UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Integrated IT and SDN
orchestration of multi-domain
multi-layer transport networks

Arturo Mayoral Lopez de Lerma

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a I'acceptacié de les seguents
condicions d'Us: La difusié d’aquesta tesi per mitja del repositori institucional
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(http://www.tdx.cat/) ha estat autoritzada pels titulars dels drets de propietat intel-lectual
unicament per a usos privats emmarcats en activitats d’investigacié i docéncia. No s’autoritza
la seva reproduccié amb finalitats de lucre ni la seva difusio i posada a disposicié des d’un lloc
alié al servei UPCommons o TDX. No s’autoritza la presentacié del seu contingut en una finestra
o marc alie a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentacié
de la tesi com als seus continguts. En la utilitzacio o cita de parts de la tesi és obligat indicar el nom
de la personaautora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusion de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
unicamente para usos privados enmarcados en actividades de investigacion y docencia. No
se autoriza su reproduccién con finalidades de lucro ni su difusién y puesta a disposicién desde
un sitio ajeno al servicio UPCommons No se autoriza la presentacion de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentacion de la tesis como a sus contenidos. En la utilizacién o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutionalrepository UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it's obliged to indicate the name of the author.



http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

| f/\\f\\
Centre UNIVERSITAT POLITECNICA &
Tecnologic DE CATALUNYA *\
de Telecomunicacions BARCELONATECH ‘ .
de Catalunya

Integrated IT and SDN Orchestration of multi-domain
multi-layer transport networks

TESIS
para la obtencién del titulo de
Doctor por la Universitat Politecnica de Catalunya

por
Arturo Mayoral Lépez de Lerma

Co-directores:  Dr. Ricard Vilalta Canellas, Dr. Raiill Munoz Gonzalez

Centre Tecnologic de Telecomunicacions de Catalunya - CTTC/CERCA

Ponent:  Dr. Gabriel Junyent Giralt

Universitat Politecnica de Catalunya

Departament de Teoria del Senyal i Comunicacions

Composicié del Tribunal

President: David Larrabeiti Lépez
Secretari: Salvatore Spadaro
Vocal: Ignacio De Miguel Jimenez



Para mis padres.






Summary

Telecom operators (Telcos) networks’ management and control remains partitioned by technology,
equipment supplier and networking layer. In some segments (e.g., in IP) the network operations are
highly costly due to the need of individual, and even manual, configuration of the network equipment
by highly specialized personnel. In multi-vendor networks, extremely expensive and never ending
integration processes between Network Management Systems (NMSs) and the rest of systems (e.g.,
Operations Support Systems - OSSs and Business Support Systems - BSSs) is a common situation,
due to lack of adoption of standard interfaces in the management systems of the different equipment
suppliers. Moreover, the increasing impact, on Telco’s transport networks, of the new traffic flows
introduced by the deployment of massive Data Centers (DCs) is also imposing new challenges that
traditional networking is not ready to overcome.

To complete the picture, the Fifth Generation of Mobile Technology (5G) is also introducing
stringent network requirements such as the need of connecting to the network billions of new devices
in Internet of Things (IoT) paradigm, new ultra-low latency applications (i.e., remote surgery) and
vehicular communications. All these new services, together with enhanced broadband network access,
are supposed to be delivered over the same network infrastructure.

In this PhD Thesis, an holistic view of Network and Cloud Computing resources, based on the
recent innovations introduced by Software Defined Networking (SDN), is proposed as the solution for
designing an end-to-end multi-layer, multi-technology and multi-domain cloud and transport network
management architecture, capable to offer end-to-end service management and control, from the DC
networks to customers access networks, and the virtualization of network resources, opening the door
to new ways of slicing the network resources for the forthcoming 5G deployments.

The first contribution of this PhD Thesis deals with the design and validation of different SDN-
based network orchestration architectures capable to improve the current state-of-the art solutions for
the management and control of multi-layer, multi-domain backbone transport networks. The multi-
layer and multi-domain network problems have been assessed and progressively solved by different
control and management architectures which has been designed and evaluated in real evaluation
environments. One of the major findings of this work has been the need of developed a common
information model for transport network’s management, capable to describe the resources and services
of multi-layer networks. In this line, the Control Orchestration Protocol (COP) has been proposed
in this Thesis, as a first contribution towards an standard management interface based on the main
principles driven by SDN.



Furthermore, this PhD Thesis introduces a novel architecture capable to coordinate the man-
agement of IT computing resources together with inter- and intra-Data Center (DC) networks. The
provisioning and migration of virtual machines together with the dynamic reconfiguration of the net-
work has been successfully demonstrated in a feasible timescale. Moreover, a resource optimization
engine is introduced in the architecture to introduce optimization algorithms capable to solve different
allocation problems such the optimal deployment of Virtual Machine Graphs (VMGs) over different
DCs locations minimizing the inter-DC network resources allocation. A solution for this problem
is also presenting and a baseline blocking probability measurement over different network loads was
obtained.

The third major contribution is the result of the previous two. With a converged cloud and
network infrastructure controlled and operated jointly, the holistic view of the network allows the
on-demand provisioning of network slices consisting of dedicated network and cloud resources over a
distributed DC infrastructure interconnected by an optical transport network. The last chapters of
this thesis discuss the management and orchestration of 5G network slices based over the control and
management components designed and developed in the previous chapters. The design of one of the
first network slicing architectures and the deployment of a fully operational 5G network slice in a real
Testbed, is one of the major contributions of this thesis.

Keywords: Software-Defined Networking (SDN), GMPLS/PCE, Cloud computing, SDN Orches-
tration, Network Virtualization, 5G Network Slicing.



Resum

La gestio i el control de les xarxes dels operadors de telecomunicacions (Telcos), encara avui, esta
segmentat per tecnologia, per proveidors d’equipament i per capes de xarxa. En alguns segments
(Per exemple en IP) 'operaci6 de la xarxa és tremendament costosa, ja que en molts casos encara
es requereix de configuraci6 individual, i fins i tot manual, dels equips per part de personal altament
especialitzat. En xarxes amb multiples proveidors, els processos d’integracié entre els Sistemes de
gestié de xarxa (NMS) i la resta de sistemes (per exemple, Sistemes de suport d’operacions - OSS
i Sistemes de suport de negocis - BSS) sén habitualment interminables i extremadament costosos a
causa de la falta d’adopcié d’interficies estandard per part dels diferents proveidors de xarxa. A més,
I'impacte creixent en les xarxes de transport dels nous fluxos de transit introduits pel desplegament
massius de Data Centers (DC), introdueix nous desafiaments que les arquitectures de gesti6 i control
de les xarxes tradicionals que no estan llestes per afrontar.

Per acabar de descriure el context, la cinquena generacié de tecnologia mobil (5G) també presenta
nous requisits de xarxa altament exigents, com la necessitat de connectar a la xarxa milers de milions
de dispositius nous, dins el context de 'Internet de les coses (IOT), o les noves aplicacions d’ultra
baixa laténcia (com ara la cirurgia a distancia) i les comunicacions vehiculars. Se suposa que tots
aquests nous serveis, juntament amb ’accés millorat a la xarxa de banda ampla, es lliuraran a través
de la mateixa infraestructura de xarxa.

Aquesta tesi doctoral proposa una visié holistica dels recursos de xarxa i cloud, basada en els
principis introduits per Software Defined Networking (SDN), com la soluci6é per al disseny de una
arquitectura de gestié extrem a extrem per a escenaris de xarxa multi-capa, multi-domini i consistents
en multiples tecnologies de transport. Aquesta arquitectura de gestié i control de xarxes transport
i recursos IT, ha de ser capag d’oferir serveis d’extrem a extrem, des de les xarxes intra-DC fins a
les xarxes d’accés dels clients i oferir a més virtualitzacié dels recursos de la xarxa, obrint la porta
a noves formes de segmentacié a les xarxes de transport i la infrastructura de cloud, pels propers
desplegaments de 5G.

La primera contribucié d’aquesta tesi doctoral consisteix en la validacié de diferents arquitectures
d’orquestracié de xarxa basades en SDN capaces de millorar les solucions existents per a la gestio
i control de xarxes de transport troncals multi-domini i multicapa. Aquests problemes (gesti6 de
xarxes multicapa i multi-domini), han estat avaluats de manera incremental, mitjangant el disseny
i avaluacié experimental, en entorns de proves reals, de diferents arquitectures de control i gestio.
Un dels principals troballes d’aquest treball ha estat la necessitat de dissenyar un model d’informaci

iii



comu per a les interficies de gestié de xarxes, capag¢ de descriure els recursos i serveis de la xarxes
transport multicapa. En aquesta linia, el Protocol de Control Orchestration (COP, en les seves sigles
en angleés) ha estat proposat en aquesta Tesi, com una primera contribucié cap a una interficie de
gestié de xarxa estandard basada en els principis basics de SDN.

A més, en aquesta tesi presentem una arquitectura innovadora capag de coordinar la gestié de els
recursos I'T juntament amb les xarxes inter i intra-DC. L’aprovisionament i la migracié de maquines
virtuals juntament amb la reconfiguracié dinamica de la xarxa, ha estat demostrat amb eéxit en una
escala de temps factible. A més, ’arquitectura incorpora una plataforma per a ’execucié d’algorismes
d’optimitzacié de recursos, capacos de resoldre diferents problemes d’assignacié, com el desplegament
optim de Grafs de Maquines Virtuals (VMG) en diferents ubicacions de DC que minimitzen la assig-
nacié de recursos de xarxa entre DC. També es presenta una solucié basica per a aquest problema,
aixi com els resultats de probabilitat de bloqueig per a diferents carregues de xarxa.

La tercera contribuci6 principal és el resultat dels dos anteriors. Amb una infraestructura de xarxa
i cloud convergent, controlada i operada de manera conjunta, la visié holistica de la xarxa permet
I’aprovisionament sota demanda de 'network slices" que consisteixen en subconjunts de recursos d’
xarxa i cloud, dedicats per a diferents clients, sobre una infraestructura de Data Centers distribuida
i interconnectada per una xarxa de transport optica. Els tltims capitols d’aquesta tesi tracten sobre
la gesti6 i organitzacié de "network slices" per a xarxes 5G en funcié dels components de control i
administracié dissenyats i desenvolupats en els capitols anteriors. El disseny d’una de les primeres
arquitectures de "network slicing" i el desplegament d’un "slice" de xarxa 5G totalment operatiu en
un Testbed real, és una de les principals contribucions d’aquesta tesi.

Paraules clau: Xarxes definides per programari (SDN), GMPLS / PCE, Cloud computing,
OpenFlow, orquestracié SDN, Network Virtualization, Particionament de la Xarxa (Network Slicing).



Resumen

La gestion y el control de las redes de los operadores de telecomunicaciones (Telcos), todavia hoy, esta
segmentado por tecnologia, por proveedor de equipamiento y por capa de red. En algunos segmentos
(por ejemplo en IP) la operacién de la red es tremendamente costosa, ya que en muchos casos ain se
requiere configuracién individual, e incluso manual, de los equipos por parte de personal altamente
especializado. En redes con multiples proveedores, los procesos de integracién entre los Sistemas de
gestién de red (NMS) y el resto de sistemas (por ejemplo, Sistemas de soporte de operaciones - OSS y
Sistemas de soporte de negocios - BSS) son habitualmente interminables y extremadamente costosos
debido a la falta de adopcién de interfaces estandar por parte de los diferentes proveedores de red.
Ademas, el impacto creciente en las redes de transporte de los nuevos flujos de trafico introducidos
por el despliegue masivo de Data Centers (DC), introduce nuevos desafios que las arquitecturas de
gestién y control de las redes tradicionales no estan preparadas para afrontar.

Para acabar de describir el contexto, la quinta generacién de tecnologia mévil (5G) también
introduce nuevos requisitos de red altamente exigentes, como la necesidad de conectar a la red miles
de millones de dispositivos nuevos, dentro del contexto del Internet de las cosas (IoT), o las nuevas
aplicaciones de ultra baja latencia (como por ejemplo la cirugia a distancia) y las comunicaciones
vehiculares. Se supone que todos estos nuevos servicios, junto con el acceso mejorado a la red de
banda ancha, se entregaran a través de la misma infraestructura de red.

Esta tesis doctoral propone una visién holistica de los recursos de red y cloud, basada en los
principios introducidos por Software Defined Networking (SDN), como la solucién para el disefio de
una arquitectura de gestiéon extremo a estremo para escenarios de red multi-capa, multi-dominio y
consistentes en multiples tecnologias de transporte. Dicha arquitectura de gestién y control de redes
transporte y recursos IT, debe ser capaz de ofrecer servicios de extremo a extremo, desde las redes
intra-DC hasta las redes de acceso de los clientes y ofrecer ademas virtualizacién de los recursos de la
red, abriendo la puerta a nuevas formas de segmentacién en las redes de transporte y la infrastructura
de cloud, para los proximos despliegues de 5G.

La primera contribucion de esta tesis doctoral consiste en la validacion de diferentes arquitecturas
de orquestracién de red basadas en SDN, capaces de mejorar las soluciones existentes para la gestion
y control de redes de transporte troncales multi-dominio y multi-capa. Estos problemas (gestion de
redes multi-capa y multi-dominio), han sido evaluados de manera incremental, mediante el disefio y
la evaluacion experimental, en entornos de pruebas reales, de diferentes arquitecturas de control y
gestion. Uno de los principales hallazgos de este trabajo ha sido la necesidad de disefiar un modelo de



informacién comin para las interfaces de gestion de redes, capaz de describir los recursos y servicios
de la redes transporte multi-capa. En esta linea, el Protocolo de Control Orchestration (COP, en sus
siglas en inglés) ha sido propuesto en esta Tesis, como una primera contribucién hacia una interfaz de
gestion de red estandar basada en los principios basicos de SDN.

Ademaés, en esta tesis presentamos una arquitectura novedosa capaz de coordinar la gestion de
los recursos I'T junto con las redes inter e intra-DC. El aprovisionamiento y la migracion de maquinas
virtuales junto con la reconfiguracién dinamica de la red, ha sido demostrado con éxito en una escala
de tiempo factible. Ademads, la arquitectura incorpora una plataforma para la ejecucién de algoritmos
de optimizacién de recursos, capaces de resolver diferentes problemas de asignacién, como el despliegue
6ptimo de Grafos de Maquinas Virtuales (VMG) en diferentes ubicaciones de DC que minimizan la
asignacién de recursos de red entre DC. También se presenta una solucién bésica para este problema,
asi como los resultados de probabilidad de bloqueo para diferentes cargas de red.

La tercera contribucion principal es el resultado de las dos anteriores. Con una infraestructura
de red y cloud convergente, controlada y operada de manera conjunta, la vision holistica de la red
permite el aprovisionamiento bajo demanda de “network slices” que consisten en sub-conjuntos de
recursos de red y cloud dedicados para diferentes clientes, sobre una infraestructura de DCs distribuida
e interconectada por una red de transporte éptica. Los iltimos capitulos de esta tesis discurren
sobre la gestion de estos “network slices” para redes 5G en funcién de los componentes de control y
administraciéon disenados y desarrollados en los capitulos anteriores. El disefio de una de las primeras
arquitecturas de “network slicing” y el despliegue de un “slice” de red 5G totalmente operativo en un
Testbed real, es una de las principales contribuciones de esta tesis.

Palabras clave: Redes definidas en Software (SDN), GMPLS / PCE, Cloud computing, Open-
Flow, Orquestracién SDN, Network Virtualization, Particionamiento de la Red (Network Slicing).



Contents

Summary

Resum

Resumen

List of Figures

List of Tables

Abbreviations

I Introduction

1 Background and Motivation

1.1
1.2

1.3

1.4

1.5

Motivation . . . . . . . .. e
Traditional Internet and Transport Network architectures . . . . .. .. ..
1.2.1  Wavelength Switched Optical Networks . . . . . ... ... ... ..
1.2.2 IP/MPLS Networks . . . . ... ... ... .. ... . ........

Network management and control technologies for transport networks

1.3.1  Generalized Multiprotocol Label Switching protocol . . . . . .. ..
1.3.2 Software-Defined Networking . . . . . . . ... .. .. ... .....

1.3.3 Application Programming Interfaces for network management

Data Center virtualization orchestration and networking . . . . . . . .. ..
1.4.1 Data Center Orchestration . . ... ... ... .. ... .......

1.4.2 Distributed Data Center interconnection . . . . . . . . . . . . . ...
The fifth generation of mobile technology (5G) paradigm . . . . . . ... ..

1.5.1 Network Function Virtualization . . . . . . . . .. . ... ... ...
1.5.2 Network Slicing . . . . . . .. . ..

vii

iii

xiii

xvii

xix



2 PhD Thesis Objectives 27

2.1

2.2

2.3

End-to-End service provisioning for multi-domain, multi-layer transport networks . . . 27
2.1.1  SDN Orchestration architecture design . . . . . . . .. .. ... ... ... ... 28
2.1.2  Control Orchestration Protocol . . . . . . . . ... ... ... ... .. ..... 28
Integrated Orchestration of Cloud and transport network services . . . . . . . ... .. 29
2.2.1 Integrated IT and SDN Orchestration architecture . . . . . .. ... ... ... 29
2.2.2  Geographically distributed Data Center interconnection . . . . . . ... .. .. 29
2.2.3 E2E service orchestration for cloud computing . . . .. ... ... ... .... 30
5G Network Slicing . . . . . . . . . . L 30
2.3.1 Architecture definition . . . . . . . ... 30

2.3.2  5G Network Slicing architecture validation: Virtual Network Operator use case. 30

3 The Cloud Computing Platform and Transport Network of the ADRENALINE
Testbed 31

3.1

3.2

GMPLS/PCE enabled Ethernet over WSON platform of the ADRENALINE Testbed 31

The Cloud Computing Platform of the ADRENALINE Testbed . . . . ... ... ... 33

II End-to-End service provisioning for multi-domain, multi-layer Transport

Networks 35
4 Multi-layer SDN End-to-End service provisioning 37
4.1 Multi-layer SDN architecture . . . . . . . . . . . . . . 37
4.2 Proposed extended multi-layer SDN controller . . . . . . . ... ... ... ... .... 39
4.2.1 Muti-layer orchestration . . . . . .. .. .. L L o 40

4.2.2 ODL internal services . . . . . . . . . L L 41

4.2.3 PCEP-Speaker Service . . . . . . . . ... 41

4.3 Experimental demonstration and results . . . . . . .. ..o 42
4.4 Conclusions . . . . . . . L 43



5 SDN orchestration of multi-domain multi-layer networks

5.1

5.2

5.3

5.4

9.5

5.6

6 The

6.1

6.2

6.3

6.4

Introduction . . . . . . . . e

SDN Orchestration procedures and status . . . . . . .. .. ... oL
5.2.1 Topology discovery . . . . . . . . .o
5.2.2 Path Computation . . . . . . . ... ...

5.2.3 Connectivity provisioning . . . . . . . . .. .. oo

Multi-domain SDN Orchestrator (MSO) architecture . . . . . . .. ... .. ... ...
5.3.1 Orchestration Controller . . . . . . . . . ... .. ..
5.3.2 Topology Manager . . . . . . . . . . . .
5.3.3 Path Computation Element . . . . . . .. .. .. ... .
5.3.4 Virtual Network Topology Manager . . . . . .. .. .. .. ... ........
5.3.5 Provisioning Manager . . . . . . . .. ... oo

5.3.6 OAM Handler . . . . . . . . . . . .

Experimental evaluation . . . . . . . .. ...
5.4.1 SDN orchestration of TE-aware multi-domain, multi-layer networks. . . . . . .
5.4.2 Automatic Provisioning of Fixed and Mobile Services . . ... ... ... ...
Performance evaluation . . . . . .. .. . L oo
5.5.1 Topology discovery and transfer analysis . . . . . .. .. ... ... ... ....

5.5.2 Single layer and multi-layer E2E service provisioning performance evaluation. .

Conclusions . . . . . . . e

Control Orchestration Protocol (COP)
Requirements identification, modeling and design . . . . . . . . . ... ... ...

Control Orchestration Protocol definition . . . . . . . . . . . . . . . . ... ....
6.2.1 COP data model definition based on YANG . . . . . . . . . . . ... ... ...

6.2.2 COP interface definition based on RESTCONF/SWAGGER . ... ... ...

Experimental validation . . . . . . . . . . ...

6.3.1 Use case I: End-to-End service provisioning and recovery in OPS/OCS multi-
domain networks . . . . ...

ConcluSions . . . . . o o e

45

46

47
48
49

49

50
50
o1
51
52
52

93

54

o4

o7

60

60

61

62

63



7 The Hierarchical SDN Orchestration (H-ORCH) approach 73

7.1 Architecture overview . . . . . . . .. 74
7.2 MSO extensions for H-ORCH: Abstraction Manager . . . . . ... ... ... ... .. 75
7.3 Experimental assessment . . . . . . ... 77
7.4 Performance evaluation . . . . . . .. .. L 80
7.4.1 Single-domain characterization . . . . . . .. .. .. ... ... ... ... 80

7.4.2 Multi-domain characterization . . . . . . . .. ... ..o 82

7.5 Conclusions . . . . . . . . . e 82

8 The Peer SDN Orchestration (P-ORCH) approach 83
8.1 Peer Orchestration architecture . . . . . . . .. .. .. ... oL 84
8.2 Experimental Assessment and evaluation . . . . . . .. ... ... .. ... ... ..., 86
8.3 Conclusions . . . . . . . . L 88
IIT Integrated Orchestration of Cloud and Transport Network services 89

9 Integrated IT and SDN Orchestration across geographically distributed Data-

centers. 91
9.1 Distributed DC interconnection . . . . . . . .. .. .. L L 92
9.2 Integrated IT and Network Orchestration architecture . . . . . . . ... ... ... .. 93
9.3 Experimental validation . . . . . .. .. . o o L 95

9.3.1 Use case I: DC interconnection across a multi-domain, multi-layer network. . . 95

9.3.2 Use case II: Seamless Virtual Machine migration between geographically dis-

tributed datacenters . . . . . . . ..o 96

9.4 Conclusions . . . . . . . . e 100
10 IT and Network resource allocation and orchestration 103
10.1 Virtual Infrastructure Manager and Planner (VIMAP) architecture . . . . . . . .. .. 104
10.2 Virtual Machine Graphs (VMG) resource allocation . . . .. ... ... ... ... .. 105
10.2.1 Problem definition . . . . . . . .. L 105

10.2.2 VMG mapping problem . . . . . . ... oo 106

10.2.3 Baseline VMG embedding algorithm . . . . . . ... ... ..., 107

10.3 VMG allocation results . . . . . . . . . . L 109

10.4 Conclusions . . . . . . . o o 110



IV 5G Network Slicing 111

11 Multi-tenant 5G Network slicing 113
11.1 Multi-tenant 5G Network slicing architecture . . . . . . .. .. .. ... ... ... .. 114
11.2 Dynamic deployment, operation and management of 5G network slices . . . . . . . .. 116

11.2.1 Virtualization of the Transport Network infrastructure. . . . . . . ... .. .. 116
11.2.2 Virtualization of SDN controller instance. . . . . . . . . ... ... ... .... 117
11.2.3 Virtualization of Management and Orchestration (MANO) instances. . . . . . . 118
11.3 Experimental validation and results. . . . . . . . .. ... oo L 119
11.3.1 Use case I: Creation and operation of a 5G Network Slice. . . . . . .. ... .. 120
11.3.2 Use case II: Deployment of virtual Mobile Network Operator (vMNO) . . . . . 121
11.4 Conclusions . . . . . . . . . oo 124

12 Cascading of tenant SDN and cloud controllers for 5G network slicing 127
12.1 Cloud and Network Cascading architecture for 5G Network Slicing . . . . . . . .. .. 128
12.2 Experimental validation and results. . . . . . . . .. . ... ... L. 130

12.2.1 Network Slice provisioning . . . . . . . . . . . . . o 130
12.2.2 Network Slice operation . . . . . . . . . . . . .. 130
12.3 Conclusions . . . . . . . . . . e 132

V Dissemination and Exploitation Results 133

13 Scientific publications 135
13.1 Journals . . . . . ..o 135
13.2 Conference papers . . . . . . . . . . e e e e e e 136
13.3 Collaborations . . . . . . . . . . e 137

14 International, European and national R&D projects and standardization activities 139

14.1 International R&D projects . . . . . . . . . . L 139
14.1.1 STRAUSS - Scalable and efficient orchestration of Ethernet services using software-
defined and flexible optical networks . . . . . . .. ... ... ... ....... 139
14.2 European R&D projects . . . . . . . . . 140
14.2.1 COMBO - COnvergence of fixed and Mobile BrOadband access/aggregation
networks . . . . .. 140
14.2.2 5G-CROSSHAUL - The 5G Integrated fronthaul/backhaul . .. ... ... .. 141
14.3 Standardization activities . . . . . . . . .. L L 142
14.3.1 ONF Transport APT . . . . . . . . . . . . 142

14.3.2 Optical Internetworking Forum - OIF . . . . . ... ... ... ... .. .. 142



VI Conclusions and Future Work 143

15 Conclusions and future work 145
15.1 Conclusions . . . . . . . . . oL e 145
15.2 Future work . . . . . oL e 147

Bibliography 149

A Control Orchestration Protocol specification 155

Appendix 155
A.1 COP data model definition based on YANG . . . . . . . . .. ... ... ... ..... 155

A1l Call Service . . . . . o o 155
A.1.2 Topology Service . . . . . . . . . 164
A.1.3 Path Computation Service . . . . . . . . . . .. L 168
A.1.4 Virtual Network Service . . . . . . . . . . . . ... 169
A2 COP interface definition based on RESTCONF/SWAGGER . . . . .. .. ... .. .. 172
A2.1 Call Service . . . . . . o 173
A.2.2 Topology Service . . . . . . . . e 174
A.2.3 Path Computation Service . . . . . . . . . . ... 177

A.2.4 Virtual Network Service . . . . . . . . . . . 177



List of Figures

1.1
1.2
1.3
1.4
1.5

1.6
1.7

3.1
3.2

4.1
4.2

4.3
4.4
4.5

5.1
5.2
5.3

IP over WDM transport network architecture. . . . . . . ... ... ... ... ... 8
IP over OTN/WDM transport network architecture. . . . . . . . ... ... ... ... 10
ABNO Architecture (https://tools.ietf.org/html/rfc7491) [1]. . . . .. ... .. 14
Simplified view of an SDN architecture. . . . . . . ... ... ... ... ........ 15

OpenFlow Architecture (https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf). . .. 15

ODL Controller (https://www.opendaylight.org/what-we-do/current-release/lithium) 18

ETSI NFV reference architectural framework [2]. . . . . . ... ... . ... ... ... 25

GMPLS/PCE enabled Ethernet over WSON platform of the ADRENALINE Testbed 32
The Cloud Computing Platform and Transport Network of the ADRENALINE Testbed 33

Multi-layer network and SDN control architecture . . . . .. ... ... ... ..... 38
Extended Multi-layer SDN controller archiecture:(a) SDN controller internal compo-

nents, (b) PCEP-Speaker block diagram. . . . . . . ... ... ... .. ... ...... 39
E2E provisioining workflow. . . . . . .. L oo o 40
Experimental validation results . . . . . . .. ... Lo o oo 42

OpenDaylight controller Graphic User interface topology view after Optical LSP cre-

ation between nodes STRONGEST 1 and STRONGEST 2. . . . . .. ... ..... 43
Multi-domain SDN Orchestration (MSO) architecture. . . . . . .. ... .. ... ... 47
MSO architecture for multi-domain, multi-controller orchestration . . ... ... ... 50

Multi-domain SDN Orchestration of the multi-layer, multi-domain network of the ADRENALINE

Testbed. . . . . . e 54



5.4
5.5
5.6
5.7

5.8
5.9
5.10
5.11

6.1

6.2
6.3
6.4

6.5

6.6
6.7

6.8

7.1

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

E2E provisioining workflow with ABNO orchestrtion achitecture. . . . . . .. ... ..
E2E provisioining workflow with ABNO orchestrtion achitecture. . . . . . ... .. ..
Per-flow bandwidth limitation Wireshark capture. . . . . . . ... ... ... ... ..

Per-flow bandwidth limitation: a) IO graph OF Switch output_port without meter
limitation, b) 10 graph OF Switch output_ port throughput with 600, 300 and 100
Mbps meter limitation. . . . . . . . . . .. e

Multi-layer aggregation MSO for Fixed-Mobile convergence. . . . . . . ... ... ...
Creation of the mobile service via MSO, OFP Extension and GTP-U over MPLS. . . .

Topology retrieval /transfer throughput analysis. . . . . ... ... ... ... .....

(a) Single Layer E2E and (b) Multilayer E2E service provisioning setup delay distribution.

Multi-domain SDIN Orchestration architecture with Control Orchestration Protocol
(COP) as unified southbound (SBI) and northbound (NBI) interface . . . .. ... ..

Multi-domain experimental multi-partner testbed scenario . . . . . . .. ... ... ..
Abstracted topology seen by the MSO . . . . . . . ... ... ... ...

E2E QoS-aware service provisioning workflow in the proposed OPS/OCS multi-domain
network scenario. . . . . ... L. L L e

Experimental validation of COP call service for QoS-aware E2E connectivity service
provisioning traffic capture . . . . . . . . ... L

E2E service recovery with QoS workflow. . . . .. ... ... . o000

Experimental validation of COP call service for QoS-aware E2E QoS transport service
provisioning (Call Object). . . . . . . . . . . ..

E2E service recovery with Traffic capture. . . . . . . . ... ... .. oL

Proposed Hierarchical SDN Orchestration (H-ORCH) architecture in a multi-domain
network scenario. . . . ... oL oL

Extended MSO internal architecture . . . . . . . . . ... ... ... ... .. ...
Hierarchical SDN orchestration architecture . . . . . . . .. ... ... ... .. ....
Network Topology view at the pMSO . . . . . . .. .. .. .. ... ... ..
Message exchange workflow for E2E provisioning and recovery connectivity services.

FE2E provisioning wireshark captures at pMSO and ¢cMSO. . . . . ... ... ... ...
E2E recovery wireshark captures at the pMSO. . . . . .. ... ... ... ... ....
Data plane E2E recovery between UE and Server. . . . . .. ... .. ... ......
Network Topology view at the pMSO. . . . . . . . .. ... ... ... .. ....

