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Ein intelligenter Zeit- und leistungseffizienter Algorithmus zur Optimierung des 
Flugzeugentwurfs 
Technische Universität Hamburg 
 
Die Optimierung des Flugzeugentwurfs erfordert die Beherrschung der komplexen 
Zusammenhänge mehrerer Disziplinen. Trotz seiner Abhängigkeit von einer Vielzahl 
unabhängiger Variablen zeichnet sich dieses komplexe Entwurfsproblem durch starke indirekte 
Verbindungen und eine daraus resultierende geringe Anzahl lokaler Minima aus. Abgesehen von 
klassischen Optimierungstechniken wie Genetische Algorithmen und Simulated Annealing usw. 
gibt es jedoch nicht viele Optimierungsalgorithmen, die sich speziell auf diesen anspruchsvollen 
Bereich fokussieren. 
Kürzlich entwickelte intelligente Methoden, die auf selbstlernenden Algorithmen basieren, 
ermutigten die Suche nach einer diesem Bereich zugeordneten neuen Methode. Tatsächlich wird 
der in dieser Arbeit entwickelte Hybrid-Algorithmus (Cavus) auf zwei Hauptdesignfälle im Luft- 
und Raumfahrtbereich angewendet: Flugzeugentwurf- und Flugbahnoptimierung. 
Die neue Hybridtechnik verwendet Klassifikation anstelle einer Interpolation der Entwurfspunkte, 
was  für Optimierungsprobleme besser geeignet ist, die eine geringe Anzahl lokaler Minima 
haben und diskret sind. Es könnte als alternativer Ansatz für Vertrauensregionen bezeichnet 
werden: Teilregionen, umgekehrte Regionen, emulierte Regionen und aggregierte Regionen. 
Insbesondere wird der gesamte Designraum gescannt und die Wahrscheinlichkeitsdatensätze 
ohne Leistungsbeeinträchtigung gesammelt. Mit der zunehmenden Anzahl von Designvariablen 
wird die Auswahl der sofortigen Testpunkte strukturiert, indem das Wissen oder der Spur aus 
den vorangegangenen Iterationen genutzt wird. Der implementierte neue Ansatz ist in der Lage, 
die Anzahl der Versuchspunkte ohne große Kompromisse zu reduzieren. Dies erhöht die 
Effektivität der geringen Anzahl an Versuchspunkten, die nicht gleichmäßig verteilt werden 
konnten. 
Die Trendanalyse zeigt, dass der Cavus-Algorithmus für die komplexen Designprobleme, die 
eine hohe Anzahl von Designvariablen, aber eine geringe Anzahl lokaler Minima haben, mit einer 
proportionalen Anzahl von Prüfpunkten konservativer ist, während es eine Erfolgsquote von bis 
zu 95-98% erreicht, um die erfolgreichen Muster zu finden. 
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Aircraft Design Optimization requires mastering of the complex interrelationships of multiple 
disciplines. Despite its dependency on a diverse number of independent variables, this complex 
design problem has favourable nature as having strong indirect links and as a result a low number 
of local minimums. However, unlike other classical optimization techniques such as Genetic 
Algorithm and Simulated Annealing etc., there are not many optimization algorithms focussed 
specifically on this challenging area. 
Recently developed intelligent methods that are based on self-learning algorithms encouraged 
finding a new method dedicated to this area. Indeed, the hybrid (Cavus) algorithm developed in 
this thesis is applied two main design cases in aerospace area: aircraft design optimization and 
trajectory optimization. 
The new hybrid technique uses classification rather than interpolation of the design points, which 
is more suitable for optimization problems that have low number of local minimums and are 
discrete. It could be called as an alternative approach to trust regions: partial regions, flipped 
regions, emulated regions and aggregated regions. Especially, it scans the whole design space 
and collects the probability records without detriment to performance. With the increasing number 
of design variables, the selection of the instant trial points is structured by using the knowledge, 
or trail, from the preceding iterations. The implemented new approach is capable of reducing the 
number of trial points without much compromise. This increases the effectivity of the low number 
of trial points which could not be evenly distributed. 
The trend analysis shows that, for the complex design problems that have a high number of 
design variables but a low number of local minimums the Cavus algorithm is more conservative 
with a proportional number of trial points whilst yielding up to 95-98% success rate in finding the 
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Abstract 

 

Aircraft Design Optimization requires mastering of the complex interrelationships of 

multiple disciplines. Despite its dependency on a diverse number of independent 

variables, this complex design problem has favourable nature as having strong indirect 

links and as a result a low number of local minimums. However, unlike other classical 

optimization techniques such as Genetic Algorithm and Simulated Annealing etc., there 

are not many optimization algorithms focussed specifically on this challenging area. 

Recently developed intelligent methods that are based on self-learning algorithms 

encouraged finding a new method dedicated to this area. Indeed, the hybrid (Cavus) 

algorithm developed in this thesis is applied to two main design cases in aerospace area: 

aircraft design optimization and trajectory optimization. 

The new hybrid technique uses classification rather than interpolation of the design 

points, which is more suitable for optimization problems that have low number of local 

minimums and are discrete. It could be called as an alternative approach to trust 

regions: partial regions, flipped regions, emulated regions and aggregated regions. 

Especially, it scans the whole design space and collects the probability records without 

detriment to performance. With the increasing number of design variables, the selection 

of the instant trial points is structured by using the knowledge, or trail, from the 

preceding iterations. The implemented new approach is capable of reducing the number 

of trial points without much compromise. This increases the effectivity of the low number 

of trial points which could not be evenly distributed. 

The trend analysis shows that, for the complex design problems that have a high 

number of design variables but a low number of local minimums the Cavus algorithm is 

more conservative with a proportional number of trial points whilst yielding up to 95-98% 

success rate in finding the successful patterns. 

 

Keywords: Aircraft Design, Artificial Intelligence, Multidisciplinary Design, 

Supersonic Aircraft, Unmanned Combat Aerial Vehicle, Trajectory Optimization 
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1 
 

Knowledge should mean a full grasp of knowledge:                                      

Knowledge means to know yourself, heart and soul.                               

If you have failed to understand yourself,                                    

Then all of your reading has missed its call.1                                   

YUNUS EMRE 

 

1. Introduction and Motivation 

 

‘Know yourself’, as Socrates said, may be the best way to start to explain why people 

began from themselves intuitively to search for techniques to ease their life. Because 

their bodies, the environment in which they leave, so the universe function in an 

excellent order. Although human beings are far to understand the real structure of this 

excellence, they are gifted to be attracted by, and have the ability to start to investigate. 

But they cannot encompass/comprehend anything beyond as much as allowed [1]. That 

is why this thesis is based on “Artificial Intelligence” which tries to mimic the functioning 

of the human intelligence, i.e. another excellence. Artificial Intelligence may be the 

unpredictably large research area for us. Although it is still under development, it has 

affected and eased our life gradually. Thus, in this study its effect in the field of 

aerospace is emphasized.  

Another motivation item of this study can be explained through “Probability”, which is 

defined as the likelihood of an event to occur. If events are more than one, the sum of 

the probabilities of all possible occurrences is accepted to be equal to “1”; which 

inherently wipes out the “coincidence theory”.  

In this thesis, a dedicated optimization algorithm for a conceptual aircraft design was 

developed based on these two motivation items. Many classical mathematical 

optimization techniques are applied in this area [2]. These classical methods use so-

called random walk or creeping, which need high number of function evaluations due to 

probable poor starting points, or mathematically true but illogical selections. Besides, due 

to the structure of the aircraft design, the derivative-based methods which are much 

more powerful than classical methods are very difficult and may not worth to apply. 

However, the aircraft design has many advantages over other optimization problems and 

deserves a dedicated optimization method to converge to better results with less function 

evaluations. An aircraft is composed of systems of systems and has a closed loop process 

in which the energy is conserved. So that, the possible degree of success of the 

unknowns can be extracted from the knowns of the design space based on their 

probabilities. At that point, this study differs from other researches in this domain; by 

treating the constrained design space as a whole and deciding on the next trial point with 

a classification algorithm, instead of any so-called random walk or interpolating 

algorithms which are commonly applied until now. Indeed it uses two keys to have better 

selection of design points; learning from previous data, i.e. artificial intelligence, and the 

coherence of our universe, i.e. (here, using) the rules of probability. As a result, any poor 

attempts are diminished before they are tested. This dedicated method for a conceptual 

aircraft design problem can be applied to any design problem which can be defined as a 

closed loop process, also.  

                                                           
1
 Translated from Turkish: İlim ilim bilmektir, İlim kendin bilmektir. Sen kendini bilmezsin, Ya nice okumaktır. 
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1.1.  Objective and Originality of the Thesis 

 

With increasing demand on high quality, high performance products and limited 

resources it is always required to have efficient selections on the components. This 

efficient selection process is called as optimization for a design problem, and these high 

quality high performance products and limited resources are defined as the objectives 

and the constraints, respectively. Then the components whose values change throughout 

the selection process are named as the independent variables of a design problem. 

According to the design problem, the designer may choose one or more independent 

variables. If there is just one objective (dependent variable) this process is called single 

objective optimization, if there are more than one objectives then it is a multiobjective 

optimization problem. When the design problem compromises different disciplines then 

the optimization process called multidisciplinary design optimization (MDO). The focus of 

this thesis is aircraft conceptual design optimization. Indeed, Aircraft design is a complex 

process that requires different fidelity levels of multidiscipline, accordingly different 

frameworks, expertise of engineers and significant efforts [3], [4]. It consists of many 

highly coupled systems, subsystems and related design parameters [5], [6].  

 

Figure 1.1 The Complete Aircraft Design Framework [7] 
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A multidisciplinary design tool for an aircraft design is presented by Amadori et al. in 

[7] to meet the requirements of modern complex product development and it is 

framework is illustrated in Figure 1.1 with all the modules and their connections. A 

straightforward iterative and sequential layout combining multiple design modules are 

shown by Zill [8] in Figure 1.2. However, each of these design modules also includes 

complex relations both internally and externally. Besides, at the conceptual analysis 

stage a huge number of (unknown) parameters are used with the empirical equations of 

classical sizing approach [9].  

 

Figure 1.2 Common sequence of analysis modules in aircraft design [8] 
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defined as a statistical knowledge-based engineering method that uses small amount of 

parameters, which can be explicitly defined, and a large number of statistic data [9]. 

To manage the complexity and to capture the ‘know-how’ the artificial intelligence 

techniques are employed; the computer aided design, like computational analysis, is 

used in all forms to fınd the superior product with an iterative design process [3]. An 

example to the iteration process involved in an aircraft design is given by Saggu [3] in 

Figure 1.3. In the figure the complex relations of a fuselage-wing box design are shown.  

 

Figure 1.3 Fuselage Preliminary Design Process [3] 
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evaluation process. Instead of using the experts’ domain knowledge in the loop, it is 

aimed to have effective information exchange between a simulator and an automated 

search procedure while violating the constraints and to find feasible design points. A cost 

improvement of two orders of magnitude is observed. 

Besides complexity, the huge number of design variables is another concern in 

aircraft design. A tailless unmanned air vehicle with 44 variables is optimized by Sobieski 

and Kroo [11]. A response surface estimation technique with simple trust region 

algorithm is implemented at this the collaborative optimization study. It is proved that, 

when a complete subsystem optimization is required the response surface optimization is 

relatively inexpensive method. Moreover, computational expense of generating a 

response surface is reduced almost 50% as recognizing extra point information implicitly 

in each sub-model. 

Many different optimization techniques are used in different problem areas. The type 

of optimization technique to be used in a special area is another concern that leads 

runtime and results in a manner to be better or worse. As an example, one method could 

fit a problem in which it is desired to make some predictions on economics, while other 

method could fit better to a mechanical problem. Therefore, it is very hard to say for any 

technique that is the best technique for all of the situations one may meet. 

In aerospace engineering, to understand the complex design problems and reach the 

viable and accurate design solutions the guidance of probabilistic design techniques and 

simulation are required by the designers increasingly [12]. 

In the detailed work of Bashir and Hasan [13], the basic operations of Genetic 

Algorithm are presented with Rosenbrock function. In this work, it is seen that after 

crossover, mutation and selection operations, the two new chromosomes have the same 

variable values. Moreover, the previous iteration has also the same variable values in one 

of the chromosomes. This is a good example of poor selections in Genetic Algorithm. This 

kind of excess function evaluations can be encountered during the process of population 

based algorithms. When these excess function evaluations occur as optimizing an aircraft 

design, the wasted run time does not be similar to Rosenbrock function but even it could 

be hours or days. This is due to the multiplication factor of the time spent while 

calculating one design solution. 

Therefore, the purpose of this study is to propose a novel algorithm which can be 

used for engineering design optimization problems, that has low number of local 

minimums but a high number of variables relating complex structures. Even though, the 

success of the algorithm is examined here by 14 independent variables, it can be applied 

to more number of variables. The target is to reduce the function evaluations by reducing 

the poor parts of the design space based on the probabilities extracted from previous 

trials. Due to the fact that, this algorithm is neither restricted by step sizes nor diverged 

by so-called random walks, it has better results compared to other algorithms applied in 

this study. 

In this research, the design cases are selected from the applications of aerospace 

engineering area. Aircraft design optimization and an aircraft mission have complex 

dependencies; but they have clear standard segments and each segment with its 

requirements – inputs and outputs – are well-known; hence these platforms are practical 

to be selected. The general input-output relations are illustrated in Figure 1.4. 
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Figure 1.4 General input-output relations in aerospace engineering problems 
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of Probabilistic Neural Networks, which was introduced by Specht [14]. This kind of 

Neural Networks is used for its success on classification and pattern recognition. The 

method is given in detail in section 0. 

The presented study here can be clustered among the single level optimization 

techniques of aircraft design optimization strategies as mentioned by Vanderplaatz in 

[15], and it can belong to the group of direct search methods which does not depend on 

the derivatives like the optimization method presented by Jacob [16]. Also, the technique 

can be categorized to the pattern search methods presented by Torczon [17]. 

In this regard, the originality of the work in aircraft design optimization environment 

stands on three principles. At first, the method depends on neither the design points nor 

the gradients alone; instead it uses the bilateral combinations of the design points to 

perceive the bounded design space. Second, the successive design points are not 

generated from the current points; instead they are systematically improved by the 

clustered parts of the design space, which are gained from the current information. Third, 

depending on the success of the neighbouring pattern selection as classifying the 

patterns, a novel dimension reduction technique is used to increase the computational 

performance. 

The developed algorithm can be applied to a wide range of design problems which are 

linear, nonlinear, quadratic, convex or non-convex. In this study, Rosenbrock, a non-

convex function, also a conceptual design of an aircraft and a trajectory of a passenger 

aircraft are taken as test cases for the proposed algorithm. 

Indeed, the objective of the thesis is to develop an intelligent algorithm which can be 

a bridge between aerospace and mathematics domains by handling one of the artificial 

intelligence techniques via an unconventional aspect. The memory usage, a serious 

drawback of the artificial intelligence algorithms, is overcome with a novel case specific 

dimension reduction technique. As a result, the novel algorithm the advantage reducing 

the required minimum number of function evaluations for aerospace design optimization 

problems.  

 

1.2.  Organization of the Thesis 

 

At first, artificial intelligence and its state of the art aerospace engineering are dealt 

with. Then, the method is described and illustrated in detail with Rosenbrock function. 

Due to having many local minimums and wide search space Rosenbrock function is one 

of the popular test methods for single objective optimization that has the flexibility to 

increase the independent design variables, also. The effectiveness of the algorithm is 

shown with Rosenbrock function with two, seven, ten and also fourteen variables. A trend 

analysis is also done for selecting the number of training points during the optimization 

process, which also proves the efficiency of the algorithm while increasing the variable 

numbers. 

Then two different test cases from aerospace engineering, i.e. the conceptual design 

of a supersonic unmanned aircraft and trajectory optimization, were applied for the 

multidisciplinary single optimization case. 
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2. Artificial Intelligence / Intelligent Systems 

 

2.1.  State of the Art Artificial Intelligence 

 

Knowledge based systems, computational intelligence and hybrids are specified as the 

tools of artificial intelligence by Hopgood in [18]. In order to use the advantages of both 

methods, a hybrid method is introduced in this study which is composed of agents and 

Probabilistic Neural Networks algorithm. Agents work on gridded search space to find out 

and sort the shifting actions of the values, and Probabilistic Neural Networks is used for 

classification of the successful and promising patterns.  

Recently, the use of artificial intelligence tools continues to increase in aircraft 

multidisciplinary design optimization due to their successful implementations. A 

Knowledge Based Engineering approach to support aircraft multidisciplinary optimization 

was used by La Rocca and van Tooren [19] to develop both conventional and novel 

geometries. Finite element analysis models are generated and time reduction is gained 

with the automated method.  

Another method, Concurrent Learning was used with Adaptive Neural Networks based 

approximate models by Gursoy and Yavrucuk [20] for a nonlinear fixed-wing aircraft 

model. Non-iterative two models were used to estimate the direct adaptive limit and the 

control margins. Network weights were updated from both past and current information, 

with which resultant values were better calculated. 

To decrease the aircraft design cycle time, two different artificial intelligence 

algorithms are used by Oroumieh et al. in [21]; Neural Networks and Fuzzy Logic. 

Aircraft weight, engine thrust and wing area were determined with the applied methods 

at the early phase of the aircraft design process. A specific class of light business jets is 

selected as a design case to approximate the take-off wing loading and take-off thrust 

loading. The actual results are approximated about ten percent for the preliminary design 

phase. 

A fuzzy logic based artificial intelligence algorithm was applied to an unmanned 

combat aerial vehicle control system by Ernest et al. [22]. The success of the algorithm 

was proved in high fidelity simulation environment. The algorithm was found to be highly 

responsive to complex situations and uncertainties. 

As introduced above, artificial intelligence methods with knowledge based techniques 

are used by many designers to improve the design solutions and the required run time. 

In this study a hybrid technique is used to increase the efficiency of the optimization 

process by reducing the required number of function evaluations to converge the 

optimum point.  
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The method studied here has the advantage on other guided random search 

techniques with assigning the directions on the search space for the variables while 

searching and classifying the promising grids. With this method the training sets are used 

to decide on the next search space with the produced values of the cumulated runs. In 

the following sections the methodology is explained more in detail. 

 

2.1.1. What is Artificial Intelligence? 

 

Artificial Intelligence is the science of mimicking human mental capabilities in a 

computer, which are reasoning, understanding, perceiving, recognizing, recalling, 

imagination, and more [18]. 

In the next section, the contributions of scientist to Artificial Intelligence are described 

in brief. The different techniques used in AI are categorized and as illustrated in Figure 2.1 

by Hopgood [18] in three nested types; those are Knowledge-based Systems, 

Computational intelligence and hybrids. 

 

 

Figure 2.1 Categories of Intelligent system software [18] 
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a solution to this difficulty as defining concepts which have relations to each other. Then, 

this hierarchy of concepts which is structured from simple to complicated ones allows 

computers to learn from experience and understand the world. Because of this layered 

formation which combines many layers this approach is called as deep learning in AI. A 

Venn diagram shown in Figure 2.2 is given by Goodfellow et al. [23] to illustrate the 

applications and relations of approaches with AI technology.  

 

 

Figure 2.2 Approaches of AI [23] 
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decoder converts the represented data back into its original format. However, finding the 

correct features to represent the complex task is a great hurdle. To accomplish this 

difficulty, deep learning algorithms are used which use simple concepts to build complex 

concepts. A good example may be given as the feedforward deep network or multilayer 

perception (MLP) which is composed of different and sequential simpler mathematical 

functions to represent the data. With nested hierarchy of concepts in deep learning, more 

abstract representations can be executed in terms of less abstract ones that allows 

computer systems to gain experience with data [23].  

 

 

Figure 2.3 Relations of components for different AI systems [23] 

 

2.1.2. History of Artificial Intelligence 

 

Like stating the beginning of history of flight/aviation, the beginning of the history of 

artificial intelligence is hard to say with pinpoints accuracy. Many researchers in different 

areas -like biology and mathematics- contribute to this discovery [24].  

Warren McCulloch and Walter Pitts efforts to investigate the first artificial neuron in 

1943, which is based on simple threshold logic, might be treated as one of the main 

breaking points. This computational model, which is in fact inspired from the functions of 

brain neurons, might be the first concrete step for the Artificial Neural Networks [25]. 
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This investigation encouraged the researches to work on computational intelligence 

further.  

If a neuron could be imitated why could not the intelligence? Alan Turing opened a 

path with his successful attempt to test intelligent behaviour of a computer with the 

Turing Test [26]. In this test a computer and a person answer the questions of an 

interrogator as being in separate rooms, and the interrogator tries to distinguish which 

one is a computer which one is a human. If the interrogator fails to distinguish the 

computer as, whether it is a human or not, then the computer passes the test with its 

ability to mimic cognitive tasks of a human [27].    

The term ‘Artificial Intelligence’ was first introduced by John McCarthy. With his deep 

interest to common sense reasoning, he proposed a program called Advice Taker, which 

solves problems by manipulating sentences in formal languages. His objective was to 

introduce the method of representing information by logic in computer memory, since he 

believed that AI cannot be thought without logic, i.e. it is unavoidable for AI. 

Furthermore, he stated his objective as making programmes that learn from their 

experiences [28], which can be seen as the basics of today’s Knowledge Based Methods. 

He also presented the high level programming language LISP in the late 1950s. He used 

Symbolic Expressions to represent Symbolic Functions and applied the universal Symbolic 

Function for the theoretical role of a universal Turing Machine and the practical role of 

the interpreter [29]. 

In 1964 Danny Bobrow demonstrated in his Ph.D. thesis that a computer can solve 

algebra word problems with interpreting natural language. The problem solving system 

that he used finds the set of kernel sentences and converts them to a set of simultaneous 

equations, then tries to solve this set of equations for the values of requested unknowns. 

If it is able to solve then it gives the answer in English, if the inputs are not enough to 

solve, it asks for more information with indicating the nature of the required information 

[30], [31]. This problem solving system that is shown in Bobrow’s thesis was the first 

step to communicate with computers through natural language. Further, in 1965 Joseph 

Weizenbaum built an interactive problem solver, ELIZA, which can carry on a dialog in 

English. The first robot that can reason with natural language processing and accordingly 

take physical action was Shakey, which was developed at Stanford Research Institute 

around 1969. After that, in 1973 at the University of Edinburgh an experimental robot, 

Freddy, was produced which uses sensors and video camera to recognise the objects 

then take actions. In 1979, Stanford Cart was used autonomously which was then known 

as the first computer controlled autonomous vehicle.  With these successful attempts in 

AI, researchers were encouraged to continue developing algorithms in AI and they made 

many contributions like case-based reasoning, multi-agent planning, scheduling, data 

mining and virtual reality through 90’s. When Garry Kasparov, the world chess champion, 

was beaten by IBM’s Deep Blue Chess Program, artificial intelligence became popular not 

just among the researchers but all over the world population in 1997. Then, with the 

famous robot Kismet that was built in MIT in 2000 and could express emotions with its 

artificial face, vocal and motor capabilities, the era was opened for building commercially 

available interactive robots [31].  
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2.1.3. Artificial Intelligence in Aerospace 

 

Artificial intelligence, especially the knowledge-based methods and neural networks 

have been used more than four decades in different branches of aerospace environment, 

when Neural Networks is considered as a base and method for doing nonlinear regression 

[32]. In the study by Gallaher et al. [33], least-squares regression approximations were 

used to obtain predictor information to find out the future airplane position and 

orientation, may be given as a first example. In this study, the standard method for 

obtaining the predictor information, which uses complete fast time model of the aircraft, 

was compared with an alternative approach that uses just thirteen predictor variables 

representing changes in positons and rates of change of positions for determining the six 

degrees of freedom of aircraft motion. The specific task was approach-to-landing task for 

a general, light, twin-engine aircraft, a Singer-Link General Aviation Trainer (GAT-2). 

High multiple correlation coefficients obtained to assess the goodness of fit of each of the 

regression equations indicate that the used regression approach produces very accurate 

prediction equations and is an alternative to using the complete fast-time model [33].      

  In the study done by Kroo and Takai [34] an aircraft design program is combined 

with a rule-based advice and warning system. Aircraft design program includes modules 

for calculation of aerodynamics, structures, propulsion, and operating costs. The 

subroutines and order of execution are selected based on human experience in an 

appropriate order, when the related result is required or currently updated for the 

computation. The rule-based expert system is used to assist the user in selecting 

intelligent design solutions and appropriate analysis procedures with accessing the simple 

set of IF-THEN rules which can be depicted as run-time knowledge activation. After each 

routine the database is examined and the problems are identified, then the user is 

informed with literal expressions like “The nose fitness is too low for this Mach number” 

and the expert advice system is activated with this input. Afterwards, the second part of 

the knowledge-based system advices a solution like “reduce Mach number or increase 

nose length”. The expert advice system uses a forward and backward chaining inference 

engine, which uses fuzzy reasoning (reasoning with uncertainty), to diagnose the 

problems, posting the warning strings and making the suggestions. The knowledge-based 

system with its expert warnings and advice utility is proved as a helpful tool to 

understanding the design changes with their effects and as a useful debugging tool for 

further analysis in aircraft advanced design [34]. 

Intelligent wing design support system defined by Takasu et al. [35] was a mile stone 

for automatic design systems. In this system, they built the hierarchically constructed 

wing design support system by Multi-Layer Logic (MLL) [36] [37] data structure and 

Knowledge Acquisition and Utilization System (KAUS) [38]. They used mainly two sub-

processes for wing design: aerodynamic design which includes wing section design and 

three-dimensional design, and structural design that consists of spar, rib and skin 

designs. First, they represented a wing model hierarchically with MLL data structures in 

order to build and modify the structural model with knowledge at the later stages of the 

design. Then, KAUS is used for knowledge processing that is configured with a knowledge 

base, a procedure base and a database parts. Eventually, the system extracts the results 

of structural analysis, finds the weak points and suggests modifications accordingly. With 

this work, it is shown that AI technology is very helpful while developing wing design 

support system [35].  
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One of the nonlinear methods introduced by Dovi and Wrenn [39] is Envelope 

Function Formulation [40], which is also adaptable for multiobjective optimization 

problems [41]. A typical wide body transport aircraft with 256 passengers was used to 

investigate the benefit of Envelope Function Formulation over two methods, the Penalty 

Function and the Global Criterion methods. The technique converts a constraint 

optimization problem to an unconstraint one by replacing the constraint and objective 

function boundaries in n-dimensional space with a single surface. A complex mission 

performance analysis was done with four design variables: aspect ratio; area, quarter 

chord sweep and thickness to chord ratio of the wing. Ramp weight, mission fuel, lift to 

drag ratio at constant cruise Mach number and range with fix ramp weight were selected 

as the objectives. First two objectives are subjected to minimize and other two are to 

maximize. Four primary modules were used in conceptual design: weight, aerodynamics, 

mission performance and takeoff and landing.  

All of the used methods were feasible within the design space. Function evaluations 

were different for each case, and could not be said one of them is better than others. 

However, this study is a good example for showing the changing success rate of 

optimization problems with different cases. It is highlighted that, while evaluating the 

performance of a method with its computational efficiency, the ease of use, data 

requirement and programming should also be considered, since they are the prior 

attributes of the methods [39]. 

Artificial Neural Networks was used to evaluate the transportation engineering 

predictions by Faghri and Hua [42]. A case study of trip generation forecasting was done 

using one traditional method, regression analysis, and two Artificial Neural Networks 

methods, back propagation and adaptive linear element (ADALINE). Regression analysis 

was selected since it is widely used in that area with the category analysis. The difference 

between the regression analysis and the ADALINE depends on the way of using the 

coefficients and weights in the optimization. For the regression method it is aimed to find 

the minimum error for the survey data, which can be considered as the training data sets 

for the ADALINE, while for the ADALINE it is to find the best value of the weights that 

obtain good results for testing the data. As a result, they have found out that Artificial 

Neural Networks models perform better than the linear regression analysis for that 

design case. When comparing the two Artificial Neural Networks methods, the result of 

ADALINE is slightly better than back propagation method. On the other hand it needs 

four-time more iterations than back propagation, which are 10,000 iterations to minimize 

the errors on the testing data sets in the training. That means the training of back 

propagation model is much better than the ADALINE [42].  

