

An Intelligent Time and
Performance Efficient Algorithm
for Aircraft Design Optimization

Nesrin Çavuş

Deutsches Zentrum für Luft- und Raumfahrt
Institut für Luftverkehr
Hamburg

Forschungsbericht 2023-18

Forschungsbericht 2023-18

An Intelligent Time and Performance
Efficient Algorithm for Aircraft Design
Optimization

Nesrin Çavuş

Deutsches Zentrum für Luft- und Raumfahrt
Institut für Luftverkehr
Hamburg

146 Seiten
60 Bilder
57 Tabellen

127 Literaturstellen

Herausgeber:

Deutsches Zentrum
für Luft- und Raumfahrt e. V.
Wissenschaftliche Information
Linder Höhe
D-51147 Köln

ISSN 1434-8454
ISRN DLR-FB-2023-18
Erscheinungsjahr 2023

DOI: 10.57676/3axf-2f96

Erklärung des Herausgebers
Dieses Werk wird unter den Bedingungen einer Creative Commons Lizenz vom Typ
Namensnennung – Keine Bearbeitungen 4.0 International, abrufbar über
https://creativecommons.org/licenses/by-nd/4.0/legalcode, zur Nutzung überlassen.

Lizenz

 Creative Commons Lizenz vom Typ

 Namensnennung - Keine Bearbeitungen 4.0 International

https://doi.org/10.57676/3axf-2f96
https://creativecommons.org/licenses/by-nd/4.0/legalcode

Flugzeugentwurf, Künstliche Intelligenz, Multidisziplinäres Design, Überschallflugzeuge,
Unbemannte Kampfflugzeuge, Flugbahnoptimierung

Nesrin ÇAVUŞ
DLR, Institut für Luftverkehr, Hamburg

Ein intelligenter Zeit- und leistungseffizienter Algorithmus zur Optimierung des
Flugzeugentwurfs
Technische Universität Hamburg

Die Optimierung des Flugzeugentwurfs erfordert die Beherrschung der komplexen
Zusammenhänge mehrerer Disziplinen. Trotz seiner Abhängigkeit von einer Vielzahl
unabhängiger Variablen zeichnet sich dieses komplexe Entwurfsproblem durch starke indirekte
Verbindungen und eine daraus resultierende geringe Anzahl lokaler Minima aus. Abgesehen von
klassischen Optimierungstechniken wie Genetische Algorithmen und Simulated Annealing usw.
gibt es jedoch nicht viele Optimierungsalgorithmen, die sich speziell auf diesen anspruchsvollen
Bereich fokussieren.
Kürzlich entwickelte intelligente Methoden, die auf selbstlernenden Algorithmen basieren,
ermutigten die Suche nach einer diesem Bereich zugeordneten neuen Methode. Tatsächlich wird
der in dieser Arbeit entwickelte Hybrid-Algorithmus (Cavus) auf zwei Hauptdesignfälle im Luft-
und Raumfahrtbereich angewendet: Flugzeugentwurf- und Flugbahnoptimierung.
Die neue Hybridtechnik verwendet Klassifikation anstelle einer Interpolation der Entwurfspunkte,
was für Optimierungsprobleme besser geeignet ist, die eine geringe Anzahl lokaler Minima
haben und diskret sind. Es könnte als alternativer Ansatz für Vertrauensregionen bezeichnet
werden: Teilregionen, umgekehrte Regionen, emulierte Regionen und aggregierte Regionen.
Insbesondere wird der gesamte Designraum gescannt und die Wahrscheinlichkeitsdatensätze
ohne Leistungsbeeinträchtigung gesammelt. Mit der zunehmenden Anzahl von Designvariablen
wird die Auswahl der sofortigen Testpunkte strukturiert, indem das Wissen oder der Spur aus
den vorangegangenen Iterationen genutzt wird. Der implementierte neue Ansatz ist in der Lage,
die Anzahl der Versuchspunkte ohne große Kompromisse zu reduzieren. Dies erhöht die
Effektivität der geringen Anzahl an Versuchspunkten, die nicht gleichmäßig verteilt werden
konnten.
Die Trendanalyse zeigt, dass der Cavus-Algorithmus für die komplexen Designprobleme, die
eine hohe Anzahl von Designvariablen, aber eine geringe Anzahl lokaler Minima haben, mit einer
proportionalen Anzahl von Prüfpunkten konservativer ist, während es eine Erfolgsquote von bis
zu 95-98% erreicht, um die erfolgreichen Muster zu finden.

Aircraft Design, Artificial Intelligence, Multidisciplinary Design, Supersonic Aircraft, Unmanned
Combat Aerial Vehicle, Trajectory Optimization

(Published in English)
Nesrin ÇAVUŞ
German Aerospace Center (DLR), Institute of Air Transport, Hamburg

An Intelligent Time and Performance Efficient Algorithm for Aircraft Design Optimization
Hamburg University of Technology

Aircraft Design Optimization requires mastering of the complex interrelationships of multiple
disciplines. Despite its dependency on a diverse number of independent variables, this complex
design problem has favourable nature as having strong indirect links and as a result a low number
of local minimums. However, unlike other classical optimization techniques such as Genetic
Algorithm and Simulated Annealing etc., there are not many optimization algorithms focussed
specifically on this challenging area.
Recently developed intelligent methods that are based on self-learning algorithms encouraged
finding a new method dedicated to this area. Indeed, the hybrid (Cavus) algorithm developed in
this thesis is applied two main design cases in aerospace area: aircraft design optimization and
trajectory optimization.
The new hybrid technique uses classification rather than interpolation of the design points, which
is more suitable for optimization problems that have low number of local minimums and are
discrete. It could be called as an alternative approach to trust regions: partial regions, flipped
regions, emulated regions and aggregated regions. Especially, it scans the whole design space
and collects the probability records without detriment to performance. With the increasing number
of design variables, the selection of the instant trial points is structured by using the knowledge,
or trail, from the preceding iterations. The implemented new approach is capable of reducing the
number of trial points without much compromise. This increases the effectivity of the low number
of trial points which could not be evenly distributed.
The trend analysis shows that, for the complex design problems that have a high number of
design variables but a low number of local minimums the Cavus algorithm is more conservative
with a proportional number of trial points whilst yielding up to 95-98% success rate in finding the
successful patterns.

An Intelligent Time and Performance Efficient

Algorithm for Aircraft Design Optimization

Vom Promotionsausschuss der

Technischen Universität Hamburg

zur Erlangung des akademischen Grades

Doktor-Ingenieurin (Dr.-Ing.)

genehmigte Dissertation

von

Nesrin Çavuş

aus

İzmit, Türkei

2023

Übersicht der Gutachter

1. Gutachter Prof. Dr.-Ing. Volker Gollnick

2. Gutachter Prof. Dr. Ozan Tekinalp

Vorsitzender des Prüfungsausschusses: Prof. Dr. rer. nat. Sabine Le Borne

Tag der mündlichen Prüfung: 27.03.2023

iii

Abstract

Aircraft Design Optimization requires mastering of the complex interrelationships of

multiple disciplines. Despite its dependency on a diverse number of independent

variables, this complex design problem has favourable nature as having strong indirect

links and as a result a low number of local minimums. However, unlike other classical

optimization techniques such as Genetic Algorithm and Simulated Annealing etc., there

are not many optimization algorithms focussed specifically on this challenging area.

Recently developed intelligent methods that are based on self-learning algorithms

encouraged finding a new method dedicated to this area. Indeed, the hybrid (Cavus)

algorithm developed in this thesis is applied to two main design cases in aerospace area:

aircraft design optimization and trajectory optimization.

The new hybrid technique uses classification rather than interpolation of the design

points, which is more suitable for optimization problems that have low number of local

minimums and are discrete. It could be called as an alternative approach to trust

regions: partial regions, flipped regions, emulated regions and aggregated regions.

Especially, it scans the whole design space and collects the probability records without

detriment to performance. With the increasing number of design variables, the selection

of the instant trial points is structured by using the knowledge, or trail, from the

preceding iterations. The implemented new approach is capable of reducing the number

of trial points without much compromise. This increases the effectivity of the low number

of trial points which could not be evenly distributed.

The trend analysis shows that, for the complex design problems that have a high

number of design variables but a low number of local minimums the Cavus algorithm is

more conservative with a proportional number of trial points whilst yielding up to 95-98%

success rate in finding the successful patterns.

Keywords: Aircraft Design, Artificial Intelligence, Multidisciplinary Design,

Supersonic Aircraft, Unmanned Combat Aerial Vehicle, Trajectory Optimization

iv

v

Dedication

To my mother Ayşe Çavuş

vi

vii

Table of Contents

Abstract ... iii

Dedication .. v

1. Introduction and Motivation .. 1

1.1. Objective and Originality of the Thesis ... 2

1.2. Organization of the Thesis .. 7

2. Artificial Intelligence / Intelligent Systems .. 8

2.1. State of the Art Artificial Intelligence ... 8

2.1.1. What is Artificial Intelligence? .. 9

2.1.2. History of Artificial Intelligence .. 11

2.1.3. Artificial Intelligence in Aerospace .. 13

2.2. Knowledge Based Methods ... 14

2.3. Computational Intelligence ... 15

2.3.1. Genetic Algorithm .. 18

2.3.2. Simulated Annealing .. 20

2.3.3. Pattern Search .. 23

2.3.4. Kriging ... 26

2.3.5. Globex Algorithm ... 29

2.3.6. Artificial Neural Networks .. 32

2.4. Probability .. 34

2.4.1. Probabilistic Neural Networks .. 40

2.5. Comparison of the Algorithms ... 42

3. Cavus Algorithm .. 44

3.1. Trend Analysis for the number of Training Points ... 58

3.2. Test Case: Rosenbrock Function .. 59

3.2.1. Method description and the results for Rosenbrock Function for 2 variables . 60

3.2.2. The results for Rosenbrock Function for 7 variables 73

3.2.3. The results for the “Rosenbrock” Function for 14 variables 77

4. Design Cases .. 81

4.1. Aircraft Design .. 81

4.1.1. Conceptual design of an unmanned supersonic aircraft 82

4.1.2. Mission Profile ... 87

4.1.3. Initial Sizing .. 88

4.1.4. Wing Configuration .. 89

4.1.5. Fuselage Configuration ... 91

4.1.6. Propulsion System ... 92

viii

4.1.7. Horizontal and Vertical Tail Configuration ... 93

4.1.8. Landing Gears .. 94

4.1.9. Aerodynamics .. 94

4.1.10. Weight and Stability ... 95

4.1.11. Performance .. 96

4.1.12. Structural Load .. 100

4.1.13. Cost Model .. 101

4.1.14. Verification of the Aircraft Design Part .. 102

4.2. Trajectory Optimization ... 106

5. Results .. 108

5.1. Design Case I (Unmanned Supersonic Aircraft) .. 108

5.2. Design Case II (Trajectory Optimization) ... 115

6. Conclusion ... 118

Bibliography .. 120

Appendix ... 130

PNN Classification .. 130

ix

List of Figures

Figure 1.1 The Complete Aircraft Design Framework [7] ... 2

Figure 1.2 Common sequence of analysis modules in aircraft design [8] 3

Figure 1.3 Fuselage Preliminary Design Process [3] ... 4

Figure 1.4 General input-output relations in aerospace engineering problems 6

Figure 2.1 Categories of Intelligent system software [18] ... 9

Figure 2.2 Approaches of AI [23] ... 10

Figure 2.3 Relations of components for different AI systems [23] 11

Figure 2.4 An agent interacting with an environment [24] .. 15

Figure 2.5 Core Genetic Algorithm [45] .. 20

Figure 2.6 Simulated Annealing [44] .. 21

Figure 2.7 Pseudo code of the Pattern Search Algorithm [44] 24

Figure 2.8 All the possible subsets of the steps for coordinate search in R2 [17] 25

Figure 2.9 The pattern in R2 with a step length control parameter ∆k [17] 26

Figure 2.10 Determination of the main search direction in the case of a two variable

problem [16] .. 30

Figure 2.11 Assumed artificial parabola for a search of a minimum [16] 31

Figure 2.12 Two-dimensional situation near a boundary [16] 32

Figure 2.13 Probability density and distribution functions of a continuous random variable

X (a) density function; (b) distribution function [43] 37

Figure 2.14 Probability theory [54] .. 37

Figure 2.15 Probabilistic Neural Networks [14] .. 40

Figure 2.16 The smoothing effect of σ on an estimated PDF from 5 samples [14] 41

Figure 3.1 Multidisciplinary Design Optimization Flowchart for Cavus Algorithm 46

Figure 3.2 Flowchart of the Cavus Algorithm ... 48

Figure 3.3 Patterns for one variable (k=3) .. 49

Figure 3.4 Patterns for two variables (k=3) ... 50

Figure 3.5 Patterns for one variable (k=5) .. 50

Figure 3.6 Patterns for two variables (k=5) ... 51

Figure 3.7 Logical Description of the Cavus Algorithm .. 56

Figure 3.8 Selecting promising patterns with PNN .. 57

Figure 3.9 Rosenbrock Function (3D view) .. 60

Figure 3.10 Rosenbrock Function (2D view) .. 61

Figure 3.11 First set of data points .. 62

Figure 3.12 PNN classification ... 65

Figure 3.13 Second set of data points .. 66

Figure 3.14 Second set of the data points grouped with the related pattern numbers ... 67

Figure 3.15 Third set of data points ... 69

x

Figure 3.16 Fourth set of data points .. 69

Figure 3.17 Fifth set of data points ... 70

Figure 3.18 Sixth set of data points .. 70

Figure 3.19 Seventh set of data points .. 71

Figure 3.20 Eighth set of data points ... 71

Figure 3.21 Ninth set of data points .. 72

Figure 3.22 Ninth set of data points in detail view ... 72

Figure 3.23 Ranks of the first training set .. 74

Figure 3.24 Comparison of the algorithms for Rosenbrock function (Results) 80

Figure 3.25 Comparison of the algorithms for Rosenbrock function (Function evaluations)

 .. 80

Figure 4.1 Flowchart of the Aircraft Design Algorithm .. 84

Figure 4.2 Mission segments .. 87

Figure 4.3 NACA 64A210 ... 89

Figure 4.4 Approximation for integral fuel tank volume, available in a linear lofted wing

[84] [86] ... 90

Figure 4.5 Fuselage sections [84] ... 91

Figure 4.6 Inlet locations - buried engines (Nose) [2] ... 92

Figure 4.7 Conventional tail [2] .. 93

Figure 4.8 Triple slotted flap [2] ... 94

Figure 4.9 Centre of gravity-exaggerated views [87] .. 96

Figure 4.10 Top View of the resulting UCAV design ... 105

Figure 4.11 Top View of reference F-16 design ... 105

Figure 4.12 Map of the Trajectory Optimization .. 107

Figure 5.1 Top and side views of the resultant UCAVs ... 112

Figure 5.2 Optimal Way Points ... 115

Figure 5.3 Resultant Optimal Way Points ... 117

xi

List of Tables

Table 2.1 Methods of Operations Research [43] ... 16

Table 2.2 Unconstrained Minimization Methods [43] ... 17

Table 2.3 Constrained Optimization Techniques [43] .. 17

Table 2.4 Comparison of Random search and Simulated Annealing [45] 22

Table 2.5 Application Evaluation of ANN Models [42] .. 33

Table 2.6 Types of probability distributions (analytical models) [43] 37

Table 2.7 Main types of probabilistic graphical models [47] 39

Table 2.8 Comparison of the Algorithms ... 43

Table 3.1 Optimization results for the fixed number of training points (n=10) 58

Table 3.2 Optimization results for the changing number of training points (n=km) 59

Table 3.3 Design variables with their boundaries and values for the first training set 61

Table 3.4 Successful patterns .. 63

Table 3.5 Unsuccessful patterns .. 63

Table 3.6 Total possible patterns ... 63

Table 3.7 Successful patterns with classes .. 64

Table 3.8 Possible successful patterns .. 64

Table 3.9 Possible unsuccessful patterns .. 64

Table 3.10 Promising patterns with their bounds ... 65

Table 3.11 The unsystematically distributed points for each pattern and the results 67

Table 3.12 Normalized min and mean values .. 68

Table 3.13 Actual patterns with the promising patterns for the next run 68

Table 3.14 Design variables with the results for the first training set (m=7) 73

Table 3.15 The promising patterns for the next run.. 74

Table 3.16 The rank of the promising patterns .. 75

Table 3.17 The starting point for Globex Algorithm .. 75

Table 3.18 The starting step sizes for Globex Algorithm .. 76

Table 3.19 The results for the “Rosenbrock” Function with 7 variables 76

Table 3.20 The promising patterns for the next run m = 14.. 77

Table 3.21 The rank of the promising patterns m = 14 .. 78

Table 3.22 The starting point for Globex Algorithm .. 78

Table 3.23 The starting step sizes for Globex Algorithm .. 78

Table 3.24 The resultant variable values for Rosenbrock Function with 14 variables 78

Table 3.25 The results for Rosenbrock Function with 14 variables 79

Table 3.26 Comparison of the algorithms with the changing variable numbers 79

Table 4.1 Aircraft Design part inputs and outputs .. 85

Table 4.2 F-16 Control Surface Actuator Models [88] ... 95

Table 4.3 Design Inputs for the F-16 aircraft .. 102

xii

Table 4.4 Examples of Airplane Program Production Runs [84] 103

Table 4.5 Assumed Inputs ... 103

Table 4.6 UCAV Comparison Table with F-16 .. 104

Table 5.1 UCAV Constraints ... 109

Table 5.2 Constants in UCAV optimizations .. 109

Table 5.3 Design variables and their boundaries ... 110

Table 5.4 Variables and optimization results for UCAV ... 111

Table 5.5 Sample UAVs with their Specifications ... 113

Table 5.6 The starting point for Globex Algorithm ... 114

Table 5.7 The starting step sizes for Globex Algorithm .. 114

Table 5.8 The Results for the Aircraft Design Case .. 114

Table 5.9 Lower and Upper Bounds of the Waypoints .. 115

Table 5.10 The result of the Cavus algorithm ... 115

Table 5.11 The starting point for the Trajectory Calculation 115

Table 5.12 The result of the Fmincon algorithm for the Trajectory optimization 116

Table 5.13 The starting point of the Globex Algorithm for the Trajectory optimization . 116

Table 5.14 The starting step sizes of the Globex Algorithm for the Trajectory optimization

 .. 116

Table 5.15 The result of the Globex algorithm .. 116

Table 5.16 The result of the Genetic Algorithm ... 116

Table 5.17 Comparison of the results for the Trajectory Optimization 116

xiii

Nomenclature

Aircraft Design Part:

a Speed of sound

at Tail lift curve slope

A Area, Aft, Avionics

ac Aerodynamic center

ADALINE Adaptive Linear Element

ANN Artificial Neural Networks

AR Aspect ratio

b Span

BPR Bypass Ratio

c Chord, Combat (action)

cg Center of gravity

cr Cruise

Cd Airfoil drag coefficient

Cd0 Airfoil drag coefficient at zero angle of attack

Cl Airfoil lift coefficient

Cl0 Airfoil lift coefficient at zero angle of attack

Clα Airfoil lift curve slope

Cmα Airfoil pitching moment curve slope

cr Root chord length

ct Tip chord length

c Mean aerodynamic chord length

CD Drag coefficient

CDα Airplane drag curve slope

CD0 Drag coefficient at zero angle of attack

CDL&P Drag coefficient with leakages and protuberances

Cf Flat-plate skin-friction drag coefficient

CL Lift coefficient

CL α Airplane lift curve slope

d Action time, Dash

D Drag, Diameter, Development

DAPCA Development and Procurement Cost of Aircraft model

e Oswald efficiency factor, Engineering

E Endurance, Engine(production)

eng Engine

exp Exposed

F Flight test

xiv

FF Fitness Function

FTA Number of flight test aircraft

fus Fuselage

FM Total force on the two main wheels

FN Force on nose wheel

g Gravitational acceleration

H Height, hour

HT Horizontal tail

KAUS Knowledge Acquisition and Utilization System

Kvs Variable sweep constant

L Lift, Length, Landing

LE Leading edge

LG Landing gear

ltr Loiter

lt Tail arm

M Moment, Mach number, Mid-body, Manufacturing

max Maximum

min Minimum

misc Miscellaneous

MCMOSA Multiple Cooling Multi Objective Simulated Annealing Algorithm

MLL Multi-Layer Logic

MLP Multi-Layer Perceptron

n Load factor

nz Ultimate load factor

net Net

N Nose

plf Planform

q Dynamic pressure, Quality control

Q Interference factor

R Radius, range, hourly rate

r Root

Re Reynolds number

Ref Reference

ROC Rate of climb

s Steady state

S Reference area

sh Sears-Haack body

SFC Specific fuel consumption

xv

sL Landing distance

sTO Take-off distance

t Time, Thickness, Tooling

T Thrust

TO Take-off

TOG Take-off ground roll

Tav Thrust available

Ti Turbine inlet temperature

UCAV Unmanned Combat Aerial Vehicle

V Velocity

VT Vertical tail

Vf Fuel volume

w Width, Wing

W Weight

wb Wing-body

wet Wetted

W0 Take-off gross weight

Wdg Design gross weight

We Empty weight

Wf Fuel weight

xx Number of action turns

xacwb Aerodynamic center of the wing-body

xn Neutral point

x Mean aerodynamic chord x location

y Mean aerodynamic chord y location

z Mean aerodynamic chord z location

θ Pitch angle

ρ Density

∆ Change

μ Friction coefficient

λ Taper ratio

Λ Sweep angle

τ Ratio of tip and root thickness ratios

Γ Dihedral angle

β Prandtl Glauert

σ Density ratio

ω Rate of turn

xvi

Number of

0 Sea level, starting point, binary value

∞ Free stream

Optimization Part:

f(x) Probability density function

k Number of intervals

m Number of variables

n Number of training points

pt Number of patterns for one variable

pm Number of total patterns

1

Knowledge should mean a full grasp of knowledge:

Knowledge means to know yourself, heart and soul.

If you have failed to understand yourself,

Then all of your reading has missed its call.1

YUNUS EMRE

1. Introduction and Motivation

‘Know yourself’, as Socrates said, may be the best way to start to explain why people

began from themselves intuitively to search for techniques to ease their life. Because

their bodies, the environment in which they leave, so the universe function in an

excellent order. Although human beings are far to understand the real structure of this

excellence, they are gifted to be attracted by, and have the ability to start to investigate.

But they cannot encompass/comprehend anything beyond as much as allowed [1]. That

is why this thesis is based on “Artificial Intelligence” which tries to mimic the functioning

of the human intelligence, i.e. another excellence. Artificial Intelligence may be the

unpredictably large research area for us. Although it is still under development, it has

affected and eased our life gradually. Thus, in this study its effect in the field of

aerospace is emphasized.

Another motivation item of this study can be explained through “Probability”, which is

defined as the likelihood of an event to occur. If events are more than one, the sum of

the probabilities of all possible occurrences is accepted to be equal to “1”; which

inherently wipes out the “coincidence theory”.

In this thesis, a dedicated optimization algorithm for a conceptual aircraft design was

developed based on these two motivation items. Many classical mathematical

optimization techniques are applied in this area [2]. These classical methods use so-

called random walk or creeping, which need high number of function evaluations due to

probable poor starting points, or mathematically true but illogical selections. Besides, due

to the structure of the aircraft design, the derivative-based methods which are much

more powerful than classical methods are very difficult and may not worth to apply.

However, the aircraft design has many advantages over other optimization problems and

deserves a dedicated optimization method to converge to better results with less function

evaluations. An aircraft is composed of systems of systems and has a closed loop process

in which the energy is conserved. So that, the possible degree of success of the

unknowns can be extracted from the knowns of the design space based on their

probabilities. At that point, this study differs from other researches in this domain; by

treating the constrained design space as a whole and deciding on the next trial point with

a classification algorithm, instead of any so-called random walk or interpolating

algorithms which are commonly applied until now. Indeed it uses two keys to have better

selection of design points; learning from previous data, i.e. artificial intelligence, and the

coherence of our universe, i.e. (here, using) the rules of probability. As a result, any poor

attempts are diminished before they are tested. This dedicated method for a conceptual

aircraft design problem can be applied to any design problem which can be defined as a

closed loop process, also.

1
 Translated from Turkish: İlim ilim bilmektir, İlim kendin bilmektir. Sen kendini bilmezsin, Ya nice okumaktır.

2

1.1. Objective and Originality of the Thesis

With increasing demand on high quality, high performance products and limited

resources it is always required to have efficient selections on the components. This

efficient selection process is called as optimization for a design problem, and these high

quality high performance products and limited resources are defined as the objectives

and the constraints, respectively. Then the components whose values change throughout

the selection process are named as the independent variables of a design problem.

According to the design problem, the designer may choose one or more independent

variables. If there is just one objective (dependent variable) this process is called single

objective optimization, if there are more than one objectives then it is a multiobjective

optimization problem. When the design problem compromises different disciplines then

the optimization process called multidisciplinary design optimization (MDO). The focus of

this thesis is aircraft conceptual design optimization. Indeed, Aircraft design is a complex

process that requires different fidelity levels of multidiscipline, accordingly different

frameworks, expertise of engineers and significant efforts [3], [4]. It consists of many

highly coupled systems, subsystems and related design parameters [5], [6].

Figure 1.1 The Complete Aircraft Design Framework [7]

Wing Performance Propulsion

Stability &

Control

Actuation

System
Propulsion

Fuselage

Electric Power

System

Structure

Fuel System

Aircraft Sizing Model

3

A multidisciplinary design tool for an aircraft design is presented by Amadori et al. in

[7] to meet the requirements of modern complex product development and it is

framework is illustrated in Figure 1.1 with all the modules and their connections. A

straightforward iterative and sequential layout combining multiple design modules are

shown by Zill [8] in Figure 1.2. However, each of these design modules also includes

complex relations both internally and externally. Besides, at the conceptual analysis

stage a huge number of (unknown) parameters are used with the empirical equations of

classical sizing approach [9].

Figure 1.2 Common sequence of analysis modules in aircraft design [8]

To know explicitly or to trace these implicit parameters are not the case, because

they are based on the statistical data. Thus, the classical aircraft sizing process can be

Input

Top Level Aircraft

Requirements

Geometry Calculation

Aerodynamics

Propulsion

Landing Gear

Flight Physics

Structural Analysis

Mass Accounting

Ground Handling

Stability & Control

converged

?

no

yes

Design Constraints

Figure of Merit (DOC)

Output

e.g. performance data,

mass breakdown…

D
is

c
ip

li
n
a
ry

 A
n
a
ly

s
is

 M
o
d
u
le

s

F
ix

e
d
 p

o
in

t
it
e
ra

ti
o
n

4

defined as a statistical knowledge-based engineering method that uses small amount of

parameters, which can be explicitly defined, and a large number of statistic data [9].

To manage the complexity and to capture the ‘know-how’ the artificial intelligence

techniques are employed; the computer aided design, like computational analysis, is

used in all forms to fınd the superior product with an iterative design process [3]. An

example to the iteration process involved in an aircraft design is given by Saggu [3] in

Figure 1.3. In the figure the complex relations of a fuselage-wing box design are shown.

Figure 1.3 Fuselage Preliminary Design Process [3]

The amount of both dependent and independent variables have great influence on the

complexity of the design process, and hence this burden impresses the time to reach the

results and also the quality of the results. Gelsey et al. [10] used a gradient-based

constraint optimization algorithm for a parametric conceptual aircraft design process. An

automated search procedure with model assumption violation techniques is applied. The

quality of candidate designs for complex artifacts is evaluated by computational

simulation at each step. Boolean and model constraints strategies are used during this

Passenger Cabin

Requirements

Cabin Length Fuselage

Diameter

Floor Height Position

Container Choice

Cargo Cross Section

Wing Box Cross

Section

5

evaluation process. Instead of using the experts’ domain knowledge in the loop, it is

aimed to have effective information exchange between a simulator and an automated

search procedure while violating the constraints and to find feasible design points. A cost

improvement of two orders of magnitude is observed.

Besides complexity, the huge number of design variables is another concern in

aircraft design. A tailless unmanned air vehicle with 44 variables is optimized by Sobieski

and Kroo [11]. A response surface estimation technique with simple trust region

algorithm is implemented at this the collaborative optimization study. It is proved that,

when a complete subsystem optimization is required the response surface optimization is

relatively inexpensive method. Moreover, computational expense of generating a

response surface is reduced almost 50% as recognizing extra point information implicitly

in each sub-model.

Many different optimization techniques are used in different problem areas. The type

of optimization technique to be used in a special area is another concern that leads

runtime and results in a manner to be better or worse. As an example, one method could

fit a problem in which it is desired to make some predictions on economics, while other

method could fit better to a mechanical problem. Therefore, it is very hard to say for any

technique that is the best technique for all of the situations one may meet.

In aerospace engineering, to understand the complex design problems and reach the

viable and accurate design solutions the guidance of probabilistic design techniques and

simulation are required by the designers increasingly [12].

In the detailed work of Bashir and Hasan [13], the basic operations of Genetic

Algorithm are presented with Rosenbrock function. In this work, it is seen that after

crossover, mutation and selection operations, the two new chromosomes have the same

variable values. Moreover, the previous iteration has also the same variable values in one

of the chromosomes. This is a good example of poor selections in Genetic Algorithm. This

kind of excess function evaluations can be encountered during the process of population

based algorithms. When these excess function evaluations occur as optimizing an aircraft

design, the wasted run time does not be similar to Rosenbrock function but even it could

be hours or days. This is due to the multiplication factor of the time spent while

calculating one design solution.

Therefore, the purpose of this study is to propose a novel algorithm which can be

used for engineering design optimization problems, that has low number of local

minimums but a high number of variables relating complex structures. Even though, the

success of the algorithm is examined here by 14 independent variables, it can be applied

to more number of variables. The target is to reduce the function evaluations by reducing

the poor parts of the design space based on the probabilities extracted from previous

trials. Due to the fact that, this algorithm is neither restricted by step sizes nor diverged

by so-called random walks, it has better results compared to other algorithms applied in

this study.

In this research, the design cases are selected from the applications of aerospace

engineering area. Aircraft design optimization and an aircraft mission have complex

dependencies; but they have clear standard segments and each segment with its

requirements – inputs and outputs – are well-known; hence these platforms are practical

to be selected. The general input-output relations are illustrated in Figure 1.4.

6

Figure 1.4 General input-output relations in aerospace engineering problems

As well as, these closed loop systems are more conservative than many statistical

problems; thus it is worth to use directed search methods. However, when the number of

independent design variables and the complexity increase, the statistics based methods

are helpful at intermediate steps of an optimization algorithm [12].

Further, optimization process of an aircraft can be structured with two main sub

functions, optimization part and aircraft design part, which also includes many sub-

optimization loops. The selection of the independent variables and the constraints with

their ranges has a direct effect on the performance of an optimization process. Any poor

selection of a design point on a design space cost extra time, which may be totally

useless. Therefore, not only the optimization part itself, also the aircraft design part

expends the runtime, which can be thought as multiplication of these times. Thus, the

total process should be improved not to select unfavourable design points in order to

save the run time and have better convergence for optimum design.

As the structure of the analysis is concerned, widely used methods like regression and

Kriging do interpolations between set of points. These sets are composed of dependent

and independent variables. The idea in this study is to use instantaneous associations

between dependent and independent variables. Besides considering the approximated

linear/nonlinear relations, the behaviour of the dependent variable can be stored while

shifting one design point to another. With storing instantaneous behaviours of variables,

the redundant candidate design points can be avoided during the optimization process.

In this study, with a given or produced training data set, the relations between

independent variables and dependent variables are examined; and then search areas are

selected based on the successful changes on the objective function values. Stored actions

on (or differences between) the variables are considered as the patterns, which are

classified according to the function values as successful or unsuccessful. Resultant

successful patterns are used to extend and deepen the design search space with the help

OUTPUTS

nmax

Vcruise

Vmax

Range

tloiter

Wpayload

Aircraft Design

Cost

INPUTS

Trajectory Optimization

Atmospheric

conditions

Destinations

W
fuel

Flight time

Range

Waypoints

7

of Probabilistic Neural Networks, which was introduced by Specht [14]. This kind of

Neural Networks is used for its success on classification and pattern recognition. The

method is given in detail in section 0.

The presented study here can be clustered among the single level optimization

techniques of aircraft design optimization strategies as mentioned by Vanderplaatz in

[15], and it can belong to the group of direct search methods which does not depend on

the derivatives like the optimization method presented by Jacob [16]. Also, the technique

can be categorized to the pattern search methods presented by Torczon [17].

In this regard, the originality of the work in aircraft design optimization environment

stands on three principles. At first, the method depends on neither the design points nor

the gradients alone; instead it uses the bilateral combinations of the design points to

perceive the bounded design space. Second, the successive design points are not

generated from the current points; instead they are systematically improved by the

clustered parts of the design space, which are gained from the current information. Third,

depending on the success of the neighbouring pattern selection as classifying the

patterns, a novel dimension reduction technique is used to increase the computational

performance.

The developed algorithm can be applied to a wide range of design problems which are

linear, nonlinear, quadratic, convex or non-convex. In this study, Rosenbrock, a non-

convex function, also a conceptual design of an aircraft and a trajectory of a passenger

aircraft are taken as test cases for the proposed algorithm.

Indeed, the objective of the thesis is to develop an intelligent algorithm which can be

a bridge between aerospace and mathematics domains by handling one of the artificial

intelligence techniques via an unconventional aspect. The memory usage, a serious

drawback of the artificial intelligence algorithms, is overcome with a novel case specific

dimension reduction technique. As a result, the novel algorithm the advantage reducing

the required minimum number of function evaluations for aerospace design optimization

problems.