Setup delay histogram and CDF from the GMPLS/RSVP-TE controllers, from the
AS-PCE, and from the cMSO. . . . . . .. ...

o8
o8
60
61
61

64
68
69

70

70
71

71
72

75
75
7
7
78
79
79
80
80



7.11 Setup delay and histogram at the parent MSO. . . . . . .. ... ... .. ... .... 82

8.1 Proposed Peer Orchestration architecture network architecture . . . . .. . ... ... 84
8.2 Neighbor recursion pattern. . . . . . . . . . ... L 85
8.3 Topological views from SDN-OEU and SDN-O-JP. . . ... ... ... ......... 85
8.4 Message workflow for VM and Connectivity Service creation . . . . . . . . . ... ... 86

8.5 International Europe/Japan multi-partner network scenario for P-ORCH architecture
demonstration using COP as unified orchestration interface. . . . . . .. ... ... .. 87

8.6 Wireshark captures from three viewpoints: Cloud and network orchestrator, SDN-O-JP,

and SDN-O-EU . . . . . . . 87
9.1 Integrated SDN IT and Network orchestration (SINO) architecture. . . ... ... .. 93
9.2 Experimental DC interconnection scenario. . . . . . . .. . ... ... ... ... ... 94
9.3 Integrated SDN/IT Orchestration workflow. . . . . . . . ... ... ... ... .. ... 96
9.4 Control traffic capture - IT and Network orchestration workflow based on COP. . . . . 96
9.5 Control traffic capture - COP Call request detail. . . . . . ... ... ... ... .... 97
9.6 VM Migration scenario. . . . . . . . . . .. 97
9.7 VM migration flow diagram. . . . . . . .. ... oo L 98
9.8 Wireshark capture of SINO commands; . . . . .. .. .. ... ... ... ....... 99
9.9 VM migration traffic (packets/s) received in DC2 over time . . . . . ... .. ... .. 100
9.10 ICMP traffic capture between VM1 and VM2 during VM1 seamless migration. . . . . 100
10.1 VIMaP internal architecture, building blocks. . . . . . . .. .. ... ... ... ... 104
10.2 (a) NSF Network of 14 nodes with 6 DC; (b) VMG request blocking orobability of

GreedyFF+CSPF and Random Fit+CSPF algorithms. . . . . . ... ... ... .. .. 109
11.1 5G network slicing . . . . . . . . . L 114
11.2 Proposed 5G slicing architecture . . . . . . . .. . ... L o Lo 115
11.3 5G Slice creation workflow . . . . . . . . ... L Lo 117
11.4 5G Slice creation workflow . . . . . . . .. .. L L Lo 118
11.5 DPI VNF instance and network services provisioning operations done by Tenant MANO

Instance. . . . . . ..o e e e e 119
11.6 DPI forwarding graph. . . . . . . . . .. L 119
11.7 5G slice provisioning traffic capture . . . . . . . . . . ... Lo 120
11.8 DPI VNF deployment traffic capture. . . . . . . ... ... .. ... ... .. ..... 120

11.9 a) vSDN controller view, b) DPI statistics. . . . . . . ... ... ... ... ...... 121



11.10Physical multi-layer aggregation network connecting RANs and DCs and abstracted

view of the backhaul networks per MNO. . . . .. .. ... ... ... ... ...... 122
11.11SDN/NFV orchestration architecture providing MNO backhaul virtual networks. . . 123
11.12Workflow for provisioning MNO virtual backhaul network and VNFs. . . . . . .. .. 124

11.13Capture of the experimental control messages for setting up the VNFs and virtual
backhaul network. . . . . .. L L 124

12.1 Cascading of SDN orchestrators, cloud orchestrators and VIMs for multi-tenant network

slicing . . . .. 128
12.2 Network Slicing architecture. . . . . . . . . . . .. .. ... . ... 129
12.3 VIMaP extended architecture. . . . . . . . . . . . ... L 129
12.4 5G Slice provisioning workflow . . . . . .. ... Lo oo 130
12.5 Network Slice provisioning traffic caputure. . . . . . . . . . ... ... ... ... 131
12.6 5G Slice provisioning workflow . . . . . . . ... L oo oo 131
12.7 Network Slice operation traffic caputure. . . . . . . . .. .. .. .. L L. 132
A.1 COP Call service UML diagram . . . . . . . .. . .. . . e 163
A.2 COP Topology service UML diagram . . . . . . . .. ... . .. ... .. .. 167
A.3 COP Path Computation service UML diagram . . . . .. . ... ... ... ...... 169
A.4 COP Virtual Network service UML diagram . . . . . . . . ... .. ... ... ..... 172
A5 COP Call service RESTCONF interface. . . . . . . . . . . .. ... .. ... ...... 173
A.6 COP Call service RESTCONF interface. . . . . . . . . . . .. ... ... ... ..... 174
A.7 COP Topology service RESTCONF interface paths SWAGGER, editor display. . . . . 175
A.8 COP Topology service JSON Data models SWAGGER editor display. . . . ... ... 176

A.9 COP Path Computation service RESTCONF interface paths SWAGGER editor display. 177
A.10 COP Path Computation service JSON Data models SWAGGER editor display. . . . . 177
A.11 COP Virtual Network service RESTCONF interface paths SWAGGER editor display. 178
A.12 COP Virtual Network service JSON Data models SWAGGER editor display. . . . . . 179



List of Tables

6.1 QoSclasses . . . . . . 69
10.1 Experiments parameter configuration . . . . . . . .. .. ... L. 109
11.1 Experimental setup delays . . . . . . . . . . . .. 121

xvii






Abbreviations

ABNO
API
ADC
BBU
BER
BGP
BSS
CAPEX
CDN
CLI
COP
COTS
CRAN
DAC
DC
DEMUX
DP
DSP
DWDM
E2E
EDFA
EON
ERO
FEC
GMPLS
HT

HW
TaaS
IEEE
IETF
LDP
LLDP
LSP

Applications-based Network Operations
Application Programming Interface
Analog to Digital Converter

BaseBand Unit

Bit Error Ratio

Border Gateway Protocol

Business Support System

Capital Expenditures

Content Delivery Network

Command Line Interface

Control Orchestration Protocol
Commercial Off The Shelf

Cloud Radio Access Network

Digital to Analog Converter

Data Center

Demultiplexer

Dual Polarization

Digital Signal Processing

Dense Wavelength Division Multiplexing
End-to-End

Erbium Doped Fibre Amplifier

Elastic Optical Network

Explicit Route Object

Forward Error Correction

Generalized Multi Protocol Label Switching
Holding Time

HardWare

Infrastructure as a Service

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

Label Distribution Protocol

Link Layer Discovery Protocol

Label Switched Path

Xix



IT
ITU
JSON
LAN
MEC
MEF
MEMS
MPLS
MSO
MTU
MUX
NBI
NEFV
NFVi
OCS
ODU
ODL
OEO
OF
OFDM
OFDMA
OIF
OMS
ONF
OPEX
OPM
OoPS
OSI
OSNR
OSPF
0SS
OTN
OTSi
OTSiA
OTS
OTU
OVS
0).(@)
PCE
PCEP
PoP
PWE
PXC
QAM
QoS
QPSK
REST
ROADM
Rol
RPC

Information Technology

International Telecommunications Union
JavaScript Object Notation

Local Area Network

Mobile Edge Computing

Metro Ethernet Forum

Micro-Electro Mechanical Systems
Multi Protocol Label Switching
Multi-domain SDN Orchestrator
Maximum Transmission Unit
Multiplexer

NorthBound Interface

Network Function Virtualization
Network Function Virtualization infrastructure
Optical Circuit Switching

OTN Data Unit

OpenDayLight

Optic-Electric-Optic

OpenFlow

Orthogonal Frequency Division Multiplexing
Orthogonal Frequency Division Multiple Access
Optical Internetworking Forum

Optical Multiplex Section

Open Networking Foundation
Operational Expenditures

Optical Performance Monitor

Optical Packet Switching

Open Systems Interconnection

Optical Signal to Noise Ratio

Open Shortest Path First

Operations Support System

Optical Transport Network

Optical Tributary Signal

Optical Tributary Signal Assembly
Optical Transmission Section

Optical Transport Unit

Open Virtual Switch

Optical Cross Connect

Path Computation Element

Path Computation Element Protocol
Point of Presence

PseudoWire Emulation Edge to Edge
Photonics Cross-Connects

Quadrature Amplitude Modulation
Quality of Service

Quadrature Phase Shift Keying
Representational State Transfer
Reconfigurable Optical Add/Drop Module
Return of Investment

Remote Procedure Call



RSVP
SAL
SDH
SDN
SDO
SLA
SNMP
SONET
TDM
TE
TED
URI
VM
VNF
VON
VPN
VTN
WDM
WSON
WSS
YANG
XML

Resource Reservation Protocol
Services Abstraction Layer
Synchronous Digital Hierarchy
Software Defined Networking
Standards Defining Organization
Service Level Agreement

Simple Network Management Protocol
Synchronous Optical NETworking
Time Division Multiplexing
Traffic Engineering

Traffic Engineering Database
Uniform Resource Identifier
Virtual Machine

Virtualized Network Function
Virtual Optical Network

Virtual Private Network

Virtual Tenant Network
Wavelength Division Multiplexing
Wavelength Switched Optical Networks
Wavelengths Selective Switches
Yet Another Next Generation
eXtensible Markup Language






Acknowledgements

In the first place I would like to thank my parents Raquel y Carlos for all the support given during
all these years of growth, new challenges and hard work. They always have had the right word to
encourage me to continue pushing harder when it was needed. I can just thanks them for teaching
that hard work, passion and perseverance are they right ingredients to succeed in anything you want
to achieve.

This thesis would not have been possible without the help, support and patience of my PhD
Advisors, Dr. Ricard Vilalta and Dr. Raul Munoz, I am really grateful for all what I learned from
them during these years. It would also have not been possible without the help of the rest of the
Optical Networks and Systems Department colleagues: Dr. Ramon Casellas, Dr. Ricardo Martinez,
Dr. Michela Svaluto, Dr. Josep M. Fabrega, Dr. Laia Nadal, Dr. Laura Martin and Javier Vilchez,
and also the rest of colleagues and friends at the CTTC.

I would like to acknowledge Dr. Gabriel Junyent for his help and guidance in Universitat Politec-
nica de Catalunya (UPC).

I won’t be here writing these lines without the guidance of my M.Sc. advisor Victor Lopez, who
introduced me in the research world. Not only he was an excellent supervisor who teach me a lot
about work ethic, passion for technology, leadership and compromise, but he is also a friend who has
always helped me during all this journey, thanks. I also want to thanks to Alejandro Aguado, Oscar
Gonzalez and Juan Pedro Fernandez-Palacios, who also helped me from the very beginning of my
professional career until today.

Also I would like to thanks my cousins Manuel and Nico with who I shared my concerns, my
ambitions and all the amazing moments that only happens when you live together. I gladly share this
Thesis with you brothers, as I know that part of the merit to arrive here is yours.

I also want to thanks to Chiara with who I shared this difficult path that is the PhD. I wish you
the best luck with the last steps you miss in yours (PhD).

I wouldn’t want to finish these lines without greeting all my friends from Madrid and Barcelona
without who I would get crazy during this path. Jose, Javi, Cantero, Ricardo, Leti, Inigo, Ausin,
Hector, Onur, Achileas, Juanma, Mikel, Marco, Joan, Xantal and the ones I miss but I love, thanks.

Madrid, Spain - May 15, 2019 Arturo Mayoral






Part 1

Introduction






Chapter 1

Background and Motivation

1.1 Motivation . . . . . . . o 6
1.2 Traditional Internet and Transport Network architectures . . . . . . . ... ... ... 7
1.2.1  Wavelength Switched Optical Networks . . . . . ... .. ... ... ...... 8
1.2.2 TP/MPLS Networks . . . . . . . ... . 10
1.3 Network management and control technologies for transport networks . . . . .. . .. 12
1.3.1 Generalized Multiprotocol Label Switching protocol . . . . . .. ... ... .. 12
1.3.2 Software-Defined Networking . . . . . . . . . . .. ... o0 14
1.3.3 Application Programming Interfaces for network management . . . . . . . . .. 19
1.4 Data Center virtualization orchestration and networking . . . . . . . ... .. ... .. 20
1.4.1 Data Center Orchestration . . . . ... . ... ... .. ... ... ... .... 21
1.4.2 Distributed Data Center interconnection . . . . . . . . . ... .. ... ... .. 22
1.5 The fifth generation of mobile technology (5G) paradigm . . . . . . ... ... ... .. 23
1.5.1 Network Function Virtualization . . . . . ... ... .. ... ... ....... 23
1.5.2 Network Slicing . . . . . . . . . . 24

To provide a clear perspective of the problems and challenges this thesis addresses, this section
will firstly introduce the motivation and later the background work which support this PhD Thesis. As
part of the background we will first introduce the transport networks technology and later the current
control plane technologies applied to the transport networks nowadays. After identifying the context
for the application of SDN Orchestration, the current management solutions employed to provide E2E
connectivity services across the network will also be discussed. Later on the current Cloud computing
paradigm is presented and linked to one of the main motivations of this work which is the holistic
management and control of cloud and network resources for seamless Data Center’s (DC) resources
interconnection and migration. To conclude this chapter, network virtualization is presented as the
last technology enablers towards the fifth generation of mobile technology (5G).



1.1. Motivation

1.1 Motivation

Network operators face a continuous growth of the traffic demand which is not reflected in an increase
of their revenues at the same pace. As a consequence, one the their main objective in the last years has
been the reduction in their Capital Expenditures (CAPEX) and Operational Expenditures (OPEX),
to maintain their competitiveness at the same time they invest in other market sectors with a better
Return of Investment (Rol), as content delivery, digital services or data analysis. Accordingly, the
trend in the industry has been to simplify network’s architectures by converging the different services
offered over the same network infrastructures. The digitization of voice services and its convergence
into the IP data networks is a good example that has effectively contributed to this objective.

Transport networks remain managed partitioned by technology and also by the equipment supplier.
The main reasons of this fragmentation are: a) the different nature of different transport technologies
(microwaves, optics) and communication layers (LO-L3 in the OSI model [3]): b) the lack of adoption
of standardized management interfaces by different equipment providers: and c) the lack of inter-
operability among different control solutions. On the other hand, the control of these networks is
tightly coupled with the switching hardware, implying that every network element has to be configured
independently, in most cases by human intervention, resulting in a highly complex and extremely
slow network operations. These two realities are the main motivations of emerging Software Defined
Networking (SDN), a paradigm shift, aimed to change the traditional way of controlling and manage
the networks. SDN has been designed and developed during the last decade by the networking industry,
starting by the scientific community and progressively being adopted by tier 1 network operators
supplied by large network equipment providers.

Another crucial aspect of the transformation process of the network is the emergence of the
virtualization technologies and its massive adoption. The increasing impact, on operator’s transport
networks, of the new traffic flows introduced by the deployment of massive Data Centers (DCs) is
also imposing new challenges that traditional networking is not ready to overcome. For instance,
the dynamic nature of cloud-based services requires to decrease the time-to-market deployment of
new networking services and/or to adapt existing connectivity services’ capacity to the actual traffic
demand in a flexible and dynamic way. These traffic flows may traverse heterogeneous network domains
from the metro/aggregation segments or intra-DC networks, with fine-grained packet-based traffic
control requirements, to long-haul optical transport networks with carrier-grade, multi-domain control
requirements. This reality introduces the need of introducing end-to-end (E2E) service management
and control, which is one of the central concepts which are going to be assessed in this thesis. An
E2E transport service is defined here as a cross-domain (across different technology network domains)
service between Layer 2 service points .

On the other hand, Network Function Virtualization (NFV) has emerged as a logical step in this
network transformation process, which fundamentally consists on removing networking functions such
Access Control Lists (ACLs), firewalls, load balancers, from dedicated hardware and implement them
as software appliances, which can be virtualized and deployed in the cloud. The clear objective is
to reduce the number of different network elements present in the networks today and making them
more homogeneous and easy to operate. Equally important are the inherent benefits introducing the
virtualization on scalability and robustness, allowing network functions to be deployed, replicated or
migrated, where and when are needed. SDN again plays a fundamental role in providing the required
dynamism and flexibility to interconnect NFV appliances in distributed Data Centers (DCs), and it
is also another important problem being assessed in this thesis.

The increasing impact in operators transport networks traffic flows introduced by the deployment
of massive DCs, driven by the lower operational costs introduced by computing and storage infras-
tructure virtualization and the massive demand of cloud-based services, is also imposing to network



1. Background and Motivation

operators new challenges which current network architectures are not ready to overcome. For instance,
the dynamic nature of cloud-based services requires to decrease the time-to-market deployment of new
networking services and/or to adapt existing connectivity services capacity to the actual traffic de-
mand in a flexible and dynamic way. Moreover, these traffic flows may traverse heterogeneous network
domains from the metro/aggregation segments or intra-DC networks, with fine-grained packet-based
traffic control requirements, to long-haul, optical transport networks with carrier-grade, multi-domain
control requirements. This reality introduces the need of introducing E2E service management and
control, which is one of the central concepts which are studied in this work.

In summary, the convergence of different technologies under an integrated E2E network control
and management architecture has been identified by network operators, as the one of the critical points
of action to enhance network operability and automation, and it is also the fundamental aspect on
which this thesis is focused. This first chapter will introduce first the traditional network architecture
before the emergence of SDN and NFV technologies, to give to the reader the background and starting
point of the work we are presenting in this thesis.

1.2 Traditional Internet and Transport Network architectures

Large scale networks are becoming very complex and expensive to operate with the current control and
management technologies. Traditionally, high capacity and reliable delivery of connectivity services
in metro, aggregation and core segments of the network have relied upon over-provisioning of the
network capacity and periodic (and static) network planning phases.

Current transport networks are stratified in two different layers: (i) Layer 3 networks based on the
Internet Protocol (IP) and Multi-protocol Label Switching (MPLS) control, are responsible for cost
effective user traffic delivery, fostering the statistical multiplexing nature of packet networks; and (ii)
Layer 1/ Layer 0 circuit-based transport networks, based on Time-Division Multiplexing (TDM) and
Wavelength Division Multiplexing (WDM) technologies, which provide high capacity, point-to-point
connectivity circuits to the upper layer network.

These two networks have traditionally remained separated from the operators perspective, they
are planned, designed and operated independently, by separated departments with none or scarce
collaboration between them. The main consequences of this approach are:

e Over provisioning of the IP Layer links derived by the need of protecting the traffic against
failures and packet losses. It leads in a low exploitation of the optical network links (30-40%)

[4].

e Costly and complex network operation due to the lack of automatic programmability of the
network, thus leading into long time-to-market for new network services to be deployed.

Thus, the IP over WDM architecture (Figure 1.1) has been the preferred approach followed by
Telecom operators to increase network capacity in core transport networks. The IP traffic is routed over
MPLS tunnels for traffic engineering (TE) and QoS purposes, which are transported into SONET /SDH
or Optical Transport Network (OTN) frames for extended OAM capabilities, and then carried on a
dedicated wavelength through DWDM technology. This solution allows the progressive introduction
of point-to-point optical DWDM links, with IP routers connected to DWDM-based transponders
transmitting IP traffic over dedicated wavelengths.



1.2. Traditional Internet and Transport Network architectures

IP/MPLS

Logical IP links over
Routers

DWDM transport
wavelengths

Grey interfaces
connecting IP routers
with Transport Network

Transponders

Transponders converts
grey signals into
DWDM colored signals

Colored (WDM signals) ) WSON
interfaces connecting (ROADM/OXC)
transponders with

WDM switching infra.

(ROADM/OXC) WDM Links

transporting multiple

Bl wavelength channels
over fiber.

Figure 1.1: IP over WDM transport network architecture.

1.2.1 Wavelength Switched Optical Networks

The main objective of transport networks is to provide connectivity from geographically diverse loca-
tions. Transport networks support multiple client networks such IP core network, Mobile Backhaul
(MBH) or private enterprise lines/networks.

The transport network itself is subdivided into multiple layers, in the bottom the WDM physical
layer is built over optical fibers operating in the C-Band (1530 nm-1565 nm) or L-band (1565 nm-1625
nm), providing up to 160 wavelength channels on Dense WDM (DWDM) systems or even more when
flexible ITU-T grid is supported . The G.694.1 ITU-T [5] defines the spectrum division of the optical
bands for WDM applications (grids), being the most common channel spacing options for DWDM
systems 50 and 100GHz.

This optical transport architecture allows to bypass the IP/MPLS layer and eliminates the need
of costly Opto-Electro-Optical (OEQ) transponders by introducing new transparent optical switching
technologies, such as, Optical Cross-Connects (OXC) and Re-configurable Optical Add Drop Multi-
plexers (ROADM) [6]. An OXC is an optical node able to switch DWDM channels among different
fibers, demultiplexing the optical channels from any incoming fiber and routing them to the required
output port. Optical switching is performed by optical filters generally based on Micro-Electrical
Mirror Systems (MEMS)[7] or Liquid-Crystal On Silicon (LCoS)[8] technologies. A more advance
optical node is the ROADM which adds the capability of Add-and-Drop DWDM channels from the
incoming/outgoing fibers.

These emerging optical systems, in combination with the adoption of advanced modulation for-
mats and tunable transceivers, have allowed that optical connections can be automatically switched
entirely within the optical domain between source and destination nodes, optically bypassing the
IP/MPLS routers. Accordingly, the processing at higher layers is avoided at the intermediate routers,
delegated to those points where the header processing is needed. Therefore, this new dynamic network



1. Background and Motivation

infrastructure delivers the high-bandwidth transport and deterministic performance of the optical cir-
cuit switched technology (i.e., WSON) along with the efficient aggregation and statistical multiplexing
of a packet switched technology (e.g., IP/MPLS).

However, the main drawback of this solution is that all the routing capabilities rely in the IP layer,
thus increasing the number of TP router ports and pushing packet processing capacity of expensive IP
routers.

1.2.1.1 Optical Transport Networks

Often network providers want to provide sub-wavelength capacity for client connections, given that not
always all the wavelength bandwidth capacity (10, 40, 100 and up to 400Gbps nowadays) is consumed
by a single client connection. This flexibility can be introduced by TDM technology.

The Optical Transport Network (OTN) standard, defined by the G.872 ITU-T [9] recommenda-
tion, comprises the transport, aggregation, routing, supervision and survivability of client signals that
are processed in the digital domain and carried across the optical domain. The OTN architecture is
divided on three layers:

e The digital layer, subdivided into Optical Data Unit (ODU) and Optical Transport Unit (OTU)
sub-layers, provides a framework for the multiplexing of digital signal and its mapping into
optical signals.

e The optical signal layer, defines the Optical Tributary Signal (OTSi) an the Optical Tributary
Signal Assembly (OTSiA) constructs, which are management/control abstractions representing
one or multiple optical signals transporting a single OTU.

e The media layer, includes the Optical Multiplex Sections (OMS), which represents the link be-
tween two ports of entities able to multiplex/de-multiplex OTSi, and the Optical Transmission
Sections (OTS), which represents the lower layer abstraction of the photonic network infras-
tructure which is the output media port of one amplifier and the input media port of the next
amplifier. Finally, the media layer also includes the media constructs which allows the definition
of the media channels, which are defined as a serial concatenation of frequency slots, allowing
the transmission of an OTSi/OTSiA end-to-end across the media layer.

In brief, the OTN architecture provides a formal definition for the multiplexing and mapping of
digital payloads into optical signals, and its transmission along the photonic media layer.

The enhancements introduced by OTN are better illustrated by an example (Figure 1.2). In the
figure, two client digital services (DS1, DS) starting at Router 1 are multiplexed and mapped into a
single wavelength A1, thus saving one wavelength thanks to OTN multiplexing. At Router 2, DS; and
DSy are de-multiplexed, while DS has reached its destination and it is delivered to Router 2, DSo
is multiplexed again together with DS3 in the OTN switch and transported over a new wavelength
(A\2) towards Router 3, where both signals are de-multiplexed and delivered to their final destination
Router 3. By introducing the OTN switching layer, the service deliver is achieved with two tributary
wavelengths instead of three (an express wavelength between Router 1 and Router 3 is saved).



1.2. Traditional Internet and Transport Network architectures

* Client Digital Services 2-3

are multiplex into the \ , RN
same OTU and transported \ / \
over the same OTSi. Router 1 .- Router 3 N IP/MPLS
* Digital Service 2 is Routers
switched at ODU layer. = g --r——- -T--

D S2

TDM/OTN switching layer for DSs
sub-wavelength channel TDM/OTN
granularity :

Client Digital Services

1 7
1-2 are multiplex into /

the same OTU and Transponder
transported over the
same OTSi

WSON
1t DWDM channel (ROADM/OXC)
transporting digital

services: 1 and 2
v 2"d DWDM channel

transporting digital

services: 2 and 3

Figure 1.2: IP over OTN/WDM transport network architecture.

1.2.1.2 Elastic Optical Networks

The rigid granularity driven by the DWDM fixed I'TU-T wavelength grid present two main problems
for future networks. Firstly, fixed assignment of spectral resources to the optical channels led into a
poor utilization of the network equipment when the traffic flow through them is low. And secondly,
the maximum traffic rate an optical channel can achieve, when the bandwidth assigned to it, is fixed
and limited by the modulation schemes can be applied to transmission depending on the maximum
reach the of the light-path without signal degradation.

Driven by these limitations and the ever-increasing bandwidth demand into the transport net-
works, in 2012 the ITU-T G.694.1 [5] was updated to define a new flexible grid with a lower central
frequency spacing (6.25GHz), the required amount of optical bandwidth can be dynamically and adap-
tively allocated in multiples of a given slot width granularity (12.5 GHz), determined by the signal
modulation format and its data rate. This new grid is known as Flexible Grid or Flex-grid and it
has led the development of a new optical architecture know as Switched Spectrum Optical Networks
(SSON) or a more widespread term Elastic Optical Networks (EONs).

EONs have been extensively researched in the last decade [10][11]. New transmission schemes
have been explored for the realization of the EON concepts, i.e. Orthogonal Frequency Division
Multiplexing (OFDM) and Nyquist DWDM [12][13]. Also, the problem of computing a path/route
and allocate spectrum resources (i.e., contiguous frequency slots) known as Routing and Spectrum
Allocation (RSA), has been addressed thoughtfully in the last years [14]. Based on these works some
analysis has shown the potential CAPEX reduction of introducing Flexgrid technology in the following
years [15].

1.2.2 TIP/MPLS Networks

The IP layer is composed by independent networks or routing domains interconnected through dis-
tributed routing protocols such External Border Gateway Protocol (E-BGP) which allows to adver-

10



1. Background and Motivation

tise IP addressing reach-ability information and to choose routes across routing domains, known as
Autonomous Systems (AS) [16]. The objective of this section is not to present the whole internet
architecture but to have a closer look on how IP networks are managed.

Each router composing an IP network implements a at least an Interior Gateway Protocols (IGP)
such Open Shortest Path First (OSPF) or Intermediate System to intermediate System (IS-IS), for
the exchange of routing information, one or more signaling protocols, which allow the reservation of
resources for service provisioning, such Label Distribution Protocol (LDP) or Resource Reservation
Protocol (RSVP). All these protocols are implemented on each IP router constructing a fully dis-
tributed and automated set of control mechanism. Thus both the control and the data planes are
integrated into the same box, as we were mentioning in the previous sections.

However a router is not autonomous until it is configured. The router’s configuration can be
divided in three steps: (i) startup configuration, which is done when the router is installed and consists
on configuring the management interface to operate it remotely; (ii) initial configuration, which consist
on configuring the basic set of routing protocols (OSPF, BGP, LDP...) and the initially connected
interfaces. Last step (iii), is the service’s configuration which involve the creation of network interfaces
(e.g., VLANSs) and the configuration of tunneling or overlay control mechanisms such MPLS tunnels
or pseudorwires for L2VPNs or Virtual Routing Instances (VRFs) for L3VPN services. After steps
(i) and (ii), the router’s control plane is enabled and its main functions, such automatic neighbors
discovery, exchange of routing information and packets forwarding, are enabled. Network services,
step (iii), are also usually implemented in a distributed way, through different configurations of the
control plane protocols. The way the different IP routers vendors (i.e., Cisco or Juniper) implement
these services sometimes vary on how those interactions with the control plane are done, e.g., the
configuration of MPLS-TE - Traffic Engineer functionality varies from one vendor implementation to
another.

Aforementioned configurations are done typically via a Command Line Interface (CLI) while Sim-
ple Network Management Protocol (SNMP) is typically employed for network monitoring. Specially
for multi-vendor scenarios, Network Operators requires highly qualified operation teams which deal
with the complexity of multiple vendor management languages, different service’s implementation and
individual device configuration. Thus, IP management is perceived as a complex and labor intensive
task.

Another important observation is how performance is preserved and guaranteed. Network’s con-
gestion is usually avoided by over-provisioning the packet networks, it improves performance, helps to
meet Service Level Agreements (SLAs) and end-user experience. It is often to find that intra-domain
IP core-networks are typically 2-4 times over-provisioned. The over-provisioned problem is even worse
when it is view in common with the optical transport layer where is very common to provide 141
optical protection to assure resiliency, leading into an over-provisioning factor of 4-8 times.

To conclude the overview of IP networks, the increasing requirements of service performance,
reliability and efficiency pushed the service providers to introduce Traffic Engineering (TE) techniques
that allows finer control of traffic routing across the IP networks.

The ability of design and operate backbone networks directly relays on the ability of assuring
performance for given services by assigning to them dedicated bandwidth to address the service re-
quirements. MPLS enables the introduction of enhanced control capabilities to enable TE in IP net-
works [17]. MPLS supports explicit explicit label-switched paths (LSPs) which allow constraint-based
routing to be implemented efficiently in IP networks. When combined with differentiation services
(DiffServ) it becomes a powerful technique to enable QoS in IP networks.

MPLS operates as follows: at an ingress node within a MPLS domain, a Label Switching Router
(LSR) classifies the traffic based on a combination of the information carried in the IP headers of the

11



1.3. Network management and control technologies for transport networks

packets and the routing information stored in the LSR. Based on this classification, the LSR tags the
traffic with an MPLS label and then forwards the packets. The next hop in the LSP route either
forwards the packet, or strip the label based on the information associated to the label prepending the
packet. The incoming label may be replaced by an outgoing label, and the packet may be switched
to the next LSR until it reaches its final destination [18].

1.3 Network management and control technologies for transport
networks

Once it is presented the macroscopic view of the data plane architecture of today’s transport networks,
it seems clear that there is a wide heterogeneity of technologies co-existing together in the network
and this fact increases the complexity and the cost to operate E2E services.

Several solutions have been proposed to solve this problem, during the last decade a huge effort
of the industry to standardize common solutions which will provide unification of control of the
network. Distributed solutions, such as Generalized Multi-Protocol Label Switching (GMPLS), as a
common routing and signaling protocol for multiple transport technologies and BGP for inter-domain
communications has appeared as a consequence of this efforts. In the last years, SDN has emerged as
a promising candidate to unify the control in multi-layer networks.