 

2.2.  Knowledge Based Methods 

 

In the Knowledge Based type artificial intelligence algorithms reasoning, perception 

and acting are performed by the agents. An agent acts in an environment, in which other 

agents can act also, works together or against. A robot can be an illustrative example of 

an agent which has sensors and actuators to perceive its physical environment. An agent 

could be a computer program with attributes like vectors that acts in a computer 

environment only, which is called as a software agent. These attributes can be defined 

individually according to the desired resultant action. Figure 2.4 illustrates an agent with 
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its inputs and outputs. Two deterministic agents with the same inputs should act in the 

same way [24].  

 

 

Figure 2.4 An agent interacting with an environment [24] 
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in optimization problems are more structured and use the behavioural properties of the 

natural objects.  

Most of these techniques require the function values but not the derivatives as in the 

gradient descent algorithms. Genetic Algorithm and Simulated Annealing are stochastic 

methods and are used for discrete optimization problems. Genetic Algorithm uses the 

natural selection and genetics principles, whereas Simulated Annealing is based on the 

simulation of thermal annealing of critically heated solids to find the global minimum. The 

particle swarm optimization is inspired by the behaviours of colonies like birds, insects 

and fish. In ant colony optimization the behaviour of the ant colonies which try to find 

the shortest path from a nest to a food source is imitated. If the information at hand 

cannot be clearly stated or is not discrete then fuzzy optimization methods are used [43]. 

Especially for highly nonlinear problems the Neural Networks based methods are 

used, in which the conduction of information in neurons are tried to be artificially 

simulated. However, the imitated procedure does not even approach being similar to that 

in the natural neural networks, that uses synapses of neurons to transmit the electrical 

and also chemical signals in order to communicate [43].  

The more common techniques are listed and grouped on Table 2.1 by Rao [43]; 

however these techniques can be clustered under different branches based on their 

various characteristics. 

 

Table 2.1 Methods of Operations Research [43] 

 

 

In this thesis, among the modern optimization techniques listed in Table 2.1, Genetic 

Algorithm and Simulated Annealing are used to compare and verify the results of two 

design cases in aerospace, because of their high application along with their ease of 
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Optimization methods can be categorized into two classes also, depending on the 

availability of using constraints: if a constraint function exists it is named as “constrained 

method”, otherwise it is named as “unconstrained method”.  

When the optimization technique does not need the partial derivatives of the 

objective function it is called nongradient method or zeroth-order method. Direct search 

methods are nongradient methods. On the other hand, in some cases the first and 

second partial derivatives provide more information and help to improve the results. 

Descent methods are the methods which use those derivatives, thus they are known as 

gradient methods. All the unconstrained minimization methods are iterative and have 

different rate of convergence [43]. Table 2.2 includes more common unconstrained 

minimization techniques. 

 

Table 2.2 Unconstrained Minimization Methods [43] 

Direct search methodsa Descent methodsb 

  

Random search method Steepest descent (Cauchy) method 

Grid search method Fletcher-Reeves method 

Univariate method Newton’s method 

Pattern search methods Marquardt method 

   Powell’s method Quasi-Newton methods 

    Davidon-Fletcher-Powell method 

    Broyden-Fletcher-Goldfarb-Shanno method 

Simplex method  

  
          a Do not require the derivatives of the function 
         b Require the derivatives of the function 

 

Constrained methods can be clustered into two broad categories: Direct methods 

which use constraints explicitly, and indirect methods which use constraints implicitly as 

a sequence of unconstrained minimization problem [43]. Some of the constrained 

optimization techniques are listed at Table 2.3. 

 

Table 2.3 Constrained Optimization Techniques [43] 

Direct search methods Indirect search methods 

  

Random search method Transformation of variables technique 

Heuristic search method Sequential unconstrained minimization  

   Complex method    techniques 

Objective and constraint approximation     Interior penalty function method 

   methods    Exterior penalty function method 

   Sequential linear programming  method   Augmented Lagrange multiplier method  

   Sequential quadratic programming method      

Methods of feasible directions  

   Zoutendijk’s method  

   Rosen’s gradient projection method  

Generalized reduced gradient method  
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According to the Table 2.2 and Table 2.3, the algorithm developed in this thesis falls 

into the group of Direct Search Methods, to which the pattern search methods belong 

and which do not require the derivatives of the function. 

Besides, there are systematic methods for constrained optimization: pruning of 

dominated assignments, domain splitting and variable elimination. These techniques can 

simplify the problem but do not always solve the problem [24]. 

Ok what is the conclusion of this section? What are the pros and cons? What is a 

deficiency, which can be resolved by your scientific contribution? 

In this section, the extensively used techniques are listed with different perspectives 

in groups to have better understanding of the way that they function. Accordingly, the 

technique developed in this thesis employs one of the modern optimization methods 

“Probabilistic Neural Networks”; which uses the benefit of probability theory while 

clustering the instant data. Assigning the candidate design points to the clusters 

according to their probability of being poor or good designs saves the computational 

effort and it is one of the advantages of the algorithm. Also, the used distinctive 

dimension reduction technique brings advantage for the optimization process. So thus, 

the pure unsystematical walk technique is replaced by a less stochastic method but while 

taking the advantage of probabilities. This eases to reach the objective with less number 

of function evaluations. 

In the next chapters, some popular techniques are explained more in detail. 

 

2.3.1. Genetic Algorithm 

 

Evolutionary algorithms together with Simulated Annealing are types of guided 

random search techniques. The most famous algorithm is the “Genetic Algorithm” among 

the evolutionary algorithms. It uses reproduction, crossover and mutation properties of 

chromosomes while treating each value of a design variable as one of the chromosomes 

in natural genetics and representing it with set of binary numbers. For example, mutation 

can be defined as the stochastic perturbation of the values to gain new variable values in 

a population. In Genetic Algorithm instead of derivatives, the value of the objective 

function is used for the further search processing. Since it uses a population of trial 

points, it differs from the Simulated Annealing which has one starting point. Because of 

this property, Genetic Algorithm has advantages on other methods while finding the 

global optimum on nonconvex and nonlinear design spaces [43]. However, when the 

number of variables is increased, the calculation time rises and the execution of the 

process can last even days or weeks regardless of the design surface uniformity.  

Genetic Algorithm has been successfully applied to optimization problems in 

engineering design and transportation problems for several years. It can be used 

discontinuous and non-differentiable problems because of its use of stochastic 

information. It is used more for discrete problems than continuous problems. Unlike the 

methods which use search direction Genetic Algorithm uses population, and this causes 

to miss any adjustments for the neighbouring solutions [44]. 

In a Genetic Algorithm each new element of the population is a combination of a 

selected pair. The new element or the offspring has some variable values from one of the 
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parent and the rest from the other parent. This operation is called crossover, and the 

most common crossover method is one-point crossover in which this transition process 

occurs at an unsystematical index. This crossover process occurs until reaching the 

population number [24].  

The chromosomes are selected for the next generation according to their fitness 

values. However, when the fittest chromosomes have too much priority this can cause 

the reduction in the diversity and early convergence to points that are not globally 

optimal. Fitness proportionate selection is one of the most popular selection methods 

[45]. 

The selection operator is also called reproduction operator and selects the good 

strings of the population, that have higher fitness values. Thus, if 𝐹𝑖 is the fitness of the 

𝑖𝑡ℎ chromosome (or string) in the population of size   𝑛 , the probability of selecting the 𝑖𝑡ℎ 

string for the mating pool (𝑝𝑖) is given by Rao [43]: 

 

𝑝𝑖 = 
𝐹𝑖

∑ 𝐹𝑗
𝑛
𝑗=1

;    𝑖 = 1, 2, … , 𝑛 

(2.1) 

When 𝐹̅ represents the average fitness of the population: 

 

𝐹̅ =
1

𝑛
∑𝐹𝑗

𝑛

𝑗=1

 

(2.2) 

Then the cumulative probability of the string i is: 

 

          

𝑃𝑖 = ∑𝑝𝑗

𝑖

𝑗=1

 

(2.3) 

When the equations (2.1) and (2.3) are considered together, it is expected that the 

string with a higher fitness value is selected more times than others strings if it has a 

larger range of cumulative probability. So that, with the reproduction operation the string 

with a higher fitness value will be copied directly to the next mating pool more frequently 

[43]. 

Another operator of the Genetic Algorithm is mutation. With this, one or more 

unsystematically selected variables are altered. The mutation operation helps to 

overcome the convergence to the local minimums. The resulting chromosomes are placed 

in the new population [13]. Genetic Algorithm combines uphill tendency with stochastic 

perturbation exploration, but the effectivity of the algorithm mostly depends on the 

crossover operation [46]. 
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Spall [45] explained step by step the core Genetic Algorithm as the following: 

 

Figure 2.5 Core Genetic Algorithm [45] 

 

In this thesis, the unsystematical starting points and the binary coding are also used 

for the optimization process as in the Genetic Algorithm, since the introduced lower and 

upper bounds require starting points and the binary coding is sufficient to extract the 

targeted information from the intervals. However, instead of using crossover or mutation 

on the variables while depending on the value of the objective function, the hybrid 

technique uses the successful changes on the objective function and the corresponding 

direction sets of the variables on the particular intervals. Then, these direction sets are 

classified and used simultaneously (as a training set) in the Probabilistic Neural Networks 

to decide on the next probable directions and intervals. While doing that, instead of 

unsystematical or instant crossover/mutation the knowledge gathered from the training 

set is used. When the number of variables increases the string length (or, the number of 

digits) also increases. Besides, it was proved with a trend analysis that the Probabilistic 

Neural Networks becomes more conservative to any change on the string and eliminate 

the noises. This provides determination on the successful routes while progressing onto 

the untried but more probable intervals. 

 

2.3.2. Simulated Annealing 

 

The Simulated Annealing is such an algorithm that combines the efficiency of hill 

climbing and the completeness of unsystematical walk algorithms. In other words, 

instead of using the best move (the best neighbour point), it uses an unsystematical 

move. This unsystematical move supplies the algorithm the ability to escape from a local 

minimum in general and improves the completeness of the search. On the other hand, 

this unsystematical move can be time and calculation power consuming. At that point, 

this con inspires a novel technique like the one explained in this thesis to overcome 

substantially this loss.  Besides, Simulated Annealing is popular for large scale 

Step 0: Initialization Generate randomly an initial n number of population and 

evaluate the fitness function for each string. 

Step 1: Parent selection Select the strings which have higher fitness values; 

higher fitness value means more often being selected as parents 

Step 2: Crossover Perform crossover for each pair of parents at a randomly 

selected splice point or points with the decided crossover probability. 

Step 3: Replacement and mutation Alter the individual bits with the decided 

mutation probability.  

Step 4: Fitness and end test Compute the fitness values of the new population 

of strings. Stop the process if the termination criterion is met otherwise go to Step 1. 
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optimization tasks and has been used widely for factory scheduling [46]. It is well known 

as a global optimizer for both discrete and continuous optimization problems [45].  

The principle behind the Simulated Annealing is to use the behaviour of substances as 

they cool as they are processed which were examined with scientific applications. 

However, while they are cooling, the temperature is not the only determining property of 

the demonstrated behaviour, the rate of cooling while reaching the lower energy state is 

important and must be slow. While doing analogy with an optimization problem, a 

minimized value of the loss function is matched with the minimum energy state for a 

system. If the system is cooled so rapidly then the reached state may not be the state 

that has the minimum energy state as in the rapid substance cooling, or polycrystalline. 

So, annealing is defined the process of cooling at a slow rate. As in the physical cooling 

process Simulated Annealing has temporary energy increases in the loss function [45]. 

Because of its discrete nature, Simulated Annealing is not affected by the continuity or 

differentiability of the functions. Despite the increase in computational effort, the 

convexity status of the feasible space does not affect the convergence [43]. In order to 

terminate the process, as in the Genetic Algorithm a convergence criteria should be 

defined in the program. This may be the minimum change in the temperature or loss 

function or number of function evaluations. 

Venkataraman [44] summarized the basic steps of the Simulated Annealing Algorithm 

as: 

 

Figure 2.6 Simulated Annealing [44] 

  

A reasonably large number of iterations is needed to reach the global optimum. The 

two parameters 𝛼 and 𝛽 are problem dependent; and generally  𝛽 = −𝑘 𝑇⁄  , which is the 

Boltzmann probability distribution. 𝑇  is the annealing temperature, and  𝑘 is the 

Boltzmann constant [44]. A configuration which has higher energy is selected based on 

the energy difference  ∆𝑓. The algorithm starts with a high value for 𝑇, then it is reduced 

with each iteration. This reduction operation on temperature is called as “cooling”. The 

probability of approaching to the higher energy states is higher initially, but at the end of 

the process the energy state approaches to zero [47]. A worse solution can also be 

accepted due to the conditional probability; as a result the “hill climbing” can be visible at 

those stages. The value of 𝑝 is proposed to be 0.5 ≤ 𝑝 ≤ 0.9 [44]. 

Step 1: Choose a starting design point  𝑋0. Calculate  𝑓0 = 𝑓(𝑋0). (Need stopping 

criteria) 

Step 2: Choose a random point on the surface of a unit n-dimensional 

hypersphere to establish a search direction  𝑆. 

Step 3: Using a step size  𝛼 , calculate  𝑓1 = 𝑓(𝑥0 + 𝛼𝑆); and  ∆𝑓 = 𝑓1 − 𝑓0  

Step 4: If ∆𝑓 ≤ 0 ; then  𝑝 = 1 , else 𝑝 = 𝑒−𝛽∆𝑓  

Step 5: A random number  𝑟 ,  0 ≤ 𝑟 < 1  , is generated. If: 𝑟 ≤ 𝑝  , then the step is 

accepted and the design vector is updated. Else: no change is made to the design. Go 

to Step 1. 
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Indeed, Simulated Annealing picks a neighbour point unsystematically and then 

selects it if there is an improvement on the objective function. If there is no 

improvement, it accepts or rejects depending on the parameters above. Thus, Simulated 

Annealing requires a good annealing schedule for a better convergence to the global 

optimum. Otherwise, the high number of iterations to escape from a local optimum is 

discarded and the number of function evaluations highly increases. “Finding a good 

annealing schedule is an art”, [24]. 

Actually, there are variations of Simulated Annealing algorithm depending on the 

sampling method to generate a new candidate point and the implementation of the 

annealing scheduling [45]. 

Some of the properties of the Simulated Annealing algorithm are listed by Rao [43] as 

following: 

 The computational effort may increase with a worse initial starting point, but the 

final solution is not affected. 

 The continuity or the differentiability of the functions does not affect the transition 

or convergence characteristics of the algorithm; that is due the fact that the 

constraint evaluation and the discrete nature of the algorithm. 

 The convexity of the search space has no influence on the convergence. 

 The design variables can have values other than positive also. 

 The algorithm is applicable to solve mixed-integer, discrete or continuous 

problems. 

 As in the case of Genetic Algorithm, an equivalent unconstraint function can be 

used for the problems that involve behaviour constraints. 

Thus, the main deficiency of the Simulated Annealing algorithm is that the selection 

of the starting point may increase the computational effort and the run time, accordingly. 

This drawback may be diminished with coupling it with a method like any surrogate 

model. Actually, the idea in this thesis to develop a method, that works like an 

unconventional surrogate model which works with patterns. 

   

Table 2.4 Comparison of Random search and Simulated Annealing [45] 

N 

Random Search Simulated Annealing 

Localized 
Random Search 

Enhanced 
Localized 

Random Search 

Initial 
T=0.01 

Initial 
T=0.10 

Initial 
T=1.00 

100 0.00053 0.328 1.86 0.091 0.763 

1000 2.8 x 10-5 1.1 x 10-5 0.0092 0.067 0.506 

10000 2.7 x 10-6 2.5 x 10-7 0.00038 0.0024 0.018 

 

Two random search techniques, Localized Random Search and Enhanced Localized 

Random Search, are compared with Simulated Annealing Algorithm for its performance 

by Spall in [45]. The case is the simple quartic polynomial loss function: 

  𝑓(𝑥) =  𝑥1
4 + 𝑥1

2 + 𝑥1𝑥2 + 𝑥2
2  

(2.4) 
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To generate the variables an unsystematical distribution is used for the both random 

algorithms and the Simulated Annealing algorithm. To increase the performance of the 

Simulated Annealing algorithm some efforts were made like using a standard 

temperature decay factor,  0.98 . Table 2.4 shows the results of the comparison for 

different number of function evaluations, 𝑁, and different initial temperatures, 𝑇, for 

Simulated Annealing. Even though the results are improved with increasing function 

evaluations, random search algorithms find better results than Simulated Annealing. 

These results prove that the Simulated Annealing algorithm is not always superior to the 

simple random search algorithms [45] and needs tuning for any improvement.  

The developed algorithmic approach in this thesis can contribute solving this 

deficiency by not using the creeping or the pure unsystematical search, but by handling 

the simultaneous results to explore the patterns of the whole design space. Actually, the 

developed algorithm uses the information extracted from the previous iterations to map 

the whole design space and reduces the poor candidate data points which may be 

handled if stochastically perturbed values are just used. This learning process can ease to 

reach the global optimum with less number of function evaluations and save time. The 

detailed explanation is found at section 3 Cavus Algorithm. 

 

2.3.3. Pattern Search 

 

Pattern search methods are the methods that use pattern directions as the search 

directions [43].  In the Univariate method, the design variables have a coordinate and 

each direction is considered as a search direction. A unit vector is used to present the 

direction on the coordinate. The search is done through each variable orderly on those 

search directions [44]. In other words, the minimum is searched along the directions 

parallel to the coordinate axes in the univariate method [43]. Each cycle has iterations 

for each directions of a set of variables. This method is also known as Cyclic Coordinate 

Descent method, and has a minor difference from Pattern Search method. Whereas 

Univariate method has a zigzag movement while approaching the solution, Pattern search 

method has an additional iteration for each cycle to improve the process. At this 

additional iteration the previous search directions and the optimal value of the stepsize 

for that direction are summed. The next cycle of iteration begins after one-dimensional 

optimal stepsize is calculated [44]. 

A series of exploratory moves around the current iterate and updating the current 

iterate with associated information before selecting a new iteration point are the bases of 

the pattern search methods. These exploratory moves have two requirements in any 

particular pattern search method to maintain the properties for the convergence [17] : 

1. At iteration  𝑘, the direction and the length of step  𝑠𝑘   are determined by the 

pattern 𝑃𝑘  and by the step length parameter  ∆𝑘 , respectively. 

2. If any of the 2𝑛 trial steps has a function value less than the current iterate then 

the simple decrease on the function must be found by a step 𝑠𝑘   which is produced 

by these exploratory moves. 
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Pseudo code of the Pattern Search Algorithm is given by Venkataraman [44] as the 

following:  

 

Figure 2.7 Pseudo code of the Pattern Search Algorithm [44] 

  

There are many kinds of developed pattern search methods. The coordinate search 

may be the simplest one among the others [17].  

If 𝑥𝑘  is the current iterate, at iteration 𝑘  the trial point is defined as [17]: 

 

𝑥𝑘
𝑖 = 𝑥𝑘 + 𝑠𝑘

𝑖  

(2.5) 

Step 0: Choose starting point  𝑋1, and 𝑁𝑐   (number of cycles) 

   𝑓𝑐(1) = 𝑓(𝑋1); 𝑋𝑐(1) = 𝑋1 

   𝜀1, 𝜀2 ∶  tolerances for stopping criteria 

   Set 𝑗 = 1  (initialize cycle count) 

Step 1: For each cycle 𝑗 

   For 𝑖 = 1, 𝑛  (number of variables) 

    𝑆𝑖 =  ê𝑖    (assign univariate step) 

   𝑋𝑖+1 =  𝑋𝑖 +  𝛼𝑖𝑆𝑖     , 𝛼𝑖   is determined by minimizing 𝑓(𝑋𝑖+1) 

   End of For loop   

    𝑆𝑗 = ∑ 𝛼𝑖
∗𝑆𝑖

𝑛
𝑖=1 ≡ 𝑋𝑛+1 − 𝑋1 (Pattern step) 

   𝑋𝑗 = 𝑋𝑛+1 + 𝛼𝑗𝑆𝑗    (best stepsize) 

   𝑋𝑐(𝑗 + 1) ← 𝑋𝑗  ;  𝑓𝑐(𝑗 + 1) = 𝑓 𝑋𝑗      (store cycle values) 

Step 2: ∆𝑓 =  𝑓𝑐(𝑗 + 1) − 𝑓𝑐(𝑗) ;   ∆𝑋 = 𝑋𝑐(𝑗 + 1) − 𝑋𝑐(𝑗)  

   𝐼𝑓  ∆𝑓 ≤ 𝜀1 ;  𝑠𝑡𝑜𝑝 

   𝐼𝑓 ∆𝑋𝑇∆𝑋 ≤ 𝜀2 ;  𝑠𝑡𝑜𝑝 

   𝐼𝑓 𝑗 = 𝑁𝑐  ;  𝑠𝑡𝑜𝑝 

   𝑋1 ← 𝑋𝑗  ;   𝑓(𝑋1) ← 𝑓 𝑋𝑗  

   𝑗 ← 𝑗 + 1 

   𝐺𝑜 𝑡𝑜  Step 1 
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Figure 2.8 illustrates all the possible actions during the exploratory movements of the 

coordinate search method. The black solid circles indicate the successful movements 

where the objective function decreases. Whereas, the open or empty circles indicate the 

evaluated functions but unperformed steps due to lack of improvement on the function 

value. So the progress is gained when 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘) [17]. 

If after 2𝑛 evaluations (𝑥𝑘
1, 𝑥𝑘

1′,  𝑥𝑘
2, 𝑥𝑘

2′), no decrease is observed on the function value 

at the current step 𝑥𝑘  , then 𝑥𝑘 = 𝑥𝑘+1 and the stepsize 𝑠𝑘 are reduced for the next 

iteration. This case is shown in Figure 2.8 as the last scenario [17].   

 

Figure 2.8 All the possible subsets of the steps for coordinate search in 𝑅2 [17] 

 

All of these possible subsets can be gathered in a generating matrix 𝐶𝑘 = 𝐶 with 

representing all the possible combinations of {−1, 0, 1}. Indeed, 𝐶 has 𝑝 = 3𝑛 columns and 

for 𝑛 = 2 [17]: 

𝐶 = [
1 0 −1
0 1    0

   0 1    1
−1 1 −1

−1 −1 0
−1     1 0

] 
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Thus for a given step length ∆𝑘, all the possible trial points can be seen in Figure 2.9 

[17].  

 

Figure 2.9 The pattern in 𝑅2 with a step length control parameter ∆𝑘 [17] 

 

Figure 2.9 includes all the possible trial points shown in separate successive 

movements in Figure 2.8 [17].  

In [17] the convergence analysis of the pattern search algorithm is done by Torczon 

and described further in detail. They have concluded that, pattern search methods are 

descent methods and gradient related methods. They also proved that, due to 

inadequate step length control mechanism the search does not terminate before 

convergence. Not permitting arbitrary step lengths along arbitrary search directions is 

the key characteristic of the method and the base of its success.  Moreover, it is 

robustness against its proponents is also demonstrated and as a result they comment on 

the prospective further improvement capabilities with guarantied global convergence. 

Hence, it has been done many researches on this topic since then [48]. 

    

2.3.4. Kriging 

 

Kriging is a kind of regression method which uses interpolations governed by 

Gaussian process and is originally used in geostatistics. It is used to estimate the value 

of a function by interpolating the values of the neighbourhood data points. Due to the 

fact that, it scans throughout the design space and predicts the intermediate function 

values with the values of previously derived function values, it is used in spatial analysis. 

To estimate the function value at a new point, the neighbouring function values are 

combined with weights. For that reason, the new point is compared with the known data 

points to find out these weights.  

This technique is first developed by Krige [49] and then applied to the computer 

experiments as an approximation technique by Sacks et al. [50] and to geostatistics by 

Matheron [51].  

Sacks et al. [50] summarized the method as the following: 

With a given design, 𝑆, where 𝑆 = {𝑠1, ⋯ , 𝑠𝑛}, and data 𝑦𝑠 = {𝑦𝑠1 , ⋯ , 𝑦𝑠𝑛}’, then the linear 

predictor of 𝑦(𝑥) at an untried 𝑥 becomes 𝑦̂(𝑥) = 𝑐′(𝑥)𝑦𝑠. 

𝑥𝑘 

∆𝑘 
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𝑌𝑠 = [𝑌(𝑠1),⋯ , 𝑌(𝑠𝑛)]′, the corresponding so-called random quantity is used in place 

of 𝑦𝑠.  

𝑦𝑥  is predicted with a Bayesian approach: 

 

𝑦̂(𝑥) = 𝐸[𝑌(𝑥)  𝑦𝑠] 

(2.6) 

The best linear unbiased predictor of the response at an untried input is: 

 

𝑓(𝑥) = [𝑓1(𝑥),⋯ , 𝑓𝑘(𝑥)]′ 

(2.7) 

For the 𝑘 functions in regression: 

𝐹 = (
𝑓′(𝑠1)

⋮
𝑓′(𝑠𝑛)

) 

(2.8) 

The 𝑛 𝑥 𝑘 expanded design matrix: 

 

𝑅 = {𝑅 𝑠𝑖, 𝑠𝑗 },     1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗 ≤ 𝑛  

(2.9) 

Where, 

𝑟(𝑥) = [𝑅(𝑠1, 𝑥),⋯ , 𝑅(𝑠𝑛, 𝑥)]′ 

(2.10) 

and the unbiasedness constraint is 𝐹′𝑐(𝑥) = 𝑓(𝑥). 

The best linear unbiased predictor can be written by resolving the partitioned matrix 

as: 

𝑦̂(𝑥) = 𝑓′(𝑥)𝛽̂ + 𝑟′(𝑥)𝑅−1 𝑌𝑠 − 𝐹𝛽̂  

(2.11) 

Where 𝛽̂ = (𝐹′𝑅−1𝐹)−1𝐹′𝑅−1𝑌𝑠 is the usual generalized least squares estimate of 𝛽. 

At a new location 𝑥𝑝  to estimate the unknown value 𝑦̂, all 𝑛 sample points are used 

with a weighted linear combination as in the following equation [8]: 

 



28 
 

𝑦̂ 𝑥𝑝 = ∑𝑤𝑖 𝑥𝑝 

𝑛

𝑖=1

𝑦(𝑥𝑖) 

(2.12) 

𝑤𝑖  is the weighting factor and it is changing throughout the design space as a function 

of 𝑥𝑝. To correlate the two points 𝑥𝑖 and 𝑥𝑗  different methods can be used. In order to 

describe the Kriging as simple as possible, Gaussian function is introduced to the function 

[8], then:  

𝑅 𝑥𝑖 , 𝑥𝑗 = ∏𝑒−Θ𝑚 𝑥𝑖,𝑚−𝑥𝑗,𝑚 
2

𝑘

𝑚=1

= 𝑒𝑥𝑝 [− ∑ Θ𝑚 𝑥𝑖,𝑚 − 𝑥𝑗,𝑚 
2

𝑘

𝑚=1

] 

(2.13) 

The new point 𝑥𝑝   is correlated with other sample points 𝑥𝑛 with a correlation vector: 

𝒓 = 𝑹 ∙ 𝒘 

(2.14) 

Inverting the above equation, the weight vector becomes: 

 

𝒘 = 𝑹−𝟏 ∙ 𝒓 

(2.15) 

The unknown value 𝑦̂ can be obtained with the results of the 𝑛 sample points by 

reformulating the equation (2.12), where  

 

𝒚 = [

𝑦(𝑥1)
⋮

𝑦(𝑥𝑛)

0

] 

and 

𝑦̂ 𝑥𝑝 = (𝑹−1 ∙ 𝒓)𝑇 ∙ 𝒚 = 𝒘𝑇 ∙ 𝒚 

(2.16) 

The accuracy of the Kriging metamodel increases with adding more sample data 

points, besides it results in large correlation matrices to be stored. Kriging is appropriate 

for discontinuous functions as well. Therefore it is also suitable for multivariate design 

problems, and a global surrogate model prior to the fitting process is not needed [8].  