1.2. Organization of the Thesis

At first, artificial intelligence and its state of the art aerospace engineering are dealt

with. Then, the method is described and illustrated in detail with Rosenbrock function.

Due to having many local minimums and wide search space Rosenbrock function is one

of the popular test methods for single objective optimization that has the flexibility to

increase the independent design variables, also. The effectiveness of the algorithm is

shown with Rosenbrock function with two, seven, ten and also fourteen variables. A trend

analysis is also done for selecting the number of training points during the optimization

process, which also proves the efficiency of the algorithm while increasing the variable

numbers.

Then two different test cases from aerospace engineering, i.e. the conceptual design

of a supersonic unmanned aircraft and trajectory optimization, were applied for the

multidisciplinary single optimization case.

8

2. Artificial Intelligence / Intelligent Systems

2.1. State of the Art Artificial Intelligence

Knowledge based systems, computational intelligence and hybrids are specified as the

tools of artificial intelligence by Hopgood in [18]. In order to use the advantages of both

methods, a hybrid method is introduced in this study which is composed of agents and

Probabilistic Neural Networks algorithm. Agents work on gridded search space to find out

and sort the shifting actions of the values, and Probabilistic Neural Networks is used for

classification of the successful and promising patterns.

Recently, the use of artificial intelligence tools continues to increase in aircraft

multidisciplinary design optimization due to their successful implementations. A

Knowledge Based Engineering approach to support aircraft multidisciplinary optimization

was used by La Rocca and van Tooren [19] to develop both conventional and novel

geometries. Finite element analysis models are generated and time reduction is gained

with the automated method.

Another method, Concurrent Learning was used with Adaptive Neural Networks based

approximate models by Gursoy and Yavrucuk [20] for a nonlinear fixed-wing aircraft

model. Non-iterative two models were used to estimate the direct adaptive limit and the

control margins. Network weights were updated from both past and current information,

with which resultant values were better calculated.

To decrease the aircraft design cycle time, two different artificial intelligence

algorithms are used by Oroumieh et al. in [21]; Neural Networks and Fuzzy Logic.

Aircraft weight, engine thrust and wing area were determined with the applied methods

at the early phase of the aircraft design process. A specific class of light business jets is

selected as a design case to approximate the take-off wing loading and take-off thrust

loading. The actual results are approximated about ten percent for the preliminary design

phase.

A fuzzy logic based artificial intelligence algorithm was applied to an unmanned

combat aerial vehicle control system by Ernest et al. [22]. The success of the algorithm

was proved in high fidelity simulation environment. The algorithm was found to be highly

responsive to complex situations and uncertainties.

As introduced above, artificial intelligence methods with knowledge based techniques

are used by many designers to improve the design solutions and the required run time.

In this study a hybrid technique is used to increase the efficiency of the optimization

process by reducing the required number of function evaluations to converge the

optimum point.

9

The method studied here has the advantage on other guided random search

techniques with assigning the directions on the search space for the variables while

searching and classifying the promising grids. With this method the training sets are used

to decide on the next search space with the produced values of the cumulated runs. In

the following sections the methodology is explained more in detail.

2.1.1. What is Artificial Intelligence?

Artificial Intelligence is the science of mimicking human mental capabilities in a

computer, which are reasoning, understanding, perceiving, recognizing, recalling,

imagination, and more [18].

In the next section, the contributions of scientist to Artificial Intelligence are described

in brief. The different techniques used in AI are categorized and as illustrated in Figure 2.1

by Hopgood [18] in three nested types; those are Knowledge-based Systems,

Computational intelligence and hybrids.

Figure 2.1 Categories of Intelligent system software [18]

According to Goodfellow et al. [23] the true challenge of artificial intelligence (AI) is

to solve problems that people solve easily and intuitively as automatic like recognizing

spoken words and figures, which are also hard for people to describe formally. They give

Expert
Systems

Bayesian Updating,

Certainty theory,
Fuzzy logic Rule-based

Systems

Objects,

frames, and

agents

KNOWLEDGE-BASED

SYSTEMS
COMPUTATIONAL

INTELLIGENCE

Neural

Networks

Evolutionary

Algorithms

Simulated

Annealing

All Software

10

a solution to this difficulty as defining concepts which have relations to each other. Then,

this hierarchy of concepts which is structured from simple to complicated ones allows

computers to learn from experience and understand the world. Because of this layered

formation which combines many layers this approach is called as deep learning in AI. A

Venn diagram shown in Figure 2.2 is given by Goodfellow et al. [23] to illustrate the

applications and relations of approaches with AI technology.

Figure 2.2 Approaches of AI [23]

In order to behave in an intelligent way, computers need to capture both formal and

informal knowledge, which people are faced within their daily life. However, due to its

intuitive and subjective form of informal knowledge, it is really hard to describe it in

formal ways to make the computer reason on the given knowledge. Knowledge based

approaches, which are kind of AI, use logical inference rules to catch the informal

knowledge. Low success of using this method led researchers to find another approach

known as machine learning with which computers acquire their own knowledge by finding

patterns from raw data. Logistic regression is one of the algorithms that can be given as

an example to machine learning. It is used when the outcome has two classes or is

categorical. Another type of machine learning algorithms is known as “representation

learning” which represents the input data into featured set of data to solve tasks.

Autoencoders are good examples of this type which are the combinations of encoders

accompanied with their decoders. An encoder converts the input data into different

representations for example with feature extraction then dimension reduction which

increases the performance of the computer while handling this information; and its

Machine Learning

Example:

Logistic Regression

 Representation

 Learning

Example:

Shallow
Autoencoders

Deep Learning

Example:

MLPs

AI

Example:

Knowledge bases

11

decoder converts the represented data back into its original format. However, finding the

correct features to represent the complex task is a great hurdle. To accomplish this

difficulty, deep learning algorithms are used which use simple concepts to build complex

concepts. A good example may be given as the feedforward deep network or multilayer

perception (MLP) which is composed of different and sequential simpler mathematical

functions to represent the data. With nested hierarchy of concepts in deep learning, more

abstract representations can be executed in terms of less abstract ones that allows

computer systems to gain experience with data [23].

Figure 2.3 Relations of components for different AI systems [23]

2.1.2. History of Artificial Intelligence

Like stating the beginning of history of flight/aviation, the beginning of the history of

artificial intelligence is hard to say with pinpoints accuracy. Many researchers in different

areas -like biology and mathematics- contribute to this discovery [24].

Warren McCulloch and Walter Pitts efforts to investigate the first artificial neuron in

1943, which is based on simple threshold logic, might be treated as one of the main

breaking points. This computational model, which is in fact inspired from the functions of

brain neurons, might be the first concrete step for the Artificial Neural Networks [25].

12

This investigation encouraged the researches to work on computational intelligence

further.

If a neuron could be imitated why could not the intelligence? Alan Turing opened a

path with his successful attempt to test intelligent behaviour of a computer with the

Turing Test [26]. In this test a computer and a person answer the questions of an

interrogator as being in separate rooms, and the interrogator tries to distinguish which

one is a computer which one is a human. If the interrogator fails to distinguish the

computer as, whether it is a human or not, then the computer passes the test with its

ability to mimic cognitive tasks of a human [27].

The term ‘Artificial Intelligence’ was first introduced by John McCarthy. With his deep

interest to common sense reasoning, he proposed a program called Advice Taker, which

solves problems by manipulating sentences in formal languages. His objective was to

introduce the method of representing information by logic in computer memory, since he

believed that AI cannot be thought without logic, i.e. it is unavoidable for AI.

Furthermore, he stated his objective as making programmes that learn from their

experiences [28], which can be seen as the basics of today’s Knowledge Based Methods.

He also presented the high level programming language LISP in the late 1950s. He used

Symbolic Expressions to represent Symbolic Functions and applied the universal Symbolic

Function for the theoretical role of a universal Turing Machine and the practical role of

the interpreter [29].

In 1964 Danny Bobrow demonstrated in his Ph.D. thesis that a computer can solve

algebra word problems with interpreting natural language. The problem solving system

that he used finds the set of kernel sentences and converts them to a set of simultaneous

equations, then tries to solve this set of equations for the values of requested unknowns.

If it is able to solve then it gives the answer in English, if the inputs are not enough to

solve, it asks for more information with indicating the nature of the required information

[30], [31]. This problem solving system that is shown in Bobrow’s thesis was the first

step to communicate with computers through natural language. Further, in 1965 Joseph

Weizenbaum built an interactive problem solver, ELIZA, which can carry on a dialog in

English. The first robot that can reason with natural language processing and accordingly

take physical action was Shakey, which was developed at Stanford Research Institute

around 1969. After that, in 1973 at the University of Edinburgh an experimental robot,

Freddy, was produced which uses sensors and video camera to recognise the objects

then take actions. In 1979, Stanford Cart was used autonomously which was then known

as the first computer controlled autonomous vehicle. With these successful attempts in

AI, researchers were encouraged to continue developing algorithms in AI and they made

many contributions like case-based reasoning, multi-agent planning, scheduling, data

mining and virtual reality through 90’s. When Garry Kasparov, the world chess champion,

was beaten by IBM’s Deep Blue Chess Program, artificial intelligence became popular not

just among the researchers but all over the world population in 1997. Then, with the

famous robot Kismet that was built in MIT in 2000 and could express emotions with its

artificial face, vocal and motor capabilities, the era was opened for building commercially

available interactive robots [31].

13

2.1.3. Artificial Intelligence in Aerospace

Artificial intelligence, especially the knowledge-based methods and neural networks

have been used more than four decades in different branches of aerospace environment,

when Neural Networks is considered as a base and method for doing nonlinear regression

[32]. In the study by Gallaher et al. [33], least-squares regression approximations were

used to obtain predictor information to find out the future airplane position and

orientation, may be given as a first example. In this study, the standard method for

obtaining the predictor information, which uses complete fast time model of the aircraft,

was compared with an alternative approach that uses just thirteen predictor variables

representing changes in positons and rates of change of positions for determining the six

degrees of freedom of aircraft motion. The specific task was approach-to-landing task for

a general, light, twin-engine aircraft, a Singer-Link General Aviation Trainer (GAT-2).

High multiple correlation coefficients obtained to assess the goodness of fit of each of the

regression equations indicate that the used regression approach produces very accurate

prediction equations and is an alternative to using the complete fast-time model [33].

 In the study done by Kroo and Takai [34] an aircraft design program is combined

with a rule-based advice and warning system. Aircraft design program includes modules

for calculation of aerodynamics, structures, propulsion, and operating costs. The

subroutines and order of execution are selected based on human experience in an

appropriate order, when the related result is required or currently updated for the

computation. The rule-based expert system is used to assist the user in selecting

intelligent design solutions and appropriate analysis procedures with accessing the simple

set of IF-THEN rules which can be depicted as run-time knowledge activation. After each

routine the database is examined and the problems are identified, then the user is

informed with literal expressions like “The nose fitness is too low for this Mach number”

and the expert advice system is activated with this input. Afterwards, the second part of

the knowledge-based system advices a solution like “reduce Mach number or increase

nose length”. The expert advice system uses a forward and backward chaining inference

engine, which uses fuzzy reasoning (reasoning with uncertainty), to diagnose the

problems, posting the warning strings and making the suggestions. The knowledge-based

system with its expert warnings and advice utility is proved as a helpful tool to

understanding the design changes with their effects and as a useful debugging tool for

further analysis in aircraft advanced design [34].

Intelligent wing design support system defined by Takasu et al. [35] was a mile stone

for automatic design systems. In this system, they built the hierarchically constructed

wing design support system by Multi-Layer Logic (MLL) [36] [37] data structure and

Knowledge Acquisition and Utilization System (KAUS) [38]. They used mainly two sub-

processes for wing design: aerodynamic design which includes wing section design and

three-dimensional design, and structural design that consists of spar, rib and skin

designs. First, they represented a wing model hierarchically with MLL data structures in

order to build and modify the structural model with knowledge at the later stages of the

design. Then, KAUS is used for knowledge processing that is configured with a knowledge

base, a procedure base and a database parts. Eventually, the system extracts the results

of structural analysis, finds the weak points and suggests modifications accordingly. With

this work, it is shown that AI technology is very helpful while developing wing design

support system [35].

14

One of the nonlinear methods introduced by Dovi and Wrenn [39] is Envelope

Function Formulation [40], which is also adaptable for multiobjective optimization

problems [41]. A typical wide body transport aircraft with 256 passengers was used to

investigate the benefit of Envelope Function Formulation over two methods, the Penalty

Function and the Global Criterion methods. The technique converts a constraint

optimization problem to an unconstraint one by replacing the constraint and objective

function boundaries in n-dimensional space with a single surface. A complex mission

performance analysis was done with four design variables: aspect ratio; area, quarter

chord sweep and thickness to chord ratio of the wing. Ramp weight, mission fuel, lift to

drag ratio at constant cruise Mach number and range with fix ramp weight were selected

as the objectives. First two objectives are subjected to minimize and other two are to

maximize. Four primary modules were used in conceptual design: weight, aerodynamics,

mission performance and takeoff and landing.

All of the used methods were feasible within the design space. Function evaluations

were different for each case, and could not be said one of them is better than others.

However, this study is a good example for showing the changing success rate of

optimization problems with different cases. It is highlighted that, while evaluating the

performance of a method with its computational efficiency, the ease of use, data

requirement and programming should also be considered, since they are the prior

attributes of the methods [39].

Artificial Neural Networks was used to evaluate the transportation engineering

predictions by Faghri and Hua [42]. A case study of trip generation forecasting was done

using one traditional method, regression analysis, and two Artificial Neural Networks

methods, back propagation and adaptive linear element (ADALINE). Regression analysis

was selected since it is widely used in that area with the category analysis. The difference

between the regression analysis and the ADALINE depends on the way of using the

coefficients and weights in the optimization. For the regression method it is aimed to find

the minimum error for the survey data, which can be considered as the training data sets

for the ADALINE, while for the ADALINE it is to find the best value of the weights that

obtain good results for testing the data. As a result, they have found out that Artificial

Neural Networks models perform better than the linear regression analysis for that

design case. When comparing the two Artificial Neural Networks methods, the result of

ADALINE is slightly better than back propagation method. On the other hand it needs

four-time more iterations than back propagation, which are 10,000 iterations to minimize

the errors on the testing data sets in the training. That means the training of back

propagation model is much better than the ADALINE [42].

2.2. Knowledge Based Methods

In the Knowledge Based type artificial intelligence algorithms reasoning, perception

and acting are performed by the agents. An agent acts in an environment, in which other

agents can act also, works together or against. A robot can be an illustrative example of

an agent which has sensors and actuators to perceive its physical environment. An agent

could be a computer program with attributes like vectors that acts in a computer

environment only, which is called as a software agent. These attributes can be defined

individually according to the desired resultant action. Figure 2.4 illustrates an agent with

15

its inputs and outputs. Two deterministic agents with the same inputs should act in the

same way [24].

Figure 2.4 An agent interacting with an environment [24]

Agents can act in different environments. The complexity of the environment can be

defined with nine dimensions: modularity, representation scheme, planning horizon,

sensing uncertainty, effect uncertainty, preference, number of agents, learning and

computational limits. These dimensions are used to present a design space of artificial

intelligence. Different design points can be obtained by changing the values or the

characteristics of those dimensions. More design choices must be add in order to build

intelligent agents [24].

Design spaces are best defined with individuals and relations. Agents must build

probabilistic models before they learn about individuals, or unsystematically distributed

variables. After learning the probabilities, the probabilities do not depend on the

individuals, but the agent can learn also the new individuals. A probabilistic relational

model (PRM) is a model in which the probabilities are defined with the relations not with

the actual individuals. The probability parameters are shared by different individuals

[24]. In this thesis, a kind of probabilistic relational model is used.

2.3. Computational Intelligence

In Knowledge Based Systems, reasoning capability of intelligence is tried to be

mimicked and utilized to reach the solution. This is done by extracting the information

from the data bases. On the other hand, methods of computational intelligence employed

Agent

Abilities

Goals/Preferences

Prior knowledge

Observations

Past experiences

Environment

Actions

16

in optimization problems are more structured and use the behavioural properties of the

natural objects.

Most of these techniques require the function values but not the derivatives as in the

gradient descent algorithms. Genetic Algorithm and Simulated Annealing are stochastic

methods and are used for discrete optimization problems. Genetic Algorithm uses the

natural selection and genetics principles, whereas Simulated Annealing is based on the

simulation of thermal annealing of critically heated solids to find the global minimum. The

particle swarm optimization is inspired by the behaviours of colonies like birds, insects

and fish. In ant colony optimization the behaviour of the ant colonies which try to find

the shortest path from a nest to a food source is imitated. If the information at hand

cannot be clearly stated or is not discrete then fuzzy optimization methods are used [43].

Especially for highly nonlinear problems the Neural Networks based methods are

used, in which the conduction of information in neurons are tried to be artificially

simulated. However, the imitated procedure does not even approach being similar to that

in the natural neural networks, that uses synapses of neurons to transmit the electrical

and also chemical signals in order to communicate [43].

The more common techniques are listed and grouped on Table 2.1 by Rao [43];

however these techniques can be clustered under different branches based on their

various characteristics.

Table 2.1 Methods of Operations Research [43]

In this thesis, among the modern optimization techniques listed in Table 2.1, Genetic

Algorithm and Simulated Annealing are used to compare and verify the results of two

design cases in aerospace, because of their high application along with their ease of

usage and success in the field. Besides, the advantage of probability theory and

dimension reduction techniques were also taken.

Mathematical

programming or

optimization techniques

Calculus Methods

Calculus of Variations

Nonlinear Programming

Geometric Programming

Quadratic Programming

Linear Programming

Dynamic Programming

Integer Programming

Stochastic Programming

Separable Programming

Multiobjective Programming

Network Methods: CPM & PERT

Game Theory

Stochastic process
techniques

Statistical Decision Theory

Markov Processes

Queueing Theory

Renewal Theory

Simulation Methods

Reliability Theory

Modern or
nontraditional

optimization techniques

Genetic Algorithm

Simulated Annealing

Ant Colony Optimization

Neural Networks

Fuzzy Optimization

Statistical methods
Regression Analysis

Cluster Analysis, Pattern Recognition

Design of Experiments

Discriminate Analysis (Factor Analysis)

17

Optimization methods can be categorized into two classes also, depending on the

availability of using constraints: if a constraint function exists it is named as “constrained

method”, otherwise it is named as “unconstrained method”.

When the optimization technique does not need the partial derivatives of the

objective function it is called nongradient method or zeroth-order method. Direct search

methods are nongradient methods. On the other hand, in some cases the first and

second partial derivatives provide more information and help to improve the results.

Descent methods are the methods which use those derivatives, thus they are known as

gradient methods. All the unconstrained minimization methods are iterative and have

different rate of convergence [43]. Table 2.2 includes more common unconstrained

minimization techniques.

Table 2.2 Unconstrained Minimization Methods [43]

Direct search methodsa Descent methodsb

Random search method Steepest descent (Cauchy) method

Grid search method Fletcher-Reeves method

Univariate method Newton’s method

Pattern search methods Marquardt method

 Powell’s method Quasi-Newton methods

 Davidon-Fletcher-Powell method

 Broyden-Fletcher-Goldfarb-Shanno method

Simplex method

 a Do not require the derivatives of the function
 b Require the derivatives of the function

Constrained methods can be clustered into two broad categories: Direct methods

which use constraints explicitly, and indirect methods which use constraints implicitly as

a sequence of unconstrained minimization problem [43]. Some of the constrained

optimization techniques are listed at Table 2.3.

Table 2.3 Constrained Optimization Techniques [43]

Direct search methods Indirect search methods

Random search method Transformation of variables technique

Heuristic search method Sequential unconstrained minimization

 Complex method techniques

Objective and constraint approximation Interior penalty function method

 methods Exterior penalty function method

 Sequential linear programming method Augmented Lagrange multiplier method

 Sequential quadratic programming method

Methods of feasible directions

 Zoutendijk’s method

 Rosen’s gradient projection method

Generalized reduced gradient method

18

According to the Table 2.2 and Table 2.3, the algorithm developed in this thesis falls

into the group of Direct Search Methods, to which the pattern search methods belong

and which do not require the derivatives of the function.

Besides, there are systematic methods for constrained optimization: pruning of

dominated assignments, domain splitting and variable elimination. These techniques can

simplify the problem but do not always solve the problem [24].

Ok what is the conclusion of this section? What are the pros and cons? What is a

deficiency, which can be resolved by your scientific contribution?

In this section, the extensively used techniques are listed with different perspectives

in groups to have better understanding of the way that they function. Accordingly, the

technique developed in this thesis employs one of the modern optimization methods

“Probabilistic Neural Networks”; which uses the benefit of probability theory while

clustering the instant data. Assigning the candidate design points to the clusters

according to their probability of being poor or good designs saves the computational

effort and it is one of the advantages of the algorithm. Also, the used distinctive

dimension reduction technique brings advantage for the optimization process. So thus,

the pure unsystematical walk technique is replaced by a less stochastic method but while

taking the advantage of probabilities. This eases to reach the objective with less number

of function evaluations.

In the next chapters, some popular techniques are explained more in detail.

2.3.1. Genetic Algorithm

Evolutionary algorithms together with Simulated Annealing are types of guided

random search techniques. The most famous algorithm is the “Genetic Algorithm” among

the evolutionary algorithms. It uses reproduction, crossover and mutation properties of

chromosomes while treating each value of a design variable as one of the chromosomes

in natural genetics and representing it with set of binary numbers. For example, mutation

can be defined as the stochastic perturbation of the values to gain new variable values in

a population. In Genetic Algorithm instead of derivatives, the value of the objective

function is used for the further search processing. Since it uses a population of trial

points, it differs from the Simulated Annealing which has one starting point. Because of

this property, Genetic Algorithm has advantages on other methods while finding the

global optimum on nonconvex and nonlinear design spaces [43]. However, when the

number of variables is increased, the calculation time rises and the execution of the

process can last even days or weeks regardless of the design surface uniformity.

Genetic Algorithm has been successfully applied to optimization problems in

engineering design and transportation problems for several years. It can be used

discontinuous and non-differentiable problems because of its use of stochastic

information. It is used more for discrete problems than continuous problems. Unlike the

methods which use search direction Genetic Algorithm uses population, and this causes

to miss any adjustments for the neighbouring solutions [44].

In a Genetic Algorithm each new element of the population is a combination of a

selected pair. The new element or the offspring has some variable values from one of the

19

parent and the rest from the other parent. This operation is called crossover, and the

most common crossover method is one-point crossover in which this transition process

occurs at an unsystematical index. This crossover process occurs until reaching the

population number [24].

The chromosomes are selected for the next generation according to their fitness

values. However, when the fittest chromosomes have too much priority this can cause

the reduction in the diversity and early convergence to points that are not globally

optimal. Fitness proportionate selection is one of the most popular selection methods

[45].

The selection operator is also called reproduction operator and selects the good

strings of the population, that have higher fitness values. Thus, if 𝐹𝑖 is the fitness of the

𝑖𝑡ℎ chromosome (or string) in the population of size 𝑛 , the probability of selecting the 𝑖𝑡ℎ

string for the mating pool (𝑝𝑖) is given by Rao [43]:

𝑝𝑖 =
𝐹𝑖

∑ 𝐹𝑗
𝑛
𝑗=1

; 𝑖 = 1, 2, … , 𝑛

(2.1)

When 𝐹̅ represents the average fitness of the population:

𝐹̅ =
1

𝑛
∑𝐹𝑗

𝑛

𝑗=1

(2.2)

Then the cumulative probability of the string i is:

𝑃𝑖 = ∑𝑝𝑗

𝑖

𝑗=1

(2.3)

When the equations (2.1) and (2.3) are considered together, it is expected that the

string with a higher fitness value is selected more times than others strings if it has a

larger range of cumulative probability. So that, with the reproduction operation the string

with a higher fitness value will be copied directly to the next mating pool more frequently

[43].

Another operator of the Genetic Algorithm is mutation. With this, one or more

unsystematically selected variables are altered. The mutation operation helps to

overcome the convergence to the local minimums. The resulting chromosomes are placed

in the new population [13]. Genetic Algorithm combines uphill tendency with stochastic

perturbation exploration, but the effectivity of the algorithm mostly depends on the

crossover operation [46].

20

Spall [45] explained step by step the core Genetic Algorithm as the following:

Figure 2.5 Core Genetic Algorithm [45]

In this thesis, the unsystematical starting points and the binary coding are also used

for the optimization process as in the Genetic Algorithm, since the introduced lower and

upper bounds require starting points and the binary coding is sufficient to extract the

targeted information from the intervals. However, instead of using crossover or mutation

on the variables while depending on the value of the objective function, the hybrid

technique uses the successful changes on the objective function and the corresponding

direction sets of the variables on the particular intervals. Then, these direction sets are

classified and used simultaneously (as a training set) in the Probabilistic Neural Networks

to decide on the next probable directions and intervals. While doing that, instead of

unsystematical or instant crossover/mutation the knowledge gathered from the training

set is used. When the number of variables increases the string length (or, the number of

digits) also increases. Besides, it was proved with a trend analysis that the Probabilistic

Neural Networks becomes more conservative to any change on the string and eliminate

the noises. This provides determination on the successful routes while progressing onto

the untried but more probable intervals.

2.3.2. Simulated Annealing

The Simulated Annealing is such an algorithm that combines the efficiency of hill

climbing and the completeness of unsystematical walk algorithms. In other words,

instead of using the best move (the best neighbour point), it uses an unsystematical

move. This unsystematical move supplies the algorithm the ability to escape from a local

minimum in general and improves the completeness of the search. On the other hand,

this unsystematical move can be time and calculation power consuming. At that point,

this con inspires a novel technique like the one explained in this thesis to overcome

substantially this loss. Besides, Simulated Annealing is popular for large scale

Step 0: Initialization Generate randomly an initial n number of population and

evaluate the fitness function for each string.

Step 1: Parent selection Select the strings which have higher fitness values;

higher fitness value means more often being selected as parents

Step 2: Crossover Perform crossover for each pair of parents at a randomly

selected splice point or points with the decided crossover probability.

Step 3: Replacement and mutation Alter the individual bits with the decided

mutation probability.

Step 4: Fitness and end test Compute the fitness values of the new population

of strings. Stop the process if the termination criterion is met otherwise go to Step 1.

21

optimization tasks and has been used widely for factory scheduling [46]. It is well known

as a global optimizer for both discrete and continuous optimization problems [45].

The principle behind the Simulated Annealing is to use the behaviour of substances as

they cool as they are processed which were examined with scientific applications.

However, while they are cooling, the temperature is not the only determining property of

the demonstrated behaviour, the rate of cooling while reaching the lower energy state is

important and must be slow. While doing analogy with an optimization problem, a

minimized value of the loss function is matched with the minimum energy state for a

system. If the system is cooled so rapidly then the reached state may not be the state

that has the minimum energy state as in the rapid substance cooling, or polycrystalline.

So, annealing is defined the process of cooling at a slow rate. As in the physical cooling

process Simulated Annealing has temporary energy increases in the loss function [45].

Because of its discrete nature, Simulated Annealing is not affected by the continuity or

differentiability of the functions. Despite the increase in computational effort, the

convexity status of the feasible space does not affect the convergence [43]. In order to

terminate the process, as in the Genetic Algorithm a convergence criteria should be

defined in the program. This may be the minimum change in the temperature or loss

function or number of function evaluations.

Venkataraman [44] summarized the basic steps of the Simulated Annealing Algorithm

as:

Figure 2.6 Simulated Annealing [44]

A reasonably large number of iterations is needed to reach the global optimum. The

two parameters 𝛼 and 𝛽 are problem dependent; and generally 𝛽 = −𝑘 𝑇⁄ , which is the

Boltzmann probability distribution. 𝑇 is the annealing temperature, and 𝑘 is the

Boltzmann constant [44]. A configuration which has higher energy is selected based on

the energy difference ∆𝑓. The algorithm starts with a high value for 𝑇, then it is reduced

with each iteration. This reduction operation on temperature is called as “cooling”. The

probability of approaching to the higher energy states is higher initially, but at the end of

the process the energy state approaches to zero [47]. A worse solution can also be

accepted due to the conditional probability; as a result the “hill climbing” can be visible at

those stages. The value of 𝑝 is proposed to be 0.5 ≤ 𝑝 ≤ 0.9 [44].

Step 1: Choose a starting design point 𝑋0. Calculate 𝑓0 = 𝑓(𝑋0). (Need stopping

criteria)

Step 2: Choose a random point on the surface of a unit n-dimensional

hypersphere to establish a search direction 𝑆.

Step 3: Using a step size 𝛼 , calculate 𝑓1 = 𝑓(𝑥0 + 𝛼𝑆); and ∆𝑓 = 𝑓1 − 𝑓0

Step 4: If ∆𝑓 ≤ 0 ; then 𝑝 = 1 , else 𝑝 = 𝑒−𝛽∆𝑓

Step 5: A random number 𝑟 , 0 ≤ 𝑟 < 1 , is generated. If: 𝑟 ≤ 𝑝 , then the step is

accepted and the design vector is updated. Else: no change is made to the design. Go

to Step 1.

22

Indeed, Simulated Annealing picks a neighbour point unsystematically and then

selects it if there is an improvement on the objective function. If there is no

improvement, it accepts or rejects depending on the parameters above. Thus, Simulated

Annealing requires a good annealing schedule for a better convergence to the global

optimum. Otherwise, the high number of iterations to escape from a local optimum is

discarded and the number of function evaluations highly increases. “Finding a good

annealing schedule is an art”, [24].

Actually, there are variations of Simulated Annealing algorithm depending on the

sampling method to generate a new candidate point and the implementation of the

annealing scheduling [45].

Some of the properties of the Simulated Annealing algorithm are listed by Rao [43] as

following:

 The computational effort may increase with a worse initial starting point, but the

final solution is not affected.

 The continuity or the differentiability of the functions does not affect the transition

or convergence characteristics of the algorithm; that is due the fact that the

constraint evaluation and the discrete nature of the algorithm.

 The convexity of the search space has no influence on the convergence.

 The design variables can have values other than positive also.

 The algorithm is applicable to solve mixed-integer, discrete or continuous

problems.

 As in the case of Genetic Algorithm, an equivalent unconstraint function can be

used for the problems that involve behaviour constraints.

Thus, the main deficiency of the Simulated Annealing algorithm is that the selection

of the starting point may increase the computational effort and the run time, accordingly.

This drawback may be diminished with coupling it with a method like any surrogate

model. Actually, the idea in this thesis to develop a method, that works like an

unconventional surrogate model which works with patterns.

Table 2.4 Comparison of Random search and Simulated Annealing [45]

N

Random Search Simulated Annealing

Localized
Random Search

Enhanced
Localized

Random Search

Initial
T=0.01

Initial
T=0.10

Initial
T=1.00

100 0.00053 0.328 1.86 0.091 0.763

1000 2.8 x 10-5 1.1 x 10-5 0.0092 0.067 0.506

10000 2.7 x 10-6 2.5 x 10-7 0.00038 0.0024 0.018

Two random search techniques, Localized Random Search and Enhanced Localized

Random Search, are compared with Simulated Annealing Algorithm for its performance

by Spall in [45]. The case is the simple quartic polynomial loss function:

 𝑓(𝑥) = 𝑥1
4 + 𝑥1

2 + 𝑥1𝑥2 + 𝑥2
2

(2.4)

23

To generate the variables an unsystematical distribution is used for the both random

algorithms and the Simulated Annealing algorithm. To increase the performance of the

Simulated Annealing algorithm some efforts were made like using a standard

temperature decay factor, 0.98 . Table 2.4 shows the results of the comparison for

different number of function evaluations, 𝑁, and different initial temperatures, 𝑇, for

Simulated Annealing. Even though the results are improved with increasing function

evaluations, random search algorithms find better results than Simulated Annealing.

These results prove that the Simulated Annealing algorithm is not always superior to the

simple random search algorithms [45] and needs tuning for any improvement.

The developed algorithmic approach in this thesis can contribute solving this

deficiency by not using the creeping or the pure unsystematical search, but by handling

the simultaneous results to explore the patterns of the whole design space. Actually, the

developed algorithm uses the information extracted from the previous iterations to map

the whole design space and reduces the poor candidate data points which may be

handled if stochastically perturbed values are just used. This learning process can ease to

reach the global optimum with less number of function evaluations and save time. The

detailed explanation is found at section 3 Cavus Algorithm.

2.3.3. Pattern Search

Pattern search methods are the methods that use pattern directions as the search

directions [43]. In the Univariate method, the design variables have a coordinate and

each direction is considered as a search direction. A unit vector is used to present the

direction on the coordinate. The search is done through each variable orderly on those

search directions [44]. In other words, the minimum is searched along the directions

parallel to the coordinate axes in the univariate method [43]. Each cycle has iterations

for each directions of a set of variables. This method is also known as Cyclic Coordinate

Descent method, and has a minor difference from Pattern Search method. Whereas

Univariate method has a zigzag movement while approaching the solution, Pattern search

method has an additional iteration for each cycle to improve the process. At this

additional iteration the previous search directions and the optimal value of the stepsize

for that direction are summed. The next cycle of iteration begins after one-dimensional

optimal stepsize is calculated [44].

A series of exploratory moves around the current iterate and updating the current

iterate with associated information before selecting a new iteration point are the bases of

the pattern search methods. These exploratory moves have two requirements in any

particular pattern search method to maintain the properties for the convergence [17] :

1. At iteration 𝑘, the direction and the length of step 𝑠𝑘 are determined by the

pattern 𝑃𝑘 and by the step length parameter ∆𝑘 , respectively.

