305 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    E2E-OAM in convergent sub-wavelength-MPLS environments

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. Fernandez-Palacios, J. Aracil, M. Basham, and M. Georgiades, "E2E-OAM in convergent sub-wavelength-MPLS environments", in Future Network and Mobile Summit, 2012, pp. 1-11This paper presents an End-to-End (E2E) Operations, Administration, and Maintenance (OAM) architecture for Telco networks including a Sub-wavelength domain. It addresses two main issues: compatibility between MPLS networks and different Sub-wavelength technologies, and scalability of the OAM flows across the whole network. The case for OPST Sub-wavelength technology in the data plane has been studied extensively, however this is the first study on a methodology to scale the number of OAM flows in an E2E scenario combing both subwavelength and MPLS switching domains. Finally the inter-carrier issue in E2E OAM is also explored

    On the resource abstraction, partitioning and composition for virtual GMPLS-controlled multi-layer optical networks

    Get PDF
    Virtual optical networking supports the dynamic provisioning of dedicated networks over the same network infrastructure, which has received a lot of attention by network providers. The stringent network requirements (e.g., Quality of Service -QoS-, Service Level Agreement -SLA-, dynamicity) of the emerging high bandwidth and dynamic applications such as high-definition video streaming (e.g., telepresence, television, remote surgery, etc.), and cloud computing (e.g., real-time data backup, remote desktop, etc.) can be supported by the deployment of dynamic infrastructure services to build ad-hoc Virtual Optical Networks (VON), which is known as Infrastructure as a Service (IaaS). Future Internet should support two separate entities: infrastructure providers (who manage the physical infrastructure) and service providers (who deploy network protocols and offer end-to-end services). Thus, network service providers shall request, on a per-need basis, a dedicated and application-specific VON and have full control over it. Optical network virtualization technologies allow the partitioning/composition of the network infrastructure (i.e., physical optical nodes and links) into independent virtual resources, adopting the same functionality as the physical resource. The composition of these virtual resources (i.e., virtual optical nodes and links) allows the deployment of multiple VONs. A VON must be composed of not only a virtual transport plane but also of a virtual control plane, with the purpose of providing the required independent and full control functionalities (i.e., automated connection provisioning and recovery (protection/restauration), traffic engineering (e.g., QoS, SLA), etc.). This PhD Thesis focuses on optical network virtualization, with three main objectives. The first objective consists on the design, implementation and evaluation of an architecture and the necessary protocols and interfaces for the virtualization of a Generalized Multi-Protocol Label Switching (GMPLS) controlled Wavelength Switched Optical Network (WSON) and the introduction of a resource broker for dynamic virtual GMPLS-controlled WSON infrastructure services, whose task is to dynamically deploy VONs from service provider requests. The introduction of a resource broker implies the need for virtual resource management and allocation algorithms for optimal usage of the shared physical infrastructure. Also, the deployment of independent virtual GMPLS control plane on top of each VON shall be performed by the resource broker. This objective also includes the introduction of optical network virtualization for Elastic Optical Networks (EON). The second objective is to design, implement and experimentally evaluate a system architecture for deploying virtual GMPLS-controlled Multi-Protocol Label Switching Transport Profile (MPLS-TP) networks over a shared WSON. With this purpose, this PhD Thesis also focuses on the design and development of MPLS-TP nodes which are deployed on the WSON of the ADRENALINE Testbed at CTTC premises. Finally, the third objective is the composition of multiple virtual optical networks with heterogeneous control domains (e.g., GMPLS, OpenFlow). A multi-domain resource broker has been designed, implemented and evaluated.La gestió de xarxes òptiques virtuals permet la provisió dinàmica de xarxes dedicades a sobre la mateixa infraestructura de xarxa i ha cridat molt l’atenció als proveïdors de xarxes. Els requisits de xarxa (per exemple la qualitat de servei, els acords de nivell de servei o la dinamicitat) són cada cop més astringents per a les aplicacions emergents d'elevat ample de banda i dinàmiques, que inclouen per exemple la reproducció en temps real de vídeo d'alta definició (telepresència, televisió, telemedicina) i serveis d’informàtica en núvol (còpies de seguretat en temps real, escriptori remot). Aquests requisits poden ser assolits a través del desplegament de serveis de infraestructura dinàmics per construir xarxes òptiques virtuals (VON, en anglès), fet que és conegut com a infraestructura com a servei (IaaS). La internet del futur hauria de suportar dos entitats diferenciades: els proveïdors d'infraestructures (responsables de gestionar la infraestructura física), i els proveïdors de serveis (responsables dels protocols de xarxa i d'oferir els serveis finals). D'aquesta forma els proveïdors de serveis podrien sol•licitar i gestionar en funció de les necessitats xarxes òptiques virtuals dedicades i específiques per les