In the following subsections, these technologies which represent the current state-of-the-art of the
control plane, will be described in detail.

1.3.1 Generalized Multiprotocol Label Switching protocol

ITU-T G.805 recommendation defines a transport network as: "the functional resources of the network
which conveys user information between locations" [19]. The term user information provides a clear
layering structure on the network. GMPLS provides a common control plane for managing different
network technologies and enabling service provisioning across the network [20]. The GMPLS control
plane consists of a set of routing and signaling protocols. The signaling protocols are responsible for
the establishment of transport plane paths, while the routing protocols are responsible for dynamically
distributing connectivity and reachability information.

The GMPLS protocol suite extends MPLS to manage further classes of interfaces and switching
technologies, such as TDM or WDM, among others. GMPLS is based on the concept of generalized
labels, which are abstract labels which can represent either a single fiber in a bundle, a single waveband
within fiber, a single wavelength within a waveband (or fiber), or a set of time-slots within a wavelength
(or fiber). GMPLS consists of three main protocols:

e Resource Reservation Protocol with Traffic Engineering extensions (RSVP-TE) signaling proto-
col.
e Open Shortest Path First with Traffic Engineering extensions (OSPF-TE) routing protocol.
e Link Management Protocol (LMP).
The provisioning of end-to-end connections requires distributed coordination among the nodes,
performed by the signaling protocol (e.g., RSVP-TE) and employing a hop-by-hop mechanism from the

source to the destination node. The routing protocol (e.g., OSPF-TE) is responsible for disseminating
any change occurring in the network state, allowing the nodes to update their local TEDs.

12



1. Background and Motivation

The GMPLS control plane offers a carrier-grade support solution for the establishment of optical
circuits based on Fixed or Flexible grid granularity and also accounts for existing network deployments.
GMPLS-based control solutions are still largely deployed in current core optical networks and network
operators need to assure the return of investment of their current deployments.

1.3.1.1 Path Computation Element

Distributed routing presents important scalability problems when the size and complexity of the
controlled network increase. As a consequence, a centralized path computation entity, named Path
Computation Element (PCE) [21] has been defined and standardized within the IETF to alleviate this
problem. The PCE standard also defines a dedicated protocol PCE-Protocol (PCEP) to communicate
potential Path Computation Clients (PCCs) nodes (GMPLS nodes) and PCEs. The PCE introduction
inside the GMPLS control plane was motivated to solve the complex problem of network routing across
multiple transport layers (multi-layer) and several domains (multi-domain), where the optimal route
calculation exceeds the capabilities of the nodes in the distributed solution OSPF.

In this context, an Active Stateful Path Computation Element (AS-PCE) is defined as a PCE,
which maintains not only the traffic engineering information (link and node states), but also the state
of the active connections in the network in a Label Switched Path Database (LSPDB). It is not only
used as an input to the path computation process, but also for the control of the state (e.g. increase
of bandwidth, rerouting) of the stored LSPs. Since under distributed control LSPs are only managed
by the GMPLS controllers, this approach requires that the GMPLS controllers temporally delegate
the control of a set of active LSPs to an Active Stateful PCE. A delegation mechanism for PCEP,
based on the PCRpt, is proposed in [22].

Moreover, an Active Stateful PCE with instantiation capabilities has also been considered that is
able to provision/release new/existing LSPs [23]. This message includes the endpoints and the com-
puted Explicit Route Object (ERO), defining the route and resources to be traversed and allocated
by the LSP. After the connection is successfully established, a PCEP Report Message (PCRpt) is gen-
erated to notify to the AS-PCE the successful LSP establishment and its management (e.g., deletion,
modifying attributes, etc.). Therefore, the AS-PCE implicitly enables the switching programmability
within the optical domain by acting as an interface between the SDN controller and the GMPLS
control plane.

The AS-PCE has been demonstrated as an effective and comprehensive control solution in GMPLS-
based distributed control plane for DWDM networks [24].

1.3.1.2 Applications-based Network Operations

A further step on management and control standardization was done by the International Engineer-
ing Task Force (IETF) by the definition of the Application Based Network Operations (ABNO) [1]
architecture to efficiently provide a solution for implementing control functions over heterogeneous
networks (IP, WDM, TDM).

The ABNO architecture combines a number of technology components, mechanisms and proce-
dures. The main component of the ABNO architecture is the Path Computation Element (PCE).
The IETF ABNO architecture is based on existing standard blocks defined within the IETF (PCE,
ALTO, VNTM...), which could be implemented either in a centralized or distributed way according
to network operator requirements. This architecture includes policy control for the different entities
together with applications for managing requests for network resource information and connections.

13



1.3. Network management and control technologies for transport networks

055/NMS f Application Service Orchestrator

i
i i
1| Policy "“ ABNO Controller ~ ~----
i Handler
1

byt ! PCE

‘ Provisioning Manager

i '/ Client Network Layer \':
: 1 1 1 I I
| 1 1 [ 1 [

/ Server Network Layer \

Figure 1.3: ABNO Architecture (https://tools.ietf.org/html/rfc7491) [1].

Also, network discovery, including multi-layer resources, using multiple interfaces depending on the
underlying technology (i.e. IGP, BGP protocols). The proposed architecture also enables network
virtualization and abstraction, by managing the creation of virtual links, and the mapping between
topological representation and underlying network resources. It handles the path computation re-
quests and responses, provisioning and reserving network resources. Finally, it verifies the connection
and resource setup.

The solution’s initial requirements included all the control plane features, in particular: network
orchestration, network resources abstraction to external entities, policy (authorization, authentica-
tion and accounting), network element provisioning, path computation and routing engineering, QoS
control, operations and maintenance (OAM), performance monitoring, multi-domain coordination,
multi-layer coordination and, finally, discovery and storage of network resources. Figure 1.3 depicts
the ABNO architecture.

This modular architecture allows that its different building blocks can be deployed by different
vendors or third parties and even by a single provider. This modularity and the standard interfaces
between the modules solve the problem of vendor lock-in for the operators. On the other hand, ABNO
is specifically adapted to multi-domain and multi-vendor networks, enabling inter-operability between
control plane based and OF based domains.

1.3.2 Software-Defined Networking

The distributed control and transport network protocols running inside switches and routers conforms
the traditional technology employed to allow the data traffic to be reliably delivered through the
Internet across the world. Despite the widespread adoption of the IP networks, they are complex and
hard to operate [25]. Distributed control implies that every forwarding device must be configured
with a set of supported network protocols in order to apply a determined network policy. This leads
into a tremendous effort by network operators in configuring every network elements in their network
(often using vendor-specific command line interfaces) when they need to create or modify a end-to-end
network service.

Software Defined Networking (SDN) is an emerging network paradigm has attracted the attention
of network operators for its promise of changing the limitations of the traditional distributed network

14



1. Background and Motivation

architecture by separating the control plane logic from the data plane forwarding infrastructure, which,
traditionally, has been bound together or vertically integrated in the majority of network equipment.
Moreover, SDN can infer important CAPEX savings by replacing dedicated hardware network equip-
ment by software-driven switches installed on cheaper Commercial Off the Self (COTS) servers. SDN
has been accompanied with new open standard interfaces which allow to program the forwarding logic
in the physical devices from remote, centralized entities generally defined as SDN controllers, allowing
the underlying infrastructure control functions to be abstracted and used by applications and network
services as a virtual entity.

Network Application(s)

Open northbound API

Controller Platform J

Open séuthbound E\PI

Network Infrastructure

Figure 1.4: Simplified view of an SDN architecture.

SDN proposes a centralized management and control approach where the network intelligence is
removed from the network and placed in logically centralized software-based controllers. Figure 1.4
shows a simplified view of the SDN architecture, open standard Application Programming Interfaces
(APIs) allow the SDN controller to infer the forwarding behavior to the switching infrastructure and
also to allow different network applications to define network services over the network global view of-
fered by the SDN controller. SDN can reduce the traditional vendor-dependency of network operations
while increasing automation and manageability. Other benefits of common interfaces introduction and
control functions abstraction are: increased inter-operability between technologies, fast new network
service and capability delivery and reductions of operational costs.

Controller
A
|
OpenFlow Protocol
—
|
Secure | | Group
Channel | | Table
|
Flow Flow
Table [ | Table
Pipeline

OpenFlow Switch

Figure 1.5: OpenFlow Architecture (https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf).

1.3.2.1 OpenFlow

OpenFlow, first published in 2008 [26], is an open standard, vendor and technology agnostic proto-
col which allows to program forwarding rules into OpenFlow-enabled switches (OFSs) through the

15



1.3. Network management and control technologies for transport networks

definition of flows [27]. It enables a higher flexibility to manage the life-cycle of the network ser-
vices (creation, modification and release), and allows a simplified control plane in contrast to the
independent protocol configurations needed in traditional IP networks.

Over the past few years, OF has become the predominant protocol in SDN for packet-based
networks, and it has had a special impact in Data-Center (DC) networks. OpenFlow was born as an
attempt to integrate packet and circuit-based network control [28]. However, until its latest releases
(OpenFlow 1.5), its applicability for circuit-based connections in DWDM optical networks requires
proprietary extensions to describe the lambda-based switching capabilities of optical ROADMs [29].
The prove of the little penetration of OpenFlow in the optical market is the reduced number of
commercial optical transport networks deployments based on OpenFlow nowadays [30].

Although initially, the OpenFlow protocol was conceived for packet switched networks, recent
extensions to OTN [31] have enabled also L1/L0 circuit switching, positioning OF as a feasible solution
for Unified Control Plane (UCP) realization [32].

OpenFlow is based on the flow abstraction concept, which consists on representing the switching
capabilities of a Network Element (NE) as a flow forwarding table. A flow entry, which represent a
NE forwarding configuration, can be defined as any combination of L.2-1.4 packet header combina-
tion. These flows are defined in a separate control entity (i.e. OF controller) and pushed into the
OFSs through the OpenFlow protocol FLOW_MOD message (OFPT_FLOW__MOD). This capa-
bility allows to create external software/user/defined routing, control and management applications,
thus realizing one of the main objectives of SDN, the separation of the control logic from the data
forwarding infrastructure.

The OpenFlow relays into an SDN architecture 1.5 where a controller exchanges TCP packets with
an OpenFlow agent through a secure channel, which controls the packet forwarding of an OpenFlow
Switch. Internally, the OpenFlow Switch maintains several flow tables which performs the packet
processing pipeline.

The Flow Table is the building block of the logical switches, each packet entering into a switch
may pass through several flow tables, each flow table contains entries consisting of six components:

e Match fields: are used to select those packets intended to being processed. The match fields
consist of the following required fields: (i) Ingress Port, (ii) Ethernet Source and Destination
addresses, (iii) IPv4/IPv6 protocol number, (iv) IPv4/IPv6 Source and Destination addresses,
(v) TCP Source and Destination ports, and (vi) UPD Source and destination ports. Addresses
may be exact matches or wildcards values. OpenFlow allows further optional match fields such
Ethernet Type, VLAN IDs or MPLS tags.

e Priority: relative to priorities among table entries.
e Counters: updated with matching packets and used for traffic monitoring purposes.

e Instructions: are the actions to be taken when a packet match. These actions are: (i) Output the
packet to a physical port; (ii) Set-Queue id for a packet in order to allow scheduling forwarding at
the output port (QoS); (iii) Group packets for further common processing; (iv) Push-Tag/Pop-
Tag for VLAN or MPLS packets; (v) Set-Field to allow packet header modifications; and (vi)
Change-TTL (Time-To-Live) of a IPv4 packet, the IPv6 Hop Limit, or the MPLS TTL.

e Timeouts: Maximum amount of idle time before a flow is expired by the switch.

e Cookie: is an opaque data value chosen by the controller, can be used by the controller to filter
flow statistics.

16



1. Background and Motivation

The OpenFlow protocol defines a large set of messages to exchange flow rules, transfer packets and
switch features and configuration states between an OpenFlow controller and an OpenFlow switch.
Typically, the protocol is implemented on top of Secure Sockets Layer (SSL) or Transport Layer
Security (TLS), providing a secure OpenFlow channel. It supports three types of messages:

e Controller-to-Switch, messages initiated by the controller to request OFS information about its
capabilities, configuration state, statistics... to push state changes into the OFS configuration,
e.g., the OFPT _FLOW_MOD, which is one of the main OpenFlow messages, it used to create
or modify flow entries into the switch. The Controller also can direct packets to the OFS through
the OFPT _PACKET OUT message, is used for instance for network adjacency discovery in
OpenFlow networks in conjunction with the Link Layer Discovery Protocol (LLDP) protocol.

e Asynchronous messages sent by the switch to the controller. Here the main message is the
OFPT _PACKET IN which is used to send packets received by a OFS to the Controller. This
may happen under some circumstances, such the packet does not match any defined match rule,
or there is an specific instruction (action) defined under a flow rule which indicates the packet
to be sent to the controller for further processing.

e Symmetric messages are sent without solicitation from either the controller or the switch. This
is the case of the HELLO message used when the protocol connection is established or the
ECHO message used for protocol synchronization purposes such in the KeepAlive message in
TCP protocol.

In summary, the OpenFlow brought SDN control paradigm with a powerful, vendor-independent
approach to manage complex networks and its specially relevant for this PhD Thesis given its relevancy
in DC networking.

1.3.2.2 SDN Controllers

An SDN Controller is a software application in software-defined networking (SDN) that manages the
control of flows in the network enabling intelligent networking. The controller can be considered the
core (and brain) of an SDN network. An SDN Controller lies between network devices at one end
and applications at the other end. Any communications between applications and devices have to go
through the controller. SDN controllers are based on protocols, such as OpenFlow.

OpenDaylight (ODL) [33] is an open source project carried out by the Linux Foundation, which is
a non-profit consortium which provides a framework to implement control and management services
in a centralized network manner. ODL includes a Network Controller implementation called ODL
controller. The ODL controller contains different management/control protocols plugins to provide
programmability of heterogeneous data plane devices. OpenFlow, Path Computation Element Proto-
col (PCEP) and Border Gateway Protocol (BGP), among others are included as southbound plugins
in the ODL controller distribution.

The ODLs North Bound Interface (NBI) is implemented by a Representational State Transfer
(REST) API [34]. It exposes all ODL controller functionalities, allowing external applications, to
get configuration information or program operations into the data plane. The southbound interface
includes a Service Abstraction Layer (SAL) which connects the internal services with the specific
networking protocol plugins. The communication between providers (generally networking protocol
plugins which exposes functionalities to other ODL internal modules) and consumers is based on
modelled APIs defined using the YANG modelling language. This data modeling allow abstract
network configuration details (protocol specific messages) to upper SDN layers.

17



1.3. Network management and control technologies for transport networks

*OPEN o
DAYLIGHT Lithium
=
AAA- AuthN Filter

Base Network Network Services Network Services (cont) Network Abstractions Platform Services
Service Functions (Policy/Intent)

[ openviowsstsanger [N senicerncionchamns MM ovsoonewron MR nirorrorocornsser [ . enication, Authorizaton
Device Discovery, Identification Controller Platform
[Goertiow rormaraing rtes g RN Vit P Rerwori | orver Mansgement [croupsaseavorcyservce [N euronormouns [l  Serices/appications
BT e TR [ e |
[ oo [ oniessecre ooy [N oocss moacion | [ Son megraion Aggregator_
[ oroonyvrocesns R icrssesston cuvoroco [ swwrison | [ i seres oot Repostory

Data Store (Config & Operational) Service Abstraction Layer/Core Messaging (Notifications/RPCs)

OpenFlow
B - | ovsps Pcep | capwap OPFLEX HTTP PCMM/COPS Southbound Interfaces
[10] [13] [ & Protocol Plugins

OpenFlow Enabled i Additional Virtual
S S

Data Plane Elements
(Virtual Switches, Physical
Device Interfaces)

Figure 1.6: ODL Controller (https://www.opendaylight.org/what-we-do/current-release/
lithium)

Internally the ODL controller is built up of different components (Figure 1.6). Among these, the
Topology Manager is responsible for building and storing the network topology inside the ODL con-
trollers domain. The Switch Manager handles the information about the switching devices. It exposes
a NBI through the REST API from which the external applications can retrieve detailed information
about the switches, including the detailed port’s description used to define the flow requests at the
later stage. Finally the Host Tracker abstracts the information about the hosts within the network
domain.

The programmability of the network devices is done through different southbound plugins. Open-
Flow 1.0 and 1.3 are already fully operational and BGP-LS and PCEP libraries are available to
implement the corresponding plugins. The Forwarding Rules Manager is the module responsible for
validating the flow descriptions received from the NBI. Afterwards it sends the flow configuration data
to the Flow Programmer Service integrated into the SAL. This service is responsible for routing the
flow establishment request to the corresponding southbound plugin. The architecture is designed to
allow multiple southbound protocols.

1.3.2.3 Software Virtual Switching

Guided by the recent innovations on resource virtualization that have taken place in the Information
Technology (IT) industry in the last years, and motivated by the need of extending this flexibility
on the resource partitioning of the network infrastructure and decrease switching fabric costs, a new
technology family of software switching has emerged as one of the most promising solutions for DC
networking.

Software switches are designed to be deployed over very cost effective and energy-efficient Com-
modity x86/TA (Intel Architecture)-based servers, and they are designed for two purposes: (i) to

18



1. Background and Motivation

support packet forwarding between VMs within a server, and (ii) as a replacement for physical
switches that interconnect servers. Solutions in the first category include; Open vSwitch (OVS) [35],
Switch Light [36] Linux-based thin switching software solution developed by Big Switch (Floodlight
Controller), ofsoftswitch13 OpenFlow 1.3 compatible user-space software switch implementation by
Ericsson. On the other hand, for replacement of physical switches we found Lagopus [37], flexible
software-based OpenFlow 1.3 switch in userspace leverages the state of the art of multi-core CPUs
and OS technology for high-speed network I/0O; and Pantou/OpenWRT [38] developed by Stanford
University, turns a wireless router into an OF-enabled switch.

OVS is the most widespread virtual switch implementation. It is a network virtualization platform
designed to create virtual switches instances as software processes in general purpose fabric comput-
ers. OVS support the OpenFlow protocol (until version 1.5) and can be deployed in user space (for
lightweight applications) or in kernel space implementations for data plane acceleration through Intel
Data Plane Development Kit (DPDK) or Linux Kernel integration.

1.3.3 Application Programming Interfaces for network management

Any API definition is composed by two parts: (a) the transport protocol (e.g., REST), which defines
the syntax, the communication paradigm (Remote Procedure Calls (RPCs), REST...) and in general
all the rules which allow the communication between the entities interacting through the protocol;
and (b) the information model, which defines the semantics of the API, the language and content of
the messages exchanged through the interface.

Typically the SDN controllers’ NBI APIs implementations have been designed based on the REST-
ful paradigm (or REST) over HT'TP-based application protocol. REST encodes data into a uniform
media type such as JavaScript Object Notation (JSON)[39] or Extensible Markup Language (XML)
[40], that is specified into the message header and every resource exchanged is uniformly described
using an Uniform Resource Identifiers (URIs).

The REST paradigm is convenient for the APIs implementation due to the need of stateless

communication between client and server entities. It is also convenient because of the flexibility,
scalability and commodity for practical implementation.

1.3.3.1 NETCONF and RESTCONF

REST practices and architecture have been adopted by NETwork CONFiguration protocol (NET-
CONF) [41] and RESTconf [42] and considering the benefits of both communication schemes (REST
and RPCs)).

NETCONF is an IETF network management protocol designed to manipulate configuration data
information of network devices. It provides the mechanisms to install, manipulate, and delete the
configuration and operational data of network devices.

RESTCONEF is the lightweight version of NETCONF. It has been standardized to bring network
configure-ability from Web based applications. RESTCONF follows the REST HTTP methods to
provide Create, Read, Update, Delete (CRUD) operations over a NETCONF data store containing
YANG-defined data. Configuration data and state data are exposed as resources that can be retrieved
with the HTTP GET method. Resources representing configuration data can be modified with the
HTTP DELETE, PATCH, POST, and PUT methods. Data is encoded in either XML or JSON.

The RESTCONF interface structures the YANG information model in the following tree:
e /restconf/data : Data (configuration/operational) accessible from the clients.
e /restconf/operations : Set of operations (YANG-defined RPCs) supported by the server.

e /restconf/streams: Set of notifications supported by the server.

19



1.4. Data Center virtualization orchestration and networking

1.3.3.2 YANG

The impact of NETCONF and RESTCONF has notably increased with the introduction of YANG
modeling language [43]. YANG provides a simple, user legible language to define the NETCONF data
models exchanged by client and server entities. The YANG models are structured in a hierarchical
tree structure of data that can be used for NETCONF operations, including configuration, state data,
RPCs and notifications:

e Configuration Datastore which is organized in YANG as a hierarchical tree data structure
where each node contains a name identifier and a set of child nodes. Each node supports the
Create, Retrieve, Update and Delete (CRUD) operations.

e RPCs can be defined in YANG as independent, self-contained operations which can be invoked
by the API client. They are defined by an input and output data structures, which are normally
(but not necessarily) a subset of the configuration datastore.

e Notifications can be received asynchronously by the API client to update the state of any
configuration parameter in case of changes in the network. This feature is a key-requirement
for efficient resilient mechanisms.

YANG data models are organized in modules which can be imported and augmented by other
YANG models, providing the flexible and modular environment required for the definition of manage-
ment interfaces in SDN.

YANG is a data modeling language designed to describe the configuration, interactions and state
data managed by the NETCONF and RESCONF protocols.

1.4 Data Center virtualization orchestration and networking

Several definitions can be found in internet of cloud computing, one of my favorites is the one proposed
by the US National Institute of Standards and Technology (NIST) which says: "Cloud computing is a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction" [44].

It is undeniable that cloud computing has transformed drastically the IT industry, and it has
become an essential part of any enterprise IT infrastructure. Cloud computing has introduced a
new application paradigm where storage and server infrastructures are hosted and shared, allowing
cost reduction and innovation for the development of new services and applications. This revolution
has benefit the creation a new start-up business models where entrepreneurs with innovative ideas
no longer require the large capital expenditures in hardware to deploy their services or the human
expense to operate them.

New pay-as-you-go models where the I'T resources can be offered "as a service" in different models.
At the lower level, the cloud computing providers exploits virtualization to offer infrastructure com-
ponents such as compute, storage and network resources over a shared pool of servers and a shared
network infrastructure owned by the cloud providers, this model is known as Infrastructure as a Ser-
vices (IaaS). Users can access to IaaS platforms which provide the whole environment to create new
virtual machines, scale them or making replicas of its own customized virtual machines. Generally, the
TaaS model provides the user its own infrastructure which can be managed completely by a software
application and accessed remotely through the Internet.

20



1. Background and Motivation

There are two other cloud computing models widely exploited now by cloud provides: Platform
as a Service (PaaS) and Software as a Service (SaaS). These two models offers not only the virtualized
infrastructure but different software appliances to enhance business development over the virtualized
infrastructure (PaaS) or/and software appliances for end users (SaaS) such online text editors or online
storage services.

With the growth of the volume of data needed and the variety of Internet applications consuming
cloud services, has drove the need of optimizing the way Data Centers (DCs) are exploited and
managed. A DC refers to any large, dedicated cluster of computers that is owned and operated by a
single organization. In the next sections we focus on presenting the DC orchestration and virtualization
technologies with the focus on the networking side of the problem which is the focus of the present
work.

1.4.1 Data Center Orchestration

Server virtualization is the first technology enabler of Cloud computing. Server virtualization allows to
share physical server resources (CPU, RAM and ROM memory) over different virtual instances (Vir-
tual Machines). Server hypervisors are software appliances which can run over bare-metal hardware
(VMware ESXi [45]) or over operating systems (KVM [46]).

However, cloud systems are moving to a layer of software above the hypervisor so-called cloud
orchestrator system software. While hypervisors are able to provide resource abstraction in a single
server, cloud systems can abstract large pools of compute, storage and network resources over the
same software platform, thus realizing the concept of IaaS described before. This resources can be
managed through a set of APIs to provide a holistic view of an infrastructure. A cloud provider can
manage its entire DC over this cloud orchestration system to offer different cloud services to different
tenants. Among the cloud orchestration software available, OpenNebula, CloudStack and OpenStack,
are found as the most complete and mature solutions in the open source domain.

Apache CloudStack is an open source cloud computing software, which is used to build private,
public and hybrid IaaS clouds by pooling computing resources [47]. CloudStack requires at least three
system VMs (secondary storage, console proxy and virtual router) to work. These VMs are used
for robustness and reliability. Consequently, the VMs system reduce the resources available for run
instances [48].

OpenNebula software is designed to work with driver concept for implementing the Iaa$S layer [49],
it allows to use multiple storage back ends such as Logical Volume Manager (LVM) and Internet Small
Computer System Interface (iSCSI), and different hypervisors, such as VMware, Xen, and KVM. This
project, driven by OpenNebula Systems, is focused on user experience feedback and its main design
principle is present a very flexible and open core system which adapt to its user deployment needs.

Following, OpenStack is described in more detail due to its specially relevancy for this work, as
it has been extensively used for developing the studies and experimental demonstrations presented in
this PhD Thesis.

1.4.1.1 OpenStack

OpenStack [50] is the leading open source cloud orchestration platform used within DCs operated
by cloud service providers and large enterprises alike. Development is supported by a broad base of
developers and a growing cohort of commercial software and hardware vendors.

21



1.4. Data Center virtualization orchestration and networking

OpenStack is an open source project carried out by the OpenStack Foundation aimed is provide
a rich software platform which be able to provide the creation of cloud applications with many virtual
instances controlling distributed storage among different servers in a cluster environment. The project
is built among different modules: Nowva, Glance, Keystone and Neutron; which are responsible of the
orchestration of different resources: Computing, Storage, Identity management and Network resources,
respectively.

OpenStack’s networking is managed by a specific module called Neutron within OpenStack. Neu-
tron exposes an API which provides network connectivity and addressing in the cloud. This API
contains three main fields:

1. Network: A L2 broadcast domain virtualized inside the cloud.

2. Subnet: A block of IPv4/v6 network addresses. It is used to assign IP addresses to virtual
instances. Each subnet must have a CIDR and must be associated with a network. Additionally,
a subnet can also have associated a gateway, a list of DNS servers and hosts’ routes.

3. Port: A connection point for attaching a single device, is a general definition of an endpoint
within the network. It is defined by a physical address (MAC) and an IP of the devices plugged
into it. When a port is associated to an IP, inherently has associated to a subnet, as the IP is
picked up from an allocation pool of one subnet, always.

1.4.2 Distributed Data Center interconnection

DCs interconnection is one of the major problems that service providers have to face. DCs have been
spread geographically to reduce services’ latency to the end user, and that has led into an exponential
growth of the inter DC traffic [51]. The expenses derived from the DCs interconnection across the
Wide Area Networks (WANSs) represents a big portion of the budget for large DCs operators, thus how
cutting costs and improving the efficiency of the network are becoming some of their major concerns
[4].

In order to support a large number of application services highly available for consumers from
around the world, Cloud infrastructure providers have deployed DCs in multiple geographical locations
to provide redundancy by ensuring reliability in case of site failures and to reduce services’ latency to
the end user. This situation has led into an exponential growth on the inter DC traffic [51].

Currently, cloud operators expect their customers to express their preference about where placing
their services. However, this approach present many shortcomings, which include it is difficult to
know in advance for Cloud customers where their applications are going to have a bigger impact and
consequently where to place their services. As the traffic received by a internet application is highly
dynamic, is difficult to accurately estimate in advance the amount of network resources a Cloud-
operator has to provisioned for a service. This implies cloud services must be able to be scaled and
migrated between DCs, moreover these operations shall be quick and cheap.

This paradigm requires building mechanisms for seamless federation of data centers of a Cloud
provider or providers supporting dynamic scaling of applications across multiple domains in order to
meet QoS targets of Cloud customers [52]. In summary, the DC interconnection cannot rely upon
static, coarse granular and expensive connection pipes, but need to be adjusted to the traffic demand
for both Cloud and Network providers can take full advantage of the existing network infrastructure
[53].

22



1. Background and Motivation

The integration of the network control and management systems with cloud-based applications is
directly related with the development of open, standard interfaces between network control/orches-
tration systems and upper applications. Open and extensible APIs allow gathering the relevant infor-
mation from both domains, Cloud and Network, to deploy, manage and control the network and cloud
infrastructure in a coordinated manner. Standard interfaces allow IT and Network applications being
developed independently hiding the internal implementation details and offering abstracted services,
such as the virtual machine creation/deletion or the E2E connectivity provisioning.

1.5 The fifth generation of mobile technology (5G) paradigm

The fifth generation (5G) of mobile network technology is not only about the development of new
radio interfaces or waveforms to cope to with the expected 1000x increase and very stringent latency
in mobile traffic [54]. 5G is also about an end-to-end converged network and cloud infrastructure for
not only traditional human based services, but also for emerging Internet of Things (IoT) services. It
is envisioned that billions of heterogeneous IoT devices will be connected to the 5G network, enabling
a wide variety of applications in different vertical industries such as automotive, energy, media and
entertainment, e-health and factories of the futures [55].

At the cloud level, 5G requires massive distributed computing and storage infrastructures in
order to perform IoT analytics (e.g. BigData) from the data collected of sensors and actuators (e.g.,
temperature monitoring, energy consumption measurement, etc.,). Additionally, the adoption of Cloud
Radio Access Network (CRAN), Network Functions Virtualization (NFV) and Mobile Edge Computing
(MEC) requires cloud services for the deployment of virtualized network functions (VNFs) that are
typically deployed in specialized and dedicated hardware (e.g., mobile Evolved Packet Core -EPC-,
firewall, Content Delivery Networks -CDN-, Baseband Units -BBU- | etc.). It includes core cloud
(e.g., in core/metro data centers DC-) for high-computational capability and long-term response time,
but also edge cloud closer to the end-user (i.e., devices and terminals) with lower capabilities but fast
response time (e.g. in Central Offices).

At the network level, 5G requires the integration and convergence of all multi-technology network
segments (radio and fixed access, metro and core networks) in order to provide end-to-end connectivity
services with Quality of Service (QoS). The heterogeneity of the foreseen 5G applications sets different
requirements in terms of QoS, ranging from ultra low latency and high reliability for mission-critical
applications to highly dynamic bandwidth allocations for video surveillance. Thus, 5G requires to dy-
namically allocate computing and storage resources to flexibly deploy virtualized functions (i.e.,VNFs
and ToT analytics) in distributed cloud infrastructures, and to provide the required end-to-end con-
nectivity among end users and the virtualized functions.