2. If any of the 2𝑛 trial steps has a function value less than the current iterate then

the simple decrease on the function must be found by a step 𝑠𝑘 which is produced

by these exploratory moves.

24

Pseudo code of the Pattern Search Algorithm is given by Venkataraman [44] as the

following:

Figure 2.7 Pseudo code of the Pattern Search Algorithm [44]

There are many kinds of developed pattern search methods. The coordinate search

may be the simplest one among the others [17].

If 𝑥𝑘 is the current iterate, at iteration 𝑘 the trial point is defined as [17]:

𝑥𝑘
𝑖 = 𝑥𝑘 + 𝑠𝑘

𝑖

(2.5)

Step 0: Choose starting point 𝑋1, and 𝑁𝑐 (number of cycles)

 𝑓𝑐(1) = 𝑓(𝑋1); 𝑋𝑐(1) = 𝑋1

 𝜀1, 𝜀2 ∶ tolerances for stopping criteria

 Set 𝑗 = 1 (initialize cycle count)

Step 1: For each cycle 𝑗

 For 𝑖 = 1, 𝑛 (number of variables)

 𝑆𝑖 = ê𝑖 (assign univariate step)

 𝑋𝑖+1 = 𝑋𝑖 + 𝛼𝑖𝑆𝑖 , 𝛼𝑖 is determined by minimizing 𝑓(𝑋𝑖+1)

 End of For loop

 𝑆𝑗 = ∑ 𝛼𝑖
∗𝑆𝑖

𝑛
𝑖=1 ≡ 𝑋𝑛+1 − 𝑋1 (Pattern step)

 𝑋𝑗 = 𝑋𝑛+1 + 𝛼𝑗𝑆𝑗 (best stepsize)

 𝑋𝑐(𝑗 + 1) ← 𝑋𝑗 ; 𝑓𝑐(𝑗 + 1) = 𝑓 𝑋𝑗 (store cycle values)

Step 2: ∆𝑓 = 𝑓𝑐(𝑗 + 1) − 𝑓𝑐(𝑗) ; ∆𝑋 = 𝑋𝑐(𝑗 + 1) − 𝑋𝑐(𝑗)

 𝐼𝑓 ∆𝑓 ≤ 𝜀1 ; 𝑠𝑡𝑜𝑝

 𝐼𝑓 ∆𝑋𝑇∆𝑋 ≤ 𝜀2 ; 𝑠𝑡𝑜𝑝

 𝐼𝑓 𝑗 = 𝑁𝑐 ; 𝑠𝑡𝑜𝑝

 𝑋1 ← 𝑋𝑗 ; 𝑓(𝑋1) ← 𝑓 𝑋𝑗

 𝑗 ← 𝑗 + 1

 𝐺𝑜 𝑡𝑜 Step 1

25

Figure 2.8 illustrates all the possible actions during the exploratory movements of the

coordinate search method. The black solid circles indicate the successful movements

where the objective function decreases. Whereas, the open or empty circles indicate the

evaluated functions but unperformed steps due to lack of improvement on the function

value. So the progress is gained when 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘) [17].

If after 2𝑛 evaluations (𝑥𝑘
1, 𝑥𝑘

1′, 𝑥𝑘
2, 𝑥𝑘

2′), no decrease is observed on the function value

at the current step 𝑥𝑘 , then 𝑥𝑘 = 𝑥𝑘+1 and the stepsize 𝑠𝑘 are reduced for the next

iteration. This case is shown in Figure 2.8 as the last scenario [17].

Figure 2.8 All the possible subsets of the steps for coordinate search in 𝑅2 [17]

All of these possible subsets can be gathered in a generating matrix 𝐶𝑘 = 𝐶 with

representing all the possible combinations of {−1, 0, 1}. Indeed, 𝐶 has 𝑝 = 3𝑛 columns and

for 𝑛 = 2 [17]:

𝐶 = [
1 0 −1
0 1 0

 0 1 1
−1 1 −1

−1 −1 0
−1 1 0

]

𝑥𝑘

𝑥𝑘+1

𝑥𝑘
1 𝑥𝑘

𝑥𝑘+1

𝑥𝑘
1

𝑥𝑘
2

𝑥𝑘 𝑥𝑘+1

𝑥𝑘
2

𝑥𝑘
2′

𝑥𝑘

𝑥𝑘+1

𝑥𝑘
1′ 𝑥𝑘

1

𝑥𝑘+1

𝑥𝑘
1′

𝑥𝑘
2

𝑥𝑘 𝑥𝑘
1

𝑥𝑘
2

𝑥𝑘 𝑥𝑘
1 𝑥𝑘+1

𝑥𝑘
2′

𝑥𝑘
1′ 𝑥𝑘 𝑥𝑘

1

𝑥𝑘+1

𝑥𝑘+1

𝑥𝑘
2

𝑥𝑘 𝑥𝑘
1 𝑥𝑘

1′

𝑥𝑘
2

𝑥𝑘 𝑥𝑘
1 𝑥𝑘

1′

𝑥𝑘
2′

𝑥𝑘+1

26

Thus for a given step length ∆𝑘, all the possible trial points can be seen in Figure 2.9

[17].

Figure 2.9 The pattern in 𝑅2 with a step length control parameter ∆𝑘 [17]

Figure 2.9 includes all the possible trial points shown in separate successive

movements in Figure 2.8 [17].

In [17] the convergence analysis of the pattern search algorithm is done by Torczon

and described further in detail. They have concluded that, pattern search methods are

descent methods and gradient related methods. They also proved that, due to

inadequate step length control mechanism the search does not terminate before

convergence. Not permitting arbitrary step lengths along arbitrary search directions is

the key characteristic of the method and the base of its success. Moreover, it is

robustness against its proponents is also demonstrated and as a result they comment on

the prospective further improvement capabilities with guarantied global convergence.

Hence, it has been done many researches on this topic since then [48].

2.3.4. Kriging

Kriging is a kind of regression method which uses interpolations governed by

Gaussian process and is originally used in geostatistics. It is used to estimate the value

of a function by interpolating the values of the neighbourhood data points. Due to the

fact that, it scans throughout the design space and predicts the intermediate function

values with the values of previously derived function values, it is used in spatial analysis.

To estimate the function value at a new point, the neighbouring function values are

combined with weights. For that reason, the new point is compared with the known data

points to find out these weights.

This technique is first developed by Krige [49] and then applied to the computer

experiments as an approximation technique by Sacks et al. [50] and to geostatistics by

Matheron [51].

Sacks et al. [50] summarized the method as the following:

With a given design, 𝑆, where 𝑆 = {𝑠1, ⋯ , 𝑠𝑛}, and data 𝑦𝑠 = {𝑦𝑠1 , ⋯ , 𝑦𝑠𝑛}’, then the linear

predictor of 𝑦(𝑥) at an untried 𝑥 becomes 𝑦̂(𝑥) = 𝑐′(𝑥)𝑦𝑠.

𝑥𝑘

∆𝑘

27

𝑌𝑠 = [𝑌(𝑠1),⋯ , 𝑌(𝑠𝑛)]′, the corresponding so-called random quantity is used in place

of 𝑦𝑠.

𝑦𝑥 is predicted with a Bayesian approach:

𝑦̂(𝑥) = 𝐸[𝑌(𝑥) 𝑦𝑠]

(2.6)

The best linear unbiased predictor of the response at an untried input is:

𝑓(𝑥) = [𝑓1(𝑥),⋯ , 𝑓𝑘(𝑥)]′

(2.7)

For the 𝑘 functions in regression:

𝐹 = (
𝑓′(𝑠1)

⋮
𝑓′(𝑠𝑛)

)

(2.8)

The 𝑛 𝑥 𝑘 expanded design matrix:

𝑅 = {𝑅 𝑠𝑖, 𝑠𝑗 }, 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗 ≤ 𝑛

(2.9)

Where,

𝑟(𝑥) = [𝑅(𝑠1, 𝑥),⋯ , 𝑅(𝑠𝑛, 𝑥)]′

(2.10)

and the unbiasedness constraint is 𝐹′𝑐(𝑥) = 𝑓(𝑥).

The best linear unbiased predictor can be written by resolving the partitioned matrix

as:

𝑦̂(𝑥) = 𝑓′(𝑥)𝛽̂ + 𝑟′(𝑥)𝑅−1 𝑌𝑠 − 𝐹𝛽̂

(2.11)

Where 𝛽̂ = (𝐹′𝑅−1𝐹)−1𝐹′𝑅−1𝑌𝑠 is the usual generalized least squares estimate of 𝛽.

At a new location 𝑥𝑝 to estimate the unknown value 𝑦̂, all 𝑛 sample points are used

with a weighted linear combination as in the following equation [8]:

28

𝑦̂ 𝑥𝑝 = ∑𝑤𝑖 𝑥𝑝

𝑛

𝑖=1

𝑦(𝑥𝑖)

(2.12)

𝑤𝑖 is the weighting factor and it is changing throughout the design space as a function

of 𝑥𝑝. To correlate the two points 𝑥𝑖 and 𝑥𝑗 different methods can be used. In order to

describe the Kriging as simple as possible, Gaussian function is introduced to the function

[8], then:

𝑅 𝑥𝑖 , 𝑥𝑗 = ∏𝑒−Θ𝑚 𝑥𝑖,𝑚−𝑥𝑗,𝑚
2

𝑘

𝑚=1

= 𝑒𝑥𝑝 [− ∑ Θ𝑚 𝑥𝑖,𝑚 − 𝑥𝑗,𝑚
2

𝑘

𝑚=1

]

(2.13)

The new point 𝑥𝑝 is correlated with other sample points 𝑥𝑛 with a correlation vector:

𝒓 = 𝑹 ∙ 𝒘

(2.14)

Inverting the above equation, the weight vector becomes:

𝒘 = 𝑹−𝟏 ∙ 𝒓

(2.15)

The unknown value 𝑦̂ can be obtained with the results of the 𝑛 sample points by

reformulating the equation (2.12), where

𝒚 = [

𝑦(𝑥1)
⋮

𝑦(𝑥𝑛)

0

]

and

𝑦̂ 𝑥𝑝 = (𝑹−1 ∙ 𝒓)𝑇 ∙ 𝒚 = 𝒘𝑇 ∙ 𝒚

(2.16)

The accuracy of the Kriging metamodel increases with adding more sample data

points, besides it results in large correlation matrices to be stored. Kriging is appropriate

for discontinuous functions as well. Therefore it is also suitable for multivariate design

problems, and a global surrogate model prior to the fitting process is not needed [8].

Zill [8] applied this method in aircraft design optimization to calculate more accurate

results during the transition stage from conceptual to preliminary design phases. In that

study, Gaussian function is used to correlate the two data points. As a result, a software

29

frame is developed which automatically updates the scaling function with high fidelity

model data to improve the scaled low-fidelity model while converging to the true high

fidelity optimum point.

In this thesis, the new data point is also correlated with other data points to map the

design space. However, due to the nature of Kriging the interpolations are used to

predict the low fidelity data points by Zill in [8], whereas the Cavus algorithm presented

here employs discrete values and classifications to predict the probability of success of

the vectored changes on the variables in combined intervals. In other words, the Cavus

algorithm can be grouped into probability based pattern search methods. Because of

that, with the Cavus algorithm it is not surprizing to converge an area which is far away

to and not in between the unsystematically distributed training points.

2.3.5. Globex Algorithm

The GLOBEX algorithm is developed and presented by Jacob [52]. The method

searches for the global optimum of a limited multivariable function without the

knowledge of its derivatives. It can be used for any number of design variables and with

any number of inequality constraints, since the used multivariable function can be

calculated indirectly or analytically and the boundaries can also be changed during the

computation [16]. The method is the superior version of the optimization method which

searches for the local optimum named as EXTREM. If the objective function has more

than one local optimum then EXTREM finds the closest extreme value to the selected

starting point [16].

In the first optimization step of the technique, estimates are determined by a

sequence of normally distributed perturbed numbers. The user defined starting point is

used as the mean vector value of these normally distributed perturbed numbers.

Additionally, the user defined starting step sizes define the mean square deviations of

these normally distributed points. If these points lie in the given limits then the partial

optimization starts at each of these points with EXTREM [16].

In the second optimization step, with taking into account the possible restrictions the

unsystematically estimated values are determined around the best function value found

so far. A partial optimization is again started at each of these points with the possible

constraints. If a more favourable function value is found, this point becomes the new

value for the further search and the mean quadratic deviations are multiplied by 0.9 [16].

The best of all values determined in these two sections is stored and used as an initial

value in the third optimization section for the main optimization, GLOBEX [52].

The properties of the GLOBEX algorithm are [52]:

 The probability to find the global optimum increases with the number of

unsystematical estimates produced.

 The GLOBEX algorithm can be used for complex functions like narrow, crooked

valleys at or near multiple boundaries.

The technique is described in detail by Jacob in [16] and [52]. Here, its main context

and strengths are also dealt with to present the general idea.

30

Method

The algorithm is following these tasks while searching the extremum of a bounded

multivariable function [16]:

1. Choose the search directions

2. Find the optimum along a line

3. Define the search step sizes

4. Check the constraints

When the number of variables is 𝑛, the array of the step sizes is given in the form

𝐷𝑋(𝑛) and this defines the first main line in other words the optimal search direction. The

initial point is also given by the user and presented with an array, 𝑋𝑖
⃗⃗ ⃗. As in the Figure 2.10,

the extremal point 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is determined approximately along the first line. After this first

iteration a second line is calculated by a Gram-Schmidt orthogonalization process, which

is going through the point 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and orthogonal to the main direction. At the second

iteration, along this second direction 𝑋𝑖+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is determined and a third line is sketched. This

line is orthogonal to the two first directions [16].

The first stage is accomplished when the 𝑛𝑡ℎ iteration is completed and the extremal

point 𝑋𝑖+𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is reached along the 𝑛𝑡ℎ line, which is orthogonal to all of the previous

directions. The new main direction is found by joining the initial point 𝑋𝑖
⃗⃗ ⃗ and 𝑋𝑖+𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , the

extremal point of the last iteration of the previous stage. The procedure may begin with

assigning 𝑋𝑖
⃗⃗ ⃗ = 𝑋𝑖+𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and then the main and secondary search directions can be found

accordingly [16].

Figure 2.10 Determination of the main search direction in the case of a two variable problem [16]

Afterwards, the three function values 𝐹1 at 𝑋𝑖
⃗⃗ ⃗ − 𝐷𝑋⃗⃗ ⃗⃗ ⃗ , 𝐹2 at 𝑋𝑖

⃗⃗ ⃗ , and 𝐹3 at 𝑋𝑖
⃗⃗ ⃗ + 𝐷𝑋⃗⃗ ⃗⃗ ⃗ are

evaluated to find the extremum of an artificial parabola which is going through these

function values with interpolation or extrapolation [16]. From the Figure 2.11 :

Secondary direction of
the 1st stage

Main direction of

the 1st stage

Main direction of

the 2nd stage

X2

X1

𝑋𝑖⃗⃗ ⃗

𝐷𝑋⃗⃗ ⃗⃗ ⃗

𝑋𝑖⃗⃗ ⃗ + 𝐷𝑋⃗⃗ ⃗⃗ ⃗

(guessed initial point)

𝑋𝑖+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

31

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑋𝑖

⃗⃗ ⃗ +
𝐷𝑋⃗⃗ ⃗⃗ ⃗

 𝐹1 − 2𝐹2 + 𝐹3

𝐹3 − 𝐹1
2𝑀𝑀

(2.17)

where 𝑀𝑀 = +1 for the search of a maximum

= −1 for the search of a minimum

The progression of the new point 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is limited by the algorithm to a maximum of 20

step sizes 𝐷𝑋⃗⃗ ⃗⃗ ⃗. Even if the function value 𝐹𝑜𝑝𝑡 at 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is worse than the 𝐹2 the next iteration

is started from that point. On the other hand, if the difference between 𝐹𝑜𝑝𝑡and 𝐹2 is

greater than 4 times the absolute value of the difference between the function values of

last two iterations, another function value is calculated with dividing the step size of

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ by 2. Allowing the worse function values and the related points to be used for the

next iterations helps to escape from a sharp corner of a narrow valley or a top of a ridge

in some cases [16].

Step sizes are defined according to these principles [16]:

 If the distance between the new and the old point is smaller than 1 4⁄ of the

current step size along that line, then the actual step size is divided by 4.

 If the distance between the new and the old point is greater than 20 times the

actual step size, then the step size is multiplied by 2.

With these basic rules, the search algorithm reduces the steps sizes while

approaching the optimum point and as well escapes from the tight curves by increasing

the step sizes.

Figure 2.11 Assumed artificial parabola for a search of a minimum [16]

If the boundaries are exceeded during the iterations then [16] [52]:

 The step size is divided by 4 and the new point 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is placed other side of the old

point 𝑋𝑖
⃗⃗ ⃗, which is away from the boundary, Figure 2.12.

F

X

𝑋𝑖⃗⃗ ⃗

𝐷𝑋⃗⃗ ⃗⃗ ⃗

𝐹𝑜𝑝𝑡

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝐷𝑋⃗⃗ ⃗⃗ ⃗

𝐹1
𝐹2

𝐹3𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐹2 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑏𝑦
𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
𝑝𝑜𝑖𝑛𝑡

𝑅𝑒𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝑅𝑒𝑎𝑙 𝑐𝑢𝑟𝑣𝑒

𝐴𝑠𝑠𝑢𝑚𝑒𝑑 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙
𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑓𝑜𝑟 𝑎

𝑠𝑒𝑎𝑟𝑐ℎ 𝑜𝑓 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

𝐴𝑠𝑠𝑢𝑚𝑒𝑑 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙
𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑓𝑜𝑟 𝑎

𝑠𝑒𝑎𝑟𝑐ℎ 𝑜𝑓 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

32

 The step size of the new point is divided by 10 and the new progression will be in

the direction of boundary, so far the previous trial is found by an extrapolation or

interpolation.

Figure 2.12 Two-dimensional situation near a boundary [16]

Besides, these are the general limitations of the GLOBEX algorithm [16] [52]:

 The starting point should not be selected outside of the boundaries, which is

indeed a general prerequisite for most of the methods

 Even though the algorithm is capable of handling the changing boundaries, the

current values of the variables must not exceed the limits

 The termination criteria should be severe enough to avoid from primitive results

or divergences.

 The step sizes should be reduced sufficiently to follow even the contour of the

edges.

2.3.6. Artificial Neural Networks

Artificial Neural Networks, which are inspired by biological neural networks, learn

from previous data (training sets) and they are capable to solve nonlinear complex

problems. Throughout their discovery and improvements, Artificial Neural Networks have

popular and also stagnant time intervals. To teach the algorithm, large data sets so that

highly expensive computational power is needed. With the improvement on

computational power (GPU, distributed systems etc.) and with finding new unsupervised

methods to improve the weights of the algorithm -thus the learning structure-, Artificial

Neural Networks have made a visible return.

Artificial Neural Networks (ANN) is classified into four categories by Faghri and Hua in

[42] as:

 Mapping ANN

 Recurrent ANN

 Temporal ANN

 Hybrid ANN

Line A

X2

X1

𝑋𝑖⃗⃗ ⃗ 𝐷𝑋

4

⃗⃗⃗⃗⃗⃗

𝑋𝑖⃗⃗ ⃗ + 𝐷𝑋⃗⃗ ⃗⃗ ⃗ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔

𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔
Line B

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔

𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑋𝑖⃗⃗ ⃗
𝑋𝑖⃗⃗ ⃗ − 𝐷𝑋⃗⃗ ⃗⃗ ⃗

𝐷𝑋⃗⃗ ⃗⃗ ⃗

33

Mapping ANNs finds the outputs by summing the products of all inputs and

corresponding weights. Linear Associator, Learning Matrix, ADALINE and MADALINE

(Multiple ADALINE), Back Propagation, Self-Organizing Mapping and Adaptive Resonance

Theory (ART) are the types of Mapping ANNs. Between these, ADALINE and MADALINE

use a least mean square error-correcting learning rule. Because during the learning

process the error information is propagated back from the output layer to input layer to

reduce the error, the best known ANNs was called as Back Propagation ANN. Self-

Organizing mapping ANNs is one of the interesting and efficient ANNs to sort items into

categories or to cluster. The Kohonen Layer is one of the well-known types of these ANNs

uses winner-takes-all strategy with firing only the successful unit [42].

In Recurrent ANNs, the outputs are linked to the inputs and their values are sent and

used as successive inputs. Hopfield, Brain-Sate-in-a-Box (BSB), Bidirectional Associative

Memory (BAM), Boltzmann Machine and Recurrent Back Propagation are the types of this

ANNs. Associative ANNs associate inputs and outputs. One of them is Hopfield networks

which associate the inputs to the outputs that resemble more to the input patterns.

Besides, Bidirectional Associative Memory also associates input and output but which can

be different from each other but related somehow. Boltzmann Machines is stochastic

version of the Hopfield network uses Simulated Annealing to find the weights. Recurrent

back-propagation ANNs can recognize time-dependent input-output data which can be

said as dynamic patterns [42].

 In Temporal ANNs, the output and input vectors are dynamic and it can be

represented by a differential equation.

Hybrid ANNs use both a supervised and an unsupervised learning in one network.

Faghri and Hua [42] summarized the application level and areas of these types of

Artificial Neural Networks in Table 2.5.

Table 2.5 Application Evaluation of ANN Models [42]

Model

Category

A
d
a
li
n
e
/

M
a
d
a
li
n
e

A
R
T

B
A
M

H
o
p
fi
e
ld

B
o
lt
z
m

a
n
n

M
a
c
h
in

e

B
a
c
k

p
ro

p
a
g
a
ti
o
n

B
S
B

L
in

e
a
r

A
s
s
o
c
ia

to
r

L
e
a
rn

in
g

M
a
tr

ix

K
o
h
o
n
e
n

N
e
tw

o
rk

s

Recognition    

Control      

Forecasting/Prediction  
Classification    

Diagnosis   
Optimization   

Noise Filtering  
Image Processing       

Association      
Decision Making 

Temporal Processing   

Key:  (strong applicability);  (moderate applicability);  (applicable);  (difficult to evaluate)

34

Among the widespread application areas, some of the ANNs like Hopfield and Back

Propagation are also used for optimization problems as shown in the Table 2.5. This

encourages developing new algorithms that use ANN’s strengths as in this thesis.

AI based codes are regarded as intelligent by some researches as far as they do some

tasks like manipulating mathematical formulas, prove theorems and understand some

amount of natural language. Nevertheless, for some researches these programs are

limited with learning and this affects the level of understanding. Even though the

experimental proof of success of these programs may not be acceptable by more

mathematically inclined people, the proof mechanism defines the limits and the special

conditions of the working algorithm [53].

After formulating the problem, various possible action sequences are employed to

reach the solution. Different search strategies can be used depending on the problem

type and the history of the data [32].

In regard to that, at the beginning of the aircraft design process researchers may

have huge numbers of data from wind tunnel tests as well as from flight tests at least for

the conventional aircraft. All of these data with engineering sense of experienced

engineers, which is inseparable throughout a design process, have great value on all of

the design phases. Learning from data, which is data mining, with the combination of

engineering sense has very precious fine tuning effect on a design with knowledge based

methods. As a result, some of these complex interactions can also be estimated with

relative magnitudes just from the data at hand at the beginning of the design process,

which helps to accelerate the calculations and force the results to converge to better

values. Aircraft design with dependent and independent variables with known interactions

to each other in an optimization process can be improved with mimicking human

intelligence, i.e. artificial intelligence, for the early as well as ensuing stages of design.

In this thesis, it is aimed to use Probabilistic Neural Networks in a hybrid method. It is

selected because of its ease of handling binary values and affecting the computational

speed accordingly. This method is then to be used for the optimization problems of

aerospace environment, which are closed loop processes and a probabilistic method

supports to investigate the search space efficiently. Before introducing the algorithm,

Probabilistic Neural Networks and its application areas are presented. Despite the fact

that, Probabilistic Neural Networks is a kind of Artificial Neural Networks, it is better to

describe it after mentioning the extensive issue that is probability at the next section.

2.4. Probability

Determining what is true in the world is based on our observations of the world [24],

and our cognation. In other words, our knowledge is limited with our discoveries until

this time. Because, for most of the circumstances we cannot have a mass of data from

the required aspects, we decide on the outcome with some knowledge and assumptions,

which depend on our previous observations and our cognation. This prediction process is

called reasoning under uncertainty. To make a good decision, an agent does not consider

only the previous knowledge and assumptions accordingly; as well it must take into

account the other possible situations and their probabilities. Thus, reasoning under

uncertainty is related with both decision theory and probability theory [24].

35

Also as stated by Bishop [54], uncertainty is the key parameter for the pattern

recognition. The probability theory when combined with the decision theory serves a

consistent framework to do estimations even for defect or vague information [54].

The systems that use artificial intelligence do not always have enough information to

make reasoning and decisions. In many situations, they are incomplete or even

unreliable. Then, decisions should be made by the artificial intelligence system under

uncertain conditions; it means that the system has to make decisions under uncertainty

[24], [47].

When the optimization problem deals with stochastic variables rather than

deterministic values, probabilistic methods are used. The unsystematically disturbed

variables can be the dimensions of parts of a mechanical system which have tolerances,

or the loads of an aircraft under changing flight conditions [43].

Considering that 𝑋 is a discrete unsystematically distributed variable, the probabilities

for all possible values of 𝑋 are P(X) that is the probability distribution of 𝑋. If all the

possible values of 𝑋 have the same probability, then this is called as uniform probability

distribution. There are several probability distributions. One more example can be

binominal distribution used when there are 𝑛 independent trials. Each trial has two

possible outcomes (success or failure) and the probability of success is constant over all

trials and presented by Sucar [47] as:

𝑃(𝑟 𝑛, 𝜋) = (
𝑛

𝑟
) 𝜋𝑟(1 − 𝜋)𝑛−𝑟

(2.18)

Where,

(
𝑛

𝑟
) =

𝑛!

𝑟! (𝑛 − 𝑟)!

(2.19)

Three properties of probability are listed below and all conventional probability theory

can be derived from these rules [47]:

1. 𝑃(𝑋) is a continuous monotonic function in [0,1]: Closer to 1 means that the event

is more likely to happen, else, closer to 0 means that it is less likely to happen

2. Product rule: P(X, Y Z) = P(X Z)P(Y X, Z): Probabilities of dependent events are

related with their conditional probabilities

3. Sum rule: P(X 𝑌) + P(¬X Y) = 1: The probability of an event to happen and not to

happen are complements

Where,

 𝑋, 𝑌, 𝑍 are binary variables and P(X) is the probability of X.

 P(X Z) is the conditional probability; the probability of X given 𝑍.

 P(X, Y Z) is the probability of X 𝐴𝑁𝐷 𝑌 (logical conjunction) given 𝑍.

 P(¬X Y) is the probability of NOT 𝑋 (logical negation) given 𝑌.

36

Thus, if two events, 𝑋 and 𝑌, are independent from each other, the simultaneous

occurrence of these events is found by:

 P(X, Y) = P(X)P(Y)

(2.20)

The function that calculates the probability of a variable X while X = xi is named as

the probability mass function and given by Rao [43]:

𝑓(𝑥𝑖) = 𝑃(𝑋 = 𝑥𝑖)

(2.21)

If the probability of the variable X is liked to be defined for the cases that X is equal or

less than a number, 𝑥, then the probability is cumulative probability and the function is

called the cumulative distribution function [43]:

𝐹(𝑋) = 𝑃(𝑋 ≤ 𝑥) = ∑𝑓(𝑥𝑖)

𝑖

(2.22)

Probability density function of an unsystematically distributed variable (which is the

continuous case) is given by Rao [43]:

𝑓(𝑥)𝑑𝑥 = 𝑃(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥)

(2.23)

The distribution function of 𝑋 is defined by Rao in [43] as:

𝐹(𝑥) = ∫ 𝑓(𝑥′)
𝑥

−∞

𝑑𝑥′

(2.24)

Where the normalization condition is presented by Rao [43] as:

𝐹(−∞) = 0 𝑎𝑛𝑑 𝐹(∞) = 1

(2.25)

37

Figure 2.13 Probability density and distribution functions of a continuous random variable X
(a) density function; (b) distribution function [43]

The central tendency or average and variability of a variable are termed as the mean

value and the standard deviation, respectively. There are several distributions for

discrete and continuous cases. Some are listed by Rao [43] on the Table 2.6:

Table 2.6 Types of probability distributions (analytical models) [43]

Discrete Case Continuous case

Discrete uniform distribution Uniform distribution

Binomial Normal or Gaussian

Geometric Gama

Multinomial Exponential

Poisson Beta

Hypergeometric Rayleigh

Negative binomial (or Pascal’s) Weibull

Before starting to explain the Cavus algorithm, an example is taken from Bishop [54]

to describe the probability theory and its basic rules for a better understanding.

Figure 2.14 Probability theory [54]

f(x)

x

F(x)

x

(a) (b)
0

1

yj

x
i

c
i

r
j
 n

ij

38

Considering two unsystematically distributed variables 𝑋 and 𝑌, where 𝑋 takes the

values 𝑥𝑖 for 𝑖 = 1…𝐾 and 𝑌 takes the values 𝑦𝑗 for 𝑗 = 1…𝐿 on the Figure 2.14, and the total

number of trials is 𝑁. The number of trials, where 𝑋 = 𝑥𝑖 as 𝑌 = 𝑦𝑗, is then 𝑛𝑖𝑗. On the

figure, the number of trials that 𝑋 = 𝑥𝑖 independent from the value of 𝑌 is 𝑐𝑖, and similarly

the number of trials 𝑌 = 𝑦𝑗 independent from 𝑋 is 𝑟𝑗. The joint probability, where 𝑋 = 𝑥𝑖

as 𝑌 = 𝑦𝑗, is denoted by 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗). These are the points that fall in the cell 𝑖, 𝑗 and

the joint probability is found as [54]:

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁

(2.26)

Then, the total points fall in the column 𝑐𝑖 is X = xi, that are irrespective of the value

of Y, and the probability is [54]:

𝑃(𝑋 = 𝑥𝑖) =
𝑐𝑖
𝑁

(2.27)

Also, the total points fall in the column 𝑟𝑗 is 𝑌 = 𝑦𝑗, that are irrespective of the value

of X, and the probability is [54]:

𝑃 𝑌 = 𝑦𝑗 =
𝑟𝑗

𝑁

(2.28)

In addition to that, the total number of trial points on column 𝑖 is calculated as [54]:

𝑐𝑖 = ∑ 𝑛𝑖𝑗
𝑗

(2.29)

Thus, from Eq.(2.26) and Eq.(2.27):

𝑃(𝑋 = 𝑥𝑖) = ∑ 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)

𝐿

𝑗=1

(2.30)

Actually, Eq. (2.30) is the sum rule of probability. When we consider that the trial

points fall in cell 𝑖, 𝑗 and their probability on column 𝑖, it is written as 𝑃 𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖) and

called the conditional probability of 𝑌 = 𝑦𝑗 given 𝑋 = 𝑥𝑖 and calculated as [54]:

𝑃 𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖) =
𝑛𝑖𝑗

𝑐𝑖

(2.31)

39

After combining the equations Eq.(2.26), Eq.(2.27) and Eq.(2.31), the product rule of

probability is shown as [54]:

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
=

𝑛𝑖𝑗

𝑐𝑖
.
𝑐𝑖
𝑁

= 𝑃 𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖)𝑃(𝑋 = 𝑥𝑖)

(2.32)

The rule of symmetry is another property of probability, which is [54]:

𝑃(𝑋, 𝑌) = 𝑃(𝑌, 𝑋)

(2.33)

When we handle the rule of symmetry and the product rule together, we get the

relationship between the conditional probabilities, and this relationship is called as Bayes

theorem [54]:

𝑃(𝑌 𝑋) =
𝑃(𝑋 𝑌)𝑃(𝑌)

𝑃(𝑋)

(2.34)

Bayes theorem is very effective in pattern recognition and machine learning [54].

Any problem that involves uncertainty can be solved by probability theory. With the

era of big data, the automated methods for data analysis are being developed. These

automated methods are known as machine learning methods and that are used to

estimate the following or unknown part of the data from the available data. While making

decision, the probabilistic methods play a big role. Thus, those machine learning

algorithms automatically detect the pattern of the available data and predict the pattern

of the data under uncertainty [55].

Table 2.7 Main types of probabilistic graphical models [47]

Type
Directed/

Undirected

Static/

Dynamic

Probabilistic/

Decisional

Bayesian classifiers D/U S P

Markov chains D D P

Hidden Markov models D D P

Markov random fields U S P

Bayesian networks D S P

Dynamic Bayesian networks D D P

Influence diagrams D S D

Markov decision processes (MDPs) D D D

Partially observable MDPs D D D

40

2.4.1. Probabilistic Neural Networks

Probabilistic Neural Networks (PNN) use non parametric probability density function

(PDF) estimation for classification with a structure of Neural Network. The training

process is fast but on the other hand it needs lot of memory. While the training set

increases it can approach Bayes optimal, besides it becomes sensitive to outliers [56].

The objective of the Probabilistic Neural Networks is to classify any new data into one

of the classes introduced before. To estimate the class of the new data point, the PNN

uses a probability density function for each of the classes [57]. After calculating the

probabilities the data is classified to the class which has the highest value. The PNN has

four layers and can map any input pattern, whether that has continuous or binary

variables, to any number of classifications. By defining a set of weight, which equals to

the new training vector, a modification on the decision boundaries is possible with the

new data. Parallel processing is also possible with PNN. Moreover, nonlinear multivariate

regression surfaces and subsequent probabilities of an event can be calculated, as well

with a small change on the structure it can be used as an associative memory [14].

