour of each 

type of agent. 

Swarm models are typically written in the Objective C or Java programming 

languages. For this project, Objective C was used. In building a typical Swarm 

simulation, the agents must first be created. A class is built for each type of agent and 

then each agent is instantiated from the appropriate class. A swarm (often termed the 

'model swarm') is then created in which the agents are placed. A schedule of actions 

is then needed to define which actions are to be executed by which agents at which 

point in time. Once this done the swarm can be executed. 

Figure 8-4 	The Swarm Application for Growth Stage at Start-Up 
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The model swarm in essence acts as a self-contained simulated world. For this to be 

of use to the modeller it is necessary to monitor the model swarm in some way. 

Typically in a Swarm application, this is done by placing the models swarm in an 

observer swarm as a sub-swarm. Along with the model swarm, the observer swarm 

can contain various other agents who can acquire data from the model swarm via 

probes, store that information in a file or display it in graphs or other displays. 

Swarm provides objects for saving data, interfacing to statistical packages, 

displaying graphs and other graphical representations of the model. 

Probes are an important feature of Swarm. When writing code in standard object 

oriented programming it is not necessary to be able to observe the inner state of an 

object, so long as the object behaves as required. For modelling purposes, though, 

this is very important. Swarm provides probes for this purpose. Probes can read or 

set any of the state variables of an object (agent) or call any of the methods of an 

object. As long as the object has been declared as a SwarmObject, then any object in 

Swarm is 'probable' without the need for any additional user code. 
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8.3.5 Details of Implementation 

This section describes the implementation of the program as programmed in Swarm. 

Figure 8-5 shows the principal objects in the program. These objects are explained in 

further detail below. 

Figure 8-5 	Overview of Program Structure 

8.3.5.1 ShapeOptControlSwarm 

The control swarm controls (Shape OptControlSwarm) the operation of the program. 

It is responsible for creating the model swarm (ShapeOptModelSwann). It owns an 

object GridGen, for generating the mesh, writing the mesh in the Ansys format and 

obtaining stress results from Ansys. It also owns DisplayManager that is responsible 

for displaying the current state of the model, along with graphs displaying fitness, 

area and deflection. The control swarm also manages the schedule of events for these 

objects. 
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8.3.5.2 ShapeOptModelSwarm 

The model swarm owns the model of the component. For this application the shape 

representation is a cell complex. The model swarm therefore owns collections of the 

cells that form this complex and is responsible for the creation and destruction of 

these cells. The model swarm manages the schedule of events for the cells in this 

complex. The model swarm also keeps track on the current stress threshold below 

which the cells (elements) die. 

8.3.5.3 Elements 

All the elements in the mesh that form part of the shape representation are of this 

class. Elements are the primary 'agents' in this approach. An element maintains a list 

of the edges that form its faces. Below are given some of the principal methods 

implemented by the Element class, that are relevant to the basic execution flow given 

in Section 8.3.2 and illustrated in Figure 8-2. 

Step 

The step method on the Elements (2-cells) is the driving method for the growth of the 

shape. 

Figure 8-6 shows the algorithm implemented by the Element step method. Firstly, 

getCeliStatus is called to calculate the current status of an element (see below). If the 

element is not in a valid state then kill is called. Then getStressThreshold is called to 

determine the stress threshold for this element (see Section 8.3.6). Depending on the 

status of the element status and the stress on the element then a number of actions 

can take place. The three primary actions that an element can undertake are to kill, 

kill With CheckForContact or to divideSelf. 
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Figure 8-6 	The Element step method 
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The basic logic is as follows. Firstly, elements execute the kill method when the 

stress on them drops below the threshold value. However, this should not happen if 

the death of the element would cause the topology of the shape to change (see 

Section 8.3.7). Therefore, before the kill method is executed, a check is made to 

establish whether this topology change takes place, using the 

kill WithCheckForContact method. Secondly, it is necessary sometimes for an 

element to die which would cause the topology change, because that part of the shape 

is carrying so little load. When this is the case, the kill method can be called without 

the check being made. Thirdly, it is preferable that internal elements are less likely to 

die than external elements, so that the generation of holes does not become 

excessive. Internal elements, therefore, have a lower stress threshold than external 

elements. Again, a check is made to ensure that a change in topology would not be 

changed by the element's death. Finally, if no other action takes place, divideSeif is 

called if the stress gradient across the element is greater than some value (for all runs 

documented this value was 2). 

The criteria for choosing the action that the step method calls are described below. 

The tests for these actions are done in the order given. 

If the element is external (status 1) and the stress of the element is less than the 

stress threshold then the action kill WithCheckForContact is called. 

Else if the stress of the element is less than (stressThreshold * 

rProportionForKillWithoutCheck) then the cell is 'killed' without the check for 

contact being done. rP roportionForKill WithoutCheck is variable under control of 

the genetic algorithm and typically takes a value of 0.01 to 0.6 and is usually less 

than the value of rProportionForHole described below. This allows elements to 

die that would change the topology if the stress on them is suitable low. 

Else if the stress of the element stress is less than (stressThreshold * 

rProportionForHole) 	then 	kill WithCheckForContact 	is 	called. 

rProportionForHole is variable under control of the genetic algorithm and 
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typically takes a value of 0.05 to 0.8. rProportionForHole is less than 1 and so, 

in effect, the stress threshold for internal cells is lower than for external edges, 

ensuring that holes are only created where the stress is much lower than 

elsewhere. 

(d) If the 'stress gradient' (determined by calling getStressGradient) is greater than 

rSplitThreshold, which typically takes the value of 2, then the divideSeif method 

is called. This is intended to increase the density of the mesh in those areas where 

the stress is changing rapidly and is a crude attempt at adaptive meshing (see 

Section 8.3.8). 

getCeliStatus 

This method calculates the status of an element, which is determined as follows: 

Status 0 if element is enclosed i.e. the element has no external edges in its face list. 

(Case A in Figure 8-7). 

Status 1 if element is external i.e. the element has one external edge in its boundary 

list (Case B in Figure 8-7). 

Status 2 if element is a 'corner' i.e. the element has two or more external edges in its 

boundary list (Case C in Figure 8-7). 

Status 3 if element is isolated i.e. has three external edges. This will usually result in 

the element 'dying'. 

Status 4 if element is ill-defined i.e. has fewer than three edges in its boundary list. 

This will usually result in the element dying. 
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Figure 8-7 	Illustration of Element Status 

checkSeif 

This method is used to undertake any action required to maintain the validity of an 

element. getCellStatus is called and if the element is a 'corner' (status 2), isolated 

(status 3) or ill-defined (status 4) then the kill method is called. 

kill 

This method begins the process of an element dying. This involves informing edges 

in the element's face list that the element is to be removed from their coface list, and 

informing the model swarm that this element is to be killed at the end of the time 

step. 
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kill With CheckForCon tact 

This method checks whether this element dying would cause any node to change its 

status to 'contact'. If this does not happen then the kill method is called. See Section 

8.3.7 for more details. 

divideSeif 

This method causes the current element to divide itself. This is done to increase the 

density of the mesh in this area. This is done by the addition of a node at the centroid 

of the current element and then undertaking a local Delaunay retriangulation. This is 

described in more detail in Section 8.3.8. 

8.3.5.4 Edges 

All the edges in the mesh, which form part of the shape representation, are of this 

class. An edge maintains a list of the nodes that form its faces and a list of the 

elements that form its cofaces. Below are listed are some of the methods that the 

Edge class implements: 

getCellStatus 

This method calculates the status of an edge, which is determined as follows: 

Status 0 if edge is enclosed i.e. the edge has two elements in its coface list. (Case A 

in Figure 8-8 - these are the red edges on the display). 

Status 1 if edge is external i.e. the edge has only one element in its coface list (Case 

B in Figure 8-8 - these are the blue edges on the display). 

Status 2 if edge is isolated i.e. the edge has no elements in its coface list (Case C in 

Figure 8-8 - these are the green edges on the display). 

Status 3 if edge is ill-defined i.e. has fewer than two nodes in its face list 
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Figure 8-8 	Illustration of Edge Status 

checkSeif 

This method is used to undertake any action required to maintain the validity of an 

edge. getCeliStatus is called and if the edge is isolated (status 2) or ill-defined (status 

3) then the kill method is called. 

kill 

This method begins the process of an edge dying. This involves informing elements 

in the coface list of the edge that the edge is to removed from their face list. The 

nodes in the face list of the edge are also informed that the edge is to removed from 

their coface list. The model swarm is then informed that this edge is to be killed at 

the end of the time step. 
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Figure 8-9 	Illustration of Node Status 

8.3.5.5 Nodes 

All the nodes in the mesh that forms part of the shape representation are of this class. 

Nodes have chains for x position, y position and z position (for this two dimensional 

problem all z positions are set at 0). A node maintains a list of the edges that form its 

cofaces. Below are listed are some of the methods that the Node class implements: 

getCeliStatus 

This method calculates the status of a node, which is determined as follows: 

Status 0 if node is enclosed i.e. none of the edges in its coface list are external (Case 

C in Figure 8-9 - these are the red nodes on the display). 
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Status 1 if node is external i.e. two of the edges in its coface list are external (Case B 

in Figure 8-9 - these are the blue nodes on the display). 

Status 2 if node is in 'contact' i.e. more than two of the edges in its coface are 

external (Case A in Figure 8-9 - these are the green nodes on the display). Since 

mesh topologies where a node is in 'contact' are not valid, a cell in this condition 

will normally die. 

Status 3 if node is 'isolated' i.e. there are no edges in its coface list. 

checkSeif 

This method is used to undertake any action required to maintain the validity of a 

node. getCeliStatus is called and if the node is in 'contact' (status 2) or 'isolated' 

(status 3) then the kill method is called. 

kill 

This method begins the process of a node dying. This involves informing edges in 

the coface list of the node that the node is to removed from their boundary list, and 

informing the model swarm that this node is to be killed at the end of the time step. 

smooth 

This method moves the node to the centroid of its adjacent nodes. It goes through 

each of the edges in the coface list of the node and from these edges 'gets' the other 

nodes which forms the face of these edges. The x and y position of the original node 

is then set at the centroid of these nodes. 

boundarySmooth 

The boundarySmooth method aims to produce a smooth outer boundary for the 

shape. Those cells which are not external (status 1) do nothing when this method is 

called. Otherwise, the method is similar to the smooth method, except only nodes 

attached to the two external edges are retrieved. It was also found that moving to the 
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centroid of these two nodes caused excessive smoothing and so the node was only 

moved part way towards this centroid i.e. 

[xci 	 [x21 
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a 	is the proportion of the way to move the node from its original 

position to the centroid of the adjacent nodes. Experimentally 

a value of 1/40 for a was found to work well. 
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8.3.6 Calculating the Stress Threshold 

In this approach to shape optimisation, the primary way in which the shape is 

generated is through the death of elements and the subsequent smoothing and 

splitting of those elements. Elements die when the stress on them drops below some 

threshold value. This threshold value depends on the current time, the status of the 

element (whether it is internal or external) and its position. 

The global current stress threshold is calculated by the model swarm. Each time a 

new finite element analysis is undertaken, the current stress threshold is increased by 

a constant amount. This global stress threshold is reduced by each element according 

to its position. This is done by using four 'chemicals' deposited in the environment. 