1.5.1 Network Function Virtualization

Network Function Virtualization (NFV) is an emerging paradigm which consists on displacing net-
work functions traditionally performed by dedicated hardware middleboxes into software appliances
which can be dynamically deployed, scaled and migrated in and between Commercial Off The Shelf
(COTS) servers. This initiative responds to the need of network operators of overcome the increase
of their operational and capital expenditures due to the flattening of their revenues driven by their
infrastructure.

The NFV ETSI Industry Specification Group (ISG) presented the first definition of the NFV use
cases in ETSI GS NFV 001 [56]. The problem and the definition of the architectural guidelines were
assessed in ETSI GS NFV 002 [2]. The main objectives of NFV defined by the ETSI are:

23



1.5. The fifth generation of mobile technology (5G) paradigm

e Improve CAPEX efficiencies by employing COTS hardware to provide Network Functions (NFs)
through software in stead of on dedicated hardware appliances.

e Improve flexibility on the assignment of the NFs to hardware. NFV improves scalability and
deploybility of NFs from site locations (referred as NFV Infrastructure Points-of-Presence NFVI-
PoPs in the ETSI architecture), allowing migration of the NFs where and when are needed.

e Standardization of open interfaces between Virtualized Network Functions (VNFs) and the in-
frastructure and management entities dedicated for their deployment.

Figure 1.7 shows the NFV architectural framework depicting the functional blocks and reference
points in the NFV framework. The NFV archictectural framework main building blocks are:

e NFV Infrastructure (NFVI). Consists of the hardware resources including computing, storage
and network to provide processing, storage and connectivity to VNFs, and the Virtualization
Layer which abstracts the hardware resources and decouples the VNF software from the under-
lying hardware.

e NFV Management and Orchestration (MANO). Is composed by: (i) the Virtualised Infrastruc-
ture Manager (VIM), which comprises the functionalities that are used to control and manage the
interaction of a VNF with computing, storage and network resources; (ii) the VNF Managers,
responsible of the entire lifecycle management of each VNF; and (iii) the NFV Orchestrator
(NFV-0), responsible of the orchestration and management of NFV infrastructure and software
resources, and realizing network services on NFVIL.

e Virtualized Network Functions (VNF) and Element Managers (EMs). VNFs are the logical en-
tities representing the NFs being performed over a non-virtualised network and the EMs performs
the management over one or several VNFs.

e Operations Support Systems and Business Support Systems (OSS/BSS). Represents the tradi-
tional network operator systems in charge of the operations, administration and maintenance
(OAM) and the network monetization.

This architectural guidelines are the very starting point of the solutions proposed and experi-
mentally assessed in Chapters 9, 10, 11 and 12, which cover different aspects of the aforementioned
architectural framework.

1.5.2 Network Slicing

With a converged cloud and network infrastructure, controlled and operated together, there has appear
the opportunity to serve different network services together. However, different network services have
different network requirements. For instance, broadband access Internet connectivity for intelligent
devices require a big amount of bandwidth as a best-effort basis with high bandwidth, high mobility
and high traffic/connection density. On the other side emerging internet of things (IoT) will introduce
a huge amount of new devices which shall be connected to services applications installed in different
cloud sites, network requirements in this use case are completely different, IoT services targets low
cost, long range and low power networks.

The Next Generation Mobile Networks (NGMN) alliance envisions a 5G architecture that leverages
the structural separation of hardware and software, as well as the programmability introduced by SDN

24



1. Background and Motivation

NFV Management and Orchestration

Os-Ma
. ! L NFV
OSS/BSS ! Orchestrator
- Or-vVnfm
EM1 EM2 EM 3 Ve-Vnfm UNE Service, VNF znd
: \ L
H H H H Infrastructure
H — T
. = - = Manager(s) Description
H VNF 1 VNF 2 WNF 3
1 Tvn-NF 1 + vivnim
NFVI
Virtual Virtual Virtual
Computing Storage Network
- — Nf-Vi Virtualised or-vi
[ \u'u‘tuahsalmn Layer | f Infrastructure I
VFHa | Manages(s)

H ardware resources
HET Computing Storage Network

Hardware Hardware Hardware

#—= Execution reference points |- Other reference points s Main NFV reference points

Figure 1.7: ETSI NFV reference architectural framework [2].

and NFV paradigms. As such, the 5G architecture is a native SDN/NFV architecture covering aspects
ranging from devices, (mobile/fixed) infrastructure, virtualized functions, and all the management
functions to orchestrate the 5G system [57]. The 5G architecture shall accommodate a wide range of
use cases derived from the new needs of vertical industries, customers and enterprises which will impose
new stringent network requirements in terms of: user experience (mobility, latency, and data rate),
performance (connection and traffic density, spectrum efficiency and coverage), security, resilience and
network deployment, operation and management.

In order to face this challenge, the NGMN has proposed the concept of ‘5G network slicing’ [58].
It provides the main architectural framework for 5G, which allows multiple dedicated infrastructure
instances or slices (involving shared network, cloud and virtualized functions) to co-exist in parallel, as
shown in Chapter 11.1. These slices can adopt different architectures, involving different configuration
of infrastructure resources, control plane architectures and also customized management systems to
serve the purpose of giving customized performance for each specific use case

25






Chapter 2

PhD Thesis Objectives

2.1 End-to-End service provisioning for multi-domain, multi-layer transport networks . . . 27
2.1.1  SDN Orchestration architecture design . . . . . . . . ... ... ... ... ... 28
2.1.2  Control Orchestration Protocol . . . . . . .. .. ... ... ... ... ..., 28

2.2 Integrated Orchestration of Cloud and transport network services . . . . . . . ... .. 29
2.2.1 Integrated IT and SDN Orchestration architecture . . . . . . ... ... .. .. 29
2.2.2  Geographically distributed Data Center interconnection . . . . .. .. .. ... 29
2.2.3 E2E service orchestration for cloud computing . . . .. .. .. ... ... ... 30

2.3 5G Network Slicing . . . . . . . .« . 30
2.3.1 Architecture definition . . . . . . . .. ... 30

2.3.2  5G Network Slicing architecture validation: Virtual Network Operator use case. 30

This chapter presents the PhD Thesis objectives. It is divided in the three parts on which the
Thesis contributions is divided: (i) End-to-End service provisioning for multi-domain, multi-layer
Transport Networks; (ii) Integrated Orchestration of Cloud and Transport Network services; and (iii)
5G Network Slicing.

2.1 End-to-End service provisioning for multi-domain, multi-layer
transport networks

One of the main objectives of this PhD Thesis is the design of an scalable and efficient SDN-based or-
chestration architecture to offer end-to-end service provisioning over multi-layer, multi-domain trans-
port networks. To accomplish this objective, it is proposed to explore different SDN orchestration
alternatives which can accomplish this task with especial emphasis on the interaction with heteroge-
neous control plane technologies. The work required has been divided into two sub-objectives:

— SDN Orchestration Architecture definition, design and implementation.

— Common Orchestration Protocol definition and validation.

27



2.1. End-to-End service provisioning for multi-domain, multi-layer transport networks

2.1.1 SDN Orchestration architecture design

This sub-objective will cover the exploration of different design and implementation alternatives on
SDN Orchestration architectures, with the final objective of proposed a final solution over which,
the rest of the research activities of this PhD. Thesis are going to be sustained. The following
tasks will describe different SDN orchestration architectures, including experimental validation in
the ADRENALINE Testbed of all of them:

— SDN controller for multi-domain multi-layer network orchestration.
— SDN Orchestrator for multi-domain multi-layer networks.

— Hierarchical SDN orchestration architecture.

— Peer SDN orchestration architecture.

These objectives will be assessed in Chapters 4-8 (Part II).

2.1.1.1 SDN controller for multi-layer network orchestration

In this sub-objective, a single SDN controller based orchestration architecture is presented. The scope
of this architecture will be discussed and an experimental validation of the architecture implementation
the ADRENALINE Testbed is shown.

2.1.1.2 SDN Orchestrator for multi-domain, multi-layer networks

In this sub-objective, an Multi-domain SDN orchestration (MSO) architecture is defined to extend
the scope of the previously presented solution to more complex network scenarios such multi-domain
and multi-layer networks. The rest of the tasks and research activities, in the PhD Thesis will be
supported by this SDN orchestration architecture. An experimental validation of the architecture will
be presented as well as a comprehensive comparison with the preliminary solution as a conclusion.

2.1.1.3 Hierarchical/Peer SDN orchestration architectures

Finally, this sub-objective refers to present an hierarchical orchestration approach based on paren-
t/child ABNO components, introducing scalability and security consideration to the SDN orchestra-
tion problem. Network virtualization and abstraction are key-technology enablers for accomplishing
the so-desired scalability and manageability of large and complex network scenarios. Therefore this
task will also propose a solution to integrate this features in the proposed MSO components.

2.1.2 Control Orchestration Protocol

Once defined the architecture which will serve as the foundation of this PhD. Thesis, the second objec-
tive is the functional requirement identification, modeling, design and implementation of a Common
Orchestration Protocol (COP). The main objective of this protocol will be provide a common interface
between the orchestration, and the control and application layers.

— COP requirements identification, modeling and design.

— COP validation.

28



2. PhD Thesis Objectives

2.1.2.1 COP requirements identification, modeling and design

This sub-objective has as a main target to present the need of the COP, identifying the functional
requirements and translating them to a comprehensive model definition which will led into the design
and implementation of the COP.

2.1.2.2 COP validation

In this sub-objective, the objective is achieving a functional implementation of the COP and its
experimental validation. The main objectives of this protocol is to help the integration of the increasing
number of SDN technologies implementation under the same principles following the same principle
OpenFlow has achieved to integrate multiple data forwarding technologies under the same control
principles. Therefore, in this task, it is intended to achieve an experimental validation of the COP
integrating different SDN technologies (SDN controllers and orchestration architectures).

2.2 Integrated Orchestration of Cloud and transport network
services

The second main topic of research covered during the development of this thesis, is the integration of
the management of IT/Cloud computing resources within the SDN Orchestration. The organization
of the work within this section will be the following.

— Integrated SDN IT and Network Orchestration architecture
— Geographically distributed DC interconnection
— E2E service orchestration for cloud computing

These objectives will be assessed in Chapters 9 and 10 (Part III).

2.2.1 Integrated IT and SDIN Orchestration architecture

This task’s objective is the definition, design and validation of an integrated I'T and SDN Orchestration
architecture. For this task, firstly the needs and requirements of network connectivity services in the
Cloud and Fog Computing environments will be assessed. Secondly, a northbound API for the SDN
Orchestration architecture proposed in the Section 3.1.1 need to be defined to provide E2E connectivity
service abstraction to upper applications. Finally, an integrated I'T and SDN orchestration architecture
will be proposed, assessed and evaluated.

2.2.2 Geographically distributed Data Center interconnection

In the second task within this section, the geographically distributed DC interconnection across a
multi-layer, multi-domain network will be demonstrated. For this task an I'T and SDN Orchestration
application will be designed and evaluated within the ADRENALINE Testbed.

29



2.3. 5G Network Slicing

2.2.3 E2E service orchestration for cloud computing

This last section will cover different cloud computing services provisioning by integrated IT and SDN
orchestration. The main objectives we want to demonstrate and achieve within this last task are:
seamless virtual machine migration (minimizing service disruption time), flexible bandwidth reserva-
tion for cloud services, and fast network responsiveness to traffic changes (BW steering).

2.3 5G Network Slicing

The third topic which will be covered in this PhD. Thesis is the applicability of the previously re-
searched topics into the implementation of the Network Slicing concept. In this third part of the
thesis, we will focus on the extension of the previously developed architectures for the inclusion of
Network Function Virtualization (NFV) with the goal of creating per-tenant dedicated computing,
storage and network resources to conform customized network slices for different according to the
different requirements imposed by the network services being implemented over the slice.

These objectives will be assessed in Chapters 11 and 12 (Part IV).

2.3.1 Architecture definition

First goal in this part is to define how the different building blocks developed in the previous sections,
together with new components will conform the proposed 5G Network Slicing architecture. The main
requirements for the proposed architecture are:

— Multi-tenancy context aware orchestration for computing, storage and network resources.
— Dedicated virtualized control instances (SDN controllers and Cloud orchestrators) for each slice.

— Management and orchestration of VNF instances.

2.3.2 5G Network Slicing architecture validation: Virtual Network Operator use
case.

We will conclude the work with an implementation of the Network slicing concept by providing a
custom network slice for the implementation of the Virtual Network Operator use case. The objective
is to see how the different concepts proposed in this PhD. Thesis play an important role in the
implementation of the network slicing concept, which pave the way for the upcoming 5G era.

30



Chapter 3

The Cloud Computing Platform and Transport Network of the ADRENALINE
Testbed

3.1 GMPLS/PCE enabled Ethernet over WSON platform of the ADRENALINE Testbed 31

3.2 The Cloud Computing Platform of the ADRENALINE Testbed . . . . . . .. ... .. 33

The demonstration of the concepts, theories and architecture presented in this PhD Thesis have
been developed and tested over the Cloud Computing Platform and Transport Network ADRENALINE
Testbed, a test platform designed and developed by the CTTC Optical Networking and Systems re-
search group for experimental research on high-performance and large-scale intelligent optical trans-
port networks. This chapter include a complete description the components and platforms that con-
forms the Testbed.

3.1 GMPLS/PCE enabled Ethernet over WSON platform of the
ADRENALINE Testbed

The ADRENALINE testbed is composed of an all-optical DWDM mesh network (Figure 3.1) with two
colour-less ROADM nodes and two OXC nodes, providing reconfigurable (in space and in frequency)
end-to-end lightpaths, transparent to the format and payload of client signals (e.g., SONET/SDH,
Gigabit Ethernet). Each optical node has two DWDM transceivers up to 2.5 Gb/s and one at 12.5
Gb/s with fully tuneable laser sources. Arrays of power meters and Variable Optical Attenuators
(VOAs) are used for optical power equalization at output fibers. ADRENALINE deploys a total of
610 km of G.652 and G.655 optical fiber divided in 5 bidirectional links, in which optical amplifiers
(Erbium-Doped Fiber Amplifiers -EDFAs-) are allocated to compensate power losses during optical
transmission and switching at C-band. ADRENALINE transport plane also includes non-intrusive
Optical Performance Monitors (OPM) to obtain spectral information tapping a 5% of all the input
and output fibers, namely, channel and in-band Optical Signal to Noise Ratio (OSNR), channel and
aggregate optical power, and wavelength drift.

31



3.1. GMPLS/PCE enabled Ethernet over WSON platform of the ADRENALINE Testbed

va ne .
= oMPLS Tuneable
8 ADRENALINE y >< 4 Controller - -4 Transponders %
b Network Tools Path
- Computation ATy cooutess LG wpLs-Te 1P Agregation roue
B - % 7 P - ROADMIOXC Noe
%7 . = Element 3 .
- ;e ¢
8
T —— I — < + GMPLS Unified Control Plane®
ADRENALINE Network  ADRENALINE Network Traffic s (PSC+LSC)

Configurator (ADNETCONF) Generator (ADNETGEN)

GMPLS-controlled
MPLS-TP node
with integrated 10Gbps

tunable DWDM

transponders

Ethernet HDTV
Client

All-Optical
Wavelength Switched
Optical Network (WSON)

Connection-oriented Packet Transport
Network (MPLS-TP)

IP/Ethernet Clients

Figure 3.1: GMPLS/PCE enabled Ethernet over WSON platform of the ADRENALINE Testbed

Each optical node is equipped with a GMPLS controller for implementing a distributed GMPLS-
based distributed control plane [59]. Such a control plane is responsible for handling, dynamically
and in real-time, the resources of the optical node in order to manage the automatic provisioning
and survivability of lightpaths (using the RSVP-TE signaling protocol for wavelength reservation,
and the Open Shortest Path First Traffic Engineering (OSPF-TE) routing protocol for topology and
optical resource dissemination), allowing traffic engineering algorithms with QoS. The system running
each GMPLS controller is based on a Linux-based router with an Intel Core 2 Duo E6550 2,33 GHz
processor. The Data Control Network (DCN) is based on IPCC carried at 1310 nm and C-band at
the optical fiber with a line rate of 100 Mb/s using point-to-point links.

The ADRENALINE network includes a PCE, which is a dedicated network entity responsible for
doing advanced path computations. The PCE serves requests from PCCs, and computes constrained
EROs over the topology that constitutes the optical transport layer. The selected PCE deployment
model is based on deploying a single PCE per OSPF-TE area, co-located in a GMPLS-enabled con-
troller node and coupled to a Routing Controller. The preferred synchronization mechanism, by which
the PCE constructs a local copy of the TED is non-intrusive: by sniffing OSPF-TE traffic, it constructs
a dedicated (i.e. not shared) database using stateful inspection of the TE Link State Advertisements
(LSAs) contained within the OSPF-TE Link State (LS) update messages, thus passively reusing the
OSPF-TE dissemination mechanism, and not requiring the creation of an additional listener adjacency.

In the second phase of the Adrenaline testbed development, an AS-PCE was introduced over the
GMPLS control plane to enhance the DWDM network programmability and its integration on a wider
SDN control architecture for multi-layer (Ethernet/MPLS over DWDM) networks. This second phase
is completed with the introduction of Cloud Computing Platform introduced in the next section.

32



3. The Cloud Computing Platform and Transport Network of the ADRENALINE Testbed

Controller Node

SDN & IT Network Orchestrator

(Asus Z9NA-D6)

Nova Compute
VM 1
VM 2

Nova Compute
VM1
| VM 2

Node B

(Asus Z9NA-D6)

e C

JPEN SDN

 Cloud Controller n openstack-

[ Nova I Glance I Neutron ]

Controller 1

GMPLS
Controller

(Intel Server Boart
$1200B87SR)

(Intel Server Board
S1200BTSR)

-
_ 7| controller

Multi-domain SDN
i Orchestrator (MSO)

python

.......

N
GMPLS
| | Controller

GMPLS
Controller

Wavelength Switched
Optical Network (WSON)

Colourless
A8 roapmoxc
P Tuneable

Transponders

S1200BTSR)

S1200BTSR)

===

ot

s

SDN OPEN
Controller 2

(Intel Server Board

(Intel Server Board

ADRENALINE MSO Graphic

User Interface (GUI)

Nova Compute

(Asus Z9NA-D6)

Nova Compu
VM1
VM 2

Node D

(Asus Z9NA-D6)

Figure 3.2: The Cloud Computing Platform and Transport Network of the ADRENALINE Testbed

3.2 The Cloud Computing Platform of the ADRENALINE
Testbed

The Cloud Computing platform of the ADRENALINE Testbed (Figure 3.2) consist on two geograph-
ically distributed datacenters separated by the optical Transport Network detailed in the previous
section. The Cloud Computing platform has been deployed with OpenStack (Liberty release) into five
ASUS Z9NA-D6 Commercial Off The Shelf (COTS) servers equipped with 2 x Intel Xeon E5-2420 and
32GB RAM each. An Openstack controller node and four compute nodes have been setup in different
network availability zones.

For each DC location an intra-data center network composed by four OpenFlow switches have been
deployed using standard COTS hardware with multiple 1Gb Ethernet Network Interface Cards (NICs)
and running OpenVSwitch 2.5.0 (OVS) implementing OpenFlow v1.3. Each Data Center border switch
has been equipped with a 10 Gb/s XFP tunable transponder and a custom SDN-enabled XFP agent
to dynamically configure the tunnable laser through a REST API.

The control plane architecture, which is explained in detailed in the chapters of this PhD Thesis,
includes two OpenDaylight Berylium SR2-Release SDN controllers for the two intra-DC networks.
On top of the SDN controllers the Multi-domain SDN Orchestrator (MSO) implemented mostly in
Python 2.7 is the responsible of the coordination of the different control instances to provide end-to-end
connectivity services. This piece of software is a proprietary code entirely developed by CTTC based
on the IETF ABNO architecture. Last but not least, an SDN & IT Network Orchestrator has been
implemented entirely by CTTC in Python 2.7 and its the software responsible of the joint orchestration
of the Cloud Computing platform and Transport Network of the ADRENALINE Testbed.

33






Part 11

End-to-End service provisioning for
multi-domain, multi-layer Transport
Networks

35






Chapter 4

Multi-layer SDN End-to-End service provisioning

4.1 Multi-layer SDN architecture . . . . . . . . . . . . . . . 37
4.2 Proposed extended multi-layer SDN controller . . . . . . . .. .. ... ... .. .... 39
4.2.1 Muti-layer orchestration . . . . . .. .. .. L Lo L 40
4.2.2 ODL internal services . . . . . . . . .. L L 41
4.2.3 PCEP-Speaker Service . . . . . . .. . 41
4.3 Experimental demonstration and results . . . . . .. ... oo L0000 42
4.4 Conclusions . . . . . . . L L 43

In this chapter, as the first approximation of this PhD Thesis to Software Defined Networking
(SDN) paradigm. An hybrid SDN and GMPLS control architecture is presented to provide end-to-
end (E2E) connectivity services in multi-layer (MPLS/Ethernet over DWDM) networks. A centralized
SDN controller coordinates an Active Stateful Path Computation Element (AS-PCE), which dynami-
cally instantiates the provisioning of optical circuits within GMPLS-controlled DWDM networks, and
directly programs the forwarding behavior of an OpenFlow-enabled Layer 2 network by the definition
of flows.

This chapter is structured as follows: in section 4.1, the overall network architecture is presented.
In section 4.2, the SDN controller extensions implemented to support multi-layer E2E connectivity
are discussed. Finally in section 4.3, the experimental scenario and the obtained results are exposed
to validate the E2E connectivity provisioning with the proposed extensions to a centralized SDN
controller.

4.1 Multi-layer SDN architecture

As previously introduced in section 1.3.2, SDN has attracted the attention of network operators for
its promise of infer important CAPEX savings replacing dedicated hardware network equipment by
software-driven switches installed on cheaper Commercial Off the Self (COTS) servers (section 1.3.2.3).

37



4.1. Multi-layer SDN architecture

Northbound API

Multi-layer SDN
Controller

OpenFlow / BGP / PCEP

Host 1 Host 1
y ~7 GampLs \
Ethernet g e Controller SooN Ethernet
. ey /1 ampLs HY] GMPLS A RN
OFS e ,////' y Controller d Contr;oller ‘\\ \\\ S JOFS
- oFs’ .~ : 7N : : =B y
v d —t < GMPLS AL lOFs
m ey Controller /.—n—. @ RS
o OFS : A Host N
Host N OFs - wsonjssoN A~ - OFs
H -
Domain A Domain B Domain-€
OpenFlow-controlled OpenFlow-controlled
Ethernet/MPLS Ethernet/MPLS
Switches Switches

Figure 4.1: Multi-layer network and SDN control architecture

Over the past few years, the OpenFlow is the most associated protocol to SDN principles for
packet-based networks, and it has an special impact in Data Centers (DC) environments. On the other
hand, Generalized Multi-protocol Label System (GMPLS) in combination with the Path Computation
Element (PCE) is the most wide-spread and mature control plane technology for automatic circuit
provisioning in optical networks.

Bearing this in mind, our approach in this initial chapter, is to achieve the integration of this two
control paradigms under a centralized SDN controller, which combines circuit and packet switching
to provided dynamic control of E2E connectivity services in multi-layer networks.

The figure 4.1 shows a multi-layer network consisting on two different electrical packet domains
inter-connected by an optical DWDM transport network domain conforming a MPLS/Ethernet over
DWDM multi-layer network. The switching infrastructure within the packet network domains is im-
plemented by OF-enabled switches (OFSs). The interconnection between packet domains is done
by a GMPLS-controlled optical DWDM transport network, relying on the dynamic establishment of
optical circuits or Label Switched Paths (LSPs) using GMPLS terminology. An AS-PCE (described
in section 1.3.1.1), is employed to perform the Traffic Engineering (TE) path computations and cen-
tralize the LSP provisioning and monitoring. This way, the AS-PCE implicitly enables the switching
programmapbility within the optical domain by acting as an interface between the SDN controller and
the GMPLS control plane.

The aggregated packet traffic is groomed by the nodes, which are hybrid electrical /optical nodes
equipped with a colored interfaces equipped with tuneable XFP transceivers. An SDN-enabled agent
is needed to allow lambda tuneability on this hybrid electric/optical aggregation nodes. In this work,
a dedicated REST API has been implemented as part of the control suite of the node to enable this
feature, however other protocols, such NETCONF or SNMP, could be also employed to configure these
devices.

On top of the described architecture, the multi-layer SDN controller unifies the control plane
functions by implementing the PCEP and OF protocols with dedicated southbound plugins. The

38



4. Multi-layer SDN End-to-End service provisioning

optical network topology management, the path computation and the programmability of optical
switching devices tasks, remain a responsibility of the AS-PCE.

4.2 Proposed extended multi-layer SDN controller

The proposed multi-layer SDN controller implements different management /control protocols to pro-
vide programmability of heterogeneous data plane devices. OpenFlow, Path Computation Element
Protocol (PCEP) and Border Gateway Protocol (BGP) among others are included as southbound
interface plugins in the SDN controller distribution, in this work OpenDaylight (ODL) controller
distribution [33] has been approached to implement our solution.

PCEP-SPEAKER
NORTHBOUND

I A

y I
T ; SWITCH FLOW i c
HOS’ OPOLOGY 3 - establishLSP (RemoteP EAddress, Src, Dst, Ispld) X
TRACKER NORTHBOUND MANAGER PROGRAMMER PCEP PEM\ ER deleteLSP (RemotePCEAddress, Ispld) | 'PCEP-SPEAKER

NORTHBOUND NORTHBOUND

PCEP-SERVICE
IForwardingRules ﬁl‘ CONSUMER

Manager

Northbound Interface (REST API)

IflptoHost ISwitchManager

ITopologyManager

getRPCimplemetation
(PCEP-SPEAKER_SERVICE_API)

o v CWITC! FORWARDING 1
HOST TOPOLOGY SWITCH RULES

TRACKER MANAGER MANAGER MANAGER IPCEPSpeaker ]:Iiv\?:g]? |

BROKER ! PCEP-SPEAKER

1
registerRPCimplemetation (PCEP-I SERVICE ALS
SPEAKER_SERVICE_API, (YANG MODEL)
PCEP-SPEAKER_PLUGIN) 1

ITopologyService

IFlowProgrammer
Service

TOPOLOGY SERVICE

PCEP-SERVICE

1

FLOW
PROVIDER I
1

PROGRAMMER "CF;';: ;:‘;‘é‘l':"m
SERVICE ; !

Layer (SAL) LLDP INVENTORY
SERVICE 4 i
t
* OPEN m m Instantiate_PCEP-SPEAKER impl.

Service Abstraction

| PCEP
v

(a) (b)

Figure 4.2: Extended Multi-layer SDN controller archiecture:(a) SDN controller internal components,
(b) PCEP-Speaker block diagram.

The Figure 4.2a shows a block diagram representing the set of ODL controller’s internal services
involved in the E2E connectivity provisioning of hosts in the previously described network scenario.

On the top of the architecture, a Network Orchestrator (ORCH) process requests arriving through
the northbound interface (NBI) and triggers the creation of the required services to the ODL controller.
The controller’s NBI is implemented by a Representational State Transfer (REST) Application Pro-
gramming Interface (API). It exposes all controller features to external applications through HTTP
basic operations (GET, POST, PUT, and DELETE). Each internal service (term to refer a basic
architectural block inside the controller in Figure 4.2a) can expose its own NBI through the REST
APIL.

The SDN controller includes a set of internal services including a Topology Manager for network
topology discovery, a Switch Manager in charge of the monitoring of the network elements (packet stats,
forwarding tables...), a Forwarding Rules Manager responsible of translating NBI flow requests into
OpenFlow specific flow rules syntax and a dedicated PCEP-Speaker module (Figure 4.2b) responsible
of implementing the PCEP protocol, including the PCEP-Initate and PCEP-Report message handlers.

39



4.2. Proposed extended multi-layer SDN controller

The southbound interface includes a Service Abstraction Layer (SAL) which connects the internal
services with the specific networking protocol plugins. The communication between providers (gener-
ally networking protocol plugins which expose services to other ODL internal modules) and consumers
(components which consume a service from one or more providers) is based on modeled APIs defined
using the YANG modeling language [43]. YANG is used to model configuration, state data, Remote
Procedure Calls (RPCs) and notifications of network configuration protocols (e.g., NETCONF, OF
or PCEP). The APIs generated from the services modeled in YANG, define the data structures ex-
changed and the methods that can be called by a consumer or the notifications that can be received.
These APIs are registered inside the SAL by the southbound plugins (providers) and are available for
ODL services. In this way, network configuration details (protocol specific messages) are abstracted
to upper SDN layers.

4.2.1 Muti-layer orchestration

On top of the NBI of the SDN controller, an internal orchestration application (ORCH) has been
created in order to handle the required mechanisms to solve the E2E provisioning in the multi-layer
network. The E2E provisioning workflow diagram can be seen in Figure 4.3.

|4 oo ]\S&J @ ot (@ oven

Connectivity

lﬁl
Requestvia RES PCReq{Src, Dst}I

Connectivity Resp.

1 1

[ [
! 1 1
! | Fcrepiero) 1| o) A I |
! e~ [ —d = | I
1 1 PCInmate{ERO)' / / I I
! I 1 PClnitiate 1 1
! I —> I I
! ! I [ I
! ! 1 I |
! I | I 1
! ! 1 I I
| | ] PCRpt 1 I
1 | PCRpt{ERO} | I I
: ! i | I
: ! I OF Flow_Mod | I
| I § 5| 1
I | | I "
| 1 1 OF Flow_Mod I R
! ! 1 [ 1
! ! I 1 I

Figure 4.3: E2E provisioining workflow.

Firstly, the ORCH application recovers the network topology from the SDN controller through the
NBI. The inter-domain connectivity is dynamically loaded from an internal configuration file when the
SDN controller starts. Consequently, the path computation, inside the optical domain, is delegated to
the AS-PCE. The optical domain topology is abstracted as a single-node, whose ports represent the
border nodes of the optical transport network.

Then, when the E2E connectivity request arrives the ORCH calculates the shortest path between
endpoints using Dijkstra’s algorithm. If the computation fails to obtain a feasible route in the network,
in this case if it discovers that there is no connectivity between packet domains (Figure 4.1, Domains
A and C), the ORCH explores the inter-domain connectivity information to detect if the E2E service

40



4. Multi-layer SDN End-to-End service provisioning

request failed due to the lack of connectivity through the optical domain. If so, the ORCH requests
the creation of a new Layer 0 connection by sending a Path Computation Request (PCRequest) to the
AS-PCE to obtain a feasible route between the border OFS. After a successfully response from the
AS-PCE, a LSP establishment request with the pre-calculated route encoded into an Explicit Route
Object (ERO) is sent to the AS-PCE through the PCEP-Speaker service. After the AS-PCE notifies
the PCEP-Speacker Service the effective LSP creation, the ORCH configures the border OFS node’s
SDN-enabled XFP agent with the corresponding channel information. After the border XFP interface
is tuned into the target wavelength the a new link is discovered by the Topology Manager between
the disconnected OFSs through the Link Layer Discovery Protocol (LLDP) mechanism described in
the subsection 4.2.2.