aplicacions. Les tecnologies de virtualització de xarxes òptiques virtuals permeten la partició i composició de infraestructura de xarxa (nodes i enllaços òptics) en recursos virtuals independents que adopten les mateixes funcionalitats que els recursos físics. La composició d'aquests recursos virtuals (nodes i enllaços òptics virtuals) permet el desplegament de múltiples VONs. Una VON no sols està composada per un pla de transport virtual, sinó també per un pla de control virtual, amb l'objectiu d'incorporar les funcionalitats necessàries a la VON (provisió de connexions automàtiques i recuperació (protecció/restauració), enginyeria de tràfic, etc.). Aquesta tesis es centra en la virtualització de xarxes òptiques amb tres objectius principals. El primer objectiu consisteix en el disseny, implementació i avaluació de l'arquitectura i els protocols i interfícies necessaris per la virtualització de xarxes encaminades a través de la longitud d'ona i controlades per GMPLS. També inclou la introducció d'un gestor de recursos per desplegar xarxes òptiques virtuals de forma dinàmica. La introducció d'aquest gestor de recursos implica la necessitat d'una gestió dels recursos virtuals i d’algoritmes d’assignació de recursos per a la utilització òptima dels recursos físics. A més el gestor de recursos ha de ser capaç del desplegament dels recursos assignats, incloent un pla de control GMPLS virtual independent per a cada VON desplegada. Finalment, aquest objectiu inclou la introducció de mecanismes de virtualització per a xarxes elàstiques òptiques (EON, en anglès). El segon objectiu és el disseny, la implementació i l’avaluació experimental d'una arquitectura de sistema per oferir xarxes MPLS-TP virtuals controlades per GMPLS sobre una infraestructura i WSON compartida. Per això, aquesta tesis també es centra en el disseny i desenvolupament d'un node MPLS-TP que ha estat desplegat al demostrador ADRENALINE, al CTTC. Finalment, el tercer objectiu és la composició de múltiples xarxes òptiques virtuals en dominis de control heterogenis (GMPLS i OpenFlow). Un gestor de recursos multi-domini ha estat dissenyat, implementat i avaluat.La gestión de redes ópticas virtuales permite la provisión dinámica de redes dedicadas encima la misma infraestructura de red y ha llamado mucho la atención a los proveedores de redes. Los requisitos de red (por ejemplo la calidad de servicio, los acuerdos de nivel de servicio o la dinamicidad) son cada vez más estringentes para las aplicaciones emergentes de elevado ancho de banda y dinámicas, que incluyen por ejemplo la reproducción en tiempo real de vídeo de alta definición (telepresencia, televisión, telemedicina) y servicios de computación en la nube (copias de seguridad en tiempo real, escritorio remoto). Estos requisitos pueden ser logrados a través del despliegue de servicios de infraestructura dinámicos para construir redes ópticas virtuales (VON, en inglés), hecho que es conocido como infraestructura como servicio (IaaS). La internet del futuro tendrá que soportar dos entidades diferenciadas: los proveedores de infraestructuras (responsables de gestionar la infraestructura física), y los proveedores de servicios (responsables de los protocolos de red y de ofrecer los servicios finales). De esta forma los proveedores de servicios podrán solicitar y gestionar en función de las necesitados redes ópticas virtuales dedicadas y específicas por las aplicaciones. Las tecnologías de virtualización de redes ópticas virtuales permiten la partición y composición de infraestructura de red (nodos y enlaces ópticos) en recursos virtuales independientes que adoptan las mismas funcionalidades que los recursos físicos. La composición de estos recursos virtuales (nodos y enlaces ópticos virtuales) permite el despliegue de múltiples VONs. Una VON no sólo está compuesta por un plan de transporte virtual, sino también por un plan de control virtual, con el objetivo de incorporar las funcionalidades necesarias a la VON (provisión de conexiones automáticas y recuperación (protección/restauración), ingeniería de tráfico, etc.). Esta tesis se centra en la virtualización de redes ópticas con tres objetivos principales. El primer objetivo consiste en el diseño, implementación y evaluación de la arquitectura y los protocolos e interfaces necesarios por la virtualización de redes encaminadas a través de la longitud de ola y controladas por GMPLS. También incluye la introducción de un gestor de recursos para desplegar redes ópticas virtuales de forma dinámica. La introducción de este gestor de recursos implica la necesidad de una gestión de los recursos virtuales y de algoritmos de asignación de recursos para la utilización óptima de los recursos físicos. Además el gestor de recursos tiene que ser capaz del despliegue de los recursos asignados, incluyendo un plan de control GMPLS virtual independiente para cada VON desplegada. Finalmente, este objetivo incluye la introducción de mecanismos de virtualización para redes elásticas ópticas (EON, en inglés). El segundo objetivo es el diseño, la implementación y la evaluación experimental de una arquitectura de sistema para ofrecer redes MPLS-TP virtuales controladas por GMPLS sobre una infraestructura WSON compartida. Por eso, esta tesis también se centra en el diseño y desarrollo de un nodo MPLS-TP que ha sido desplegado al demostrador ADRENALINE, en el CTTC. Finalmente, el tercer objetivo es la composición de múltiples redes ópticas virtuales en dominios de control heterogéneos (GMPLS y OpenFlow). Un gestor de recursos multi-dominio ha sido diseñado, implementado y evaluado