The position, strength and spread of this chemical are under the control of the genetic 

algorithm. This gives the genetic algorithm the ability to change how the shape 

develops in different parts of the design area. This was a crude attempt to mimic 

chemotaxis in biological development [Gilbert 1994]. 

stress 1 flresliol( 
Multiplier 

1 

Chemical 
Strength 

Chemical Die-Away Rate 	 Distance from Chemical 

Figure 8-10 	 Chemical's Effect on an Element's Stress Threshold 

as a Function of Distance from the Chemical 
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Each element calculates the amount by which each chemical modulates its stress 

threshold as shown if Figure 8-10. Each chemical has a position, strength (between 0 

and 1) and die away rate. The effect of the chemical is at a maximum at a distance of 

0 from the chemical's position, with a stress threshold multiplier of (1 - chemical 

strength). This effect drops linearly from this maximum to zero at a distance of 

'chemical die away rate'. An element's stress threshold multiplier for chemical 1 is 

therefore given by: 

srressThresholdMultiplier1  = 

(1 - chetnStrength 1
) + chemStrength1 * distanceFrom Chemical 1  

chemDieA wayRare 1   

1 

distanceFro,nCheniical1  < chemDieA wayRate 1  

otherwise 

There are four such chemicals and the total stressThresholdMultiplier for each 

element is found by summing the four individual stressThresholdMultipliers, with a 

minimum of 0. 

Figure 8-11 	Display of stress ThresiwidMultiplier with One Chemical 

Placed at (0.3,0.45), strength 1, rate 0.2 
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8.3.7 Maintaining Similar Topology 

This approach works by repeatedly increasing the stress threshold, calculating 

stresses, killing appropriate elements, increasing the stress threshold, calculating 

stresses, killing appropriate elements and so on. This continues until the area of the 

shape drops below some target value. Ideally, the stress threshold should only 

increase very slowly so that only a few elements die at any step, so that this process 

approximates a continuous dying of cells with a constant load applied. However, this 

would necessitate very many finite element analyses to be done with a large 

computational cost. The stress threshold therefore increases in fairly large discrete 

steps. 

Early in the development of this approach, a problem was discovered. Often it was 

found that early in the run there would be generated a 'wide' load bearing section of 

the shape. Because the section is wide, the stress on it would be relatively low. 

Consequently, cells in this section would fairly soon drop below the stress threshold 

and die. Because the stress threshold increases in fairly large discrete steps, 

frequently the whole load bearing section would die even though it was usefully 

carrying a load and merely needed to be thinner. 

To overcome this, in the normal round of cell deaths a check would be made to 

ensure that the death of a cell would not cause a 'contact' node (see Section 8.3.5.3) 

which would indicate the breakage of a load bearing section. Thus the section could 

become thinner, but would not be allowed to break. 

Clearly, there needed to still be some mechanism for 'breaking' sections of the shape 

that were not contributing to the performance of the component. Therefore, if the 

stress on an element is below a threshold, typically between 5% to 50% of the 

normal stress threshold, then the cell can be killed without this check. The exact 

value of this threshold is variable and is given by multiplying the cells normal stress 

threshold by rPropKillWithoutCheck (a variable under control of the genetic 

algorithm). 
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Figure 8-12 	Example of breakage of useful load bearing section 

8.3.8 Increasing Mesh Density 

There is no separation between the shape representation and the finite element mesh 

in this approach. In order to ensure reasonable accuracy from the finite element 

analyses it was decided that some form of adaptive meshing was required, even 

though this would not change the boundary geometry of the shape generated. 

Where the stress gradient over an element is above some threshold value an element 

triggers the divideSeif method. This method implements a node insertion and local 

Delaunay retriangulation based on the algorithm described by [Watson 1981] and 

[Filipiak 1996]. 
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Delaunay triangulation is used widely for the generation of unstructured meshes for 

the finite element method and has been studied extensively in the literature 

[Schewchuk 1997]. Given a set of points on a plane, the Voronoi tessellation is 

formed from the set of Voronoi polygons. These polygons are the regions around 

each point, which are closer to that point than to any of the other points. This is 

shown in Figure 8-13. The Delaunay triangulation is the dual of the Voronoi 

tessellation. 

lygons in green 
riangles in blue 

Figure 8-13 	Example of Delaunay Triangulation 
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Delaunay triangulations have some useful properties: 

• None of the points (nodes) are contained in the circumcircle of any triangle (the 

circumcircle of a triangle is the circle passing through all three of its vertices). 

• In two dimensions only, given a set of points to triangulate, the Delaunay 

triangulation is the triangulation that maximises the minimum angle for all 

triangular elements. This is a very useful property for generating high quality 

finite elements. 

The most widely used algorithm for Delaunay triangulation is the Bowyer-Watson 

algorithm [Watson 1981]. This method starts with an initial simple Delaunay 

triangulation (often a single triangle) and successively adds new points into this 

triangulation. 

iew node 

Triangles' circumcircles containing new node 

Figure 8-14 	Addition of New Node and Calculation of Circumcircles 
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The algorithm repeats the following steps: 

Add a new point 

Find the existing triangles whose circumcircle contains the new point (see Figure 

8-14). 

Delete these triangles, creating a convex cavity. 

Join the new point to all the vertices on the boundary of the cavity (Figure 8-15) 

and create appropriate elements. 

It was decided that the element divideSeif method should implement this algorithm. It 

should be noted that there is no 'top-down' control in the implementation of this 

algorithm. The dividing element creates the new node, then it needs to determine the 

e 

New elements 

Convex cavity in green 

Figure 8-15 	New Elements Formed from Convex Cavity 
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edges that constitute the convex cavity that the insertion of this node should cause, 

kill the elements and edges within this cavity and then kill itself. This takes place by 

calling the methods described below, which 'spread' out from the original element 

through the edges to adjacent elements. The methods needed to do this are in both 

the Element and Edge classes. These are listed below: 

8.3.8.1 Explanation of Element Method divideSeif 

I 	Start 	1 
1 

Create new node at 
centroid of element 

"V 

Call 
checkNodelnCircumCircleFromElem on 
each edge passing new node as argument 

Append together lists of edges (forming 
convex cavity) returned by edges 

Create new edges from new node to 
nodes around convex cavity of edges 

Create new elements 

kill self 

REnd 	I 
Figure 8.16 	The Element divideSeif method 
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This method (see Figure 8-16) creates a new node at the centroid of the element. It 

then calls checkNodelnCircumCjrcleFromElem (described below) on each of the 

edges in its face list. The lists of edges returned by these three calls are then 

appended together to form a list of edges which make up the convex cavity in the 

mesh. New edges can be then formed by traversing around the list of edges so 

formed creating new edges between the new node and the nodes on the edges in the 

convex cavity. New elements can then be formed using these edges. The element 

then calls kill on itself. 

8.3.8.2 Explanation of Edge Method checkNodelnCircumcircleForElem: 

node from: element 

Start 

Has this method a1read ... 1' es 	Return list containing 
been called this timestep? 

	
just this edge 

No 

Call checkNodelnCircumcircle on 
element in coface list which is not calling 

element 

Return list of edges returned by called 
element 

Figure 8-17 	The Edge checkNodelnCircumcircleForElem method 
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This method (see Figure 8-17) is called by an element. It takes the new node and the 

calling element as arguments and returns a list of edges that should lie on the convex 

cavity. If the checkIJodeInCircumcircleForElem has already been called for this edge 

then a list containing only this edge is returned. Otherwise, 

checkNodelnCircumcircle is called on the element in the coface list that is not the 

calling element. The list of edges (which are on the convex cavity) returned by this 

element are then returned by the edge. 
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8.3.8.3 Explanation of Element Method checkNodelnCircumcircle: node 

from: edge 

Start 

Is the new node in this 	No 	
Return list containing 

element's circurncircle? 	 just calling edge 

Yes 

Call 
checkNodelnCircurnCircleFromElem 

on edges in face list except calling edge 

Append together lists of edges (forming 
convex cavity) returned by edges 

kill self 

Return list of edges 	
] 

Figure 8-18 	The Element checkNodelnCircumcircle method 

This method is called by an edge. It takes the new node and the calling edge as 

arguments. If the node is not within the circumcircle of the element then a list 

containing only the calling edge is returned. If the node is within the circumcircle 

then checkNodelnCircumCircleFromElem is called on the two edges in the boundary 

list of the element other than the calling edge. The element calls kill on itself. The 

lists of edges returned by the two calls to checkNodelnCircumCircleFromElem on 

the edges are then appended together and returned. 



8. 	A Morpho genetic Approach to Shape Optimisation 	 209 

8.3.8.4 Worked Example of Element Division 

This section attempts to explain how element division works, by undertaking a 

worked example. Figure 8-19 shows a partial mesh before element 1 has divided. 

Elements are labelled 1 to 6 and edges a to f. Figure 8-20 shows the convex cavity 

formed by the division of element 1. Figure 8-21 shows the mesh following the 

completion of the division of element 1. 

ments labelled 1 to 6 
'a' to f 

Figure 8-19 	Partial Mesh before Element Division 
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ments labelled 1 to 6 
esl 	 to 'f' 

Figure 8-20 	Convex Cavity formed by Division of Element 1 

Figure 8-21 	Mesh following Division of Element 1 



8. 	A Morpho genetic Approach to Shape Optimisation 	 211 

46k 

 

eidt 	 k flDrdeBn Ban I 
dirJeii Banl 	 N 

a  Eofr 

OxrOrainrde 	 Edas C 

RBaiiBan1 
Edge a 	 EcOe b 	 Edge c 

	

dxdt~rorcumrde- Edga a / 	 dajd'1XrOranDrTJe 	a 

nNwIXIS 	/ 
/ 	 d'xlrOandite&b 

	

BaTal 2 	 Beral 3 	BGTUI 4 

d'trOimrdeRxn Ban2 	
b 

Nide IøAflX 	 'e Nxt rwak  

Ee 

deUtrOraj,i 	
a 	

dekxrOra,iorde: at 
Nxt m 

BaTal5 	 Baral6 	 HhilirxiixkemiIuJc]s 
1 11111 irkhl-.111 -  111111 iJ 	iJt 

Figure 8-22 	Method Calls and Return Values for Division of Element 1 

Figure 8-22 shows the path of method calls following a call to Element 1 to 

divideSeif. Element 1 firstly creates a node, newnode at its centroid. The method 

checkNodelnCircumcircleForElem is called on Edges a, b and c, passing newnode 

and Element 1 as arguments. These edges call the method checkNodelnCircumcircle 

on Elements 2, 3 and 4 respectively. 
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For Elements 3 and 4, the new node does not lie within their circumcircle. No further 

action is therefore required and so Element 3 returns a list containing just Edge b 

back to Edge b, whilst Element 4 returns a list containing just Edge c back to Edge c. 

Edge b and Edge c return these lists to Element 1. 

In the case of Element 2, the new node does lie within its circumcircle. Element 2 

therefore executes its kill method. Element 2 also needs to establish whether any 

further elements need to be removed and to find those edges that will form the 

resulting convex cavity. Therefore, checkNodelnCircumcircleForElem is called on 

Edges e and f, passing newnode and Element 2 as arguments. These edges call the 

method checkNodelnCircumcircle on Elements 5 and 6 respectively. 

For Elements 5 and 6, the new node does not lie within their circumcircle. No further 

action is therefore required and so Element 5 returns a list containing just Edge e 

back to Edge e, whilst Element 6 returns a list containing just Edge f back to Edge f. 
Edge e and Edgef return these lists to Element 2. 

Element 2 appends these two lists together, to form a list containing both Edge e and 

Edgef This list is returned to Edge a, which in turn returns it to Element 1. 

Element 1 appends the lists returned from Edge a, Edge b and Edge c together, to 

form a list containing Edges e, f, b and c. This list now contains those edges that 

bound the convex cavity. New edges g, h, i and j can be then formed by traversing 

around the list of edges creating new edges between the new node and the nodes on 

the edges in the convex cavity. New elements 7 to 10 can then be formed using these 

edges. Element 1 then calls kill on itself. 
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8.3.9 The Genetic Algorithm 

The genetic algorithm was written in Matlab. The vast majority of computing effort 

required for this approach was in the growth and finite element analysis of the mesh. 