Finally, the SDN controllers provisioning the E2E connection by calculating the route into the
OF network topology managed by the TM between the E2E request’s endpoints and it configures the
OFS forwarding tables through OFPT_FLOW__MOD messages containing the match rules (source
and destination hosts MAC addresses) and the action (input port/output port).

4.2.2 ODL internal services

The Topology Manager is the responsible for building and storing the network topology inside the
SDN controllers domain. The Topology Manager receives the topology updates through the SALs
Topology Service, which, in turn, receives LLDP packets advertising the network devices identities.
This mechanism consist on sending a OFPT_PACKET OUT message containing an LLDP packet,
to a specific node (OFS) and is forwarded according with the forwarding rule included in the OF
message. When another OFS receives a LLDP packet and there is no specific flow action for that
packet, the OFS executes the OFPT_PACKET _IN action and encapsulating the LLDP message and
re-send it to the controller. This way the SDN controller can determine the network topology.

The programmability of the network devices is done separately through the OF and PCEP plugins.
The electrical domains’ switches are configured by the OF protocol. The Forwarding Rules Manager
is the module responsible of validating the flow description received from the NBI. Afterwards it sends
the flow configuration data to the Flow Programmer Service integrated into the SAL. This service is
responsible of routing the flow establishment request to the corresponding southbound plugin. The
architecture is designed to allow multiple southbound protocols. In our case, the OF plugin is called
in this last step.

4.2.3 PCEP-Speaker Service

The PCEP-Speaker consists of three different components: the NBI of the component which exposes
the LSP establishment and deletion capabilities to the external applications (ORCH); the PCEP-
Speaker Service, coupled into the SAL, which translates REST calls into the southbound plugin YANG
modeled RPCs; and the PCEP Speaker Plugin, which implements the PCEP protocol, establishing
the PCEP session with the external AS-PCE and sending the necessary PCEP messages to setup or
delete a LSP into the data plane.

The new YANG model is created to define the LSP establishment and release capabilities thought
a new data structure’s set: LSP establishment Input/Output and LSP deletion Input/Output objects.
It defines the interface (PCEP-SERVICE API) between the PCEP-Speaker Service and the PCEP-
Speaker Plugin.

The PCEP-Speaker Service is broken in two SALs modules: PCEP-Speaker Consumer and
Provider. The consumer calls the YANG modelled RPC implemented in the PCEP-Speaker Plu-
gin, and the provider is responsible of register the implementation into the SALs resource broker

41



4.3. Experimental demonstration and results

(BINDING AWARE BROKER) responsible to route all the RPCs requests from SALs consumers to

providers.
AS -PCE ODL_Controller PCEP OPEN MESSAGE ODL Controller 10.1.1.107 OpenFlow Type: OFPT FLOW MOD
ODL_Controller AS-PCE PCEP  OPEN MESSAGE 2
BT ODL Controller PCEP KEEPALIVE MESSAGE 0DL Controller 10.1.7.40 OpenFlow Type: OFPT_FLOW MOD
0DL_Controller AS-PCE PCEP  KEEPALIVE MESSAGE ODL_Controller 10.1.7.36 OpenFlow Type: OFPT_FLOW_MOD
ODL_Controller AS-PCE PCEP PATH COMPUTATION REQUEST MESSAGE (DL Controller 10.1.7.34 OpenFlow Type: OFPT FLOW MOD
AS -PCE ODL_Controller PCEP PATH COMPUTATION REPLY MESSAGE ODL Controller 10.1.1.106 OpenFlow Type: OFPT_FLOW_MOD

=~ Path Computation Element communication Protocol

» [PATH COMPUTATION REQUEST MESSAGE |Header
» RP object
~[END-POINT object]

Object Class: END-POINT OBJECT (4)

0001 .... = Object Type: 1

I Flags

Object Length: 12
Source IPv4 Address: occ-1 (10.0.50.1)
Destination IPv4 Address: 10.0.50.2 (10.0.50.2)

PCEP  PATH COMPUTATION INITIATE MESSAGE |
PATH COMPUTATION REPORT MESSAGE

Frame 4658: 146 bytes on wire (1168 bits), 146 bytes captured (1168 bits)

Ethernet II, Src: 1.1.1.195 (10:bf:48:d7:cB:ec), Dst: IntelCor al:8d:44 (00:le:67:al:
|Internet Protocol Version 4, Src: 10.1.7.33 (10.1.7.33), Dst: 10.1.7.40 (10.1.7.40_i|
Transmission Centrol Protocol, Src Port: 6633 (6633), Dst Port: 42120 (42120), Seq: 7
.000 0001 = Version: 1.0 (0x01)

Length: 80

Transaction ID: 2114812015

Wildcards: 4194290

In port: 3

Ethernet source address: 10.10.0.10 (fa:16:3e:1b:8e:93)

Ethernet destination address: 10.10.0.12 (fa:16:3e:9f:e2:hc)

Input VLAN 1id: 0@

b) OF _FLOW_MOD messages to push forwarding rules into the OVSs.

ODL_Controller AS-PCE
AS -PCE 0DL_Controller PCEP
0DL_Controller AS-PCE PCEP  CLOSE MESSAGE

~ Path Computation Element communication Protocol
» PATH COMPUTATION INITIATE MESSAGE Header

> SRP object .S stem Setup Delays
b LSP object Delay (s)
b END-POINT object Orch tasks and 1.375
<~ EXPLICIT ROUTE object (ERO) OpenFlow rules
Object Class: EXPLICIT ROUTE OBJECT (ERO) (7) LSP establishment 0.873
0001 .... = Object Type: 1 Total time consumed 2.248
I Flags
Object Length: 52 c) System setup delays.
»[SUBOBJECT: Unnumbered Interface 1D: 10.0.50.1:13 10.10.0.10 Broadcast  ARP Who has 10.10.0.127 Tell 10.10.6.10
| SUBORIECT: Unnumbered Interface ID: 10.0.50.1:2 10.10.0.12 10.10.6.10 ARP 10.10.0.12 is at fa:16:3e:0f:e2:bc
. . . 10.10.0.10 10.10.0.12 ICMP Echo (ping) request 1id=0x5701, seq=0/0, tt1=64 (reply in 4)
PJSUBOBJECT: Unnumbered Interface ID: 10.0.50.3:2 10.10.0.12 10.10.0.10 ICMF Echo (ping) reply  1d=0x5701, seq=0/0, ttl=64 (request in 3)
FSUBOBJECT: Unnumbered Interface ID: 10.0.50.2:13

i Ethernet II,|Src: 10.10.0.12 (fa:16:3e:9f:e2:bc), Dst: 10.10.0.10 (fa:16:3e:1b:8e:93)|
~ Address Resolution Protocol (reply)

‘D Frame 2: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0

a) PCEP conversation between PCEP-Speaker Module

and AS-PCE capture for LSP establishment d) Ping capture proving end-to-end connectivity between Host 1 and Host 5

Figure 4.4: Experimental validation results

4.3 Experimental demonstration and results

The proposed architecture has been validated in the Cloud Computing platform of the ADRENALINE
Testbed (Chapter 3). The network scenario (Figure 4.1) is composed by two packet switching domains
(A,C) controlled both by the proposed extended OpenDaylight SDN Controller based on the Hydrogen
release. OpenDaylight (ODL) [33] is an open-source project carried out by the Linux Foundation
dedicated to the development of an open-source SDN controller.

In order to validate the proposed architecture, an E2E connectivity provisioning is requested,
between Hostl (fa:16:3e:1b:8¢:93) and Host5 (fa:16:3e:9f:e2:bc). Figure 4.4(a) shows the PCEP con-
versation between the ODL controller and the external AS-PCE for a path computation between the
end-points (top), and for a LSP establishment request (bottom) through the PC-Initiate message
which explicitly indicates the path to establish in the GMPLS control plane. The OF switches are
configured through OFPT_FLOW_MOD messages (Figure 4.4(b)) sent from the ODL controller.
We can observe that the Flow-rules establish the forwarding action only for the traffic from source to
destination hosts MAC addresses.

In Figure 4.4(c) are presented the setup delays of the different processes involved in the E2E
connectivity provisioning, i.e., the multi-layer orchestration, including the path computation and driver
selection which together with the flow rules provisioning consumed 1.375s; and the LSP establishment

42



4. Multi-layer SDN End-to-End service provisioning

along the GMPLS control plane which consumed 0.873s. In Figure 4.4(d) the ARPs and ICMP
messages exchange, between the two previously presented hosts through the multi-layer network, is
depicted.

M= OPENDAYUGHT  Deices  Flows | Troubleshoot admin -
Existing Nodes

Existing Nodes

o, > [ = ]
Name Node ID Statistics SR
et OFI00:00:6805-ca 201c:26 ; f— i
OF|00:00:10:bf 48-d7-cT-e9 -
- br-eth2(Computed)

OF|00:00:00:1b:21:7a:6a:a5

OF|00:00:68.05:ca: 1c-f9:a6 - 3

OF[00-00.42 6b:b0.90:60 4e [

[ brswitch1 | br-switch
640 of 12 tems )
L ™ L] br-ethziComputed)
br-eth2(Compute?) STRONGEST-1 Jl STRONGEST.2
Uptime Flows
Uptime *  Flow Details
o, &=
Node Node 1D Statistics O‘
brint(Compute3)  OFI00.00fa.c36a:45:69.40 Thu Apr 10 13.00-11 CEST o Tor T Tror Toewt Tres TewrToe Top > s o |
£ Node InPort DLSrc  DLDst Type Vian PCP  Src Dst Bits Proto Src Dst Actions  Count Count Seconds Timeout Priority
br-suiteh OFI00:00:00:1e:67:9e:05:41 Thu Apr 10 13:00:13 CEST breth2(ComputeT) OFI374 falGletbgesd falfdede2bc * = = = =+ =+ = OUPUT= 0 0 n 0 &
OFf1
STHONGEST2 R ORI0 B 00-1E:2E T eese21 iy Sy U1 U0 CE.CEST brsth2(Computet) OFI1  fal6ledfe2bc fal6detbBedd = = = = = = = © + outPuT= 0 0 30 0 7
OF[374

breswichd OFI0 080106718645 Thu Apr 1013005 CEST e |E R B & B B B B B pes |6 5 T 5 =
br-eth2(Compute3) OFI00-00-68-05:ca-204-90 Thu Apr 10 13.00-11 CEST AECEITE 4 Page 1 of1 p

Figure 4.5: OpenDaylight controller Graphic User interface topology view after Optical LSP creation
between nodes STRONGEST 1 and STRONGEST 2.

Finally, in 4.5 the OpenDaylight controller Graphic User Interface (GUI) vision of the network
topology and the flows created in one of the nodes is displayed (note that the di_src and dl_dst OF
Match fields correspond to Hostl and Host5 MAC addresses). The topology shows a link between
nodes STRONGEST 1 and STRONGEST 2 which is dynamically discovered by the OpenDaylight
controller right after the LSP in the optical network is created, by the LLDP/OpenFlow mechanism
explained in the subsection 4.2.2.

4.4 Conclusions

A novel SDN multi-layer network control architecture has been presented featuring OpenFlow protocol
for the L2 layer and the PCEP protocol for the dynamic instantiation of LSP within a distributed
GMPLS control plane over the L0 optical layer. The OpenDaylight SDN controller has been extended
to implement the PCEP protocol, by embedding a new service (PCEP__SPEAKER) within the ODL’s
MD-SAL, to dynamically create and delete optical Label Switched Paths in the GMPLS-controlled
optical network.

43






Chapter 5

SDN orchestration of multi-domain multi-layer networks

5.1

5.2

2.3

5.4

9.5

5.6

Introduction . . . . . . .. L 46
SDN Orchestration procedures and status . . . . . . . ... ... L L. 47
5.2.1 Topology discovery . . . . . . . . . .. 48
5.2.2 Path Computation . . . . . .. .. ... 49
5.2.3 Connectivity provisioning . . . . . . . . . . ... 49
Multi-domain SDN Orchestrator (MSO) architecture . . . . . . .. ... .. ... ... 50
5.3.1 Orchestration Controller . . . . . . . . . .. . ... .. 50
5.3.2 Topology Manager . . . . . . . . . . . .. 51
5.3.3 Path Computation Element . . . . . . . . . ... ... ... ... ........ 51
5.3.4 Virtual Network Topology Manager . . . . .. ... ... ... ... ...... 52
5.3.5 Provisioning Manager . . . . . . . . . . . ... 52
53.6 OAM Handler . . .. . ... . .. . .. .. e 53
Experimental evaluation . . . . . . . ... L Lo 54
5.4.1 SDN orchestration of TE-aware multi-domain, multi-layer networks. . . . . . . 54
5.4.2 Automatic Provisioning of Fixed and Mobile Services . . . .. ... ... ... 57
Performance evaluation . . . . . . ... oL 60
5.5.1 Topology discovery and transfer analysis . . . . . ... ... ... .. ...... 60
5.5.2 Single layer and multi-layer E2E service provisioning performance evaluation. . 61
Conclusions . . . . . . . . e 62



5.1. Introduction

In the previous chapter, a novel SDN control approach for end-to-end (E2E) service provisioning
in multi-layer networks was presented. In that case, the architecture was based on a single SDN
controller entity which was coordinating a multi-layer network consisting of OpenFlow-controlled
Ethernet switches conforming the Layer 2 network and a DWDM optical network controlled by the
GMPLS/PCE paradigm. The use of a single SDN controller simplifies the network discovery when
new optical circuits were creating thanks to the use of the correlation of LLDP packets by the packet-in
mechanism of OpenFlow.

Now the problem of E2E provisioning across multi-layer and multi-technology in SDN is extended
to multi-domain scenarios. In this chapter, the concept of SDN orchestration is firstly introduced as
the coordination and automation of the establishment and release of multiple independent network
connections (usually performed by different control instances) to conform end-to-end connectivity ser-
vices through heterogeneous network domains (which might consist of different network technologies).
The SDN Orchestration is one of the central concepts of this PhD Thesis, the successive topics that
will be presented in later chapters are supported by the SDN orchestration architecture introduced
here.

This chapter is organized as follows: the section 5.1 presents the problem description of multi-
domain and multi-layer control, and the SDN Orchestration concept as the proposed solution. In
section 5.2, the SDN Orchestration approach is defined and thoughtfully described by analyzing the
proposed solution from different angles. Section 5.3 presents the Multi-domain SDN Orchestration
(MSO) architecture with the main building blocks and functions. In section 5.4, the experimental
validation of the proposed architecture is presented by two different use cases: (i) SDN orchestration
of Traffic Engineering (TE)-aware multi-domain, multi-layer networks; (ii) Automatic Provisioning of
Fixed and Mobile Services. Finally, in section 5.5 presents a performance evaluation of the Multi-
domain SDN Orchestration architecture in the ADRENALINE Testbed addressing Key Performance
Indicators (KPIs).

5.1 Introduction

Network management and control systems are suffering an unprecedented evolution since Software
Defined Networking (SDN) networking paradigm emerged almost ten years ago. As it was highlighted
in the previous chapter, SDN proposes separating the control logic from the switching infrastructure
by removing the ’intelligence’ from the forwarding elements and placing it into a logically centralized
SDN controller. OpenFlow (OF) allows to remotely program the forwarding behavior of the network
infrastructure by characterizing the traffic as a combination of flow rules based on the packet headers.
OpenFlow has become the preferred SDN interface, between control and data planes, for packet-based
networks.

Ideally, as it was presented in the previous chapter, the network consists on a single control domain
comprising multiple network elements featuring diverse technologies which are exposed to the SDN
controller by standard interfaces. However, it is not realistic in the short term in transport networks
since different vendor’s transport equipment does not inter operate at the data plane level (only at
the grey interface level) unlike regular Ethernet switches or IP routers, which causes the network
to be fragmented into multiple vendor domains. Moreover, each vendor offers its own control plane
technology (e.g., SDN with some proprietary OF extensions or GMPLS and PCE) because of the need
of configuring vendor-proprietary parameters (e.g., FEC), generating isolated vendor domains.

Co-existence of GMPLS and OF control technologies for different network domains seems to be a
realistic scenario in the mid-term. In this context, it arises the need of coordinating or orchestrating

46



5. SDN orchestration of multi-domain multi-layer networks

Multi-domain SDN Orchestrator
(MSO)

Orchestration
Layer

8 P SDN Datacenter 2 -
=t " CONTROLLER S »
£8
0y )
N O 4
RIS o
PCEP #° 1L
S (ows | N
ya Controller hY OpenFlow
GMPLS I GMPLS
Controlle  GmPLS Controller
i | Controller 1
- __:—;—:—_=__——__ fo e — —
i il i
1 1 1 1
1 ! B oo
! [ 1 <
1 P 1 = -
b i g2 g
1 i H © © >
oo d — o358
! /"\r’ i b2 e~
vy -
ays s 8
. 0a e & Z8  OFS
- i oy U\ J—
l # OFS E73 VM : Virtual Machine
Ethern et WSON OFS: OpenFlow Switch
OFS \/ Ethernet ¢ OVS: OpenVSwtich
— LSPDB: Label Switched Path
Database

TED: Traffic Engineering Database
WSON: Wavelenght Switched Optical
Network

Figure 5.1: Multi-domain SDN Orchestration (MSO) architecture.

multiple, heterogeneous control planes arranged in different control domains. Inter-working between
different control planes requires a higher, master entity (referred here as Multi-domain SDN Orches-
trator MSO) which automatically coordinates the processes to establish and release E2E connections
through different network domains controlled by different control instances. A graphical description
of this control architecture can be viewed in 5.1.

In this line, the ABNO architecture [1] has been designed within the IETF, based on standard
protocols (PCEP, BGP-LS) and components (PCE) to efficiently provide a network orchestration so-
lution for multi-layer and multi-domain networks. In this chapter, it is presented a Multi-domain SDN
Orchestration architecture which is conceptually aligned to the IEKTF ABNO proposal but focused on
integrating multiple control plane technologies under the same orchestration entity. The implementa-
tion is based on a modular, plugin-based, architecture to orchestrate heterogeneous control instances
with diferent different northbound interfaces. Its northbound Application Programmable Interface
(API) has been designed following the Representational State Transfer (REST)-ful principles to allow
external IT applications [34] (i.e. Cloud Computing management systems) to directly request E2E
connectivity services into the network.

5.2 SDN Orchestration procedures and status

Network orchestration can be defined as the coordination and automation of the establishment and
release of multiple independent network connections (usually performed by different control instances)
to conform E2E connectivity services through heterogeneous network domains (which might be com-
posed of different network technologies).

The SDN orchestration approach is based on an hierarchical architecture where a software-based,
logically centralized entity provides E2E communication through different transport networks (Ether-
net/DWDM) and/or control technologies (SDN/OF, GMPLS/PCE). This hierarchical approach has

47



5.2. SDN Orchestration procedures and status

been proposed before in [60] where multiple OpenFlow-enabled PCEs are orchestrated by a parent-
PCE to provision E2E connections. In [61], the ABNO architecture is used in a international Testbed
to orchestrate E2E connectivity services across several optical network transport technologies (Optical
Packet Switching - OPS, Elastic Optical Networks - EON and WSON) controlled by different SDN
controller distributions.

Differently, in this thesis another perspective is observed by assuming a network scenario composed
by multiple control technologies: SDN/OF network domains interconnected by a GMPLS/PCE con-
trolled optical DWDM network, with a logically centralized Multi-domain SDN Orchestrator (MSO).
Network domains are interconnected by border links shared between two nodes which belong to dif-
ferent domains. This heterogeneity, among the control technologies considered, introduces the need of
implementing multiple southbound interfaces in the MSO and also introduce new elements of discus-
sion on the design of the orchestration architecture (i.e. level of topology abstraction and multi-layer
path computation). Now, the set of requirements that should be fulfilled by the orchestration layer in
the previously presented scenario are summarized as follows:

1. Translation of the external application connectivity service requests to the configuration of the
different control plane instances. Definition of a standard and extensible northbound API to
support customer service requests and offering network control abstraction to customer applica-
tions.

2. Discovery and inventory of the physical devices and composition of the network topology. Full
physical network topology information is not strictly required in the orchestration layer, but at
least, the inter-domain connectivity and an abstracted view of the network domains are required.

3. Multi-domain and multi-layer path calculation across the different network domains. Domain
selection or full path computation depending on the level of topology abstraction.

4. Provisioning and restoration of the E2E connectivity services. Programmability of the different
network controllers by implementing the necessary provisioning interfaces and configuration of
the inter-domain connections.

5. Event handling and notification support of changes in the network (failures, topological changes...).

In the following subsections, the different protocol/interface alternatives to design and implement
an effective SDN orchestration architecture are presented. The discussion is focused on weather or
not they can address the previous outlined requirements.

5.2.1 Topology discovery

The MSO may compose its network topology by the cooperation of the underlying network controllers
which can advertise its intra-domain topologies using different protocol or interfaces. Most of the SDN
controllers implement custom RESTful APIs to offer their network topology to external applications,
but also other possible interfaces are attracting a lot of interest, this is the case of the NETCONF
protocol [41] and its RESTful based version RESTCONF [42], both based on the YANG modeling
language [43].

The topology recovery in the orchestration layer can be done in a reactive or proactive manner.
In the proactive approach, the MSO requests the network topology to the control plane instance
every time it need to refresh its working copy to perform a new path computation. RESTful inter-
faces are connection-less interfaces and they do not inherently support asynchronous notifications.

48



5. SDN orchestration of multi-domain multi-layer networks

This feature may constrains some orchestration implementations to perform the topology discovery
proactively. Regarding the reactive approach, the asynchronous notifications between the control and
the orchestration layers can be supported by WebSocket transport technology (RFC 6455). The Web-
socket Protocol is a TCP-based protocol which uses the HTTP handshake mechanism which facilitates
real-time data transfer between the control instance (SDN controller or AS-PCE) and the MSO.

Regarding the network inventory and topology discovery in the control layer, the preferred solution
for most SDN controllers is the combination of the Link Layer Discovery Protocol (LLDP) and OF
as it was explained in the previous chapter. Similarly, in the GMPLS control plane an Internal
Gateway Protocol (IGP), i.e. Open Shortest Path First (OSPF) protocol, can be used to exchange
the topological information between GMPLS nodes. The AS-PCE can include a IGP instance to listen
as well network status information packets and building the Trafic Engineering Database (TED) based
on the gathered information.

5.2.2 Path Computation

The E2E path computation can be performed in a different manner depending on the level of topology
abstraction and the number of transport layers. Depending on the level of abstraction, the MSO can
manage an abstracted view of the network that consists on the domain connectivity through inter-
domain links and a node abstract representation of the network domains [62]. In this case, the
intra-domain path computation is delegated to the lower, per-domain controllers and the MSO only
performs the domain selection of the controllers involved in the E2E path calculation.

Another alternative is the discovery of the complete physical network topology by the MSO. In
this case the MSO is responsible of calculating the full path across the network, which in the proposed
scenario comprises different layers. In the multi-layer scenario, a separate path computation instance
(i.e. a PCE) for each layer topology can be employed, or a single path computation instance, with
network visibility of all the transport layer topologies, can use multi-layer aware algorithms to calculate
the routes.

5.2.3 Connectivity provisioning

The E2E connectivity provisioning involves the orchestration of different control plane and forwarding
technologies. The MSO is responsible for the implementation of the interfaces or protocols exposed
by the control plane to forward the orders from the orchestration layer to the control layer. Also, the
generalization of different transport technology connections into a flexible and common data structure
is a key requirement to be able to offer abstracted information to upper layers through the NBI.

Most SDN controllers offers a custom provisioning REST API which input parameters are aligned
with those used on the OFPT_FLOW__ MOD messages to insert flows into the OF-enabled switching
devices. A flow is defined by one or more matching rules which range from Layer 2 to Layer 4 packet
headers, and an action (forward to a specific port, drop packet, forwarding to the controller, etc...)
inserted into the forwarding device’s OF table.

The AS-PCE can instantiate or remove LSPs into the network using the PCEP initiate request
message (PClnitiate) [23]. This message includes the endpoints and the computed explicit route
object (ERO), defining the route and resources to be traversed and allocated by the LSP. After the
connection is successfully established, a PCEP Report Message (PCRpt) is generated to notify to the
AS-PCE the successful LSP establishment and its management (e.g., deletion, modifying attributes,
etc). The PCEP protocol can be use as a NBI of the AS-PCE to expose a programming interface to
the orchestration entity.

49



5.3. Multi-domain SDN Orchestrator (MSO) architecture

5.3 Multi-domain SDN Orchestrator (MSO) architecture

Now, the Multi-domain SDN Orchestration (MSO) architecture is introduced. Firstly, the different
modules that conforms the MSO architecture will be presented, describing how this approach ad-
dresses the set of requirements enumerated in section 5.2. As it was mentioned in the introduction of
this chapter, the MSO architecture design principles are aligned with the IETF ABNO architecture
proposal (RFC 7491).

Multi-domain SDN Orchestrator (MSO)

[ Orchestration Controller ]

A4

Flow —— PCEP
B PCEP
| Server

REST

H
v

Multi-layer |’
Provisioning Topology XML PCE Handler
Manager . Manager

Figure 5.2: MSO architecture for multi-domain, multi-controller orchestration

5.3.1 Orchestration Controller

On top of the MSO architecture (Figure 5.2), the Orchestration Controller (OC) handles the internal
workflow between different MSO modules and it processes the incoming requests from the Northbound
Interface (NBI). The NBI offers, to other external applications, the CRUD operations for the E2E
connectivity services, the multi-domain topology service and the path computation. It has been
implemented as a RESTful API.

The OC is responsible of implementing different orchestration workflows depending on the trans-
port layer of the service being requested. Currently, the MSO supports DWDM optical services,
Ethernet L2 services and MPLS tunnels. Besides, the MSO supports multi-layer cooperation for the
creation of services. This means that a upper layer connectivity services (Ethernet or MPLS) can trig-
ger the creation of one or more Layer-0 (Optical DWDM lightpaths) connectivity services to provide
connectivity between upper-layer’s endpoints. The upper service provisioning is transparent to the
operations involved into the creation of lower layer services, but internal correlation between the dy-
namically created Layer-0 connectivity services and the resulting virtual links exposed into the upper
layer’s topology are maintained by the Virtual Network Topology Manager (VNTM) component. The
OC identifies the need of creating a new virtual link depending on the response in the path calculation.
This feature will be explained in detail in following subsections.

Once the route is calculated between the service request endpoints, the OC is responsible of
correlate the topology information to determine to which administrative network domain corresponds
each part of the entire path. In the proposed architecture we assume that one domain cannot consist
of multiple layers, thus the multi-domain path decomposition it is always performed in single layer
paths.

50



5. SDN orchestration of multi-domain multi-layer networks

5.3.2 Topology Manager

The Topology Manager (TM) is the component responsible of collecting the network topology from
each control domain and building the Traffic Engineering Database (TED). The TED includes all the
relevant information about network links and nodes, and it is used by the Path Computation Element
(PCE) for calculating routes across the network. The TM recovers the physical network topology of
each network domain and the inter-domain connectivity is loaded from configuration files. From this
information, the TM builds a complete multi-domain topology and per-layer topologies (from now we
will refer to them as TE topologies) built by filtering the whole topology based on the TE information
of the links, for each transport layer technology. All this information is stored in the TED.

The TM design is based on a modular and extensible plugin based approach where for each
administrative domain, a controller client instance is customized with its corresponding topology
discovery interface based on whether the underlying control instance is a SDN Controller, and AS-
PCE or other control technology. Currently, the TM implements dedicated plugins for: (1) different
SDN controller RESTful APIs (OpenDaylight, RYU, ONOS); (2) a proprietary interface of the AS-
PCE based on a raw socket TCP and XML/JSON encoding; (3) the Control Orchestration Protocol
(COP) which will be presented in detail in Chapter 6.

The topology discovery is performed in a proactive manner, the general principle is that every
time a new connectivity service request arrives to the OC, every domain controller is requested to
refresh the MSO copy of their topology and the TE topologies are re-build.

The TE enforcement strategy consist in the proactive reservation of the network capacity and its
dynamic representation into the TED network topologies. The MSO architecture allows to specify the
bandwidth requirements for a specific E2E connectivity service request and proactively enforce the
reservation of this bandwidth capacity in the network, this feature will be explained in detail in 5.3.5.
An important requirement to support this capability is to store the Traffic Engineering information,
only known by the orchestration layer in the TM TED. The relevant topological parameters necessary
to include TED are: the maximum reservable bandwidth and the unreserved bandwidth of every link.
The former is obtained from the topology information retrieved by the per-domain controllers and the
latter must be dynamically updated after every new connection is effectively established.

5.3.3 Path Computation Element

The Path Computation Element (PCE) is a standard component standardized by the IETF [63] cen-
tralizes the path computation functions within the MSO architecture. The MSO architecture support
two different approaches: a single unified multi-layer PCE which can perform a path computation
accounting with the TE constrains of both layers (such as with wavelength continuity constrain in
the WDM-based optical networks or bandwidth/delay constrained packet networks), or two separated
PCEs dedicated for each layer (L0 and L2).

The PCE is used by the OC and the VNTM components within the MSO architecture. The com-
munication between those entities is done through the Path Computation Element Protocol (PCEP)
[21]. The PCE retrieves the corresponding TE topology from the TM. In our implementation, the TM
implements a topology server which is accessible through a socket TCP and XML/JSON encoding
for each TE topology. This way the PCE, every time it receives a new Path Computation Request
(PCEPRequest), it can obtain a fresh version of the current MSO TE Topology.

The PCE can load different algorithms depending on the underlying transport network loaded in
the TM TEDB. For the Multi-layer PCE, a Constrained Shortest Path First (CSPF) based algorithm

51



5.3. Multi-domain SDN Orchestrator (MSO) architecture

defined in [64], employs the delay as a TE-metric was presented. In the implementation used for
the Multi-layer PCE based MSO architecture, the unreserved bandwidth on every link is taken as
a constraint by the algorithm to calculate the E2E path across the multi-layer network. The CSPF
output returned within the PCEP Response includes a multi-layer Explicit Route Object (ERO)
representing the path combining packet links (physical or virtual) and/or optical hops where the layer
adaptation is ensured. Optical segments are subject to the Wavelength Continuity Constraint (WCC)
and the optical wavelength is included in the ERO if the E2E path traverses a WSON network segment.