    Integrated IT and SDN Orchestration of multi-domain multi-layer transport networks

    Get PDF
    Telecom operators networks' management and control remains partitioned by technology, equipment supplier and networking layer. In some segments, the network operations are highly costly due to the need of the individual, and even manual, configuration of the network equipment by highly specialized personnel. In multi-vendor networks, expensive and never ending integration processes between Network Management Systems (NMSs) and the rest of systems (OSSs, BSSs) is a common situation, due to lack of adoption of standard interfaces in the management systems of the different equipment suppliers. Moreover, the increasing impact of the new traffic flows introduced by the deployment of massive Data Centers (DCs) is also imposing new challenges that traditional networking is not ready to overcome. The Fifth Generation of Mobile Technology (5G) is also introducing stringent network requirements such as the need of connecting to the network billions of new devices in IoT paradigm, new ultra-low latency applications (i.e., remote surgery) and vehicular communications. All these new services, together with enhanced broadband network access, are supposed to be delivered over the same network infrastructure. In this PhD Thesis, an holistic view of Network and Cloud Computing resources, based on the recent innovations introduced by Software Defined Networking (SDN), is proposed as the solution for designing an end-to-end multi-layer, multi-technology and multi-domain cloud and transport network management architecture, capable to offer end-to-end services from the DC networks to customers access networks and the virtualization of network resources, allowing new ways of slicing the network resources for the forthcoming 5G deployments. The first contribution of this PhD Thesis deals with the design and validation of SDN based network orchestration architectures capable to improve the current solutions for the management and control of multi-layer, multi-domain backbone transport networks. These problems have been assessed and progressively solved by different control and management architectures which has been designed and evaluated in real evaluation environments. One of the major findings of this work has been the need of developed a common information model for transport network's management, capable to describe the resources and services of multilayer networks. In this line, the Control Orchestration Protocol (COP) has been proposed as a first contriution towards an standard management interface based on the main principles driven by SDN. Furthermore, this PhD Thesis introduces a novel architecture capable to coordinate the management of IT computing resources together with inter- and intra-DC networks. The provisioning and migration of virtual machines together with the dynamic reconfiguration of the network has been successfully demonstrated in a feasible timescale. Moreover, a resource optimization engine is introduced in the architecture to introduce optimization algorithms capable to solve allocation problems such the optimal deployment of Virtual Machine Graphs over different DCs locations minimizing the inter-DC network resources allocation. A baseline blocking probability results over different network loads are also presented. The third major contribution is the result of the previous two. With a converged cloud and network infrastructure controlled and operated jointly, the holistic view of the network allows the on-demand provisioning of network slices consisting of dedicated network and cloud resources over a distributed DC infrastructure interconnected by an optical transport network. The last chapters of this thesis discuss the management and orchestration of 5G slices based over the control and management components designed in the previous chapters. The design of one of the first network slicing architectures and the deployment of a 5G network slice in a real Testbed, is one of the major contributions of this PhD Thesis.La gestión y el control de las redes de los operadores de red (Telcos), todavía hoy, está segmentado por tecnología, por proveedor de equipamiento y por capa de red. En algunos segmentos (por ejemplo en IP) la operación de la red es tremendamente