PNN can be illustrated as the following:

Figure 2.15 Probabilistic Neural Networks [14]

Input layer has a number of neurons equal to the number of the variables of the

problem and each has a connection with the neurons of the next layer. This hidden layer

covers the pattern units and it has as many neurons as the samples in the training set.

X1 X
2
 X

3
 X

m

𝑓𝐴𝑖(𝑥) 𝑓𝐵𝑖(𝑥)

𝑂𝑖

+ → 𝐴𝑖

− → 𝐵𝑖

𝑂𝑗

+ → 𝐴𝑗

− → 𝐵𝑗

𝐼𝑛𝑝𝑢𝑡 𝑈𝑛𝑖𝑡𝑠

𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑈𝑛𝑖𝑡𝑠

𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠

𝑂𝑢𝑡𝑝𝑢𝑡 𝑈𝑛𝑖𝑡𝑠

41

Each training sample has a Gaussian function centred at. Afterwards, the hidden layers at

the same classes are connected in the relative summation units, with this way additional

pairs of categories can be added to the output vector [14], [58].

At first, the input vector 𝑋 is multiplied (dot product) with weight vector 𝑊, then a

nonlinear operation is performed before transferring the activation level to the

summation unit. In Probabilistic Neural Networks instead of using sigmoid activation

function used for back-propagation, an exponential function is used. When inputs, 𝑥, and

weights, 𝑊, are normalized to unit length this exponential function, or in other words the

activation function, becomes [14]:

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑒
[−

(𝑊𝑖−𝑋)𝑡(𝑊𝑖−𝑋)

2𝜎2]

(2.35)

Here 𝜎 is the smoothing parameter and it has a significant effect on the PDF. While

small 𝜎 produces distinct modes, larger 𝜎 eases the interpolation between points.

Further, very large 𝜎 converts the shape of PDF to Gaussian [14].

Figure 2.16 The smoothing effect of σ on an estimated PDF from 5 samples [14]

𝜎 = 0.1

𝜎 = 0.2

𝜎 = 0.5

𝜎 = 1.0

𝑓𝐴(𝑥)

𝑓𝐴(𝑥)

𝑓𝐴(𝑥)

𝑓𝐴(𝑥)

0 1 −1

42

The summation units sum the inputs coming from the pattern units and these sums

are simply the sum of small multivariate Gaussian distributions, which are centred at

each of the training samples. Indeed, with changing smoothing parameter it can

approximate any density function. Figure 2.16 shows the effect of smoothing parameter on

an estimated PDF for 5 training samples. With a small value of smoothing parameter, 𝜎 =

0.1, each training points is illustrated with 5 distinct modes. When the value is increased

to 𝜎 = 0.2, high degree of interpolation occurs between the samples. With a value of

𝜎 = 0.5, the shape approximates the Gaussian and has a single mode. The smoothing

parameter with a value of 𝜎 = 1.0 has a flattening effect on the distribution and also

extending the tails [14].

When σ → 0 the decision boundary forms like a very nonlinear boundary as the

nearest neighbour classifier, also when σ → ∞ then the decision boundary becomes a

hyperplane [14], [59]. Optimal separation in general is not possible with the limiting

values of σ. The network of the PNN is similar to that of the nearest neighbour decision

rule [60] proposed by Hecht-Nielsen [61]. Therefore, in accordance with the density of

training samples it is better to select a degree of averaging of nearest neighbours rather

than a single nearest neighbours. Further, this value of the smoothing parameter is also

affected by the dimension of the problem and the number of training patterns. Yet to find

a reasonable value is not very hard, since the misclassification does not vary

substantially [14], [62].

The main properties of the PNN are presented by Specht in [14], it can:

 be used for mapping, classification or direct estimation of a posteriori probabilities

 be used as an associative memory: If some of the variables are unknown then the

missing values are found by scanning all the possible values which maximize the

PDF.

 be used to estimate a category of a new pattern even after introducing each

category with one representing training pattern. Not only the decision boundary

becomes complex but also the generalization improves with additional patterns

 tolerate noisy samples

 be used for scattered data

 be used for time-varying data

 be as faster as 200,000 times than back-propagation [56] and it has parallel

structure

On the other hand, it requires high memory space to store the model [63].

2.5. Comparison of the Algorithms

Table 2.8 is the performance table for some of the previously discussed algorithms,

which were also used for comparison in the following sections. These comparisons here

are illustration purposes only and the inferenced ideas from the references [13], [14],

[32], [24], [43], [44], [45], [46], [47], [52], [54], [55], [64]. In the table, the

properties in the last two highlighted lines actually indicate the deficiencies, and the rest

points the superiorities of the ANN algorithms.

43

Table 2.8 Comparison of the Algorithms

Property
Genetic

Algorithm

Simulated

Annealing
Globex ANN

Convergence speed fast slow very fast fast

Initial population dependency high high high low

Global search capability high low low high

Convergence to local minimum high high high medium

Continuous Problems high high high high

Discrete Problems medium low high high

Memory usage medium low very low high

Computational effort high medium low high

Source: illustration purposes only

Besides the fact that ANN algorithms demand high capacity of memory and high

computational effort, they are preferred because of their high global search capability

and convergence speed to the optimum. Likewise the example problems in this thesis, if

the design problem requires rather more time to calculate the result of the objective

function than the time for the optimization algorithm itself, and as well if the problem has

discrete structure, then it is more favourable to use ANN algorithms.

Although, the main bottleneck of the ANN algorithms is their need for high computer

capacity, there are many ongoing researches about it because of the facts that:

 Powerful hardware are also under development [14]

 The new discoveries with these algorithms ease the tasks of the scientists already

and they have still undiscovered aspects, so they are open to any improvements

In this thesis, with the developed algorithm it is aimed to integrate one of the ANNs

to gain its pros (like handling nonlinear complex problems efficiently) while diminish the

cons (as the case, high memory usage) by treating the search space as patterns and

reducing the dimensions accordingly. Although the ANN algorithms need powerful

computers, they have the capacity to handle the huge number of unstructured data and

to process functions in parallel that most of the traditional methods cannot manage. As a

result, with its hybrid structure the developed algorithm has better optimization results

as well as lower computational effort and time.

44

3. Cavus Algorithm

An optimization problem is composed of dependent and independent variables.

Deciding on the variables, which have as possible as lower level multicollinearity, and on

the objectives is the first challenging part while constructing algorithm. If there is no

training set, the guided random search techniques as described in Chapter 2 -Genetic

Algorithm and Simulated Annealing- can be used. However, the run time is directly

affected with the increasing number of variables, and the quality of the results by the

size of the search space. If there is a training dataset, numerical techniques like Multiple

Nonlinear Regression and Kriging can be combined with Multiple Gradient Descent

Algorithms to optimize the design. Due to huge number of calculation steps and

interpolating mechanism, the convergence quality and the run time change drastically.

When it comes to driving information and efficiency, the best way of searching and

using the data becomes the leverage or key for the robustness of problem solving.

Artificial Intelligence (AI) algorithms combine mathematical models of the computer

science and big datasets to enable problem solving efficiently. Predictive algorithms of AI

are able to discover the patterns and detect the anomalies of the system.

For an optimization problem, the total input-output calculations of every possible

input are CPU intensive and cost time. If a good relation between input and output can

be drawn, and well-fitted surrogate models can be extracted from the relation, the

computational effort and the time can be reduced. When the initial sets of data exist or

are produced by a design code the Machine Learning algorithms can be trained and then

used to test the further data. The idea here is to develop an algorithm to use for

surrogate modelling with integrating an AI method, while the surrogate models are used

for approximating the outcome of a function without utilizing the exact inputs, and the

relationships between the inputs and outputs can be assessed well with an AI algorithm.

That means the developed model is used as a black box to guess the patterns more likely

to be successful. Then only then the real calculation would be done when the pattern has

better probability, which is considered together with the inherited success and the

neighbouring patterns. But for the exploration, the developed algorithm is used to define

the whole pattern space which corresponds to the design space indirectly. Especially

because of its correlation characteristics, the method may best fit to the problems that

have deterministic characteristics rather than the problems that have stochastic

properties. In other words, the closed loop processes are well application areas. Like an

aircraft design with an aircraft mission, that uses known amount of fuel to convert the

chemical energy to potential and kinetic energy.

Although the aircraft are designed with predefined requirements, the whole design

process includes lots of unknowns and uncertainties that have not been defined with

exact formulations. Thus, before the first flight, some hours of flight simulations are

45

performed and corrections are done as much as possible. However, for a safe flight wind

tunnel tests are done at first and a rough flight envelope is defined also based on

calculations, accordingly. Then, real test flights are done to improve this envelope and to

fulfil the certification requirements for further safe flights. Throughout this design cycle,

the calculations are improved by experienced engineers in parallel. All of these processes

are time and budget consuming. This know-how accumulation, transfer and the best use

of data become vital. Even a small improvement at the pre-conceptual design phase

saves time and budget a lot, and moreover even life.

A very detailed design is not aimed at the early design phase of an aircraft, because

every detail cannot be exactly structured straight off at that stage, but a good

optimization algorithm that guesses better design solutions is always on demand for

aerospace domain. Classical evolutionary optimization algorithms that are mostly used in

aerospace may be not be much efficient as discussed and shown in the following

sections. Because its consistent characteristics, surrogate models that may fit best to the

design area and be explored and trained by an Machine Learning algorithm is to be more

efficient then the classical methods. The basic methods at this area are correlation

algorithms and they may be the good starting points. Actually, the correlations between

input and output for an aircraft design case were already worked in [65] and [66]. From

these studies, the inference was made as that, in an aircraft design there is logical

relations between inputs and outputs, among which reasonable patterns can be

extracted. Accordingly, the related patterns were produced and illustrated in [67].

In this study, instead of using instant variable values and interpolation between them,

the respective changes of design variables from one design solution to others are

concerned and stored while searching the subsequent design points. This comparison

stage helps the algorithm to shape and reshape the search surface in parallel with

surrogate patterns at every iteration, and feeds the algorithm with more promising trial

points, accordingly. The success of the approach is examined and verified in Section 3.1.

Probabilistic Neural Networks which is mentioned at Part 0 is used to find out the desired

changes on the search space. Thus, this method classifies the gradients in terms of each

optimization parameter and objective function changes at an intermediate step. Then, it

continues with more probable sections of the design space by assigning new training

points as using a dimension reduction method in parallel. Here, the trial points are also

called as the training points. This should not result in any confusion; the reason behind is

that the trial points employed in one iteration are also used in the training patterns for

the successive iteration. The related multidisciplinary design optimization flowchart is

shown in Figure 3.1.

46

Figure 3.1 Multidisciplinary Design Optimization Flowchart for Cavus Algorithm

The idea of the Cavus algorithm was introduced step by step with the studies in [68],

[69], [70], and [71]. In the first two studies, Multiple Cooling Multi Objective Simulated

Annealing Algorithm (MCMOSA) is used to optimize a supersonic multirole aircraft. The

unsystematically distributed nature of the MCMOSA algorithm was improved with Pearson

Product correlation and a basic knowledge-based method was integrated accordingly to

have better optimization results. Indeed, besides linear fitness function, elliptic and

ellipsoidal fitness functions are used in MCMOSA algorithm. With these approaches, the

pareto front is aimed to be captured by the geometrical functions. The idea is to draw a

perfect pareto front and then reduce the distance between this perfect pareto and cost

function results. Since, the perfect pareto is known geometrically, a better design point

corresponded to each point on the pareto would be guessed with the help of

elliptic/ellipsoidal fitness functions. As in Simulated Annealing the cost function is

replaced by the energy of the system in MCMOSA. The specific temperature is used while

computing the change in the energy of the system. If the energy is reduced then the trial

point is accepted. However, the trial point may also be accepted without considering the

energy reduction but having the probability of reduction for the next steps. In MCMOSA,

instead of one fitness function a population of fitness functions are minimized together.

Another originality of the algorithm is the assignment of a specific temperature

parameter to each fitness function [72], [73]. The so-called random walk of Simulated

Annealing in [68], which is one of the guided random search techniques, used in the

optimisation part is improved with an introduced knowledge-based technique in [66].

For the aircraft design problem, this method gives better results just with adding an

intermediate step that analyses the environment and assigns vectored increments to the

design variables. The run time is decreased, while the iteration count stayed the same.

For the limited loop number the results of the trained algorithm are closer to the Pareto

front and distributed more firmly.

Optimizer

Design Variables

x1, x2, x3, x4

Objectives

Constraints

min f(x)

g(x) ≤ 0

D1

D2

D3

Dn

Disciplines

y
1 → y

2

y
2
 → y

3

PNN

patterns

D. reduction

correlation

selection

47

Besides the fact that, this improvement serves better accuracy and slightly better run

time, the function of evaluations are not affected due to the fact that the termination

criteria was to fulfil the limited number of loops. Indeed, with this study, [66], it was

observed that the relevance, strength and the direction of the relation between the

variables and the objectives are very effective, which should be examined in detail.

Actually, the main deficiency of this kind of algorithms may be their so-called random

walk nature which increases the number of function evaluations till converging to a local

optimum.

Meanwhile, the coupled algorithms with reliability based function Neural Networks,

probability and evidence theory are used by researchers and better results are gained.

Likewise the general approaches, they also use the interpolations between the design

points. In engineering, especially in conceptual design phase, due to the lack of

knowledge, assumptions are made and some fix numbers are used to overcome the

uncertainties. Alternatively, to handle these epistemic uncertainties the appropriate

probabilistic models are searched instead of using unsystematically distributed variables

with assumed probabilistic models [74], [75]. Even though, these techniques are

promising for the complex systems, they need high computational effort [76].

Considering all of these approaches with their pros and cons, the novel optimization

technique used in this study is developed. It depends on rule-based agents that search

for and act to find out the promising design space. The Probabilistic Neural Networks

algorithm is integrated in the observation phase, which is applied here for its success on

pattern recognition and classification problems. In this hybrid method the advantages of

both gradient based and evolutionary algorithms were used. As in the gradient based

approaches, it uses the relative change of independent and dependent variables between

each design point to trace the whole search space; and also as in the evolutionary

algorithms it uses the roles of population in the related range. As stated before, in an

optimization process the run time and the convergence characteristics are affected by

increasing the number of variables drastically. This disadvantage is superseded with a

hybrid technique in this study by reducing the number of poor design points which are

anticipated from the previous experiences, i.e. training points.

The method works first as an observer and correlates the input and output pairs, then

as a classifier and then as an estimator for the optimization part; and this improves the

unsystematical selection of the variables. In view of the fact that, the time expended in

design part is in most cases more than the time expended in optimization part, which

calls the design part for each design point. This also means that, total run time is

increased by the number of candidate design points multiplied by the time to execute

one design point in design part. In the Cavus algorithm, the time to spend for calling and

finding the results of an objective function in barren parts of the design space is

eliminated by a classification process. That also helps to shorten the time expended in

design part with reducing the poor candidate design points to be calculated. This gained

time is used to find out more promising design points, so that improves the convergence

with fewer amounts of function evaluations.

As illustrated in Figure 3.1 first the correlation matrixes should be structured. Then, as

stated in Figure 3.2, the number of variables and the first set of training points are

introduced to the program at first. The number of variables may be decided to be as

much as based on the design case, and if they are adaptive to any change between the

boundaries during the optimization process.

48

Figure 3.2 Flowchart of the Cavus Algorithm

The number of intervals may be decided to be as much as also to increase the

accuracy. On the other hand, the computation time and the memory usage increase

accordingly, thus it is better to keep it smaller and even 1. Since the number of training

points is another concern for the success of the AI algorithms, two different cases are

tested. For the design cases selected in this study, training points are kept small enough

and for each pattern 𝑛 training points are selected unsystematically. Depending on the

49

problem characteristics the number of training points can also be selected proportional to

the number of independent variables. Likewise, with increasing variable numbers the

number of training points can be increased accordingly as having a value between 𝑘 𝑥 𝑚

and 𝑘𝑚, where the number of intervals of each variable on a pattern is 𝑘 and the number

of independent variables is 𝑚.

Indeed, the number of training points is selected based on the study at the section

3.1, and they are applied on each grid, then the unsystematically selected variable

values are sent to the design part. Then the results are compared with each other to

build up a correlation matrix, which shows the changes in the independent design

variable values and the objective values. This means, if the training point number is 𝑛,

the resultant combinations will be 𝑛 𝑥 (𝑛 − 1) with considering the increment and also

decrement effect. At that stage, the increment is symbolized as 1, and the decrement as

 −1. If there is no change between the compared values it can be taken as 0. With bipolar

(and also 0) values and the related intervals, each combination of training points can be

processed as patterns. The mentioned numbering system will be used at the next steps

for handling the correlations of the patterns. If the objective is to minimize the fitness

function the correlation patterns with the objective correlation value −1 are taken as the

successful patterns, others are left as unsuccessful patterns. Additionally, depending on

the lower and upper bounds of the dependent and independent variables, the search

space for each variable is divided in 𝑘 intervals, and the interval boundaries are stored.

Each variable has number of patterns, 𝑝𝑡, calculated as in Eq. (3.1):

𝑝𝑡 = 2 ∗ (𝑘 + ∑(𝑘 − 𝑖))

𝑘

𝑖=1

(3.1)

If the number of design variables is 𝑚, the amount of total potential patterns is 𝑝𝑡𝑚.

As an example, for 1 variable and 3 intervals the possible patterns are illustrated

sequentially in Figure 3.3; for 2 variables and 3 intervals the patterns are illustrated in

Figure 3.4.

Where ■ = 1, ■ = 0,  = −1

Figure 3.3 Patterns for one variable (k=3)

P
a
tt

e
rn

s

Intervals

50

Figure 3.4 Patterns for two variables (k=3)

For 1 variable and 5 intervals the possible patterns are illustrated sequentially in

Figure 3.5, thus there are 30 patterns; for 2 variables and 5 intervals there are 900

patterns which are illustrated by matching 30 patterns of each variable in Figure 3.6.

Afterwards, for the first training dataset the unattempted patterns can be extracted from

the total pattern sets.

Figure 3.5 Patterns for one variable (k=5)

Intervals

P
a
tt

e
rn

s

P
a
tt

e
rn

s

Intervals

51

Figure 3.6 Patterns for two variables (k=5)

From Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6, it can be interpreted as when the

number of intervals is increased the number of patterns is also increased rationally.

Because each pattern requires memory and costs run time, the number of intervals

should be kept as less as possible.

After deciding on the number of intervals and finding the total patterns, dimension

reduction equation (3.12) can be applied on them to reduce the number of nonessential

patterns to save the memory and run time accordingly. Since, the patterns differ from

each other with a few digits as being structured like neighbours; similar patterns are

classified mostly in the same class at the next step.

At that point, Probabilistic Neural Networks comes into action. As illustrated in Figure

3.2 it is used to find the promising patterns between the untried patterns. The algorithm

is coded in Matlab R2018b, and the Deep Learning Toolbox is used to apply Probabilistic

Neural Networks. The function is called as newpnn and the usage is explained in

Appendix.

Probabilistic Neural Networks uses Bayes Strategy instead of using sigmoidal

activation function, which is widely used with an exponential function in back-propagation

algorithm. This method can compute nonlinear decision boundaries, which can be

Intervals

P
a
tt

e
rn

s

52

updated immediately with a new data, and can also be operated in parallel [14]. Because

of its structure, it is faster than back-propagation especially for pattern recognition and

classification.

Probabilistic Neural Networks (PNN) is applied here to classify the patterns depending

on their acceptance probabilities. PNN was introduced by Specht and here summarized

based on the flowing references; [14], [56], [59] and [62]:

While classifying patterns the decision rules are set to minimize the expected risks.

These rules or strategies are called Bayes Strategies and can be applied to any number

of categories, [14], [56] and [77]. Considering the categories A and B the state of

natures are A and B, and the probability density functions are fA(x) and fB(x)

respectively. Also, IA and IB are the loss functions related with the decisions d(x) = A

when  = B and d(x) = Bwhen  = A (the losses are taken to be equal to zero when the

decisions are correct). Further, hA and hB are the priori probability of occurrence of

patterns from category A and B, and hB = 1 − hA [56].

Then, for a state  based on a set of measurements represented by a p-dimensional

vector 𝑥𝑡 = [𝑥1 …𝑥𝑗 …𝑥𝑝] the Bayes decision rule is written as in Eq. (3.2) [56]:

𝑑(𝑥) = 𝜃𝐴 𝑖𝑓 ℎ𝐴𝐼𝐴𝑓𝐴(𝑥) > ℎ𝐵𝐼𝐵𝑓𝐵(𝑥)
(3.2)

𝑑(𝑥) = 𝜃𝐵 𝑖𝑓 ℎ𝐴𝐼𝐴𝑓𝐴(𝑥) < ℎ𝐵𝐼𝐵𝑓𝐵(𝑥)

Also, the boundary between the region in which Bayes decision d(x) = A and the

region in which Bayes decision d(x) = B is given as in Eq. (3.3) [56]:

𝑓𝐴(𝑥) = 𝐾𝑓𝐵(𝑥)

(3.3)

Where

𝐾 =
ℎ𝐵𝐼𝐵
ℎ𝐴𝐼𝐴

(3.4)

The ratio of the loss functions, hB/hA, can be set to −1 if there is no reason for biasing

the decision [56]. According to [57] a family of estimates of f(x), at all points x the

probability density function is continuous, is given with Eq. (3.5) [56]:

𝑓𝑛(𝑥) =
1

𝑛
∑𝑊[

(𝑥 − 𝑥𝐴𝑖)


]

𝑛

𝑖=1

(3.5)

53

Eq. (3.6) is the weighting function 𝑊(𝑦) and states that weights are not bounded and

cannot reach infinity:

𝑠𝑢𝑝−∞<𝑦<∞ 𝑊(𝑦) < ∞

(3.6)

Here, sup indicates the supremum.

∫ 𝑊(𝑦) 𝑑𝑦 < ∞

∞

−∞

(3.7)

𝑙𝑖𝑚
𝑦→∞

 𝑦𝑊(𝑦) = 0

(3.8)

∫ 𝑊(𝑦)𝑑𝑦 = 1

∞

−∞

(3.9)

In Eq. (3.5), let  is chosen as a function of n then  = (n), and

𝑙𝑖𝑚
𝑛→∞

𝑛(𝑛) = ∞

(3.10)

[57] proved that the expected error goes to zero with the number of training samples

going to infinity:

𝐸 𝑓𝑛(𝑥) − 𝑓(𝑥) 2 → 0 𝑎𝑠 𝑛 → ∞

The assumptions of the absolute continuity of the distribution F(x) are relaxed at [77]

and [78], and then [79] extended Parzen’s results for multivariate case [56]. Then the

multivariate estimates are found by Eq. (3.11) as:

𝑓𝐴(𝑥) =
1

(2𝜋)𝑝/2𝜎𝑝

1

𝑚
 × ∑𝑒𝑥𝑝 [

(𝑥 − 𝑥𝐴𝑖)
𝑇(𝑥 − 𝑥𝐴𝑖)

2𝜎2
]

𝑚

𝑖=1

(3.11)

54

Where  is the smoothing parameter and it has a very important influence on the

approximations.

The Probabilistic Neural Networks like “Feed Forward Networks” has a parallel

structure [14]. This type of Neural Networks is very flexible to accept new data and it can

be applied easily with its one-step only learning technique [56]. It learns not from trials

instead from experience, that others made for the Neural Network [56]. Therefore it

depends on the functions used inside the neuron [14]. Because of these characteristics,

the Probabilistic Neural Networks is faster than back-propagation [80] and they perform

well with few training points [56].

In this study, Probabilistic Neural Networks is preferred to use for their advantages

and success on the pattern recognition and classification, and also their tolerance to the

usage of binary-bipolar numbering combination.

As an example, in Figure 3.8 the usage of Probabilistic Neural Networks in the Cavus

algorithm is illustrated for two variables, 𝑋1 and 𝑋2, and the objective, 𝑌. At first, the

successful and unsuccessful patterns are distinguished according to their influence on the

objective function. If the objective function is decreasing (for finding minimum) at a

pattern then the pattern is defined as the successful pattern and shown here with a blue

arrow. The head of the arrow shows the direction of the action. If it is away from the

lower bound of the variable, it means that the variable value is increased at the

successive point, and the pattern has the interval value of 1 for that variable. If it is in

the opposite direction then the value for that interval becomes −1. If the pattern has an

effect on the objective function to increase then the pattern is defined as unsuccessful

pattern and shown with a red arrow. The directions of the arrows and the numbering for

the successful patterns are also valid for these unsuccessful patterns.

Indeed, the successful patterns are selected based on two criteria.

The pattern:

 that minimizes the result;

 that has the equal resultant value (due to the probability of convergence);

After collecting the successful and unsuccessful patterns, Probabilistic Neural

Networks is trained. The classes are specified based on the related objective function

values. The number of classes for the successful patterns is (𝑛 − 1) . Then the 𝑛𝑡ℎ class is

allocated for the unsuccessful patterns.

The untried patterns are picked out from the combined set of total possible patterns

which are formed with the variable and interval numbers. Untried patterns are applied on

the trained neural network and the possible successful and unsuccessful patterns are

distinguished. Figure 3.8 shows how the Probabilistic Neural Networks selects promising

patterns from the successful and unsuccessful patterns.

As a result, as in the Figure 3.8b the promising pattern would be similar to one of the

grey lines and headed according to the other successful patterns which may be

neighbouring, parallel or both. From the performance values of the tried patterns,

neighbouring patterns which have greater probability to minimize the fitness function are

selected with the help of Probabilistic Neural Networks. From another aspect, it actually

55

matches the patterns which have one or two digit differences from the successful

patterns, and their combinations. These untried promising patterns with successful

patterns are sent to the design part, which calculates the fitness function; and the results

are turned with their corresponding patterns to further deliberation.

At that point, each class has number of patterns. Not all but the most promising

patterns should have the priority. For that reason, the 2-digit hamming distance function

is applied to find out the center of the pattern clusters. With this intermediate stage, the

patterns that have higher probabilities to be successful arise. At the end of this process

throughout the design space there would not be any untraced space. Moreover, all of this

information is gained just from the first set of training points.

For the next step, as in Figure 3.8c, a number of patterns is selected and the next set

of training points is applied to these areas. At this step, a dimension reduction method

can be applied while selecting the training points. Since the algorithm is capable to bring

neighbouring patterns, at least one dimension can be eliminated. After one dimensional

reduction the number of training points becomes:

𝑝𝑎𝑘𝑜2 = 2𝑚 − [2𝑚−2 (𝑚 𝑚𝑜𝑑 2) + 2]

(3.12)

Further case specific reductions can be done accordingly. Each reduction saves

noticeable amount of memory and run time against some compromise on the result.

The following step is illustrated in Figure 3.8d. The process will continue with the

successful and promising successful grids on the search area, which is also stated in the

loop of the flowchart of the algorithm in Figure 3.2.

When the required criterion for terminating the program is reached then the process

is ended with the minimum value (or maximum value for the maximization). If the

fitness is not at the desired level then the selected successful patterns are sent to the

design part for generating further training points for the related intervals as described in

Figure 3.7. The loop is repeated until the desired optimum is reached.

As a result, in Figure 3.8, it can be interpreted that there should be relations between

unsuccessful and successful patterns in inverse proportion and/or direction, and in direct

proportion and/or direction between successful patterns and between unsuccessful

patterns, respectively.

2
 Addressed to my elder sister Pakize

56

Figure 3.7 Logical Description of the Cavus Algorithm

57

Figure 3.8 Selecting promising patterns with PNN

58

3.1. Trend Analysis for the number of Training Points

For making a decision on the required number of training points, a trend analysis was

done. In the first case, 10 training points are given to the first run and also to the each

following successful iterations. The interval number is kept small and selected as 2, which

is independent from the increasing number of variables. Optimization results for a fixed

number of training points, 10, are given in Table 3.1; and for the changing number of

training points, which are proportional to the variable numbers, are given at Table 3.2.

Each pattern value is calculated and checked, if it matches with the predicted value by

the algorithm or not. Because each pattern with a decreasing effect on the objective

function has its inverse pattern, the number of successful patterns is equal to the

number of the unsuccessful patterns, as expected. For the first case, when the number of

training points is kept as fixed, the algorithm loses its success with the increasing

number of variables. If the Table 3.1 and the Table 3.2 are considered together, when the

training points are more than the required value (like the case 𝑛 = 3), the algorithm is

highly trained and it does not let enough patterns to be included in the promising pattern

set. Thus the success of the method decreases. Besides that, for the increasing number

of variable numbers (𝑚 > 3) the fixed number of training points is less than the required

level, then the success of the promising patterns of the optimization diminishes. This

effect is seen in both of the tables, Table 3.1 and Table 3.2, for a relative number of

intervals and variable numbers. It is also observed that with the increasing number of

variables, the success of the algorithm increases as expected; this is because of

eliminating the less promising patterns, which come from more digit changes.

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑡ℎ𝑜𝑑 =
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

(3.13)

Table 3.1 Optimization results for the fixed number of training points (n=10)

Number of variables 7 6 5 4 3

Number of training points 10 10 10 10 10

Number of intervals 2 2 2 2 2

Total pattern number 279936 46656 7776 1296 216

Used patterns 90 90 76 84 58

Unused patterns 279846 46566 7700 1212 158

Successful patterns* 45 45 38 42 29

Unsuccessful patterns 45 45 38 42 29

Promising patterns** 147638 24109 4011 614 83

Total promising patterns* ⁺ ** 147683 24154 4049 656 112

Calculated successful patterns*** 125287 21861 3737 611 106

Success of the method 0.848 0.905 0.923 0.931 0.946

 * Calculated
 ** Estimated
 *** Calculated afterwards

59

Table 3.2 Optimization results for the changing number of training points (n=km)

Time (sec) 410 218 122 74 50

Number of variables 7 6 5 4 3

Number of training points 128 64 32 16 8

Number of intervals 2 2 2 2 2

Total pattern number 279936 46656 7776 1296 216

Used patterns 12586 3076 718 138 32

Unused patterns 267350 43580 7058 1158 184

Successful patterns* 6323 1543 363 70 16

Unsuccessful patterns 6323 1543 363 70 16

Promising patterns** 134851 22052 3587 583 92

Total promising patterns* ⁺ ** 141174 23595 3950 653 108

Calculated successful patterns*** 138166 22980 3836 629 103

Success of the method 0.979 0.974 0.971 0.963 0.954

 * Calculated
 ** Estimated
 *** Calculated afterwards

Further improvements are done by eliminating the points which come from the similar

or partially related intervals. This saves the memory usage. On the other hand, it may

decrease the efficiency. However, with the increasing number of variables the required

memory is also increasing. Due to this fact, the reduced number of patterns is used in

the test cases presented here.

Table 3.1 and Table 3.2 can be interpreted as that, for the design cases that require

high memory and computational time the number of training points can be selected as

less as possible without much compromise to catch the real successful patterns. It is

found that, the ratio of calculated successful patterns in the total promising patterns are

high enough and changing between 85% and 98% for the selected test case. Moreover,

when we consider the ratio of used patterns to total pattern number; for example, in

Table 3.2 for 7 variables it is even 4%, which means 98% of success is reached from the

derived information of 4% of the whole design space. In fact, total patterns are used to

explore the design space better and contribute to the surrogate model. Therefore, the

precise calculations are done on really interesting patterns provided by the surrogate

model and may have the optimum value.

3.2. Test Case: Rosenbrock Function

To demonstrate the functionality of the novel algorithm, Rosenbrock function is used

as an initial test case. This function is mainly used to test the gradient-based

optimisation algorithms. It is a challenging function with having many local minima

especially around the global minimum. Also, it is flexible to be used for 2 or more

variables. For m-dimensional domain, the “Rosenbrock” function is given as:

𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑚−1

𝑖=1

(3.14)

60

The global minimum is 𝑓(𝑥) = 0 at 𝑥 = (1,… ,1). Thus, the global minimum has always

the value, 0, and it is found at 1 for all the axes. Besides, the form can be illustrated for

two variables easily. This case is actually examined step by step in detail in the next

section with the related plots. Further, the following sections present the performance of

the algorithm with the increasing number of variables.

3.2.1. Method description and the results for Rosenbrock Function for 2

variables

The “Rosenbrock” function is illustrated in the next 3-dimentional plot, Figure 3.9, for 2

variables. At the first sight Rosenbrock function seems very easy to find the optima,

however the convergence to the global optimum through the tricky valley is highly

difficult.

Figure 3.9 Rosenbrock Function (3D view)

61

Figure 3.10 Rosenbrock Function (2D view)

Here, the technique is described for 2 variables (𝑚 = 2) in order to ease the illustration

of the optimization steps. This algorithm does not need any starting point but needs

lower and upper bounds. For the two variables 𝑥1 and 𝑥2 , uniformly distributed perturbed

numbers are generated between lower bounds 𝑙𝑏 = [−2.5, −2.5] and upper bounds 𝑢𝑏 =

[2.5, 2.5]. The ranges between the lower and the upper bounds of the variables are divided

into 2 intervals; the interval number is notated as 𝑘 = 2. Thus, the corresponding two

intervals are [−2.5 0] and [0 2.5] for each variable at the first iteration.