5.3.4 Virtual Network Topology Manager

The Virtual Network Topology Manager (VNTM) is the responsible of the multi-layer management.
The general purpose of the VNTM is two fold: (1) the provisioning of Layer-0 (L0)/DWDM optical
connections to satisfy upper layer’s connectivity demands; (2) the creation of Layer 2 virtual links
that represent the physical connectivity provided by the created connectivity services in the optical
layer. The VNTM workflow varies weather a single multi-layer PCE or multiple per-layer PCEs are
employed. Following both workflow descriptions are detailed.

e Multi-layer PCE: when the path computation response of a new L2/Ethernet connectivity ser-
vice consist on network elements from different layers, the VNTM extract the LO sub-path and
the inter-layer pair. To do this, the VNTM consults the transport layer information of every
consecutive node included in the multi-layer path in the multi-layer TE topology obtained from
the TM.

e Per-layer PCEs: first the L2-PCE handles the path computation of the new L2/Ethernet connec-
tivity service. If the path computation fails, the VNTM requests uses the inter-domain topology
information stored in the TM to find which inter-domain nodes are reachable from the service
request’s source and destination nodes. To do this, it sends a path computation request between
each L2 inter-domain node and the source node, to conform the list of possible inter-domain
source nodes. Then, it repeats the procedure with the destination node. When the operation
finishes, if there is at least one node in each list (at least one inter-domain source and destination
nodes) it selects the first possible solution and, based on the inter-domain topology information,
selects the Layer 0 source and destination nodes, conforming the inter-layer pair.

Once the inter-layer pair is obtained, the VNTM triggers the creation of a new L0 connection
between the L0 inter-layer endpoints through the Provisioning Manager. After the successfully estab-
lishment of the LO connection, the VNTM notifies the TM the creation of a new virtual link (VLink)
and the related virtual ports on the border nodes into the L2 network topology. The responsibility
of mapping the created LO connections and the generated L2 virtual links remains in the VNTM too.
Finally, when the new VLink is created, it is characterized with the TE information of the underlying
connection (i.e. total available bandwidth, aggregated delay).

5.3.5 Provisioning Manager

The Provisioning Manager (PM) is the module responsible of translating the connectivity requests,
processed by the OC and the VNTM, into the specific syntax of the underlying network control
instance northbound provisioning interface.

The PM design follows the same principles of the topology manager. It implements a provisioning
plugin for each different network controller technology and it creates a dedicated customized controller

52



5. SDN orchestration of multi-domain multi-layer networks

instance with the corresponding plugin interface implementation. Currently, the PM implements
dedicated plugins for: (1) each the custom SDN controller’s provisioning REST API (OpenDaylight,
RYU and ONOS); (2)the PCEP protocol with Stateful and PCE-initiated LSP Setup extensions [23];
and (3) the Control Orchestration Protocol (COP). All the established connections (both L0 and L2)
are stored in the Flow server by the provisioning manager.

The Connection is the data structure characterizing the internal connectivity constructs created
in the underlying transport domains, and which is send to the PM to characterize the provisioning
requests. It consists on the following parameters:

e Endpoints. Source and destination nodes, described as: {Router_ID, Interface ID}

e Path. List of hops traversed by the connection, each one described as: {Router_ID, Inter-
face_ID}

e Transport_layer. (L0, L2)
e Forwarding__rules. Matching Rules and Action similar to the OpenFlow equivalents [27]
e Connection__type. (Unidirectional, Bidirectional)

In chapter 6, the connection construct will be introduced as part of the COP information models

5.3.5.1 Multi-layer bandwidth reservation in SDN orchestration

TE-aware traffic aggregation requires the guarantee of the effective bandwidth reservation into the
E2E service provisioning. While in a WSON GMPLS domain a fixed amount of physical resources (50
GHz wavelength) are reserved for each Label Switched Path (LSP), in a packet-based OF domain it is
necessary to limit the bandwidth assigned to each flow in order to preserve a certain QoS (i.e. band-
width) assured to each E2E services. OF 1.3 introduces a new message (i.e. OFPT METER MOD)
which enables the specification of traffic meters into the OF-switches, with an associated data rate
and a QoS-enabling strategy, such as dropping packets at a determined Drop-rate or Differentiated
Services Code Point (DSCP) packet tagging to allow DiffServ. Flows can be attached to these prede-
fined meters, associating a maximum rate to each flow. A Meter instruction has to be included inside
the OFPT_FLOW_MOD message indicating the Meter-1d desired to be attached to.

5.3.6 OAM Handler

The Operation, Administration and Maintenance (OAM) handler receives asynchronous notifications,
such as topology updates, flow statistics, or failure alarms. Based on them, it triggers the correspond-
ing internal workflows, which start from updating topology information stored in the TM’s TED, then
to discover the affected E2E connections by the network update and finally depending on the event it
would led into a restoration or update of the E2E services installed by the MSO.

The internal architecture of the OAM Handler is based on a modular plugin approach. The
OAM Handler subscribes the Notification Servers (if any) available on each domain controller, and
implements custom notification decoders based on the information model of each specific domain
controller. As a REST API does not allow notifications, websockets have been introduced in some
SDN controller implementations (RYU) [65] in order to emit asynchronous messages in the opposite
directio (bottoms-up). Websockets are also employed in the Common Orchestration Protocol (COP)
designed in this PhD. Thesis, which will be carefully defined in Chapter 6. Currently the plugins
implemented in the OAM Handler are based on the RYU SDN controller implementation and the
COP.

593



5.4. Experimental evaluation

Multi-domain SDN Orchestrator (MSO)

Orchestratlon Controller ]

4
REST REST F'°‘” PCEP PCEP
Server
REST ; REST TRy oam
Multi-layer
Provisioning T°P°|08V PCE Handler
Manager Manager |TED] @

...."n........‘

P et e e e e m e ;.__\

1 * ORCHESTRATION INTERFACES ( REST / RESTCONF / PCEP / BGP- LS)

Active Stateful

PCE SDN

—
— ntroller
Controller — Controlle
4
RE N n
. \ PCEP AR\
A /
,’ GMmPLS N [\
' +" | controll N g
OpenFlow 1.3 \ . ontrofler OpenFlow 1.3 ; Y
1 \ GMPLS ! GMPLS / W\
/1 \ Controlle : ! Controlle / W\

1 /
11

GMPLS H

Controlle

r

PN
-
N G
-\
WSON
Access  Aggregation Core Aggregation Access

Figure 5.3: Multi-domain SDN Orchestration of the multi-layer, multi-domain network of the
ADRENALINE Testbed.

5.4 Experimental evaluation

In order to experimentally evaluate the proposed MSO architecture, the multi-layer transport network
of the ADRENALINE Testbed (Figure 5.3) has been chosen as the reference scenario for the different
uses cases on whose the MSO is evaluated. Specifically two different uses cases are proposed: (1) the
experimental validation of the TE-aware orchestration of multi-domain, multi-layer networks; and (2)
the automatic provisioning of Fixed and Mobile Services through MPLS tunneling.

5.4.1 SDN orchestration of TE-aware multi-domain, multi-layer networks.

In this first evaluation, the objective is to experimentally validate the end-to-end service provisioning
in the aforementioned network scenario. The MSO implementation employs a single multi-layer PCE
which employs the Constrained Shortest Path First (CSPF) algorithm detailed in subsection 5.3.3.

The E2E service request is characterized by its service endpoints (ingress and egress interfaces
to connect), the transport layer of the connection (MSO supports LO/DWDM links, L2/Ethernet or
MPLS services), and a set of forwarding constrains such as source/destination MAC or IP addresses,
TCP ports, VLAN IDs or a MPLS label. Moreover, the service request may include a set of traffic
parameters such a target reserved bandwidth or a latency threshold.

54



5. SDN orchestration of multi-domain multi-layer networks

Multi-domain SDN Orchestrator GMPLS Control plane SDN/OpenFlow domains
Orch. Multilayer | Topology, Provisioni ‘ AS- ¥
VNTM SDN
[Controller I I PCE @ IManagerI Manager :~ ] g PCE Controller #1 i?, ovs 1 l

(1) POST/

CrEATE_ (2) PCEP_REQUEST

SERVICE PCEP_RESPONSE{ERO}

_CALL RPC/ GMpls @GMPLS
Ctrl
(3) Create_virtual_link Ctrl
—

'~
2

-
~

/
4

POST/ CREATE_CONNECTION {L0/Domain2, ‘f_,

i
]

C_INITIATE

{ERO} PClnitiate
RSVP-TE Path
—
Message

RSVP-TE
PCRpt ¢—

HTTP/200 OK {TRAFFIC SPEC}  PC_REPORT : Resv
= {ERO} Message
(5) POST/ CREATE_VIRTUAL_LINK
POST/ UPDATE_LINK_STATES
PCEP_REQUEST
PCEP_RESPONSE{ERO}
(6) LOST/ CREATE_CONNECTION{L2/Domainl} PUT/ RESTCONF/../NODE/{NODE IDYFLOW/{FLOW ID}
OFP_FLOW MOD
HTTP/ 200 OK {TRAFFIC SPEC} - -
—_—
POST/ CREATE_CONNECTION{L2/Domain3} PUT/ RESTCONE/../NODE/NODE._ID}/FLOW/FLOW ID}
HTTP/ 200 OK {TRAFFIC SPEC} : P FLOW MOD
POST/ UPDATE_LINK_STATES {ERO, BW} ——

Figure 5.4: E2E provisioining workflow with ABNO orchestrtion achitecture.

The provisioning workflow (Figure 5.4) of an E2E service request between two Layer-2 service
endpoints can be seen in Figure 5.4. First, the E2E service request is validated and processed by
the OC, which firstly sends to the PCE a Path Computation Request (PCEP Request) through the
PCEP interface (2). The depending on the nature of the PCEP Response, the calculated path could
be uni-layer or multi-layer, in the latter the OC triggers the creation of a new virtual link (3) through
the VNTM service. The internal VNTM workflow for the creation of a virtual link involves the
creation of new Layer-0 connection or DWDM link through the PCEP provisioning plugin. (4) A
PCEP Initiate message is sent to the AS-PCE to setting up the creation of a new LSP to interconnect
the OF network domains. This request includes a pre-calculated path through the optical network
and the border node’s ports connected to the border links which interconnects the OF domains with
the optical transport network. These Endpoints are represented as Unnumbered Interfaces composed
by the router-ID and the Interface-ID encoded in 64 bits. After the creation of the virtual links, the
topology is updated with a new Layer-2 link (5). Then, the OC request a new path computation over
the updated topology, if the resulting path is multi-layer, the same workflow is repeated. Otherwise,
the OC is responsible of generating per-domain connections connections, by partitioning the end-to-
end calculated path, and sending them to the Provisioning Manager(6), which in turn, converts the
received connection request into the corresponding protocol or API of the related domain controllers.

Figure 5.5 presents the experimental validation of the MSO architecture, the figure shows a com-
plete traffic capture of the communication between the MSO and the different controllers for the
provisioning of an end-to-end Ethernet service between two endpoints in the Adrenaline Testbed. The
image includes the traffic captured in three points of the network: (1) the MSO server machine; (2-3)
the servers on which the SDN controllers of domain 1 and 2 are running. The MSO implements
the proprietary RESTful API of OpenDaylight Berylium SR4 release for the configuration of the two
SDN controllers, which at once configure the switching infrastructure using Openflow 1.3. For the
optical domain, the MSO implements the PCEP protocol including the LSP instantiation extensions
to dynamically create and release LSPs in the GMPLS-based optical control plane (for more details

95



5.4. Experimental evaluation

_‘ *trace_10_eZe_calls.pcap

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

An 20 [(IPRB Res=TeEEaaanm

‘ |htm.requast‘meﬂ'10d == POST or http.request.method == PUT or pcep

Time Source  Destination Frotoc Length Info

*REF* MS0 MS0 HTTP 678 POST frestconf/config/calls/call/e HTTP/1.1 (application/json)

©.068482 MSO ML-PCE PCEP 136 Path Computation Request (PCReq)

8.869558 ML-PCE MSO PCEP 228 Path Computation Reply (PCRep)

0.147324 MSO MS0 HTTP 988 POST festablishConnection HTTP/1.1 (application/json)

8.162794 Ms0 AS5-PCE PCEP 216 Path Computation LSP Initiate (PCInitiate)

©.383389 AS-PCE MsO PCEP 212 Path Computation LSP State Report (PCRpt)

B.396858 MsO MSO HTTP 1158 POST /updatelLinkState HTTP/1.1 (application/json)

0.482271 MSO MS0 HTTP 1178 POST /createVirtualLink HTTP/1.1 (application/json)

8.424363 Ms0 M50 HTTP 98@ POST /establishConnection HTTP/1.1 (application/json)

©8.433856 Ms0 AS-PCE PCEP 216 Path Computation LSP Initiate (PCInitiate)

B.636568 AS-PCE MSO PCEP 212 Path Computation LSP State Report (PCRpt)

©.714288 MSO Ms0 HTTP 1812 POST fupdatelinkState HTTP/1.1 (application/json)

8.719086 M50 Ms0 HTTP 1178 POST /createVirtualLink HTTP/1.1 (application/json)

8.727722 Ms0 ML-PCE PCEP 136 Path Computation Request (PCReg)

8.778786 ML-PCE MSO PCEP 196 Path Computation Reply (PCRep)

8.861858 MsSO M50 HTTP  1@61 POST /establishConnection HTTP/1.1 (application/json)

8.874686 M50 SDN_CTRL_1 HTTP 951 PUT /restconf/config/opendaylight-inventory:nodes/node/openflow: 17615645746583808,/table/8/flow/openflow: 176156457465880 37

0.9808389 MSO SDN_CTRL_1 HTTP 939 PUT /restconf/config/opendaylight-inventory:nodes/node/openflow: 116525786536/ table/8/flow/openflow:116525786536_38
*REF* SDN_CTRLL SWITCH_4 OpenFlow 172 Type: OFPT_FLOW_MOD
©.044829  SDN_CTRL1 AGGR_SWITCH_1 OpenFlow 172 Type: OFPT_FLOW MOD

8.936438 MsO MS0 HTTP 1182 POST /updatelinkState HTTP/1.1 (application/json)

8.981355 MS0 MSO HTTP 1861 POST /festablishConnection HTTP/1.1 (application/json)

8.993416 MS0 SDN_CTRL_2 HTTP 939 PUT /restconf/config/opendaylight-inventory:nodes/node/openflow: 116525787372 /table/@/flow/openflow:116525787372_33

1.845025 MSO SDN_CTRL_2 HTTP 939 PUT /restconf/config/opendaylight-inventory:nodes/node/openflow: 138587660225/ table/@/flow/openflow: 138587668225_34
*REF* SDN_CTRL_2 AGGR_SWITCH_2  OpenFlow 172 Type: OFPT_FLOW_MOD
©.850163 SDN_CTRL_2 SWITCH_2 OpenFlow 172 Type: OFPT_FLOW_MOD

1.873141 MSO MS0 HTTP 1182 POST /updatelLinkState HTTP/1.1 (application/json)

1.219662 MSO M50 HTTP  1@61 POST /establishConnection HTTP/1.1 (application/json)

1.234195 Ms0 SDN_CTRL_2 HTTP 934 PUT /restconf/config/opendaylight-inventory:nodes/node/openflow: 138587668225/ table/8/flow/opentlow: 138587668225 35

1.269698 MsO SDN_CTRL_2 HTTP 934 PUT /restconf/config/opendaylight-inventory:nodes/node/openflow: 116525787372/ table/@/flow/openflow:116525787372_36
*REF* SDN_CTRL 2 SWITCH 2 OpenFlow 172 Type: OFPT_FLOW MOD
9.836144 SDN_CTRL_2 AGGR_SWITCH_2  OpenFlow 172 Type: OFPT_FLOW_MOD

1.207347 MSO Ms0 HTTP 1182 POST /fupdatelinkState HTTP/1.1 (application/json)

1.34@8526 MS0 Ms0 HTTP 1861 POST /establishConnection HTTP/1.1 (application/json)

1.351111 MSO SDN_CTRL_1 HTTP 934 PUT /restconf/config/opendaylight-inventory:nodes/node/openflow: 116525786536/ table/@/flow/openflow:116525786536_39

1.366555 MSO SDN_CTRL_1 HTTP 946 PUT /restconf/config/opendaylight-inventory:nodes/node/openflow: 176156457465888/table/8/flow/openflow: 1761564574658808_48
*REF* SDN_CTRL1 AGGR_SWITCH 1 OpenFlow 172 Type: OFPT_FLOW_MOD
@.853835 SDN CTRL1 SWITCH 4 OpenFlow 172 Type: OFPT FLOW MOD

1.408886 MSO MsO HTTP 1183 POST /updatelLinkState HTTP/1.1 (application/json)

1.421475 MsO Ms0 HTTP 6681 HTTP/1.1 28@ OK (application/json)

Figure 5.5: E2E provisioining workflow with ABNO orchestrtion achitecture.

consult Chapter 4).

Firstly, the capture validates the path computation operation between the MSO and the Multi-
layer PCE. Secondly, the multi-layer orchestration is shown by the creation of a virtual link supported
by a bidirectional optical LSP requested to an AS-PCE (PCEP Initiate and Report messages). Then
a new path computation is performed once the multi-domain, multi-layer topology is updated in the
TM through the internal REST API. Finally, the creation of the L2 connections are requested to
the PM, which translates the information included in the connection structure into the specific flows
sent to the SDN controllers. This process is shown in two steps, first the message exchange from the
MSO to the SDN controllers and sequentially from the SDN controllers to the switches through the
Openflow protocol.

5.4.1.1 Proactive enforcement of TE policies in OpenFlow-based SDIN networks

In this subsection, it is introduced an experimental validation of the proactive enforcement of TE-
policies in Openflow-based networks. As it was explained in 5.3.5.1, to guarantee the reservation
of resources end-to-end, Openflow allows the creation of meter bands in the switches which can be
associated to one or more flows.

The per-flow meter traffic limitation concept has been validated in the data plane by injecting
different traffic flows through an Openflow v1.3 virtual switch using Lagopus implementation [37]
which has been deployed in a Linux-based server Intel Xeon E5-2420 with 8 cores at 3.2 GHz and

56



5. SDN orchestration of multi-domain multi-layer networks

Time Source Destinal:ionl Protocol | Info

15.059587 18.1.7.38 18.1.7.38 OpenFlow Type: OFPT_METER_MOD

15.552983 10.1.7.35 .38 HITP PUT /restconf/config/opendaylight-inventory:nodes/node/openflow:5966123516280263099/ meter/2 HTTP/1.
15,579340 10.1.7.38 .36 OpenFlow Type: OFPT_METER_MOD

16,082479 10,1.7.35 .7.36 HTTP PUT /restconf/config/opendaylight-inventory:nodes/node/openflow:5968123516260263099/ meter/3 HTTP/1.
16.130042 10.1.7.38 .7.38 OpenFlow Type: OFPT_METER_MOD

16,589723 10,1.7.35 .38 HTTP PUT /restconf/config/opendaylight-inventory:nodes/node/openflow:59658123516280283099/ table/6/flow/1
16.616251 10.1.7.38 38 OpenFlow Type: OFPT_FLOW_MOD

16.618499 10.1.7.35 .38 HTTP PUT /frestconf/config/opendaylight-inventory:nodes/node/openflow:59681235162802683090/table/0/flow/2
16.729338 10.1.7.38 ,1.7.38 OpenFlow Type: OFPT_FLOW_MOD

46.743379 18.1.7.35 1.7.38  HTTP PUT frestconf/config/opendaylight-inventory:nodes/node/openflow:5866123516280283099/ table/0/flow/3
46.748626 168.1.7.38 .1.7.38 OpenFlow Type: OFPT_FLOW_MOD

4 .
[+]- Frame 158: 715 bytes on wire (572 bits), 715 bytes captured (5720 bits | @ Frame 569: 991 bytes on wire (7928 bits), 991 bytes captured

[} Linux cooked capture [+ Hypertext Transter Protocol
Internet Protocol Version 4, Src: 18.1.7.35 (10.1.7.35), Dst: 18.1.7.38 || ]- JavaScript Object Notation: application/json
-Transmission Control Protocol, Src Port: 34182 (34182), Dst Port: 8181 : [5- object
- Hypertext Transfer Protocol ‘| | [}-Member Kev: "flow"
[=}- JavaScript Object Notation: application/json H ect
&€  [5-object i B object
= B} Member Key: "meter” g E}-Member Key: "match”
C) E- object ‘D 3 objecs
2 --Melnber Key: "meter-id" i = Member g(ey: “tcp-destination-part” ]
= E}- Member Key: "meter-band-headers” R ! (- String value: 4444
< (- object 1 8 [=}- Member Key: "instructions"
o [E}- Member Key: "meter-band-header” = [ object )
(=] 5 £} Member Key: "instruction”
) =] [E- Array
8 "band-rate" OI E} object . .
1 -~ String value: 108668 [ El- wember Kay: “order
E ~Wember Key: "mMeter-band-types” E £} Member Key: "meter
o] [#}-Member Key: "band-burst-size" ‘o - chject = -
o [#]- Member Key: "drop-rate” = : ~Member Key: "meter-id
= m L. 5tring value: 1
] e [} object
o [ Member Key: "order"
[#}- Member Key: "apply-actions"
[#]- Frame 168: 100 bytes on wire (808 bits), 18@ bytes captured I & Frame 576: 186 bytes on wire (1448 bits), 188 bytes captured
[#- Linux cooked capture [ openFlow 1.3
[¥)- Internet Protocol Version 4, Src: 10.1.7.38 (10.1.7.38), Dst e Version: 1.3 (6x84)
[#}- Transmissien Control Protocol, Src Port: 6633 (6633), Dst Po . Type: OFPT_FLOW_MOD (14)
[} OpenFlow 1.3 bo Length: 112
8 - Version: 1.3 (8x8d) O i Transaction ID: 952414
g - Type: OFPT_METER_NOD (29) : ruction
s -Length: 32 = Ype: OFPIT_METER (6
o - Transaction ID: 949783
'“_" - Command: OFPMC_ADD (@) =
w 9E| InsETG
2 & -Type: OFPIT_APPLY_ACTIONS (4)
- - Length: 24
iy i.. Type: OFPMBT_DROP (1) Y . b
e - ™ .
o - Length: 16 o
-Rate: 160600
i Burst size: @

Figure 5.6: Per-flow bandwidth limitation Wireshark capture.

32GB RAM. Figure 5.6, shows the traffic capture of the control overhead of the creation of three
different meter bands at 100, 300 and 600 Mbps. The RESTCONF messages, sent from the MSO
to one of the OpenDaylight controllers are divided in two groups: (bottom-left) the creation of the
METER, BANDs through the OpenDaylight REST API and the subsequent OFPT_METER,_ MOD
messages to the switch; and (bottom-right) the subsequent flow creation request with the associated
METER_ID.

In Figure 5.7 it is shown the experimental validation of the per-flow meter traffic limitation concept
by showing a real traffic capture of the throughput reach by three different flows after traversing the
OpenFlow switch, with and without attaching a meter bands to them (Figure 5.7.a, 5.7.b). The
Iperf Bandwidth Measurement Tool has been employed to obtain the results placing a client into the
machine connected to the input port and a server measuring the bandwidth achieved into a second
machine, connected at the output port of the switch. The three meters were set to 100, 300 and 600
Mbps. It can be observed how after creating the flow-meters differentiated QoS levels to each flow has
been successfully achieved.

5.4.2 Automatic Provisioning of Fixed and Mobile Services

In this section a different scenario is presented wherein both fixed and mobile client applications,
running on top of the MSO, automatically instantiate connections within the aggregation network.

o7



5.4. Experimental evaluation

\
\
350 4/\ / A A A,
/ A= \k \,rk* [ S ey 500
s Nl

P o
4 - ‘*""‘*'4""*—%‘»—04«

2 250 / M 2, 400
g4 £
200 ¢
s { S 300
150
200
100 +—Flowl
50 —+—Flow2 100 MWW
Flow3
0 0
0 25 5 75 10 125 15 0 25 5 75 10 125 15 17,5
Time (s) Time (s)
a) b)

Figure 5.7: Per-flow bandwidth limitation: a) IO graph OF Switch output_ port without meter limita-
tion, b) I0 graph OF Switch output_ port throughput with 600, 300 and 100 Mbps meter limitation.

The experimental validation is carried out though the setting up of mobile LTE services (Evolve Packet
System EPS- Bearers) between cell stations (eNBs) and the Evolved Packet Core (EPC), responsible
for the Internet access for the mobile users. The validation is shown from a twofold perspective: i) at
the control plane level, it is detailed the MSO building blocks interactions and exchanged heterogeneous
control messages, including OpenFlow extensions; ii) at the data plane level, the traffic flow adaptation
to actually transport EPS Bearers over the multi-layer (MPLS and optical) network infrastructure.

Fixed Service Mobile Service
App App

:.-"""Multi-domain SDN Orchestrator (MSO)

[ Orchestration Controller ]
A A

REST [VTM )" Rest v

Flow ——

Server B PCEP

REST i

Provisioning Topology Multi-
| Manager  [Tog;| Manager g Layer PCE |

-~ N\
e

" —

REST]
v

~~;\T~
N T =~ -PCEP

NBI
BGP-LS Active Statefu
Ryu (SDN) Speaker PC
o Controller -LSPDB

OpenFlow PR
ENodeB —-—— _ ~ ~PCEP 4 ey
UE 10.0.0.101 7 OFP ‘--.,_,_1,\-// SME MI.VIE
7004 b ey ANTRINRSREIILLY 2 -—-— 0 S11°
004 L g o -
I i < P e P I
. OF MPLS - PN 10.0.0.1 Gi
GMPLSWSON 04 1373  OFMPLS -
10.1.1.106 10.1.1.112 11 BRAS ——E
iy - 10.1.1.107
- . DatapathID:257 DatapathlD: 258 Remote Host
‘:‘y‘. - 371002
bt . .
- Access Packet-Optical Aggregation Core

Figure 5.8: Multi-layer aggregation MSO for Fixed-Mobile convergence.

The considered SDN-based ABNO orchestrator is depicted in Figure 5.8. The Service Controller

58



5. SDN orchestration of multi-domain multi-layer networks

handles incoming service requests from both fixed and mobile service applications. These applications
trigger the service demands (via REST API) specifying the type of transport service (e.g., MPLS),
endpoints (e.g., for mobile connections the eNBs and EPC Serving Gateway - SGW), the requested
bandwidth and other QoS requirements (e.g., maximum latency). As shown in the Figure 5.8, in
the aggregation network two heterogeneous control plane solutions (one per switching technology) are
adopted: the control of MPLS switches is done by an SDN packet controller (Ryu); and the control
of optical circuits is handled by an Active Stateful (AS) PCE. When a new bearer needs to be set up
between one eNB and the EPC, a new MPLS service is requested to the MSO associated to the EPS
Bearer. The control workflow in the MSO is equivalent to the one explained in the previous section.

The experimental setup is formed by three main elements: the LTE-EPC network provided by the
LENA emulator [66] (including User Equipment and eNBs), the multi-layer OF-enabled MPLS - optical
aggregation network deployed within the ADRENALINE testbed and the unified MSO discussed
above. Without losing of generality, the experimental validation aims at transporting mobile services
(EPS Bearers) between the eNBs and the EPC (SGW) via the multi-layer aggregation infrastructure.
All the mechanisms and functions to do so are automatically coordinated by the MSO.

Focusing on the mobile services, once the EPS Bearer is negotiated between the eNB and the
EPC Mobile Management Entity (MME) [67] through the (out-of-band) control SI-MME interface,
the MME communicates with the Mobile Service App (running on top the ABNO) to request the
transport of EPS Bearer data/user packets (i.e., S1-U interface). The interface between the MME and
Mobile Service Apps is implemented using a REST API. Indeed, a new generic service call is defined
to request from both Mobile and Fixed Service Apps, multi-layer transport connections handled by
the MSO.

For the EPS Bearers, the service call specifies the endpoint IP addresses (i.e., eNB and SGW),
the requested bandwidth (ReqBw) in Gb/s, and specific match attributes (such as mobile data packet
attributes). The latter allows mapping EPS Bearers with specific MPLS flows within the aggregation
network. Specifically, EPS Bearers use the GPRS Tunneling Protocol (GTP-U) to transport data
packets between the eNB and the EPC. Each EPS Bearer flow (S1-U) has an individual Tunnel
Endpoint Identifiers (TE_ID) which is carried into the GTP-U protocol. In this work we bind such
TE_IDs with individual MPLS labels. That is, we apply a policy where every EPS Bearer (with its
own TE_IDs) is transported over a different MPLS flow. Nevertheless, multiple MPLS flows may be
aggregated into a unique optical tunnel.

Figure 5.9 (upper) depicts the messages exchanged among the MSO elements when a (mobile)
service call is received. The service call includes the transport layer type (e.g., MPLS), the endpoints
(eNB at 10.0.0.101; SGW 10.0.0.1), the TEIDs (set to 2 in the complete message sequence shown in the
figure) and the requested bandwidth. On the other hand, in the SDN packet controller, the extended
OpenFlow 1.3 OFPT_FLOW_ MOD message with experimental matches configures the MPLS nodes
according to the EPS Bearer attributes (S1-U interface). That is, for each EPS Bearer, the GTP-U
packet is encapsulated and decapsulated over a MPLS tunnel. As shown in Figure 5.9 (bottom-left),
the OFPT FLOW MOD carries a set of match rules and actions for the MPLS nodes that define
the processing and treatment of the data packet (GTP-U) of each EPS Bearer. In the example, the
match rules impose that: all the GTP-U packets received over an incoming port with the tuple formed
by a determined pair of source and destination IP addresses (i.e., eNB 10.0.0.101 and SGW 10.0.0.1),
UDP port set to 2152 and the TEID equals to 2, then a MPLS tag (1002) is pushed and the resulting
packet is forwarded to the output port towards the optical domain. Similar operations but removing
the MPLS tag are done when the EPS Bearer leaves the MPLS domain prior to be delivered to either
eNB or SGW (downlink and uplink flows).

59



5.5.