The relative slowness of Matlab as an interpreted programming language was 

therefore not a problem. Each individual in the population has an array of real 

numbers as its chromosome. Each of these real numbers corresponds to a variable 

used in the shape growth simulation. In order to evaluate an individual, Matlab runs 

the Swarm model in batch mode, with the variables passed on the command line. The 

best fitness that the shape achieves is returned by Swarm. The following variables 

were manipulated by the GA: 

propHole propKillWithoutCheck rChemSens 

rChemOXpos rChemOYpos rChemOStr rChemORate 

rChemlXpos rCheml Ypos rChemlStr rChemlRate 

rChem2Xpos rChem2 Ypos rChem2Str rChem2Rate 

rChem3XPos rChem3Ypos rChem3Str rChem3Rate 

propHole determines the proportion of the global stress threshold below which an 

internal element will die. This can take any value from 0 to 1. Higher values for this 

variable result in more internal holes being produced in the shape. 

propKillWithoutCheck determines the proportion of the global stress threshold below 

which an element will die without checking whether this would cause a change in the 

topology. This can take any value from 0 to 1. Lower values for this variable result in 

a shape with more trusses. 
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There are four chemicals that can be used to influence the generation of the shape as 

described in Section 8.3.6. Each of these is determined with four variables for x-

position (i.e. rChemOXPos), y-position (i.e. rChemOYpos), strength (i.e. rChemOStr) 

which takes a value from 0 to 1 and dispersion rate (i.e. rChemORate). There is also 

a variable rChemSens that varies the sensitivity of the shape to the chemicals. 

The genetic algorithm was run with a rank based selection scheme. A fixed number 

of new individuals were generated per generation. Normalised Geometric Ranking 

[Joines & Houck 1994] was used. In this scheme the probability of selection is given 

by: 

P[Selecting the ith  individual] = q'. (1 - q)Tl 

where: 

q 	is the probability of selecting the best individual 

r 	the rank of the i's' individual where 1 is the best 

P 	is the population size 

q' 	q/(1-q)" 

Simple single point crossover was used. Non-uniform mutation [Michalewicz 1992] 

[Michalewicz & Schoenauer 1996] [Michalewicz & Fogel 20001 was applied at a 

rate of about one per individual. This applied a random disturbance to the value of a 

gene based on a uniform distribution. The width of this distribution was narrowed 

through the generations. The mutation works as follows: 

A gene, x7 , is chosen for randomly for mutation. 

1x1  + A(t, u(i) - x 1  ,if random binary number =0 
S 	

Lx +(t,x —l(i),if random binary number= 1 

where t 	is the current generation 
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u(i) 	is the upper bound for gene i 

1(i) 	is the lower bound for gene i 

[Janikow & Michalewicz 1991] used the following function for & 

(t,y) 
=y.r.[11Jb 

	

where r 	is a random number from 0 to 1 

is the current generation 

	

T 	is the maximal generation 

	

b 	is a parameter determining the degree of non-uniformity 

For the experiments shown in the results, b was set at 1. 
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8.4 Problems Addressed 

Three problems were addressed. These were a frame for a bicycle, a cantilever beam 

and a load-bearing arch. The loadings and dimensions for these problems are shown 

in Figure 8-23, Figure 8-24 and Figure 8-25. The material was AISI 1020 steel with a 

Young's modulus of 200 GPa and a yield stress of 350 MPa. For each of the 

problems, an area constraint was chosen so that the stress on the components would 

be approximately 100 MIPa. For the bicycle frames and arches this corresponded to 

an area of 0.07 m2  and for the cantilever 0.14 m2 . 

100 ON 

A 300N 

600 

1000W 

300W 

A 

1000 

Figure 8-23 	Load Case for Bicycle Frame 



I 000W 

Figure 8-24 	Load Case for Cantilever 
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Figure 8-25 	Load Case for Arch 



8. 	A Morpho genetic Approach to Shape Optimisation 	 218 

8.5 Results 

Various optimisation runs were undertaken with various genetic algorithm and 

growth stage parameters for each of the load cases. Many of these runs were 

undertaken during the simultaneous development of the both the approach and the 

software. Because of the time taken to do a run, it was not possible to undertake a 

systematic study on the best parameters to use. Therefore, in this section just one run 

is documented for each of the load cases. The aim of the work in this chapter 

(Section 8.2.6) was to determine whether a morphogenetic evolutionary algorithm 

shows any promise as an effective approach to shape optimisation. Therefore, the 

runs chosen were those which were indicative of the current status of the software. 

Some of the members of the initial population are shown, demonstrating the diversity 

of shapes which the morphogenetic process can generate. The best individual 

generated following optimisation by the genetic algorithm is then shown. 
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8.5.1 Bicycle Frame 

The load case for the bicycle frame was given in Section 8.4. The genetic algorithm 

was run with the following settings. 

Fitness - deflection  
Constraint Area <0.07 m2  

Population size 20  
Number of new individuals per generation 5 
Number of mutations per generation 5 
Number of generations 20  

Parameter Min Max 
propHole 0.01 0.8 
propKillWithoutCheck 0.05 0.5 
rChemSens 0 0.3 
rChemOXPos 0 1 
rChem0YPos 0 0.6 
rChem0Str 0 1 
rChem0Rate 0 0.6 
rChemlXPos 0 1 
rChemlYPos 0 0.6 
rChemlStr 0 1 
rChemlRate 0 0.6 
rChem2XPos 0 1 
rChem2YPos 0 . 	 0.6 
rChem2Str 0 1 
rChem2Rate 0 0.6 
rChem3XPos 0 1 
rChem3YPos 0 0.6 
rChem3Str 0 1 
rChem3Rate 0 0.6 
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8.5.1.1 Initial Population 

Below are shown some of the members of the initial population. 

Bicycle Frame A 

Fitness -0.000928 
Max Deflection (mm) 0.928 

Parameter Value 
propHole 0.1416 
propKillWithoutCheck 0.3715 
rChemSens 0.2901 
rChemOXpos 0.3481 
rChem0Ypos 0.5953 
rChem0Str 0.9292 
rChem0Rate 0.2674 
rChemlXpos 0.5858 
rChemlYpos 0.5986 
rChemlStr 0.6996 
rChemlRate 0.3802 
rChem2Xpos 0.5031 
rChem2Ypos 0.0822 
rChem2Str 0.0205 
rChem2Rate 0.0872 
rChem3Xpos 0.0213 
rChem3Ypos 0.3946 
rChem3Str 0.9576 
rChem3Rate 0.2516 

Figure 8-26 shows snapshots of the growth of bicycle frame A from the initial 

population. As can be seen the growth stage generates reasonable looking shapes 

even with parameters set at random. This bicycle frame had a low value for propHole 

and so few holes were generated through the development. propKillWithoutCheck 

took a moderate value and so it was reasonably easy for the topology to change 

through the development. The sensitivity to the chemicals is quite high and so the 

shape has been somewhat influenced by the chemicals. 
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Figure 8-26 	Snapshots of Growth of Bicycle Frame A 
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Bicycle Frame B 

Fitness -0.000634 
Max Deflection (mm) 0.634 

Parameter Value 
propHole 0.7577 
propKillWithoutCheck 0.3515 
rChemSens 0.0626 
rChemOXpos 0.9974 
rChemOYpos 0.5483 
rChemOStr 0.5631 
rChemORate 0.5343 
rChemlXpos 0.2918 
rChemlYpos 0.2094 
rChemlStr 0.1678 
rChemlRate 0.2167 
rChem2Xpos 0.4135 
rChem2Ypos 0.3720 
rChem2Str 0.5672 
rChem2Rate 0.4138 
rChem3Xpos 0.6431 
rChem3Ypos 0.4486 
rChem3Str 0.8057 
rChem3Rate 0.3307 

Figure 8-27 shows snapshots of the growth of bicycle frame B from the initial 

population. This bicycle had a high value for propHole and so many holes were 

generated through the development. propKillWithoutCheck took a moderate value 

and so it was reasonably easy for the topology to change through the development. 

Therefore, sections formed by the formation of the holes were easily broken. The 

sensitivity to the chemicals is low and so they have little effect. As can be seen, the 

shape has a considerably higher section from the seat post to head-set than bicycle 

frame A. The bottom bracket is also raised on a truss platform. 
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Figure 8-27 Snapshots of Growth of Bicycle Frame B 
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Bicycle Frame C 

Fitness -0.000653 
Max Deflection (mm) 0.653 

Parameter Value 
propHole 0.3010 
propKillWithoutCheck 0.2032 
rChemSens 0.0490 
rChem0Xpos 0.7665 
rChemOYpos 0.1465 
rChemOStr 0.8437 
rChem0Rate 0.3422 
rChemlXpos 0.9759 
rChemlYpos 0.3794 
rChemlStr 0.3865 
rChemlRate 0.0132 
rChem2Xpos 0.2298 
rChem2Ypos 0.2021 
rChem2Str 0.7163 
rChem2Rate 0.5181 
rChem3Xpos 0.9264 
rChem3Ypos 0.4283 
rChem3Str 0.2774 
rChem3Rate 0.1194 

Figure 8-28 shows snapshots of the growth of bicycle frame C from the initial 

population. This bicycle frame had a fairly low value for propHole and so few holes 

were generated through the development. propKillWithoutCheck took a low value 

and so the topology remained similar through the development. The sensitivity to the 

chemicals is low and so they have little effect. As can be seen the shape has a 

considerably lower section from the seat post to the beam section from the head-set 

to the bottom bracket than bicycle frames A or B. The section from the bottom 

bracket to the back wheel is also fairly high. 
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Figure 8-28 	Snapshots of Growth of Bicycle Frame C 
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Bicycle Frame D 

Fitness -0.000952 
Max Deflection (mm) 0.952 

Parameter Value 
propHole 0.2631 
propKillWithoutCheck 0.0892 
rChemSens 0.2107 
rChemOXPos 0.2805 
rChemOYPos 0.5088 
rChemOStr 0.2381 
rChem0Rate 0.7271 
rChemlXPos 0.5125 
rChemlYPos 0.6488 
rChemlStr 0.2180 
rChemlRate 0.2659 
rChem0XPos 0.0854 
rChem0YPos 0.5923 
rChemOStr 0.3570 
rChem0Rate 0.0979 
rChemlXPos 0.3245 
rChemlYPos 0.9597 
rChemlStr 0.3320 
rChemlRate 0.6702 

Figure 8-29 shows snapshots of the growth of bicycle frame D from the initial 

population. This bicycle frame had a fairly low value for propHole and so few holes 

were generated through the development. propKillWithoutCheck took a very low 

value and so the topology remained similar through the development. The main 

observation to be made about this bicycle frame is that the sensitivity to the 

chemicals was high, with rChemSens at 0.2107 - towards the upper bound of 0.3. 

This resulted in the section from the headset to the bottom bracket staying quite wide 

through the development of the shape. 
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Figure 8-29 Snapshots of Growth of Bicycle Frame D 
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8.5.1.2 Results of GA Optimisation 

This was the best individual found during the optimisation run. 