Zill [8] applied this method in aircraft design optimization to calculate more accurate 

results during the transition stage from conceptual to preliminary design phases. In that 

study, Gaussian function is used to correlate the two data points. As a result, a software 
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frame is developed which automatically updates the scaling function with high fidelity 

model data to improve the scaled low-fidelity model while converging to the true high 

fidelity optimum point.  

In this thesis, the new data point is also correlated with other data points to map the 

design space. However, due to the nature of Kriging the interpolations are used to 

predict the low fidelity data points by Zill in [8], whereas the Cavus algorithm presented 

here employs discrete values and classifications to predict the probability of success of 

the vectored changes on the variables in combined intervals. In other words, the Cavus 

algorithm can be grouped into probability based pattern search methods. Because of 

that, with the Cavus algorithm it is not surprizing to converge an area which is far away 

to and not in between the unsystematically distributed training points. 

 

2.3.5. Globex Algorithm 

 

The GLOBEX algorithm is developed and presented by Jacob [52]. The method 

searches for the global optimum of a limited multivariable function without the 

knowledge of its derivatives. It can be used for any number of design variables and with 

any number of inequality constraints, since the used multivariable function can be 

calculated indirectly or analytically and the boundaries can also be changed during the 

computation [16]. The method is the superior version of the optimization method which 

searches for the local optimum named as EXTREM. If the objective function has more 

than one local optimum then EXTREM finds the closest extreme value to the selected 

starting point [16].  

In the first optimization step of the technique, estimates are determined by a 

sequence of normally distributed perturbed numbers. The user defined starting point is 

used as the mean vector value of these normally distributed perturbed numbers. 

Additionally, the user defined starting step sizes define the mean square deviations of 

these normally distributed points. If these points lie in the given limits then the partial 

optimization starts at each of these points with EXTREM [16]. 

In the second optimization step, with taking into account the possible restrictions the 

unsystematically estimated values are determined around the best function value found 

so far. A partial optimization is again started at each of these points with the possible 

constraints. If a more favourable function value is found, this point becomes the new 

value for the further search and the mean quadratic deviations are multiplied by 0.9 [16]. 

The best of all values determined in these two sections is stored and used as an initial 

value in the third optimization section for the main optimization, GLOBEX [52]. 

The properties of the GLOBEX algorithm are [52]: 

 The probability to find the global optimum increases with the number of 

unsystematical estimates produced. 

 The GLOBEX algorithm can be used for complex functions like narrow, crooked 

valleys at or near multiple boundaries.  

The technique is described in detail by Jacob in [16] and [52]. Here, its main context 

and strengths are also dealt with to present the general idea. 
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Method 

The algorithm is following these tasks while searching the extremum of a bounded 

multivariable function [16]: 

1. Choose the search directions 

2. Find the optimum along a line 

3. Define the search step sizes 

4. Check the constraints 

When the number of variables is 𝑛, the array of the step sizes is given in the form 

𝐷𝑋(𝑛) and this defines the first main line in other words the optimal search direction. The 

initial point is also given by the user and presented with an array, 𝑋𝑖
⃗⃗  ⃗. As in the Figure 2.10, 

the extremal point 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is determined approximately along the first line. After this first 

iteration a second line is calculated by a Gram-Schmidt orthogonalization process, which 

is going through the point 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and orthogonal to the main direction. At the second 

iteration, along this second direction 𝑋𝑖+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is determined and a third line is sketched. This 

line is orthogonal to the two first directions [16]. 

The first stage is accomplished when the 𝑛𝑡ℎ iteration is completed and the extremal 

point 𝑋𝑖+𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is reached along the 𝑛𝑡ℎ line, which is orthogonal to all of the previous 

directions. The new main direction is found by joining the initial point 𝑋𝑖
⃗⃗  ⃗ and 𝑋𝑖+𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , the 

extremal point of the last iteration of the previous stage. The procedure may begin with 

assigning 𝑋𝑖
⃗⃗  ⃗ = 𝑋𝑖+𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and then the main and secondary search directions can be found 

accordingly [16].  

 

 

Figure 2.10 Determination of the main search direction in the case of a two variable problem [16] 

 

Afterwards, the three function values 𝐹1 at 𝑋𝑖
⃗⃗  ⃗ − 𝐷𝑋⃗⃗ ⃗⃗  ⃗ , 𝐹2 at 𝑋𝑖

⃗⃗  ⃗ , and 𝐹3 at 𝑋𝑖
⃗⃗  ⃗ + 𝐷𝑋⃗⃗ ⃗⃗  ⃗  are 

evaluated to find the extremum of an artificial parabola which is going through these 

function values with interpolation or extrapolation [16]. From the Figure 2.11 : 

Secondary direction of 
the 1st stage 

Main direction of 

the 1st stage 

Main direction of 

the 2nd stage 

X2 

X1 

𝑋𝑖⃗⃗  ⃗ 

𝐷𝑋⃗⃗ ⃗⃗  ⃗ 

𝑋𝑖⃗⃗  ⃗ + 𝐷𝑋⃗⃗ ⃗⃗  ⃗ 

(guessed initial point) 

𝑋𝑖+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
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𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑋𝑖

⃗⃗  ⃗ +
𝐷𝑋⃗⃗ ⃗⃗  ⃗

 𝐹1 − 2𝐹2 + 𝐹3  

𝐹3 − 𝐹1 
2𝑀𝑀

 

(2.17) 

where 𝑀𝑀 = +1  for the search of a maximum 

= −1  for the search of a minimum 

The progression of the new point 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    is limited by the algorithm to a maximum of 20 

step sizes 𝐷𝑋⃗⃗ ⃗⃗  ⃗. Even if the function value 𝐹𝑜𝑝𝑡  at 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    is worse than the 𝐹2 the next iteration 

is started from that point. On the other hand, if the difference between 𝐹𝑜𝑝𝑡and 𝐹2 is 

greater than 4 times the absolute value of the difference between the function values of 

last two iterations, another function value is calculated with dividing the step size of 

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    by 2. Allowing the worse function values and the related points to be used for the 

next iterations helps to escape from a sharp corner of a narrow valley or a top of a ridge 

in some cases [16].  

Step sizes are defined according to these principles [16]: 

 If the distance between the new and the old point is smaller than 1 4⁄  of the 

current step size along that line, then the actual step size is divided by 4. 

 If the distance between the new and the old point is greater than 20 times the 

actual step size, then the step size is multiplied by 2. 

With these basic rules, the search algorithm reduces the steps sizes while 

approaching the optimum point and as well escapes from the tight curves by increasing 

the step sizes.  

 

Figure 2.11 Assumed artificial parabola for a search of a minimum [16] 

 

If the boundaries are exceeded during the iterations then [16] [52]: 

 The step size is divided by 4 and the new point 𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    is placed other side of the old 

point 𝑋𝑖
⃗⃗  ⃗, which is away from the boundary, Figure 2.12. 

F 

X 

𝑋𝑖⃗⃗  ⃗ 

𝐷𝑋⃗⃗ ⃗⃗  ⃗ 

𝐹𝑜𝑝𝑡 

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝑋⃗⃗ ⃗⃗  ⃗ 

𝐹1 
𝐹2 

𝐹3𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

𝐹2 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 
𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚  

𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 
𝑝𝑜𝑖𝑛𝑡 

𝑅𝑒𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 
 

𝑅𝑒𝑎𝑙 𝑐𝑢𝑟𝑣𝑒 
  

𝐴𝑠𝑠𝑢𝑚𝑒𝑑 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 
𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑓𝑜𝑟 𝑎 

𝑠𝑒𝑎𝑟𝑐ℎ 𝑜𝑓 𝑎 𝑚𝑎𝑥𝑖𝑚𝑢𝑚  

𝐴𝑠𝑠𝑢𝑚𝑒𝑑 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 
𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 𝑓𝑜𝑟 𝑎 

𝑠𝑒𝑎𝑟𝑐ℎ 𝑜𝑓 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚  
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 The step size of the new point is divided by 10 and the new progression will be in 

the direction of boundary, so far the previous trial is found by an extrapolation or 

interpolation. 

 

Figure 2.12 Two-dimensional situation near a boundary [16] 

 

Besides, these are the general limitations of the GLOBEX algorithm [16] [52]: 

 The starting point should not be selected outside of the boundaries, which is 

indeed a general prerequisite for most of the methods 

 Even though the algorithm is capable of handling the changing boundaries, the 

current values of the variables must not exceed the limits 

 The termination criteria should be severe enough to avoid from primitive results 

or divergences. 

 The step sizes should be reduced sufficiently to follow even the contour of the 

edges.  

 

2.3.6. Artificial Neural Networks 

 

Artificial Neural Networks, which are inspired by biological neural networks, learn 

from previous data (training sets) and they are capable to solve nonlinear complex 

problems. Throughout their discovery and improvements, Artificial Neural Networks have 

popular and also stagnant time intervals. To teach the algorithm, large data sets so that 

highly expensive computational power is needed. With the improvement on 

computational power (GPU, distributed systems etc.) and with finding new unsupervised 

methods to improve the weights of the algorithm -thus the learning structure-, Artificial 

Neural Networks have made a visible return. 

Artificial Neural Networks (ANN) is classified into four categories by Faghri and Hua in 

[42] as:  

 Mapping ANN 

 Recurrent ANN 

 Temporal ANN 

 Hybrid ANN 

Line A 

X2 

X1 

𝑋𝑖⃗⃗  ⃗ 𝐷𝑋

4

⃗⃗⃗⃗⃗⃗ 
 

𝑋𝑖⃗⃗  ⃗ + 𝐷𝑋⃗⃗ ⃗⃗  ⃗ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔 

𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 
𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔 

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔 
Line B 

𝑋𝑖+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔 

𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

𝑋𝑖⃗⃗  ⃗ 
𝑋𝑖⃗⃗  ⃗ − 𝐷𝑋⃗⃗ ⃗⃗  ⃗ 

𝐷𝑋⃗⃗ ⃗⃗  ⃗ 
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Mapping ANNs finds the outputs by summing the products of all inputs and 

corresponding weights. Linear Associator, Learning Matrix, ADALINE and MADALINE 

(Multiple ADALINE), Back Propagation, Self-Organizing Mapping and Adaptive Resonance 

Theory (ART) are the types of Mapping ANNs. Between these, ADALINE and MADALINE 

use a least mean square error-correcting learning rule. Because during the learning 

process the error information is propagated back from the output layer to input layer to 

reduce the error, the best known ANNs was called as Back Propagation ANN. Self-

Organizing mapping ANNs is one of the interesting and efficient ANNs to sort items into 

categories or to cluster. The Kohonen Layer is one of the well-known types of these ANNs 

uses winner-takes-all strategy with firing only the successful unit [42].  

In Recurrent ANNs, the outputs are linked to the inputs and their values are sent and 

used as successive inputs. Hopfield, Brain-Sate-in-a-Box (BSB), Bidirectional Associative 

Memory (BAM), Boltzmann Machine and Recurrent Back Propagation are the types of this 

ANNs. Associative ANNs associate inputs and outputs. One of them is Hopfield networks 

which associate the inputs to the outputs that resemble more to the input patterns. 

Besides, Bidirectional Associative Memory also associates input and output but which can 

be different from each other but related somehow. Boltzmann Machines is stochastic 

version of the Hopfield network uses Simulated Annealing to find the weights. Recurrent 

back-propagation ANNs can recognize time-dependent input-output data which can be 

said as dynamic patterns [42].   

 In Temporal ANNs, the output and input vectors are dynamic and it can be 

represented by a differential equation.        

Hybrid ANNs use both a supervised and an unsupervised learning in one network.  

Faghri and Hua [42] summarized the application level and areas of these types of 

Artificial Neural Networks in Table 2.5. 

 

Table 2.5 Application Evaluation of ANN Models [42] 

Model 
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Recognition           

Control           

Forecasting/Prediction           
Classification           

Diagnosis           
Optimization           

Noise Filtering           
Image Processing           

Association           
Decision Making           

Temporal Processing           
           

Key:  (strong applicability);  (moderate applicability);  (applicable);  (difficult to evaluate) 

 



34 
 

Among the widespread application areas, some of the ANNs like Hopfield and Back 

Propagation are also used for optimization problems as shown in the Table 2.5. This 

encourages developing new algorithms that use ANN’s strengths as in this thesis. 

AI based codes are regarded as intelligent by some researches as far as they do some 

tasks like manipulating mathematical formulas, prove theorems and understand some 

amount of natural language. Nevertheless, for some researches these programs are 

limited with learning and this affects the level of understanding. Even though the 

experimental proof of success of these programs may not be acceptable by more 

mathematically inclined people, the proof mechanism defines the limits and the special 

conditions of the working algorithm [53]. 

After formulating the problem, various possible action sequences are employed to 

reach the solution. Different search strategies can be used depending on the problem 

type and the history of the data [32]. 

In regard to that, at the beginning of the aircraft design process researchers may 

have huge numbers of data from wind tunnel tests as well as from flight tests at least for 

the conventional aircraft. All of these data with engineering sense of experienced 

engineers, which is inseparable throughout a design process, have great value on all of 

the design phases. Learning from data, which is data mining, with the combination of 

engineering sense has very precious fine tuning effect on a design with knowledge based 

methods. As a result, some of these complex interactions can also be estimated with 

relative magnitudes just from the data at hand at the beginning of the design process, 

which helps to accelerate the calculations and force the results to converge to better 

values. Aircraft design with dependent and independent variables with known interactions 

to each other in an optimization process can be improved with mimicking human 

intelligence, i.e. artificial intelligence, for the early as well as ensuing stages of design. 

In this thesis, it is aimed to use Probabilistic Neural Networks in a hybrid method. It is 

selected because of its ease of handling binary values and affecting the computational 

speed accordingly. This method is then to be used for the optimization problems of 

aerospace environment, which are closed loop processes and a probabilistic method 

supports to investigate the search space efficiently. Before introducing the algorithm, 

Probabilistic Neural Networks and its application areas are presented. Despite the fact 

that, Probabilistic Neural Networks is a kind of Artificial Neural Networks, it is better to 

describe it after mentioning the extensive issue that is probability at the next section.   

 

2.4.  Probability 

 

Determining what is true in the world is based on our observations of the world [24], 

and our cognation. In other words, our knowledge is limited with our discoveries until 

this time. Because, for most of the circumstances we cannot have a mass of data from 

the required aspects, we decide on the outcome with some knowledge and assumptions, 

which depend on our previous observations and our cognation. This prediction process is 

called reasoning under uncertainty. To make a good decision, an agent does not consider 

only the previous knowledge and assumptions accordingly; as well it must take into 

account the other possible situations and their probabilities. Thus, reasoning under 

uncertainty is related with both decision theory and probability theory [24].    
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Also as stated by Bishop [54], uncertainty is the key parameter for the pattern 

recognition. The probability theory when combined with the decision theory serves a 

consistent framework to do estimations even for defect or vague information [54].  

The systems that use artificial intelligence do not always have enough information to 

make reasoning and decisions. In many situations, they are incomplete or even 

unreliable. Then, decisions should be made by the artificial intelligence system under 

uncertain conditions; it means that the system has to make decisions under uncertainty 

[24], [47].  

When the optimization problem deals with stochastic variables rather than 

deterministic values, probabilistic methods are used. The unsystematically disturbed 

variables can be the dimensions of parts of a mechanical system which have tolerances, 

or the loads of an aircraft under changing flight conditions [43].  

Considering that 𝑋 is a discrete unsystematically distributed variable, the probabilities 

for all possible values of 𝑋 are P(X) that is the probability distribution of 𝑋. If all the 

possible values of 𝑋 have the same probability, then this is called as uniform probability 

distribution. There are several probability distributions. One more example can be 

binominal distribution used when there are 𝑛 independent trials. Each trial has two 

possible outcomes (success or failure) and the probability of success is constant over all 

trials and presented by Sucar [47] as: 

𝑃(𝑟 𝑛, 𝜋) = (
𝑛

𝑟
) 𝜋𝑟(1 − 𝜋)𝑛−𝑟 

(2.18) 

Where, 

(
𝑛

𝑟
) =

𝑛!

𝑟! (𝑛 − 𝑟)!
 

(2.19) 

Three properties of probability are listed below and all conventional probability theory 

can be derived from these rules [47]: 

1. 𝑃(𝑋) is a continuous monotonic function in  [0,1]: Closer to 1 means that the event 

is more likely to happen, else, closer to 0 means that it is less likely to happen 

2. Product rule:  P(X, Y Z) = P(X Z)P(Y X, Z): Probabilities of dependent events are 

related with their conditional probabilities 

3. Sum rule:  P(X 𝑌) + P(¬X Y) = 1: The probability of an event to happen and not to 

happen are complements 

Where, 

 𝑋, 𝑌, 𝑍 are binary variables and P(X) is the probability of X. 

 P(X Z) is the conditional probability; the probability of X given 𝑍. 

 P(X, Y Z) is the probability of  X  𝐴𝑁𝐷  𝑌 (logical conjunction) given 𝑍. 

 P(¬X Y) is the probability of NOT  𝑋 (logical negation) given 𝑌. 
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Thus, if two events, 𝑋 and 𝑌, are independent from each other, the simultaneous 

occurrence of these events is found by: 

 

  P(X, Y) = P(X)P(Y) 

(2.20) 

The function that calculates the probability of a variable X while  X = xi   is named as 

the probability mass function and given by Rao [43]: 

 

𝑓(𝑥𝑖) = 𝑃(𝑋 = 𝑥𝑖) 

(2.21) 

If the probability of the variable X is liked to be defined for the cases that X  is equal or 

less than a number, 𝑥, then the probability is cumulative probability and the function is 

called the cumulative distribution function [43]: 

 

𝐹(𝑋) = 𝑃(𝑋 ≤ 𝑥) = ∑𝑓(𝑥𝑖)

𝑖

 

(2.22) 

Probability density function of an unsystematically distributed variable (which is the 

continuous case) is given by Rao [43]: 

 

𝑓(𝑥)𝑑𝑥 = 𝑃(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥) 

(2.23) 

The distribution function of 𝑋  is defined by Rao in [43] as: 

 

𝐹(𝑥) = ∫ 𝑓(𝑥′)
𝑥

−∞

𝑑𝑥′ 

(2.24) 

Where the normalization condition is presented by Rao [43] as: 

 

𝐹(−∞) = 0  𝑎𝑛𝑑  𝐹(∞) = 1  

(2.25) 
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Figure 2.13 Probability density and distribution functions of a continuous random variable X          
(a) density function; (b) distribution function [43] 

 

The central tendency or average and variability of a variable are termed as the mean 

value and the standard deviation, respectively. There are several distributions for 

discrete and continuous cases. Some are listed by Rao [43] on the Table 2.6: 

 

Table 2.6 Types of probability distributions (analytical models) [43] 

Discrete Case Continuous case 

  

Discrete uniform distribution Uniform distribution 

Binomial Normal or Gaussian 

Geometric Gama 

Multinomial Exponential 

Poisson Beta 

Hypergeometric Rayleigh 

Negative binomial (or Pascal’s) Weibull 

  

 

Before starting to explain the Cavus algorithm, an example is taken from Bishop [54] 

to describe the probability theory and its basic rules for a better understanding. 

 

Figure 2.14 Probability theory [54] 
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Considering two unsystematically distributed variables 𝑋  and 𝑌, where 𝑋  takes the 

values 𝑥𝑖 for 𝑖 = 1…𝐾 and 𝑌 takes the values 𝑦𝑗 for 𝑗 = 1…𝐿 on the Figure 2.14, and the total 

number of trials is 𝑁. The number of trials, where  𝑋 = 𝑥𝑖 as  𝑌 = 𝑦𝑗, is then 𝑛𝑖𝑗. On the 

figure, the number of trials that 𝑋 = 𝑥𝑖 independent from the value of 𝑌 is 𝑐𝑖, and similarly 

the number of trials  𝑌 = 𝑦𝑗 independent from  𝑋  is 𝑟𝑗. The joint probability, where  𝑋 = 𝑥𝑖 

as  𝑌 = 𝑦𝑗, is denoted by 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗). These are the points that fall in the cell 𝑖, 𝑗 and 

the joint probability is found as [54]: 

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =  
𝑛𝑖𝑗

𝑁
 

(2.26) 

Then, the total points fall in the column 𝑐𝑖 is X = xi, that are irrespective of the value 

of  Y, and the probability is [54]: 

𝑃(𝑋 = 𝑥𝑖) =
𝑐𝑖
𝑁

 

(2.27) 

Also, the total points fall in the column  𝑟𝑗  is 𝑌 = 𝑦𝑗, that are irrespective of the value 

of  X, and the probability is [54]: 

𝑃  𝑌 = 𝑦𝑗 =
𝑟𝑗

𝑁
 

(2.28) 

In addition to that, the total number of trial points on column 𝑖 is calculated as [54]: 

 

𝑐𝑖 = ∑ 𝑛𝑖𝑗
𝑗

 

(2.29) 

Thus, from Eq.(2.26) and Eq.(2.27): 

𝑃(𝑋 = 𝑥𝑖) = ∑ 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)

𝐿

𝑗=1

 

(2.30) 

Actually, Eq. (2.30) is the sum rule of probability. When we consider that the trial 

points fall in cell 𝑖, 𝑗 and their probability on column 𝑖, it is written as 𝑃 𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖)  and 

called the conditional probability of   𝑌 = 𝑦𝑗  given 𝑋 = 𝑥𝑖 and calculated as [54]: 

 

𝑃 𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖) =
𝑛𝑖𝑗

𝑐𝑖
 

(2.31) 
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After combining the equations Eq.(2.26), Eq.(2.27) and Eq.(2.31), the product rule of 

probability is shown as [54]: 

 

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =  
𝑛𝑖𝑗

𝑁
=

𝑛𝑖𝑗

𝑐𝑖
.
𝑐𝑖
𝑁

= 𝑃 𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖)𝑃(𝑋 = 𝑥𝑖) 

(2.32) 

The rule of symmetry is another property of probability, which is [54]: 

 

𝑃(𝑋, 𝑌) = 𝑃(𝑌, 𝑋) 

(2.33) 

When we handle the rule of symmetry and the product rule together, we get the 

relationship between the conditional probabilities, and this relationship is called as Bayes 

theorem [54]: 

𝑃(𝑌 𝑋) =
𝑃(𝑋 𝑌)𝑃(𝑌)

𝑃(𝑋)
 

(2.34) 

Bayes theorem is very effective in pattern recognition and machine learning [54]. 

Any problem that involves uncertainty can be solved by probability theory. With the 

era of big data, the automated methods for data analysis are being developed. These 

automated methods are known as machine learning methods and that are used to 

estimate the following or unknown part of the data from the available data. While making 

decision, the probabilistic methods play a big role. Thus, those machine learning 

algorithms automatically detect the pattern of the available data and predict the pattern 

of the data under uncertainty [55]. 

 

Table 2.7 Main types of probabilistic graphical models [47] 

Type 
Directed/ 

Undirected 

Static/ 

Dynamic 

Probabilistic/ 

Decisional 

Bayesian classifiers D/U S P 

Markov chains D D P 

Hidden Markov models D D P 

Markov random fields U S P 

Bayesian networks D S P 

Dynamic Bayesian networks D D P 

Influence diagrams D S D 

Markov decision processes (MDPs) D D D 

Partially observable MDPs D D D 
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2.4.1. Probabilistic Neural Networks 

 

Probabilistic Neural Networks (PNN) use non parametric probability density function 

(PDF) estimation for classification with a structure of Neural Network. The training 

process is fast but on the other hand it needs lot of memory. While the training set 

increases it can approach Bayes optimal, besides it becomes sensitive to outliers [56]. 

The objective of the Probabilistic Neural Networks is to classify any new data into one 

of the classes introduced before. To estimate the class of the new data point, the PNN 

uses a probability density function for each of the classes [57]. After calculating the 

probabilities the data is classified to the class which has the highest value. The PNN has 

four layers and can map any input pattern, whether that has continuous or binary 

variables, to any number of classifications. By defining a set of weight, which equals to 

the new training vector, a modification on the decision boundaries is possible with the 

new data. Parallel processing is also possible with PNN. Moreover, nonlinear multivariate 

regression surfaces and subsequent probabilities of an event can be calculated, as well 

with a small change on the structure it can be used as an associative memory [14].   

PNN can be illustrated as the following: 

 

Figure 2.15 Probabilistic Neural Networks [14] 

 

Input layer has a number of neurons equal to the number of the variables of the 

problem and each has a connection with the neurons of the next layer. This hidden layer 

covers the pattern units and it has as many neurons as the samples in the training set. 
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Each training sample has a Gaussian function centred at. Afterwards, the hidden layers at 

the same classes are connected in the relative summation units, with this way additional 

pairs of categories can be added to the output vector [14], [58]. 

At first, the input vector 𝑋 is multiplied (dot product) with weight vector 𝑊, then a 

nonlinear operation is performed before transferring the activation level to the 

summation unit. In Probabilistic Neural Networks instead of using sigmoid activation 

function used for back-propagation, an exponential function is used. When inputs, 𝑥, and 

weights, 𝑊, are normalized to unit length this exponential function, or in other words the 

activation function, becomes [14]:  

 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑒
[−

(𝑊𝑖−𝑋)𝑡(𝑊𝑖−𝑋)

2𝜎2 ] 

(2.35) 

Here 𝜎 is the smoothing parameter and it has a significant effect on the PDF. While 

small 𝜎 produces distinct modes, larger 𝜎 eases the interpolation between points. 

Further, very large 𝜎 converts the shape of PDF to Gaussian [14].  

 

Figure 2.16 The smoothing effect of σ on an estimated PDF from 5 samples [14] 
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The summation units sum the inputs coming from the pattern units and these sums 

are simply the sum of small multivariate Gaussian distributions, which are centred at 

each of the training samples. Indeed, with changing smoothing parameter it can 

approximate any density function. Figure 2.16 shows the effect of smoothing parameter on 

an estimated PDF for 5 training samples. With a small value of smoothing parameter, 𝜎 =

0.1, each training points is illustrated with 5 distinct modes. When the value is increased 

to  𝜎 = 0.2, high degree of interpolation occurs between the samples. With a value of 

𝜎 = 0.5, the shape approximates the Gaussian and has a single mode. The smoothing 

parameter with a value of 𝜎 = 1.0 has a flattening effect on the distribution and also 

extending the tails [14]. 

When σ → 0 the decision boundary forms like a very nonlinear boundary as the 

nearest neighbour classifier, also when σ → ∞ then the decision boundary becomes a 

hyperplane [14], [59]. Optimal separation in general is not possible with the limiting 

values of σ. The network of the PNN is similar to that of the nearest neighbour decision 

rule [60] proposed by Hecht-Nielsen [61]. Therefore, in accordance with the density of 

training samples it is better to select a degree of averaging of nearest neighbours rather 

than a single nearest neighbours. Further, this value of the smoothing parameter is also 

affected by the dimension of the problem and the number of training patterns. Yet to find 

a reasonable value is not very hard, since the misclassification does not vary 

substantially [14], [62]. 

The main properties of the PNN are presented by Specht in [14], it can: 

 be used for mapping, classification or direct estimation of a posteriori probabilities 

 be used as an associative memory: If some of the variables are unknown then the 

missing values are found by scanning all the possible values which maximize the 

PDF. 

 be used to estimate a category of a new pattern even after introducing each 

category with one representing training pattern. Not only the decision boundary 

becomes complex but also the generalization improves with additional patterns  

 tolerate noisy samples 

 be used for scattered data 

 be used for time-varying data 

 be as faster as 200,000 times than back-propagation [56] and it has parallel 

structure 

On the other hand, it requires high memory space to store the model [63]. 