costosa, ya que en muchos casos aún se requiere con guración individual, e incluso manual, de los equipos por parte de personal altamente especializado. En redes con múltiples proveedores, los procesos de integración entre los sistemas de gestión de red (NMS) y el resto de sistemas (p. ej., OSS/BSS) son habitualmente largos y extremadamente costosos debido a la falta de adopción de interfaces estándar por parte de los diferentes proveedores de red. Además, el impacto creciente en las redes de transporte de los nuevos flujos de tráfico introducidos por el despliegue masivo de Data Centers (DC), introduce nuevos desafíos que las arquitecturas de gestión y control de las redes tradicionales no están preparadas para afrontar. La quinta generación de tecnología móvil (5G) introduce nuevos requisitos de red, como la necesidad de conectar a la red billones de dispositivos nuevos (Internet de las cosas - IoT), aplicaciones de ultra baja latencia (p. ej., cirugía a distancia) y las comunicaciones vehiculares. Todos estos servicios, junto con un acceso mejorado a la red de banda ancha, deberán ser proporcionados a través de la misma infraestructura de red. Esta tesis doctoral propone una visión holística de los recursos de red y cloud, basada en los principios introducidos por Software Defined Networking (SDN), como la solución para el diseño de una arquitectura de gestión extremo a extremo (E2E) para escenarios de red multi-capa y multi-dominio, capaz de ofrecer servicios de E2E, desde las redes intra-DC hasta las redes de acceso, y ofrecer ademas virtualización de los recursos de la red, permitiendo nuevas formas de segmentación en las redes de transporte y la infrastructura de cloud, para los próximos despliegues de 5G. La primera contribución de esta tesis consiste en la validación de arquitecturas de orquestración de red, basadas en SDN, para la gestión y control de redes de transporte troncales multi-dominio y multi-capa. Estos problemas (gestion de redes multi-capa y multi-dominio), han sido evaluados de manera incremental, mediante el diseño y la evaluación experimental, en entornos de pruebas reales, de diferentes arquitecturas de control y gestión. Uno de los principales hallazgos de este trabajo ha sido la necesidad de un modelo de información común para las interfaces de gestión entre entidades de control SDN. En esta línea, el Protocolo de Control Orchestration (COP) ha sido propuesto como interfaz de gestión de red estándar para redes SDN de transporte multi-capa. Además, en esta tesis presentamos una arquitectura capaz de coordinar la gestión de los recursos IT y red. La provisión y la migración de máquinas virtuales junto con la reconfiguración dinámica de la red, han sido demostradas con éxito en una escala de tiempo factible. Además, la arquitectura incorpora una plataforma para la ejecución de algoritmos de optimización de recursos capaces de resolver diferentes problemas de asignación, como el despliegue óptimo de Grafos de Máquinas Virtuales (VMG) en diferentes DCs que minimizan la asignación de recursos de red. Esta tesis propone una solución para este problema, que ha sido evaluada en terminos de probabilidad de bloqueo para diferentes cargas de red. La tercera contribución es el resultado de las dos anteriores. La arquitectura integrada de red y cloud presentada permite la creación bajo demanda de "network slices", que consisten en sub-conjuntos de recursos de red y cloud dedicados para diferentes clientes sobre una infraestructura común. El diseño de una de las primeras arquitecturas de "network slicing" y el despliegue de un "slice" de red 5G totalmente operativo en un Testbed real, es una de las principales contribuciones de esta tesis.La gestió i el control de les xarxes dels operadors de telecomunicacions (Telcos), encara avui, està segmentat per tecnologia, per proveïdors d’equipament i per capes de xarxa. En alguns segments (Per exemple en IP) l’operació de la xarxa és tremendament costosa, ja que en molts casos encara es requereix de configuració individual, i fins i tot manual, dels equips per part de personal altament especialitzat. En xarxes amb múltiples proveïdors, els processos d’integració entre els Sistemes de gestió de xarxa (NMS) i la resta de sistemes (per exemple, Sistemes de suport d’operacions - OSS i Sistemes de suport de negocis - BSS) són habitualment interminables i extremadament costosos a causa de la falta d’adopció d’interfícies estàndard per part dels diferents proveïdors de xarxa. A més, l’impacte creixent en les xarxes de transport dels nous fluxos de trànsit introduïts pel desplegament massius de Data Centers (DC), introdueix nous desafiaments que les arquitectures de gestió i control de les xarxes tradicionals que no estan llestes per afrontar. Per acabar de descriure el context, la cinquena generació de tecnologia mòbil (5G) també presenta nous requisits de xarxa altament exigents, com la necessitat de connectar a la xarxa milers de milions de dispositius nous, dins el context de l’Internet de les coses (IOT), o les noves aplicacions d’ultra baixa latència (com ara la cirurgia a distància) i les comunicacions vehiculars. Se suposa que tots aquests nous serveis, juntament amb l’accés millorat a la xarxa de banda ampla, es lliuraran a través de la mateixa infraestructura de xarxa. Aquesta tesi doctoral proposa una visió holística dels recursos de xarxa i cloud, basada en els principis introduïts per Software Defined Networking (SDN), com la solució per al disseny de una arquitectura de gestió extrem a extrem per a escenaris de xarxa multi-capa, multi-domini i consistents en múltiples tecnologies de transport. Aquesta arquitectura de gestió i control de xarxes transport i recursos IT, ha de ser capaç d’oferir serveis d’extrem a extrem, des de les xarxes intra-DC fins a les xarxes d’accés dels clients i oferir a més virtualització dels recursos de la xarxa, obrint la porta a noves formes de segmentació a les xarxes de transport i la infrastructura de cloud, pels propers desplegaments de 5G. La primera contribució d’aquesta tesi doctoral consisteix en la validació de diferents arquitectures d’orquestració de xarxa basades en SDN capaces de millorar les solucions existents per a la gestió i control de xarxes de transport troncals multi-domini i multicapa. Aquests problemes (gestió de xarxes multicapa i multi-domini), han estat avaluats de manera incremental, mitjançant el disseny i l’avaluació experimental, en entorns de proves reals, de diferents arquitectures de control i gestió. Un dels principals troballes d’aquest treball ha estat la necessitat de dissenyar un model d’informació comú per a les interfícies de gestió de xarxes, capaç de descriure els recursos i serveis de la xarxes transport multicapa. En aquesta línia, el Protocol de Control Orchestration (COP, en les seves sigles en anglès) ha estat proposat en aquesta Tesi, com una primera contribució cap a una interfície de gestió de xarxa estàndard basada en els principis bàsics de SDN. A més, en aquesta tesi presentem una arquitectura innovadora capaç de coordinar la gestió de els recursos IT juntament amb les xarxes inter i intra-DC. L’aprovisionament i la migració de màquines virtuals juntament amb la reconfiguració dinàmica de la xarxa, ha estat demostrat amb èxit en una escala de temps factible. A més, l’arquitectura incorpora una plataforma per a l’execució d’algorismes d’optimització de recursos, capaços de resoldre diferents problemes d’assignació, com el desplegament òptim de Grafs de Màquines Virtuals (VMG) en diferents ubicacions de DC que minimitzen la assignació de recursos de xarxa entre DC. També es presenta una solució bàsica per a aquest problema, així com els resultats de probabilitat de bloqueig per a diferents càrregues de xarxa. La tercera contribució principal és el resultat dels dos anteriors. Amb una infraestructura de xarxa i cloud convergent, controlada i operada de manera conjunta, la visió holística de la xarxa permet l’aprovisionament sota demanda de "network slices" que consisteixen en subconjunts de recursos d’xarxa i cloud, dedicats per a diferents clients, sobre una infraestructura de Data Centers distribuïda i interconnectada per una xarxa de transport òptica. Els últims capítols d’aquesta tesi tracten sobre la gestió i organització de "network slices" per a xarxes 5G en funció dels components de control i administració dissenyats i desenvolupats en els capítols anteriors. El disseny d’una de les primeres arquitectures de "network slicing" i el desplegament d’un "slice" de xarxa 5G totalment operatiu en un Testbed real, és una de les principals contribucions d’aquesta tesi.Postprint (published version