For the sake of the performance of the program, the number of the data/design

points (𝑛) to start searching should be selected such as 𝑘 𝑥 𝑚 ≤ 𝑛 ≤ 𝑘𝑚. Any number lower

than 𝑘 𝑥 𝑚 reduces the accuracy of the resultant optimum point, and also any number

more than 𝑘𝑚 expends high memory of the computer and extends the run time. For the

interval number, 𝑘 = 2, and the number of variables, 𝑚 = 2, the number of the data points

that will train the algorithm is selected as 4.

These unsystematically distributed points selected by the computer are also

illustrated on the next figure and tabulated with the resultant 𝑓(𝑥) values on the next

table, Table 3.3.

Table 3.3 Design variables with their boundaries and values for the first training set

Lower

bounds

Upper

bounds

1. Data

point

2. Data

point

3. Data

point

4. Data

point

𝑥1 -2.5 2.5 -0.73995 0.97463 1.67295 -1.28586

𝑥2 -2.5 2.5 1.76959 -0.94789 0.47668 -2.13496

𝒇(𝒙) 152.37190 360.16227 539.66464 1440.42783

62

Figure 3.11 First set of data points

After gathering the training data points, the algorithm calculates the differences

between the variables and the corresponding differences between the results. The

evaluation criteria is that if the value of one variable decreases from one data point to

other data point the value of the related pattern between these two variables is −1,

otherwise if it tends to increase the value is 1. The same rule is applied between the

results/the objective values also. For example for the first and second data points: while

pointing out the direction from point 2 to point 1 (i.e. following the arrow on the figure)

the value of the first variable is decreasing through its first interval, which is represented

as [−1 0]; whereas the second variable is increasing through its second interval, which is

represented as [0 1]. By the way, the result of 𝑓(𝑥) is also decreasing from approximately

360 to 152. This means the pattern between point 1 and point 2 is [−1 0 0 1] and it is a

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 action because the result is reducing also. The comparisons are done for each

point combinations and the patterns are gathered. The degree of success is decided as:

when the result is reducing then it is defined as the successful action; on the other hand

when the result is increasing (for a minimization problem) then it is defined as the

unsuccessful action.

Finally, when the number of data points is 𝑛, then the combination numbers will be

𝑛 𝑥 (𝑛 − 1) and the number of classes of these combinations is at most (𝑛 − 1). In case of

recurring patterns, the number of classes is reduced. Also, one half of these

combinations consist of successful actions whereas the other half is of exactly their

reflected unsuccessful actions, as expected. The reason for that, while combining the

points, the same pairs match two times which are actually just in different orders (i.e.

the arrow just changes its direction).

63

Table 3.4 Successful patterns

Table 3.5 Unsuccessful patterns

However, for 2 variables and 2 intervals there exist (2𝑘)𝑚 = (2 𝑥 2)2 = 16 possible

patterns in total. These possible patterns can be listed as:

Table 3.6 Total possible patterns

After discarding the repeated patterns, out of 16 possible patterns only 8 of them are

used. For the rest 8 patterns there is no information yet; whether they would be

successful or not when they are used.

Since the aim of the novel algorithm is to reduce the function evaluations for the

optimization process, instead of examining these patterns with the new data points,

point 1 - point 2 -1 0 0 1

point 1 - point 3 -1 0 0 1

point 1 - point 4 1 0 0 1

point 2 - point 3 0 -1 -1 0

point 2 - point 4 0 1 1 0

point 3 - point 4 0 1 0 1

point 2 - point 1 0 1 -1 0

point 3 - point 1 0 1 0 -1

point 3 - point 2 0 1 0 1

point 4 - point 1 -1 0 -1 0

point 4 - point 2 -1 0 -1 0

point 4 - point 3 -1 0 -1 0

-1 0 -1 0

-1 0 0 -1

-1 0 1 0

-1 0 0 1

0 -1 -1 0

0 -1 0 -1

0 -1 1 0

0 -1 0 1

1 0 -1 0

1 0 0 -1

1 0 1 0

1 0 0 1

0 1 -1 0

0 1 0 -1

0 1 1 0

0 1 0 1

64

Probabilistic Neural Networks (PNN) is used to decide whether they would be successful

or not. Roughly, PNN finds out the neighbouring patterns of the same classes. The idea of

the new algorithm is that, if a pattern is successful the neighbouring patterns should also

have similar success. PNN helps to reach these patterns. The training patterns are the

successful and unsuccessful patterns that are found out from the trial points of the

previous iteration. Additionally, the classes could be assigned according to the reduction

size on the 𝑓(𝑥) values. Out of this knowledge, (also with ignoring one of the repeated

patterns) the first two successful patterns are grouped into the first class, and the

following two are into the second, and then the last one is into the third class.

Table 3.7 Successful patterns with classes

As a result, the test patterns should be the patterns that are not used before. At this

stage, PNN is applied to distinguish the possible successful patterns and the possible

unsuccessful patterns from the test patterns; the results can be tabulated as:

Table 3.8 Possible successful patterns

Table 3.9 Possible unsuccessful patterns

The classification of PNN is illustrated in the Figure 3.12. The number of successful

classes is selected as (𝑛 − 1) = 4 − 1 = 3; as a result the 𝑛𝑡ℎ class becomes the class of

unsuccessful patterns. As seen in the figure, one pattern has the probability of both to be

successful and unsuccessful. This pattern is illustrated with the red-green diagonal plaid

colouring.

1st class -1 0 0 1

1 0 0 1

2nd class 0 1 1 0

0 -1 -1 0

3rd class 0 1 0 1

1st class 0 -1 0 1

-1 0 1 0

0 -1 1 0

1 0 -1 0

1 0 1 0

2nd class 0 -1 0 -1

1st class -1 0 0 -1

1 0 0 -1

65

Figure 3.12 PNN classification

From the trend analyses, it appears that the effective number of classes for the

successful patterns is between 2 and 𝑚; and for the possible successful patterns is

between 2 and 𝑚/2. Hence, the first patterns of the first 2 classes are chosen from the

successful patterns, and also from the possible successful patterns for the next run.

Eventually, the promising patterns become:

Table 3.10 Promising patterns with their bounds

The next run will continue within these intervals:

For the first promising pattern the bounds of the first variable, 𝑥1 , become [−2.5 0] and

for the second variable, 𝑥2 , they are [0 2.5].

For the second promising pattern the bounds of the first variable, 𝑥1 , become [0 2.5]

and for the second variable, 𝑥2 , they are [−2.5 0].

For the third promising pattern the bounds of the first variable, 𝑥1 , become [0 2.5] and

for the second variable, 𝑥2 , they are [0 2.5].

For the fourth promising pattern the bounds of the first variable, 𝑥1 , become [0 2.5]

and for the second variable, 𝑥2 , they are [0 2.5].

1 0 0 1 -1 0 0-1

1 0

0 1

-1 0

0-1

x2

x1

successful

possible successful

possible unsuccessful

unsuccessful

x1 x2 x1 x2

-1 0 0 1

0 1 1 0

0 -1 0 1

0 -1 0 -1

x1 x2

Lower bound Upper bound

-2.5 -2.5 2.5 2.5

66

Actually, it is known that the global minimum is at the point (1,1) which is between

[0 2.5] for the both variables; hence the correct patterns are highlighted with green in the

Table 3.10.

Although, the first two promising patterns are not able to find the global minimum but

the last two have the possibility. Even though, this is obvious for us, the program

continues with all of the promising patterns. For each promising patterns 𝑛 times the trial

points are used. This means, the next run includes 𝑛 𝑥 4 = 16 data points, where 𝑛 = 4. In

the next figure, Figure 3.13, the data points from the 2𝑛𝑑 run are shown.

Figure 3.13 Second set of data points

The next figure, Figure 3.14, shows the same data points again, but they are

distinguished according to the patterns they come from. Here, it is clearly seen that the

3𝑟𝑑 and the 4𝑡ℎ patterns have advantage over the other patterns, the 1𝑠𝑡 and the 2𝑛𝑑

patterns, to reach the global optimum.

67

Figure 3.14 Second set of the data points grouped with the related pattern numbers

Table 3.11 The unsystematically distributed points for each pattern and the results

The selection of the patterns for the next run depends on the minimum and the mean

values. For each pattern, the minimum and the mean values are normalized and

summed. Afterwards, the sums are ranked in ascendant order, and then the pattern

which has the lowest sum is selected for the next run; that is the 3𝑟𝑑 pattern for this

example. It is also seen that the 4𝑡ℎ pattern which has also meaningful lower and upper

bounds on the second rank and has the minimum 𝑓(𝑥) value.

x1 x2 f(x) min mean

1st pattern -0.66276 0.28543 5.13100

-1.32026 1.64305 6.38466

-0.22011 1.98408 376.15482

-2.28509 0.87873 1896.88885

2nd pattern 0.07440 -1.48748 223.76631

1.20081 -0.72394 469.14832

1.26950 -1.98078 1290.61397

1.88000 -0.38851 1539.68159

3rd pattern 0.98563 1.60215 39.77662

0.08000 1.04000 107.67905

1.26911 0.54730 113.13913

2.36348 2.34444 1052.66234

4th pattern 0.68370 0.49922 0.20104

0.12895 1.59974 251.38481

1.78590 0.98131 488.20277

2.26739 1.90132 1051.19175

5.13100 571.13983

39.77662

0.20104

880.80255

328.31428

447.74509

223.76631

68

Table 3.12 Normalized min and mean values

As in the previous run, each pattern brings some promising patterns after PNN, also.

These are tabulated in the next table, Table 3.13.

Table 3.13 Actual patterns with the promising patterns for the next run

At the 3𝑟𝑑 run, which is illustrated in the next figure, Figure 3.15, the search continues

on the ¼ of the search area which has the highest probability on others.

1st pattern 0.02 0.44 0.46

2nd pattern 1.00 1.00 2.00

3rd pattern 0.18 0.00 0.18

4th pattern 0.00 0.22 0.22

Normalized

min

Normalized

mean
Sum

x1 x2 x1 x2

3rd pattern -1 0 0 1

-1 0 -1 0

0 -1 0 1

0 -1 1 0

4th pattern -1 0 -1 0

-1 0 0 -1

1 0 0 -1

-1 0 1 0

1st pattern 0 1 -1 0

1 0 0 1

0 -1 0 1

1 0 1 0

2nd pattern -1 0 -1 0

-1 0 0 -1

0 -1 1 0

0 -1 0 -1

Lower bound Upper bound

Promising patterns for the next run

0 0 2.5

-2.5 0 0 2.5

2.5

0 0 2.5 2.5

0 -2.5 2.5 0

69

Figure 3.15 Third set of data points

At the 4𝑡ℎ run, the data points come closer to the valley, as it could be seen in the

next figure, Figure 3.16.

Figure 3.16 Fourth set of data points

The 5𝑡ℎ run includes closer data points to the global optimum, however it is still a

tricky area to be able to converge to the right curvature.

70

Figure 3.17 Fifth set of data points

At the 6𝑡ℎ run the data points are highly closer to the global minimum; the 7𝑡ℎ, the 8𝑡ℎ

and the 9𝑡ℎ runs are also need, and they become successful while converging to the

optimum point.

Figure 3.18 Sixth set of data points

71

Figure 3.19 Seventh set of data points

Figure 3.20 Eighth set of data points

72

Figure 3.21 Ninth set of data points

The last run, the 9𝑡ℎ run, is shown again in Figure 3.22 in detail:

Figure 3.22 Ninth set of data points in detail view

73

The termination occurs after 132 function evaluations when there is no change on the

4𝑡ℎ significant figure; at the point:

𝑓(𝑥) = 0.00007 with the variable values 𝑥1 = 1.00417 and 𝑥2 = 1.00912

Whereas Genetic Algorithm reaches 𝑓(𝑥) = 0.00766 with the variable values 𝑥1 =

0.91308 and 𝑥2 = 0.83269 after 8450 function evaluations and 168 generations between the

same boundaries.

3.2.2. The results for Rosenbrock Function for 7 variables

To increase the complexity the number of variables is also increased. For this section

the number of variables is selected as 7. The number of the training data points is

selected with considering the efficient range; as dealt before from the range: 𝑘 𝑥 𝑚 ≤ 𝑛 ≤

𝑘𝑚. It may be advantageous to choose a number which is the power of 𝑘 in order to

have uniformly distributed data points in intervals. Thus, according to this

inequality (2 𝑥 7 ≤ 𝑛 ≤ 27), it saves the run time and the memory to decide on the lowest

value; as 𝑛 = 16.

For 7 variables and 2 intervals there exist (2𝑘)𝑚 = (2 𝑥 2)7 = 16384 possible patterns in

total.

Referring to the trend analyses again, the first patterns of the 6 classes are chosen

from the successful patterns, and also the first patterns of the 4 classes are chosen from

the possible successful patterns for the next run. The 16 data points of the first run are

tabulated with the related resultant values in the Table 3.14:

Table 3.14 Design variables with the results for the first training set (m=7)

x1 x2 x3 x4 x5 x6 x7 f(x)

0.6227 -0.1237 1.0679 0.2338 -0.1481 0.5483 0.2874 255

-0.1314 0.0901 0.0597 0.9998 -0.3585 -0.3670 -0.6343 375

-0.8414 -0.7113 -0.0923 -0.2456 1.5044 0.6850 1.9951 944

0.0794 0.8658 -1.3095 1.8634 0.6080 -0.7601 1.5199 1547

-1.6944 0.5094 -0.3551 -0.5707 -1.9227 1.9676 2.3661 1696

1.5517 1.6179 1.8152 0.6954 2.2401 1.7125 0.9075 2617

-1.2828 1.4843 -0.7182 2.1461 -1.1624 1.1220 -2.1063 5601

2.2155 -0.6165 -1.7444 -0.7580 -1.3331 -0.2233 -1.5972 6006

1.8556 1.1403 2.3475 -1.2974 1.1064 1.3844 -1.2423 6317

0.7023 2.2696 -1.0468 -1.7823 0.1300 -1.2395 -2.3716 7618

-2.3811 -1.3330 1.4753 -1.1354 1.7886 -1.7204 0.4675 9106

-1.1620 2.0591 0.6763 -2.1722 -1.6115 -2.0663 1.1608 9191

-2.0022 -2.0409 0.5160 1.5531 2.1456 -1.4854 -0.0897 9425

-0.3508 -1.5912 -2.4703 0.3586 0.9360 2.3738 -0.5058 10178

1.1185 -1.1639 -1.9998 2.2936 -2.2847 -2.3668 1.7658 14958

1.9065 -2.4749 2.0138 -2.4985 -0.8664 0.1704 -1.2517 15000

74

Figure 3.23 Ranks of the first training set

Table 3.14 and Figure 3.23 illustrate together how evenly the first training set is

distributed on the search space. The 16 data points for the first run are selected

accordingly that, each variable has values distributed to the 16 sublimits between the

predetermined upper and lower limits. With the applied dimension reduction method, the

variables are evenly matched as a result.

Out of 16384 patterns, 172 patterns are tried at the first run between the lower and

upper bounds, −2.5 and 2.5 respectively. The 110 patterns out of the 172 patterns are

found as successful and the rest 76 patterns are as unsuccessful. Actually, 14 patterns are

common. Further, there are 16212 untried patterns which are distinguished by PNN into

𝑛 − 1 = 15 classes, which have probability to be successful. The 1𝑠𝑡 patterns of the first 6

successful classes and the 1𝑠𝑡 patterns of the possible successful patterns are gathered.

Eventually, the total promising patterns become:

Table 3.15 The promising patterns for the next run

0
8

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
a
n

k
s

The first training set

Ranks in Total Patterns

0 -1 -1 0 0 1 0 1 -1 0 0 1 0 1

1 0 0 1 0 1 0 1 -1 0 -1 0 -1 0

-1 0 1 0 -1 0 1 0 0 1 0 1 0 1

0 -1 0 1 -1 0 0 1 0 1 -1 0 0 1

-1 0 0 1 -1 0 1 0 -1 0 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

-1 0 -1 0 0 1 0 1 -1 0 0 1 0 1

-1 0 0 1 0 1 0 1 1 0 0 -1 0 1

-1 0 0 1 1 0 0 1 0 1 0 1 0 1

0 1 0 -1 -1 0 0 1 0 1 0 1 0 1

x7x1 x2 x3 x4 x5 x6

75

Keeping in mind that, the global minimum of the “Rosenbrock” Function is at the

point 𝑓(𝑥) = 0, where ∀ 𝑥 = 1, the right patterns should be in the interval of 0 to 2.5 at this

stage. The grey coloured cells on the table actually indicate the right selections. The 6𝑡ℎ

pattern is expected to be the successful one; however this fact is also be detected

automatically by the algorithm after summing up the normalized 𝑚𝑖𝑛 & 𝑚𝑒𝑎𝑛 values of the

data points at the next run. Table 3.16 lists the patterns, which are ranked according to

the 𝑠𝑢𝑚.

Table 3.16 The rank of the promising patterns

Thus, from the first set of data listed in Table 3.14, the promising patterns for the next

run are selected and shown in Table 3.15. Out of these 10 promising patterns, 6𝑡ℎ pattern

is selected based on its 𝑠𝑢𝑚 value as presented in the Table 3.16.

The next run continues within the intervals that the 6𝑡ℎ pattern has. The process

continues until reaching the termination criteria. The result is found after 1776 function

evaluations at the point 𝑓(𝑥) = 0.0004.

A comparison is done with Globex algorithm which was presented by Jacob [52]. The

developed algorithm at [52] is also in the group of direct search methods and has similar

characteristics like using directions based on the previously produced data points,

besides not requiring the derivatives of the function. Starting from an initial point, and if

it is needed also with constraints, it finds out the global minimum of a function or

functional. It has wide field of application (application not limited to linear, quadratic or

convex/concave functions). Moreover, it requires low memory and it is highly fast

compared to numerous existing methods [52]. Thus, it has high priority and is highly

reasonable to take as a reference.

Introducing the starting point as:

Table 3.17 The starting point for Globex Algorithm

min mean sum

6
th
 pattern 0.363 0.000 0.363

8
th
 pattern 0.062 0.367 0.429

10
th
 pattern 0.190 0.350 0.540

7
th
 pattern 0.000 0.666 0.666

9
th
 pattern 0.277 0.411 0.688

4
th
 pattern 0.795 0.590 1.385

1
st
 pattern 1.000 0.635 1.635

5
th
 pattern 0.762 1.000 1.762

2
nd

 pattern 0.855 0.985 1.840

3
rd
 pattern 0.960 0.987 1.947

x1 x2 x3 x4 x5 x6 x7

-1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2

76

Also the starting step sizes for the variables as:

Table 3.18 The starting step sizes for Globex Algorithm

And, the constraints as:

𝑥2 < 0 𝑎𝑛𝑑 (𝑥1 + 𝑥2) > 1

Then, the Globex algorithm [52] converges to the point 𝑓(𝑥) = 4.16920 after 12625

function evaluations.

Genetic Algorithm is also used because of its popularity in optimization. It is based on

the principles of natural genetics and selection. It does not use the derivatives in the

search procedure but uses only the values of the objective function. Instead of a single

starting point, a population of points (trial design vectors) is used for initiating the

procedure. Since a high number of distributed candidate points is used it is less likely to

stack in a local minimum [43].

For Rosenbrock function with 7 variables, while Genetic Algorithm has the same lower

and upper bounds as the Cavus algorithm, it converges to the point 𝑓(𝑥) = 2.8815 after

15400 function evaluations and 76 generations.

The results for those three algorithms are gathered in Table 3.19 for a clear

comparison:

Table 3.19 The results for the “Rosenbrock” Function with 7 variables

As a result, for the Rosenbrock function with the 7-variable case, the Cavus algorithm

has the lowest function evaluations and the best convergence to the optima when

compared with the Globex and the Genetic Algorithm. When compared with the Genetic

Algorithm, this saves 89% of the analyses and thus the required computational time.

dx1 dx2 dx3 dx4 dx5 dx6 dx7

0.1 0.1 0.1 0.1 0.1 0.1 0.1

Algorithm x1 x2 x3 x4 x5 x6 x7 f(x)
Function

evaluations

Cavus 1.0004 0.9995 0.9992 0.9993 0.9997 0.9996 0.9993 0.0004 1776

Globex 0.6175 0.3825 0.1580 0.0353 0.0114 0.0100 0.0001 4.1692 12625

Genetic 0.8341 0.6922 0.4779 0.2270 0.0605 0.0189 0.0109 2.8815 15400

Exact values 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

77

3.2.3. The results for the “Rosenbrock” Function for 14 variables

For this part the number of variables is increased as 14. The number of the training

data points is selected depending on the inequality: 𝑘 𝑥 𝑚 ≤ 𝑛 ≤ 𝑘𝑚. As mentioned before

it is also advantageous to choose a number which is the power of 𝑘 and also one of the

multipliers of 𝑚, in order to have a better multidimensional distribution like Latin

Hypercube Sampling [81] [82] [83]. Thus, 𝑛 is decided to be 𝑛 = 27 = 128.

For 14 variables and 2 intervals there exist (2𝑘)𝑚 = (2 𝑥 2)14 possible patterns in total.

Here, to decrease the memory usage, zeros are dropped, and then the total patterns are

reduced to 2𝑚 = 27 = 16384. This intermediate step can be used for the problems that

have high number of variables to gain the computational performance against the

compromise on the result.

Referring to the trend analyses again, the first patterns of the first 6 classes are

chosen from the successful patterns, and also the first patterns of the first 4 promising

classes are chosen from the possible successful patterns for the next run. The lower and

upper bounds are −2.5 and 2.5 respectively as before. Because of the high number of data

the intermediate steps are not tabulated here. After the first run, the 1𝑠𝑡 patterns of the

first 6 successful classes and the 1𝑠𝑡 patterns of the first 4 promising classes are gathered

in Table 3.20. Eventually, the total promising patterns become:

Table 3.20 The promising patterns for the next run 𝑚 = 14

The global minimum of the “Rosenbrock” Function is at the point 𝑓(𝑥) = 0, where

∀𝑥 = 1. Then, the right boundaries of the intervals should be in the range 0 and 2.5. The

grey coloured cells on the Table 3.20 actually indicate the right selections. The 4𝑡ℎ pattern

is expected to be the successful one, it is also be selected automatically by the algorithm

after summing up the normalized 𝑚𝑖𝑛 & 𝑚𝑒𝑎𝑛 values of the data points at the next run.

Since in Table 3.21 the 4𝑡ℎ pattern has the lowest 𝑠𝑢𝑚, the next run continues within

the intervals that the 4𝑡ℎ pattern has. The process continues until reaching the

termination criterion. The result is found after 10368 function evaluations at the

point 𝑓(𝑥) = 0.0627.

0 1 0 1 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 0 1 0 1 0 1 -1 0 0 1

0 1 0 1 0 1 0 1 -1 0 -1 0 0 1 0 1 0 1 0 1 0 1 -1 0 -1 0 0 1

0 1 -1 0 -1 0 0 1 0 1 -1 0 -1 0 0 1 -1 0 -1 0 0 1 0 1 -1 0 -1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 -1 0 -1 0 -1 0 0 1 0 1 0 1 0 1 -1 0 -1 0 -1 0 0 1

-1 0 -1 0 0 1 0 1 -1 0 0 1 -1 0 -1 0 0 1 -1 0 -1 0 0 1 -1 0 0 1

0 1 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 -1 0 -1 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 -1 0 0 1 0 1 -1 0 -1 0 0 1

0 1 -1 0 0 1 0 1 0 1 0 1 -1 0 0 1 -1 0 -1 0 0 1 0 1 -1 0 -1 0

0 1 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 0 1 0 1

x12 x13 x14x6 x7 x8 x9 x10 x11x1 x2 x3 x4 x5

78

Table 3.21 The rank of the promising patterns 𝑚 = 14

Comparisons are done with Globex algorithm and Genetic Algorithm. The starting

point for the Globex algorithm is given at the following table.

Table 3.22 The starting point for Globex Algorithm

Also, the starting step sizes for the variables are:

Table 3.23 The starting step sizes for Globex Algorithm

And, the constraints are given as:

𝑥2 < 0 𝑎𝑛𝑑 (𝑥1 + 𝑥2) > 1

Then, the Globex algorithm [52] converges to the point 𝑓(𝑥) = 11.097 after 25014

function evaluations.

Genetic Algorithm is also used with a population of points for initiating the procedure.

For Rosenbrock function with 14 variables, while Genetic Algorithm has the same lower

and upper bounds as the Cavus algorithm, it converges to the point 𝑓(𝑥) = 11.971 after

19000 function evaluations and 94 generations.

The results for those three algorithms are gathered in Table 3.24 and Table 3.25 for

comparison:

Table 3.24 The resultant variable values for Rosenbrock Function with 14 variables

min mean sum

4
th
 pattern 0.108 0.000 0.108

10
th
 pattern 0.000 0.242 0.242

7
th
 pattern 0.121 0.374 0.495

2
nd

 pattern 0.267 0.496 0.763

1
st
 pattern 0.589 0.251 0.840

8
th
 pattern 0.476 0.498 0.974

9
th
 pattern 0.672 0.745 1.417

5
th
 pattern 0.803 0.741 1.545

6
th
 pattern 1.000 0.864 1.864

3
rd
 pattern 0.866 1.000 1.866

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

-1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2 -1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2

dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx1 dx2 dx3 dx4 dx5 dx6 dx7

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Algorithm x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 f(x)

Cavus 1.0099 1.0050 0.9969 1.0049 0.9984 1.0038 0.9947 1.0091 0.9968 1.0044 0.9989 0.9995 0.9990 0.9932 0.063

Globex 0.6166 0.3834 0.1587 0.0355 0.0114 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0100 0.0001 11.097

Genetic 0.4225 0.1753 0.0277 0.0156 0.0229 0.0202 0.0301 0.0084 0.0309 0.0124 0.0092 0.0106 0.0059 0.0052 11.971

Exact values 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.000

79

Table 3.25 The results for Rosenbrock Function with 14 variables

As a result, the Cavus algorithm has the lowest function evaluations and the best

convergence to the optima for the Rosenbrock function with 14 variables.

These three algorithms with their 𝑓(𝑥) values and the number of function evaluations

are tabulated with changing number of variables in the Table 3.26. To have a better

understanding they are also presented with the graphs in Figure 3.24 and Figure 3.25.

Indeed, it is shown that, the two targets (to have a better accuracy and less number

of function evaluations) are reached by the Cavus algorithm. The accuracy of the Cavus

algorithm is pretty good than other two algorithms for the increasing variable numbers

for this test case. Even though, the inclination of the number of function evaluations has

a tendency to increase progressively with the increasing number of variables, the Cavus

algorithm has still better results than the other two algorithms. When compared with the

Genetic Algorithm, this still saves 45% of the analyses and thus the required

computational time. Correspondingly, the improvements may be done in future works.

Table 3.26 Comparison of the algorithms with the changing variable numbers

Algorithm f(x)
Function

evaluations

Cavus 0.063 10368

Globex 11.097 25014

Genetic 11.971 19000

Algorithm f(x)
Function

evaluations

Cavus 0.063 10368

Globex 11.097 25014

Genetic 11.971 19000

Cavus 0.015 2912

Globex 7.138 17662

Genetic 7.800 18000

Cavus 0.000 1776

Globex 4.169 12625

Genetic 2.882 15400

Cavus 0.000 132

Globex 0.146 4078

Genetic 0.008 8450

m = 14

m = 10

m = 7

m = 2

80

Figure 3.24 Comparison of the algorithms for Rosenbrock function (Results)

Figure 3.25 Comparison of the algorithms for Rosenbrock function (Function evaluations)

81

4. Design Cases

4.1. Aircraft Design

Optimization problems are defined as gathering many challenging variables and

obtaining the best solution space. Although one may not have any time constraint the

selected search method directly affects the quality of the results. Meanwhile one

technique may be successful for one type of problem whereas it may fail in another type

of problem. Because of that, researchers try to develop a common tool that can adapt to

different situations. Especially for the complex projects executed between different

scientist, or departments, or even different companies it becomes a must a unique tool

controllable by everybody to catch the better solutions.

Aircraft design is one of the challenging but indeed more pleasurable subject area for

discovering the deep math and physics of life. Naturally profiting from the broad area of

science, it is very convenient to be taken as an application model for multidisciplinary

and multiobjective design optimization.

Design optimization of air vehicles is a complex process with depending on many

design variables and the highly non-linear physics models. Besides that, the optimization

process of an air vehicle has relatively fewer local minimums with higher variable

numbers while considering other kind of optimization problems which have many local

gradient changes. An artificial intelligence technique is applied here to reduce divergence

relative to well-known algorithms like Genetic Algorithm and Simulated Annealing, with

the required number of runs for convergence as the objective for changing number of

design variables.

The motivation of this study has many bases. At first, an aircraft mission is a perfect

closed loop process with the law of conservation of energy. Clearly, it has standard

segments and each segment and its requirements – inputs and outputs – are well-

known. In other words, this closed loop system is more conservative than many

statistical problems; and it is worth to use directed search methods for aircraft design.

This means that, aircraft design should be handled in its own nature while using

optimization algorithms. This extended area deserves to find out an optimization method

that is special to its own characteristics. Mostly, researchers in aerospace use search

techniques that need huge number of function evaluations; indeed there must be better

ways to have an improvement.

In addition to having a closed loop process feature, at the beginning of the design

process researches may have huge number of data from wind tunnel tests as well as

from flight tests at least for the conventional aircraft. All of these data with engineering

sense of experienced engineers, which is inseparable throughout a design process, have

82

a great impact on all of the design phases. Learning from data, which is called as data

mining, with the combination of engineering sense has very precious fine tuning effect on

a design with knowledge based methods. Some of the complex interactions can also be

estimated with relative magnitudes just from the data at hand at the beginning of the

design process, which accelerates the calculations and force the results to converge to

better values. With more philosophy, these complex but systematic machines, aircraft,

with dependent and independent variables, with known interactions to each other in an

optimization process can be improved with the algorithms which mimic pattern

classification property of human intelligence, i.e. Artificial Intelligence (AI), for the early

as well as ensuing stages of design.

In this study, Probabilistic Neural Networks, which was introduced by [14], is

employed in the observation part of the optimization algorithm for its success on

classification and pattern recognition.

For the completeness of the entire picture in the following sections aircraft design

models are introduced for the use case demonstration of the Cavus algorithm, which

have been developed in a previous study, [68].

4.1.1. Conceptual design of an unmanned supersonic aircraft

As a first design case, a multi-role unmanned supersonic aerial vehicle (UCAV)

conceptual design optimization problem is addressed, which is also dealt with in detail in

[68]. This aircraft type is selected because of its

 challenging specifications,

 property being good at dynamics and

 capacity for multi role and varying missions.

The aircraft shall be capable to act according to its role, maneuver, resist high

maneuver loads, carry payload, drop payload, cruise at high altitudes and have long

endurance without refuelling. It will autonomously locate its targets, navigate

autonomously, but also be able to be flown by a remotely controlled pilot with a ground

station system.

It is planned to have a simple and fixed shape during the flight. In other words,

except the control surfaces (flaps, ailerons, elevator and rudder) it shall not have any

moving components (i.e., fixed swept wing and fixed tail configuration).

The mission is composed of 14 segments: engine start and warm-up, taxi, take-off,

climb, cruise-out, loiter, descent, dash-out, action, dash-in, climb, cruise-in, descent,

landing-taxi and shutdown. The segment characteristics are described in details in the

next section.

It should be able to carry payload until the end of the flight if the mission is aborted.

This payload will be carried externally under the wings. The detailed placement is not

addressed in this work. It is assumed that they will be installed properly without affecting

the static and dynamic stability of the unmanned supersonic aircraft.

83

The positions of the wings, horizontal and vertical tails, and landing gears with

respect to the fuselage are calculated in the Aircraft Design Code prepared. The fuel will

be carried internally in the wings; no external fuel tanks are planned.

The engine sizing is automatically done in the code which gives its dimensions and its

thrust. The calculations are based on a rubber engine with turbofan characteristics which

has constant bypass ratio and specific fuel consumption.

Landing gears are planned to be tricycle and retractable, and designed to find the

dimensions according to the changing aircraft configurations. The placements are

changed for different aircraft configurations with centre of gravity.

Cost is another important parameter in aircraft design and it is taken as the objective

function in this study. A subroutine in the code calculates the total acquisition cost.

Proper mathematical models are selected and coded in separate subroutines as

summarized in the next sections. The main program picks up values of some parameters

from an input file and then does the calculations; afterwards gives results to an output

file. While calculating, subroutines are called by the main program in an order assigned

by the programmer, before. Throughout the program some parameters need to be

updated, this is coped with calling the required subroutine in the concerning subroutine

again.

How the subroutines of the aircraft design part communicate with each other are

shown by a flow chart in Figure 4.1.

Propulsion System and Aerodynamics subroutines are called more frequently because

of frequently updated variables like Mach number, thrust and induced drag.

The detailed information about the conceptual design phases with equations,

requirements, constraints and constants are given in the following sections.

While calling the subroutines, design variables are carried thought the process. All the

variables are tabulated in detail in the Table 4.1.