 

2.5.  Comparison of the Algorithms 

 

Table 2.8 is the performance table for some of the previously discussed algorithms, 

which were also used for comparison in the following sections. These comparisons here 

are illustration purposes only and the inferenced ideas from the references [13], [14], 

[32], [24], [43], [44], [45], [46], [47], [52], [54], [55], [64]. In the table, the 

properties in the last two highlighted lines actually indicate the deficiencies, and the rest 

points the superiorities of the ANN algorithms. 
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Table 2.8 Comparison of the Algorithms 

Property 
Genetic 

Algorithm 

Simulated 

Annealing 
Globex ANN 

     

Convergence speed fast slow very fast fast 

     

Initial population dependency  high high high low 

     

Global search capability high low low high 

     

Convergence to local minimum high high high medium 

     

Continuous Problems high high high high 

     

Discrete Problems medium low high high 

     

Memory usage medium low very low high 

     

Computational effort high medium low high 

     

     

Source: illustration purposes only 

 

Besides the fact that ANN algorithms demand high capacity of memory and high 

computational effort, they are preferred because of their high global search capability 

and convergence speed to the optimum. Likewise the example problems in this thesis, if 

the design problem requires rather more time to calculate the result of the objective 

function than the time for the optimization algorithm itself, and as well if the problem has 

discrete structure, then it is more favourable to use ANN algorithms.  

Although, the main bottleneck of the ANN algorithms is their need for high computer 

capacity, there are many ongoing researches about it because of the facts that: 

 Powerful hardware are also under development [14] 

 The new discoveries with these algorithms ease the tasks of the scientists already 

and they have still undiscovered aspects, so they are open to any improvements 

In this thesis, with the developed algorithm it is aimed to integrate one of the ANNs 

to gain its pros (like handling nonlinear complex problems efficiently) while diminish the 

cons (as the case, high memory usage) by treating the search space as patterns and 

reducing the dimensions accordingly. Although the ANN algorithms need powerful 

computers, they have the capacity to handle the huge number of unstructured data and 

to process functions in parallel that most of the traditional methods cannot manage. As a 

result, with its hybrid structure the developed algorithm has better optimization results 

as well as lower computational effort and time. 

 

 

 

 



44 
 

 

 

 

 

3. Cavus Algorithm  

 

An optimization problem is composed of dependent and independent variables. 

Deciding on the variables, which have as possible as lower level multicollinearity, and on 

the objectives is the first challenging part while constructing algorithm. If there is no 

training set, the guided random search techniques as described in Chapter 2 -Genetic 

Algorithm and Simulated Annealing- can be used. However, the run time is directly 

affected with the increasing number of variables, and the quality of the results by the 

size of the search space. If there is a training dataset, numerical techniques like Multiple 

Nonlinear Regression and Kriging can be combined with Multiple Gradient Descent 

Algorithms to optimize the design. Due to huge number of calculation steps and 

interpolating mechanism, the convergence quality and the run time change drastically.  

When it comes to driving information and efficiency, the best way of searching and 

using the data becomes the leverage or key for the robustness of problem solving. 

Artificial Intelligence (AI) algorithms combine mathematical models of the computer 

science and big datasets to enable problem solving efficiently. Predictive algorithms of AI 

are able to discover the patterns and detect the anomalies of the system. 

For an optimization problem, the total input-output calculations of every possible 

input are CPU intensive and cost time. If a good relation between input and output can 

be drawn, and well-fitted surrogate models can be extracted from the relation, the 

computational effort and the time can be reduced. When the initial sets of data exist or 

are produced by a design code the Machine Learning algorithms can be trained and then 

used to test the further data. The idea here is to develop an algorithm to use for 

surrogate modelling with integrating an AI method, while the surrogate models are used 

for approximating the outcome of a function without utilizing the exact inputs, and the 

relationships between the inputs and outputs can be assessed well with an AI algorithm. 

That means the developed model is used as a black box to guess the patterns more likely 

to be successful. Then only then the real calculation would be done when the pattern has 

better probability, which is considered together with the inherited success and the 

neighbouring patterns. But for the exploration, the developed algorithm is used to define 

the whole pattern space which corresponds to the design space indirectly. Especially 

because of its correlation characteristics, the method may best fit to the problems that 

have deterministic characteristics rather than the problems that have stochastic 

properties. In other words, the closed loop processes are well application areas. Like an 

aircraft design with an aircraft mission, that uses known amount of fuel to convert the 

chemical energy to potential and kinetic energy. 

Although the aircraft are designed with predefined requirements, the whole design 

process includes lots of unknowns and uncertainties that have not been defined with 

exact formulations. Thus, before the first flight, some hours of flight simulations are 
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performed and corrections are done as much as possible. However, for a safe flight wind 

tunnel tests are done at first and a rough flight envelope is defined also based on 

calculations, accordingly. Then, real test flights are done to improve this envelope and to 

fulfil the certification requirements for further safe flights. Throughout this design cycle, 

the calculations are improved by experienced engineers in parallel. All of these processes 

are time and budget consuming. This know-how accumulation, transfer and the best use 

of data become vital. Even a small improvement at the pre-conceptual design phase 

saves time and budget a lot, and moreover even life.  

A very detailed design is not aimed at the early design phase of an aircraft, because 

every detail cannot be exactly structured straight off at that stage, but a good 

optimization algorithm that guesses better design solutions is always on demand for 

aerospace domain. Classical evolutionary optimization algorithms that are mostly used in 

aerospace may be not be much efficient as discussed and shown in the following 

sections. Because its consistent characteristics, surrogate models that may fit best to the 

design area and be explored and trained by an Machine Learning algorithm is to be more 

efficient then the classical methods. The basic methods at this area are correlation 

algorithms and they may be the good starting points. Actually, the correlations between 

input and output for an aircraft design case were already worked in [65] and [66]. From 

these studies, the inference was made as that, in an aircraft design there is logical 

relations between inputs and outputs, among which reasonable patterns can be 

extracted. Accordingly, the related patterns were produced and illustrated in [67]. 

In this study, instead of using instant variable values and interpolation between them, 

the respective changes of design variables from one design solution to others are 

concerned and stored while searching the subsequent design points. This comparison 

stage helps the algorithm to shape and reshape the search surface in parallel with 

surrogate patterns at every iteration, and feeds the algorithm with more promising trial 

points, accordingly. The success of the approach is examined and verified in Section 3.1. 

Probabilistic Neural Networks which is mentioned at Part 0 is used to find out the desired 

changes on the search space. Thus, this method classifies the gradients in terms of each 

optimization parameter and objective function changes at an intermediate step. Then, it 

continues with more probable sections of the design space by assigning new training 

points as using a dimension reduction method in parallel. Here, the trial points are also 

called as the training points. This should not result in any confusion; the reason behind is 

that the trial points employed in one iteration are also used in the training patterns for 

the successive iteration. The related multidisciplinary design optimization flowchart is 

shown in Figure 3.1. 
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Figure 3.1 Multidisciplinary Design Optimization Flowchart for Cavus Algorithm 

 

The idea of the Cavus algorithm was introduced step by step with the studies in [68], 

[69], [70], and [71].  In the first two studies, Multiple Cooling Multi Objective Simulated 

Annealing Algorithm (MCMOSA) is used to optimize a supersonic multirole aircraft. The 

unsystematically distributed nature of the MCMOSA algorithm was improved with Pearson 

Product correlation and a basic knowledge-based method was integrated accordingly to 

have better optimization results. Indeed, besides linear fitness function, elliptic and 

ellipsoidal fitness functions are used in MCMOSA algorithm. With these approaches, the 

pareto front is aimed to be captured by the geometrical functions. The idea is to draw a 

perfect pareto front and then reduce the distance between this perfect pareto and cost 

function results. Since, the perfect pareto is known geometrically, a better design point 

corresponded to each point on the pareto would be guessed with the help of 

elliptic/ellipsoidal fitness functions. As in Simulated Annealing the cost function is 

replaced by the energy of the system in MCMOSA. The specific temperature is used while 

computing the change in the energy of the system. If the energy is reduced then the trial 

point is accepted. However, the trial point may also be accepted without considering the 

energy reduction but having the probability of reduction for the next steps. In MCMOSA, 

instead of one fitness function a population of fitness functions are minimized together. 

Another originality of the algorithm is the assignment of a specific temperature 

parameter to each fitness function [72], [73]. The so-called random walk of Simulated 

Annealing in [68], which is one of the guided random search techniques, used in the 

optimisation part is improved with an introduced knowledge-based technique in [66].  

For the aircraft design problem, this method gives better results just with adding an 

intermediate step that analyses the environment and assigns vectored increments to the 

design variables. The run time is decreased, while the iteration count stayed the same. 

For the limited loop number the results of the trained algorithm are closer to the Pareto 

front and distributed more firmly. 
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Besides the fact that, this improvement serves better accuracy and slightly better run 

time, the function of evaluations are not affected due to the fact that the termination 

criteria was to fulfil the limited number of loops. Indeed, with this study, [66], it was 

observed that the relevance, strength and the direction of the relation between the 

variables and the objectives are very effective, which should be examined in detail. 

Actually, the main deficiency of this kind of algorithms may be their so-called random 

walk nature which increases the number of function evaluations till converging to a local 

optimum.  

Meanwhile, the coupled algorithms with reliability based function Neural Networks, 

probability and evidence theory are used by researchers and better results are gained. 

Likewise the general approaches, they also use the interpolations between the design 

points. In engineering, especially in conceptual design phase, due to the lack of 

knowledge, assumptions are made and some fix numbers are used to overcome the 

uncertainties. Alternatively, to handle these epistemic uncertainties the appropriate 

probabilistic models are searched instead of using unsystematically distributed variables 

with assumed probabilistic models [74], [75]. Even though, these techniques are 

promising for the complex systems, they need high computational effort [76]. 

Considering all of these approaches with their pros and cons, the novel optimization 

technique used in this study is developed. It depends on rule-based agents that search 

for and act to find out the promising design space. The Probabilistic Neural Networks 

algorithm is integrated in the observation phase, which is applied here for its success on 

pattern recognition and classification problems. In this hybrid method the advantages of 

both gradient based and evolutionary algorithms were used. As in the gradient based 

approaches, it uses the relative change of independent and dependent variables between 

each design point to trace the whole search space; and also as in the evolutionary 

algorithms it uses the roles of population in the related range. As stated before, in an 

optimization process the run time and the convergence characteristics are affected by 

increasing the number of variables drastically. This disadvantage is superseded with a 

hybrid technique in this study by reducing the number of poor design points which are 

anticipated from the previous experiences, i.e. training points.  

The method works first as an observer and correlates the input and output pairs, then 

as a classifier and then as an estimator for the optimization part; and this improves the 

unsystematical selection of the variables. In view of the fact that, the time expended in 

design part is in most cases more than the time expended in optimization part, which 

calls the design part for each design point. This also means that, total run time is 

increased by the number of candidate design points multiplied by the time to execute 

one design point in design part. In the Cavus algorithm, the time to spend for calling and 

finding the results of an objective function in barren parts of the design space is 

eliminated by a classification process. That also helps to shorten the time expended in 

design part with reducing the poor candidate design points to be calculated. This gained 

time is used to find out more promising design points, so that improves the convergence 

with fewer amounts of function evaluations. 

As illustrated in Figure 3.1 first the correlation matrixes should be structured. Then, as 

stated in Figure 3.2, the number of variables and the first set of training points are 

introduced to the program at first. The number of variables may be decided to be as 

much as based on the design case, and if they are adaptive to any change between the 

boundaries during the optimization process.  
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Figure 3.2 Flowchart of the Cavus Algorithm 

 

The number of intervals may be decided to be as much as also to increase the 

accuracy. On the other hand, the computation time and the memory usage increase 

accordingly, thus it is better to keep it smaller and even 1. Since the number of training 

points is another concern for the success of the AI algorithms, two different cases are 

tested. For the design cases selected in this study, training points are kept small enough 

and for each pattern 𝑛 training points are selected unsystematically. Depending on the 
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problem characteristics the number of training points can also be selected proportional to 

the number of independent variables. Likewise, with increasing variable numbers the 

number of training points can be increased accordingly as having a value between 𝑘 𝑥 𝑚 

and 𝑘𝑚, where the number of intervals of each variable on a pattern is  𝑘  and the number 

of independent variables is  𝑚.  

Indeed, the number of training points is selected based on the study at the section 

3.1, and they are applied on each grid, then the unsystematically selected variable 

values are sent to the design part. Then the results are compared with each other to 

build up a correlation matrix, which shows the changes in the independent design 

variable values and the objective values. This means, if the training point number is 𝑛, 

the resultant combinations will be 𝑛 𝑥 (𝑛 − 1) with considering the increment and also 

decrement effect. At that stage, the increment is symbolized as 1, and the decrement as 

 −1. If there is no change between the compared values it can be taken as  0. With bipolar 

(and also 0 ) values and the related intervals, each combination of training points can be 

processed as patterns. The mentioned numbering system will be used at the next steps 

for handling the correlations of the patterns. If the objective is to minimize the fitness 

function the correlation patterns with the objective correlation value −1  are taken as the 

successful patterns, others are left as unsuccessful patterns. Additionally, depending on 

the lower and upper bounds of the dependent and independent variables, the search 

space for each variable is divided in 𝑘 intervals, and the interval boundaries are stored. 

Each variable has number of patterns, 𝑝𝑡, calculated as in Eq. (3.1): 

𝑝𝑡 = 2 ∗ (𝑘 + ∑(𝑘 − 𝑖))

𝑘

𝑖=1

 

(3.1) 

If the number of design variables is 𝑚, the amount of total potential patterns is 𝑝𝑡𝑚. 

As an example, for 1 variable and 3 intervals the possible patterns are illustrated 

sequentially in Figure 3.3; for 2 variables and 3 intervals the patterns are illustrated in 

Figure 3.4.  

Where ■ = 1, ■ = 0,  = −1 

 

Figure 3.3 Patterns for one variable (k=3) 
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Figure 3.4 Patterns for two variables (k=3) 

 

For 1 variable and 5 intervals the possible patterns are illustrated sequentially in 

Figure 3.5, thus there are 30 patterns; for 2 variables and 5 intervals there are 900 

patterns which are illustrated by matching 30 patterns of each variable in Figure 3.6. 

Afterwards, for the first training dataset the unattempted patterns can be extracted from 

the total pattern sets. 

 

 

Figure 3.5 Patterns for one variable (k=5) 
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Figure 3.6 Patterns for two variables (k=5) 

 

From Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6, it can be interpreted as when the 

number of intervals is increased the number of patterns is also increased rationally. 

Because each pattern requires memory and costs run time, the number of intervals 

should be kept as less as possible.  

After deciding on the number of intervals and finding the total patterns, dimension 

reduction equation (3.12) can be applied on them to reduce the number of nonessential 

patterns to save the memory and run time accordingly. Since, the patterns differ from 

each other with a few digits as being structured like neighbours; similar patterns are 

classified mostly in the same class at the next step.   

At that point, Probabilistic Neural Networks comes into action. As illustrated in Figure 

3.2 it is used to find the promising patterns between the untried patterns. The algorithm 

is coded in Matlab R2018b, and the Deep Learning Toolbox is used to apply Probabilistic 

Neural Networks. The function is called as newpnn and the usage is explained in 

Appendix.  

Probabilistic Neural Networks uses Bayes Strategy instead of using sigmoidal 

activation function, which is widely used with an exponential function in back-propagation 

algorithm. This method can compute nonlinear decision boundaries, which can be 
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updated immediately with a new data, and can also be operated in parallel [14]. Because 

of its structure, it is faster than back-propagation especially for pattern recognition and 

classification.  

Probabilistic Neural Networks (PNN) is applied here to classify the patterns depending 

on their acceptance probabilities. PNN was introduced by Specht and here summarized 

based on the flowing references; [14], [56], [59] and [62]: 

While classifying patterns the decision rules are set to minimize the expected risks. 

These rules or strategies are called Bayes Strategies and can be applied to any number 

of categories, [14], [56] and [77]. Considering the categories A and B the state of 

natures are A and B, and the probability density functions are fA(x) and fB(x) 

respectively. Also, IA and IB are the loss functions related with the decisions d(x)  =  A 

when  =  B and d(x) =  Bwhen  =  A (the losses are taken to be equal to zero when the 

decisions are correct). Further, hA and hB are the priori probability of occurrence of 

patterns from category A and B, and hB =  1 − hA [56]. 

Then, for a state  based on a set of measurements represented by a p-dimensional 

vector 𝑥𝑡 = [𝑥1 …𝑥𝑗 …𝑥𝑝] the Bayes decision rule is written as in Eq. (3.2) [56]: 

 

𝑑(𝑥) = 𝜃𝐴 𝑖𝑓 ℎ𝐴𝐼𝐴𝑓𝐴(𝑥) >  ℎ𝐵𝐼𝐵𝑓𝐵(𝑥) 
(3.2) 

𝑑(𝑥) = 𝜃𝐵 𝑖𝑓 ℎ𝐴𝐼𝐴𝑓𝐴(𝑥) < ℎ𝐵𝐼𝐵𝑓𝐵(𝑥) 
 

 

Also, the boundary between the region in which Bayes decision d(x)  =  A and the 

region in which Bayes decision d(x) =  B is given as in Eq. (3.3) [56]: 

 

𝑓𝐴(𝑥) = 𝐾𝑓𝐵(𝑥) 

(3.3) 

Where 

𝐾 =
ℎ𝐵𝐼𝐵
ℎ𝐴𝐼𝐴

 

(3.4) 

The ratio of the loss functions, hB/hA, can be set to −1 if there is no reason for biasing 

the decision [56]. According to [57] a family of estimates of f(x), at all points x the 

probability density function is continuous, is given with Eq. (3.5) [56]: 

 

𝑓𝑛(𝑥) =
1

𝑛
∑𝑊[

(𝑥 − 𝑥𝐴𝑖)


]

𝑛

𝑖=1

 

(3.5) 
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Eq. (3.6) is the weighting function 𝑊(𝑦) and states that weights are not bounded and 

cannot reach infinity: 

𝑠𝑢𝑝−∞<𝑦<∞ 𝑊(𝑦) < ∞ 

(3.6) 

Here, sup indicates the supremum. 

 

∫ 𝑊(𝑦) 𝑑𝑦 < ∞

∞

−∞

 

(3.7) 

 

 

𝑙𝑖𝑚
𝑦→∞

 𝑦𝑊(𝑦) = 0 

(3.8) 

 

 

∫ 𝑊(𝑦)𝑑𝑦 = 1

∞

−∞

 

(3.9) 

  

In Eq. (3.5), let  is chosen as a function of n then   =  (n), and  

 

 

𝑙𝑖𝑚
𝑛→∞

𝑛(𝑛) = ∞ 

(3.10) 

 
[57] proved that the expected error goes to zero with the number of training samples 

going to infinity: 

 

𝐸 𝑓𝑛(𝑥) − 𝑓(𝑥) 2 → 0 𝑎𝑠 𝑛 →  ∞ 
 

 

The assumptions of the absolute continuity of the distribution F(x) are relaxed at [77] 

and [78], and then [79] extended Parzen’s results for multivariate case [56]. Then the 

multivariate estimates are found by Eq. (3.11) as: 

 

𝑓𝐴(𝑥) =
1

(2𝜋)𝑝/2𝜎𝑝

1

𝑚
 × ∑𝑒𝑥𝑝 [

(𝑥 − 𝑥𝐴𝑖)
𝑇(𝑥 − 𝑥𝐴𝑖)

2𝜎2
]

𝑚

𝑖=1

 

(3.11) 
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Where  is the smoothing parameter and it has a very important influence on the 

approximations. 

The Probabilistic Neural Networks like “Feed Forward Networks” has a parallel 

structure [14]. This type of Neural Networks is very flexible to accept new data and it can 

be applied easily with its one-step only learning technique [56]. It learns not from trials 

instead from experience, that others made for the Neural Network [56]. Therefore it 

depends on the functions used inside the neuron [14]. Because of these characteristics, 

the Probabilistic Neural Networks is faster than back-propagation [80] and they perform 

well with few training points [56]. 

In this study, Probabilistic Neural Networks is preferred to use for their advantages 

and success on the pattern recognition and classification, and also their tolerance to the 

usage of binary-bipolar numbering combination.   

As an example, in Figure 3.8 the usage of Probabilistic Neural Networks in the Cavus 

algorithm is illustrated for two variables, 𝑋1 and 𝑋2, and the objective, 𝑌. At first, the 

successful and unsuccessful patterns are distinguished according to their influence on the 

objective function. If the objective function is decreasing (for finding minimum) at a 

pattern then the pattern is defined as the successful pattern and shown here with a blue 

arrow. The head of the arrow shows the direction of the action. If it is away from the 

lower bound of the variable, it means that the variable value is increased at the 

successive point, and the pattern has the interval value of 1  for that variable. If it is in 

the opposite direction then the value for that interval becomes −1. If the pattern has an 

effect on the objective function to increase then the pattern is defined as unsuccessful 

pattern and shown with a red arrow. The directions of the arrows and the numbering for 

the successful patterns are also valid for these unsuccessful patterns. 

Indeed, the successful patterns are selected based on two criteria.  

The pattern: 

 that minimizes the result; 

 that has the equal resultant value (due to the probability of convergence); 

After collecting the successful and unsuccessful patterns, Probabilistic Neural 

Networks is trained. The classes are specified based on the related objective function 

values. The number of classes for the successful patterns is (𝑛 − 1) . Then the 𝑛𝑡ℎ class is 

allocated for the unsuccessful patterns. 

The untried patterns are picked out from the combined set of total possible patterns 

which are formed with the variable and interval numbers. Untried patterns are applied on 

the trained neural network and the possible successful and unsuccessful patterns are 

distinguished. Figure 3.8 shows how the Probabilistic Neural Networks selects promising 

patterns from the successful and unsuccessful patterns.  

As a result, as in the Figure 3.8b the promising pattern would be similar to one of the 

grey lines and headed according to the other successful patterns which may be 

neighbouring, parallel or both. From the performance values of the tried patterns, 

neighbouring patterns which have greater probability to minimize the fitness function are 

selected with the help of Probabilistic Neural Networks. From another aspect, it actually 



55 
 

matches the patterns which have one or two digit differences from the successful 

patterns, and their combinations. These untried promising patterns with successful 

patterns are sent to the design part, which calculates the fitness function; and the results 

are turned with their corresponding patterns to further deliberation.  

At that point, each class has number of patterns. Not all but the most promising 

patterns should have the priority. For that reason, the 2-digit hamming distance function 

is applied to find out the center of the pattern clusters. With this intermediate stage, the 

patterns that have higher probabilities to be successful arise. At the end of this process 

throughout the design space there would not be any untraced space. Moreover, all of this 

information is gained just from the first set of training points. 

For the next step, as in Figure 3.8c, a number of patterns is selected and the next set 

of training points is applied to these areas. At this step, a dimension reduction method 

can be applied while selecting the training points. Since the algorithm is capable to bring 

neighbouring patterns, at least one dimension can be eliminated. After one dimensional 

reduction the number of training points becomes: 

 

𝑝𝑎𝑘𝑜2 = 2𝑚 − [2𝑚−2 (𝑚 𝑚𝑜𝑑 2) + 2  ] 

(3.12) 

Further case specific reductions can be done accordingly. Each reduction saves 

noticeable amount of memory and run time against some compromise on the result. 

The following step is illustrated in Figure 3.8d. The process will continue with the 

successful and promising successful grids on the search area, which is also stated in the 

loop of the flowchart of the algorithm in Figure 3.2. 

When the required criterion for terminating the program is reached then the process 

is ended with the minimum value (or maximum value for the maximization). If the 

fitness is not at the desired level then the selected successful patterns are sent to the 

design part for generating further training points for the related intervals as described in 

Figure 3.7. The loop is repeated until the desired optimum is reached. 

As a result, in Figure 3.8, it can be interpreted that there should be relations between 

unsuccessful and successful patterns in inverse proportion and/or direction, and in direct 

proportion and/or direction between successful patterns and between unsuccessful 

patterns, respectively.  

 

 

 

 

 

                                                           
2
 Addressed to my elder sister Pakize 
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Figure 3.7 Logical Description of the Cavus Algorithm 
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Figure 3.8 Selecting promising patterns with PNN 



58 
 

3.1. Trend Analysis for the number of Training Points 

 

For making a decision on the required number of training points, a trend analysis was 

done. In the first case, 10 training points are given to the first run and also to the each 

following successful iterations. The interval number is kept small and selected as 2, which 

is independent from the increasing number of variables. Optimization results for a fixed 

number of training points, 10, are given in Table 3.1; and for the changing number of 

training points, which are proportional to the variable numbers, are given at Table 3.2. 

Each pattern value is calculated and checked, if it matches with the predicted value by 

the algorithm or not. Because each pattern with a decreasing effect on the objective 

function has its inverse pattern, the number of successful patterns is equal to the 

number of the unsuccessful patterns, as expected. For the first case, when the number of 

training points is kept as fixed, the algorithm loses its success with the increasing 

number of variables. If the Table 3.1 and the Table 3.2 are considered together, when the 

training points are more than the required value (like the case  𝑛 = 3), the algorithm is 

highly trained and it does not let enough patterns to be included in the promising pattern 

set. Thus the success of the method decreases. Besides that, for the increasing number 

of variable numbers (𝑚 > 3) the fixed number of training points is less than the required 

level, then the success of the promising patterns of the optimization diminishes. This 

effect is seen in both of the tables, Table 3.1 and Table 3.2, for a relative number of 

intervals and variable numbers. It is also observed that with the increasing number of 

variables, the success of the algorithm increases as expected; this is because of 

eliminating the less promising patterns, which come from more digit changes. 

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑡ℎ𝑜𝑑 =
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
 

(3.13) 

 

Table 3.1 Optimization results for the fixed number of training points (n=10) 

Number of variables 7 6 5 4 3 

Number of training points 10 10 10 10 10 

Number of intervals 2 2 2 2 2 

Total pattern number 279936 46656 7776 1296 216 

Used patterns 90 90 76 84 58 

Unused patterns 279846 46566 7700 1212 158 

Successful patterns* 45 45 38 42 29 

Unsuccessful patterns 45 45 38 42 29 

Promising patterns** 147638 24109 4011 614 83 

Total promising patterns* ⁺ ** 147683 24154 4049 656 112 

Calculated successful patterns*** 125287 21861 3737 611 106 

Success of the method 0.848 0.905 0.923 0.931 0.946 

       * Calculated 
       ** Estimated 
       *** Calculated afterwards 
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Table 3.2 Optimization results for the changing number of training points (n=km) 

Time (sec) 410 218 122 74 50 

Number of variables 7 6 5 4 3 

Number of training points 128 64 32 16 8 

Number of intervals 2 2 2 2 2 

Total pattern number 279936 46656 7776 1296 216 

Used patterns 12586 3076 718 138 32 

Unused patterns 267350 43580 7058 1158 184 

Successful patterns* 6323 1543 363 70 16 

Unsuccessful patterns 6323 1543 363 70 16 

Promising patterns** 134851 22052 3587 583 92 

Total promising patterns* ⁺ ** 141174 23595 3950 653 108 

Calculated successful patterns*** 138166 22980 3836 629 103 

Success of the method 0.979 0.974 0.971 0.963 0.954 

       * Calculated 
       ** Estimated 
       *** Calculated afterwards 

 

Further improvements are done by eliminating the points which come from the similar 

or partially related intervals. This saves the memory usage. On the other hand, it may 

decrease the efficiency. However, with the increasing number of variables the required 

memory is also increasing. Due to this fact, the reduced number of patterns is used in 

the test cases presented here. 

Table 3.1 and Table 3.2 can be interpreted as that, for the design cases that require 

high memory and computational time the number of training points can be selected as 

less as possible without much compromise to catch the real successful patterns. It is 

found that, the ratio of calculated successful patterns in the total promising patterns are 

high enough and changing between 85% and 98% for the selected test case. Moreover, 

when we consider the ratio of used patterns to total pattern number; for example, in 

Table 3.2 for 7 variables it is even 4%, which means 98% of success is reached from the 

derived information of 4% of the whole design space. In fact, total patterns are used to 

explore the design space better and contribute to the surrogate model. Therefore, the 

precise calculations are done on really interesting patterns provided by the surrogate 

model and may have the optimum value. 