    Path computation in multi-layer networks: Complexity and algorithms

    Full text link
    Carrier-grade networks comprise several layers where different protocols coexist. Nowadays, most of these networks have different control planes to manage routing on different layers, leading to a suboptimal use of the network resources and additional operational costs. However, some routers are able to encapsulate, decapsulate and convert protocols and act as a liaison between these layers. A unified control plane would be useful to optimize the use of the network resources and automate the routing configurations. Software-Defined Networking (SDN) based architectures, such as OpenFlow, offer a chance to design such a control plane. One of the most important problems to deal with in this design is the path computation process. Classical path computation algorithms cannot resolve the problem as they do not take into account encapsulations and conversions of protocols. In this paper, we propose algorithms to solve this problem and study several cases: Path computation without bandwidth constraint, under bandwidth constraint and under other Quality of Service constraints. We study the complexity and the scalability of our algorithms and evaluate their performances on real topologies. The results show that they outperform the previous ones proposed in the literature.Comment: IEEE INFOCOM 2016, Apr 2016, San Francisco, United States. To be published in IEEE INFOCOM 2016, \<http://infocom2016.ieee-infocom.org/\&g

    Orchestrating datacenters and networks to facilitate the telecom cloud

    Get PDF
    In the Internet of services, information technology (IT) infrastructure providers play a critical role in making the services accessible to end-users. IT infrastructure providers host platforms and services in their datacenters (DCs). The cloud initiative has been accompanied by the introduction of new computing paradigms, such as Infrastructure as a Service (IaaS) and Software as a Service (SaaS), which have dramatically reduced the time and costs required to develop and deploy a service. However, transport networks become crucial to make services accessible to the user and to operate DCs. Transport networks are currently configured with big static fat pipes based on capacity over-provisioning aiming at guaranteeing traffic demand and other parameters committed in Service Level Agreement (SLA) contracts. Notwithstanding, such over-dimensioning adds high operational costs for DC operators and service providers. Therefore, new mechanisms to provide reconfiguration and adaptability of the transport network to reduce the amount of over-provisioned bandwidth are required. Although cloud-ready transport network architecture was introduced to handle the dynamic cloud and network interaction and Elastic Optical Networks (EONs) can facilitate elastic network operations, orchestration between the cloud and the interconnection network is eventually required to coordinate resources in both strata in a coherent manner. In addition, the explosion of Internet Protocol (IP)-based services requiring not only dynamic cloud and network interaction, but also additional service-specific SLA parameters and the expected benefits of Network Functions Virtualization (NFV), open the opportunity to telecom operators to exploit that cloud-ready transport network and their current infrastructure, to efficiently satisfy network requirements from the services. In the telecom cloud, a pay-per-use model can be offered to support services requiring resources from the transport network and its infrastructure. In this thesis, we study connectivity requirements from representative cloud-based services and explore connectivity models, architectures and orchestration schemes to satisfy them aiming at facilitating the telecom cloud. The main objective of this thesis is demonstrating, by means of analytical models and simulation, the viability of orchestrating DCs and networks to facilitate the telecom cloud. To achieve the main goal we first study the connectivity requirements for DC interconnection and services on a number of scenarios that require connectivity from the transport network. Specifically, we focus on studying DC federations, live-TV distribution, and 5G mobile networks. Next, we study different connectivity schemes, algorithms, and architectures aiming