84

Figure 4.1 Flowchart of the Aircraft Design Algorithm

85

Table 4.1 Aircraft Design part inputs and outputs

SUBROUTINES Inputs Outputs

ISA

(Atmospheric Properties)
𝐻, 𝜌0 , 𝑔0 , 𝑎0 𝜌, 𝑎

WING CONFIGURATION 𝐷𝑓𝑚𝑎𝑥
 , 𝛬𝑤 , 𝑏 , 𝐴𝑅 , 𝛤𝑤 , (𝑡 𝑐⁄)𝑤

𝛬𝐿𝐸 , 𝑐𝑟𝑓𝑤 ,𝜆𝑓𝑤 , 𝑡𝑐𝑓𝑤 ,𝜏𝑓𝑤 ,

𝐴𝑅𝑤𝑒𝑡 ,𝜆 , 𝑤𝑓𝑚𝑎𝑥
 , (𝑡 𝑐⁄)𝑡𝑤 ,

(𝑡 𝑐⁄)𝑟𝑤, 𝑆 , 𝑐𝑟 , 𝑐𝑡 ,

 y , c , x , 𝑆𝑛𝑒𝑡𝑤 , 𝑆𝑤𝑒𝑡𝑤 ,

(𝐿 𝐷⁄)𝑚𝑎𝑥 , 𝑉𝑓 , 𝑤𝑓𝑚𝑎𝑥𝑤
 , 𝑆𝑐𝑠𝑤

FUSELAGE
CONFIGURATION

𝐷𝑓𝑚𝑎𝑥
 ,𝑊0 , 𝑤𝑓𝑚𝑎𝑥

ℎ𝑓𝑚𝑎𝑥
 , 𝐿𝑓 , 𝑙𝑁 , 𝑙𝐴 , 𝑙𝑀 ,

𝐴𝑚𝑎𝑥 , 𝐹𝑖𝑛𝑒𝑛𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜,
𝑉𝑜𝑙𝑢𝑚𝑒, 𝑆𝑤𝑒𝑡𝑓

PROPULSION SYSTEM 𝑀 ,𝑊0 , 𝐵𝑃𝑅 , 𝑆𝐹𝐶
𝑇, 𝑇𝑎𝑣 , 𝐿𝑒𝑛𝑔 , 𝐷𝑒𝑛𝑔 ,

𝑆𝐹𝐶𝑐 , 𝑇𝑐𝑟𝑢𝑖𝑠𝑒

HORIZONTAL
and

VERTICAL TAIL

𝐷𝑓𝑚𝑎𝑥
 , 𝐿𝑓 , 𝑏 , 𝑆 , 𝑤𝑓𝑚𝑎𝑥

 ,

c , 𝑙𝐴 , 𝛬𝑤 , (𝑡 𝑐⁄)𝑉𝑇 ,
(𝑡 𝑐⁄)𝐻𝑇 , 𝛬𝑉𝑇 , 𝐴𝑅𝑉𝑇 , 𝐴𝑅𝐻𝑇 ,

𝜆𝑉𝑇 , 𝜆𝐻𝑇 , 𝛤𝑉𝑇 , 𝛤𝐻𝑇 , 𝑉𝑉𝑇 ,

𝑉𝐻𝑇 , 𝑙𝑉𝑇𝑐𝑜 , 𝑙𝐻𝑇𝑐𝑜

𝑙𝑉𝑇 , 𝑙𝐻𝑇 , 𝛬𝐻𝑇 , 𝑆𝑉𝑇 , 𝑆𝐻𝑇 ,

ℎ𝑉𝑇 , 𝑐𝑟𝑉𝑇 , 𝑐𝑡𝑉𝑇 , VTc , VTz ,

 𝑐𝑟𝑓𝑉𝑇 ,𝜆𝑓𝑉𝑇 , (𝑡 𝑐⁄)𝑟𝑉𝑇 ,

(𝑡 𝑐⁄)𝑡𝑉𝑇 , (𝑡 𝑐⁄)𝑓𝑉𝑇 ,𝜏𝑓𝑉𝑇 ,
𝑆𝑛𝑒𝑡𝑉𝑇 , 𝑆𝑤𝑒𝑡𝑉𝑇 , 𝑏𝐻𝑇 , 𝑐𝑟𝐻𝑇 ,

𝑐𝑡𝐻𝑇 , HTc ,
HTy ,

𝑤𝑓𝑚𝑎𝑥𝐻𝑇
 , 𝑐𝑟𝑓𝐻𝑇

 ,𝜆𝑓𝐻𝑇 ,

(𝑡 𝑐⁄)𝑟𝐻𝑇
 , (𝑡 𝑐⁄)𝑡𝐻𝑇

 , (𝑡 𝑐⁄)𝑓𝐻𝑇 ,

𝜏𝑓𝐻𝑇 , 𝑆𝑛𝑒𝑡𝐻𝑇
 , 𝑆𝑤𝑒𝑡𝐻𝑇

LANDING GEARS 𝑊0
𝐷𝑛𝑜𝑠𝑒𝑤ℎ𝑒𝑒𝑙 , 𝐷𝑚𝑎𝑖𝑛𝑤ℎ𝑒𝑒𝑙 , 𝐹𝑀 ,

𝐹𝑁 , 𝑤𝑛𝑜𝑠𝑒𝑤ℎ𝑒𝑒𝑙 , 𝑤𝑚𝑎𝑖𝑛𝑤ℎ𝑒𝑒𝑙

AERODYNAMICS

𝐻 , 𝜌 , 𝑎 , 𝑉𝑐𝑟𝑢𝑖𝑠𝑒 ,𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ,

 𝛬𝐿𝐸 , 𝛬𝑤 ,𝑊0 , 𝐿𝑓 , 𝐷𝑓𝑚𝑎𝑥
 ,

𝐴𝑚𝑎𝑥 , 𝑆𝑤𝑒𝑡𝑓 , 𝑏 , 𝑆 , 𝐴𝑅 ,

 c , 𝑆𝑤𝑒𝑡𝑤 , 𝑉𝑉𝑇 , 𝑉𝐻𝑇 , 𝑙𝑉𝑇 ,

𝑙𝐻𝑇 , 𝑆𝑉𝑇 , 𝑆𝐻𝑇 , 𝑆𝑤𝑒𝑡𝑉𝑇 ,

 𝑆𝑤𝑒𝑡𝐻𝑇 , VTc , HTc

𝜌𝑐𝑟𝑢𝑖𝑠𝑒 , 𝑎𝑐𝑟𝑢𝑖𝑠𝑒 , #𝑏𝑜𝑚_𝑏𝑖𝑔 ,

#𝑏𝑜𝑚𝑏_𝑎𝑖𝑚9 , 𝑀𝑐𝑟𝑢𝑖𝑠𝑒 , 𝑞𝑐𝑟𝑢𝑖𝑠𝑒 ,

𝛽 , 𝑅𝑒𝑓𝑢𝑠 , 𝑅𝑒𝑐𝑢𝑡𝑜𝑓𝑓.𝑓𝑢𝑠 ,
𝐶𝑓.𝑓𝑢𝑠 , 𝐹𝐹𝑓𝑢𝑠 , 𝑄𝑓𝑢𝑠 , 𝐶𝐷0𝑓𝑢𝑠

 ,

𝑅𝑒𝑤 , 𝑅𝑒𝑐𝑢𝑡𝑜𝑓𝑓.𝑤 , 𝐶𝑓.𝑤 , 𝐹𝐹𝑤 ,

𝑄𝑤, 𝐶𝐷0𝑤
 , 𝑅𝑒𝐻𝑇 , 𝑅𝑒𝑐𝑢𝑡𝑜𝑓𝑓.𝐻𝑇 ,

𝐶𝑓.𝐻𝑇 , 𝐹𝐹𝐻𝑇 , 𝑄𝐻𝑇 , 𝐶𝐷0𝐻𝑇
 ,

𝑅𝑒𝑉𝑇 , 𝑅𝑒𝑐𝑢𝑡𝑜𝑓𝑓.𝑉𝑇 , 𝐶𝑓.𝑉𝑇 , 𝐹𝐹𝑉𝑇 ,

𝑄𝑉𝑇 , 𝐶𝐷0𝑉𝑇
 , (𝐷 𝑞⁄)𝑚𝑖𝑠𝑐 ,

 𝐶𝐷0𝑚𝑖𝑠𝑐
 , (𝐷 𝑞⁄)𝑤𝑎𝑣𝑒𝑠ℎ ,

(𝐷 𝑞⁄)𝑤𝑎𝑣𝑒 , 𝐶𝐷0𝑤𝑎𝑣𝑒
 ,

 𝐶𝐷0𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐
 , 𝐶𝐷0𝐿𝑒𝑎𝑘𝑎𝑔𝑒

 ,

 𝐶𝐷0𝑡𝑜𝑡𝑎𝑙𝑐𝑙𝑒𝑎𝑛
 , 𝐶𝐷0𝑡𝑜𝑡𝑎𝑙

 , 𝑒 , 𝐾 ,

𝐾𝑐𝑙𝑒𝑎𝑛 , 𝐺𝑟𝑜𝑢𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡,
𝐶𝐿𝑚𝑎𝑥𝑐𝑙𝑒𝑎𝑛

 , 𝐶𝐿𝑎𝑐𝑚𝑎𝑥𝑇𝑂
 ,

𝐶𝐿𝑚𝑎𝑥𝑙𝑎𝑛𝑑𝑖𝑛𝑔
 , 𝐶𝐷0𝑐

86

Table 4.1 Aircraft Design part inputs and outputs (continued)

SUBROUTINES Inputs Outputs

WEIGHT and STABILITY

𝑛𝑚𝑎𝑥 , 𝑆 , 𝐴𝑅 , (𝑡 𝑐⁄)𝑟𝑤 ,𝜆 ,
𝑉𝐻𝑇 , 𝛬𝐿𝐸 , 𝛬𝑤 , 𝐴𝑅𝑉𝑇 ,𝜆𝑉𝑇 ,

𝛬𝐻𝑇 , 𝛬𝑉𝑇 , 𝑀 ,𝑊0 , 𝑇, 𝑇𝑎𝑣 ,
𝐵𝑃𝑅 , 𝑆𝑐𝑠𝑤 , 𝑤𝑓𝑚𝑎𝑥𝐻𝑇

 ,

𝐷𝑓𝑚𝑎𝑥
 , ℎ𝑓𝑚𝑎𝑥

 , 𝑏𝐻𝑇 , 𝑆𝑉𝑇 ,

𝑆𝐻𝑇 , 𝐿𝑓 , 𝑙𝑉𝑇 , 𝑙𝐻𝑇 ,

𝐷𝑛𝑜𝑠𝑒𝑤ℎ𝑒𝑒𝑙 , 𝐷𝑚𝑎𝑖𝑛𝑤ℎ𝑒𝑒𝑙 ,

HTc , VTc , 𝑒 ,𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ,

𝑤𝑓𝑚𝑎𝑥𝑤
 , 𝐿𝑒𝑛𝑔

𝑁𝑧 ,𝑊𝑤𝑖𝑛𝑔 ,𝑊ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑡𝑎𝑖𝑙 ,

𝑊𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑡𝑎𝑖𝑙 ,𝑊𝑓𝑢𝑠𝑒𝑙𝑎𝑔𝑒 ,

𝑊𝑚𝑎𝑖𝑛𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑔𝑒𝑎𝑟 ,

𝑊𝑛𝑜𝑠𝑒𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑔𝑒𝑎𝑟 ,𝑊𝑒𝑛𝑔𝑖𝑛𝑒 ,

𝑊𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠 ,𝑊𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 ,𝑊𝑒𝑙𝑠𝑒 ,
𝑥𝑐𝑔.𝑒𝑛𝑔𝑖𝑛𝑒 , 𝑥𝑐𝑔.𝑓𝑢𝑠 , 𝑥𝑐𝑔.𝑒𝑙𝑠𝑒 ,

𝑥𝑐𝑔.𝐻𝑇 , 𝑥𝑐𝑔.𝑉𝑇 , 𝑥𝑐𝑔.𝑤𝑖𝑛𝑔 ,

𝑥𝑐𝑔.𝑓𝑢𝑒𝑙 , 𝑥𝑐𝑔.𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ,𝑀𝑐𝑔 ,

𝑊𝑐𝑔 , 𝑥𝑐𝑔 , 𝑥𝑐𝑔.𝑚𝑔𝑒𝑎𝑟 ,

𝑥𝑐𝑔.𝑛𝑔𝑒𝑎𝑟 , 𝑥𝑎𝑐𝑤 ,
𝑆𝑡𝑎𝑡𝑖𝑐_𝑚𝑎𝑟𝑔𝑖𝑛,𝑊𝑒 , 𝑥𝑛

INITIAL SIZING

𝑆𝐹𝐶, 𝑆𝐹𝐶𝑐 , (𝐿 𝐷⁄)𝑚𝑎𝑥 ,

𝑤𝑓𝑚𝑎𝑥𝑤
 ,𝑊𝑒 ,𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ,

𝑅𝑐𝑟 , 𝑉𝑐𝑟𝑢𝑖𝑠𝑒 , 𝐸𝑙𝑡𝑟 , 𝑉𝑚𝑎𝑥

𝑊0 ,𝑊𝑓 ,𝑊1 𝑊0⁄ ,𝑊2 𝑊1⁄ ,

𝑊3 𝑊2⁄ ,𝑊4 𝑊3⁄ ,𝑊5 𝑊4⁄ ,

(𝐿 𝐷⁄)𝑐𝑟 , (𝐿 𝐷⁄)𝑙𝑡𝑟 ,𝑊6 𝑊5⁄ ,

𝑊7 𝑊6⁄ , 𝑅𝑑 , (𝐿 𝐷⁄)𝑑 ,

𝑊8 𝑊7⁄ ,𝑊𝑓𝑢𝑒𝑙1
 ,𝑊9 𝑊8⁄ ,

𝑊𝑓𝑐
 ,𝑊9 ,𝑊10 𝑊9⁄ ,

𝑊11 𝑊10⁄ ,𝑊12 𝑊11⁄ ,

𝑊13 𝑊12⁄ ,𝑊14 𝑊13⁄ ,

𝑊15 𝑊14⁄ ,𝑊15 𝑊0⁄ ,𝑊𝑓 𝑊0⁄ ,

𝑊0𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑖𝑧𝑖𝑛𝑔
 , 𝑊3

PERFORMANCE

𝑊0 , 𝑆, 𝐴𝑅, 𝐶𝐿𝑚𝑎𝑥𝑐𝑙𝑒𝑎𝑛
 ,

𝐶𝐿𝑎𝑐𝑚𝑎𝑥𝑇𝑂
 , 𝐶𝐿𝑚𝑎𝑥𝑙𝑎𝑛𝑑𝑖𝑛𝑔

 , 𝐶𝐷0𝑐
,

 𝐶𝐷0𝑡𝑜𝑡𝑎𝑙
 , 𝐾 , 𝑆𝐹𝐶 , 𝑆𝐹𝐶𝑐 ,

(𝐿 𝐷⁄)𝑚𝑎𝑥, 𝑊𝑓𝑢𝑒𝑙1
 ,𝑊𝑓 ,

𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ,𝑊𝑒 ,𝑊9 , 𝜌0 , 𝜌 ,

𝑒 ,𝑀 ,𝑊15 𝑊14⁄ ,𝑊15 𝑊0⁄ ,

 𝑊3 , 𝐻 ,𝑊10 𝑊9⁄ ,𝑊𝑓𝑐

(𝑊 𝑆⁄)𝑇𝑂 , 𝑇 𝑊⁄ , 𝑇 , 𝑠𝑇𝑂 ,

(𝑊 𝑆⁄)𝐿𝑎𝑛𝑑𝑖𝑛𝑔 , 𝑠𝐿 , (𝐿 𝐷⁄)𝑚𝑎𝑥𝑠 ,

𝑅𝑂𝐶𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥 ,

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑐𝑒𝑖𝑙𝑖𝑛𝑔, 𝑇𝑅𝑂𝐶 , 𝑅𝑂𝐶 ,

 √𝐶𝐿 𝐶𝐷⁄
𝑚𝑎𝑥

, 𝑅𝐴𝑁𝐺𝐸 ,

𝑉𝑚𝑎𝑥 , 𝑀 , 𝑀𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥,

𝑉𝑐𝑜𝑟𝑛𝑒𝑟 , 𝑛𝑚𝑎𝑥 , 𝑅𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥 ,

𝑅𝑚𝑖𝑛𝑝𝑢𝑙𝑙−𝑢𝑝 , 𝜔𝑚𝑎𝑥𝑝𝑢𝑙𝑙−𝑢𝑝 ,

𝑅𝑚𝑖𝑛𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 , 𝜔𝑚𝑎𝑥𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 ,

𝑞𝑐 , (𝐿 𝐷⁄)𝑐 , 𝑇𝑟𝑐 , 𝑑 , 𝑥𝑥

STRUCTURAL LOAD
𝐻 , 𝐶𝐷0𝑐

 , 𝑇 , 𝐾 ,

𝐶𝐿𝑚𝑎𝑥𝑐𝑙𝑒𝑎𝑛
 ,𝑊9 , 𝑆 , 𝜌

𝑉𝑚𝑎𝑛𝑢𝑒𝑣𝑒𝑟 , 𝐾𝑝 , 𝑉𝑠𝑡𝑎𝑙𝑙𝑐 ,

𝐶𝐿𝑚𝑎𝑥𝑐
 , 𝑛𝑚𝑎𝑥 , 𝑞𝑐

COSTS

𝑊𝑒 ,𝑊𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 ,𝑀 , 𝑉𝑚𝑎𝑥 ,

 𝑇 , 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦, 𝐹𝑇𝐴 , 𝑇𝑖 ,

𝑅𝑒 , 𝑅𝑡 , 𝑅𝑞 , 𝑅𝑚

𝐻𝑒 , 𝐻𝑡 , 𝐻𝑞 , 𝐻𝑚 ,

𝐶𝑜𝑠𝑡𝐷 , 𝐶𝑜𝑠𝑡𝐹 , 𝐶𝑜𝑠𝑡𝑀,

 𝐶𝑜𝑠𝑡𝐸 , 𝐶𝑜𝑠𝑡𝐴, 𝐶𝑂𝑆𝑇

87

4.1.2. Mission Profile

Figure 4.2 illustrates the planned mission profile for the unmanned supersonic

aircraft.

Figure 4.2 Mission segments

Each segment can be described as:

0-1 : Engine Start and Warm-up

1-2 : Taxi

2-3 : Take-off

3-4 : Climb

4-5 : Cruise-out

5-6 : Loiter

6-7 : Descent

7-8 : Dash-out

8-10 : Action

10-11 : Dash-in

11-12 : Climb

12-13 : Cruise-in

13-14 : Descent

14-15 : Landing, Taxi and Shutdown

This is a typical mission profile for UCAVs including all the required segments [2],

[84].

In action, the unmanned supersonic aircraft is designed for air-to-air and air-to-

ground tasks which include kinds of maneuvers that result in high 𝑔 forces.

The details of the mission segments may be understood better in the following

sections.

 1 2 3

7 8 9 10 11

 14 15

12 13 4 5

6

88

4.1.3. Initial Sizing

Airplanes must normally meet very stringent range, endurance, speed and cruise

speed objectives while carrying a given payload. It is important, to be able to predict the

minimum airplane and fuel weights needed to accomplish a given mission [84].

Besides, a typical unmanned supersonic aircraft mission includes an action segment

consisting of either certain number of turns or a certain number of minutes at maximum

power, a payload drop, a cruise back and a loiter. The payload drop refers to the firing of

the required equipment also [2].

In this design case, aerial refuelling and external fuel tanks are not considered and it

is assumed that the fuel consumed is only which the wings can hold.

While estimating the mission fuel fractions, reserved and trapped fuel as required by

civil or military design specifications are taken into consideration by 6% percentage of the

used fuel at the end of the mission.

Under these assumptions, the fuel fractions are found for each segment with the help

of the given tables and the equations in referenced design books [2], [84].

Under the light of [2], lift to drag ratios for loiter and cruise were decided for

maximum performance. To maximize loiter efficiency it is assumed that the aircraft will

be able to fly approximately with the velocity that gives maximum lift to drag ratio, 𝐿/𝐷.

Similarly, it is able to fly with the velocity that requires a 𝐿/𝐷, which is 86.6% of the

maximum 𝐿/𝐷 for the most efficient cruise [2]:

(
𝐿

𝐷
)
𝑐𝑟

= 0.866 (
𝐿

𝐷
)
𝑚𝑎𝑥

(4.1)

and

(
𝐿

𝐷
)
𝑙𝑡𝑟

= (
𝐿

𝐷
)
𝑚𝑎𝑥

(4.2)

The total fuel fraction excepting action segment is calculated with:

𝑊𝑓

𝑊0
= 1.06 (1 −

𝑊15

𝑊0
)

(4.3)

For the action segment the available fuel is found by considering the maximum fuel

capacity of the wings and the required fuel for other segments. And also, 6% more fuel

for reserved and trapped fuel is also taken into account.

89

Then, the fuel burned during the action segment becomes:

𝑊𝑓𝑐 =
𝑊𝑓max𝑤 −𝑊𝑓

1.06

(4.4)

The payload is carried externally under the wings. Two kinds of weapons were

selected for the mission: a weapon below 2000 lb and Aim9 (Sidewinder) (200 lb).

However, it was planned that there is a time at which all the payload would have been

dropped, point 9. One other assumption was made for the segment 8-9 as at payload

drop the fuel consumed is little compared to other segments [84].

Then, 𝑊0 is found by iterating the following equation:

𝑊0 =
𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑

(1 −
𝑊𝑓

𝑊0
−

𝑊𝑒

𝑊0
)

(4.5)

4.1.4. Wing Configuration

While configuring the wing, the first decision is the selection of the airfoil. The airfoil

selection should be made carefully because the airfoil affects the cruise speed, takeoff

and landing distances, stall speed, and overall aerodynamic efficiency during all phases

of flight. In supersonic flow, the aircraft encounter bow shocks, which results in extra

drag, also. To prevent this, an airfoil which has a sharp or nearly sharp leading edge

should be used and/or wing sweep can be given [2].

The competitor aircraft like F-16 and F111 use NACA six-digit series airfoils [85].

These airfoils have lower drag at higher speeds compared to four or five digits series.

Among these airfoils 𝑁𝐴𝐶𝐴 64𝐴210 was chosen for the unmanned supersonic aircraft,

whose data was taken from [84], and was illustrated in Figure 4.3.

Figure 4.3 NACA 64A210

It is proposed that the airfoil can be chosen from an airfoil database which can be

inserted to program and may be left as a future work. In this work, it is assumed that

there is an airfoil which can meet the calculated performance parameters. For that

reason, in the program some checks are made by the programmer in order to stay in the

feasible region. So, 𝑁𝐴𝐶𝐴 64𝐴210 may also be considered as a sample for this purpose.

90

Another concern was the leading edge sweep for this supersonic aircraft in order to

reduce the drag. The leading edge sweep is calculated for straight trailing edge as in

Figure 4.4 from [2].

It is assumed that the length of fuselage-wing intersection on the fuselage width is:

 𝑤𝑓 𝑚𝑎𝑥 = 0.5𝐷𝑓 𝑚𝑎𝑥

(4.6)

So that, in order to be able to get the desired intersection length, the wing position

on the fuselage was determined as above the centre line of the fuselage, which means a

high wing configuration.

And the control surface area is calculated according to the competitor aircraft as:

𝑆𝑐𝑠𝑤 = 0.1𝑆

(4.7)

Fuel capacity of the wing is found from Figure 4.4 [84] [86]:

𝑉𝐹𝑢𝑒𝑙 𝑡𝑎𝑛𝑘 𝑤 = 0.54
𝑆2

𝑏
(
𝑡

𝑐
)
𝑟

1 + 𝜆√𝜏 + 𝜆2𝜏

(1 + 𝜆)2

(4.8)

Figure 4.4 Approximation for integral fuel tank volume, available in a linear lofted wing [84] [86]

From [2] fuel density is taken as 0.78 𝑘𝑔/𝑙𝑡 (= 780 𝑘𝑔/𝑚3). Then, the total fuel mass

capacity of the wing is found with:

𝑊𝑓max𝑤 = 780 𝑉𝐹𝑢𝑒𝑙 𝑡𝑎𝑛𝑘 𝑤

(4.9)

t

c

b

ct

cr

section

integral

tank

91

4.1.5. Fuselage Configuration

The fuselage is designed to have approximately a circular cross section, to include the

engine and also all the instruments that are needed.

The fuselage is composed of a nose, mid-section and aft section as illustrated in

Figure 4.5.

Figure 4.5 Fuselage sections [84]

Where,

𝜆𝑁 = 1.75𝐷𝑓 𝑚𝑎𝑥

(4.10)

𝜆𝑀 = 𝐿𝑓 − 𝜆𝑁 − 𝜆𝐴

(4.11)

𝜆𝐴 = 2.75𝐷𝑓 𝑚𝑎𝑥

(4.12)

For a fuselage without a circular mid-section (finenessratio = Lf Dfmax
⁄ ≤ 4.5) :

𝑉𝑜𝑙𝑢𝑚𝑒 =
𝜋

4
𝐷𝑓 𝑚𝑎𝑥

2𝐿𝑓 (0.50 + 0.135
𝜆𝑁

𝐿𝑓
)

(4.13)

The fuselage is configured more in detail while adding other components of the

aircraft. They are mentioned in the next sections.

lN lM lA

92

4.1.6. Propulsion System

The engine inlet was planned to be on the nose of the fuselage as illustrated in Figure

4.6 [2]. It is designed as, the optimized unmanned supersonic aircraft only one engine

mounted in the fuselage to use. So as, all the related equipment will be covered by the

fuselage, also. And it is expected that, the effect of engine weight to the stability of the

unmanned supersonic aircraft while maneuvering is minimized with this basic

configuration. Further, it is possible to integrate S-shape inlet duct for stealth.

Figure 4.6 Inlet locations - buried engines (Nose) [2]

The thrust to weight ratio directly affects the performance of the aircraft. Since,

throughout the mission the fuel is consumed so that weight changes, and thrust to

weight ratio is also changing.

Specific fuel consumption is another point that should be concerned. While flying with

maximum thrust the specific fuel consumption is calculated as [2] with 20% reduction for

next-generation engines:

𝑆𝐹𝐶max 𝑇 = 0.8[60𝑒−0.12𝐵𝑃𝑅] = 𝑆𝐹𝐶𝑐

(4.14)

For other mission segments, 𝑆𝐹𝐶 is taken as constant and equal 0.64 𝑚𝑔/𝑁𝑠 as

competitors’ engines have, approximately.

For the length and the diameter of the engine the equations from [2] is used with

including 20% reduction for next-generation engines.

93

4.1.7. Horizontal and Vertical Tail Configuration

Tails provide for trim, stability and control. Especially, vertical tail plays a key role in

spin recovery. And, these efficiencies can be optimized with the tail configuration. The

conventional tail was selected for the unmanned supersonic aircraft because of its

simplicity, light weight and adequate stability and control [2].

Figure 4.7 Conventional tail [2]

The airfoil of the unmanned supersonic aircraft’s tail should be capable of

maneuvering in supersonic conditions. For that reason, the airfoil proposed for the wings,

𝑁𝐴𝐶𝐴 64𝐴210, is selected for the vertical and horizontal tail of the unmanned supersonic

aircraft.

Vertical tail sweep angle, Λ𝑉𝑇 , was selected as 45𝜊 for the initial value and is taken as

a design variable changing between 35𝜊 to 55𝜊.

Horizontal tail sweep angle, Λ𝐻𝑇 , is thought as 5𝜊 more than the wing sweep, as usual

for other aircraft. It was planned that this selection makes the tail stall after the wing,

and also provides the tail with a higher Critical Mach Number than the wing, which avoids

loss of elevator effectiveness due to shock formation [2].

Like the wing dihedral, the vertical and the horizontal tail dihedrals are taken as 𝑧𝑒𝑟𝑜,

initially.

While optimizing the unmanned supersonic aircraft, one of the important variables is

changing the placements of the vertical and the horizontal tails.

Stability of the aircraft is also affected by the tail because of the lift it produces, its

weight and the tail moment arm measured from the center of gravity. However, running

the design code with different moment arm values showed that these moment arms

really affect the results. Hence, these proportions are also selected as the design

variables. As a result tail moment arms are calculated as:

𝑙𝑉𝑇 = 𝑙𝑉𝑇𝑐𝑜𝐿𝑓

(4.15)

𝑙𝐻𝑇 = 𝑙𝐻𝑇𝑐𝑜𝐿𝑓

(4.16)

Other variables of tails are calculated depending on the equations at [2], [84], [86],

[87].

94

4.1.8. Landing Gears

For the supersonic unmanned aerial vehicle, retractable tricycle landing gear

configuration was selected. Assuming that, nose landing gear carries 10% and main

wheels carry 90% of static load of the unmanned supersonic aircraft:

𝐹𝑁 = 0.10𝑊0

(4.17)

𝐹𝑀 = 0.90 𝑊0

(4.18)

The placement of the wheels is described in section 4.1.10.

4.1.9. Aerodynamics

The airfoil of the aircraft is planned to be selected from a database as stated. It is

assumed that the required lift to drag ratio during the mission can be met. However, in

order to be stay in the feasible regions some properties (like lift coefficient) are also

calculated for supersonic conditions. Though, in the program some checks are able to be

done, and these checks serve the programmer to be able to decide on the limiting values

of the constraints at the optimization part. The flexibility of the airfoil also eases the

results to spread on a wide region. The used basic aerodynamic equations are taken from

[2], [84], [87] and are not needed to be given here in detail.

One of the challenging parameters for the UCAV is maximum velocity, 𝑉𝑚𝑎𝑥, and for a

given thrust-to-weight ratio it is directly proportional to √𝑊 𝑆⁄ . With increasing wing

loading, the maximum velocity also increases, accordingly the stalling speed increases,

𝑉𝑠𝑡𝑎𝑙𝑙, which is undesirable. The solution to this problem is increasing 𝐶𝐿𝑚𝑎𝑥
 sufficiently

that; in spite of the large 𝑊 𝑆⁄ , 𝑉𝑠𝑡𝑎𝑙𝑙 will be acceptable. Thus, to obtain the sufficient

increase in 𝐶𝐿𝑚𝑎𝑥
 high-lift devices are used which make efficient high-speed flight possible

[87]. For that reason, Fowler-type triple slotted flap was chosen in contrast to its

complexity and high cost. Triple slotted flap is illustrated in Figure 4.8 [2].

Figure 4.8 Triple slotted flap [2]

95

Ground effect is calculated for one meter above the ground [87]:

𝐺 =
(16ℎ/𝑏)2

1 + (16ℎ/𝑏)2

(4.19)

The control surface limits and the rate limits are listed as for F-16 aircraft [88] in

Table 4.2:

Table 4.2 F-16 Control Surface Actuator Models [88]

Deflection Limit Rate Limit Time const.

Elevator ±25.0° 60°/s 0.0495 s lag

Ailerons ±21.5° 80°/s 0.0495 s lag

Rudder ±30.0° 120°/s 0.0495 s lag

4.1.10. Weight and Stability

In conceptual design, it is common to use statistical data from existing aircraft with

curve fitting to form empirical weight equations as used in [39]. Because the data of

existing UCAV configurations are not open, empirical equations and parameters were

used from the open resources. Accordingly, the weight and stability equations were taken

from references [2], [84], [87].

Assuming the main wheels carry 90% and the nose wheel carries 10% of static load of

the unmanned supersonic aircraft and matching the centre of gravities of the wing and

the main wheels:

𝑥𝑐𝑔.𝑚𝑔𝑒𝑎𝑟𝑠 = 𝑥𝑐𝑔.𝑤𝑖𝑛𝑔
(4.20)

Then, locating the nose wheel accordingly:

𝑥𝑐𝑔.𝑛𝑔𝑒𝑎𝑟𝑠 = 𝑥𝑐𝑔1 − [9 𝑥𝑐𝑔.𝑚𝑔𝑒𝑎𝑟𝑠 − 𝑥𝑐𝑔1]
(4.21)

96

Figure 4.9 Centre of gravity-exaggerated views [87]

The resultant centre of gravity location of the unmanned supersonic aircraft is

updated after adding landing gear values.

Then the empty weight of the unmanned supersonic aircraft:

𝑊𝑒 = 𝑊𝑐𝑔 −𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 − 𝑊𝑓max𝑤

(4.22)

Static Margin

Static margin of a supersonic aircraft is usually changing between −5% and 5%;

besides, new multi role supersonic aircraft have even lower static margins. Since, the

static margin is one of the important parameter for stability and control it was inserted as

a constraint to the code. This is calculated as:

𝑆𝑡𝑎𝑡𝑖𝑐 𝑚𝑎𝑟𝑔𝑖𝑛 =
𝑥𝑛 − 𝑥̅

𝑐̅

(4.23)

4.1.11. Performance

The performance calculations were made from references [2], [84], [87].

Takeoff wing loading:

(
𝑊

𝑆
)
𝑇𝑂

=
𝑊0

𝑆

(4.24)

xcg.wing

xcg.fuel

 xcg.tails

xcg xcg1

xcg.eng

FM

xcg.fus

xcg.else

FN

97

Takeoff distance

𝑆𝑇𝑂 =
37.5 (

𝑊
𝑆)

𝑇𝑂

𝜎 𝐶𝐿𝑚𝑎𝑥𝑇𝑂
(
𝑇
𝑊)

𝑇𝑂

(4.25)

And, takeoff distance was selected as one of the constraints in the optimization part.

Wing loading at landing:

(
𝑊

𝑆
)
𝐿𝑎𝑛𝑑𝑖𝑛𝑔

= (
𝑊

𝑆
)
𝑇𝑂

𝑊15

𝑊0

1

𝑊15 𝑊14⁄

(4.26)

Landing distance

𝑠𝐿 = 5(
𝑊

𝑆
)
𝐿𝑎𝑛𝑑𝑖𝑛𝑔

(
1

𝜎 𝐶𝐿𝑚𝑎𝑥𝐿𝑎𝑛𝑑𝑖𝑛𝑔

) + 𝑆𝑎

(4.27)

Landing distance was also selected as one of the constraints in the optimization part.