 

3.2.  Test Case: Rosenbrock Function 

 

To demonstrate the functionality of the novel algorithm, Rosenbrock function is used 

as an initial test case. This function is mainly used to test the gradient-based 

optimisation algorithms. It is a challenging function with having many local minima 

especially around the global minimum. Also, it is flexible to be used for 2 or more 

variables. For m-dimensional domain, the “Rosenbrock” function is given as: 

𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]

𝑚−1

𝑖=1

 

(3.14) 
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The global minimum is 𝑓(𝑥) = 0 at 𝑥 = (1,… ,1). Thus, the global minimum has always 

the value, 0, and it is found at 1 for all the axes. Besides, the form can be illustrated for 

two variables easily. This case is actually examined step by step in detail in the next 

section with the related plots. Further, the following sections present the performance of 

the algorithm with the increasing number of variables. 

 

3.2.1. Method description and the results for Rosenbrock Function for 2 

variables 

 

The “Rosenbrock” function is illustrated in the next 3-dimentional plot, Figure 3.9, for 2 

variables. At the first sight Rosenbrock function seems very easy to find the optima, 

however the convergence to the global optimum through the tricky valley is highly 

difficult. 

 

 

Figure 3.9 Rosenbrock Function (3D view) 
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Figure 3.10 Rosenbrock Function (2D view) 

Here, the technique is described for 2 variables (𝑚 = 2) in order to ease the illustration 

of the optimization steps. This algorithm does not need any starting point but needs 

lower and upper bounds. For the two variables 𝑥1  and 𝑥2 , uniformly distributed perturbed 

numbers are generated between lower bounds 𝑙𝑏 = [−2.5, −2.5] and upper bounds 𝑢𝑏 =

[2.5, 2.5]. The ranges between the lower and the upper bounds of the variables are divided 

into 2 intervals; the interval number is notated as 𝑘 = 2. Thus, the corresponding two 

intervals are [−2.5  0] and [0  2.5] for each variable at the first iteration.  

For the sake of the performance of the program, the number of the data/design 

points (𝑛) to start searching should be selected such as 𝑘 𝑥 𝑚 ≤ 𝑛 ≤ 𝑘𝑚. Any number lower 

than 𝑘 𝑥 𝑚 reduces the accuracy of the resultant optimum point, and also any number 

more than 𝑘𝑚 expends high memory of the computer and extends the run time. For the 

interval number, 𝑘 = 2, and the number of variables, 𝑚 = 2, the number of the data points 

that will train the algorithm is selected as 4. 

These unsystematically distributed points selected by the computer are also 

illustrated on the next figure and tabulated with the resultant 𝑓(𝑥) values on the next 

table, Table 3.3. 

Table 3.3 Design variables with their boundaries and values for the first training set 

 

Lower 

bounds 

Upper 

bounds 

1. Data 

point 

2. Data 

point 

3. Data 

point 

4. Data 

point 

𝑥1 -2.5 2.5 -0.73995 0.97463 1.67295 -1.28586 

𝑥2 -2.5 2.5 1.76959 -0.94789 0.47668 -2.13496 

𝒇(𝒙)   152.37190 360.16227 539.66464 1440.42783 
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Figure 3.11 First set of data points 

 

After gathering the training data points, the algorithm calculates the differences 

between the variables and the corresponding differences between the results. The 

evaluation criteria is that if the value of one variable decreases from one data point to 

other data point the value of the related pattern between these two variables is −1, 

otherwise if it tends to increase the value is 1. The same rule is applied between the 

results/the objective values also. For example for the first and second data points: while 

pointing out the direction from point 2 to point 1 (i.e. following the arrow on the figure) 

the value of the first variable is decreasing through its first interval, which is represented 

as [−1 0]; whereas the second variable is increasing through its second interval, which is 

represented as [0 1]. By the way, the result of 𝑓(𝑥) is also decreasing from approximately 

360 to  152. This means the pattern between point 1 and point 2 is [−1 0 0 1]  and it is a 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 action because the result is reducing also. The comparisons are done for each 

point combinations and the patterns are gathered. The degree of success is decided as: 

when the result is reducing then it is defined as the successful action; on the other hand 

when the result is increasing (for a minimization problem) then it is defined as the 

unsuccessful action. 

Finally, when the number of data points is 𝑛, then the combination numbers will be 

𝑛 𝑥 (𝑛 − 1) and the number of classes of these combinations is at most (𝑛 − 1). In case of 

recurring patterns, the number of classes is reduced. Also, one half of these 

combinations consist of successful actions whereas the other half is of exactly their 

reflected unsuccessful actions, as expected. The reason for that, while combining the 

points, the same pairs match two times which are actually just in different orders (i.e. 

the arrow just changes its direction). 
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Table 3.4 Successful patterns 

 

 

Table 3.5 Unsuccessful patterns 

 

 

However, for 2 variables and 2 intervals there exist (2𝑘)𝑚 = (2 𝑥 2)2 = 16 possible 

patterns in total. These possible patterns can be listed as: 

 

Table 3.6 Total possible patterns 

 

 

After discarding the repeated patterns, out of 16 possible patterns only 8 of them are 

used. For the rest 8 patterns there is no information yet; whether they would be 

successful or not when they are used.  

Since the aim of the novel algorithm is to reduce the function evaluations for the 

optimization process, instead of examining these patterns with the new data points, 

point 1 - point 2 -1 0 0 1

point 1 - point 3 -1 0 0 1

point 1 - point 4 1 0 0 1

point 2 - point 3 0 -1 -1 0

point 2 - point 4 0 1 1 0

point 3 - point 4 0 1 0 1

point 2 - point 1 0 1 -1 0

point 3 - point 1 0 1 0 -1

point 3 - point 2 0 1 0 1

point 4 - point 1 -1 0 -1 0

point 4 - point 2 -1 0 -1 0

point 4 - point 3 -1 0 -1 0

-1 0 -1 0

-1 0 0 -1

-1 0 1 0

-1 0 0 1

0 -1 -1 0

0 -1 0 -1

0 -1 1 0

0 -1 0 1

1 0 -1 0

1 0 0 -1

1 0 1 0

1 0 0 1

0 1 -1 0

0 1 0 -1

0 1 1 0

0 1 0 1
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Probabilistic Neural Networks (PNN) is used to decide whether they would be successful 

or not. Roughly, PNN finds out the neighbouring patterns of the same classes. The idea of 

the new algorithm is that, if a pattern is successful the neighbouring patterns should also 

have similar success. PNN helps to reach these patterns. The training patterns are the 

successful and unsuccessful patterns that are found out from the trial points of the 

previous iteration. Additionally, the classes could be assigned according to the reduction 

size on the 𝑓(𝑥) values. Out of this knowledge, (also with ignoring one of the repeated 

patterns) the first two successful patterns are grouped into the first class, and the 

following two are into the second, and then the last one is into the third class. 

 

Table 3.7 Successful patterns with classes 

 

 

As a result, the test patterns should be the patterns that are not used before. At this 

stage, PNN is applied to distinguish the possible successful patterns and the possible 

unsuccessful patterns from the test patterns; the results can be tabulated as: 

 

Table 3.8 Possible successful patterns 

 

 

Table 3.9 Possible unsuccessful patterns 

 

 

The classification of PNN is illustrated in the Figure 3.12. The number of successful 

classes is selected as (𝑛 − 1) = 4 − 1 = 3; as a result the 𝑛𝑡ℎ class becomes the class of 

unsuccessful patterns. As seen in the figure, one pattern has the probability of both to be 

successful and unsuccessful. This pattern is illustrated with the red-green diagonal plaid 

colouring. 

 

1st class -1 0 0 1

1 0 0 1

2nd class 0 1 1 0

0 -1 -1 0

3rd class 0 1 0 1

1st class 0 -1 0 1

-1 0 1 0

0 -1 1 0

1 0 -1 0

1 0 1 0

2nd class 0 -1 0 -1

1st class -1 0 0 -1

1 0 0 -1
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Figure 3.12 PNN classification 

 

From the trend analyses, it appears that the effective number of classes for the 

successful patterns is between 2 and 𝑚; and for the possible successful patterns is 

between 2 and 𝑚/2. Hence, the first patterns of the first 2 classes are chosen from the 

successful patterns, and also from the possible successful patterns for the next run. 

Eventually, the promising patterns become: 

Table 3.10 Promising patterns with their bounds 

  

 

The next run will continue within these intervals: 

For the first promising pattern the bounds of the first variable, 𝑥1 , become [−2.5 0] and 

for the second variable, 𝑥2 , they are [0 2.5]. 

For the second promising pattern the bounds of the first variable, 𝑥1 , become [0 2.5] 

and for the second variable, 𝑥2 , they are [−2.5 0]. 

For the third promising pattern the bounds of the first variable, 𝑥1 , become [0 2.5] and 

for the second variable, 𝑥2 , they are [0 2.5]. 

For the fourth promising pattern the bounds of the first variable, 𝑥1 , become [0 2.5] 

and for the second variable, 𝑥2 , they are [0 2.5]. 

1 0 0 1 -1 0 0-1

1 0

0 1

-1 0

0-1

x2

x1

successful

possible successful

possible unsuccessful

unsuccessful

x1 x2 x1 x2

-1 0 0 1

0 1 1 0

0 -1 0 1

0 -1 0 -1

x1 x2

Lower bound Upper bound

-2.5 -2.5 2.5 2.5



66 
 

Actually, it is known that the global minimum is at the point (1,1) which is between 

[0 2.5] for the both variables; hence the correct patterns are highlighted with green in the 

Table 3.10. 

Although, the first two promising patterns are not able to find the global minimum but 

the last two have the possibility. Even though, this is obvious for us, the program 

continues with all of the promising patterns. For each promising patterns 𝑛 times the trial 

points are used. This means, the next run includes 𝑛 𝑥 4 = 16 data points, where 𝑛 = 4. In 

the next figure, Figure 3.13, the data points from the 2𝑛𝑑 run are shown. 

 

Figure 3.13 Second set of data points 

 

The next figure, Figure 3.14, shows the same data points again, but they are 

distinguished according to the patterns they come from. Here, it is clearly seen that the 

3𝑟𝑑  and the 4𝑡ℎ patterns have advantage over the other patterns, the 1𝑠𝑡 and the 2𝑛𝑑 

patterns, to reach the global optimum.  
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Figure 3.14 Second set of the data points grouped with the related pattern numbers 

 

Table 3.11 The unsystematically distributed points for each pattern and the results 

 

 

The selection of the patterns for the next run depends on the minimum and the mean 

values. For each pattern, the minimum and the mean values are normalized and 

summed. Afterwards, the sums are ranked in ascendant order, and then the pattern 

which has the lowest sum is selected for the next run; that is the 3𝑟𝑑  pattern for this 

example. It is also seen that the 4𝑡ℎ pattern which has also meaningful lower and upper 

bounds on the second rank and has the minimum 𝑓(𝑥) value. 

x1 x2 f(x) min mean

1st pattern -0.66276 0.28543 5.13100

-1.32026 1.64305 6.38466

-0.22011 1.98408 376.15482

-2.28509 0.87873 1896.88885

2nd pattern 0.07440 -1.48748 223.76631

1.20081 -0.72394 469.14832

1.26950 -1.98078 1290.61397

1.88000 -0.38851 1539.68159

3rd pattern 0.98563 1.60215 39.77662

0.08000 1.04000 107.67905

1.26911 0.54730 113.13913

2.36348 2.34444 1052.66234

4th pattern 0.68370 0.49922 0.20104

0.12895 1.59974 251.38481

1.78590 0.98131 488.20277

2.26739 1.90132 1051.19175

5.13100 571.13983

39.77662

0.20104

880.80255

328.31428

447.74509

223.76631
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Table 3.12 Normalized min and mean values 

 

 

As in the previous run, each pattern brings some promising patterns after PNN, also. 

These are tabulated in the next table, Table 3.13. 

 

Table 3.13 Actual patterns with the promising patterns for the next run 

 

 

At the 3𝑟𝑑 run, which is illustrated in the next figure, Figure 3.15, the search continues 

on the ¼ of the search area which has the highest probability on others. 

 

1st pattern 0.02 0.44 0.46

2nd pattern 1.00 1.00 2.00

3rd pattern 0.18 0.00 0.18

4th pattern 0.00 0.22 0.22

Normalized 

min

Normalized 

mean
Sum

x1 x2 x1 x2

3rd pattern -1 0 0 1

-1 0 -1 0

0 -1 0 1

0 -1 1 0

4th pattern -1 0 -1 0

-1 0 0 -1

1 0 0 -1

-1 0 1 0

1st pattern 0 1 -1 0

1 0 0 1

0 -1 0 1

1 0 1 0

2nd pattern -1 0 -1 0

-1 0 0 -1

0 -1 1 0

0 -1 0 -1

Lower bound Upper bound

Promising patterns for the next run

0 0 2.5

-2.5 0 0 2.5

2.5

0 0 2.5 2.5

0 -2.5 2.5 0
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Figure 3.15 Third set of data points 

At the 4𝑡ℎ run, the data points come closer to the valley, as it could be seen in the 

next figure, Figure 3.16. 

 

Figure 3.16 Fourth set of data points 

The 5𝑡ℎ run includes closer data points to the global optimum, however it is still a 

tricky area to be able to converge to the right curvature. 
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Figure 3.17 Fifth set of data points 

 

At the 6𝑡ℎ run the data points are highly closer to the global minimum; the 7𝑡ℎ, the 8𝑡ℎ 

and the 9𝑡ℎ runs are also need, and they become successful while converging to the 

optimum point. 

 

Figure 3.18 Sixth set of data points 
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Figure 3.19 Seventh set of data points 

 

 

 

 

Figure 3.20 Eighth set of data points 
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Figure 3.21 Ninth set of data points 

 

 

The last run, the 9𝑡ℎ run, is shown again in Figure 3.22 in detail: 

 

Figure 3.22 Ninth set of data points in detail view 
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The termination occurs after 132 function evaluations when there is no change on the 

4𝑡ℎ significant figure; at the point: 

𝑓(𝑥) = 0.00007 with the variable values 𝑥1 = 1.00417 and 𝑥2 = 1.00912 

Whereas Genetic Algorithm reaches 𝑓(𝑥) = 0.00766 with the variable values 𝑥1 =

0.91308 and 𝑥2 = 0.83269 after 8450 function evaluations and 168 generations between the 

same boundaries. 

 

3.2.2. The results for Rosenbrock Function for 7 variables 

 

To increase the complexity the number of variables is also increased. For this section 

the number of variables is selected as 7. The number of the training data points is 

selected with considering the efficient range; as dealt before from the range:  𝑘 𝑥 𝑚 ≤ 𝑛 ≤

𝑘𝑚.  It may be advantageous to choose a number which is the power of 𝑘 in order to 

have uniformly distributed data points in intervals. Thus, according to this 

inequality (2 𝑥 7 ≤ 𝑛 ≤ 27), it saves the run time and the memory to decide on the lowest 

value; as 𝑛 = 16. 

For 7 variables and 2 intervals there exist (2𝑘)𝑚 = (2 𝑥 2)7 = 16384 possible patterns in 

total.  

Referring to the trend analyses again, the first patterns of the 6 classes are chosen 

from the successful patterns, and also the first patterns of the 4 classes are chosen from 

the possible successful patterns for the next run. The 16 data points of the first run are 

tabulated with the related resultant values in the Table 3.14: 

 

Table 3.14 Design variables with the results for the first training set (m=7) 

 

x1 x2 x3 x4 x5 x6 x7 f(x)

0.6227 -0.1237 1.0679 0.2338 -0.1481 0.5483 0.2874 255

-0.1314 0.0901 0.0597 0.9998 -0.3585 -0.3670 -0.6343 375

-0.8414 -0.7113 -0.0923 -0.2456 1.5044 0.6850 1.9951 944

0.0794 0.8658 -1.3095 1.8634 0.6080 -0.7601 1.5199 1547

-1.6944 0.5094 -0.3551 -0.5707 -1.9227 1.9676 2.3661 1696

1.5517 1.6179 1.8152 0.6954 2.2401 1.7125 0.9075 2617

-1.2828 1.4843 -0.7182 2.1461 -1.1624 1.1220 -2.1063 5601

2.2155 -0.6165 -1.7444 -0.7580 -1.3331 -0.2233 -1.5972 6006

1.8556 1.1403 2.3475 -1.2974 1.1064 1.3844 -1.2423 6317

0.7023 2.2696 -1.0468 -1.7823 0.1300 -1.2395 -2.3716 7618

-2.3811 -1.3330 1.4753 -1.1354 1.7886 -1.7204 0.4675 9106

-1.1620 2.0591 0.6763 -2.1722 -1.6115 -2.0663 1.1608 9191

-2.0022 -2.0409 0.5160 1.5531 2.1456 -1.4854 -0.0897 9425

-0.3508 -1.5912 -2.4703 0.3586 0.9360 2.3738 -0.5058 10178

1.1185 -1.1639 -1.9998 2.2936 -2.2847 -2.3668 1.7658 14958

1.9065 -2.4749 2.0138 -2.4985 -0.8664 0.1704 -1.2517 15000
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Figure 3.23 Ranks of the first training set 

 

Table 3.14 and Figure 3.23 illustrate together how evenly the first training set is 

distributed on the search space. The 16 data points for the first run are selected 

accordingly that, each variable has values distributed to the 16 sublimits between the 

predetermined upper and lower limits. With the applied dimension reduction method, the 

variables are evenly matched as a result. 

Out of 16384 patterns, 172 patterns are tried at the first run between the lower and 

upper bounds, −2.5 and 2.5 respectively. The 110 patterns out of the 172 patterns are 

found as successful and the rest 76 patterns are as unsuccessful. Actually, 14 patterns are 

common.  Further, there are 16212 untried patterns which are distinguished by PNN into 

𝑛 − 1 = 15 classes, which have probability to be successful. The 1𝑠𝑡 patterns of the first 6 

successful classes and the 1𝑠𝑡 patterns of the possible successful patterns are gathered. 

Eventually, the total promising patterns become: 

Table 3.15 The promising patterns for the next run 

 

0
8

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
a
n

k
s
 

The first training set  

Ranks in Total Patterns 

0 -1 -1 0 0 1 0 1 -1 0 0 1 0 1

1 0 0 1 0 1 0 1 -1 0 -1 0 -1 0

-1 0 1 0 -1 0 1 0 0 1 0 1 0 1

0 -1 0 1 -1 0 0 1 0 1 -1 0 0 1

-1 0 0 1 -1 0 1 0 -1 0 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

-1 0 -1 0 0 1 0 1 -1 0 0 1 0 1

-1 0 0 1 0 1 0 1 1 0 0 -1 0 1

-1 0 0 1 1 0 0 1 0 1 0 1 0 1

0 1 0 -1 -1 0 0 1 0 1 0 1 0 1

x7x1 x2 x3 x4 x5 x6
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Keeping in mind that, the global minimum of the “Rosenbrock” Function is at the 

point 𝑓(𝑥) = 0, where ∀ 𝑥 = 1, the right patterns should be in the interval of 0 to 2.5 at this 

stage. The grey coloured cells on the table actually indicate the right selections. The 6𝑡ℎ 

pattern is expected to be the successful one; however this fact is also be detected 

automatically by the algorithm after summing up the normalized 𝑚𝑖𝑛 & 𝑚𝑒𝑎𝑛 values of the 

data points at the next run. Table 3.16 lists the patterns, which are ranked according to 

the 𝑠𝑢𝑚. 

Table 3.16 The rank of the promising patterns 

 

 

Thus, from the first set of data listed in Table 3.14, the promising patterns for the next 

run are selected and shown in Table 3.15. Out of these 10 promising patterns, 6𝑡ℎ pattern 

is selected based on its 𝑠𝑢𝑚 value as presented in the Table 3.16. 

The next run continues within the intervals that the 6𝑡ℎ pattern has. The process 

continues until reaching the termination criteria. The result is found after 1776 function 

evaluations at the point 𝑓(𝑥) = 0.0004. 

A comparison is done with Globex algorithm which was presented by Jacob [52]. The 

developed algorithm at [52] is also in the group of direct search methods and has similar 

characteristics like using directions based on the previously produced data points, 

besides not requiring the derivatives of the function. Starting from an initial point, and if 

it is needed also with constraints, it finds out the global minimum of a function or 

functional. It has wide field of application (application not limited to linear, quadratic or 

convex/concave functions). Moreover, it requires low memory and it is highly fast 

compared to numerous existing methods [52]. Thus, it has high priority and is highly 

reasonable to take as a reference. 

Introducing the starting point as: 

 

Table 3.17 The starting point for Globex Algorithm 

 

 

min mean sum

6
th
 pattern 0.363 0.000 0.363

8
th
 pattern 0.062 0.367 0.429

10
th
 pattern 0.190 0.350 0.540

7
th
 pattern 0.000 0.666 0.666

9
th
 pattern 0.277 0.411 0.688

4
th
 pattern 0.795 0.590 1.385

1
st
 pattern 1.000 0.635 1.635

5
th
 pattern 0.762 1.000 1.762

2
nd

 pattern 0.855 0.985 1.840

3
rd
 pattern 0.960 0.987 1.947

x1 x2 x3 x4 x5 x6 x7

-1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2
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Also the starting step sizes for the variables as: 

 

Table 3.18 The starting step sizes for Globex Algorithm 

 

 

And, the constraints as: 

𝑥2 < 0 𝑎𝑛𝑑 (𝑥1 + 𝑥2) > 1  

 

Then, the Globex algorithm [52] converges to the point 𝑓(𝑥) = 4.16920 after 12625 

function evaluations. 

Genetic Algorithm is also used because of its popularity in optimization. It is based on 

the principles of natural genetics and selection. It does not use the derivatives in the 

search procedure but uses only the values of the objective function. Instead of a single 

starting point, a population of points (trial design vectors) is used for initiating the 

procedure. Since a high number of distributed candidate points is used it is less likely to 

stack in a local minimum [43].  

For Rosenbrock function with 7 variables, while Genetic Algorithm has the same lower 

and upper bounds as the Cavus algorithm, it converges to the point 𝑓(𝑥) = 2.8815 after 

15400 function evaluations and 76 generations. 

The results for those three algorithms are gathered in Table 3.19 for a clear 

comparison: 

 

Table 3.19 The results for the “Rosenbrock” Function with 7 variables 

 

 

As a result, for the Rosenbrock function with the 7-variable case, the Cavus algorithm 

has the lowest function evaluations and the best convergence to the optima when 

compared with the Globex and the Genetic Algorithm. When compared with the Genetic 

Algorithm, this saves 89% of the analyses and thus the required computational time. 

 

dx1 dx2 dx3 dx4 dx5 dx6 dx7

0.1 0.1 0.1 0.1 0.1 0.1 0.1

Algorithm x1 x2 x3 x4 x5 x6 x7 f(x)
Function 

evaluations

Cavus 1.0004 0.9995 0.9992 0.9993 0.9997 0.9996 0.9993 0.0004 1776

Globex 0.6175 0.3825 0.1580 0.0353 0.0114 0.0100 0.0001 4.1692 12625

Genetic 0.8341 0.6922 0.4779 0.2270 0.0605 0.0189 0.0109 2.8815 15400

Exact values 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
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3.2.3. The results for the “Rosenbrock” Function for 14 variables 

 

For this part the number of variables is increased as 14. The number of the training 

data points is selected depending on the inequality: 𝑘 𝑥 𝑚 ≤ 𝑛 ≤ 𝑘𝑚. As mentioned before 

it is also advantageous to choose a number which is the power of 𝑘 and also one of the 

multipliers of 𝑚, in order to have a better multidimensional distribution like Latin 

Hypercube Sampling [81] [82] [83]. Thus, 𝑛  is decided to be 𝑛 = 27 = 128. 

For 14 variables and 2 intervals there exist (2𝑘)𝑚 = (2 𝑥 2)14 possible patterns in total. 

Here, to decrease the memory usage, zeros are dropped, and then the total patterns are 

reduced to 2𝑚 = 27 = 16384. This intermediate step can be used for the problems that 

have high number of variables to gain the computational performance against the 

compromise on the result. 

Referring to the trend analyses again, the first patterns of the first 6 classes are 

chosen from the successful patterns, and also the first patterns of the first 4 promising 

classes are chosen from the possible successful patterns for the next run. The lower and 

upper bounds are −2.5 and 2.5  respectively as before. Because of the high number of data 

the intermediate steps are not tabulated here. After the first run, the 1𝑠𝑡 patterns of the 

first 6 successful classes and the 1𝑠𝑡 patterns of the first 4 promising classes are gathered 

in Table 3.20. Eventually, the total promising patterns become: 

 

Table 3.20 The promising patterns for the next run 𝑚 = 14 

 

 

The global minimum of the “Rosenbrock” Function is at the point 𝑓(𝑥) = 0, where 

∀𝑥 = 1. Then, the right boundaries of the intervals should be in the range 0 and 2.5. The 

grey coloured cells on the Table 3.20 actually indicate the right selections. The 4𝑡ℎ pattern 

is expected to be the successful one, it is also be selected automatically by the algorithm 

after summing up the normalized 𝑚𝑖𝑛 & 𝑚𝑒𝑎𝑛 values of the data points at the next run. 

Since in Table 3.21 the 4𝑡ℎ pattern has the lowest 𝑠𝑢𝑚, the next run continues within 

the intervals that the 4𝑡ℎ pattern has. The process continues until reaching the 

termination criterion. The result is found after 10368 function evaluations at the 

point 𝑓(𝑥) = 0.0627. 

0 1 0 1 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 0 1 0 1 0 1 -1 0 0 1

0 1 0 1 0 1 0 1 -1 0 -1 0 0 1 0 1 0 1 0 1 0 1 -1 0 -1 0 0 1

0 1 -1 0 -1 0 0 1 0 1 -1 0 -1 0 0 1 -1 0 -1 0 0 1 0 1 -1 0 -1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 -1 0 -1 0 -1 0 0 1 0 1 0 1 0 1 -1 0 -1 0 -1 0 0 1

-1 0 -1 0 0 1 0 1 -1 0 0 1 -1 0 -1 0 0 1 -1 0 -1 0 0 1 -1 0 0 1

0 1 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 -1 0 -1 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 -1 0 0 1 0 1 -1 0 -1 0 0 1

0 1 -1 0 0 1 0 1 0 1 0 1 -1 0 0 1 -1 0 -1 0 0 1 0 1 -1 0 -1 0

0 1 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 -1 0 0 1 0 1 0 1 0 1 0 1

x12 x13 x14x6 x7 x8 x9 x10 x11x1 x2 x3 x4 x5
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Table 3.21 The rank of the promising patterns 𝑚 = 14 

 

 

Comparisons are done with Globex algorithm and Genetic Algorithm. The starting 

point for the Globex algorithm is given at the following table. 

Table 3.22 The starting point for Globex Algorithm 

 

Also, the starting step sizes for the variables are: 

Table 3.23 The starting step sizes for Globex Algorithm 

 

And, the constraints are given as: 

𝑥2 < 0 𝑎𝑛𝑑 (𝑥1 + 𝑥2) > 1  

Then, the Globex algorithm [52] converges to the point 𝑓(𝑥) = 11.097 after 25014 

function evaluations. 

Genetic Algorithm is also used with a population of points for initiating the procedure. 

For Rosenbrock function with 14 variables, while Genetic Algorithm has the same lower 

and upper bounds as the Cavus algorithm, it converges to the point 𝑓(𝑥) = 11.971 after 

19000 function evaluations and 94 generations. 