Performance evaluation

*abno.pca
pcap

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am 2 S BRE QARe==T &= [EHaaam

[ ] ]htlp.request.meﬂ’md == POST or http.request.method == PUT or pcep.msg == 10 or pcep.msg == 12

Time Source Destination Protocol Lengt Info

*REF* MOBILE SERVICE APP MSO HTTP 648 POST /create_service_call HTTP/1.1 (application/json)

9.751256 MSO MSO HTTP 1867 POST /establishConnection HTTP/1.1 (application/json)

9.762198 MSO AS-PCE =EEE 196 Path Computation LSP Initiate (PCInitiate)

1.e@9981 AS-PCE MSO PCEP 208 Path Computation LSP State Report (PCRpt)

1.622110 MSO MsO HTTP 1067 POST /establishConnection HTTP/1.1 (application/json)

1.832558 MSO AS-PCE PCEP 196 Path Computation LSP Initiate (PCInitiate)

1.249163 AS-PCE MSO PCEP 208 Path Computation LSP State Report (PCRpt)

4.658861 MSO MSO HTTP 1321 POST /establishConnection HTTP/1.1 (application/json)

4.669464 MSO SDN_CTRL HTTP 488 POST /stats/flowentry/add HTTP/1.1 (application/json)

4.6746286 MSO SDN_CTRL HTTP 488 POST /stats/flowentry/add HTTP/1.1 (application/json)
*REF* SDN_CTRL AGGR_SWITCH_1 OpenF.. 162 Type: OFPT_FLOW_MOD
©.172014 SDN_CTRL AGGR_SWITCH_1 OpenF.. 162 Type: OFPT_FLOW_MOD

4.840782 MOBILE SERVICE APP MSO HTTP 786 POST /create_service_call HTTP/1.1 (application/json)

5.253801 MOBILE SERVICE APP MSO HTTP 786 POST /create_service_call HTTP/1.1 (application/json)

5.596771 MOBILE SERVICE APP MSO HTTP 786 POST /create_service_call HTTP/1.1 (application/json)
17.187372 7.8.8.4 1.0.6.2 GTP <UDP> 1110 49153 > 2803 Len=1824
19.528636 7.8.8.5 1.0.6.2 GTP <UDP> 111e 49153 » 2804 Len=1824

Ethernet II, Src: AsustekC_61:81:36 (20:cf:3@0:61:81:36), Dst: AGGR_SWITCH_1 (20:cf:30:40:12:b4)
Internet Protocol Version 4, Src: SDN_CTRL (10.1.1.108), Dst: AGGR_SWITCH 1 (10.1.1.106)
Transmission Control Protocol, Src Port: 6633, Dst Port: 41319, Seq: 1179, Ack: 20891, Len: 152
v OpenFlow 1.3
Version: 1.3 (@x@4) [
Type: OFPT_FLOW MOD (14) ®
Command: OFPFC_ADD (@) =
Idle timeout: @
Hard timeout: @
Priority: 101

Frame 2467: 1110 bytes on wire (8880 bits), 1110 bytes captured (8880 bits) on 1inter
Ethernet II, Src: 00:00:00_eb:00:01 (00:00:00:eb:00:01), Dst: 00:00:00_59:00:aa (00
Multiprotocol Label switching Header, Label: 1002, Exp: 0, S: 1, TTL: 64

0000 0000 0011 1110 1010 MPLS Label: 1002

........ MPLS Experimental Bits: 0O
MPLS Bottom Of Label Stack: 1

OpenFlow Extension

v Seee e aeas eaes sees aaas 0100 0000 = MPLS TTL: 64
# Internet Protocol version 4, Src: 10.0.0.101 (10.0.0.101), Dst: 10.0.0.1 (10.0.0.1)
Type: OFPMT_OXM (1) @ User Datagram Protocol, Src Port: gtp-user (2152), DSt Port: gtp-user (2152)
Length: 53 £ GPRS Tunneling Protocol
Oxt field @ Flags: 0x3b
001 field Message Type: T-PDU (Oxff) GTP-U over MPLS
v 0xM field Length: 1056
Class: OFPXMC_EXPERIMENTER (@xffff TEID: 0x00000002
@011 010. = Field: 26 sequence number: 0x0000
ees. ...@ = Has mask: False N-PDU Number: 0x00
Length: 4 T-PDU Data 1052 bytes

O =®

Internet Protocol version 4, src: 7.0.0.4 (7.0.0.4), pst: 1.0.0.2 (1.0.0.2)
User Datagram Protocol, Src Port: 49153 (49153), Dst Port: brutus (2003)
Data (1024 bytes)

Data: 000000000000000015¢535f8000000000000000000000000. . .

[Length: 1024]

Experimenter: @x80000002
Experimenter Value: <MISSING>
Unknown OXM body.
Pad: @ooeee
Instruction

Figure 5.9: Creation of the mobile service via MSO, OFP Extension and GTP-U over MPLS.

5.5 Performance evaluation

In this section the previously proposed orchestration architecture is going to be examined measuring
the time performance of the different orchestration operations realized on it. For all the experiments
the network scenario is the Cloud Computing Platform and Transport Network of the ADRENALINE
Testbed, described in Chapter 3.

5.5.1 Topology discovery and transfer analysis

The topology discovery and aggregation feature in the MSO implementation is analyzed to quantify
the weight of mid-sized domain topologies and the time elapsed to retrieve them from the control
plane. The aggregated multi-domain topology transfer throughput between MSO components is also
analyzed. In order to analyse the throughput of the transfer/retrieval operations, the traffic between
the TM and the SDN controllers has been captured with a Wireshark during the MSO initiation
process. In Figure 5.10 the throughput of the topology retrieval form the network controllers and the
MSO is shown. In the OF domains, each transfer is in the order of 60ms because it involves several
independent HTTP requests and in the GMPLS the whole topology retrieved in a single request in
less than 10ms. Finally, in the right side of the figure, the throughput of the aggregated topology

60



5. SDN orchestration of multi-domain multi-layer networks

transfer between the TM and the PCE, with a total weight of 134.4 Kbytes in approximately 15ms,
is graphically represented.

Aggregated topology transfer { TM - PCE) __ 200000
Optical Domain -
Topology retrival -
. i A OpenFlow Domain 2 B
?pen}'lo‘_n DO'?’.ﬁml | _OP P | 100000
opology retrival 1opology retriva L
ﬂ | | I
At AN ] N —= == 0
T T T | T T T T I T T T T T | T T T T | T T | T T T T | T T T T
8.850s §.900s 9.150s 9.200s 16.000s 16.050s

-
=

Graphs X Bxis

Graph 1| Color |Filter: | mber > 4629) and (tcp.srcport == 8202 or tep.dstport==8202) | Style: Line

Srmooth || Tick interval: 0,001 sec

[]

e
Graph 2| Color |Filter: | mber < 2517) and (tcp.srcport == 8881 or tep.dstport==8881) | Style: Line ¥| Smoaoth e 2
View as time of day
Filter: || (frame.number < 2725) and (frame.number * 2521) and (tcy Style: Line | Smooth —
is
41 Smooth || it [Bits/Tick
v

KN KN KN EN/KN

Graph 4| Celer | Filter: | nber < 2517) and (tcp.srcport == 8080 or tcp.dstport==8080) | Style: Line

il Style: | Line

(7]
=
o
=
=
Ln
E
=
m
5

Smooth || Scaler Auto
Smooth: |Mo filter

EIENEN

Figure 5.10: Topology retrieval/transfer throughput analysis.

5.5.2 Single layer and multi-layer E2E service provisioning performance
evaluation.

In order to evaluate the time performance of our orchestration platform, two separated setup delay
evaluations have been carried out: the orchestration of E2E service provisioning involving only sin-
gle layer (L2/OpenFlow) flow provisioning, and the multi-layer orchestration involving sub-second
integrated provisioning of OpenFlow and GMPLS orchestrated connections and the Vlink creation,
supported by a bidirectional Label Switched Path (LSP) establishment.

SetuB Delay - ABNO Single Layer Ethernet service provisilooning S(;tup Delay - ABNO E2E Multilayer service provisionir119

10.8 10.8
B o B o
E 0.6 3] E 0.6 o
fos o oy =W
o ' (o3} '
2 w 2 w
] [a) ] [a)
T 104 O T 10.4 Q

10.2 10.2

. O:S 1.8'0 . . . 1.6 ‘ 250 2.?'0

seconds seconds
(a) (b)

Figure 5.11: (a) Single Layer E2E and (b) Multilayer E2E service provisioning setup delay distribution.

In Figure 5.11a-5.11b, the histogram and the Cumulative Distribution Function (CDF) of the
setup delay introduced by the MSO during the processing of every E2E service requests in a 1000

61



5.6. Conclusions

samples experiment are presented for the two cases exposed before. The E2E connections requests
are uniformly distributed among the nodes within the network scenario presented in Figure 5.3. All
the E2E requests start and finish at L2 endpoints and have the same TE characteristics (10 Mbps)
and operate at the L2 transport layer (source and destination MAC address described the traffic flows
introduced into the OF switches). Every E2E connection is released before the next iteration.

5.6 Conclusions

This chapter has been presented an in-depth discussion about the network orchestration problem
in multi-domain networks comprising different transport technologies and control planes. The main
challenges regarding the orchestration of multiple transport technologies have been presented as the
introduction of the proposed solution in this PhD.Thesis, the Multi-domain SDN Orchestration (MSO)
architecture.

The MSO architecture includes several well-defined building blocks to perform the main tasks
involved in the control and management of multi-layer, multi-domain transport networks. The solution
proposed features different southbound plugins for the orchestration of different control technologies by
applying the main SDN concepts (control and data plane separation, definition of open and standard
APIs).

Moreover, the MSO has been evaluated in the Cloud Computing Platform and Transport Network
of the ADRENALINE Testbed for the demonstration of two different use cases: (i) SDN orchestration
of TE-aware multi-domain, multi-layer networks, and (ii) Automatic Provisioning of Fixed and Mobile
Services.

Finally, a performance evaluation of the MSO has been carried out with the E2E connection
provisioning and the topology discovery and transfer features. The results presented have shown a
performance of an average of 300ms setup delay for single-layer requests and of 1350ms for multi-layer
E2E connections in lab-trial. This result led us to conclude that our MSO implementation is ready for
future studies on online operations such as dynamic network restoration and online network planning
optimization.

To continue the work presented in this chapter, the need of an standard interface between the
orchestration and the control layers has been a recursive topic highlighted throughout the sections of
this chapter. In the next chapter this topic is introduced and a novel protocol that abstracts the set
of control plane functions used by the SDN Controller is proposed.

62



Chapter 6

The Control Orchestration Protocol (COP)

6.1 Requirements identification, modeling and design . . . . . . . . .. ... ... ... 64

6.2 Control Orchestration Protocol definition . . . . . .. ... ... ... ... ...... 65

6.2.1 COP data model definition based on YANG . . . . . .. ... ... ... .... 65

6.2.2 COP interface definition based on RESTCONF/SWAGGER . ... ... ... 66

6.3 Experimental validation . . . . . . .. ... 0 oo 68
6.3.1 Use case I: End-to-End service provisioning and recovery in OPS/OCS multi-

domain networks . . . . . .. Lo 68

6.4 Conclusions . . . . . . . . L 72

The need of offering end-to-end Ethernet service provisioning and orchestration across multiple
domains with heterogeneous transport and control plane technologies was justified in the previous
chapter. It was shown that in order to realize such end-to-end connectivity service provisioning, the
SDN based service and network orchestration layer was required.

In this chapter, the Control Orchestration Protocol (COP) is proposed to simplify the orchestra-
tion procedures by unifying the northbound interface of the control layer, by abstracting a common
set of control plane functions shared among the different implementations of the SDN controller.

The chapter is structured as follows: in section 6.1, the main requirements and design principles
of the COP are introduced. Section 6.2 the actual COP protocol is formally described including
the definition of its data model in YANG modeling language, and its interfaces in RESTCONF and
SWAGGER APIs. Finally, in section 6.3 the COP is experimentally validated for the End-to-end
service provisioning and recovery in OPS/OCS multi-domain networks.

A specific appendix A has been included at the end of the document where the COP definition is
completed with the complete set of interfaces and information models.

63



6.1. Requirements identification, modeling and design

6.1 Requirements identification, modeling and design

The Control Orchestration Protocol (COP) abstracts a common set of control plane functions used
by various SDN controllers, allowing the interworking of heterogeneous control plane paradigms (i.e.,
OpenFlow, GMPLS/PCE).

The COP is aware of the existing background in network programmability and applies new SDN
principles to enable cost reduction, innovation and reduced time to market of new services, while
covering multi-domain and multi-technology path/packet networks.

This COP provides two main functionalities:

e Network-wide centralized orchestration. This high level, logically centralized entity exists on
top of and across the different network domains and is able to drive the provisioning (and
recovery) of connectivity across heterogeneous networks, dynamically and in real time.

e Abstraction of the particular control plane technology of a given domain. In this sense, the
proposed architecture applies the same abstraction and generalization principles that Open-
Flow/SDN have applied to data networks.

/" Multi-domain SDN Orchestrator ™,

Orchestration Controller

4

Flow ——
sorver Elowbe|  PCEP

i [ provisioning Topology Multi-

i | manager Manager e Layer PCE

\

s,
.

AAAAAA MO

: COMMON ORCHESTRATION PROTOCOL (COP) :

Compute Host 1 P
7 GMPLS N
Controller

4

4 N,

GMPLS o GMPLS
Controller H Controlle
L}

v 13

GMPLS H
Controller H
“r :
o
( i v
-~ : A0~ Compute Host 4
PR \ -

Cv e

“9

WSON

— Ethernet link 1 Gbps
OpenFlow Switches — DWDM link 10 Gbps OpenFlow Switches
(OFSs) OpenFlow 1.3 (OFs)

-——  PCEP
- - RabbitMQ

Figure 6.1: Multi-domain SDN Orchestration architecture with Control Orchestration Protocol (COP)
as unified southbound (SBI) and northbound (NBI) interface

The Multi-domain SDN Orchestrator (MSO) (Figure 6.1) works under the assumption that each
domain is composed of a data plane controlled by an instance of a given control plane technology, but
transport and/or control plane technologies for each domain can be different. The main functionalities
of the SDN orchestrator are abstract and not technology related. This control plane abstraction must
enable the provisioning of data services using the underlying configuration technology.

64



6. The Control Orchestration Protocol (COP)

The design of COP between the orchestration and control layers allows the simplification and
optimization, in terms of scalability and compatibility between the different modules which compose
the SDN architecture. COP unifies all the orchestration functionalities into a single protocol paradigm.
The main reason for the need of this protocol is the heterogeneity of NorthBound Interfaces (NBI)
of SDN controllers. Most of the current SDN controllers (e.g., OpenDayLight, ONOS) provide their
own northbound API, which allows applications to directly program the underlying network resources,
which are exposed by the SDN controller. The proposed COP provides a common NBI API so that
SDN controllers can be orchestrated using a single common protocol.

From a Transport SDN perspective, it is needless to mention that there is a lack of specifications
on how user applications should interact with the underlying network resources and how services
should be requested. The proposed COP provides the necessary commands to bring the full benefits
of programmable SDN transport networks to applications. The latest OIF/ONF Transport SDN
APT is in line with COP objectives. COP provides a research-oriented multi-layer approach using
YANG/RESTCONF, while OIF /ONF Transport SDN API is focused on standardization efforts for
orchestration of REST NBI for SDN controllers.

The COP definition is open for discussion and can be downloaded and contributed to at: https:
//github.com/ict-strauss/COP

6.2 Control Orchestration Protocol definition

In the following subsections the base definition for COP is presented. The usage of YANG models
and RESTCONF protocol is also discussed.

6.2.1 COP data model definition based on YANG

After identifying the different functionalities a common orchestration interface must fulfill in order to
provide useful orchestration mechanisms in a wide range of possible SDN scenarios, it is necessary to
introduce the COP models in detail. For the formal definition of the models, YANG has been identified
as the most suitable modeling language given its rich set of primitives for network management and
data modeling.

6.2.1.1 Call Service

The COP service call is defined as the E2E provisioning interface. It is based on the concept of
Call/Connection separation where a service is supported by a set of effective connections established
in the network. The Call object formalize the intent of a service provisioning between two Endpoints, it
defines the type of service that is requested or served (e.g., DWDM link, Ethernet Transport, MPLS),
the Traffic Engineering (TE) parameters requested for the service (e.g., bandwidth, QoS class, latency)
and may also include filtering parameters or matches (i.e., MAC, IP or TCP headers) which specifies
the granularity of the services to be served.

The Call object also includes the list of effective Connections created in the data plane, to imple-
ment the E2E service. A Connection is single network domain scoped, however multiple connections
may be established within a single domain. The Connection includes the path across the network
topology that the data traverses, which may be fully described or abstracted depending on the orches-
tration/control schemes used.

65



6.2. Control Orchestration Protocol definition

The Call service provides the interface for E2E provisioning services but also includes monitoring
capabilities for already deployed connections/calls. The COP allow an external entity to subscribe
to the notification services of another control entity, through Websockets, to asynchronously receive
information about the state of the calls controlled by the control entity.

In the Appendix A, the Figure A.1 shows the UML diagram corresponding to the Call service
YANG model. The complete CALL yang file can be found at: https://github.com/ict-strauss/
COP/blob/master/yang-cop/service-call.yang.

6.2.1.2 Topology Service

The COP allows to retrieve the topological information about the network, by providing a technology
agnostic information model for the description of topology elements: Nodes, Edges and EdgeEnds.

The information model is arranged on a tree structure which base node is a Topology object which
includes as leafs the list of the nodes and edges included in the related network. A Node must contain
a list of ports or edgeEnds and their associated switching capabilities. An Edge object is defined as the
connection link between two EdgeEnds. Due to the need of conforming to a common model among
different transport network technologies, the definition of the three main objects described (Node,
Edge, EdgeEnds) is extensible, featuring polymorphism programming concept, to define specific Node
and Edge types. So far, the COP includes the definition of DWDM and Ethernet nodes and edges which
defines the technology related switching capabilities from now for packet and wavelength switching.

In Appendix A, Figure A.2 shows the UML diagram corresponding to the Topology service YANG
file. The complete Topology yang file can be found at: https://github.com/ict-strauss/COP/
blob/master/yang-cop/service-topology.yang.

6.2.1.3 Path Computation Service

The Path Computation service provides an interface to request and return Path objects which contain
the information about the route between two Endpoints. These operations are modeled as Remote
Procedure Calls (RPCs) in the YANG definition and they are included into the operations subset of
the RESTCONF API. Path computation is highly related to the previous group of resources. In the
service Call, the Connection object has been designed to contain information about the traversed Path.
The Path model is the same in both, the service Call and at the Path Computation. Furthermore
each component in the Path object is represented as an Endpoint with TE information associated to
it. Although basic service functionality has been modeled, there are some extensions proposed which
are open for discussion, such a Backup Path request model, the Shared Risk Link Groups (SRLGs)
or the Exclude Route Object (XROs).

The UML diagram corresponding to the Path Computation service YANG file (Figure A.3 shows
) can be found in Appendix A. The complete Topology yang file can be found at: https://github.
com/ict-strauss/COP/blob/master/yang-cop/service-path-computation.yang.

6.2.2 COP interface definition based on RESTCONF/SWAGGER

YANG/RESTCONF provides the suitable combination for COP in order to provide the necessary
flexibility and usability.

The Section A.2 of Appendix A includes the complete COP RESTCONF definition including the
set of HT'TP interfaces and the JSON-encoded data models. For each COP service, two documentation

66



6. The Control Orchestration Protocol (COP)

figures has been generated: the complete set of RESTCONF paths (HTTP urls) and the complete
JSON data models.

In the next subsection it is described the Open source software resources developed for the transla-
tion from the YANG source COP models to the RESTCONTF interfaces definition based using SWAG-
GER software tools, and finally the implementation of a baseline COP server stub.

6.2.2.1 Open source YANG tools for COP

In the scope of the STRAUSS project, where the COP was firstly presented, a set of OpenSource soft-
ware tools, were developed to translate the COP definition in YANG, into a baseline implementation
of the protocol.

This YANG Tools are open for use and contribution in https://github.com/ict-strauss/COP.
The YANG tools are divided in two groups.

6.2.2.1.1 Pyang plugin for Swagger

Pyang is an extensible YANG validator and converter written in python.

It can be used to validate YANG modules for correctness, to transform YANG modules into other

formats, and to generate code from the modules. We have written a pyang plugin to obtain the
RESTCONF API from a yang model.

The contribution of the STRAUSS project was to develop a specific plugin automatically translates
the YANG models into the Swagger Specification version 2.0 [68]. The RESTCONF API of the
YANG model is interpreted with Swagger, which is a powerful framework for API description and
implementation. By using the Swagger software it is possible to generate the complete RESTCONF
API definition from the source YANG models.

The swagger pyang plugin file and the documentation of how to use it, can be found at: https:
//github.com/ict-strauss/COP/tree/master/pyang_plugins.

6.2.2.1.2 COP Server Generator for Python

The second group of YANG tools is a python code-generator base on the SWAGGER/RESTCONF
protocol specification files. This second tool plays a very important role in the early stages of the COP
evaluation in the multi-partner environment of the STRAUSS project. It allowed the different players
involved in the project to automatically generate their own server stub in python to speed up the
interoperability testing process.

However, this tool development was discontinued due to the adoption of the Swagger code-
generator sofware which is a more complete and robust implementation and provide output code
in multiple frameworks (Python, JAVA, Scala, JavaScript, etc.).

Besides, the STRAUSS COP Server Generator for Python is still available ins the github reposi-
tory, altogether with the documentation of how to use it.

67



6.3. Experimental validation

6.3 Experimental validation

6.3.1 Use case I: End-to-End service provisioning and recovery in OPS/OCS
multi-domain networks

This section presents the experimental validation of End-to-End service provisioning and recovery in
OPS/OCS multi-domain networks using COP as unified transport APIL.

Figure 6.2 shows the integrated cloud and heterogeneous network scenario. The proposed scenario
includes a distributed datacenter (DC) infrastructure placed in two different locations and managed
by different institutions (LIGHTNESS and CTTC). DCs are interconnected by and heterogeneous
transport network, consisting on isolated administrative OPS/OCS domains. Each network domain is
controlled either by an SDN controller, an Optical Network Hypervisor (ONH) or an Active Stateful
PCE.

On top of the control plane the multi-domain SDN Orchestrator (MSO) is responsible of coordi-
nate the different controllers to provide E2E network services. It integrates the COP as southbound
interface to communicate with the different controllers. Each domain provides its abstracted topology
(node abstraction) through the COP Topology Service. All topological information is gathered by the
Topology Manager MSO’s component which is responsible to compose the multi-domain abstracted
topology. The inter-domain connectivity is pre-loaded into the MSO by static configuration files.
Figure 6.3 shows the topology composed by the SDN orchestrator.

" [ Integrated Cloud & Network Orchestrator ]
Cloud and cop E2E QoS connectivity :
g::‘:’at;:: : provisioning

[ Jelefinica Multi-domain SDN Orchestrator ]
CoP CoP cop cop CcoP
( CO:P ) ( CO:P ) ( CO:P ) ( CO:P ) CO:P

[ ) i
SDN SDN SDN Optical : Cloud
Cloud Active ou
Controller #2 Controller Controller Controller Netwo_rk Stateful PCE Controller #1
#1 #2 #3 Hypervisor

& & ops_ (£ ops;. | 7 owom ([ £F .

oPS/ oCs Flexi-grid Flexi-grid/
.—’9 Intra-Dc DWDM Fixed DWDM ﬁ\,\/—’i\\
Lightness = e BIE Univeniryof o A WA A
= KOO o amxy Hnmay oADVA AN\ - CTTC

Lightness CTTC

NICP == FUJiTSU
[

Figure 6.2: Multi-domain experimental multi-partner testbed scenario

E2E QoS capabilities are introduced by the definition of two QoS classes (Figure 6.1). Each QoS
class defines a certain packet loss rate (PLR) for OPS domains, and a certain OSNR for OCS domains,
for a given bandwidth request. The SDN orchestrator will convert the high level QoS classes into the
corresponding traffic parameters (OSNR, PLR) based on the values (Figure 6.1) pre-installed in the

68



6. The Control Orchestration Protocol (COP)
1 2 1 2
m’ g
#1 1 #A
: O ® :
wm | Z O 1 2 O Z( V™
’ #N } O#DO L #z

Figure 6.3: Abstracted topology seen by the MSO

OCS Domains OPS Domains
QoS Class OSNR PLR
< 23 dB (PM-16QAM,
Gold 224Gb/s) < 0.1%
. < 14 dB (PM-QPSK, 112
Silver Gh/s) < 4%

Table 6.1: QoS classes

SDN orchestrator. Those parameters are included in the trafficParams object within the Call request
messages to be sent to the domain controllers.

6.3.1.1 E2E transport service deployment with QoS provisioning

Figure 6.4 shows the provisioning workflow which involves the orchestration of computing and network
resources to offer an E2E system. The network service is requested to the MSO through the COP
Call service by requesting the creation of a new Call (ID: 1) between the network Endpoints to which
the VMs are attached, specifying the QoS class (Figure 6.7, trafficParams). The MSO computes the
path across the different domains and issues a call creation request (IDs: 00001,00002,0000,00004) to
the involved domain controllers. Those calls represent the abstract connections provisioned on each
domain and , once they are established, they are included in the connections list of the E2E Call.
Figure6.5 shows the Wireshark captures at the integrated cloud and network orchestrator and at the
SDN orchestrator. VM (1 CPU, 20GB disk, 2GB RAM) creation process took around 15 seconds for
each instance, the total E2E connectivity service in the current multi-domain scenario is 1.13 seconds.

6.3.1.2 Per-domain / E2E service recovery with QoS

Figure 6.6 shows three conducted experiments for QoS recovery: in an OPS domain (scenario A), in
an OCS domain (scenario B) and finally E2E QoS recovery (scenario C).

The domain controllers are continuously monitoring the Packet Loss Ratio (PLR) and the Optical
Signal Noise Ratio (OSNR) (OPS and OCS domains respectively). In the OPS domain when the PLR
for a given flow arises over the specified QoS level (Figure 6.1), the packet congestion is detected by

69



6.3. Experimental validation

HA  #B  #C #D HE

Cloud and [Multi-domain][ SDN SDN J( SDN J [ Optical ] Active
Network SDN Controller| |Controller| |Controller Network Stateful
Orchestrator Orchestrator #1 #2 #3 Hypervisor PCE
—iCall ! ! ! !
VvM1g&2 POST(VM1,VM2,
and {QoS Gold, ID:1)
Network |
I o,
request | Call POST(#A a, #A 1, OSNR>23db PLR<O 1%, ID: ,10)

call POST(#B 1,#3 2, PLR<0 1%, ID: 11)
call POST (#C: 1 #C:2, osNR>23db PLR<O 1%, 10;12)

Call POST(#E:1,#E:a, OSNR>23db, ID:13)]
| Ack (ID 10, Con. ID: 25)
| Ack (ID: 11, Con ID: 78)
| Ack m 12, Con. ID:34
Ack (ID: 1, Con. ( )

ID 10, 11, 12, 13)' ; Ack (ID: 13, Con. ID 63)

Figure 6.4: E2E QoS-aware service provisioning workflow in the proposed OPS/OCS multi-domain
network scenario.

IT-NET-ORCH MSO (ABNO) HTTP  POST /restconf/config/calls/call/1
MsO (ABNO) LIGHTNESS HTTP  POST /restconf/config/calls/call/00001/

MSO (ABNO) IT-NET-ORCH HTTP  HTTP/1.1 200 OK

é

é 5 % LIGHTNESS MSO (ABNO) HTTP  HTTP/1.1 200 Successful operation

4 “ 2 | M50 (ABNO)  KDDI HTTP  POST /restconf/config/calls/call/00002/
S ‘2 5 | KDDI MSO (ABNO)  HTTP  HTTP/1.1 200 Successful operation

-‘ZT‘ E :?:_‘ Ms0 (ABNO) UNIV-BRISTOL HTTP  POST /restconf/config/calls/call/00003/
e & © | UNIV-BRISTOL MSO (ABNO)  HTTP  HTTP/1.1 200 Successful operation

= = 2 M50 (ABNO)  CTTC HTTP  POST /restconf/config/calls/call/00004/
= <~ | crre MSO (ABNO)  HTTP  HTTP/1.1 200 Successful operation

A

7]

Figure 6.5: Experimental validation of COP call service for QoS-aware E2E connectivity service
provisioning traffic capture

the local SDN controller and a local path restoration is triggered. If the local restoration succeeds, the
route adaptation is announced to SDN orchestrator by an updateServiceCall notification to update the
call service information with the new connectionID which refers to the new intra-domain connection
created across the new path ( 6.6 Scenario A).

In the OCS domain, OSNR monitoring of a circuit flow can detect the OSNR degradation for
optical links. The receiver-side error-vector-magnitude (EVM) based monitor provides in-band OSNR
monitoring without deploying new hardware [69]. With these monitoring information, the COP can
orchestrate multi-domain E2E service efficiently and reconfigure the network according to the traffic
and link conditions to maintain QoS. The monitor notifies the SDN controller, when the OSNR is
degraded up to a threshold specified by the multi-domain orchestrator during the provisioning. Then
SDN controller reconfigures the link either to use another path or to adopt a lower order modulation
format signal with a multi-format transceiver (scenario B).

When a transport domain is unable to recover itself from a failure, or QoS cannot be ensured, the

70



6. The Control Orchestration Protocol (COP)

#A #B H#C H#D HE

Cloud and Multi-domain SDN SDN SDN
Network SDN Controller

Controller Controller
Orchestrator Orchestrator #1
T T

Active
Stateful
PCE

Optical
Network
Hypervisor

#2 #3

Scenario A '
-> Triggering of per-domaln restoratlon
g : Notification: (Call ID 11, New Con. ID: 74)

i Monitored OSNR below Gold Threshbld i O
Scenario B' -> Triggering of per-domam restoratlon ‘

Monitored PLR above Gold Threshold O :

i L Notlflcatlon (CaII ID: 12,, New Con ID: 59)

i Monitored: "OSNR below! Gold Threshold : E E

§cenario C -> No per-dotpam restoratlon is feaSIbIe O :
‘ Recovery (cau ID: 12 Con. Ip 59)

Call DELETE (Call 1D; 11) | , |
Call DELETE {Call ID:12) | ’ ’
Call PUT(#A a,#A 2, OSNR>14cib PLR<O 1%, ID: 10)

Call POST (#D: 1 #D:2, OSNR>14db ID: 14) :

call PUT(#E 2,#E:a, OSNR>14db, ID: 13) i

E Notification (Call é_____Agk(Con ID 22) :Ack(Con ID: 72)

| ID:1, Con. ID: 10,‘ : -. :
| 14, 13) : : | Ack (Con. ID: 3?)

Figure 6.6: E2E service recovery with QoS workflow.