Where,

 𝑆𝑎 = 137 𝑚 was given by [2] for seven degree glideslope, which are related with

obstacle clearance and the rate of descent, therefore approximated semi-empirically.

The maximum rate of climb, 𝑹𝑶𝑪𝒎𝒂𝒙

𝑅𝑂𝐶𝑚𝑎𝑥 = [
(𝑊 𝑆⁄)𝑍

3𝜌∞𝐶𝐷0

]

1 2⁄

(
𝑇

𝑊
)
3 2⁄

[1 −
𝑍

6
−

3

2(𝑇 𝑊⁄)2(𝐿 𝐷⁄)𝑚𝑎𝑥
2 𝑍

]

(4.28)

Maximum ceiling

Maximum ceiling is found with a control loop and caught when 𝑅𝑂𝐶 equals 𝑧𝑒𝑟𝑜.

Correspondingly, maximum ceiling was also inserted in the constraints.

Range

𝑅𝐴𝑁𝐺𝐸 =
2

𝑆𝐹𝐶
√

2

𝜌∞𝑆

√𝐶𝐿

𝐶𝐷
 √𝑊𝑖 −√𝑊𝑖+1

(4.29)

98

Maximum speed is calculated at 40000 ft

𝑉𝑚𝑎𝑥 =

{

 [(𝑇𝐴)𝑚𝑎𝑥 𝑊⁄](𝑊 𝑆⁄) + (𝑊 𝑆⁄)√[(𝑇𝐴)𝑚𝑎𝑥 𝑊⁄]2 − 4𝐶𝐷0
𝐾

𝜌∞𝐶𝐷0

}

1 2⁄

(4.30)

Endurance

𝐸 =
1

𝑆𝐹𝐶

𝐿

𝐷
𝑙𝑛

𝑊𝑖

𝑊𝑖+1

(4.31)

Corner Velocity

In order to get the minimum instantaneous turn radius and the maximum

instantaneous turn rate the unmanned supersonic aircraft should fly with the corner

velocity, which is used while calculating maneuver radiuses and rates below:

𝑉𝑐𝑜𝑟𝑛𝑒𝑟 = √
2𝑛𝑚𝑎𝑥

𝜌∞𝐶𝐿𝑚𝑎𝑥

𝑊

𝑆

(4.32)

Minimum turn radius (at sustained level turn)

𝑅𝑚𝑖𝑛 =
4𝐾(𝑊 𝑆⁄)

𝑔𝜌∞(𝑇 𝑊⁄)√1 − 4𝐾𝐶𝐷0
(𝑇 𝑊⁄)2⁄

(4.33)

Maximum turn rate (at sustained level turn)

𝜔𝑚𝑎𝑥 = 𝑞√
𝜌∞

𝑊 𝑆⁄
[
𝑇 𝑊⁄

2𝐾
− (

𝐶𝐷0

𝐾
)

1 2⁄

]

(4.34)

Instantaneous turn radius (at pull up maneuver)

𝑅𝑚𝑖𝑛𝑝𝑢𝑙𝑙−𝑢𝑝 =
𝑉∞

2

𝑔(𝑛 − 1)

(4.35)

99

Instantaneous turn rate (at pull up maneuver)

 𝜔𝑚𝑎𝑥 𝑝𝑢𝑙𝑙−𝑢𝑝 =
𝑔(𝑛−1)

𝑉∞

(4.36)

Instantaneous turn radius (at pull down maneuver)

𝑅𝑚𝑖𝑛 𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 =
𝑉∞

2

𝑔(𝑛 + 1)

(4.37)

Instantaneous turn rate (at pull down maneuver)

𝜔𝑚𝑎𝑥 𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 =
𝑔(𝑛 + 1)

𝑉∞

(4.38)

Then, the action time for known fuel weight

𝑑 =
𝑊𝑓𝑐

𝑆𝐹𝐶 𝑇

(4.39)

And, the number of complete turns

𝑥𝑥 =
𝑑𝜔

2𝜋

(4.40)

In the calculations it was assumed that cruise occurs at 40000 𝑓𝑡 and the action

segment at 15000 𝑓𝑡. The atmospheric properties at these altitudes is obtained by calling

the International Standard Atmosphere (ISA) subroutine, prepared with well-known

equations which were not needed to deal in this study.

100

4.1.12. Structural Load

It is difficult to provide a complete structural analysis at the conceptual design stage.

In spite of this, some structural load parameters are calculated in order to be within

feasible structural limits.

The calculations are made within light of references [2], [87].

One of the parameters is maneuver speed defined as the maximum speed at which

the control items can fully be deflected without damaging either the airframe or the

controls themselves [2].

𝑉𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟 = 𝑉𝑠𝑡𝑎𝑙𝑙 + 𝐾𝑝(𝑉𝐿 − 𝑉𝑠𝑡𝑎𝑙𝑙)

(4.41)

Where,

 𝑉𝑠𝑡𝑎𝑙𝑙 = √
2

𝜌

𝑊

𝑆

1

𝐶𝐿𝑚𝑎𝑥

(4.42)

𝐾𝑝 = 0.15 +
5400

𝑊 + 3300

(4.43)

And the factor in equation (4.41), 𝐾𝑝 , comes from an empirical relationship and

should be between 0.5 and 1.0 [2]. This is controlled as deciding a constraint in the code,

also.

𝑉𝐿 is maximum level cruise speed, which was introduced to code as a constant.

Eventually, the maximum available sustained load factor is:

𝑛𝑚𝑎𝑥 = {

1
2𝜌∞𝑉∞

2

𝐾(𝑊 𝑆⁄)
[(

𝑇

𝑊
)
𝑚𝑎𝑥

−
1

2
𝜌∞𝑉∞

2
𝐶𝐷0

𝑊 𝑆⁄
]}

1 2⁄

(4.44)

An airplane should be designed for a limit load that includes factor of safety, which is

usually taken as 1.5. So as introduced in the Weight and Stability part the ultimate load

factor of the unmanned supersonic aircraft is:

𝑁𝑍 = 1.5𝑛𝑚𝑎𝑥
(4.45)

101

4.1.13. Cost Model

Cost are calculated from [89] with DAPCA, the Development and Procurement Cost of

Aircraft model.

DAPCA estimates the hours required for research, development, test and evaluation

and production by the engineering, tooling, manufacturing, and quality control groups.

These are multiplied by the appropriate hourly rates to yield costs. Development support,

flight test and manufacturing material costs are directly estimated by DAPCA [89].

For the unmanned supersonic aircraft it was suggested to use aluminium as a

material and camouflage paint. The cost is estimated according to this material.

While calculating, the number of flight test aircraft was thought as a constant and

equated to 2.

The number of the optimized unmanned supersonic aircraft, 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦, was selected as

a constant and equated to 500.

Average hourly rates were taken from [2] for the year 2012. These were adjusted to

the year 2019 based on the Consumer Price Indexes calculated from CPI inflation

calculator in [90] [91].

The CPI inflation calculator uses the average Consumer Price Index for a given

calendar year. This data represents changes in prices of all goods and services purchased

for consumption by urban households. For the current year (2019), the latest monthly

index value is used [90] [91].

Engineering hourly rates in 2012 [2](and the adjusted values for 2019):

𝑅𝐸 = $115 ($130)

Tooling hourly rates in 2012 [2](and the adjusted values for 2019):

𝑅𝑇 = $118 ($133)

Quality control hourly rates in 2012 [2](and the adjusted values for 2019):

𝑅𝑄 = $108 ($122)

Manufacturing hourly rates in 2012 [2](and the adjusted values for 2019):

𝑅𝑀 = $98 ($111)

Acquisition cost of each unmanned supersonic aircraft in $:

𝐶𝑂𝑆𝑇 =
𝐻𝐸𝑅𝐸 + 𝐻𝑇𝑅𝑇 + 𝐻𝑀𝑅𝑀 +𝐻𝑄𝑅𝑄 + 𝐶𝑜𝑠𝑡𝐷 + 𝐶𝑜𝑠𝑡𝐹 + 𝐶𝑜𝑠𝑡𝑀 + 𝐶𝑜𝑠𝑡𝐸𝑁𝐸 + 𝐶𝑜𝑠𝑡𝐴

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦⁄

(4.46)

102

4.1.14. Verification of the Aircraft Design Part

The accuracy of the aircraft design part was proved by a supersonic aircraft with

similar missions. Therefore, the F-16 was examined because of its known dimensions and

performance characteristics, which were written from references [2], [68], [84], [89],

[92], [93] and [94].

Since, F-16 is not an unmanned aircraft some small adjustments were made to

approximate the results.

These adjustments:

 The unmanned configuration factor of 0.7 was not used for fuselage length.

 Because F-16 is mainly composed of aluminium structure the fudge factors for

composite aircraft were not used.

In the main program of the optimization, the values of the design variables were

appointed through the algorithm, and constants were taken from an input file. For the

verification study, without linking the optimization part to the aircraft design part, all

inputs were introduced from an input file according to F-16 as shown in the Table 4.3.

Table 4.3 Design Inputs for the F-16 aircraft

Inputs F-16 UCAV

SFC [1/h] 0.64 0.64

SFCc [1/h] 2.06 2.06

Wpayload [kg] 1964 1964

Quantity >3000 3000

b [m] 9.144 9.144

AR 3.0 3.0

c/4 [deg] 32 32

HT [deg] 40 40

VT [deg] 47.5 47.5

Гw [deg] 0 0

ГHT [deg] -10 -10

ГVT [deg] 0 0

BPR 0.87 0.87

λVT 0.437 0.437

λHT 0.390 0.390

ARVT 1.294 1.294

ARHT 2.114 2.114

Here, the production quantity for F-16 was found from Table 4.4, [84].

103

In the optimization code, this table was also used while deciding on the

production 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦; and a reasonable number, 500, is used there.

Table 4.4 Examples of Airplane Program Production Runs [84]

Fighters

Type
Number

produced

General Dynamics F-111 563

General Dynamics F-16 >3000

Gloster Meteor 3545

Gloster Javelin 435

Grumman F9F2-5 1325

Grumman F9F6-8 1985

Grumman F11F 201

Grumman F14 >900

Lockheed F-94 387

Lockheed F-80 1732

Lockheed T-33 5691

Lockheed F-104 2578

McDonnell F-4 >5000

McDD F-15 >2000

McDD F-18 >1500

SAAB JA37 329

SAAB J35A 604

Although, some necessary inputs are not known exactly for F-16, the assumed input

values of UCAV are listed in Table 4.5. Better approximations may be done in future

works also.

Table 4.5 Assumed Inputs

Assumed Inputs F-16 UCAV

lVtco unknown 0.30

lHtco unknown 0.30

VVT unknown 0.07

VHT unknown 0.40

Dfmax [m] varying 1.5

Vcruise [km/h] varying 1460

Rcr [km] varying 750

Eloiter [h] varying 0.5

Airfoil (wing) NACA 64A204 NACA 64A210

Airfoil (tails) Biconvex NACA 64A210

104

The outputs obtained from the conceptual design program are tabulated in Table 4.6,

together with F-16 values.

Table 4.6 UCAV Comparison Table with F-16

Outputs F-16 UCAV

S [m2] 27.87 27.87

LE [deg] 40 40

λ 0.227 0.202

Lf [m] 15.0 14.9

T [kN] 111.2 112.0

Leng [m] 4.67 4.18

Deng [m] 0.91 0.96

Dnosewheel [m] 0.46 0.43

wnosewheel [m] 0.14 0.10

Dmainwheel [m] 0.65 0.67

wmainwheel [m] 0.20 0.20

We [kg] 8910 6328*

Wf** [kg] 3162 3078

WTO [kg] 14036 11370*

nmax [g] 9 9

sTO [m] 457 415*

sL [m] 914 640*

W/S)TO [N/m2] 4550 4002*

ROCmax [m/s] 254 242

Maximum ceiling [m] 15240 15724

Rangecombat mission [km] 1759 2148*

Maximum endurance [h] 2.42 2.35

Vmax [km/h], (Mmax) 2175, (2.05) 2183, (2.05)

ωmax [deg/s] 13 13

Engine Cost [$] ~ 4.0 4.3

COST [$] 14-18 million 14.6 million

 *Due to unmanned structure
 **Only the internal fuel capacity

Consequently, the resultant top view of the UCAV was sketched and could be checked

against the top view of F-16 illustrated in the Figure 4.10 and Figure 4.11.

105

Figure 4.10 Top View of the resulting UCAV design

Figure 4.11 Top View of reference F-16 design

106

Before commenting on the results, it should be remembered that the planned mission

parameters for a UCAV will normally be different. For example, the cruise segment range

and the loiter time could not be found in the literature as well.

Another difference was on airfoils. Since the data for the airfoils of F-16 (𝑁𝐴𝐶𝐴 64𝐴204

for the wings and biconvex shape for the tails) were not available, thus 𝑁𝐴𝐶𝐴 64𝐴210 was

used for the UCAV for both the wing and the tails. It was assumed that, this airfoil would

approximate the real values.

Table 4.6 shows that the design code calculated results, which are very close to the

real values. The main difference is with the empty weight only. Since the systems related

to the pilot are not included in the UCAV equations the empty weight was calculated less

than that of F-16. Similarly, take off gross weight was found less by the same amount.

On the other hand, the performance parameters affected directly by the gross weight

were improved accordingly [68].

The resultant shape of the UCAV approximates the real aircraft quite closely resulting

into a similar external shape as F-16. As listed in Table 4.6, there are relatively small

deviations in dimensions and performance characteristics. Moreover, the resultant cost is

also fall into the range. In addition, it should be stated that the UCAV was found statically

stable.

In summary, this work shows the design part of the code works well and is ready to

be integrated into the optimization part as shown in the section 5.1.

4.2. Trajectory Optimization

For this design case the trajectory optimization for a passenger aircraft is chosen.

Trajectory Calculation Module (TCM), a tool for trajectory calculation written in German

Aerospace Centre (DLR) [95] is used to optimize the objective function. The inputs of the

module are:

 Latitude, longitude and height of the departure airport

 Latitude, longitude and height of the destination airport

 Number of control points

 Way points (used as design variables)

 Lateral displacement of the control points in meters: 1000𝑒3

 Pressure altitude in meters: 10972.8

 Maximum distance between two waypoints in meters: 100e3

Basically, the flight route between two waypoints is modelled as an orthodrome

(shortest path along the surface of the earth’s surface) [95].

The output of the module is:

 Flight Time (the objective)

107

 The detailed mathematical model for the trajectory calculation is not given here.

Indeed, the aim of this section is to compare the results of the hybrid algorithm with

those from the literature (Fmincon, Genetic and Globex [16]) also with an example from

one of the fundamental aviation domains, Air Transportation. For Fmincon and Genetic

Algorithm, the related Matlab functions were used. Globex is applied from [16] as

illustrated in Figure 2.10.

The departure and destination cities (end points) were decided with the help of the

studies [96] and [97], which forecast the potential urban air mobility markets by the

year 2042: Istanbul and Washington.

The atmospheric condition is selected as having the steady state winds throughout

the range. The objective is to reduce the flight time against wind. Whereas the end

points are fixed, the way points are flexible. Due to that reason, the way points were

decided to be the independent variables of the optimization. The range of the way points

are in the magnitude of 2 and can differ between −1 and 1. The amount of the way points

are also flexible and selected as 10. As a constraint, the resultant curve structured with

the optimal way points must be longer than the great circle which is actually defined as

the shortest way between two points on the Globe.

Figure 4.12 Map of the Trajectory Optimization

Since the flight is significantly influenced by the wind and the weather conditions, the

flight path becomes longer than the great circle and the flight time is increased

accordingly [95].

Because of this changing nature, selecting the optimal flight route is a good practice

for optimization. Therefore, waypoints are selected as the design variables for the

optimization part and the optimal flight time is the objective as a result. The outcomes

are given in the Section 5.2

Great Circle

Istanbul
Washington

108

5. Results

5.1. Design Case I (Unmanned Supersonic Aircraft)

An unmanned supersonic aircraft, whose conceptual design model is given in detail in

capital 4.1 Aircraft Design, is taken as the design case for a single objective optimization.

The objective of the optimization is to reduce the cost. The general mission of an UCAV

consists of take-off, climb, cruise, loiter, descent, action, climb, cruise, descent and

landing.

The positions of the wings, horizontal and vertical tails, and landing gears with

respect to the fuselage are calculated in the Aircraft Design Code prepared. The engine

sizing is automatically done in the code which gives its dimensions and its thrust. The

calculations are based on a rubber engine with turbofan characteristics which has

constant bypass ratio and specific fuel consumption. Landing gears were planned to be

tricycle and retractable, and are designed to find the dimensions according to the

changing aircraft configurations. The placements of the landing gears are changed for

different aircraft configurations with the centre of gravity. A subroutine in the code

calculates the total acquisition cost. Proper mathematical models were selected and

coded in separate subroutines [68].

Actually, the sized takeoff gross weight is the measure of merit for optimisation and

trade studies. However, cost is strongly driven by the weight and it is a final deciding

criterion in sale or a design competition. On the other hand, when the alternative

technologies, engines, avionics play important role in the design, then it is better to use

cost rather than weight on the carpet plot, and same as in multivariable optimizers [2].

Therefore, the objective of this study is to reduce the unit cost of the aircraft. In order

to get the feasible aircraft at the end, some constraints should be imposed. The selected

constraints for this study and their lower & upper values are listed in Table 5.1. In the

code these constraints are normalized with their lower and upper values.

109

Table 5.1 UCAV Constraints

Constraints Symbol
Lower

Value

Upper

Value

Fuselage Length [m] Lf 5 20

Maximum Structural Load [g] nmax 5 12

Take-off Wing Loading [N/m2] W/S)TO 2500 7000

Static Margin [%] Static_margin -5 +10

Action Time [min] d 0.7 14

Take-off Distance [m] sTO 250 700

Landing Distance [m] sL 500 1000

Maximum Ceiling [m] Maximum_ceiling 10000 20000

Range [km] RANGE 1500 6500

Maximum Endurance [h] Emax 2 6

Min. Sustained Turn Radius [m] Rmin 50 250

Max. Sus. Turn Rate [deg/sec] ωmax 8 28

Control Items Deflection Factor KP 0.5 1.0

Then, some constants values are read from an input file, which can be changed easily

by the user also. How these constants were selected is explained in [68] and they are

listed in Table 5.2:

Table 5.2 Constants in UCAV optimizations

Constant Symbol Value

Specific Fuel Consumption SFC 0.64

By-pass Raito BPR 0.87

Vertical Tail Volume Ratio VVT 0.40

Horizontal Tail Volume Ratio VHT 0.07

Vertical Tail Taper Ratio λVT 0.3

Horizontal Tail Taper Ratio λHT 0.4

Cruise Velocity [km/h] Vcruise 1460

Vertical Tail Aspect Ratio ARVT 1.4

Horizontal Tail Aspect Ratio ARHT 3.4

Dash Range [km] Rd 0.2

Production quantity Quantity 500

As a single objective optimization problem, the variables are compared with the

resultant cost and patterns are selected to decrease this objective function. Accordingly,

some parameters were selected as design variables, which are related with the aircraft

geometry and mission characteristics. While optimizing, the values are obtained by the

computer unsystematicaly with the Latin Hypercube Sampling method in the defined

110

ranges. These design variables with their boundaries are tabulated in Table 5.3. Wing

span, wing sweep angle, vertical tail sweep angle, horizontal and vertical tail volume

coefficients, loiter time and payload were selected as the design variables.

Table 5.3 Design variables and their boundaries

Wing

span
(m)

Wing
sweep
angle
(deg)

Vertical
tail sweep

angle
(deg)

Horizontal
tail

volume
coefficient

Vertical
tail

volume
coefficient

Loiter

time
(hour)

Payload
(kg)

Upper bound 15 50 55 0.45 0.45 0.75 2500

Lower bound 8 30 35 0.40 0.40 0.10 1500

From the analyses at Sections 3.1 and 3.2, the inequality (2 𝑥 7 ≤ 𝑛 ≤ 27) is used while

deciding the number of training points. Thus, the number of training points is selected as

𝑛 = 16 for 7 variables, this lowest value (as well as the power of 2) saves the run time

and the memory. Because less number of training points for each iteration means less

number of function evaluations in total, as a result. The result is found after 1136

function evaluations. The minimum point is reached at the point where the unit cost is

$ 19.45 million.

At first, the Cavus algorithm is compared with the MCMOSA algorithm, because of its

proved success to converge the pareto front in studies [68] and [73] for a conceptual air

vehicle design. The dependent and the independent variables are listed in Table 5.4

together.

The developed aircraft design code was run with MCMOSA algorithm and it reached

the termination criteria after 7786 function evaluations. The minimum point was reached

at the point where the unit cost is $ 19.62 million. The detailed values are listed in Table

5.4. From the top and the side views shown at Figure 5.1 and the Table 5.4, it can be seen

that the shape as well as the performance is changed slightly and the cost is improved

accordingly.

Even though the success of performance parameters slightly differs between these

two algorithms; they stay in the given constraints and still meet the requirements for

both. On the other hand, the main target was to reduce the number of function

evaluations while converging to the optimum, which is much lower than that of the

MCMOSA algorithm for the Cavus algorithm, and both are presented in Table 5.8.

Regarding that, the single objective convergence, 𝐶𝑜𝑠𝑡, is satisfied slightly better than

that of the MCMOSA. Consequently, Cavus algorithm is much faster than MCMOSA at the

same level of accuracy.

111

Table 5.4 Variables and optimization results for UCAV

Algorithm Cavus MCMOSA

Airfoil wing NACA64A210 NACA64A210

Airfoil horizontal tail NACA0012 NACA0012

Airfoil vertical tail NACA0012 NACA0012

Thrust (kN) 64.5 65.1

Cruise altitude (ft) 40000 40000

Mcruise 1.37 1.37

CD0 0.0234 0.0232

CLacmax (1/rad) 2.91 2.90

Wing area (m2) 16.0 16.2

Aspect ratio 4 4

Taper ratio 0.216 0.215

Horizontal tail sweep (deg) 35.0 35.1

T/W 1.14 1.14

Engine bypass ratio 0.87 0.87

Quantity 500 500

W0 (kg) 5763 5814

We (kg) 3112 3141

Wf (kg) 1151 1173

Vcorner (km/h) 569 569

Number of turns 3 3

Fuselage length (m) 7.93 7.96

nmax (g) 9.0 9.0

W/Stakeoff 360 359

Static margin % 2.5 2.4

Action Time (min) 1.3 1.1

Take-off Distance (m) 316 315

Landing Distance (m) 610 609

Maximum Ceiling (ft) 57874 57956

Range (km) 2168 2318

Endurancemax (hour) 2.4 2.6

Wing span (m) 8.00 8.05

Wing sweep angle (deg) 30.0 30.1

Vertical tail sweep angle (deg) 35.0 44.8

lHTco 0.40 0.40

lVTco 0.40 0.42

Wpayload (kg) 1500 1500

Loiter (hour) 0.1 0.4

Cost ($ million) 19.45 19.62

112

The verification of the design is given at the section 4.1.14 and the shapes are

presented at Figure 4.10 and Figure 4.11. Likewise, the resultant shapes of Cavus algorithm

and MCMOSA are compared in Figure 5.1.

Figure 5.1 Top and side views of the resultant UCAVs

Consequently, within the same range of design variables a lower objective value could

be obtained with the new method. It works as a surrogate model of patterns and yields

the most promising ones. This saves the number of analyses that is required at each

iteration. The computational effort is used for the patterns that have really promising

values rather than the unsystematically selected design spaces. Thus, to reach the

resultant value less number of function evaluations is needed. With decreasing number of

function evaluations, computation time is also saved. This means, if the design problem

requires more effort than the optimization algorithm and expands more time, the Cavus

algorithm is pretty more successful than this technique. On the other hand, MCMOSA

algorithm is a general approach and could be used for a broad application area.

Alternatively, the hybrid method may be applied efficiently to the deterministic,

observable, convex and non-convex problems that have less number of local minimums.

Because Cavus algorithm uses a kind of pattern search technique, very high number of

local minimums may mislead the search for problems that are open-end and have

stochastic behaviour.

In order to verify the results, the UAVs that have similar mission requirements were

searched. The comparison table is shown in Table 5.5.

Because most of them are still under development the exact values could not be

listed. Besides that, it should be noted, the mission requirements of these aircraft are not

the same. Regarding the resultant design parameters of the Cavus algorithm, the table is

sufficient for proving that they fall in the reasonable ranges. Accordingly, the upper and

lower bounds of the design variables are selected in respect of the values in Table 5.5, and

the resultant cost is crosschecked accordingly.

Indeed, the cost are also difficult to reach and mostly not known. For few aircraft the

program cost could be included only.

MCMOSA

Cavus

113

Table 5.5 Sample UAVs with their Specifications

Specifications

Aircraft
Wing
span
(m)

Length
(m)

T
(kN)

W0
(kg)

Wf
(kg)

We
(kg)

Wp
(kg)

Max
Altitude

(m)

Max
Endurance

(h)

Range
(km)

V
(Mach)

Cost
($ million)

Cavus 8.00 7.93 64.50 5763 1151 3112 1500 17640 2.4 2168 1.37 19.45

BAE Taranis 10.00 12.43 44.00 7000

11500

3500 0.89 prog: £185

Bayraktar Akıncı 20.00 12.20 1500 hp 5500

1350 12192 24

Bayraktar TB2 12.00 6.50 100 hp 630 210

55 8239 27 6000 0.20 4.00

Boeing Phantom Ray 15.24 10.97 78.70 16556

>2000 12192

0.80

Boeing X-45C 14.90 11.90 31.00 16600

2040 12200 7 2222 0.85

Dassault nEUROn 12.50 9.50 40.00 7000

4900 230 14000

0.80 29.00

EADS Barracuda 7.22 8.25 14.20 3250

2260 300 6096

200 0.85 prog: 40

General Atomics Avenger (Predator C) 20.00 13.00 17.58 8255 3583

2948 15240 18 2897 0.60 12-15

Kratos XQ-58 Valkyrie 8.23 9.14

2722

1134 272 15240

5556 0.94 3.00

Lockheed Martin RQ-170 Sentinel 19.90 9.20 41.26 8242

3544

15250

6.00

MiG Skat 11.50 10.25 49.40 10000

2000 12000

4000 0.80

Northrop Grumman X-47B 18.93 11.64 71.17 19958

2041 12192 6 3890 0.44 prog: 813

TAI ANKA B 17.50 8.60 170 hp 1700 445

700 9144 24

30.00

Vestel Karayel UCAV 10.50 6.50 97 hp 550

70 6858 20

0.12

prog: program cost

References: [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115],

[116], [117], [118], [119], [120], [121], [122], [123], [124], [125], [126] and [127].

114

The Globex Algorithm [52] is also taken as another reference algorithm for the

comparison.

The starting point for the Globex Algorithm is:

Table 5.6 The starting point for Globex Algorithm

The starting step sizes for the variables are taken as:

Table 5.7 The starting step sizes for Globex Algorithm

Taking the constraints as the lower and upper bounds of the variables, the Globex

algorithm [52] converges to the unit cost $ 19.91 million after 4321 function evaluations.

On the other hand, when the Genetic Algorithm is used with the same lower and

upper bounds as the Cavus algorithm, it converges to the unit cost $ 19.45 million after

10400 function evaluations and 51 generations. Besides the fact that, the Genetic

Algorithm could converge to the same unit cost with the Cavus algorithm it has the

highest number of function evaluations.

The results of Cavus, Globex and Genetic Algorithm are seen on the Table 5.8. In order

to reach the lowest cost value, the optimum point is expected to have the lowest values

for the structure related variables (the wing span and the sweep angle) and also for the

mission related variables (the loiter time and the payload). The Cavus algorithm has

slightly lower value than the Globex algorithm for the cost. Meanwhile, the number of

function evaluations is almost 4 times better than the Globex algorithm.

Table 5.8 The Results for the Aircraft Design Case

When the time for evaluating one design point is considered, these reduced function

evaluations serve real benefit for the aircraft designer.

Wing span

(m)

Wing sweep

angle

(deg)

Vertical tail

sweep

angle (deg)

Horizontal

tail volume

coefficient

Vertical tail

volume

coefficient

Loiter time

(hour)

Payload

(kg)

10.00 45.00 50.00 0.41 0.42 0.60 2000

dx1 dx2 dx3 dx4 dx5 dx6 dx7

0.40 1 1 0.0025 0.0025 0.05 50

Algorithm
Wing span

(m)

Wing

sweep

angle

(deg)

Vertical

tail sweep

angle

(deg)

Horizontal

tail

volume

coefficient

Vertical

tail

volume

coefficient

Loiter

time

(hour)

Payload

(kg)

Cost

($ million)

Function

evaluations

Cavus 8.00 30.00 35.00 0.40 0.40 0.10 1500 19.45 1136

Globex 8.01 33.49 36.13 0.43 0.40 0.40 1508 19.91 4321

MCMOSA 8.05 30.10 44.80 0.40 0.42 0.40 1500 19.62 7786

Genetic 8.00 30.00 35.00 0.40 0.40 0.10 1500 19.45 10400

115

5.2. Design Case II (Trajectory Optimization)

The optimization results for the trajectory calculation which is described in chapter

4.2 Trajectory Optimization is illustrated in Figure 5.2.

Figure 5.2 Optimal Way Points

The lower and upper limits of the waypoints for all of the algorithms used here:

Table 5.9 Lower and Upper Bounds of the Waypoints

The result for the Cavus algorithm:

Table 5.10 The result of the Cavus algorithm

The starting point for the Fmincon algorithm:

Table 5.11 The starting point for the Trajectory Calculation

Lower

Bounds

Upper

Bounds

-1.0 1.0

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal

Flight

Time (s)

0.16 0.34 0.53 0.82 0.98 1.00 1.00 0.88 0.70 0.42 36783

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

116

The result for the Fmincon algorithm:

Table 5.12 The result of the Fmincon algorithm for the Trajectory optimization

 For this design case the Globex Algorithm [52] has the starting point:

Table 5.13 The starting point of the Globex Algorithm for the Trajectory optimization

The starting step sizes for the Globex Algorithm:

Table 5.14 The starting step sizes of the Globex Algorithm for the Trajectory optimization

The result for the Globex algorithm:

Table 5.15 The result of the Globex algorithm

The result for the Genetic Algorithm:

Table 5.16 The result of the Genetic Algorithm

The total results are listed and ranked by the numbers of function evaluations as:

Table 5.17 Comparison of the results for the Trajectory Optimization

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal

Flight

Time (s)

0.16 0.33 0.53 0.82 0.98 1.00 1.00 0.88 0.70 0.42 36783

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx1 dx2 dx3

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal

Flight

Time (s)

0.16 0.34 0.53 0.82 0.98 1.00 1.00 0.88 0.71 0.42 36783

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal

Flight

Time (s)

0.16 0.33 0.52 0.80 0.97 1.00 1.00 0.88 0.71 0.42 36785

Algorithm x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal

Flight

Time (s)

Function

evaluations

Fmincon 0.16 0.33 0.53 0.82 0.98 1.00 1.00 0.88 0.70 0.42 36783 314

Cavus 0.16 0.34 0.53 0.82 0.98 1.00 1.00 0.88 0.70 0.42 36783 416

Globex 0.16 0.34 0.53 0.82 0.98 1.00 1.00 0.88 0.71 0.42 36783 19309

Genetic 0.16 0.33 0.52 0.80 0.97 1.00 1.00 0.88 0.71 0.42 36785 21400

117

Figure 5.3 Resultant Optimal Way Points

To clarify, when the function evaluations are concerned the Cavus algorithm performs

better than the Genetic Algorithm and the Globex algorithm. Especially, if the design

problem requires more effort than the optimization algorithm and expands more time,

the Cavus algorithm is pretty more successful than these techniques. On the other hand

another method which is known as Fmincon function in MATLAB is also used here. This

method is applied especially to the nonlinear and not much complex problems and as

being known as a problem specific function, it shows having an advantage over the

Cavus algorithm for that trajectory optimization. In fact, the calculation time increases

rationally with the number of function evaluations; more number of function evaluations

means more calculation time spent.

Great Circle
Fmincon
Cavus
Globex
Genetic

118

6. Conclusion

The new hybrid technique is studied here to have a specific optimization algorithm for

the problems that have a complex structure and high number of design variables

whereas having low number of local minimums. In fact, the starting point of this

algorithm was actually from the need of aerospace domain. The success of the

evolutionary algorithms that are mostly used in aerospace would be considered as

becoming cumbersome when we consider the developments in other domains recently.

Nevertheless, aerospace design cases inherently have their advantages parallel to the

recent developments. First, there is a high number of related data which can be collected

from the real life or produced with using the domain equations. Second, the aerospace

problems are closed loop processes; simply the chemical energy (the fuel) is converted

to the potential and kinetic energy (the range, etc.), nothing is disappeared or changed

extraordinarily, which means a consistent and a sustainable structure. Third, aerospace

problems are really challenging cases when high fidelity results are required, on the

contrary to that the intermediate stages can be estimated with low fidelity methods plus

probabilistic approximations due to the stated two facts above.

In this study, depending on the mentioned three properties a novel algorithm is

developed. The original contributions of the thesis are:

1. Instead of using interpolations between the design points, gradients derived from

these points are used at each stage, and presented as patterns

2. These patterns are classified in each other, and also on top they are clustered as

tried and untried patterns

3. Using the probability of success and neighbouring, the scores are assigned and

systematical improvements are gained

4. Since each design space component is presented with a pattern, at the end there

exists no design space that is left as untraced.