Fitness -0.000547 
Max Deflection (mm) 0.547 
Max Von Mises Stress (x10 6  Nm2) 111 
Mean Von Mises Stress (x106  Nm2) 371 
Area (m) 0.069 

Parameter Value 
propHole 0.3805 
propKillWithoutCheck 0.2901 
rChemSens 0.1560 
rChemoXpos 0.4868 
rChem0Ypos 0.5541 
rChem0Str 0.9585 
rChemORate 0.0197 
rChemlXpos 0.5118 
rChemlYpos 0.5177 
rChemlStr 0.2334 
rChemlRate 0.2597 
rChemoXpos 0.7431 
rChemoYpos 0.2651 
rChemOStr 0.5389 
rChem0Rate 0.3657 
rChemlXpos 0.7714 
rChemlYpos 0.3471 
rChemlStr 0.1151 
rChemlRate 0.5341 

Figure 8-31 shows snapshots of the growth of the optimised bicycle frame. The 

maximum deflection was 0.547mm which represented about a 15% improvement 

over the best individual in the initial population (bicycle frame B). This bicycle 

frame had a value for propHole around the middle of the range of values for this 

parameter and so a reasonable number of holes were generated through the 

development. propKill WithoutCheck similarly took a midrange value. The sensitivity 

to the chemicals was also midrange and so the chemicals did have some influence 

over the development of the shape. Figure 8-30 shows the position of the chemicals 
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for this shape. As can be seen, they lie between the seat post, bottom bracket and 

back wheel. Consequently, cells in this area were more likely to be retained, which 

has resulted in the section from the bottom bracket up to the section from seat post to 

back wheel being more vertical than for other shapes. This may have increased the 

stiffness of the shape. 

Figure 8-30 	Chemical Positions for the Optimised Bicycle Frame 
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Figure 8-31 Snapshots of Growth of Optimised Bicycle Frame 
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8.5.2 Cantilever Beam 

The load case for the cantilever beam was given in Section 8.4. The genetic 

algorithm was run with the following settings. 

Fitness -deflection  
Constraint area <0.14 m2  

Population size 20  
Number of Crossovers per generation 5 
Number of Mutations per generation 5 
Number of Generations 20  

Parameter Nfin Max 
propHole 0.01 0.8 
propKillWithoutCheck 0.05 0.6 
rChemSens 0 0.3 
rChemOXpos 0 1 
rChem0Ypos 0 0.6 
rChemOStr 0 1 
rChem0Rate 0 0.6 
rChemlXpos 0 1 
rChemlYpos 0 0.6 
rChemlStr 0 1 
rChemlRate 0 0.6 
rChemOXpos 0 1 
rChem0Ypos 0 0.6 
rChem0Str 0 1 
rChem0Rate 0 0.6 
rChemlXpos 0 1 
rChemlYpos 0 0.6 
rChemlStr 0 1 
rChemlRate 0 0.6 
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Initial Population 

Below are shown some of the members of the initial population. 

Cantilever A 

Fitness -0.001846 
Displacement (mm) 1.846 

Parameter Value 
propHole 0.6257 
propKillWithoutCheck 0.4293 
rChemSens 0.0460 
rChemoXpos 0.4414 
rChemoYpos 0.2922 
rChem0Str 0.3827 
rChem0Rate 0.0962 
rChemlXpos 0.7306 
rChemlYpos 0.0774 
rChemlStr 0.2338 
rChemlRate 0.5040 
rChemoXpos 0.8435 
rChemoYpos 0.1380 
rChem0Str 0.1916 
rChem0Rate 0.3094 
rChemlXpos 0.6002 
rChemlYpos 0.4763 
rChemlStr 0.5612 
rChemlRate 0.0846 

Figure 8-32 shows snapshots of the growth of cantilever A from the initial 

population. As can be seen, the growth stage generates reasonable looking shapes 

even with parameters set at random. This cantilever had a high value for propHole 

and so numerous holes were generated through the development. 

propKillWithoutCheck took a moderate value and so it was reasonably easy for the 

topology to change through the development. The sensitivity to the chemicals was 

low and so the shape was not much affected by the chemicals. 
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Figure 8-32 	Snapshots of Growth of Cantilever A 
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Cantilever B 

Fitness -0.001993 
Displacement (mm) 1.993 

Parameter Value 
propHole 0.1655 
propKillWithoutCheck 0.4528 
rChemSens 0.0140 
rChemOXPos 0.4907 
rChem0YPos 0.3598 
rChemOStr 0.6170 
rChem0Rate 0.4419 
rChemlXPos 0.8986 
rChemlYPos 0.5297 
rChemlStr 0.5102 
rChemlRate 0.5415 
rChem2XPos 0.3571 
rChem2YPos 0.5716 
rChem2Str 0.9401 
rChem2Rate 0.5077 
rChem3XPos 0.5331 
rChem3YPos 0.2335 
rChem3Str 0.2661 
rChem3Rate 0.2685 

Figure 8-33 shows snapshots of the growth of cantilever B from the initial 

population. The main difference between this cantilever and cantilever A is that 

propHole is much smaller and so fewer holes were generated through the 

development. Consequently, the development of the shape was changed. More of the 

material was removed from the left of the design domain before holes appeared in 

the right hand side. The cross-trusses are therefore attached further to the right for 

cantilever B than for cantilever A. 
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Figure 8-33 	Snapshots of Growth of Cantilever B 
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Cantilever C 

Fitness -0.002105 
Displacement (mm) 2.105 

Parameter Value 
propHole 0.2144 
propKillWithoutCheck 0.1885 
rChemSens 0.0347 
rChem0XPos 0.6458 
rChemOYPos 0.4066 
rChem0Str 0.9179 
rChemORate 0.4775 
rChemlXPos 0.3325 
rChemlYPos 0.4028 
rChemlStr 0.7692 
rChemlRate 0.1936 
rChem2XPos 0.1193 
rChem2YPos 0.0983 
rChem2Str 0.7568 
rChem2Rate 0.0818 
rChem3XPos 0.1010 
rChem3YPos 0.0213 
rChem3Str 0.2083 
rChem3Rate 0.2543 

Figure 8-34 shows snapshots of the growth of cantilever C from the initial 

population. For this cantilever very few holes were generated and so material was 

successively removed from the left, resulting in a two truss structure. 
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Figure 8-34 Snapshots of Growth of Cantilever C 



8. 	A Morpho genetic Approach to Shape Optimisation 	 238 

Cantilever D 

Fitness -0.001828 
Displacement (mm) 1.828 

Parameter Value 
propHole 0.6539 
propKillWithoutCheck 0.1903 
rChemSens 0.0003 
rChem0Xpos 0.1272 
rChem0Ypos 0.5361 
rChem0Str 0.5338 
rChem0Rate 0.2318 
rChemlXpos 0.5543 
rChemlYpos 0.5830 
rChemlStr 0.9587 
rChem iRate 0.0209 
rChem2Xpos 0.6658 
rChem2Ypos 0.3000 
rChem2Str 0.7951 
rChem2Rate 0.2480 
rChem3Xpos 0.5079 
rChem3Ypos 0.5254 
rChem3Str 0.7991 
rChem3Rate 0.3160 

Figure 8-35 shows snapshots of the growth of cantilever D from the initial 

population. This cantilever had a high value for propHole and so numerous holes 

were generated throughout the development. propKill WithoutCheck was low and so 

the sections that formed when holes appeared were only removed when the stress on 

them was very low. This resulted in a shape with numerous trusses. This shape had 

the best fitness (i.e. lowest maximum deflection) in the initial population. 
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Figure 8-35 	Snapshots of Growth of Cantilever D 
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8.5.2.1 Results of GA Optimisation 

Below is shown the best cantilever found during the optimisation run. 

Fitness -0.001695 
Max Deflection (mm) 1.695 
Max Von Mises Stress (x10 6  Nm2) 384 
Mean Von Mises Stress (x10 6  Nm2) 109 
Area (m) 0.139 

Parameter Value 
propHole 0.4868 
propKillWithoutCheck 0.5410 
rChemSens 0.0058 
rChemOXpos 0.8059 
rChemoYpos 0.2556 
rChem0Str 0.9412 
rChem0Rate 0.3447 
rChemlXpos 0.6683 
rChemlYpos 0.3138 
rChemlStr 0.6261 
rChemlRate 0.3622 
rChem2Xpos 0.6254 
rChem2Ypos 0.1971 
rChem2Str 0.6428 
rChem2Rate 0.2337 
rChem3Xpos 0.1911 
rChem3Ypos 0.0671 
rChem3Str 0.8573 
rChem3Rate 0.4112 

Figure 8-36 shows snapshots of the growth of the optimised cantilever. The 

maximum deflection was 1.695mm which represented a 9% improvement over the 

best individual in the initial population (cantilever D). This cantilever had a value for 

propHole around the middle of the range of values for this parameter and so a 

reasonable number of holes were generated through the development. 

propKillWithoutCheck similarly took a midrange value. The sensitivity to the 

chemicals was very low and so the chemicals had very little influence over the 

development of the shape. 
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Figure 8-36 	Snapshots of Growth of Optimised Cantilever D 
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8.5.3 Arch 

The load case for the arch was given in Section 8.4. The genetic algorithm was run 

with the following settings. 

Fitness -deflection  
Constraint area <0.07 m2  

Population size 15  
Number of Crossovers per generation 3 
Number of Mutations per generation 3 
Number of Generations 20  

Parameter Min Max 
propHole 0.05 0.8 
propKillWithoutCheck 0.01 0.5 
rChemSens 0 0 
rChem0Xpos 0 0 
rChem0Ypos 0 0 
rChemOStr 0 0 
rChem0Rate 0 0 
rChemlXpos 0 0 
rChemlYpos 0 0 
rChemlStr 0 0 
rChemlRate 0 0 
rChem2Xpos 0 0 
rChem2Ypos 0 0 
rChem2Str 0 0 
rChem2Rate 0 0 
rChem3Xpos 0 0 
rChem3Ypos 0 0 
rChem3Str 0 0 
rChem3Rate 0 0 

As can be seen the chemicals are not used for this problem. This was because the 

problem was symmetric and it was found in initial tests that any use of chemicals 

resulted in impaired performance. Consequently, there were only two parameters. 

Even with two parameters a large variety of shapes could be produced. 
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8.5.3.1 Initial Population 

Below are shown some of the members of the initial population. 

Arch A 

Fitness -0.681 
Deflection (mm) 0.681 

Parameter Value 
propHole 0.6002 
propKillWithoutCheck 0.1998 
rChemSens 0 
rChemOXpos 0 
rChem0Ypos 0 
rChem0Str 0 
rChem0Rate 0 
rChemlXpos 0 
rChemlYpos 0 
rChemlStr 0 
rChemlRate 0 
rChem0Xpos 0 
rChem0Ypos 0 
rChem0Str 0 
rChem0Rate 0 
rChemlXpos 0 
rChemlYpos 0 
rChemlStr 0 
rChemlRate 0 

Figure 8-37 shows snapshots of the growth of arch A from the initial population. 