The results for those three algorithms are gathered in Table 3.24 and Table 3.25 for 

comparison: 

Table 3.24 The resultant variable values for Rosenbrock Function with 14 variables 

  

min mean sum

4
th
 pattern 0.108 0.000 0.108

10
th
 pattern 0.000 0.242 0.242

7
th
 pattern 0.121 0.374 0.495

2
nd

 pattern 0.267 0.496 0.763

1
st
 pattern 0.589 0.251 0.840

8
th
 pattern 0.476 0.498 0.974

9
th
 pattern 0.672 0.745 1.417

5
th
 pattern 0.803 0.741 1.545

6
th
 pattern 1.000 0.864 1.864

3
rd
 pattern 0.866 1.000 1.866

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

-1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2 -1.2 1.0 -1.2 1.0 -1.2 1.0 -1.2

dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx1 dx2 dx3 dx4 dx5 dx6 dx7

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Algorithm x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 f(x)

Cavus 1.0099 1.0050 0.9969 1.0049 0.9984 1.0038 0.9947 1.0091 0.9968 1.0044 0.9989 0.9995 0.9990 0.9932 0.063

Globex 0.6166 0.3834 0.1587 0.0355 0.0114 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0100 0.0001 11.097

Genetic 0.4225 0.1753 0.0277 0.0156 0.0229 0.0202 0.0301 0.0084 0.0309 0.0124 0.0092 0.0106 0.0059 0.0052 11.971

Exact values 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.000



79 
 

Table 3.25 The results for Rosenbrock Function with 14 variables 

 

 

As a result, the Cavus algorithm has the lowest function evaluations and the best 

convergence to the optima for the Rosenbrock function with 14 variables. 

These three algorithms with their 𝑓(𝑥) values and the number of function evaluations 

are tabulated with changing number of variables in the Table 3.26. To have a better 

understanding they are also presented with the graphs in Figure 3.24 and Figure 3.25. 

Indeed, it is shown that, the two targets (to have a better accuracy and less number 

of function evaluations) are reached by the Cavus algorithm. The accuracy of the Cavus 

algorithm is pretty good than other two algorithms for the increasing variable numbers 

for this test case. Even though, the inclination of the number of function evaluations has 

a tendency to increase progressively with the increasing number of variables, the Cavus 

algorithm has still better results than the other two algorithms. When compared with the 

Genetic Algorithm, this still saves 45% of the analyses and thus the required 

computational time. Correspondingly, the improvements may be done in future works. 

 

Table 3.26 Comparison of the algorithms with the changing variable numbers 

 

 

Algorithm f(x)
Function 

evaluations

Cavus 0.063 10368

Globex 11.097 25014

Genetic 11.971 19000

Algorithm f(x)
Function 

evaluations

Cavus 0.063 10368

Globex 11.097 25014

Genetic 11.971 19000

Cavus 0.015 2912

Globex 7.138 17662

Genetic 7.800 18000

Cavus 0.000 1776

Globex 4.169 12625

Genetic 2.882 15400

Cavus 0.000 132

Globex 0.146 4078

Genetic 0.008 8450

m = 14

m = 10

m = 7

m = 2
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Figure 3.24 Comparison of the algorithms for Rosenbrock function (Results) 

 

 

 

Figure 3.25 Comparison of the algorithms for Rosenbrock function (Function evaluations) 
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4. Design Cases 

 

4.1.  Aircraft Design 

 

Optimization problems are defined as gathering many challenging variables and 

obtaining the best solution space. Although one may not have any time constraint the 

selected search method directly affects the quality of the results. Meanwhile one 

technique may be successful for one type of problem whereas it may fail in another type 

of problem. Because of that, researchers try to develop a common tool that can adapt to 

different situations.  Especially for the complex projects executed between different 

scientist, or departments, or even different companies it becomes a must a unique tool 

controllable by everybody to catch the better solutions. 

Aircraft design is one of the challenging but indeed more pleasurable subject area for 

discovering the deep math and physics of life. Naturally profiting from the broad area of 

science, it is very convenient to be taken as an application model for multidisciplinary 

and multiobjective design optimization. 

Design optimization of air vehicles is a complex process with depending on many 

design variables and the highly non-linear physics models. Besides that, the optimization 

process of an air vehicle has relatively fewer local minimums with higher variable 

numbers while considering other kind of optimization problems which have many local 

gradient changes. An artificial intelligence technique is applied here to reduce divergence 

relative to well-known algorithms like Genetic Algorithm and Simulated Annealing, with 

the required number of runs for convergence as the objective for changing number of 

design variables.  

The motivation of this study has many bases. At first, an aircraft mission is a perfect 

closed loop process with the law of conservation of energy. Clearly, it has standard 

segments and each segment and its requirements – inputs and outputs – are well-

known. In other words, this closed loop system is more conservative than many 

statistical problems; and it is worth to use directed search methods for aircraft design. 

This means that, aircraft design should be handled in its own nature while using 

optimization algorithms. This extended area deserves to find out an optimization method 

that is special to its own characteristics. Mostly, researchers in aerospace use search 

techniques that need huge number of function evaluations; indeed there must be better 

ways to have an improvement.  

In addition to having a closed loop process feature, at the beginning of the design 

process researches may have huge number of data from wind tunnel tests as well as 

from flight tests at least for the conventional aircraft. All of these data with engineering 

sense of experienced engineers, which is inseparable throughout a design process, have 
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a great impact on all of the design phases. Learning from data, which is called as data 

mining, with the combination of engineering sense has very precious fine tuning effect on 

a design with knowledge based methods. Some of the complex interactions can also be 

estimated with relative magnitudes just from the data at hand at the beginning of the 

design process, which accelerates the calculations and force the results to converge to 

better values. With more philosophy, these complex but systematic machines, aircraft, 

with dependent and independent variables, with known interactions to each other in an 

optimization process can be improved with the algorithms which mimic pattern 

classification property of human intelligence, i.e. Artificial Intelligence (AI), for the early 

as well as ensuing stages of design. 

In this study, Probabilistic Neural Networks, which was introduced by [14], is 

employed in the observation part of the optimization algorithm for its success on 

classification and pattern recognition. 

For the completeness of the entire picture in the following sections aircraft design 

models are introduced for the use case demonstration of the Cavus algorithm, which 

have been developed in a previous study, [68]. 

 

4.1.1.  Conceptual design of an unmanned supersonic aircraft 

 

As a first design case, a multi-role unmanned supersonic aerial vehicle (UCAV) 

conceptual design optimization problem is addressed, which is also dealt with in detail in 

[68]. This aircraft type is selected because of its  

 challenging specifications,  

 property being good at dynamics and 

 capacity for multi role and varying missions. 

The aircraft shall be capable to act according to its role, maneuver, resist high 

maneuver loads, carry payload, drop payload, cruise at high altitudes and have long 

endurance without refuelling. It will autonomously locate its targets, navigate 

autonomously, but also be able to be flown by a remotely controlled pilot with a ground 

station system. 

It is planned to have a simple and fixed shape during the flight. In other words, 

except the control surfaces (flaps, ailerons, elevator and rudder) it shall not have any 

moving components (i.e., fixed swept wing and fixed tail configuration).  

The mission is composed of 14 segments: engine start and warm-up, taxi, take-off, 

climb, cruise-out, loiter, descent, dash-out, action, dash-in, climb, cruise-in, descent, 

landing-taxi and shutdown. The segment characteristics are described in details in the 

next section.  

It should be able to carry payload until the end of the flight if the mission is aborted. 

This payload will be carried externally under the wings. The detailed placement is not 

addressed in this work. It is assumed that they will be installed properly without affecting 

the static and dynamic stability of the unmanned supersonic aircraft.  
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The positions of the wings, horizontal and vertical tails, and landing gears with 

respect to the fuselage are calculated in the Aircraft Design Code prepared. The fuel will 

be carried internally in the wings; no external fuel tanks are planned. 

The engine sizing is automatically done in the code which gives its dimensions and its 

thrust. The calculations are based on a rubber engine with turbofan characteristics which 

has constant bypass ratio and specific fuel consumption. 

Landing gears are planned to be tricycle and retractable, and designed to find the 

dimensions according to the changing aircraft configurations. The placements are 

changed for different aircraft configurations with centre of gravity.  

Cost is another important parameter in aircraft design and it is taken as the objective 

function in this study. A subroutine in the code calculates the total acquisition cost. 

Proper mathematical models are selected and coded in separate subroutines as 

summarized in the next sections. The main program picks up values of some parameters 

from an input file and then does the calculations; afterwards gives results to an output 

file. While calculating, subroutines are called by the main program in an order assigned 

by the programmer, before. Throughout the program some parameters need to be 

updated, this is coped with calling the required subroutine in the concerning subroutine 

again.   

How the subroutines of the aircraft design part communicate with each other are 

shown by a flow chart in Figure 4.1. 

Propulsion System and Aerodynamics subroutines are called more frequently because 

of frequently updated variables like Mach number, thrust and induced drag. 

The detailed information about the conceptual design phases with equations, 

requirements, constraints and constants are given in the following sections. 

While calling the subroutines, design variables are carried thought the process. All the 

variables are tabulated in detail in the Table 4.1. 
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Figure 4.1 Flowchart of the Aircraft Design Algorithm 
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Table 4.1 Aircraft Design part inputs and outputs 

SUBROUTINES Inputs Outputs 

ISA 

(Atmospheric Properties) 
𝐻, 𝜌0 , 𝑔0 , 𝑎0 𝜌, 𝑎 

WING CONFIGURATION 𝐷𝑓𝑚𝑎𝑥
 , 𝛬𝑤 , 𝑏 , 𝐴𝑅 , 𝛤𝑤 , (𝑡 𝑐⁄ )𝑤 

𝛬𝐿𝐸  , 𝑐𝑟𝑓𝑤  ,𝜆𝑓𝑤 , 𝑡𝑐𝑓𝑤  ,𝜏𝑓𝑤 ,  

𝐴𝑅𝑤𝑒𝑡  ,𝜆 , 𝑤𝑓𝑚𝑎𝑥
 , (𝑡 𝑐⁄ )𝑡𝑤 ,  

(𝑡 𝑐⁄ )𝑟𝑤, 𝑆 , 𝑐𝑟  , 𝑐𝑡 , 

 y , c , x , 𝑆𝑛𝑒𝑡𝑤  , 𝑆𝑤𝑒𝑡𝑤  , 

( 𝐿 𝐷⁄ )𝑚𝑎𝑥 , 𝑉𝑓 , 𝑤𝑓𝑚𝑎𝑥𝑤
 , 𝑆𝑐𝑠𝑤 

FUSELAGE 
CONFIGURATION 

𝐷𝑓𝑚𝑎𝑥
 ,𝑊0 , 𝑤𝑓𝑚𝑎𝑥

 

ℎ𝑓𝑚𝑎𝑥
 , 𝐿𝑓  , 𝑙𝑁 , 𝑙𝐴 , 𝑙𝑀 , 

𝐴𝑚𝑎𝑥 , 𝐹𝑖𝑛𝑒𝑛𝑒𝑠𝑠𝑅𝑎𝑡𝑖𝑜, 
𝑉𝑜𝑙𝑢𝑚𝑒, 𝑆𝑤𝑒𝑡𝑓 

PROPULSION SYSTEM 𝑀 ,𝑊0 , 𝐵𝑃𝑅 , 𝑆𝐹𝐶 
𝑇, 𝑇𝑎𝑣 , 𝐿𝑒𝑛𝑔 , 𝐷𝑒𝑛𝑔 , 

𝑆𝐹𝐶𝑐 , 𝑇𝑐𝑟𝑢𝑖𝑠𝑒 

HORIZONTAL 
and 

VERTICAL TAIL 

𝐷𝑓𝑚𝑎𝑥
 , 𝐿𝑓   , 𝑏 , 𝑆 , 𝑤𝑓𝑚𝑎𝑥

 , 

c , 𝑙𝐴 ,  𝛬𝑤 , (𝑡 𝑐⁄ )𝑉𝑇  , 
(𝑡 𝑐⁄ )𝐻𝑇 , 𝛬𝑉𝑇 , 𝐴𝑅𝑉𝑇 , 𝐴𝑅𝐻𝑇 , 

𝜆𝑉𝑇 , 𝜆𝐻𝑇 , 𝛤𝑉𝑇 , 𝛤𝐻𝑇 , 𝑉𝑉𝑇 , 

𝑉𝐻𝑇 , 𝑙𝑉𝑇𝑐𝑜  , 𝑙𝐻𝑇𝑐𝑜 

𝑙𝑉𝑇 , 𝑙𝐻𝑇 , 𝛬𝐻𝑇 , 𝑆𝑉𝑇 , 𝑆𝐻𝑇 , 

ℎ𝑉𝑇 , 𝑐𝑟𝑉𝑇 , 𝑐𝑡𝑉𝑇 , VTc , VTz , 

  𝑐𝑟𝑓𝑉𝑇  ,𝜆𝑓𝑉𝑇 , (𝑡 𝑐⁄ )𝑟𝑉𝑇 , 

(𝑡 𝑐⁄ )𝑡𝑉𝑇 , (𝑡 𝑐⁄ )𝑓𝑉𝑇  ,𝜏𝑓𝑉𝑇 , 
𝑆𝑛𝑒𝑡𝑉𝑇  , 𝑆𝑤𝑒𝑡𝑉𝑇 , 𝑏𝐻𝑇 , 𝑐𝑟𝐻𝑇 , 

𝑐𝑡𝐻𝑇 , HTc  ,
HTy  , 

𝑤𝑓𝑚𝑎𝑥𝐻𝑇
 ,  𝑐𝑟𝑓𝐻𝑇

 ,𝜆𝑓𝐻𝑇 , 

(𝑡 𝑐⁄ )𝑟𝐻𝑇
 , (𝑡 𝑐⁄ )𝑡𝐻𝑇

 , (𝑡 𝑐⁄ )𝑓𝐻𝑇  ,  

𝜏𝑓𝐻𝑇 , 𝑆𝑛𝑒𝑡𝐻𝑇
 , 𝑆𝑤𝑒𝑡𝐻𝑇

 

LANDING GEARS 𝑊0 
𝐷𝑛𝑜𝑠𝑒𝑤ℎ𝑒𝑒𝑙  , 𝐷𝑚𝑎𝑖𝑛𝑤ℎ𝑒𝑒𝑙 , 𝐹𝑀 , 

𝐹𝑁  , 𝑤𝑛𝑜𝑠𝑒𝑤ℎ𝑒𝑒𝑙  , 𝑤𝑚𝑎𝑖𝑛𝑤ℎ𝑒𝑒𝑙 

AERODYNAMICS 

𝐻 , 𝜌 , 𝑎 , 𝑉𝑐𝑟𝑢𝑖𝑠𝑒 ,𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑  , 

 𝛬𝐿𝐸  ,  𝛬𝑤 ,𝑊0 , 𝐿𝑓  , 𝐷𝑓𝑚𝑎𝑥
 , 

𝐴𝑚𝑎𝑥 , 𝑆𝑤𝑒𝑡𝑓  , 𝑏 , 𝑆 , 𝐴𝑅 , 

 c , 𝑆𝑤𝑒𝑡𝑤  , 𝑉𝑉𝑇  , 𝑉𝐻𝑇 , 𝑙𝑉𝑇 ,  

𝑙𝐻𝑇 , 𝑆𝑉𝑇 , 𝑆𝐻𝑇  , 𝑆𝑤𝑒𝑡𝑉𝑇 ,  

 𝑆𝑤𝑒𝑡𝐻𝑇 , VTc , HTc  

𝜌𝑐𝑟𝑢𝑖𝑠𝑒 , 𝑎𝑐𝑟𝑢𝑖𝑠𝑒 , #𝑏𝑜𝑚_𝑏𝑖𝑔 , 

#𝑏𝑜𝑚𝑏_𝑎𝑖𝑚9 ,  𝑀𝑐𝑟𝑢𝑖𝑠𝑒 , 𝑞𝑐𝑟𝑢𝑖𝑠𝑒  , 

𝛽 , 𝑅𝑒𝑓𝑢𝑠 , 𝑅𝑒𝑐𝑢𝑡𝑜𝑓𝑓.𝑓𝑢𝑠 , 
𝐶𝑓.𝑓𝑢𝑠 ,  𝐹𝐹𝑓𝑢𝑠 , 𝑄𝑓𝑢𝑠 , 𝐶𝐷0𝑓𝑢𝑠

 , 

𝑅𝑒𝑤 , 𝑅𝑒𝑐𝑢𝑡𝑜𝑓𝑓.𝑤  , 𝐶𝑓.𝑤 , 𝐹𝐹𝑤 , 

𝑄𝑤,  𝐶𝐷0𝑤
 , 𝑅𝑒𝐻𝑇 , 𝑅𝑒𝑐𝑢𝑡𝑜𝑓𝑓.𝐻𝑇 ,  

𝐶𝑓.𝐻𝑇 ,  𝐹𝐹𝐻𝑇 , 𝑄𝐻𝑇 ,  𝐶𝐷0𝐻𝑇
 , 

𝑅𝑒𝑉𝑇 , 𝑅𝑒𝑐𝑢𝑡𝑜𝑓𝑓.𝑉𝑇  , 𝐶𝑓.𝑉𝑇 ,  𝐹𝐹𝑉𝑇 ,  

𝑄𝑉𝑇 ,  𝐶𝐷0𝑉𝑇
 , (𝐷 𝑞⁄ )𝑚𝑖𝑠𝑐 , 

 𝐶𝐷0𝑚𝑖𝑠𝑐
 , (𝐷 𝑞⁄ )𝑤𝑎𝑣𝑒𝑠ℎ , 

(𝐷 𝑞⁄ )𝑤𝑎𝑣𝑒  ,  𝐶𝐷0𝑤𝑎𝑣𝑒
 , 

 𝐶𝐷0𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑖𝑐
 ,  𝐶𝐷0𝐿𝑒𝑎𝑘𝑎𝑔𝑒

 , 

 𝐶𝐷0𝑡𝑜𝑡𝑎𝑙𝑐𝑙𝑒𝑎𝑛
 ,  𝐶𝐷0𝑡𝑜𝑡𝑎𝑙

 , 𝑒 , 𝐾 , 

𝐾𝑐𝑙𝑒𝑎𝑛  , 𝐺𝑟𝑜𝑢𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡, 
𝐶𝐿𝑚𝑎𝑥𝑐𝑙𝑒𝑎𝑛

 , 𝐶𝐿𝑎𝑐𝑚𝑎𝑥𝑇𝑂
 ,  

𝐶𝐿𝑚𝑎𝑥𝑙𝑎𝑛𝑑𝑖𝑛𝑔
 ,  𝐶𝐷0𝑐
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Table 4.1 Aircraft Design part inputs and outputs (continued) 

SUBROUTINES Inputs Outputs 

WEIGHT and STABILITY 

𝑛𝑚𝑎𝑥 , 𝑆 , 𝐴𝑅 , (𝑡 𝑐⁄ )𝑟𝑤 ,𝜆 , 
𝑉𝐻𝑇 , 𝛬𝐿𝐸  , 𝛬𝑤 , 𝐴𝑅𝑉𝑇 ,𝜆𝑉𝑇 , 

𝛬𝐻𝑇 , 𝛬𝑉𝑇 , 𝑀 ,𝑊0 , 𝑇, 𝑇𝑎𝑣 , 
𝐵𝑃𝑅 , 𝑆𝑐𝑠𝑤  , 𝑤𝑓𝑚𝑎𝑥𝐻𝑇

 , 

𝐷𝑓𝑚𝑎𝑥
 , ℎ𝑓𝑚𝑎𝑥

 , 𝑏𝐻𝑇 , 𝑆𝑉𝑇  , 

𝑆𝐻𝑇 , 𝐿𝑓 , 𝑙𝑉𝑇 , 𝑙𝐻𝑇 , 

𝐷𝑛𝑜𝑠𝑒𝑤ℎ𝑒𝑒𝑙  , 𝐷𝑚𝑎𝑖𝑛𝑤ℎ𝑒𝑒𝑙  , 

 
HTc  , VTc  , 𝑒 ,𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑  , 

𝑤𝑓𝑚𝑎𝑥𝑤
 , 𝐿𝑒𝑛𝑔 

𝑁𝑧 ,𝑊𝑤𝑖𝑛𝑔  ,𝑊ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑡𝑎𝑖𝑙  , 

𝑊𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑡𝑎𝑖𝑙  ,𝑊𝑓𝑢𝑠𝑒𝑙𝑎𝑔𝑒  , 

𝑊𝑚𝑎𝑖𝑛𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑔𝑒𝑎𝑟  , 

𝑊𝑛𝑜𝑠𝑒𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑔𝑒𝑎𝑟  ,𝑊𝑒𝑛𝑔𝑖𝑛𝑒  , 

𝑊𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠  ,𝑊𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠  ,𝑊𝑒𝑙𝑠𝑒  , 
𝑥𝑐𝑔.𝑒𝑛𝑔𝑖𝑛𝑒  , 𝑥𝑐𝑔.𝑓𝑢𝑠 , 𝑥𝑐𝑔.𝑒𝑙𝑠𝑒  , 

𝑥𝑐𝑔.𝐻𝑇 , 𝑥𝑐𝑔.𝑉𝑇 ,  𝑥𝑐𝑔.𝑤𝑖𝑛𝑔  , 

𝑥𝑐𝑔.𝑓𝑢𝑒𝑙  , 𝑥𝑐𝑔.𝑝𝑎𝑦𝑙𝑜𝑎𝑑  ,𝑀𝑐𝑔 ,  

𝑊𝑐𝑔  ,  𝑥𝑐𝑔 ,  𝑥𝑐𝑔.𝑚𝑔𝑒𝑎𝑟  , 

𝑥𝑐𝑔.𝑛𝑔𝑒𝑎𝑟  , 𝑥𝑎𝑐𝑤 ,  
𝑆𝑡𝑎𝑡𝑖𝑐_𝑚𝑎𝑟𝑔𝑖𝑛,𝑊𝑒 , 𝑥𝑛 

INITIAL SIZING 

𝑆𝐹𝐶,  𝑆𝐹𝐶𝑐 , ( 𝐿 𝐷⁄ )𝑚𝑎𝑥 , 

𝑤𝑓𝑚𝑎𝑥𝑤
 ,𝑊𝑒 ,𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑  , 

𝑅𝑐𝑟   , 𝑉𝑐𝑟𝑢𝑖𝑠𝑒 , 𝐸𝑙𝑡𝑟  , 𝑉𝑚𝑎𝑥 

𝑊0 ,𝑊𝑓  ,𝑊1 𝑊0⁄  ,𝑊2 𝑊1⁄  , 

𝑊3 𝑊2⁄  ,𝑊4 𝑊3⁄  ,𝑊5 𝑊4⁄  , 

( 𝐿 𝐷⁄ )𝑐𝑟  , ( 𝐿 𝐷⁄ )𝑙𝑡𝑟  ,𝑊6 𝑊5⁄  , 

𝑊7 𝑊6⁄  , 𝑅𝑑  ,  ( 𝐿 𝐷⁄ )𝑑  , 

𝑊8 𝑊7⁄  ,𝑊𝑓𝑢𝑒𝑙1
 ,𝑊9 𝑊8⁄  , 

𝑊𝑓𝑐
 ,𝑊9 ,𝑊10 𝑊9⁄  , 

𝑊11 𝑊10⁄  ,𝑊12 𝑊11⁄  , 

𝑊13 𝑊12⁄  ,𝑊14 𝑊13⁄  , 

𝑊15 𝑊14⁄  ,𝑊15 𝑊0⁄  ,𝑊𝑓 𝑊0⁄  , 

𝑊0𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠𝑖𝑧𝑖𝑛𝑔
  ,  𝑊3 

PERFORMANCE 

𝑊0 , 𝑆, 𝐴𝑅, 𝐶𝐿𝑚𝑎𝑥𝑐𝑙𝑒𝑎𝑛
 ,  

𝐶𝐿𝑎𝑐𝑚𝑎𝑥𝑇𝑂
 , 𝐶𝐿𝑚𝑎𝑥𝑙𝑎𝑛𝑑𝑖𝑛𝑔

 ,  𝐶𝐷0𝑐
,  

 𝐶𝐷0𝑡𝑜𝑡𝑎𝑙
 , 𝐾 , 𝑆𝐹𝐶 , 𝑆𝐹𝐶𝑐 , 

( 𝐿 𝐷⁄ )𝑚𝑎𝑥,  𝑊𝑓𝑢𝑒𝑙1
 ,𝑊𝑓  , 

𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑  ,𝑊𝑒 ,𝑊9 , 𝜌0 , 𝜌 , 

𝑒 ,𝑀 ,𝑊15 𝑊14⁄  ,𝑊15 𝑊0⁄  ,  

 𝑊3 , 𝐻 ,𝑊10 𝑊9⁄  ,𝑊𝑓𝑐    

(𝑊 𝑆⁄ )𝑇𝑂 , 𝑇 𝑊⁄  , 𝑇 , 𝑠𝑇𝑂 , 

(𝑊 𝑆⁄ )𝐿𝑎𝑛𝑑𝑖𝑛𝑔 , 𝑠𝐿 , ( 𝐿 𝐷⁄ )𝑚𝑎𝑥𝑠 , 

𝑅𝑂𝐶𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥 , 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑐𝑒𝑖𝑙𝑖𝑛𝑔,  𝑇𝑅𝑂𝐶 , 𝑅𝑂𝐶 , 

 √𝐶𝐿 𝐶𝐷⁄  
𝑚𝑎𝑥

, 𝑅𝐴𝑁𝐺𝐸 ,  

𝑉𝑚𝑎𝑥 , 𝑀 ,  𝑀𝑚𝑎𝑥 , 𝐸𝑚𝑎𝑥,  

𝑉𝑐𝑜𝑟𝑛𝑒𝑟  , 𝑛𝑚𝑎𝑥 , 𝑅𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥 , 

𝑅𝑚𝑖𝑛𝑝𝑢𝑙𝑙−𝑢𝑝 ,  𝜔𝑚𝑎𝑥𝑝𝑢𝑙𝑙−𝑢𝑝 ,  

𝑅𝑚𝑖𝑛𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 ,  𝜔𝑚𝑎𝑥𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 , 

𝑞𝑐 , ( 𝐿 𝐷⁄ )𝑐 , 𝑇𝑟𝑐 , 𝑑 , 𝑥𝑥  

STRUCTURAL LOAD 
𝐻 ,  𝐶𝐷0𝑐

 , 𝑇 , 𝐾 , 

𝐶𝐿𝑚𝑎𝑥𝑐𝑙𝑒𝑎𝑛
 ,𝑊9 , 𝑆 , 𝜌 

𝑉𝑚𝑎𝑛𝑢𝑒𝑣𝑒𝑟  , 𝐾𝑝 , 𝑉𝑠𝑡𝑎𝑙𝑙𝑐  , 

𝐶𝐿𝑚𝑎𝑥𝑐
 , 𝑛𝑚𝑎𝑥  , 𝑞𝑐 

COSTS 

𝑊𝑒 ,𝑊𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 ,𝑀 , 𝑉𝑚𝑎𝑥 , 

 𝑇 , 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦, 𝐹𝑇𝐴 , 𝑇𝑖  , 

𝑅𝑒 , 𝑅𝑡 , 𝑅𝑞 , 𝑅𝑚 

𝐻𝑒 , 𝐻𝑡 , 𝐻𝑞 , 𝐻𝑚 , 

𝐶𝑜𝑠𝑡𝐷 , 𝐶𝑜𝑠𝑡𝐹 , 𝐶𝑜𝑠𝑡𝑀, 

 𝐶𝑜𝑠𝑡𝐸 , 𝐶𝑜𝑠𝑡𝐴, 𝐶𝑂𝑆𝑇 
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4.1.2.  Mission Profile 

 

Figure 4.2 illustrates the planned mission profile for the unmanned supersonic 

aircraft. 

 

Figure 4.2 Mission segments 

 

Each segment can be described as: 

 

0-1  : Engine Start and Warm-up 

1-2  : Taxi 

2-3  : Take-off 

3-4  : Climb 

4-5  : Cruise-out 

5-6  : Loiter 

6-7  : Descent 

7-8  : Dash-out 

8-10 : Action 

10-11 : Dash-in 

11-12 : Climb 

12-13 : Cruise-in 

13-14 : Descent 

14-15 : Landing, Taxi and Shutdown 

 

This is a typical mission profile for UCAVs including all the required segments [2], 

[84].  

In action, the unmanned supersonic aircraft is designed for air-to-air and air-to-

ground tasks which include kinds of maneuvers that result in high 𝑔 forces.  

The details of the mission segments may be understood better in the following 

sections. 

 

 

 1       2       3 

7    8  9  10  11 

  14         15 

12           13   4             5 

6 
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4.1.3.  Initial Sizing 

 

Airplanes must normally meet very stringent range, endurance, speed and cruise 

speed objectives while carrying a given payload. It is important, to be able to predict the 

minimum airplane and fuel weights needed to accomplish a given mission [84]. 