at satisfying those connectivity requirements. In particular, we study polling-based models for dynamic inter-DC connectivity and propose a novel notification-based connectivity scheme where inter-DC connectivity can be delegated to the network operator. Additionally, we explore virtual network topology provisioning models to support services that require service-specific SLA parameters on the telecom cloud. Finally, we focus on studying DC and network orchestration to fulfill simultaneously SLA contracts for a set of customers requiring connectivity from the transport network.En la Internet de los servicios, los proveedores de recursos relacionados con tecnologías de la información juegan un papel crítico haciéndolos accesibles a los usuarios como servicios. Dichos proveedores, hospedan plataformas y servicios en centros de datos. La oferta plataformas y servicios en la nube ha introducido nuevos paradigmas de computación tales como ofrecer la infraestructura como servicio, conocido como IaaS de sus siglas en inglés, y el software como servicio, SaaS. La disponibilidad de recursos en la nube, ha contribuido a la reducción de tiempos y costes para desarrollar y desplegar un servicio. Sin embargo, para permitir el acceso de los usuarios a los servicios así como para operar los centros de datos, las redes de transporte resultan imprescindibles. Actualmente, las redes de transporte están configuradas con conexiones estáticas y su capacidad sobredimensionada para garantizar la demanda de tráfico así como los distintos parámetros relacionados con el nivel de servicio acordado. No obstante, debido a que el exceso de capacidad en las conexiones se traduce en un elevado coste tanto para los operadores de los centros de datos como para los proveedores de servicios, son necesarios nuevos mecanismos que permitan adaptar y reconfigurar la red de forma eficiente de acuerdo a las nuevas necesidades de los servicios a los que dan soporte. A pesar de la introducción de arquitecturas que permiten la gestión de redes de transporte y su interacción con los servicios en la nube de forma dinámica, y de la irrupción de las redes ópticas elásticas, la orquestación entre la nube y la red es necesaria para coordinar de forma coherente los recursos en los distintos estratos. Además, la explosión de servicios basados el Protocolo de Internet, IP, que requieren tanto interacción dinámica con la red como parámetros particulares en los niveles de servicio además de los habituales, así como los beneficios que se esperan de la virtualización de funciones de red, representan una oportunidad para los operadores de red para explotar sus recursos y su infraestructura. La nube de operador permite ofrecer recursos del operador de red a los servicios, de forma similar a un sistema basado en pago por uso. En esta Tesis, se estudian requisitos de conectividad de servicios basados en la nube y se exploran modelos de conectividad, arquitecturas y modelos de orquestación que contribuyan a la realización de la nube de operador. El objetivo principal de esta Tesis es demostrar la viabilidad de la orquestación de centros de datos y redes para facilitar la nube de operador, mediante modelos analíticos y simulaciones. Con el fin de cumplir dicho objetivo, primero estudiamos los requisitos de conectividad para la interconexión de centros de datos y servicios en distintos escenarios que requieren conectividad en la red de transporte. En particular, nos centramos en el estudio de escenarios basados en federaciones de centros de datos, distribución de televisión en directo y la evolución de las redes móviles hacia 5G. A continuación, estudiamos distintos modelos de conectividad, algoritmos y arquitecturas para satisfacer los requisitos de conectividad. Estudiamos modelos de conectividad basados en sondeos para la interconexión de centros de datos y proponemos un modelo basado en notificaciones donde la gestión de la conectividad entre centros de datos se delega al operador de red. Estudiamos la provisión de redes virtuales para soportar en la nube de operador servicios que requieren parámetros específicos en los acuerdos de nivel de servicio además de los habituales. Finalmente, nos centramos en el estudio de la orquestación de centros de datos y redes con el objetivo de satisfacer de forma simultánea requisitos para distintos servicios.Postprint (published version