This arch had a high value for propHole and so numerous holes were generated 

through the development. propKill WithoutCheck took a moderate value and so it was 

reasonably easy for the topology to change through the development. It can be seen 

that an arch is developed as expected. The load is supported by two trusses up to the 

arch. 
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Figure 8-37 	Snapshots of Growth of Arch A 
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Arch B 

Fitness -0.000723 
Deflection (mm) 0.723 

Parameter Value 
propHole 0.4781 
propKillWithoutCheck 0.3576 
rChemSens 0 
rChemoXpos 0 
rChemOYpos 0 
rChem0Str 0 
rChem0Rate 0 
rChemlXpos 0 
rChemlYpos 0 
rChemlStr 0 
rChemlRate 0 
rChemoXpos 0 
rChemoYpos 0 
rChemOStr 0 
rChem0Rate 0 
rChemlXpos 0 
rChemlYpos 0 
rChemlStr 0 
rChemlRate 0 

Figure 8-38 shows snapshots of the growth of arch B from the initial population. This 

arch had a mid-range value for propHole and a moderate number of holes were 

generated through the development. propKillWithoutCheck also took a midrange 

value and so it was reasonably easy for the topology to change through the 

development. It can be seen that this shape is fairly similar to arch A, although the 

angle of the trusses is wider. 
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Figure 8-38 	Snapshots of Growth of Arch B 
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Arch C 

Fitness -0.000835 
Deflection (mm) 0.835 

Parameter Value 
propHole 0.7210 
propKillWithoutCheck 0.3215 
rChemSens 0 
rChemOXpos 0 
rChemoYpos 0 
rChemOStr 0 
rChemORate 0 
rChemlXpos 0 
rChemlYpos 0 
rChemlStr 0 
rChemlRate 0 
rChemOXpos 0 
rChemoYpos 0 
rChemOStr 0 
rChemORate 0 
rChemlXpos 0 
rChemlYpos 0 
rChemlStr 0 
rChemlRate 0 

Figure 8-39 shows snapshots of the growth of arch C from the initial population. This 

arch had a high value for propHole and so a large number of holes were generated 

through the development. propKill WithoutCheck took a midrange value and so it was 

reasonably easy for the topology to change through the development. It can be seen 

that the height of the arch is similar to those of arches A and B. However the load is 

supported by three trusses. 
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Figure 8-39 	Snapshots of Growth of Arch C 
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Arch D 

Fitness -0.00073 
Deflection (nun) 0.73 

Parameter Value 
propHole 0.2764 
propKillWithoutCheck 0.2311 
rChemSens 0 
rChemOXPos 0 
rChemOYPos 0 
rChem0Str 0 
rChemORate 0 
rChemlXPos 0 
rChemlYPos 0 
rChemlStr 0 
rChem iRate 0 
rChem0XPos 0 
rChemOYPos 0 
rChem0Str 0 
rChem0Rate 0 
rChemlXPos 0 
rChemlYPos 0 
rChemlStr 0 
rChemlRate 0 

Figure 8-40 shows snapshots of the growth of arch D from the initial population. 

This arch had low value for propHole and few holes were generated. The shape was 

primarily formed by moving existing boundaries inwards. This has resulted in a 

shape with a higher arch and only one truss supporting the load. 
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Figure 8-40 	Snapshots of Growth of Arch D 
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8.5.3.2 Results of GA Optimisation 

Below is shown the best arch found during the optimisation run. 

Fitness -5 .5600e-004 
Max Deflection (mm) 0.556 
Max Von Mises Stress (x10 6  Nm2) 153 
Mean Von Mises Stress (x106  Nm2) 84 
Area (m) 0.069 

Parameter Value 
propHole 0.6005 
propKillWithoutCheck 0.4546 
rChemSens 0 
rChem0XPos 0 
rChem0YPos 0 
rChem0Str 0 
rChemORate 0 
rChemlXPos 0 
rChemlYPos 0 
rChemlStr 0 
rChem iRate 0 
rChemOXPos 0 
rChem0YPos 0 
rChemOStr 0 
rChem0Rate 0 
rChemlXPos 0 
rChemlYPos 0 
rChemlStr 0 
rChemlRate 0 

Figure 8-41 shows snapshots of the growth of the optimised arch. This arch had a 

fairly high value for propHole and so a large number of holes were generated 

through the development. propKill WithoutCheck took a high value and so it was easy 

for the topology to change through the development. It can be seen that this arch is 

similar to arch C, but with a slightly higher arch and better formed trusses. 
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Figure 8-41 	Snapshots of Growth of Optimised Arch 
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8.6 Discussion 

8.6.1 Discussion of Results 

This morphogenic cellular approach to shape and topology optimisation worked well 

for the three test cases. Shapes were produced which met the objectives (namely 

minimising deflection whilst remaining within a constraint on the area). The shapes 

qualitatively matched with what would be expected of optimal shapes for those load 

cases and were qualitatively similar to those reported by others doing similar 

optimisations [Chen et al. 2002] [Baumgartner & Mattheck 1994] [Mattheck et al. 

1994] [Chen & Tsai 1993]. 

It was clear that the shape was primarily determined by the development stage. It was 

interesting that the choice of the variables represented by the genes often had a 

considerable effect on the shape early in the run, but later in the run the shapes 

tended to converge back towards similar shapes. The variables did, though, modulate 

the final shapes to a reasonable degree, whilst still keeping them 'sensible'. In other 

words, the shapes were sufficiently different that the variation in parameters 

produced functionally different shapes. 

The method can be seen to be effective at taking a Chain model of the specification 

of the design required (with loading points, forces, specified displacements at built in 

points and constraints on area) and producing a cellular model which minimises the 

required behaviour of displacement, as was discussed in Chapter 7. This was done 

using a combination of search using the GA and by utilising information generated 

about the shapes' performance through the development stage. 

8.6.2 Issues 

The main concern over this approach was in ensuring the quality of the mesh and 

hence the accuracy of the analysis. The crude adaptive meshing routines that the cells 

were given provided a reasonable quality of mesh in, most areas. There were, 
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however, circumstances when the mesh looked inadequate. This happened when, for 

instance, a section was becoming thinner. The cells would recognise that the stress 

gradient over them was high and divide forming new cells, but, because the stress in 

that area was low, they would die in the next time step. The cells could only divide 

once during a time step and so were dying as quickly as they could be generated by 

the cell division. This could lead to some truss sections only being one element thick 

during some stages of the development and the results would therefore be somewhat 

inaccurate. At the end of the development when the area constraint was achieved and 

the stress threshold stopped increasing, the cell division did then increase the quality 

of the mesh. 

To some extent, these problems were caused by the desire, which was present from 

the outset, to apply no 'top-down' control to the cells. One of the motivations of this 

work was to see if shapes could be generated from the 'bottom-up', with as little 

external interference as possible. It may be possible to periodically extract the 

boundary and, possibly, fit this with a spline and then remesh the interior. This 

would, however, go against the bottom-up philosophy of this approach. Another 

possible solution to the mesh quality problems would be to increase mesh density 

from the start of the run. This would increase the time taken to produce a shape. 

Nevertheless, the shapes generated by the development stage did seem to be robust to 

the inaccuracy of the analysis. 

The area constraints were chosen for each of the problems so that feasible shapes 

could be produced in which the Von Mises stress was around 100 MPa (giving a 

factor of safety of about three for the steel used). The mean stress was indeed found 

to be around the stress expected. The maximum stress, however, was often found to 

be higher at around the yield stress (350 MPa) for the material. This occurred at the 

loading points and was thought to be because the loads were applied at single nodes 

and therefore caused locally high stresses. This could have been avoided by applying 

the loads in a more realistic way. 
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Another concern was the extent to which the genetic algorithm was able to evolve 

the shapes. As mentioned earlier, the shapes tended to converge towards the end of 

the development. In other words, the number of trusses and overall layout of the 

shapes tended to be similar at the end of a run. However, small events towards the 

start of the development stage, such as the death of a single cell, could have a large 

impact later in the run on the shape generated. This was mainly by changing the 

angle of trusses or where they attached to other sections. This was the main way in 

which the variety in the shapes was generated. It was thought that this sensitivity to 

small events might make the search space very noisy and difficult to optimise 

(although a genetic algorithm would certainly be one of the better ways to optimise 

in such a search space). Unfortunately, it was not possible to undertake any 

systematic study of the search space or over genetic operators. This was due to both 

time constraints on the work and because optimisation runs were very time 

consuming. Nevertheless, it was possible to conclude that, in the runs given in the 

results, the GA did improve the shapes generated. 

The speed of the development stage was the main limitation of the approach as a 

single shape development could take three or four minutes. This was because the 

analysis had to be called frequently. It was therefore not possible to evolve more than 

a few hundred shapes in a particular run. This was mitigated by the fact that good 

quality solutions were available almost immediately (typically at least one of the first 

few shapes generated would be good). Also, no user intervention was required and 

the space of possible shapes that could be generated was very large and general. 

Therefore, the aim stated in Chapter 1, that the use of search techniques be extended 

further into the design process of generating form from function, was to some extent 

achieved. 

One of the ideas postulated in Section 7.5.1 was that the physical elements described 

could be made autonomous and to some extent intelligent. In the work, some first 

steps were made to investigate these ideas. By imparting the elements with some 

simple behaviours it was possible, with little top-down control (the only top down 

control was the setting of the stress-threshold), to generate efficient shapes. 



8. 	A Morpho genetic Approach to Shape Optimisation 	 256 

8.6.3 Further work 

This was a preliminary study into whether this morphogenetic approach to shape 

optimisation shows any promise. This early work does indeed indicate that this may 

be an effective approach. There is clearly, though, need for further work before this 

can be concluded with any certainty. 

The role of evolution in manipulating the genotype, so that good shapes are grown, 

needs a great deal more investigation. At present, due to time constraints, only a 

limited study has been made of the EA. The design of operators and the choice of the 

rules of development, along with what parameters to allow the EA to manipulate, 

needs further investigation. 

The mesh-based shape representation is very general, and can represent a great many 

shapes with varying topologies. Despite this generality, the combination of the EA 

and the development appears to perform well at searching through this space. Further 

work into the variety of shapes that can be generated, both within a particular run, 

and under various load cases, would be interesting. 

One area where further work could be undertaken is to try other methods of 

developing the shapes. At present, the development is heavily influenced by the 

stress. Further work might include other biologically plausible mechanisms for 

influencing cell behaviour such as cell signalling. This could well help the 

evolvability of the representation. 

At present, new cells can only be created through cell division within the current 

boundaries of the shape. The primary motor for changing the shape is through cell 

death. Further work could involve cells dividing out of the existing boundaries so 

that 'swelling' can take place in high stress areas. 

It was also thought that the addition of the 'chemicals' in the environment could be 

made interactive. This could allow a designer to influence the retention of cells in 
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certain areas without over-constraining the shapes generated. This would allow the 

search to be influenced by the designer's intuitions. 

Another area of further work would be to investigate how the approach scales when 

finer meshes are used. The majority of the computation effort takes place in the finite 

element analysis. The solution time for a linear elastic problem is approximately 

proportional to nb2  where n is the number of elements and b is the semi-bandwidth 

[Desai & Kundu 2001]. Calculating the semi-bandwidth is not necessarily easy, 

however [Desai & Kundu 2001] give an example, with a two-dimensional problem, 

where computational cost is proportional to n2 . The computational costs of cell 

actions are likely to be proportional to the number of cells (although this is not 

certain). The cell action costs are, though, likely to be dominated by the analysis 

costs. With some small alterations to the current software, it may be possible to start 

with a coarse mesh, with low computational costs, and increase the number of 

elements considerably during the run. This would enable detailed alterations of the 

shape at the end of the run, without incurring excessive runs for initial parts of the 

growth. 

For all the test cases tried so far, the effect of the removal of material is primarily 

local. It would be interesting to investigate how the system could be adapted to 

problems (such as the annulus problem from Chapter 4) where there is a rotational 

load. In such cases, addition or removal of material at the rim, for example, would 

have a considerable affect at the hub. For such problems, it may be helpful to mimic 

cell differentiation, which is exploited by biological development. This would allow 

cell behaviour to vary according to position. Cells at the hub, for instance, might 

evolve to behave differently than those at the rim. 
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8.7 Conclusions 

This work used a genetic algorithm to evolve shapes for three load cases, a bicycle 

frame, a cantilever beam and an arch. The approach was novel because it used a 

development stage in which the shape was 'grown' so that the genes did not encode 

the shape explicitly, but rather influenced the behaviour of a development stage of a 

cellular shape representation. The development stage made use of information 

generated by a finite element analysis to guide the generation of the shapes with the 

genes modulating the exact execution of the process. 