5. To decrease the memory usage and improve the computational performance, a

case specific dimensional reduction is applied. The number of training points is

reduced accordingly, especially for the problems that have high number of

variables.

The main target of the novel algorithm is to reduce the function evaluations while

converging to the global optimum with higher accuracy.

The hybrid algorithm is composed of pattern generation, harmonic distribution with

dimension reduction model, PNN and selection module. At an intermediate step, one of

the ANN techniques (PNN) is integrated to train the algorithm and find the probability of

the success of each neighbouring patterns. Besides, the burden of the PNN with

increasing number of design variables is alleviated with the dimension reduction model.

Thus, the number of trial points is reduced with less compromise, while the algorithm

becomes faster and less power consuming.

The trend analysis was done to present the effect of the number of training points

with changing variable numbers. The results show that when the number of training

points is kept constant, with increasing variable numbers the success to find the

119

promising patterns is reduced as expected. Besides that, when the number of training

points are increased proportionally, with the increasing variable numbers the success is

improved until a level after which the system is defined as overtrained.

The algorithm is tested on the Rosenbrock function to demonstrate the efficiency of

the algorithm for 2, 7, 10 and 14 variables. The results are compared with those from the

literature, Globex and Genetic Algorithm, and presented in Table 3.26, Figure 3.24 and

Figure 3.25. In summary, with the lower function evaluations the accuracies of the results

are better for the Cavus algorithm. Although, the increasing inclination of the Function

Evaluations vs. Variable numbers line should be examined and could be improved as a

future work.

The algorithm is developed to optimize single objective for two design cases in this

study. However, with the same modules of the code the number of objectives can be

increased without much effort. Only the objective function should be adjusted for

multiobjective optimization case. As such, normalized change on the objectives may be

handled with digits and integrated to a string like objective patterns. Then, they may be

grouped in 2𝑥−1 objective patterns, where 𝑥 is the number of objectives. Then, they may

be assigned as successful or unsuccessful patterns. Moreover, proportional with the

normalized values, these objective patterns may be sequenced and fed by penalty

coefficients accordingly. Similarly, they may be classified as successful, less successful or

unsuccessful patterns, and then these complex relations may also be examined.

Multiobjective optimization case is to be an interesting future work.

The Cavus algorithm is applied on a supersonic aircraft discrete mission to minimize

the unit cost. The values of the constraints and design variables are slightly differ from

the other algorithms, but the target for the objective function and function evaluations

are reached for this case also, in other words better results are obtained.

Another aerospace issue, the trajectory optimization is also studied. Again the hybrid

algorithm performs better than Globex and Genetic Algorithm. However, the problem

specific algorithm, Fmincon, that is known and used especially this kind of less complex

and nonlinear problems, performed slightly better than the Cavus algorithm when the

number of function evaluations is concerned, but the accuracy is similar.

Indeed, it is proved that the used hybrid method increases the efficiency of the

optimization and improves the design task; and it is seen to be competitive to the other

well-known optimization techniques.

In addition, the number of training points is found out as the determining parameter

on the efficiency of the Cavus algorithm. While increasing the values of this parameter

the convergence is improved but the cycle time and the memory usage are also

increased.

It is shown that the Probabilistic Neural Networks with the combination of rule based

agent systems the optimization of a design is possible and has advantages on different

type of problems in aerospace area. With this approach the dimension reduction is also

possible, which saves the memory and improves the efficiency. Although, searching the

whole design area with promising patterns expends the memory, it also helps to diminish

the number of function evaluations used for calculating the poor design points, which are

experienced and defined by the previous trials. Finally, the hybrid algorithm saves the

computational effort and time.

120

Bibliography

[1] in The Holy Qur'an, Translator: Elmalılı Muhammed Hamdi Yazır, Press: T.C.

Diyanet İşleri Reisliği, Translation Title: Hak Dini Kur'an Dili, Translation

Publication Year: 1936, p. 2:255.

[2] D. P. Raymer, Aircraft Design: A Conceptual Approach, 5th ed., Virginia: AIAA

Education Series, American Institute of Aeronautics and Astronautics Inc., 2012.

[3] J. S. Saggu, “Distributed Artificial Intelligence Applied to Design of Aircraft

Fuselage and Wings,” in Proceedings of the 19th Congress of the International

Council of the Aeronautical Sciences, Anaheim, California, U.S.A., 18-23

September 1994.

[4] T. Pfeiffer, B. Nagel, D. Böhnke, A. Rizzi and M. Voskuijl, “Implementation of a

Heterogeneous, Variable-Fidelity Framework for Flight Mechanics Analysis in

Preliminary Aircraft Design,” in Proceedings of the 60 Deutscher Luft- und

Raumfahrtkongress, Bremen, Germany, 27-29 September 2011.

[5] N. V. Nguyen, S. M. Choi, W. S. Kim, K. S. Jeon, J. W. Lee and Y. H. Byun,

“Multidisciplinary Unmanned Combat Air Vehicle-UCAV Design Optimization Using

Variable Complexity Modelling,” in Proceedings of the 9th AIAA Aviation

Technology, Integration and Operations Conference (ATIO), South Carolina, 21-23

September 2009.

[6] J. Sobieski-Sobiezczanski and R. T. Haftka, “Multidisciplinary Aerospace Design

Optimization: survey of Recent Developments,” in Proceedings of the 34th

Aerospace Science Meeting, Reno, NV, January 1996.

[7] K. Amadori, C. Jouannet and P. Krus, “Aircraft Conceptual Design Optimization,”

in Proceedings of the 26th International Congress of the Aeronautical Sciences,

Stockholm, Sweden, 2008.

[8] T. Zill, Model Hierarchy Exploitation for Efficient Multidisciplinary Design

Optimization in a Distributed Aircraft Design Environment, Hamburg: Ph.D.

Thesis, Hamburg University of Technology, 2013.

[9] I. Staack, R. Munjulury, T. Melin, A. Abdalla and P. Krus, “Conceptual Aircraft

Design Model Management Demonstrated on a 4th Generation Fighter,” in

Proceedings of the 29th Congress of the International Council of the Aeronautical

Sciences, St. Petersburg, Russia, 7-12 September 2014.

121

[10] A. Gelsey, M. Schwabacher and D. Smith, “Using Modeling Knowledge to Guide

Design Space Search,” Artificial Intelligence, vol. 101, pp. 35-62, 1998.

[11] I. P. Sobieski and I. M. Kroo, “Collaborative Optimization Using Response Surface

Estimation,” AIAA Journal, vol. 38, no. 10, pp. 1931-1938, 2000.

[12] D. Tejtel, D. N. Mavris and M. Hale, “Conceptual Aircraft Design Environment:

Case study evaluation of Computing Architecture Technologies,” in Proceedings of

the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, St. Louis, MO, U.S.A., 1998.

[13] L. Z. Bashir and R. S. M. Hasan, “Solving Banana (Rosenbrock) Function Based on

Fitness Function,” World Scientific News, vol. 6, pp. 41-56, 2015.

[14] D. F. Specht, “Probabilistic Neural Networks for Classification, Mapping, or

Associative Memory,” in Proceedings of IEEE International Conference on Neural

Networks, San Diego, CA, U.S.A., 1988.

[15] G. N. Vanderplaatz, “Approximation Concepts for Numerical Airfoil Optimization,”

National Aeronautics and Space Administration, Ames Research Center, Moffett

Field, California, 1979.

[16] H. G. Jacob, “An Engineering Optimization Method with Application to STOL-

Aircraft Approach and Landing Trajectories,” National Aeronautics and Space

Administration, Washington, D.C., 1972.

[17] V. Torczon, “On the Convergence of Pattern Search Algorithms,” SIAM Journal on

Optimization, vol. 7, no. 1, pp. 1-25, 1997.

[18] A. A. Hopgood, “The State of Artificial Intelligence,” in Advances in Computers,

vol. 65, M. V. Zelkowitz, Ed., Amsterdam, Elsevier Academic Press, 2005, pp. 1-

75.

[19] G. La Rocca and M. J. L. van Tooren, “Knowledge-Based Engineering Approach to

Support Aircraft Multidisciplinary Design and Optimization,” Journal of Aircraft,

vol. 46, no. 6, pp. 1875-1885, 2009.

[20] G. Gursoy and I. Yavrucuk, “Direct Adaptive Limit and Control Margin Estimation

with Concurrent Learning,” Journal of Guidance, Control, and Dynamics, vol. 39,

no. 6, p. 1356–1373, 2016.

[21] M. A. A. Oroumieh, S. M. B. Malaek, M. Ashrafizaadeh. and S. M. Taheri, “Aircraft

Design Cycle Time Reduction using Artificial Intelligence,” Aerospace Science and

Technology, vol. 26, pp. 244-258, 2013.

[22] N. Ernest, D. Carroll, C. Schumacher, M. Clark, K. Cohen and G. Lee, “Genetic

Fuzzy based Artificial Intelligence for Unmanned Combat Aerial Vehicle Control in

Simulated Air Combat Missions,” Journal of Defense Management, vol. 6, no. 1,

pp. 1-7, 2016.

122

[23] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Adaptive Computation

and Machine Learning Series, Cambridge, MA: The MIT Press, 2016.

[24] D. L. Poole and A. K. Mackworth, Artificial Intelligence: Foundations of

Computational Agents, First ed., New York: Cambridge University Press, 2010.

[25] A. L. Chandra, “McCulloch-Pitts Neuron _ Mankind's First Mathematical Model of a

Biological Neuron,” 24 July 2018. [Online]. Available:

https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1. [Accessed

7 November 2021].

[26] A. M. Turing, “Computing Machinery and Intelligence,” Mind, vol. 59, no. 236, pp.

433-460, 1950.

[27] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 2nd ed.,

England: Pearson Education, 2005.

[28] J. McCarthy, “Programs with Common Sense,” in Proceedings of the Symposium

by H. M. Stationary Office (Paper presented at the Symposium on the

Mechanization of Thought Processes), National Physical Laboratory, Teddington,

England, 1958.

[29] J. McCarthy, “Recursive Functions of Symbolic Expressions and Their Computation

by Machine, Part I,” Communications of the ACM, vol. 3, no. 4, pp. 184-195,

1960.

[30] D. Bobrow, Natural Language Input for a Computer Problem Solving System,

Cambridge: Ph.D. Thesis, Department of Mathematics, Massachusetts Institute of

Technology, 1964.

[31] Tutorials Point (I) Pvt. Ltd., “Artificial Intelligence,” 2015. [Online]. Available:

https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_tutorial

.pdf. [Accessed 7 August 2019].

[32] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Global

Edition, 3. ed., Saffron House, London: Pearson Education, 2016.

[33] P. D. Gallaher, R. A. Hunt and R. C. Williges, "A Regression Approach to Generate

Aircraft Predictor Information," Human Factors, vol. 19, no. 6, pp. 549-555, 1977.

[34] I. Kroo and M. Takai, "A Quasi-Procedural, Knowledge-based System for Aircraft

Design," in Proceedings of AIAA/AHS/ASEE Aircraft Design, Systems and

Operations Meeting, Atlanta, Georgia, 7-9 September 1988.

[35] A. Takasu, Y. Itoh, S. Futatsugi and S. Ohsuga, "Intelligent Wing Design Support

System," in Proceedings of Scandinavian Conference on Artificial Intelligence,

Tampere, Finland, 13-15 June 1989.

123

[36] S. Ohsuga, "A New Method of Model Description: Use of Knowledge Base and

Inference," in the Proceedings of Working Conference on CAD system framework,

North-Holland, 1983.

[37] S. Ohsuga, "Predicate Logic Involving Data Structure as a Knowledge

Representation Language," in the Proceedings of the 8th International Joint

Conference on Artificial Intelligence, Karlsruhe, Germany, 1983.

[38] H. Yamauchi and S. Ohsuga, "KAUS as a Tool for Model Building and Evaluation,"

in the Proceedings of the 5th International Workshop on Expert Systems and

Their Applications, Avigon, France, 1985.

[39] A. R. Dovi and G. A. Wrenn, "Aircraft Design for Mission Performance Using

Nonlinear Multiobjective Optimization Methods," NASA Langley Research Center,

Hampton, VA, U.S.A., October 1990.

[40] G. A. Wrenn, "An Indirect Method for Numerical Optimization Using the

Kreisselmeier-Steinhauser Function," NASA Langley Research Center, Hampton,

VA, U.S.A., March 1989.

[41] J. Sobieski-Sobieszczanski, A. R. Dovi and G. A. Wrenn, "A New Algorithm for

General Multiobjective Optimization," National Aeronautics and Space

Administration, Washington, DC, March 1988.

[42] A. Faghri and J. Hua, "Evaluation of Artificial Neural Network Applications in

Transportation Engineering," National Research Council, Washington, DC, 1992.

[43] S. S. Rao, Engineering Optimization: Theory and practice, 4. ed., New Jersey:

John Wiley & Sons Inc., 2009.

[44] P. Venkataraman, Applied Optimization with Matlab Programming, 2. ed., New

Jersey: John Wiley & Sons Inc., 2009.

[45] J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation,

Simulation, and Control, New Jersey: John Wiley & Sons Inc., 2003.

[46] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, International

edition, 3 ed., New Jersey: Pearson Education, Inc., 2010.

[47] L. E. Sucar, Probabilistic Graphical Models: Principles and Applications, In:

Advances in Computer Vision and Pattern Recognition, London: Springer Verlag,

2015.

[48] R. M. Lewis and V. Torczon, “Pattern Search Methods for Linearly Constrained

Minimization,” Institute for Computer Applications in Science and Engineering,

NASA Langley Research Center, Hampton, VA, January 1998.

[49] D. G. Krige, A Statistical Approach to Some Mine Valuation and Allied Problems on

the Witwatersrand, Witwatersrand: M.Sc. Thesis, University of the Witwatersrand,

1951.

124

[50] J. Sacks, W. J. Welch, T. J. Mitchell and H. P. Wynn, “Design and Analysis of

Computer Experiments,” Statistical Science, vol. 4, pp. 409-435, 1989.

[51] G. Matheron, “Principles of Geostatistics,” Economic Geology, vol. 58, pp. 1246-

1266, 1963.

[52] H. G. Jacob, Rechnergestützte Optimierung statischer und dynamischer Systeme :

Beispiele mit FORTRAN-Programmen, Berlin: Springer Verlag, 1982.

[53] D. R. Tveter, The Pattern Recognition Basis of Artificial Intelligence, Los Alamitos,

California: IEEE Computer Society Press, 1998.

[54] C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer,

2006.

[55] K. P. Murphy, Machine Learning: A Probabilistic Perspective, Cambridge: The MIT

Press, 2012.

[56] D. F. Specht, “Probabilistic Neural Networks,” Neural Networks, vol. 3, pp. 109-

118, 1990.

[57] E. Parzen, "On Estimation of a Probability Density Function and Mode," Annals of

Mathematical Statistics, vol. 33, pp. 1065-1076, 1962.

[58] A. Lotfi and A. Benyettou, “Using Probabilistic Neural Networks for Handwritten

Digit Recognition,” Journal of Artificial Intelligence, vol. 4, no. 4, pp. 288-294,

2011.

[59] D. F. Specht, “Generation of Polynomial Discriminant Functions for Pattern

Recognition,” IEEE Transactions on Electronic Computers, Vols. EC-16, no. 3, pp.

308-319, 1967.

[60] T. M. Cover and P. E. Hart, “Nearest Neighbour Pattern Classification,” IEEE

Transactions on Information Theory, Vols. IT-13, no. 1, pp. 21-27, January 1967.

[61] R. Hecht-Nielsen, “Nearest Matched Filter Classification of Spatiotemporal

Patterns,” Applied Optics, vol. 26, no. 10, pp. 1892-1899, May 1987.

[62] D. F. Specht, “Generation of Polynomial Discriminant Functions for Pattern

Recognition,” Stanford Electronics Labs., Stanford, CA, May 1966.

[63] S. S. Sawant and P. S. Topannavar, “Introduction to Probabilistic Neural Network

- Used for Image Classifications,” International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 5, no. 4, pp. 279-283, 2015.

[64] D. P. Solomatine, "Genetic and Other Global Optimization Algorithms -

Comparison and Use in Calibration Problems," in the Proceedings of the 3rd

International Conference on Hydroinformatics, Copenhagen, Denmark, 1998.

125

[65] N. Cavus, “Multidisciplinary Design Optimization using Artificial Intelligence for

Aircraft Control,” in 8th Ankara International Aerospace Conference, Ankara,

Turkey, 10-12 September 2015.

[66] N. Cavus, “Artificial Intelligence in Aircraft Conceptual Design Optimization,”

International Journal of Sustainable Aviation, vol. 2, no. 2, pp. 119-127, 2016.

[67] N. Cavus, “Aircraft Optimization at the Early Stages of Design with a Hybrid

Technique,” in 6th Council of European Aerospace Societies (CEAS) Air & Space

Conference Proceedings, Bucharest, Romania, 16-20 October 2017.

[68] N. Cavus, Multidisciplinary and Multiobjective Design Optimization of an

Unmanned Combat Aerial Vehicle, Ankara: M.Sc. Thesis, Aerospace Engineering

Department, Middle East Technical University, 2009.

[69] O. Tekinalp and N. Cavus, “Multiobjective Conceptual Design of an Unmanned

Combat Air Vehicle,” in 12th AIAA Aviation Technology, Integration, and

Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis

and Optimization Conference, Indianapolis, Indiana, 17-19 September 2012.

[70] N. Cavus, “Multidisciplinary Design Optimization with using Artificial Intelligence

for Aircraft Control, 1st International Symposium on Sustainable Aviation,”

Istanbul, Turkey, 31 May - 3 June 2015.

[71] N. Cavus, “Aircraft Design Optimization with Artificial Intelligence,” in 54th AIAA

Aerospace Sciences Meeting, AIAA SciTech, San Diego, California, USA, 3-8

January 2016.

[72] O. Tekinalp and G. Karslı, “A new Multiobjective Simulated Annealing Algorithm,”

Journal of Global Optimization, vol. 39, pp. 49-77, 2007.

[73] S. Özdemir, Multi Objective Conceptual Design Optimization of an Agricultural

Aerial Robot (AAR), Ankara: M.Sc. Thesis, Aerospace Engineering Department,

Middle East Technical University, 2005.

[74] J. C. Helton and D. E. Burmaster, “Treatment of Aleatory and Epistemic

Uncertainty in Performance Assessments for Complex Systems,” Reliability

Engineering & System Safety, vol. 54, no. 2, pp. 91-94, 1996.

[75] F. O. Hoffman and J. S. Hammonds, “Propagation of Uncertainty in Risk

Assessments: The Need to Distinguish Between Uncertainty Due to Lack of

Knowledge and Uncertainty Due to Variability,” Risk Analysis, vol. 14, no. 5, pp.

707-712, 1994.

[76] W. Yao, X. Chen, Q. Ouyang and M. van Tooren, “A Reliability-based

Multidisciplinary Design Optimization Procedure Based on Combined Probability

and Evidence Theory,” Structural and Multidisciplinary Optimization, vol. 48, no.

2, p. 339–354, 2013.

126

[77] V. K. Murthy, "Estimation of a Probability Density," Annals of Mathematical

Statistics, vol. 36, pp. 1027-1031, 1965.

[78] V. K. Murthy, "Nonparametric Estimation of Multivariate Densities with

Applications," in Multivariate Analysis, P. R. Krishnaiah, Ed., New York, Academic

Press, 1966, pp. 43-58.

[79] T. Cacoullos, "Estimation of a Multivariate Density," in Annals of the Institute of

Statistical Mathematics, vol. 18, Tokyo, Springer, December 1966, pp. 179-189.

[80] D. E. Rumelhart, J. L. McClelland and the PDP Research Group, Parallel

Distributed Processing, Volume I Explorations in the Microstructure of Cognition:

Foundations, Cambridge, MA: The MIT Press, 1986.

[81] M. D. McKay, R. J. Beckman and W. J. Conover, “A Comparison of Three Methods

for Selecting Values of Input Variables in the Analysis of Output from a Computer

Code,” Technometrics, vol. 21, no. 2, pp. 239-245, 1979.

[82] R. L. Iman, J. C. Helton and J. E. Campbell, “An Approach to Sensitivity Analysis

of Computer Models: Part I - Introduction, Input Variable Selection and

Preliminary Variable Assessment,” Journal of Quality Technology, vol. 13, no. 3,

pp. 174-183, 1981.

[83] D. Böhnke, A Multi-Fidelity Workflow to Drive Physics-Based Conceptual Design

Methods, Hamburg: Ph.D. Thesis, Hamburg University of Technology, 2015.

[84] J. Roskam, Airplane Design Part I-VII, Lawrence, Kansas: DAR Corporation, 2000.

[85] A. Abdullah, M. N. S. M. Jafri and M. F. Zulkafli, “Numerical Study of Military

Airfoils Desgin for Compressible Flow,” ARPN Journal of Engineering and Applied

Sciences, vol. 12, no. 24, pp. 7129-7133, December 2017.

[86] E. Torenbeek, Synthesis of Subsonic Airplane Design, Holland: Kluwer Academic

Publishers, 1982.

[87] J. D. Anderson, Aircraft Performance and Design, New York: McGraw-Hill, 1999.

[88] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation, 2 ed., New Jersey:

John Wiley & Sons, Inc., 2003.

[89] D. P. Raymer, Aircraft Design: A Conceptual Approach, 3. ed., Virginia: American

Institute of Aeronautics and Astronautics Education Series, 1999.

[90] Bureau of Labor Statistics, “CPI Inflation Calculator,” U.S. Department of Labor,

[Online]. Available: https://data.bls.gov/cgi-bin/cpicalc.pl. [Accessed 7 August

2019].

[91] Bureau of Labor Statistics, “Consumer Price Index,” U.S. Department of Labour,

[Online]. Available: https://www.bls.gov/CPI/#data. [Accessed 7 August 2019].

127

[92] Aeroflight, “Lockheed Martin F-16 Fighting Falcon,” 27 June 2016. [Online].

Available: http://www.aeroflight.co.uk/aircraft/types/type-details/lockheed-

martin-f-16-fighting-falcon.htm. [Accessed 26 December 2019].

[93] E. J. Saltzman and J. W. Hicks, “In-Flight Lift-Drag Characteristics for a Forward-

Swept Wing Aircraft (and Comparisions with Contemporary Aircraft),” National

Aeronautics and Space Administration, California, 1994.

[94] M. C. Fox and D. K. Forrest, “Supersonic Aerodynamic Characteristics of an

Advanced F-16 Derivative Aircraft Configuration,” NASA Langley Research Center,

Hampton, VA, June 1993.

[95] B. Lührs, F. Linke und V. Gollnick, „Erweiterung eines Trajektorienrechners zur

Nutzung Meteorologischer Daten für die Optimierung von Flugzeugtrajektorien,“ in

63. Deutscher Luft- und Raumfahrtkongress (DLRK), Augsburg, Deutschland, 16-

18 September 2014.

[96] K. Becker, I. Terekhov, M. Niklaß and V. Gollnick, “A Global Gravity Model for Air

Passenger Demand between City Pairs and Future Interurban Air Mobility Markets

Identification,” in 2018 Aviation Technology, Integration, and Operations

Conference, AIAA Aviation Forum, Atlanta, Georgia, 25-29 June 2018.

[97] I. Terekhov, Forecasting Air Passenger Demand between Settlements Worldwide

Based on Socio-Economic Scenarios, Hamburg: Ph.D. Thesis, Hamburg University

of Technology, 2017.

[98] G. Bakır, “İnsansız Hava Araçlarının Savunma Sanayi Harcamasında Yeri ve

Önemi,” Eurasian Journal of Researches in Social and Economics (EJRSE), vol. 6,

no. 2, pp. 127-134, 2019.

[99] J. Gertler, “U.S. Unmanned Aerial Systems,” Congressional Research Service,

Washington, DC, 2012.

[100] B. Yenne, Drone Strike!: UCAVs and Aerial Warfare in the 21st Century, 1st ed.,

Forest Lake, MN: Specialty Press, 2017, pp. 90, 185.

[101] “BAE Systems Taranis,” Avia.Pro, 28 October 2016. [Online]. Available:

http://avia-pro.net/blog/bae-systems-taranis-tehnicheskie-harakteristiki-foto.

[Accessed 4 January 2020].

[102] A. Parsch, “Boeing X-45 / X-46,” Designation-Systems.Net, 2 September 2007.

[Online]. Available: http://www.designation-systems.net/dusrm/app4/x-45.html.

[Accessed 4 January 2020].

[103] “Predator C Avenger,” General Atomics Aeronautical Systems, Inc., 2015.

[Online]. Available: http://www.ga-

asi.com/Websites/gaasi/images/products/aircraft_systems/pdf/Predator_C021915

.pdf. [Accessed 4 January 2020].

128

[104] “Tactical UAVs,” Kratos Defense, 2019. [Online]. Available:

http://www.kratosdefense.com/systems-and-platforms/unmanned-

systems/aerial/tactical-uavs#XQ58A. [Accessed 4 January 2020].

[105] “Karayel Tactical UAV,” VESTEL Defence Industry, 2017. [Online]. Available:

http://www.vestelsavunma.com/views/web/vestelsavunma/downloads/tr/urunler/

KARAYELTacticalUAVeng-tr.pdf. [Accessed 4 January 2020].

[106] C. Haddox, “Boeing 'Phantom Eye' Hydrogen Powered Vehicle Takes Shape,”

Boeing, 8 March 2010. [Online]. Available: https://boeing.mediaroom.com/2010-

03-08-Boeing-Phantom-Eye-Hydrogen-Powered-Vehicle-Takes-Shape. [Accessed

4 January 2020].

[107] C. Ritsick, “Top 35 Most Expensive Military Drones,” Military Machine, 26 July

2019. [Online]. Available: https://militarymachine.com/top-35-most-expensive-

military-drones/. [Accessed 4 January 2020].

[108] M. Cassese, “The RQ-170 Sentinel Spy Drone: The Beast of Kandahar,” Postmedia

Network Inc., 7 December 2011. [Online]. Available:

https://nationalpost.com/news/rq-170-sentinel-spy-drone-the-beast-of-kandahar.

[Accessed 4 January 2020].

[109] M. Grimson and M. Corcoran, “Taranis drone: Britain's $336m supersonic

unmanned aircraft launched over Woomera,” ABC News, 7 February 2014.

[Online]. Available: https://www.abc.net.au/news/2014-02-06/taranis-drone-uk-

mod-bae-systems-woomera-south-australia/5242636. [Accessed 4 January

2020].

[110] “Barracuda Demonstrator Unmanned Air Vehicle Developed by EADS Military Air

Systems,” Army Technology, [Online]. Available: https://www.army-

technology.com/projects/barracuda-demonstrator-uav/. [Accessed 4 January

2020].

[111] “Taranis,” BAE Systems, [Online]. Available:

https://www.baesystems.com/en/product/taranis. [Accessed 4 January 2020].

[112] “Bayraktar Akıncı,” BAYKAR Savunma, [Online]. Available:

https://www.baykarsavunma.com/iha-14.html. [Accessed 4 January 2020].

[113] “Bayraktar TB2,” BAYKAR Savunma, [Online]. Available:

https://www.baykarsavunma.com/iha-15.html. [Accessed 4 January 2020].

[114] “Anka Block-B MALE UAV System Starts Serving Turkish Naval Forces Command,”

Defence Turkey, 2018. [Online]. Available:

https://www.defenceturkey.com/tr/icerik/anka-block-b-male-uav-system-starts-

serving-turkish-naval-forces-command-3035. [Accessed 4 January 2020].

[115] B. Stevenson, “Upgraded Anka carries out maiden flight,” FlightGlobal, 2 February

2015. [Online]. Available: https://www.flightglobal.com/civil-uavs/upgraded-

anka-carries-out-maiden-flight/115789.article. [Accessed 4 January 2020].

129

[116] J. Pike, “Phantom Ray,” GlobalSecurity.org, 16 November 2017. [Online].

Available: https://www.globalsecurity.org/military/systems/aircraft/phantom-

ray.htm. [Accessed 4 January 2020].

[117] J. Pike, “MiG Skat UAV,” GlobalSecurity.org, 17 May 2019. [Online]. Available:

https://www.globalsecurity.org/military/world/russia/mig-skat.htm. [Accessed 4

January 2020].

[118] “Dassault nEUROn,” MilitaryFactory.com, 24 January 2019. [Online]. Available:

https://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=987. [Accessed 4

January 2020].

[119] D. Alex and J. R. Potts, “Northrop Grumman X-47B,” MilitaryFactory.com, 24

January 2019. [Online]. Available:

https://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=1015. [Accessed

4 January 2020].

[120] “Bayraktar TB2,” MilitaryFactory.com, 13 May 2019. [Online]. Available:

https://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=1679. [Accessed

4 January 2020].

[121] “Kratos XQ-58 Valkyrie (XQ-222),” MilitaryFactory.com, 8 March 2019. [Online].

Available: https://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=1755.

[Accessed 4 January 2020].

[122] “X-47B Unmanned Combat Air System (UCAS),” Verdict Media Limited, [Online].

Available: https://www.naval-technology.com/projects/x-47b-unmanned-combat-

air-system-carrier-ucas/. [Accessed 4 January 2020].

[123] B. Wang, “Russia’s Unmanned Next Generation Fighter is being based off the MIG

Skat Stealth UCAV Prototype,” Next Big Future Inc., 16 January 2015. [Online].

Available: https://www.nextbigfuture.com/2015/01/russias-unmanned-next-

generation.html. [Accessed 4 January 2020].

[124] “X-47B UCAS,” Northrop Grumman Corporation, 2015. [Online]. Available:

https://www.northropgrumman.com/Capabilities/X47BUCAS/Documents/UCAS-

D_Data_Sheet.pdf. [Accessed 4 January 2020].

[125] B. McKinney, “Unmanned Combat Air System Carrier Demonstration,” Northrop

Grumman Corporation, 19 December 2012. [Online]. Available:

https://www.northropgrumman.com/Capabilities/X47BUCAS/Documents/X-

47B_Navy_UCAS_FactSheet.pdf. [Accessed 4 January 2020].

[126] G. Robbins, “More Drones, Smaller Navy,” The San Diego Union-Tribune, 4 May

2010. [Online]. Available: https://www.sandiegouniontribune.com/sdut-more-

drones-smaller-navy-2010may04-htmlstory.html. [Accessed 4 January 2020].

[127] “Lockheed Martin RQ-170 Sentinel UCAV,” SimplePlanes.com, 25 April 2018.

[Online]. Available: https://www.simpleplanes.com/a/41Dajr/Lockheed-Martin-

RQ-170-Sentinel-UCAV. [Accessed 4 January 2020].

130

Appendix

PNN Classification

Deep Learning Toolbox of Matlab R2018b is used for Probabilistic Neural Networks.

The function is called as newpnn in Matlab and used as following:

%input patterns

P = [successful_patterns,unsuccessful_patterns];

%classes of input patterns

Tc = [successful_set,unsuccessful_set];

%Target class indices are converted to vectors

T = ind2vec(Tc);

%apply PNN

net = newpnn(P,T);

%apply trained network to guess the classes of the untried_patterns

Y = sim(net,untried_patterns);

%classes of untried_patterns are found as:

Yc = vec2ind(Y);

	Abstract
	Dedication
	1. Introduction and Motivation
	1.1. Objective and Originality of the Thesis
	1.2. Organization of the Thesis

	2. Artificial Intelligence / Intelligent Systems
	2.1. State of the Art Artificial Intelligence
	2.1.1. What is Artificial Intelligence?
	2.1.2. History of Artificial Intelligence
	2.1.3. Artificial Intelligence in Aerospace

	2.2. Knowledge Based Methods
	2.3. Computational Intelligence
	2.3.1. Genetic Algorithm
	2.3.2. Simulated Annealing
	2.3.3. Pattern Search
	2.3.4. Kriging
	2.3.5. Globex Algorithm
	2.3.6. Artificial Neural Networks

	2.4. Probability
	2.4.1. Probabilistic Neural Networks

	2.5. Comparison of the Algorithms

	3. Cavus Algorithm
	3.1. Trend Analysis for the number of Training Points
	3.2. Test Case: Rosenbrock Function
	3.2.1. Method description and the results for Rosenbrock Function for 2 variables
	3.2.2. The results for Rosenbrock Function for 7 variables
	3.2.3. The results for the “Rosenbrock” Function for 14 variables

	4. Design Cases
	4.1. Aircraft Design
	4.1.1. Conceptual design of an unmanned supersonic aircraft
	4.1.2. Mission Profile
	4.1.3. Initial Sizing
	4.1.4. Wing Configuration
	4.1.5. Fuselage Configuration
	4.1.6. Propulsion System
	4.1.7. Horizontal and Vertical Tail Configuration
	4.1.8. Landing Gears
	4.1.9. Aerodynamics
	4.1.10. Weight and Stability
	4.1.11. Performance
	4.1.12. Structural Load
	4.1.13. Cost Model
	4.1.14. Verification of the Aircraft Design Part

	4.2. Trajectory Optimization

	5. Results
	5.1. Design Case I (Unmanned Supersonic Aircraft)
	5.2. Design Case II (Trajectory Optimization)

	6. Conclusion
	Bibliography
	Appendix
	PNN Classification
	Muster_Impressum_frei_Cavus.pdf
	Erklärung des Herausgebers
	Lizenz
	Ein intelligenter Zeit- und leistungseffizienter Algorithmus zur Optimierung des Flugzeugentwurfs
	Technische Universität Hamburg
	An Intelligent Time and Performance Efficient Algorithm for Aircraft Design Optimization
	Hamburg University of Technology