    Cross-layer modeling and optimization of next-generation internet networks

    Get PDF
    Scaling traditional telecommunication networks so that they are able to cope with the volume of future traffic demands and the stringent European Commission (EC) regulations on emissions would entail unaffordable investments. For this very reason, the design of an innovative ultra-high bandwidth power-efficient network architecture is nowadays a bold topic within the research community. So far, the independent evolution of network layers has resulted in isolated, and hence, far-from-optimal contributions, which have eventually led to the issues today's networks are facing such as inefficient energy strategy, limited network scalability and flexibility, reduced network manageability and increased overall network and customer services costs. Consequently, there is currently large consensus among network operators and the research community that cross-layer interaction and coordination is fundamental for the proper architectural design of next-generation Internet networks. This thesis actively contributes to the this goal by addressing the modeling, optimization and performance analysis of a set of potential technologies to be deployed in future cross-layer network architectures. By applying a transversal design approach (i.e., joint consideration of several network layers), we aim for achieving the maximization of the integration of the different network layers involved in each specific problem. To this end, Part I provides a comprehensive evaluation of optical transport networks (OTNs) based on layer 2 (L2) sub-wavelength switching (SWS) technologies, also taking into consideration the impact of physical layer impairments (PLIs) (L0 phenomena). Indeed, the recent and relevant advances in optical technologies have dramatically increased the impact that PLIs have on the optical signal quality, particularly in the context of SWS networks. Then, in Part II of the thesis, we present a set of case studies where it is shown that the application of operations research (OR) methodologies in the desing/planning stage of future cross-layer Internet network architectures leads to the successful joint optimization of key network performance indicators (KPIs) such as cost (i.e., CAPEX/OPEX), resources usage and energy consumption. OR can definitely play an important role by allowing network designers/architects to obtain good near-optimal solutions to real-sized problems within practical running times

    Next-Generation Transport Networks Leveraging Universal Traffic Switching and Flexible Optical Transponders

    Get PDF
    Recent developments in communication technology contributed to the growth of network traffic exponentially. Cost per bit has to necessarily suffer an inverse trend, posing several challenges to network operators. Optical transport networks are no exception to this. On one hand, they have to keep up with the expectations of data speed, volume, and growth at the agreed quality-of-service (QoS), while on the other hand, a steep downward trend of the cost per bit is a matter of concern. Thus, the proper selection of network architecture, technology, resiliency schemes, and traffic handling contributes to the total cost of ownership (TCO). In this context, this chapter looks into the network architectures, including the optical transport network (OTN) switch (both traditional and universal), resiliency schemes (protection and restoration), flexible-rate line interfaces, and an overall strategy of handover in between metro and core networks. A design framework is also described and used to support the case studies reported in this chapter

    OPTIMIZATION OF MOBILE TRANSPORT NETWORK USING INTERNET PROTOCOL/MULTI-PROTOCOL LABEL SWITCHING (IP/MPLS) APPROACH

    Get PDF
    This report focuses on a research-based project of the title ‘Optimization of Mobile Transport Network using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) Approach’. Current protocols utilized in mobile transport network are approaching a saturation point in terms of capacity to cater for a massive consumer demand growth in the network. Persistence on the conventional approaches will require much more expenditure with less encouraging revenue. Thus, much work need to be pumped into a newer and more effective alternative namely IP/MPLS. An upgrade of support node gateways and a network transmission algorithm are key elements of the project. A performance assessment of the proposed algorithm based on the Quality of Service (QoS) is also very crucial. Validation of the algorithm via the “OPNET” modeler suite software simulation results analysis is also to be carried out to define the best gateway for mapping process. A robust and flexible IP/MPLS approach will consequently results in a better network performance thus providing more opportunities for a more dynamic network growth for the benefit of mankind. The resulting approach can be further improved via continuous research and development (R&D) to produce a more reliable and resilient protocol. IP/MPLS will surely provide the vital boost to usher in the next generation of networking
    corecore