• This work did not attempt to produce a definitive algorithm for shape or 

topological optimisation using morphogenesis. It did, however, establish that 

such an approach is feasible and shows promise for shape optimisation. 

The approach was able to use the information generated in the finite element 

analysis on a shape's performance, in an effective way, to influence the shapes 

generated by a morphogenetic evolutionary algorithm approach to shape 

optimisation. 

• The approach was able to make use of 'intelligent cells', where finite elements 

are endowed with simple behaviours, to produce efficient shapes, with very little 

'top-down' control. 
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9 Conclusions 

The primary aim of this thesis was to determine whether shape optimisation could be 

extended, such that it can be used to increase the automation of the process of shape 

synthesis for engineering design. 

In order to investigate this, there were three objectives: 

(a) To determine whether evolutionary algorithms, along with novel shape 

representations, which are able to represent a large generality of shapes, would 

enable more automation of the process of determining form from function, and to 

identify any obstacles that might be encountered with such an approach. 

Investigations were undertaken into the use of evolutionary algorithms with general 

shape representations. Firstly, an aerofoil optimisation was undertaken with a 

parametric aerofoil representation and a Bézier representation. Fluid analysis was 

done with a vortex panel method and a genetic algorithm optimiser was used. The 

genetic algorithm worked well with the parametric representation, but failed with the 

more general Bézier representation because the vortex panel method was unable to 

accurately model many of the Bézier shapes. 

Secondly, a voxel shape representation was used with a genetic algorithm for 

structural optimisation. This was applied to two problems: the design of a beam 

cross-section and the optimisation of the axisymmetric cross-section of a jet engine 

annulus. Specialised genetic operators were developed for this representation. This 

method proved reasonably successful. Two problems were encountered. There were 

some difficulties in ensuring that the analysis of the shapes with the finite element 

method was sufficiently accurate because of the 'stepped' boundary formed by 

voxels. Problems were also encountered because the problem specification (in terms 

of stress constraints at particular parts of the design), which was supplied by an 

industrial collaborator, was not sufficiently rigorous. Because the voxel 
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representation was very general, it was able to find shapes which met the 

specification as stated, but which would be undesirable in some other way. 

Thirdly, genetic programming was used to generate CSG models. Initial tests were to 

evolve towards a target three-dimensional body. This proved successful but 

computationally expensive. Therefore, it was concluded that this method would have 

not be suitable for the automatic translation of B-Rep solid models to CSG models, 

an application for which this approach was hoped to be suited. 

The conclusions drawn from these studies on general shape representations and 

various evolutionary algorithms, were that evolutionary algorithms along with some 

novel shape representations, did show some promise for allowing a designer to use 

shape optimisation to search for shape designs from a large, general set of possible 

shapes. However, a number of issues were identified which acted as obstacles to this. 

Briefly, these were the need to establish an effective shape representation, the need to 

be able to analyse the all of the shapes in the search space with sufficient accuracy, 

and the ability to search through these shapes effectively. It was argued that some 

steps could be made to addressing these issues if a common representation for 

geometry representation and analysis could be established. This would also offer 

opportunities to develop algorithms that could make use of the information on the 

shapes' current physical behaviour in order to modify the shape, and thus search the 

space of possible shapes more effectively. 
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To identify a computational framework which could provide an integrated 

representation of both component geometry and physical behaviour. 

Chain models, based on chains and cells from algebraic topology, were put forward 

as a possible common representation for both geometry and physical behaviour. With 

the use of Chain models, shape optimisation could be reformulated as a systematic 

transformation of Chain models specifying required function into Chain models 

representing both geometry and physical behaviour. 

To determine whether a morpho genetic evolutionary algorithm, using the 

identified integrated representation of geometry and physical behaviour, shows 

any potential to increase the automation of the process of shape synthesis for 

engineering design. 

A novel shape optimisation technique was developed using the Chain model 

framework. This approach used an evolutionary algorithm along with a 

morphogenetic stage in which a cellular model of the shape was 'grown'. The cells 

were implemented in the Swarm agent-based modelling language and were free to 

behave independently based on the stress on them and their genes, which were 

evolved by the evolutionary algorithm. The generation of the shape could in this way 

make use of all of the information generated in the finite element analysis to 

influence the shape produced. Shapes were grown for three test cases: a bicycle 

frame, a cantilever beam and an arch. The approach proved successful and generated 

good quality shapes without intervention by the user to set up shape 

parametensation. Therefore, it was concluded that is a promising method extending 

the use of computers to automatically synthesise geometry for engineering design. 
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In conclusion, the argument presented by this thesis, was that a framework for shape 

optimisation with a common representation for both geometry and physical 

behaviour would allow the development of novel and efficient new algorithms better 

suited to the semi-automatic generation of the geometry for a component given a 

certain desired behaviour. This was shown by investigations into aerodynamic and 

structural optimisation, which demonstrated a number of difficulties that could be 

alleviated by use of such a common representation. Chain models were identified as 

an appropriate representation. Finally, a morphogenetic approach to shape 

optimisation was developed, based on this representation, which showed the ability 

to search effectively through a large set of possible shapes, to produce high quality 

shapes for a number of structural shape optimisation problems. 
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A. Appendix A - Results of Aerofoil Optimisation 

This Appendix provides a more detailed description of the results of the experiments 

conducted on aerofoil optimisation from Chapter 3, which were summarised in 

Section 3.4. 

A. 1 Aerofoil Parameterisation 

Below, the results of a number of experiments undertaken with the aerofoil 

parameterisation are given, along with a short discussion of each. The genetic 

algorithm was set up to minimise and so low fitnesses are good. It should also be 

noted that since the genetic algorithm is a stochastic algorithm, the results of an 

experiment might not be the same each time it is done. Consequently, each 

experiment was repeated ten times and the results are given for each run. 

Experiments were undertaken with various fitness measures, population sizes, 

mutation rates and mutation amplitudes. Fitness measures varied dependent on what 

properties of the aerofoil were to be optimised. For Experiments A, B and C, the 

population size was set at 50. These experiments were intended to validate the 

genetic algorithm and vortex panel method, by maximising lift (Experiment A) or 

minimising drag (Experiments B and C) for which the optimal solution was known to 

lie at the extreme of the parameter ranges. Preliminary tests showed that a population 

size of 50 was sufficient to avoid premature convergence for these experiments. 

Later experiments were more challenging for the genetic algorithm, and therefore 

population sizes were increased, as described with each set of results below. 
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The proportion of population to breed per generation was set as 10%, since 

preliminary tests indicated that this avoided premature convergence of the 

population. The mutation rate was set so that on average there would be one mutation 

per new individual created. The mutation amplitude was varied for each experiment; 

lower amplitudes were desirable for those problems where the optimal solution lay 

away from the parameter bounds, so that adequate 'fine-tuning' of aerofoil 

parameters could take place. 
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A.1.1 Experiment A 

Fitness -C1  

Population size 50  
Proportion of population to breed per generation 0.1  

Mutation rate 0.2  
Mutation amplitude 0.5  

Parameter Min Max 
Thickness from camber line (% of chord length) 2 8 
Position of maximum thickness (% of chord length) 55 80 
Camber angle, thetaO, at trailing edge (deg) 0 30 
Camber angle, thetal, at leading edge (deg) 0 30 
Angle of attack (deg) -8 8 

The objective of this experiment was to maximise lift coefficient (i.e. minimise —C1). 

This experiment was used primarily to validate the analysis and optimisation code. 

An aerofoil with maximal lift would have the largest camber, thickness and attack 

angle allowed within the parameter bounds. The experiment was repeated ten times 

with varying seeds for the random number generator. Every run consistently found 

exactly the following best solution: 

Thickness from camber line (% of chord length) 8.00 
Position of maximum thickness (% of chord length) 55.00 
Camber angle, theta0, at trailing edge (deg) 30.00 
Camber angle, thetal, at leading edge (deg) 30.00 
Angle of attack (deg) 8.00 
Fitness (-C l) -2.54 

Number of Evaluations 600 

As was expected these values were at the extremes of the parameter bounds. In this 

implementation of the genetic algorithm, mutations could vary the parameters to be 

outwith the bounds, but these values would subsequently be 'repaired' to lie on the 

bound. Consequently, it was 'easy' for the genetic algorithm to find extrema which 
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lie at the boundary of the search-space, and hence each of the ten runs produced 

exactly the same result. The lift coefficient generated had a reasonable value based 

on data for similar aerofoils at similar attack angles [Abbot et al. 1945]. Figure A-i 

and Figure A-2 show the best individual from a number of generations throughout 

two particular runs, Al and A2. Figure A-3 shows a plot of individual fitnesses, 

along with minimum, mean and maximum fitnesses for the run Al. 
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Figure A-i 	Best Individual for each Generation for Run Al 
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Figure A-2 	Best Individual for each Generation for Run A2 

Figure A-3 	Graph of Fitnesses for each Generation for Run Al 
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A.1.2 Experiment B 

Fitness Cd  
Population size 50  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutation amplitude 0.5  

Parameter Min Max 
Thickness from camber line (% of chord length) 2 8 
Position of maximum thickness (% of chord length) 55 80 
Camber angle, thetaO, at trailing edge (deg) 0 30 
Camber angle, thetal, at leading edge (deg) 0 30 
Angle of attack (deg) -4 4 

The objective of this experiment was to minimise the drag coefficient. The 

experiment was repeated ten times with varying seeds for the random number 

generator. Every run consistently found exactly the following best solution (for 

similar reasons as those discussed under Experiment A): 

Thickness from camber line (% of chord length) 2.00 
Position of maximum thickness (% of chord length) 55.00 
Camber angle, thetaO, at trailing edge (deg) 30.00 
Camber angle, theta I, at leading edge (deg) 30.00 
Angle of attack (deg) -4.00 
Fitness -5.86e-2 
Number of Evaluations 1100 

This solution was not as expected. It was anticipated that the optimum aerofoil for 

low drag coefficient would have low or zero camber and would be at an attack angle 

very close to zero. Figure A-4 and Figure A-5 show the best individual from a 

number of generations throughout two particular runs, BI and B2. From these 

figures, it can be seen that the aerofoil generated had a high camber and negative 

attack angle. The value of drag coefficient was negative which is clearly unrealistic. 

There was clearly some problem with the optimisation algorithm or fluid analysis. 
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Figure A-S 	Plot of Best Individual for each Generation for Run B2 
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.3 

Figure A-6 	Surface Plot of Cd against Attack Angle and ThetaO 

Since the camber angle and attack angle of the fittest seemed to be wrong, it was 

decided to investigate how the drag coefficient varied with camber angle and the 

attack angle. All parameters other than theta0 and attack angle were held constant at 

the values for the best solution. A scan was undertaken calculating the drag 

coefficient whilst varying thetaO from 0° to 30° and attack angle between —4° to 4°. 

Looking at Figure A-6 it can be seen that the drag coefficient varies with the attack 

angle as expected (it is at minimum at an attack angle of zero) with values of thetaO 

up to about 15°. However, above thetaO of 15°, the drag coefficient continues 

decreasing as the attack angle decreases to values below zero, which is clearly 

incorrect. It can also be seen that the smoothness of the surface in this region is 

reduced. 
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This highlighted a problem that was to be frequently encountered with the vortex 

panel fluid analysis. It worked well for most shapes, but in some areas of the search 

space, the values for lift and drag it returned were incorrect. It was also difficult to 

predict in which areas it performed poorly. 

A.1.2 Experiment C 

This run was a repeat of Experiment B but with reduced upper-bounds on the camber 

angles in order to avoid the problems encountered with false values for drag 

coefficient being generated for aerofoils with negative attack angle and high camber 

angles. 