Besides, a typical unmanned supersonic aircraft mission includes an action segment 

consisting of either certain number of turns or a certain number of minutes at maximum 

power, a payload drop, a cruise back and a loiter. The payload drop refers to the firing of 

the required equipment also [2]. 

In this design case, aerial refuelling and external fuel tanks are not considered and it 

is assumed that the fuel consumed is only which the wings can hold. 

While estimating the mission fuel fractions, reserved and trapped fuel as required by 

civil or military design specifications are taken into consideration by 6% percentage of the 

used fuel at the end of the mission. 

Under these assumptions, the fuel fractions are found for each segment with the help 

of the given tables and the equations in referenced design books [2], [84]. 

Under the light of [2], lift to drag ratios for loiter and cruise were decided for 

maximum performance. To maximize loiter efficiency it is assumed that the aircraft will 

be able to fly approximately with the velocity that gives maximum lift to drag ratio, 𝐿/𝐷. 

Similarly, it is able to fly with the velocity that requires a 𝐿/𝐷, which is 86.6% of the 

maximum 𝐿/𝐷 for the most efficient cruise [2]: 

 

(
𝐿

𝐷
)
𝑐𝑟

= 0.866 (
𝐿

𝐷
)
𝑚𝑎𝑥

 

(4.1) 

and 

  

(
𝐿

𝐷
)
𝑙𝑡𝑟

= (
𝐿

𝐷
)
𝑚𝑎𝑥

 

(4.2) 

 

The total fuel fraction excepting action segment is calculated with: 

 

𝑊𝑓

𝑊0
= 1.06 (1 −

𝑊15

𝑊0
) 

(4.3) 

For the action segment the available fuel is found by considering the maximum fuel 

capacity of the wings and the required fuel for other segments. And also, 6% more fuel 

for reserved and trapped fuel is also taken into account. 
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Then, the fuel burned during the action segment becomes: 

   

𝑊𝑓𝑐 =
𝑊𝑓max𝑤 −𝑊𝑓

1.06
 

(4.4) 

The payload is carried externally under the wings. Two kinds of weapons were 

selected for the mission: a weapon below 2000 lb and Aim9 (Sidewinder) (200 lb). 

However, it was planned that there is a time at which all the payload would have been 

dropped, point 9. One other assumption was made for the segment 8-9 as at payload 

drop the fuel consumed is little compared to other segments [84]. 

Then, 𝑊0 is found by iterating the following equation: 

 

𝑊0 =
𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑

(1 −
𝑊𝑓

𝑊0
−

𝑊𝑒

𝑊0
)

 

(4.5) 

 

4.1.4.  Wing Configuration 

 

While configuring the wing, the first decision is the selection of the airfoil. The airfoil 

selection should be made carefully because the airfoil affects the cruise speed, takeoff 

and landing distances, stall speed, and overall aerodynamic efficiency during all phases 

of flight. In supersonic flow, the aircraft encounter bow shocks, which results in extra 

drag, also. To prevent this, an airfoil which has a sharp or nearly sharp leading edge 

should be used and/or wing sweep can be given [2]. 

The competitor aircraft like F-16 and F111 use NACA six-digit series airfoils [85]. 

These airfoils have lower drag at higher speeds compared to four or five digits series. 

Among these airfoils 𝑁𝐴𝐶𝐴 64𝐴210 was chosen for the unmanned supersonic aircraft, 

whose data was taken from [84], and was illustrated in Figure 4.3. 

 

 

Figure 4.3 NACA 64A210 

 

It is proposed that the airfoil can be chosen from an airfoil database which can be 

inserted to program and may be left as a future work. In this work, it is assumed that 

there is an airfoil which can meet the calculated performance parameters. For that 

reason, in the program some checks are made by the programmer in order to stay in the 

feasible region. So, 𝑁𝐴𝐶𝐴 64𝐴210 may also be considered as a sample for this purpose. 



90 
 

Another concern was the leading edge sweep for this supersonic aircraft in order to 

reduce the drag. The leading edge sweep is calculated for straight trailing edge as in 

Figure 4.4 from [2]. 

It is assumed that the length of fuselage-wing intersection on the fuselage width is: 

 𝑤𝑓 𝑚𝑎𝑥 = 0.5𝐷𝑓 𝑚𝑎𝑥 

(4.6) 

So that, in order to be able to get the desired intersection length, the wing position 

on the fuselage was determined as above the centre line of the fuselage, which means a 

high wing configuration.  

And the control surface area is calculated according to the competitor aircraft as: 

𝑆𝑐𝑠𝑤 = 0.1𝑆 

(4.7) 

Fuel capacity of the wing is found from Figure 4.4 [84] [86]: 

  

𝑉𝐹𝑢𝑒𝑙 𝑡𝑎𝑛𝑘 𝑤 = 0.54
𝑆2

𝑏
(
𝑡

𝑐
)
𝑟

1 + 𝜆√𝜏 + 𝜆2𝜏

(1 + 𝜆)2
 

(4.8) 

 

Figure 4.4 Approximation for integral fuel tank volume, available in a linear lofted wing [84] [86] 

From [2] fuel density is taken as 0.78 𝑘𝑔/𝑙𝑡 (= 780 𝑘𝑔/𝑚3). Then, the total fuel mass 

capacity of the wing is found with:  

 

𝑊𝑓max𝑤 = 780 𝑉𝐹𝑢𝑒𝑙 𝑡𝑎𝑛𝑘 𝑤 

(4.9) 

t 

c 

b 

ct 

cr 

section 

integral 

tank 



91 
 

4.1.5.  Fuselage Configuration 

 

 

The fuselage is designed to have approximately a circular cross section, to include the 

engine and also all the instruments that are needed. 

The fuselage is composed of a nose, mid-section and aft section as illustrated in 

Figure 4.5. 

 

Figure 4.5 Fuselage sections [84] 

 
 

Where, 

𝜆𝑁 = 1.75𝐷𝑓 𝑚𝑎𝑥 

(4.10) 

 

𝜆𝑀 = 𝐿𝑓 − 𝜆𝑁 − 𝜆𝐴 

(4.11) 

 

𝜆𝐴 = 2.75𝐷𝑓 𝑚𝑎𝑥 

(4.12) 

 

For a fuselage without a circular mid-section ( finenessratio =  Lf Dfmax
⁄ ≤  4.5 ) : 

  

𝑉𝑜𝑙𝑢𝑚𝑒 =
𝜋

4
𝐷𝑓 𝑚𝑎𝑥

2𝐿𝑓 (0.50 + 0.135
𝜆𝑁

𝐿𝑓
) 

(4.13) 

The fuselage is configured more in detail while adding other components of the 

aircraft. They are mentioned in the next sections. 

lN lM lA 
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4.1.6.  Propulsion System 

 

 
The engine inlet was planned to be on the nose of the fuselage as illustrated in Figure 

4.6 [2]. It is designed as, the optimized unmanned supersonic aircraft only one engine 

mounted in the fuselage to use. So as, all the related equipment will be covered by the 

fuselage, also. And it is expected that, the effect of engine weight to the stability of the 

unmanned supersonic aircraft while maneuvering is minimized with this basic 

configuration. Further, it is possible to integrate S-shape inlet duct for stealth. 

 

 

 

 
Figure 4.6 Inlet locations - buried engines (Nose) [2] 

 

 

The thrust to weight ratio directly affects the performance of the aircraft. Since, 

throughout the mission the fuel is consumed so that weight changes, and thrust to 

weight ratio is also changing. 

Specific fuel consumption is another point that should be concerned. While flying with 

maximum thrust the specific fuel consumption is calculated as [2] with 20% reduction for 

next-generation engines:  

 

𝑆𝐹𝐶max  𝑇 = 0.8[60𝑒−0.12𝐵𝑃𝑅] = 𝑆𝐹𝐶𝑐 

(4.14) 

   

For other mission segments, 𝑆𝐹𝐶 is taken as constant and equal 0.64 𝑚𝑔/𝑁𝑠 as 

competitors’ engines have, approximately. 

For the length and the diameter of the engine the equations from [2] is used with 

including 20% reduction for next-generation engines. 
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4.1.7.  Horizontal and Vertical Tail Configuration 

 

 

Tails provide for trim, stability and control. Especially, vertical tail plays a key role in 

spin recovery. And, these efficiencies can be optimized with the tail configuration. The 

conventional tail was selected for the unmanned supersonic aircraft because of its 

simplicity, light weight and adequate stability and control [2]. 

 

Figure 4.7 Conventional tail [2] 

 
The airfoil of the unmanned supersonic aircraft’s tail should be capable of 

maneuvering in supersonic conditions. For that reason, the airfoil proposed for the wings, 

𝑁𝐴𝐶𝐴 64𝐴210, is selected for the vertical and horizontal tail of the unmanned supersonic 

aircraft.  

Vertical tail sweep angle, Λ𝑉𝑇 , was selected as 45𝜊 for the initial value and is taken as 

a design variable changing between 35𝜊 to 55𝜊. 

Horizontal tail sweep angle, Λ𝐻𝑇 , is thought as 5𝜊 more than the wing sweep, as usual 

for other aircraft. It was planned that this selection makes the tail stall after the wing, 

and also provides the tail with a higher Critical Mach Number than the wing, which avoids 

loss of elevator effectiveness due to shock formation [2]. 

Like the wing dihedral, the vertical and the horizontal tail dihedrals are taken as 𝑧𝑒𝑟𝑜, 

initially. 

While optimizing the unmanned supersonic aircraft, one of the important variables is 

changing the placements of the vertical and the horizontal tails. 

Stability of the aircraft is also affected by the tail because of the lift it produces, its 

weight and the tail moment arm measured from the center of gravity. However, running 

the design code with different moment arm values showed that these moment arms 

really affect the results. Hence, these proportions are also selected as the design 

variables. As a result tail moment arms are calculated as:  

 

𝑙𝑉𝑇 = 𝑙𝑉𝑇𝑐𝑜𝐿𝑓 

(4.15) 

     

𝑙𝐻𝑇 = 𝑙𝐻𝑇𝑐𝑜𝐿𝑓 

(4.16) 

Other variables of tails are calculated depending on the equations at [2], [84], [86], 

[87]. 
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4.1.8.  Landing Gears 

 

 
For the supersonic unmanned aerial vehicle, retractable tricycle landing gear 

configuration was selected. Assuming that, nose landing gear carries 10% and main 

wheels carry 90% of static load of the unmanned supersonic aircraft: 

 

𝐹𝑁 = 0.10𝑊0 

(4.17) 

     

𝐹𝑀 = 0.90 𝑊0 

(4.18) 

 

The placement of the wheels is described in section 4.1.10. 

 

4.1.9.  Aerodynamics 

 

 

The airfoil of the aircraft is planned to be selected from a database as stated. It is 

assumed that the required lift to drag ratio during the mission can be met. However, in 

order to be stay in the feasible regions some properties (like lift coefficient) are also 

calculated for supersonic conditions. Though, in the program some checks are able to be 

done, and these checks serve the programmer to be able to decide on the limiting values 

of the constraints at the optimization part. The flexibility of the airfoil also eases the 

results to spread on a wide region. The used basic aerodynamic equations are taken from 

[2], [84], [87] and are not needed to be given here in detail.  

One of the challenging parameters for the UCAV is maximum velocity, 𝑉𝑚𝑎𝑥, and for a 

given thrust-to-weight ratio it is directly proportional to √𝑊 𝑆⁄ . With increasing wing 

loading, the maximum velocity also increases, accordingly the stalling speed increases, 

𝑉𝑠𝑡𝑎𝑙𝑙, which is undesirable. The solution to this problem is increasing 𝐶𝐿𝑚𝑎𝑥
 sufficiently 

that; in spite of the large 𝑊 𝑆⁄ , 𝑉𝑠𝑡𝑎𝑙𝑙 will be acceptable. Thus, to obtain the sufficient 

increase in 𝐶𝐿𝑚𝑎𝑥
 high-lift devices are used which make efficient high-speed flight possible 

[87]. For that reason, Fowler-type triple slotted flap was chosen in contrast to its 

complexity and high cost. Triple slotted flap is illustrated in Figure 4.8 [2]. 

 

 

 

Figure 4.8 Triple slotted flap [2] 
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Ground effect is calculated for one meter above the ground [87]: 

  

𝐺 =
(16ℎ/𝑏)2

1 + (16ℎ/𝑏)2
 

(4.19) 

The control surface limits and the rate limits are listed as for F-16 aircraft [88] in 

Table 4.2: 

Table 4.2 F-16 Control Surface Actuator Models [88] 

 
Deflection Limit Rate Limit Time const. 

Elevator ±25.0° 60°/s 0.0495 s lag 

Ailerons ±21.5° 80°/s 0.0495 s lag 

Rudder ±30.0° 120°/s 0.0495 s lag 

 

 

4.1.10. Weight and Stability 

 
In conceptual design, it is common to use statistical data from existing aircraft with 

curve fitting to form empirical weight equations as used in [39]. Because the data of 

existing UCAV configurations are not open, empirical equations and parameters were 

used from the open resources. Accordingly, the weight and stability equations were taken 

from references [2], [84], [87]. 

Assuming the main wheels carry 90% and the nose wheel carries 10% of static load of 

the unmanned supersonic aircraft and matching the centre of gravities of the wing and 

the main wheels: 

 

   

𝑥𝑐𝑔.𝑚𝑔𝑒𝑎𝑟𝑠 = 𝑥𝑐𝑔.𝑤𝑖𝑛𝑔 
(4.20) 

    

Then, locating the nose wheel accordingly: 

 

 

𝑥𝑐𝑔.𝑛𝑔𝑒𝑎𝑟𝑠 = 𝑥𝑐𝑔1 − [9 𝑥𝑐𝑔.𝑚𝑔𝑒𝑎𝑟𝑠 − 𝑥𝑐𝑔1 ] 
(4.21) 
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Figure 4.9 Centre of gravity-exaggerated views [87] 

 

The resultant centre of gravity location of the unmanned supersonic aircraft is 

updated after adding landing gear values.  

Then the empty weight of the unmanned supersonic aircraft: 

 

𝑊𝑒 = 𝑊𝑐𝑔 −𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑 − 𝑊𝑓max𝑤 

(4.22) 

   

 

Static Margin 

Static margin of a supersonic aircraft is usually changing between −5% and 5%; 

besides, new multi role supersonic aircraft have even lower static margins. Since, the 

static margin is one of the important parameter for stability and control it was inserted as 

a constraint to the code. This is calculated as: 

   

𝑆𝑡𝑎𝑡𝑖𝑐 𝑚𝑎𝑟𝑔𝑖𝑛 =
𝑥𝑛 − 𝑥̅

𝑐̅
 

(4.23) 

 

4.1.11. Performance 

 

 
The performance calculations were made from references [2], [84], [87]. 

Takeoff wing loading: 

   

(
𝑊

𝑆
)
𝑇𝑂

=
𝑊0

𝑆
 

(4.24) 

xcg.wing 

xcg.fuel 

  xcg.tails 

xcg xcg1 

xcg.eng     

FM 

xcg.fus 

xcg.else 

FN 
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Takeoff distance 

𝑆𝑇𝑂 =
37.5 (

𝑊
𝑆 )

𝑇𝑂

𝜎 𝐶𝐿𝑚𝑎𝑥𝑇𝑂
(
𝑇
𝑊)

𝑇𝑂

 

(4.25) 

And, takeoff distance was selected as one of the constraints in the optimization part. 

Wing loading at landing: 

  

(
𝑊

𝑆
)
𝐿𝑎𝑛𝑑𝑖𝑛𝑔

= (
𝑊

𝑆
)
𝑇𝑂

𝑊15

𝑊0

1

𝑊15 𝑊14⁄
 

(4.26) 

Landing distance 

  

𝑠𝐿 = 5(
𝑊

𝑆
)
𝐿𝑎𝑛𝑑𝑖𝑛𝑔

(
1

𝜎 𝐶𝐿𝑚𝑎𝑥𝐿𝑎𝑛𝑑𝑖𝑛𝑔

) + 𝑆𝑎 

(4.27) 

Landing distance was also selected as one of the constraints in the optimization part. 

Where,   

 𝑆𝑎 = 137 𝑚  was given by [2] for seven degree glideslope, which are related with 

obstacle clearance and the rate of descent, therefore approximated semi-empirically. 

 

The maximum rate of climb, 𝑹𝑶𝑪𝒎𝒂𝒙 

  

𝑅𝑂𝐶𝑚𝑎𝑥 = [
(𝑊 𝑆⁄ )𝑍

3𝜌∞𝐶𝐷0

]

1 2⁄

(
𝑇

𝑊
)
3 2⁄

[1 −
𝑍

6
−

3

2(𝑇 𝑊⁄ )2(𝐿 𝐷⁄ )𝑚𝑎𝑥
2 𝑍

] 

(4.28) 

Maximum ceiling  

Maximum ceiling is found with a control loop and caught when 𝑅𝑂𝐶 equals 𝑧𝑒𝑟𝑜. 

Correspondingly, maximum ceiling was also inserted in the constraints. 

Range 

𝑅𝐴𝑁𝐺𝐸 =
2

𝑆𝐹𝐶
√

2

𝜌∞𝑆

√𝐶𝐿

𝐶𝐷
 √𝑊𝑖 −√𝑊𝑖+1  

(4.29) 
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Maximum speed is calculated at 40000 ft 

𝑉𝑚𝑎𝑥 =

{
 

 [(𝑇𝐴)𝑚𝑎𝑥 𝑊⁄ ](𝑊 𝑆⁄ ) + (𝑊 𝑆⁄ )√[(𝑇𝐴)𝑚𝑎𝑥 𝑊⁄ ]2 − 4𝐶𝐷0
𝐾

𝜌∞𝐶𝐷0

}
 

 
1 2⁄

 

(4.30) 

Endurance 

𝐸 =
1

𝑆𝐹𝐶

𝐿

𝐷
𝑙𝑛

𝑊𝑖

𝑊𝑖+1
 

(4.31) 

Corner Velocity 

In order to get the minimum instantaneous turn radius and the maximum 

instantaneous turn rate the unmanned supersonic aircraft should fly with the corner 

velocity, which is used while calculating maneuver radiuses and rates below:  

 

𝑉𝑐𝑜𝑟𝑛𝑒𝑟 = √
2𝑛𝑚𝑎𝑥

𝜌∞𝐶𝐿𝑚𝑎𝑥

𝑊

𝑆
 

(4.32) 

Minimum turn radius (at sustained level turn) 

 

𝑅𝑚𝑖𝑛 =
4𝐾(𝑊 𝑆⁄ )

𝑔𝜌∞(𝑇 𝑊⁄ )√1 − 4𝐾𝐶𝐷0
(𝑇 𝑊⁄ )2⁄

 

(4.33) 

Maximum turn rate (at sustained level turn) 

 

𝜔𝑚𝑎𝑥 = 𝑞√
𝜌∞

𝑊 𝑆⁄
[
𝑇 𝑊⁄

2𝐾
− (

𝐶𝐷0

𝐾
)

1 2⁄

] 

(4.34) 

Instantaneous turn radius (at pull up maneuver) 

 

𝑅𝑚𝑖𝑛𝑝𝑢𝑙𝑙−𝑢𝑝 =
𝑉∞

2

𝑔(𝑛 − 1)
 

(4.35) 
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Instantaneous turn rate (at pull up maneuver) 

 

 𝜔𝑚𝑎𝑥 𝑝𝑢𝑙𝑙−𝑢𝑝 =
𝑔(𝑛−1)

𝑉∞
 

(4.36) 

Instantaneous turn radius (at pull down maneuver) 

 

𝑅𝑚𝑖𝑛 𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 =
𝑉∞

2

𝑔(𝑛 + 1)
 

(4.37) 

 

Instantaneous turn rate (at pull down maneuver) 

 

𝜔𝑚𝑎𝑥 𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 =
𝑔(𝑛 + 1)

𝑉∞
 

(4.38) 

 

Then, the action time for known fuel weight 

 

𝑑 =
𝑊𝑓𝑐

𝑆𝐹𝐶 𝑇
 

(4.39) 

And, the number of complete turns 

 

𝑥𝑥 =
𝑑𝜔

2𝜋
 

(4.40) 

 

In the calculations it was assumed that cruise occurs at 40000 𝑓𝑡 and the action 

segment at 15000 𝑓𝑡. The atmospheric properties at these altitudes is obtained by calling 

the International Standard Atmosphere (ISA) subroutine, prepared with well-known 

equations which were not needed to deal in this study. 
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4.1.12. Structural Load 

 

 
It is difficult to provide a complete structural analysis at the conceptual design stage. 

In spite of this, some structural load parameters are calculated in order to be within 

feasible structural limits.  

The calculations are made within light of references [2], [87]. 

One of the parameters is maneuver speed defined as the maximum speed at which 

the control items can fully be deflected without damaging either the airframe or the 

controls themselves [2].  

 

𝑉𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟 = 𝑉𝑠𝑡𝑎𝑙𝑙 + 𝐾𝑝(𝑉𝐿 − 𝑉𝑠𝑡𝑎𝑙𝑙) 

(4.41) 

Where, 

 𝑉𝑠𝑡𝑎𝑙𝑙 = √
2

𝜌

𝑊

𝑆

1

𝐶𝐿𝑚𝑎𝑥

 

(4.42) 

 

𝐾𝑝 = 0.15 +
5400

𝑊 + 3300
 

(4.43) 

And the factor in equation (4.41), 𝐾𝑝 , comes from an empirical relationship and 

should be between 0.5 and 1.0 [2].  This is controlled as deciding a constraint in the code, 

also. 

𝑉𝐿 is maximum level cruise speed, which was introduced to code as a constant. 

Eventually, the maximum available sustained load factor is: 

 

𝑛𝑚𝑎𝑥 = {

1
2𝜌∞𝑉∞

2

𝐾(𝑊 𝑆⁄ )
[(

𝑇

𝑊
)
𝑚𝑎𝑥

−
1

2
𝜌∞𝑉∞

2
𝐶𝐷0

𝑊 𝑆⁄
]}

1 2⁄

 

(4.44) 

 

An airplane should be designed for a limit load that includes factor of safety, which is 

usually taken as 1.5. So as introduced in the Weight and Stability part the ultimate load 

factor of the unmanned supersonic aircraft is: 

𝑁𝑍 = 1.5𝑛𝑚𝑎𝑥  
(4.45) 
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4.1.13. Cost Model  

 

 

Cost are calculated from [89] with DAPCA, the Development and Procurement Cost of 

Aircraft model.  

DAPCA estimates the hours required for research, development, test and evaluation 

and production by the engineering, tooling, manufacturing, and quality control groups. 

These are multiplied by the appropriate hourly rates to yield costs. Development support, 

flight test and manufacturing material costs are directly estimated by DAPCA [89].  

For the unmanned supersonic aircraft it was suggested to use aluminium as a 

material and camouflage paint. The cost is estimated according to this material. 

While calculating, the number of flight test aircraft was thought as a constant and 

equated to 2. 

The number of the optimized unmanned supersonic aircraft, 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦, was selected as 

a constant and equated to 500.  

Average hourly rates were taken from [2] for the year 2012. These were adjusted to 

the year 2019 based on the Consumer Price Indexes calculated from CPI inflation 

calculator in [90] [91]. 

The CPI inflation calculator uses the average Consumer Price Index for a given 

calendar year. This data represents changes in prices of all goods and services purchased 

for consumption by urban households. For the current year (2019), the latest monthly 

index value is used [90] [91]. 

 

Engineering hourly rates in 2012 [2](and the adjusted values for 2019): 

𝑅𝐸 = $115 ($130) 

Tooling hourly rates in 2012 [2](and the adjusted values for 2019): 

𝑅𝑇 = $118 ($133) 

Quality control hourly rates in 2012 [2](and the adjusted values for 2019): 

𝑅𝑄 = $108 ($122) 

Manufacturing hourly rates in 2012 [2](and the adjusted values for 2019): 

𝑅𝑀 = $98 ($111) 

Acquisition cost of each unmanned supersonic aircraft in $: 

 

𝐶𝑂𝑆𝑇 =
𝐻𝐸𝑅𝐸 + 𝐻𝑇𝑅𝑇 + 𝐻𝑀𝑅𝑀 +𝐻𝑄𝑅𝑄 + 𝐶𝑜𝑠𝑡𝐷 + 𝐶𝑜𝑠𝑡𝐹 + 𝐶𝑜𝑠𝑡𝑀 + 𝐶𝑜𝑠𝑡𝐸𝑁𝐸 + 𝐶𝑜𝑠𝑡𝐴

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦⁄  

(4.46) 
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4.1.14. Verification of the Aircraft Design Part 

 

The accuracy of the aircraft design part was proved by a supersonic aircraft with 

similar missions. Therefore, the F-16 was examined because of its known dimensions and 

performance characteristics, which were written from references [2], [68], [84], [89], 

[92], [93] and [94]. 

Since, F-16 is not an unmanned aircraft some small adjustments were made to 

approximate the results. 

These adjustments: 

 The unmanned configuration factor of 0.7 was not used for fuselage length. 

 Because F-16 is mainly composed of aluminium structure the fudge factors for 

composite aircraft were not used. 

In the main program of the optimization, the values of the design variables were 

appointed through the algorithm, and constants were taken from an input file. For the 

verification study, without linking the optimization part to the aircraft design part, all 

inputs were introduced from an input file according to F-16 as shown in the Table 4.3. 

 

Table 4.3 Design Inputs for the F-16 aircraft 

Inputs F-16 UCAV 

SFC [1/h] 0.64 0.64 

SFCc [1/h] 2.06 2.06 

Wpayload [kg] 1964 1964 

Quantity >3000 3000 

b [m] 9.144 9.144 

AR 3.0 3.0 

c/4 [deg] 32 32 

HT [deg] 40 40 

VT [deg] 47.5 47.5 

Гw [deg] 0 0 

ГHT [deg] -10 -10 

ГVT [deg] 0 0 

BPR 0.87 0.87 

λVT 0.437 0.437 

λHT 0.390 0.390 

ARVT 1.294 1.294 

ARHT 2.114 2.114 

 

Here, the production quantity for F-16 was found from Table 4.4, [84].  
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In the optimization code, this table was also used while deciding on the 

production 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦; and a reasonable number, 500, is used there. 

Table 4.4 Examples of Airplane Program Production Runs [84] 

Fighters   

Type 
Number 

produced 

General Dynamics F-111 563 

General Dynamics F-16 >3000 

Gloster Meteor 3545 

Gloster Javelin 435 

Grumman F9F2-5 1325 

Grumman F9F6-8 1985 

Grumman F11F 201 

Grumman F14 >900 

Lockheed F-94 387 

Lockheed F-80 1732 

Lockheed T-33 5691 

Lockheed F-104 2578 

McDonnell F-4 >5000 

McDD F-15 >2000 

McDD F-18 >1500 

SAAB JA37 329 

SAAB J35A 604 

 

Although, some necessary inputs are not known exactly for F-16, the assumed input 

values of UCAV are listed in Table 4.5. Better approximations may be done in future 

works also.  

Table 4.5 Assumed Inputs 

Assumed Inputs F-16 UCAV 

lVtco unknown 0.30 

lHtco unknown 0.30 

VVT unknown 0.07 

VHT unknown 0.40 

Dfmax [m] varying 1.5 

Vcruise [km/h] varying 1460 

Rcr [km] varying 750 

Eloiter [h] varying 0.5 

Airfoil (wing) NACA 64A204 NACA 64A210 

Airfoil (tails) Biconvex NACA 64A210 
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The outputs obtained from the conceptual design program are tabulated in Table 4.6, 

together with F-16 values. 