Fitness Cd  
Population size 50  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutation amplitude 0.5  

Parameter Min Max 
Thickness from camber line (% of chord length) 2 8 
Position of maximum thickness (% of chord length) 55 80 
Camber angle, thetaO, at trailing edge (deg) 0 10 
Camber angle, thetal, at leading edge (deg) 0 10 
Angle of attack (deg) -4 4 

The experiment was repeated ten times with varying seeds for the random number 

generator. The best solution for each run was: 

Run Title Cl C2 C3 C4 CS 
Thickness from camber line 
(% of chord length)  

8.00 8.00 8.00 8.00 8.00 

Position of maximum thickness 
(% of chord length) 

57.85 57.49 57.74 58.03 58.25 

Camber angle, thetaO, 
at trailing edge (deg)  

0.00 0.00 0.00 0.00 0.00 

Camber angle, thetal, 
at leading edge (deg)  

0.00 0.00 0.00 0.00 0.00 

Angle of attack (deg) 0.93 1.02 0.92 0.85 0.87 
Fitness 

( 
10) 1.92 1.92 1 	1.92 1.92 1.93 

Number of Evaluations 2100 2100 1 	21001 2100 2100 
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Run Title C6 C7 C8 C9 CIO 
Thickness from camber line 
(% of chord length)  

8.00 8.00 8.00 8.00 7.93 

Position of maximum thickness 
(% of chord length) 

57.92 57.85 57.56 57.36 56.14 

Camber angle, thetaO, 
at trailing edge (deg)  

0.00 0.00 0.00 0.00 0.00 

Camber angle, theta!, 
at leading edge (deg)  

0.00 0.00 0.00 0.00 0.00 

Angle of attack (deg) 0.86 0.90 1.02 1.10 0.85 
Fitness 

( 
10) 1 	1.92 1.92 1 	1.92 1.92 1.93 

Number of Evaluations 1 	2100 2100 1 	2100 2100 2100 

The average Cd found was 0.01922 with a standard deviation of 0.0042. 

It can be seen that all the runs converged to very similar aerofoils. With the 

restriction on the camber angles added, the genetic algorithm and analysis produced 

an aerofoil shape with minimum drag coefficient that looked as expected (low 

camber and low attack angle) with a realistic drag coefficient. Figure A-7 and Figure 

A-8 show the best individual from a number of generations for runs Cl and C2. 
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A.1..4 Experiment D 

This experiment looked to maximise the lift/drag ratio (i.e. minimise Cd I Q. 

Candidate aerofoils were penalised heavily for negative values for C1. As this was the 

first experiment that attempted to optimise the lift/drag ratio, it was decided to firstly 

attempt a simplified problem in which the attack angle was constrained to be 0°. It 

should also be noted that the camber angles were not restricted to be below 100  but 

were allowed up to 300•  Since the optimal aerofoil was expected not to lie at the 

extreme of the aerofoil parameter bounds, the mutation amplitude was set lower at 

0.05 so that more 'fine-tuning' of aerofoil parameters was possible. 

Fitness Q1 C1  
Population size 200  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutation amplitude 0.05  

Parameter Min Max 
Thickness from camber line (% of chord length) 2 8 
Position of maximum thickness (% of chord length) 55 80 
Camber angle, thetaO, at trailing edge (deg) 0 30 
Camber angle, thetal, at leading edge (deg) 0 30 
Angle of attack (deg) 0 0 

The experiment was repeated ten times with varying seeds for the random number 

generator. The best solution for each run was: 

Run Title Dl D2 D3 D4 D5 
Thickness from camber line 
(% of chord length)  

3.52 4.53 4.50 4.55 3.43 

Position of maximum thickness 
(% of chord length) 

80.00 80.00 80.00 80.00 80.00 

Camber angle, theta0, 
at trailing edge (deg)  

20.15 19.78 19.79 19.75 20.17 

Camber angle, thetal, 
at leading edge (deg)  

25.00 22.92 23.04 23.03 25.34 

Angle of attack (deg) 0 0 0 0 0 
Fitness 

( 
10) 3.74 3.74 1 	3.73 3.74 3.71 

C/Cd 26.74 26.741 26.81 26.74 26.95 
Number of Evaluations 8200 82001 8200 1 	8200 1 	8200 
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Run Title D6 D7 D8 D9 D10 
Thickness from camber line 
(% of chord length)  

3.41 4.55 4.52 3.43 4.55 

Position of maximum thickness 
(% of chord length)  

80.00 80.00 80.00 80.00 80.00 

Camber angle, theta0, 
at trailing edge (deg) 

20.23 19.76 19.77 20.20 19.74 

Camber angle, thetal, 
at leading edge (deg)  

25.27 23.03 23.03 25.28 23.02 

Angle of attack (deg) 0 0 0 0 0 
Fitness 

( 
10) 3.71 1 	3.74 3.74 1 	3.72 1 	3.74 

C/Cd 26.95 1 	26.74 26.741 26.88 1 	26.74 
Number of Evaluations 8200 8200 8200 8200 8200 

The average C/ Cd found was 26.803 with a standard deviation of 0.09. 

It can be seen that all the runs converged to aerofoils with a reasonably low 

thickness, relatively high camber and maximum thickness as close to the leading 

edge as the bounds allowed. This matched well with what was expected and the lift-

drag ratio was realistic. 

The runs converged to two slightly different shapes, both with very similar fitnesses. 

Runs Dl, D5, D6 and D9 produced an aerofoil with thickness between 3.41% and 

3.52%, camber angle, thetal, between 25.00° and 25.28° and lift-drag ratio between 

26.74 and 26.95. Runs D2, D3, D4, D7, D8 and D10 produced a thicker aerofoil with 

thickness between 4.50% and 4.55%, camber angle, thetal, between 22.92° and 

23.03° and lift-drag ratio between 26.74 and 26.81. 

Figure A-9 and Figure A-10 show the best individual from a number of generations 

for runs Dl and D2. Figure A-il shows a plot of minimum, mean and maximum 

fitnesses for run Di. Figure A-12 shows a plot of minimum, mean and maximum lift 

coefficients for run Di. Figure A-13 shows a plot of minimum, mean and maximum 

drag coefficients for run Dl 
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Figure All 	Graph of Fitness (Cdl C1) against Generation for Run Dl 

04g 

Figure A-12 	Graph of C1 against Generation for Run Dl 
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Figure A-13 	Graph of Cd against Generation for Run Dl 
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A.1.5 Experiment E 

This was a repeat of Experiment D with a larger population size. Since the runs in 

Experiment D had converged to two slightly different aerofoil shapes, it was decided 

to check that Experiment D had not prematurely converged to a sub-optimal solution. 

This experiment looked to maximise the lift/drag ratio (i.e., minimise Cd I Q. 

Candidate aerofoils were penalised heavily for negative values for C,. 

Fitness C/ C,  
Population size 400  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutation amplitude 0.05  

Parameter Min Max 
Thickness from camber line (% of chord length) 2 8 
Position of maximum thickness (% of chord length) 55 80 
Camber angle, theta0, at trailing edge (deg) 0 30 
Camber angle, thetal, at leading edge (deg) 0 30 
Angle of attack (deg) 0 0 

The experiment was repeated ten times with varying seeds for the random number 

generator. The best solution for each run was: 

Run Title El E2 E3 E4 E5 
Thickness from camber line 
(% of chord length)  

2.00 2.47 3.43 4.49 3.45 

Position of maximum thickness 
(% of chord length) 

68.29 63.76 80.00 80.00 80.00 

Camber angle, theta0, 
at trailing edge (deg) 

28.55 27.86 20.25 19.79 20.16 

Camber angle, thetal, 
at leading edge (deg)  

19.30 21.17 24.89 22.97 25.28 

Angle of attack (deg) 0 0 0 0 0 
Fitness 

( 
10) 9.42 203 1 	37400 37400 37200 

C/Cd 1 06e 4926 26.74 26.74 26.88 
Number of Evaluations 8400 84001 8400 8400 8400 
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Run Title E6 E7 E8 E9 D10 

Thickness from camber line 
(% of chord length)  

2.22 3.45 4.49 3.35 2.00 

Position of maximum thickness 
(% of chord length) 

60.68 80.00 80.00 80.00 65.64 

Camber angle, thetaO, 
at trailing edge (deg)  

28.85 20.14 19.81 20.37 28.59 

Camber angle, thetal, 
at leading edge (deg)  

12.60 25.35 22.85 24.63 22.86 

Angle of attack (deg) 0 0 0 0 0 

Fitness(10 6) 
113 37200 37500 37400 2310 

C/Cd 8850 26.88 26.67 1 	26.74 432.9 

Number of Evaluations 1 	84001 8400 84001 8400 1 	8400 

Figure A-14 and Figure A-iS shows the best individual from a number of 

generations throughout Run El and Run E2. Runs E3, E4, ES, E7, E8 and E9 

converged to aerofoil shapes similar to those found in Experiment D. However, Runs 

El, E2, E6 and ElO produced an aerofoil with an unrealistic lift-drag ratio. It was 

suspected that the vortex panel method was producing inaccurate results in some 

parts of the search space as was found in Experiment B. 

Since the thickness of the wrong 'optimal' solution from the run was against the 

lower bound, it was decided to investigate how the drag and lift coefficient varied 

with thickness and position of maximum thickness. A scan was undertaken 

calculating lift and drag with varying thickness from 1 to 20 of chord length and 

position of maximum thickness from 50 to 95 (both as a percentage of chord length). 

All other variables were held constant at the values for the best solution. The results 

of this are shown in Figure A-16 and Figure A-17. 
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Figure A-14 	Plot of Best Individual for each Generation for Run El 
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Figure A-15 	Plot of Best Individual for each Generation for Run E2 
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By considering Figure A-16 and Figure A-17, it was apparent that the accurate 

calculation of both lift and drag was not possible for values for the position of 

maximum thickness above about 85%. More pertinently to the problem encountered 

on this run, it could be seen than although the lift was calculated accurately at low 

values of thickness, the calculation of drag was not. 

This problem was not encountered when a smaller population size was used because 

this inaccuracy only occurs in a small part of the search space (it relies on the other 

parameters, such as camber angles, being in certain ranges). With a large population 

this area of the search space is more likely to be encountered, either when the initial 

population was formed, or during the optimisation. 
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Figure A-16 	Plot of C, vs. Thickness and Position of Max Thickness 

Figure A-17 	Plot of Cd vs. Thickness and Position of Max Thickness 
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A.1.6 Experiment F 

This was a repeat of Experiment E with the lower bound on aerofoil thickness raised 

from 2% to 3% in order to avoid the problems encountered with faulty fluid analysis 

at small thicknesses. The upper bound on the position of maximum thickness was 

also raised from 80% to 82%. 

Fitness C/ C,  
Population size 400  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutationanplitude 0.05  

Parameter Nfin Max 
Thickness from camber line (% of chord length) 3 8 
Position of maximum thickness (% of chord length) 55 82 
Camber angle, thetaO, at trailing edge (deg) 0 30 
Camber angle, thetal, at leading edge (deg) 0 30 
Angle of attack (deg) 0 0 

The experiment was repeated ten times with varying seeds for the random number 

generator. The best solution for each run was: 

Run Title Fl F2 F3 F4 F5 
Thickness from camber line 
(% of chord length)  

3.11 4.48 3.64 4.47 4.48 

Position of maximum thickness 
(% of chord length) 

79.09 79.99 79.98 80.00 79.98 

Camber angle, theta0, 
at trailing edge (deg)  

20.69 19.81 20.06 19.82 19.80 

Camber angle, thetal, 
at leading edge (deg)  

23.09 22.90 24.98 22.82 22.93 

Angle of attack (deg) 0 0 0 0 0 
Fitness 

( 
10) 3.77 1 	3.74 3.75 3.75 3.74 

C/Cd 26.521 26.74 26.67 26.67 26.74 
Number of Evaluations 124001 8400 8400 8400 8400 
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Run Title F6 F7 F8 F9 FlO 
Thickness from camber line 
(% of chord length)  

4.50 4.79 3.58 3.35 4.54 

Position of maximum thickness 
(% of chord length)  

79.98 79.99 79.80 80.00 79.98 

Camber angle, thetaO, 
at trailing edge (deg)  

19.77 19.43 19.81 19.87 19.75 

Camber angle, thetal, 
at leading edge (deg) 

23.03 23.14 22.85 25.15 23.03 

Angle of attack (deg) 0 0 0 0 0 
Fitness ( 

iø 374 377 375 3.77 3.74 

C/Cd 26.74 26.52 26.67 26.52 26.74 
Number of Evaluations 1 	8400 8400 8400 1 	8400 1 	8400 

The average C/Cd found was 26.653 with a standard deviation of 0.097. 

These results matched the solutions found in Experiment D. Figure A-18 shows the 

best individual from a number of generations throughout the Run Fl. Again, as in 

Run D, the runs converged to two slightly different shapes, both with very similar 

fitnesses. 
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Figure A-18 	Plot of Best Individual for each Generation for Run Fl 
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A.1.7 Experiment G 

This run repeated Experiment F but allowed the attack angle to vary from a lower 

bound of 4° to an upper bound of 4°. Again, this experiment looked to maximise the 

lift/drag ratio (i.e. minimise Cd / C1). Candidate aerofoils were penalised heavily for 

negative values for C1. 

Fitness Q1 CI  
Population size 400  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutation amplitude 0.05  

Parameter Nfin Max 
Thickness from camber line (% of chord length) 3 8 
Position of maximum thickness (% of chord length) 55 82 
Camber angle, thetaO, at trailing edge (deg) 0 30 
Camber angle, thetal, at leading edge (deg) 0 1 	30 
Angle of attack (deg) -4 1 	4 

The experiment was repeated ten times with varying seeds for the random number 

generator. The best solution for each run was: 

Run Title GI G2 G3 G4 G5 
Thickness from camber line 
(% of chord length)  

6.74 4.68 5.08 4.51 4.44 

Position of maximum thickness 
(% of chord length)  

64.53 67.05 57.76 76.67 73.00 

Camber angle, theta0, 
at trailing edge (deg)  

15.17 18.76 16.17 21.97 26.56 

Camber angle, thetal, 
at leading edge (deg)  

22.88 22.77 19.05 16.57 24.98 

Angle of attack (deg) -2.70 -2.54 -2.98 -2.60 -2.24 
Fitness 

( 
10) 17.6 5.79 22.9 2.51 30.2 

C/Cd (106) 0.568 1.73 0.437 3.98 0.331 
Number of Evaluations 8400 8400 84001 84001 8400 
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Run Title 06 07 G8 G9 GlO 
Thickness from camber line 
(% of chord length)  

3.00 6.92 5.63 6.02 3.46 

Position of maximum thickness 
(% of chord length) 

70.85 63.69 76.62 72.62 78.88 

Camber angle, thetaO, 
at trailing edge (deg) 

19.17 20.16 28.06 21.85 22.52 

Camber angle, theta!, 
at leading edge (deg)  

24.08 23.06 19.97 27.43 28.47 

Angle of attack (deg) -2.56 -2.72 -2.35 -2.48 -2.32 
Fitness 

( 
10) 2.66 10.0 12.1 8.32 1 	14.6 

C11Cd(106) 3.76 0.999 0.826 1.201 0.684 
Number of Evaluations 84001 84001 8400 84001 8400 

Figure A-19 shows the best individual from a number of generations throughout the 

Run Gi. This solution again produced unrealistic results. This was due to the same 

problem encountered in Experiment B where the vortex panel was unable to 

calculate drag correctly for aerofoils with large camber angles and negative attack 

angles. This can be seen by considering Figure A-20 which shows the drag 

coefficient against generation. 
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Figure A-19 	Plot of Best Individual for each Generation for Run Gi 

Figure A-20 	Graph of Cd against Generation for Run Gi 
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A.1.8 Experiment H 

This run repeated of Experiment G, but with the maximum camber angles restricted 

to 100,  in order to avoid the problems with the faulty fluid analysis at high camber 

angles and negative attack angles. 

Fitness CJ C1  
Population size 400  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutation amplitude 0.05  

Parameter Nfin Max 
Thickness from camber line (% of chord length) 3 8 
Position of maximum thickness (% of chord length) 55 82 
Camber angle, theta0, at trailing edge (deg) 01 10 
Camber angle, thetal, at leading edge (deg) 0 10 
Angle of attack (deg) -4 4 

The experiment was repeated ten times with varying seeds for the random number 

generator. The best solution for each run was: 

Run Title Hi H2 H3 H4 H5 
Thickness from camber line 
(% of chord length)  

7.87 8.00 8.00 8.00 8.00 

Position of maximum thickness 
(% of chord length) 

73.84 74.11 55.66 65.12 73.91 

Camber angle, theta0, 
At trailing edge (deg)  

10.00 10.00 10.00 10.00 10.00 

Camber angle, thetal, 
At leading edge (deg)  

10.00 10.00 10.00 10.00 10.00 

Angle of attack (deg) -0.31 -0.14 -0.32 -0.49 -0.23 
Fitness 

( 
10) 8.23 8.26 8.97 8.77 8.21 

C/Cd 12.15 12.11 11.15 11.40 12.18 
Number of Evaluations 8400 8400 84001 8400 1 	8400 
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Run Title 116 H7 H8 H9 H10 
Thickness from camber line 
(% of chord length)  

8.00 8.00 8.00 8.00 8.00 

Position of maximum thickness 
(% of chord length)  

55.66 65.35 73.90 73.81 73.93 

Camber angle, thetaO, 
At trailing edge (deg)  

10.00 10.00 10.00 10.00 10.00 

Camber angle, thetal, 
At leading edge (deg)  

10.00 10.00 10.00 10.00 10.00 

Angle of attack (deg) -0.32 -0.45 -0.23 -0.20 -0.23 
Fitness 

( 
10) 8.97 1 	8.78 1 	8.21 1 	8.22 8.21 

C1Cd(106) 11.15 11.39 1 	12.18 1 	12.17 12.18 
Number of Evaluations 8400 8400 1 	84001 84001 8400 

The average C/Cd found was 11.806 with a standard deviation of 0.467. 

The runs converged to two slightly different shapes. All runs converged to aerofoils 

with a maximum thickness of 8.00% (except Hi with 7.87%), and camber angles, 

thetal and theta2, of 10°. However, runs Hi, 112, H5, H8, H9 and 1110 produced 

aerofoils with the position of maximum thickness at between 73.81% to 73.93% of 

chord length, attack angle of between -0.14° and -0.31°, and lift-drag ratio between 

12.11 and 12.18. Runs H3, 114, H6 and 117 produced an aerofoil with the position of 

maximum thickness at between 55.66% to 65.35% of chord length, attack angle of 

between -0.32° and -0.49°, and a worse lift-drag ratio between 11.15 and 11.39. This 

would seem to indicate that runs H3, 114, 116 and H7 had converged prematurely to a 

sub-optimal solution. 

It should be noted that all these solutions were considerably worse than the aerofoil 

profile found in Experiment F which had a fitness of 3.77e-2 (C/ Cd = 26.5), despite 

the fact that this experiment had a considerably larger search space (attack angle was 

not included in Experiment F). This is discussed further in Section 3.5. Figure A-21 

shows the best individual from a number of generations throughout Run Hi. 
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Figure A-21 	Plot of Best Individual for each Generation for Run Hi 
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4.2 Unsmoothed Bézier Representation 

A.2.1 Experiment I 

An experiment was undertaken using the unsmoothed Bézier representation. The 

population was initialised by perturbing the control points from those of a given 

aerofoil profile. The size of this perturbation was user-defined as a proportion of the 

range of the relevant parameter (a value of 0.5 was used for Experiment I). The given 

aerofoil profile and specified bounds are given below: 

Parameter Lower Bound Sample Aerofoil Upper Bound 

Control Point 1 Radius (m) 1 1 1 
Control Point 1 Angle (rad) -0.5 It -0.5 ,n -0.5 it 
Control Point 2 Radius (m) 0.2 0.25 0.5 
Control Point 2 Angle (rad) 0.4 it 0.42 it 0.44 it 
Control Point 3 Radius (m) 0.2 0.25 0.5 
Control Point 3 Angle (rad) 0.31 it 0.32 It 0.35 it 
Control Point 4 Radius (m) 0.2 0.25 0.5 
Control Point 4 Angle (rad) 0.23 it 0.25 it 0.27 it 
Control Point 5 Radius (m) 0.2 0.25 0.5 
Control Point 5 Angle (rad) 0.14 it 0.16 It 0.18 It 
Control Point 6 Radius (m) 0.2 0.25 0.5 
Control Point 6 Angle (rad) 0.06 it 0.08 it 0.10 it 
Control Point 7 Radius (m) 0.2 0.25 0.5 
Control Point 7 Angle (rad) -0.02 ii 0.00 it 0.02 it 
Control Point 8 Radius (m) 0.1 0.2 0.3 
Control Point 8 Angle (rad) -0.1 it -0.08 it -0.06 it 
Control Point 9 Radius (m) 0.1 0.2 0.3 
Control Point 9 Angle (rad) -0.18 it -0.16 ii -0.14 it 
Control Point 10 Radius (m) 0.1 0.2 0.3 
Control Point 10 Angle (rad) -0.277T -0.25 it -0.23 it 
Control Point 11 Radius (m) 0.1 0.2 0.3 
Control Point 11 Angle (rad) -0.35 it -0.33 it -0.31 it 

Control Point 12 Radius (m) 0.1 0.2 0.3 
Control Point 12 Angle (rad) -0.44 it -0.42 it -0.40 it 
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Experiment I used the following genetic algorithm parameters: 

Fitness CJ C1  
Population size 400  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutation amplitude 1.0  

Figure A-22 shows the best individuals generated through the run. The best 

individual had an unrealistic fitness of 8.57e-5 (C/Cd of 11700). Numerous runs 

were undertaken with various initial base aerofoil profiles, each produced similarly 

unrealistic results to these. 
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Figure A-22 	Plot of Best Individual for each Generation for Run 11 
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A.3 Smooth Bézier Representation 

A.3..1 Experiment J 

It was thought that one possible cause of the analysis problems encountered in 

Experiment I was the presence of 'kinks' in the aerofoil shapes. Therefore, a second 

Bézier representation was tried in which C1 continuity was imposed between the 

Bézier curves except at the trailing edge, as described in Section 3.3.1.3. 

The population was initialised by perturbing the control points from those of a given 

aerofoil profile within a set of specified bounds, in the same was as described in 

Section A.2.1 for Experiment I. It should be noted that, with this representation, the 

position of control points 4,8 and 12 are not set independently of the other control 

points, but instead are 'repaired' to lie halfway between adjacent control points. 

The following run was undertaken using the smooth Bézier representation. 

Fitness CJ C1  
Population size 400  
Proportion of population to breed per generation 0.1  
Mutation rate 0.2  
Mutation amplitude 0.01  

Figure A-23 shows the best individuals generated through the run. The best 

individual had an unrealistic fitness of 5.55e-8 (Cl/Cd of 1.8e6). Again, numerous 

runs were undertaken with various initial base aerofoil profiles, each produced 

similarly unrealistic results to these. 
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Figure A-23 	Plot of Best Individual for each Generation for Run Ji 