Table 4.6 UCAV Comparison Table with F-16 

Outputs F-16 UCAV 

S [m2] 27.87 27.87 

LE [deg] 40 40 

λ 0.227 0.202 

Lf [m] 15.0 14.9 

T [kN] 111.2 112.0 

Leng [m] 4.67 4.18 

Deng [m] 0.91 0.96 

Dnosewheel [m] 0.46 0.43 

wnosewheel [m] 0.14 0.10 

Dmainwheel [m] 0.65 0.67 

wmainwheel [m] 0.20 0.20 

We [kg] 8910 6328* 

Wf** [kg] 3162 3078 

WTO [kg] 14036 11370* 

nmax [g] 9 9 

sTO [m] 457 415* 

sL [m] 914 640* 

W/S)TO [N/m2] 4550 4002* 

ROCmax [m/s] 254 242 

Maximum ceiling [m] 15240 15724 

Rangecombat mission [km] 1759 2148* 

Maximum endurance [h] 2.42 2.35 

Vmax [km/h], (Mmax) 2175, (2.05) 2183, (2.05) 

ωmax [deg/s] 13 13 

Engine Cost [$] ~ 4.0 4.3 

COST [$] 14-18 million 14.6 million 

           *Due to unmanned structure 
           **Only the internal fuel capacity  

 

Consequently, the resultant top view of the UCAV was sketched and could be checked 

against the top view of F-16 illustrated in the Figure 4.10 and Figure 4.11. 
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Figure 4.10 Top View of the resulting UCAV design 

 

 

 

 

Figure 4.11 Top View of reference F-16 design 
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Before commenting on the results, it should be remembered that the planned mission 

parameters for a UCAV will normally be different. For example, the cruise segment range 

and the loiter time could not be found in the literature as well. 

Another difference was on airfoils. Since the data for the airfoils of F-16 (𝑁𝐴𝐶𝐴 64𝐴204 

for the wings and biconvex shape for the tails) were not available, thus 𝑁𝐴𝐶𝐴 64𝐴210 was 

used for the UCAV for both the wing and the tails. It was assumed that, this airfoil would 

approximate the real values.   

Table 4.6 shows that the design code calculated results, which are very close to the 

real values. The main difference is with the empty weight only. Since the systems related 

to the pilot are not included in the UCAV equations the empty weight was calculated less 

than that of F-16. Similarly, take off gross weight was found less by the same amount. 

On the other hand, the performance parameters affected directly by the gross weight 

were improved accordingly [68].  

The resultant shape of the UCAV approximates the real aircraft quite closely resulting 

into a similar external shape as F-16. As listed in Table 4.6, there are relatively small 

deviations in dimensions and performance characteristics. Moreover, the resultant cost is 

also fall into the range. In addition, it should be stated that the UCAV was found statically 

stable.  

In summary, this work shows the design part of the code works well and is ready to 

be integrated into the optimization part as shown in the section 5.1. 

 

 

4.2.  Trajectory Optimization 

 

For this design case the trajectory optimization for a passenger aircraft is chosen. 

Trajectory Calculation Module (TCM), a tool for trajectory calculation written in German 

Aerospace Centre (DLR) [95] is used to optimize the objective function. The inputs of the 

module are: 

 Latitude, longitude and height of the departure airport 

 Latitude, longitude and height of the destination airport 

 Number of control points 

 Way points (used as design variables) 

 Lateral displacement of the control points in meters: 1000𝑒3 

 Pressure altitude in meters: 10972.8 

 Maximum distance between two waypoints in meters: 100e3 

Basically, the flight route between two waypoints is modelled as an orthodrome 

(shortest path along the surface of the earth’s surface) [95].  

The output of the module is: 

 Flight Time (the objective) 
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  The detailed mathematical model for the trajectory calculation is not given here. 

Indeed, the aim of this section is to compare the results of the hybrid algorithm with 

those from the literature (Fmincon, Genetic and Globex [16]) also with an example from 

one of the fundamental aviation domains, Air Transportation. For Fmincon and Genetic 

Algorithm, the related Matlab functions were used. Globex is applied from [16] as 

illustrated in Figure 2.10.   

The departure and destination cities (end points) were decided with the help of the 

studies [96] and [97], which forecast the potential urban air mobility markets by the 

year 2042: Istanbul and Washington.  

The atmospheric condition is selected as having the steady state winds throughout 

the range. The objective is to reduce the flight time against wind. Whereas the end 

points are fixed, the way points are flexible. Due to that reason, the way points were 

decided to be the independent variables of the optimization. The range of the way points 

are in the magnitude of 2  and can differ between −1 and 1. The amount of the way points 

are also flexible and selected as 10. As a constraint, the resultant curve structured with 

the optimal way points must be longer than the great circle which is actually defined as 

the shortest way between two points on the Globe. 

 

Figure 4.12 Map of the Trajectory Optimization 

 

 

Since the flight is significantly influenced by the wind and the weather conditions, the 

flight path becomes longer than the great circle and the flight time is increased 

accordingly [95]. 

Because of this changing nature, selecting the optimal flight route is a good practice 

for optimization. Therefore, waypoints are selected as the design variables for the 

optimization part and the optimal flight time is the objective as a result. The outcomes 

are given in the Section 5.2 

 

Great Circle 

Istanbul 
Washington 
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5. Results 

5.1. Design Case I (Unmanned Supersonic Aircraft) 

 

An unmanned supersonic aircraft, whose conceptual design model is given in detail in 

capital 4.1 Aircraft Design, is taken as the design case for a single objective optimization. 

The objective of the optimization is to reduce the cost. The general mission of an UCAV 

consists of take-off, climb, cruise, loiter, descent, action, climb, cruise, descent and 

landing.  

The positions of the wings, horizontal and vertical tails, and landing gears with 

respect to the fuselage are calculated in the Aircraft Design Code prepared. The engine 

sizing is automatically done in the code which gives its dimensions and its thrust. The 

calculations are based on a rubber engine with turbofan characteristics which has 

constant bypass ratio and specific fuel consumption. Landing gears were planned to be 

tricycle and retractable, and are designed to find the dimensions according to the 

changing aircraft configurations. The placements of the landing gears are changed for 

different aircraft configurations with the centre of gravity. A subroutine in the code 

calculates the total acquisition cost. Proper mathematical models were selected and 

coded in separate subroutines [68].  

Actually, the sized takeoff gross weight is the measure of merit for optimisation and 

trade studies. However, cost is strongly driven by the weight and it is a final deciding 

criterion in sale or a design competition. On the other hand, when the alternative 

technologies, engines, avionics play important role in the design, then it is better to use 

cost rather than weight on the carpet plot, and same as in multivariable optimizers [2]. 

Therefore, the objective of this study is to reduce the unit cost of the aircraft. In order 

to get the feasible aircraft at the end, some constraints should be imposed. The selected 

constraints for this study and their lower & upper values are listed in Table 5.1. In the 

code these constraints are normalized with their lower and upper values.  
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Table 5.1 UCAV Constraints 

Constraints Symbol 
Lower 

Value 

Upper 

Value 

Fuselage Length  [m] Lf 5 20 

Maximum Structural Load [g] nmax 5 12 

Take-off Wing Loading [N/m2] W/S)TO 2500 7000 

Static Margin [%] Static_margin -5 +10 

Action Time [min] d 0.7 14 

Take-off Distance [m] sTO 250 700 

Landing Distance [m] sL 500 1000 

Maximum Ceiling [m] Maximum_ceiling 10000 20000 

Range [km] RANGE 1500 6500 

Maximum Endurance [h] Emax 2 6 

Min. Sustained Turn Radius [m] Rmin 50 250 

Max. Sus. Turn Rate [deg/sec] ωmax 8 28 

Control Items Deflection Factor KP 0.5 1.0 

 

Then, some constants values are read from an input file, which can be changed easily 

by the user also. How these constants were selected is explained in [68] and they are 

listed in Table 5.2: 

Table 5.2 Constants in UCAV optimizations 

Constant Symbol Value 

Specific Fuel Consumption SFC 0.64 

By-pass Raito BPR 0.87 

Vertical Tail Volume Ratio VVT 0.40 

Horizontal Tail Volume Ratio VHT 0.07 

Vertical Tail Taper Ratio λVT 0.3 

Horizontal Tail Taper Ratio λHT 0.4 

Cruise Velocity [km/h] Vcruise 1460 

Vertical Tail Aspect Ratio ARVT 1.4 

Horizontal Tail Aspect Ratio ARHT 3.4 

Dash Range [km] Rd 0.2 

Production quantity Quantity 500 

 

As a single objective optimization problem, the variables are compared with the 

resultant cost and patterns are selected to decrease this objective function. Accordingly, 

some parameters were selected as design variables, which are related with the aircraft 

geometry and mission characteristics. While optimizing, the values are obtained by the 

computer unsystematicaly with the Latin Hypercube Sampling method in the defined 
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ranges. These design variables with their boundaries are tabulated in Table 5.3. Wing 

span, wing sweep angle, vertical tail sweep angle, horizontal and vertical tail volume 

coefficients, loiter time and payload were selected as the design variables.  

 

Table 5.3 Design variables and their boundaries 

  

Wing 

span 
(m) 

Wing 
sweep 
angle 
(deg) 

Vertical 
tail sweep 

angle 
(deg) 

Horizontal 
tail 

volume 
coefficient 

Vertical 
tail 

volume 
coefficient 

Loiter 

time 
(hour) 

Payload 
(kg) 

Upper bound 15 50 55 0.45 0.45 0.75 2500 

Lower bound 8 30 35 0.40 0.40 0.10 1500 

 

From the analyses at Sections 3.1 and 3.2, the inequality (2 𝑥 7 ≤ 𝑛 ≤ 27) is used while 

deciding the number of training points. Thus, the number of training points is selected as 

𝑛 = 16  for 7 variables, this lowest value (as well as the power of 2) saves the run time 

and the memory. Because less number of training points for each iteration means less 

number of function evaluations in total, as a result. The result is found after 1136 

function evaluations. The minimum point is reached at the point where the unit cost is 

$ 19.45 million. 

At first, the Cavus algorithm is compared with the MCMOSA algorithm, because of its 

proved success to converge the pareto front in studies [68] and [73] for a conceptual air 

vehicle design. The dependent and the independent variables are listed in Table 5.4 

together. 

The developed aircraft design code was run with MCMOSA algorithm and it reached 

the termination criteria after 7786 function evaluations. The minimum point was reached 

at the point where the unit cost is $ 19.62  million. The detailed values are listed in Table 

5.4. From the top and the side views shown at Figure 5.1 and the Table 5.4, it can be seen 

that the shape as well as the performance is changed slightly and the cost is improved 

accordingly.  

Even though the success of performance parameters slightly differs between these 

two algorithms; they stay in the given constraints and still meet the requirements for 

both. On the other hand, the main target was to reduce the number of function 

evaluations while converging to the optimum, which is much lower than that of the 

MCMOSA algorithm for the Cavus algorithm, and both are presented in Table 5.8. 

Regarding that, the single objective convergence, 𝐶𝑜𝑠𝑡, is satisfied slightly better than 

that of the MCMOSA. Consequently, Cavus algorithm is much faster than MCMOSA at the 

same level of accuracy. 
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Table 5.4 Variables and optimization results for UCAV 

Algorithm Cavus MCMOSA 

Airfoil wing NACA64A210 NACA64A210 

Airfoil horizontal tail NACA0012 NACA0012 

Airfoil vertical tail NACA0012 NACA0012 

Thrust (kN) 64.5 65.1 

Cruise altitude (ft) 40000 40000 

Mcruise 1.37 1.37 

CD0 0.0234 0.0232 

CLacmax (1/rad) 2.91 2.90 

Wing area (m2) 16.0 16.2 

Aspect ratio 4 4 

Taper ratio 0.216 0.215 

Horizontal tail sweep (deg) 35.0 35.1 

T/W 1.14 1.14 

Engine bypass ratio 0.87 0.87 

Quantity 500 500 

W0 (kg) 5763 5814 

We (kg) 3112 3141 

Wf (kg) 1151 1173 

Vcorner (km/h) 569 569 

Number of turns 3 3 

Fuselage length (m) 7.93 7.96 

nmax (g) 9.0 9.0 

W/Stakeoff 360 359 

Static margin % 2.5 2.4 

Action Time (min) 1.3 1.1 

Take-off Distance (m) 316 315 

Landing Distance (m) 610 609 

Maximum Ceiling (ft) 57874 57956 

Range (km) 2168 2318 

Endurancemax (hour) 2.4 2.6 

Wing span (m) 8.00 8.05 

Wing sweep angle (deg) 30.0 30.1 

Vertical tail sweep angle (deg) 35.0 44.8 

lHTco 0.40 0.40 

lVTco 0.40 0.42 

Wpayload (kg) 1500 1500 

Loiter (hour) 0.1 0.4 

Cost ($ million) 19.45 19.62 
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The verification of the design is given at the section 4.1.14 and the shapes are 

presented at Figure 4.10 and Figure 4.11. Likewise, the resultant shapes of Cavus algorithm 

and MCMOSA are compared in Figure 5.1. 

 

Figure 5.1 Top and side views of the resultant UCAVs 

 

Consequently, within the same range of design variables a lower objective value could 

be obtained with the new method. It works as a surrogate model of patterns and yields 

the most promising ones. This saves the number of analyses that is required at each 

iteration. The computational effort is used for the patterns that have really promising 

values rather than the unsystematically selected design spaces. Thus, to reach the 

resultant value less number of function evaluations is needed. With decreasing number of 

function evaluations, computation time is also saved. This means, if the design problem 

requires more effort than the optimization algorithm and expands more time, the Cavus 

algorithm is pretty more successful than this technique. On the other hand, MCMOSA 

algorithm is a general approach and could be used for a broad application area. 

Alternatively, the hybrid method may be applied efficiently to the deterministic, 

observable, convex and non-convex problems that have less number of local minimums. 

Because Cavus algorithm uses a kind of pattern search technique, very high number of 

local minimums may mislead the search for problems that are open-end and have 

stochastic behaviour.  

In order to verify the results, the UAVs that have similar mission requirements were 

searched. The comparison table is shown in Table 5.5. 

Because most of them are still under development the exact values could not be 

listed. Besides that, it should be noted, the mission requirements of these aircraft are not 

the same. Regarding the resultant design parameters of the Cavus algorithm, the table is 

sufficient for proving that they fall in the reasonable ranges. Accordingly, the upper and 

lower bounds of the design variables are selected in respect of the values in Table 5.5, and 

the resultant cost is crosschecked accordingly. 

Indeed, the cost are also difficult to reach and mostly not known. For few aircraft the 

program cost could be included only. 

 

MCMOSA 

Cavus 
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Table 5.5 Sample UAVs with their Specifications 

 
Specifications 

 

Aircraft 
Wing 
span 
(m) 

Length 
(m) 

T 
(kN) 

W0 
(kg) 

Wf 
(kg) 

We 
(kg) 

Wp 
(kg) 

Max 
Altitude 

(m) 

Max 
Endurance 

(h) 

Range 
(km) 

V 
(Mach) 

Cost 
($ million) 

Cavus 8.00 7.93 64.50 5763 1151 3112 1500 17640 2.4 2168 1.37 19.45 

BAE Taranis 10.00 12.43 44.00 7000 
   

11500 
 

3500 0.89 prog: £185 

Bayraktar Akıncı 20.00 12.20 1500 hp 5500 
  

1350 12192 24 
   

Bayraktar TB2 12.00 6.50 100 hp 630 210 
 

55 8239 27 6000 0.20 4.00 

Boeing Phantom Ray 15.24 10.97 78.70 16556 
  

>2000 12192 
  

0.80 
 

Boeing X-45C 14.90 11.90 31.00 16600 
  

2040 12200 7 2222 0.85 
 

Dassault nEUROn 12.50 9.50 40.00 7000 
 

4900 230 14000 
  

0.80 29.00 

EADS Barracuda 7.22 8.25 14.20 3250 
 

2260 300 6096 
 

200 0.85 prog: 40 

General Atomics Avenger (Predator C) 20.00 13.00 17.58 8255 3583 
 

2948 15240 18 2897 0.60 12-15 

Kratos XQ-58 Valkyrie 8.23 9.14 
 

2722 
 

1134 272 15240 
 

5556 0.94 3.00 

Lockheed Martin RQ-170 Sentinel 19.90 9.20 41.26 8242 
 

3544 
 

15250 
   

6.00 

MiG Skat 11.50 10.25 49.40 10000 
  

2000 12000 
 

4000 0.80 
 

Northrop Grumman X-47B 18.93 11.64 71.17 19958 
  

2041 12192 6 3890 0.44 prog: 813 

TAI ANKA B 17.50 8.60 170 hp 1700 445 
 

700 9144 24 
  

30.00 

Vestel Karayel UCAV 10.50 6.50 97 hp 550 
  

70 6858 20 
 

0.12 
 

prog: program cost 

 

References: [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115], 

[116], [117],  [118], [119], [120], [121], [122], [123], [124], [125], [126] and [127].  
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The Globex Algorithm [52] is also taken as another reference algorithm for the 

comparison. 

The starting point for the Globex Algorithm is: 

Table 5.6 The starting point for Globex Algorithm 

 
 

The starting step sizes for the variables are taken as: 

Table 5.7 The starting step sizes for Globex Algorithm 

 
 

 

Taking the constraints as the lower and upper bounds of the variables, the Globex 

algorithm [52] converges to the unit cost $ 19.91 million after 4321 function evaluations. 

On the other hand, when the Genetic Algorithm is used with the same lower and 

upper bounds as the Cavus algorithm, it converges to the unit cost $ 19.45 million after 

10400 function evaluations and 51 generations. Besides the fact that, the Genetic 

Algorithm could converge to the same unit cost with the Cavus algorithm it has the 

highest number of function evaluations. 

The results of Cavus, Globex and Genetic Algorithm are seen on the Table 5.8. In order 

to reach the lowest cost value, the optimum point is expected to have the lowest values 

for the structure related variables (the wing span and the sweep angle) and also for the 

mission related variables (the loiter time and the payload). The Cavus algorithm has 

slightly lower value than the Globex algorithm for the cost. Meanwhile, the number of 

function evaluations is almost 4 times better than the Globex algorithm.  

 
Table 5.8 The Results for the Aircraft Design Case 

 

 

When the time for evaluating one design point is considered, these reduced function 

evaluations serve real benefit for the aircraft designer. 

  

Wing span 

(m)

Wing sweep 

angle     

(deg)

Vertical tail 

sweep 

angle (deg)

Horizontal 

tail volume 

coefficient

Vertical tail 

volume 

coefficient

Loiter time 

(hour)

Payload   

(kg)

10.00 45.00 50.00 0.41 0.42 0.60 2000

dx1 dx2 dx3 dx4 dx5 dx6 dx7

0.40 1 1 0.0025 0.0025 0.05 50

Algorithm
Wing span 

(m)

Wing 

sweep 

angle     

(deg)

Vertical 

tail sweep 

angle 

(deg)

Horizontal 

tail 

volume 

coefficient

Vertical 

tail 

volume 

coefficient

Loiter 

time 

(hour)

Payload   

(kg)

Cost            

($ million)

Function 

evaluations

Cavus 8.00 30.00 35.00 0.40 0.40 0.10 1500 19.45 1136

Globex 8.01 33.49 36.13 0.43 0.40 0.40 1508 19.91 4321

MCMOSA 8.05 30.10 44.80 0.40 0.42 0.40 1500 19.62 7786

Genetic 8.00 30.00 35.00 0.40 0.40 0.10 1500 19.45 10400



115 
 

5.2. Design Case II (Trajectory Optimization) 

 

The optimization results for the trajectory calculation which is described in chapter 

4.2 Trajectory Optimization is illustrated in Figure 5.2.  

 

Figure 5.2 Optimal Way Points 

 

The lower and upper limits of the waypoints for all of the algorithms used here: 

Table 5.9 Lower and Upper Bounds of the Waypoints 

 

 

The result for the Cavus algorithm: 

Table 5.10 The result of the Cavus algorithm 

 

 

The starting point for the Fmincon algorithm: 

Table 5.11 The starting point for the Trajectory Calculation 

 

Lower 

Bounds

Upper 

Bounds

-1.0 1.0

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal 

Flight 

Time (s)

0.16 0.34 0.53 0.82 0.98 1.00 1.00 0.88 0.70 0.42 36783

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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The result for the Fmincon algorithm: 

Table 5.12 The result of the Fmincon algorithm for the Trajectory optimization 

 

 

 For this design case the Globex Algorithm [52] has the starting point: 

Table 5.13 The starting point of the Globex Algorithm for the Trajectory optimization 

 

The starting step sizes for the Globex Algorithm: 

Table 5.14 The starting step sizes of the Globex Algorithm for the Trajectory optimization 

 

The result for the Globex algorithm: 

Table 5.15 The result of the Globex algorithm 

 

 

The result for the Genetic Algorithm: 

Table 5.16 The result of the Genetic Algorithm 

 

 

The total results are listed and ranked by the numbers of function evaluations as: 

Table 5.17 Comparison of the results for the Trajectory Optimization 

 

 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal 

Flight 

Time (s)

0.16 0.33 0.53 0.82 0.98 1.00 1.00 0.88 0.70 0.42 36783

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx1 dx2 dx3

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal 

Flight 

Time (s)

0.16 0.34 0.53 0.82 0.98 1.00 1.00 0.88 0.71 0.42 36783

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal 

Flight 

Time (s)

0.16 0.33 0.52 0.80 0.97 1.00 1.00 0.88 0.71 0.42 36785

Algorithm x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Optimal 

Flight 

Time (s)

Function 

evaluations

Fmincon 0.16 0.33 0.53 0.82 0.98 1.00 1.00 0.88 0.70 0.42 36783 314

Cavus 0.16 0.34 0.53 0.82 0.98 1.00 1.00 0.88 0.70 0.42 36783 416

Globex 0.16 0.34 0.53 0.82 0.98 1.00 1.00 0.88 0.71 0.42 36783 19309

Genetic 0.16 0.33 0.52 0.80 0.97 1.00 1.00 0.88 0.71 0.42 36785 21400
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Figure 5.3 Resultant Optimal Way Points 

 

 

To clarify, when the function evaluations are concerned the Cavus algorithm performs 

better than the Genetic Algorithm and the Globex algorithm. Especially, if the design 

problem requires more effort than the optimization algorithm and expands more time, 

the Cavus algorithm is pretty more successful than these techniques. On the other hand 

another method which is known as Fmincon function in MATLAB is also used here.  This 

method is applied especially to the nonlinear and not much complex problems and as 

being known as a problem specific function, it shows having an advantage over the 

Cavus algorithm for that trajectory optimization. In fact, the calculation time increases 

rationally with the number of function evaluations; more number of function evaluations 

means more calculation time spent. 

 

 

 

 

 

 

 

 

Great Circle 
Fmincon 
Cavus 
Globex 
Genetic 
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6. Conclusion 

 

The new hybrid technique is studied here to have a specific optimization algorithm for 

the problems that have a complex structure and high number of design variables 

whereas having low number of local minimums. In fact, the starting point of this 

algorithm was actually from the need of aerospace domain. The success of the 

evolutionary algorithms that are mostly used in aerospace would be considered as 

becoming cumbersome when we consider the developments in other domains recently. 

Nevertheless, aerospace design cases inherently have their advantages parallel to the 

recent developments. First, there is a high number of related data which can be collected 

from the real life or produced with using the domain equations. Second, the aerospace 

problems are closed loop processes; simply the chemical energy (the fuel) is converted 

to the potential and kinetic energy (the range, etc.), nothing is disappeared or changed 

extraordinarily, which means a consistent and a sustainable structure. Third, aerospace 

problems are really challenging cases when high fidelity results are required, on the 

contrary to that the intermediate stages can be estimated with low fidelity methods plus 

probabilistic approximations due to the stated two facts above.  

In this study, depending on the mentioned three properties a novel algorithm is 

developed. The original contributions of the thesis are: 

1. Instead of using interpolations between the design points, gradients derived from 

these points are used at each stage, and presented as patterns 

2. These patterns are classified in each other, and also on top they are clustered as 

tried and untried patterns 

3. Using the probability of success and neighbouring, the scores are assigned and 

systematical improvements are gained 

4. Since each design space component is presented with a pattern, at the end there 

exists no design space that is left as untraced. 

5. To decrease the memory usage and improve the computational performance, a 

case specific dimensional reduction is applied. The number of training points is 

reduced accordingly, especially for the problems that have high number of 

variables. 

The main target of the novel algorithm is to reduce the function evaluations while 

converging to the global optimum with higher accuracy. 

The hybrid algorithm is composed of pattern generation, harmonic distribution with 

dimension reduction model, PNN and selection module. At an intermediate step, one of 

the ANN techniques (PNN) is integrated to train the algorithm and find the probability of 

the success of each neighbouring patterns. Besides, the burden of the PNN with 

increasing number of design variables is alleviated with the dimension reduction model. 

Thus, the number of trial points is reduced with less compromise, while the algorithm 

becomes faster and less power consuming.  

The trend analysis was done to present the effect of the number of training points 

with changing variable numbers. The results show that when the number of training 

points is kept constant, with increasing variable numbers the success to find the 
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promising patterns is reduced as expected. Besides that, when the number of training 

points are increased proportionally, with the increasing variable numbers the success is 

improved until a level after which the system is defined as overtrained. 

The algorithm is tested on the Rosenbrock function to demonstrate the efficiency of 

the algorithm for 2, 7, 10 and 14 variables. The results are compared with those from the 

literature, Globex and Genetic Algorithm, and presented in Table 3.26, Figure 3.24 and 

Figure 3.25. In summary, with the lower function evaluations the accuracies of the results 

are better for the Cavus algorithm. Although, the increasing inclination of the Function 

Evaluations vs. Variable numbers line should be examined and could be improved as a 

future work. 

The algorithm is developed to optimize single objective for two design cases in this 

study. However, with the same modules of the code the number of objectives can be 

increased without much effort. Only the objective function should be adjusted for 

multiobjective optimization case. As such, normalized change on the objectives may be 

handled with digits and integrated to a string like objective patterns. Then, they may be 

grouped in 2𝑥−1 objective patterns, where 𝑥 is the number of objectives. Then, they may 

be assigned as successful or unsuccessful patterns. Moreover, proportional with the 

normalized values, these objective patterns may be sequenced and fed by penalty 

coefficients accordingly. Similarly, they may be classified as successful, less successful or 

unsuccessful patterns, and then these complex relations may also be examined. 

Multiobjective optimization case is to be an interesting future work. 

The Cavus algorithm is applied on a supersonic aircraft discrete mission to minimize 

the unit cost. The values of the constraints and design variables are slightly differ from 

the other algorithms, but the target for the objective function and function evaluations 

are reached for this case also, in other words better results are obtained. 

Another aerospace issue, the trajectory optimization is also studied. Again the hybrid 

algorithm performs better than Globex and Genetic Algorithm. However, the problem 

specific algorithm, Fmincon, that is known and used especially this kind of less complex 

and nonlinear problems, performed slightly better than the Cavus algorithm when the 

number of function evaluations is concerned, but the accuracy is similar. 

Indeed, it is proved that the used hybrid method increases the efficiency of the 

optimization and improves the design task; and it is seen to be competitive to the other 

well-known optimization techniques.  

In addition, the number of training points is found out as the determining parameter 

on the efficiency of the Cavus algorithm. While increasing the values of this parameter 

the convergence is improved but the cycle time and the memory usage are also 

increased. 

It is shown that the Probabilistic Neural Networks with the combination of rule based 

agent systems the optimization of a design is possible and has advantages on different 

type of problems in aerospace area. With this approach the dimension reduction is also 

possible, which saves the memory and improves the efficiency. Although, searching the 

whole design area with promising patterns expends the memory, it also helps to diminish 

the number of function evaluations used for calculating the poor design points, which are 

experienced and defined by the previous trials. Finally, the hybrid algorithm saves the 

computational effort and time. 
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Appendix 

 

PNN Classification 

 

Deep Learning Toolbox of Matlab R2018b is used for Probabilistic Neural Networks. 

The function is called as newpnn in Matlab and used as following: 

%input patterns 

P = [successful_patterns,unsuccessful_patterns];  

%classes of input patterns 

Tc = [successful_set,unsuccessful_set]; 

%Target class indices are converted to vectors 

T = ind2vec(Tc); 

%apply PNN 

net = newpnn(P,T); 

%apply trained network to guess the classes of the untried_patterns 

Y = sim(net,untried_patterns); 

%classes of untried_patterns are found as: 

Yc = vec2ind(Y);  
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