SDN orchestrator must be notified to perform an end-to-end QoS recovery (Fig.6.6, scenario D). This
end-to-end recovery has a multi-domain scope, it involves the calculation of a new alternative route
that satisfies the required QoS constrains, which avoids the network domain on which the failure has
occurred.

-] Javascript Object Notation: application/json
-] object
-] Member Key: "trafficrarams”
-] Object
-] Member Key: "gosClass”
string value: gold
# Member Key: "callid”
=l Member Key: "zend"
- object
- Member Key: "routerId”
string value: 00:00:00:00:00:00:00:dd
-] Member Key: "interfaceId”
string value: 64
-] Member Key: "endpointId”
string value: E_a
-l Member Key: "aEnd”
-] Object
-] Member Key: "routerId”
string value: 00:00:00:00:00:00:00:aa
- Member Key: "interfaceId"”
string value: 64
-] Member Key: "endpointId"”
string value: A_a
+ Member Key: "transportLayer"”
+ Member Key: "match”

Figure 6.7: Experimental validation of COP call service for QoS-aware E2E QoS transport service
provisioning (Call Object).

71



6.4. Conclusions

Figure 6.8 shows the control messages between the orchestrator and the controller instances during
the conducted experiment. First the I'T and Network orchestrator subscribes the updateCallService
and removeCallService services of the MSO through the corresponding URL ( /restconf/streams/ser-
viceName), the same process is performed by the MSO to each domain controller. When the MSO
receives the notification from the removeCallService of Domain C, it calculate the new E2E path
(excluding Domain C) which satisfies the required QoS (A-D-E) and it requests the necessary call
deletions (IDs: 00002, 00003), modifications (IDs: 00001, 00004) and the establishment of a new call
in Domain D (ID: 00005) to the corresponding SDN controllers. Once the E2E service is restored, it
informs the cloud and network orchestrator about the E2E call modification (ID:1). The whole E2E
recovery process in the current scenario took 0.624 seconds since the removeCallService notification
was received by the orchestrator until the last Service Call response is received by the orchestrator
too.

IT-NET-ORCH M5S0 (ABNO) HTTP 333 GET /restconf/streams/removeCallService
MSO (ABNO) IT-NET-0ORCH HTTP 267 HTTP/1.1 101 Switching Protocols
M5S0 (ABNQ) KDDI HTTP 321 GET frestconf/streams/updateCallservice
KDDI M50 (ABNO) HTTP 249 HTTP/1.1 101 Switching Protocols
M5S0 (ABNO) UNIV-BRISTOL  HTTP 321 GET /restconf/streams/removeCallService
UNIV-BRISTOL M5S0 (AEBNO) HTTP 253 HTTP/1.1 101 Switching Protocols
KDDL M50 (ABNQ) WebSocket 87 WebSocket Text [FIN] |
UNIV-BRISTOL M50 (ABNO) WebSocket 87 WebSocket Text [FIN]
UNIV-BRISTOL M50 (ABNO) WebSocket 87 WebSocket Text [FIN] |
= JavaScript Object Motation: application/json ﬂ updateServiceCaII
= Object .
o Member Key: "callld" updateServiceCall
String value: 00003 removeServiceCall

Member Key: "connections™
MSO (ABNO) KDDI HTTP 381 DELETE /restconf/config/calls/call/o0002/
KDDI M5S0 (ABNO) HTTP 57 HTTP/1.1 200 Successful operation
M50 (ABNQ) UNIV-BRISTOL  HTTP 381 DELETE /restconf/config/calls/call,/ 00003/
UNIV-BRISTOL M30 (ABNO) HTTP 57 HTTP/1.1 200 Successtul operation
IT-MET-ORCH ADVA HTTP 670 POST /restconf/config/calls/call/ 00005,/
ADVA IT-NET-ORCH HTTP 242 HTTP/1.1 200 OK
M50 (ABNO) CTTC HTTP 653 PUT /restconf/config/calls,/call/ 00004/
CTTC M5S0 (ABNQ) HTTP 57 HTTP/1.1 200 Successful operation
MSO (ABNO) LIGHTNESS HTTP 676 PUT /restconf/config/calls,/call/oo00Ll/
LIGHTNESS M50 (ABNO) HTTP 57 HTTP/1.1 200 Successful operation
MS0 (ABNO) IT-NET-0ORCH WebSocket 105 WebSocket Text [FIN] [MASKED)

Figure 6.8: E2E service recovery with Traffic capture.

6.4 Conclusions

The Control Orchestration Protocol (COP) has been presented as a common protocol for the inter-
working of heterogenous control plane paradigms. The COP abstracts a set of control plane functions
used by an SDN Controller, allowing the SDN orchestrator to uniformly interact with several domains,
each controlled by a single SDN controller. COP has been defined using YANG model language and
can be transported using RESTconf. The formal specification of the COP information model and its
RESTCONF implementation is also included in the Appendix A of the present document.

To conclude this chapter, the COP was experimentally demonstrated in a multi-partner interna-
tional control and data plane testbed, by two proof of concepts: the dynamic provisioning of E2E
IT and network resources across the aforementioned network; and E2E QoS assurance, including
per-domain and end-to-end QoS recovery based on data-plane QoT monitoring.

72



Chapter 7

The Hierarchical SDN Orchestration (H-ORCH) approach

7.1 Architecture overview . . . . . .. ... 74
7.2 MSO extensions for H-ORCH: Abstraction Manager . . . . .. ... ... ....... 75
7.3 Experimental assessment . . . . . . . .. L L 77
7.4 Performance evaluation . . . . . . . . ... 80

7.4.1 Single-domain characterization . . . . .. .. .. .. ... L L. 80

7.4.2 Multi-domain characterization . . . . . . .. ... . oL 82
7.5 Conclusions . . . . . . . . . e 82

In Chapter 5, SDN orchestration was proposed as a feasible solution to handle the heterogene-
ity of network domains, technologies and vendors. It focuses on network control and abstraction
through several control domains, whilst using standard protocols and modules. A network domain
is understood as a set of Network Elements (NE) under a logically centralized SDN Controller. A
multi-domain SDN Orchestration (MSO) has been already analyzed in several contexts, such as pure
OpenFlow (OF)-enabled networks, and heterogeneously-controlled networks (GMPLS/PCE and OF).
Several initiatives in standardization bodies such as ONF or IETF advocate for the necessity of SDN
orchestration.

In this chapter it is introduced a novel SDN orchestration architecture based on different levels of
hierarchy, allowing the network resource abstraction and control. A level is understood as a stratum of
hierarchical SDN abstraction. The need of hierarchical SDN orchestration has been previously justified
in [70], to accomplish two main purposes: a) to improve the scalability and modularity of the actual
SDN control architectures: each successively higher level has the potential for greater abstraction
and broader scope, b) Security: each level may exist in a different trust domain. The level interface
might be used as a standard reference point for inter-domain security enforcement. The benefits of
hierarchical SDN orchestration become clear in the scope of the described future 5G networks with
technology heterogeneity.

73



7.1. Architecture overview

The remaining of the chapter is organized as follows: in section 7.1, the hierarchical orchestration
approach is presented including an overall description of the network scenario to which applies to.
In section 7.2, the extensions applied to the MSO architecture to support the proposed hierarchical
approach are described. The experimental validation of the proposed architecture is included in section
7.3, and to conclude the chapter, in section 7.4 we characterize the performance of the H-ORCH
approach in single and multi-domain scenarios.

7.1 Architecture overview

This section covers the description of the proposed Hierarchical SDN Orchestration (H-ORCH) archi-
tecture based on a hierarchy of MSO instances (parent/child MSOs). The architecture is displayed in
Figure 7.1 over a sample 5G network consisting on multiple RANs and DC networks interconnected by
an optical transport network. In the Radio Access Network (RAN) segment, we observe several SDN-
enabled controllers for wireless networks, which tackle their complexities. In a transport network, the
aggregation segments and core network are taken into account. SDN-enabled MPLS-TP can be used
in the aggregation network, while a core network might use an Active Stateful PCE (AS-PCE) on top
of a GMPLS-controlled optical network. Finally, several SDN-enabled controllers are responsible for
intra-DC L2 networks.

Within the hierarchy, an SDN orchestrator may consider itself as the direct control entity of an
information model instance that represents a suitable abstracted underlying network. It follows that,
with the exception of network domain SDN controllers (which are directly related to NE), a given
SDN orchestrator might provide an abstracted network view and be present at any hierarchy level
and act as parent or child SDN orchestrator. At any level of the recursive hierarchy, a resource is
understood to be subject to only one controlling entity.

In the proposed architecture, several child MSOs (cMSO) are considered. Each ¢cMSO is responsi-
ble for a single network segment. A recursive hierarchy could be based on technological, SDN controller
type, geographical/administrative domains or network segment basis. We introduce a parent MSO
(pMSO), responsible for the provisioning of End-to-End (E2E) connections through different network
segments.

74



7. The Hierarchical SDN Orchestration (H-ORCH) approach

Global E2E SDN
Hierarchical Level n+1:

Orchestrator
Hierarchical SDN Orchestration (pMS0)

Hierarchical Level n:

Multi-domain multi-layer SDN

Orchestrators SDN RAN SDN Transport SDN DC
Orchestration Orchestration Orchestration

Hierarchical Level n-1: (cMSO-RAN) (cMSO-T) (cMSO-DC)

Tect d d

controllers

Aggregation Core

€-=—=-=-> €-=-==>

Aggregation

> € >
RAN 3 Transport Networks . DC Network

Figure 7.1: Proposed Hierarchical SDN Orchestration (H-ORCH) architecture in a multi-domain
network scenario.

7.2 MSO extensions for H-ORCH: Abstraction Manager

For both the pMSO and the cMSO, the internal system architecture is identical and based on an
extended version of the MSO architecture presented in chapter 5 (Figure 7.2).

Multi-domain SDN Orchestrator (MSO)

[ Orchestration Controller J
A A ¥ 7' 7'y

Abstraction Manager
H : PCEP

REST VNTM H
Flow = T H
REST =L Server
I g s T
Provisioning | ResT | Topology Multi-
. | Manager Manager Layer PCE

Figure 7.2: Extended MSO internal architecture

The Orchestration Controller is the component responsible for handling the workflow of all the
processes involved (e.g., the provisioning of end-to-end connectivity services). It also exposes a NBI
to offer its services to applications. For the ¢cMSO, we have extended the NBI of the Orchestrator
Controller (OC) to offer a REST based interface for virtual network creation. This new interface
interacts directly with a new module named the Abstraction Manager (AM) to compose abstract
representations of the underlying physical network topology. The proposed AM might be able to

75



7.2. MSO extensions for H-ORCH: Abstraction Manager

provide several types of hierarchical level abstraction. The AM support two abstraction models for
the creation of the virtual network: node and link abstractions. The node abstraction model offers
to the higher level of hierarchy the underlying domains/segments as a single abstract node, with the
input /output interfaces of the underlying domains/segments as interfaces of each abstracted node. On
the other hand, a link abstraction represents a physical path between two interfaces of the underlying
network as a virtual link between two abstract nodes. These two nodes must be mapped 1:1 to
the physical nodes to which the physical interfaces corresponding to the source and the destination
virtual edge ends are attached to. Additionally, in order to reduce the complexity of the models, the
abstracted topologies being considered in this work are single layer. This implies that the transport
layer of the service endpoints mapped to the abstracted representation must operate at the same layer
and, in case of the link abstraction, the switching capabilities of the abstracted link must be the same
to the ones of the physical service endpoints (packet-switching for L2/Ethernet or Lambda-switching
for LO/DWDM optical SFP/XFP interfaces).

The creation of a virtual network is always associated with a client application or tenant. When
a new virtual network is requested, first the AM creates the new abstracted topology based on the
abstracted model (Node Abstraction or Link Abstraction) by requesting the creation of a new topology
to the Topology Manager (TM). The Topology Manager is the component responsible for gathering the
abstracted network topology from each control domain or underlying SDN orchestrators, and it builds
the whole abstracted network topology which is stored in the Traffic Engineering Database (TED)
and responds to the AM with the new created topology identification code (Topology Id) which will
be associated to the tenant. After this initial setup phase is triggered the tenant will interacts with
the MSO over the virtual network represented by the topology abstraction.

The second function of the AM is to correlate the requests based on the abstracted topology to the
information of the underlying topology. To this aim, every time the MSO receives a connectivity service
request (Call service request in the COP model), it request the Abstraction manager to convert the
information of the service endpoints based on the abstracted network topology, into the corresponding
physical ones. Once this translation occurs the OC performs a normal orchestration workflow over
the physical network topology to create the necessary connections to serve the requested connectivity
service. Once the connections are created, two records are stored in the Flow Server Database (Flow
DB), one for the abstracted connectivity service request and one for the physical one. The correlation
of this information is responsibility of the Abstraction Manager as well, and it will be used in the
deletion process of the connectivity service.

The new introduced Virtual Network Service was added to COP as a new service (Figure A.4).
The information model and RESTconf interface definitions are included in the Appendix A and the
complete YANG files can be downloaded and contributed in the STRAUSS github repository: https:
//github.com/ict-strauss/COP/blob/master/yang/yang-cop/service-virtual-network.yang

76



7. The Hierarchical SDN Orchestration (H-ORCH) approach

E2E Transport Orchestration (pMSO)

HIERARCHICAL
Wireless SDN Controller Multi-layer Optical Ochestration (cMSO) CONTROL PLANE

SDN Controller Active Stateful PCE SDN Controller

"""""""" A e

Figure 7.3: Hierarchical SDN orchestration architecture

7.3 Experimental assessment

In this section it is presented the experimental evaluation of the proposed H-ORCH for hierarchical
SDN orchestration of wireless and optical transport domains, using a hierarchy of MSOs. In partic-
ular, it provides an experimental evaluation of E2E provisioning and E2E recovery procedures in a
multi-domain network integrating a wireless network domain (CTTC EXTREME Testbed) and the
Transport network of the ADRENALINE Testbed (Chapter 3).

e )

-

~
- ~
-

Wireless SDN
Controller
N LE A
dpid 00:01 cMSO f
dpid 00:03 *
Client IP: 10.3.3.2 AP2

dpid 00:02 Server IP: 10.3.3.5

Figure 7.4: Network Topology view at the pMSO

The EXTREME SDN wireless testbed consists on 8 programmable backhaul nodes based on PC
engines Intel Core i7 platform (6-Core 3.3Ghz x86 CPU and 32GB of RAM), where each node runs
Ubuntu 15.04 as operating system. Currently, each node is equipped with three Compex WLE900VX
IEEE 802.11ac/a/b/g/n cards, one integrated Intel IEEE 802.11ac/a/b/g/n card and two Gigabit
Ethernet ports. Each node runs xDPd as software switch and the wireless SDN controller is based on
Ryu. Two node are interconnected through 1 Gbps Ethernet links to two packet switches (OpenFlow-
based too), providing two inter-domain links between the EXTREME and ADRENALINE testbeds

7



7.3. Experimental assessment

(Figure 7.3).

The pMSO implement the COP protocol for the orchestration of the cMSO and either COP or the
propietary RESTful API of RYU controller for the Wireless SDN controller. The topology composition
for this experimental validation leads in the topology vision displayed in Figure 7.4.

o ) ) ) () ) ) ()

— | COP/ Create Call
—_——
COP/ Create|Call
PClnitiate{src,dst}
—
=4 PCRpt{Lspld}
£ ——— .
5 Establish Flows
2 =+, Flows ACK
g_ Establish,Flows
w aea
S Call ACK Flows ACK
RYU/ Establish Flows
Call ACK ADD_FLOW_MOD
Call ACK —_—

—

— Link Down;Notification s
> COP/ Create Call
g >, Modify Flows
]
§_< Call ACK Flows ACK
ﬁ RYU/ Remove Flows DEL_FLOW_MOD

! !
RYU/ Establish Flows
— Call ACK ADD _FLOW_ MOD >

Figure 7.5: Message exchange workflow for E2E provisioning and recovery connectivity services.

Figure 7.5 shows the proposed message exchange between a pMSO and a wireless SDN con-
troller /cMSO. Two different scenarios are presented: E2E provisioning and E2E recovery. In the first
scenario, it can be observed that an E2E connection is requested (POST Call) to the pMSO. The
pMSO computes the involved network controllers (Wireless SDN/cMSO) and requests the underlying
connection. The request sent to the wireless SDN controller, which implements the propietary RYU
REST interface, is directly translated into OF commands sent to the wireless SCs. Moreover, we can
observe how the workflow follows inside a cMSO, which is responsible for another level of hierarchical
SDN orchestration equivalent to the one presented in Chapter 5. The c¢cMSO first requests an op-
tical lightpath to the AS-PCE and, once the lightpath has been established, the different flows are
established towards the underlying packet SDN controllers. In the second scenario, an inter-domain
link failure is detected by the wireless SDN controller. The link failure is notified to the E2E SDN
orchestrator using Websockets transport technology through a session which has been previously es-
tablished between the Wireless SDN controller and the cMSO. When the cMSO receives the link down
notification, it computes a new E2E path, and, following a break-before-make strategy, it first deletes
or modifies the old connections and then establishes the new computed recovery connections.

Figure 7.6 shows the Wireshark captures of the exchanged messages at both the pMSO and cMSO.
The bidirectional E2E service call request is received at the pMSO. The pMSO PCE is responsible for
computing an E2E path. The pMSO VNTM decomposes the computed E2E path in order to request
a call service to the cMSO. The ¢cMSO is responsible for SDN orchestration towards the underlying
network domains (SDN-CTL-1, AS-PCE, and SDN-CTL-2). After the cMSO provisions the requested
call service, the pMSO requests the necessary flows to the wireless SDN controller. The setup delay
for an E2E service call for this experiment was 3.06 seconds.

The E2E recovery message exchange is shown in Figure 7.7 The wireless SDN controller receives
the OF port down message in an inter-domain link and notifies the pMSO of the link failure through

78



7. The Hierarchical SDN Orchestration (H-ORCH) approach

Time
*REF*

0, BO9E35
. 0175080
LO73936
L O7EE21
104657

*REF*

. 017858
. 089537
192055
.413183
.585911
.Bl8264
. 226984
. 228431
391473
398850
421527

MKNKMMMSOOOo O oo

V526387
551317
558513
617861
024554
L0B53772
056336
L OBE57 08

[P TR T VI U I ]

Time

FREF*

28197
028396
540708
550885
551236
094541
L1e1e2s
. 107895
113219
A485740

ol W W WD oo e @

Source
PAEND
pAEND
pABND- PCE
pABND
W-SDN-CTL
pAEND

pABNO
cABNO
cABND- PCE
CABNO
AS-PCE
cABNOD
AS-PCE
cABNOD
cABNO
cABNO
CABNO
cABNO

CABND
PABND
PAEND-PCE
PABND
CABND
PAEND
W-5DN-CTL
PABND

Destination

PAEND
pAEND- PCE
pABND
W-5DN-CTL
PAEND
cABND

cABNO
cABND- PCE
cABNO
AS-PCE
cABNO
AS-PCE
cABNO
SDN-CTL-1
SDN- CTL-1
SDN-CTL-2
SDN-CTL-2
pABNO

PABND
PABND-PCE
PABND
CABND
PABND
W-5DN-CTL
PABND
PABND

Protocol Info

HTTP POST frestconf/config/calls/call/l HITR/1. 1 (application/json)

PCEP PATH COMPUTATION REQUEST MESSAGE

PCEP PATH COMPUTATION REPLY MESSAGE

HTTP POST /fstats/flowentry/add HITRP/1.1 (application/json)

HTTP HTTP/1.1 200 OK

HTTP POST frestconf/config/calls/call/00002 HTTP/1.1 (application/json)
HTTP POST /restconf/configfcalls/call /00002 HTTP/L.1 (application/json)
PCEP Path Computation Request
PCEP Path Computation Reply
PCEP Initiate
PCEP Path Computation LSP State Report [(PCRpt)
PCEP Initiate
PCEP Path Computation LSP State Report (PCRpt)
HTTP PUT Jecontroller/nb/vZ2/flowprogrammer/default/node/0OF/00:00:00:1e: 67
HTTP PUT fcontroller/nbsv2/flowprogrammer/default /node/0F/00:00:00:1b:21
HTTP PUT frestconf/config/opendaylight-inventory:nodes/nodesopenflow:llE
HTTP PUT /frestconf/config/opendaylight-inventory:nodes/nodesopenflow:130
HTTP HTTP/1.1 200 OK (application/jsonl

HTTP HTTR/1.1 200 0K [application/json)

PCEP PATH COMPUTATION REQUEST MESSAGE

PCEP PATH COMPUTATION REPLY MESSAGE

HTTP POST frestconf/config/calls/call/o00003 HTTR/1. 1 (application/json)

HTTP HITP/1,1 208 0K (application/json)

HTTP POST /stats/flowentry/add HTTR/1. 1 (application/json)

HTTP HITR/1.,1 200 0K

HTTP HITP/1.1 200 0K (application/json)

Figure 7.6: E2E provisioning wireshark captures at pMSO and ¢cMSO.

Source
W-SDN-CTL
PABNO
PABNO
PABNO
PABNO
PABNO
PABNO
PABNO
PABNO
PABNO
CABNO

Destination
pPABND
cABND
cABNOD
cABND
cABND
CABND
W-SDN-CTL
W-SDN-CTL
W-SDN-CTL
W-SDN-CTL
PABND

Protocol
TCP
HTTFP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTP
HTTFP
HTTP
HTTP

T WS: LINK Failure Notification

ISBSB~49194 [P5H, ACK] Seg=1 Ack=1 Win=235 Len=173 TS5val=2559507532 TSecr=992188968|

DELETE /restconf/configfcalls/cally/o0083 HITP/1.1 (application/json)
DELETE /restconf/config/calls/call/o0002 HITP/1.1 (application/json)
DELETE /stats/flowentry/clear/1l HTTR/1.1

POST /restconf/config/calls/callsd HTTP/1. 1 (application/json)

POST /restconf/config/calls/call/s HITR/1.1 (application/json)

POST Jstats/flowentry/add HTTP/1.1 {application/json)

POST /stats/flowentry/add HTTP/1.1 [application/jscon)

POST /stats/flowentry/add HTTP/1.1 [application/json)

POST /stats/flowentry/add HTTR/1.1 [application/json)

HTTP/1.1 200 0K {applicaticon/json)

Figure 7.7: E2E recovery wireshark captures at the pMSO.

an open websocket. The pMSO computes the E2E recovery path and it first removes the previously
provided connections. Then, it establishes the new connections between the wireless nodes.

Figure 7.8 shows the data plane connectivity between a User Equipment (UE) connected through
a wireless SC and a server running at the aggregation network. ICMP ping messages (with a message
interval of 10ms) are exchanged between both hosts. We emulate a link failure by disconnecting one of
the inter-domain ports. When the E2E recovery is applied, the ICMP request messages are recovered
and replied. The resulting E2E recovery time from the data plane perspective is around 3.7s.

79



7.4. Performance evaluation

*REF* 18.3.3.5 18.3.3.2 IMP Echo (ping) request id=0x2385, seg=3918/19983, ttl=84 (reply in 40809)

0, 002444 168.3.3.2 18.3.3.5 IMP Echo (ping) reply id=0x2385, seq=3918/19983, ttl=64 (request in 4008)

0. 002483 18.3.3.5 10.3.3.2 ICMP Echo (ping) request 1d=0x2385, seg=3919/20239, ttl=84 (no response found!)
0, 812550 18.3.3.5 10.3.3.2 ICMP Echo (ping) request id=0x2385, seq=3920/20495, ttl=84 (no response found!)

EEnm

3.686449 10.3.3.5 10.3.3.2 ICMP Echo {ping) request id=0x2385, seq=4285/4B400, ttl=& (no response found!)
3.696515 10.3.3.5 10.3.3.2 ICMP Echo {ping) request id=0x2385, seq=4286/4B656, ttl=6 (no response found!)
3,706581 18.3.3.5 18.3.3.2 IMP Echo (ping) request 1id=0x2385, seq=4287/48912, ttl=K4 (reply in 4383)

3. 716646 18.3.3.5 18.3.3.2 IMP Echo (ping) request 1id=0x2385, seq=4288/49168, ttl=84 (reply in 4385)
3.726712 168.3.3.5 18.3.3.2 IMP Echo (ping) request 1id=0x2385, seq=4289/4%424, ttl=64 (reply in 4386)

3. 736777 18.3.3.5 18.3.3.2 IMP Echo (ping) reguest 1d=0x2385%, seg=4290/49680, ttl=84 (reply in 4388)

3. 746842 18.3.3.5 18.3.3.2 IMP Echo (ping) request 1d=0x2385, seq=4291/49936, ttl=B4 [reply in 4389)
3.749384 18.3.3.2 18.3.3.5 IMP Echo (ping) reply id=0x2385, seq=4287/48912, ttl=64 [request in 4378)

Figure 7.8: Data plane E2E recovery between UE and Server.

7.4 Performance evaluation

This section presents the results characterizing the hierarchical control plane: first study the behavior
of the optical domain under the H-ORCH architecture and, after that, we present the results for the
E2E service provisioning over the network scenario presented in the previous section, with two main
differences. In this case four wireless SDN nodes conform the wireless network domain and secondly,
the abstraction strategy assumed by the cMSO is based on the link abstraction, following the procedure
detailed in section 7.2. As a result, the abstract topology exposed to the pMSO consist on four abstract
nodes operating at the Layer 2 and conforming a ring topology. The complete topology observed by
the pMSO is depicted in Figure 7.9.

CTTC Wireless domain CTTC Optical abstracted domain

Figure 7.9: Network Topology view at the pMSO.

7.4.1 Single-domain characterization

This experiment consisted on 10000 requests arriving following a Poisson process with negative ex-
ponential holding times, fixing inter-arrival average time and increasing holding times depending on
the offered traffic in Erlangs (e.g., one connection arriving on average every 3 seconds, and lasting on
average 60 seconds for an offered traffic of 20 Erlangs). For the evaluation, we consider that requests
are being uniformly distributed among the four optical nodes (optical cross connects, or OXCs) within
the network scenario. FEach link is characterized for having 8 bidirectional wavelengths supporting
10Gbps client rates. Requests go from one OXC to a destination OXC and do not involve client

80



7. The Hierarchical SDN Orchestration (H-ORCH) approach

transceivers due to hardware limitations that would constraint the results, since only a limited set of
client transceivers are available, well below the theoretical maximum supported by the optical network.

0.08 _ 1.0
( — MSO_CDF
RSVP_CDF
0.07¢ — AS-PCE_CDF
0.8

§ 0.06|-
o >
(o)} =
o) =
42 0.05} o
] 065
T QO
- 0.04 e
(V] o
N '
T 003t 0‘4u_
= o
- O
O 0.02}
=2 0.2

0.01+

0'08.0 0.1 0.2 0.3 - 0.4 0.5 0,‘6 0.9'0

seconds

Figure 7.10: Setup delay histogram and CDF from the GMPLS/RSVP-TE controllers, from the AS-
PCE, and from the cMSO.

The setup delay of the optical services’ provisioning has been measured from multiple functional
entities (i.e.,from the ¢cMSO, from AS-PCE, from GMPLS ingress controller). In particular an his-
togram and the CDF of the different entities it is shown in Figure 7.10. Notice that since the aim of
this section is to analyze the behavior of the system in the optical domain, just cMSO is taken into
account. Path setup time is affected by the hardware configuration delay, which involves configuring
the OXC and it is vendor dependent. We have performed different measurements with and without
hardware configuration.

Without optical hardware configuration. To exclusively characterize the control plane be-
havior, we configure the hardware optical nodes in emulation mode, hence requiring a negligible
configuration time. Figure 7.10 depicts the histogram and CDF of the setup delay seen at different
reference points:

e From the GMPLS control plane: this means the setup delay considering the signaling process,
from the RSVP-TE connection controller of the ingress node to that of the egress node, and
roughly corresponding to the RTT of the signaling messages with forward Path and reverse
Resv messages across the different transit nodes. We see that on average, this shows two peaks,
roughly corresponding to whether 2 or 3 optical nodes have been involved in the provisioning.

e From the AS-PCE: the AS-PCE adds a small component to the setup delay, associated to the
processing of requests from the child MSO and dispatching of requests to the corresponding
head-end node.

e Finally, we see the setup time from child MSO, which adds an additional time due to the COP
protocol and the use of text-based REST interfaces. Average setup delay seen from MSO is
250ms.

With optical hardware configuration. In this case, an additional set of 100 requests has been
performed. The main finding is that the hardware configuration adds an additional 200ms to the
provisioning time. As a summarizing guideline, the setup delay for the optical domain, seen from the
c¢MSO, can be upper bounded to 500ms (sub-second provisioning delay in our considered scenario).

81



7.5. Conclusions

0.025 1.0
0.020} 0.8
€
o >
o =
o =
% 0.015 -05%
T el
o o
] o
N o010 04 '
©
= o
- @]
)
Z 0.005 0.2
0.00 .0
%% 3.1 3.2 33 3.4 3.5 3.6 59
seconds

Figure 7.11: Setup delay and histogram at the parent MSO.

7.4.2 Multi-domain characterization

This experiment consisted of 10000 E2E service requests to the pMSO between randomly selected
Service Endpoints of the abstract topology shown in Figure 7.9. Each service (COP Call request) is
created in the network is removed before the next service request arrives, thus the blocking probability
is theoretically zero and all requests have uniform network conditions.

The histogram and CDF of the E2E multi-domain, multi-layer services’ setup delay as seen from
the pMSO are presented in Figure 7.11. The multiple peaks in the histogram reflect an implementation
artifact of the MSO (child and parent) due to the synchronous nature of the Python threading library’s.
Specifically the Event object contains an idle period of 50ms between every check of the internal flag
which let the execution of the program continue if the operation has been concluded.

However, the most remarkable observation is the increase of the average setup delay from tens or
hundreds of milliseconds in the single domain characterization to several seconds when the hierarchy
of MSO is included. This increase in the setup delay is introduced by two main reasons: (1) the
network abstraction and the communication between the parent and child MSOs introduce additional
processing for message processing and data translation; (2) the multi-domain and multi-layer path
computation occurring in within the cMSO controlled domains for the E2E service provisioning !.

7.5 Conclusions

This chapter has proposed the hierarchical SDN Orchestration (H-ORCH) in order to handle SDN
network orchestration scalability and security. The H-ORHC architecture has been proposed and ex-
perimentally validated for E2E provisioning and recovery use cases in a multi-domain optical/wireless
network integrating EXTREME wireless and ADRENALINE optical testbeds. Experimental results
suggest that certain levels of hierarchy can cope with the upcoming network heterogeneity from a
multi-(technology, domain, and vendor) perspective.

!Note that the measurements of the setup delay included in Chapter 5 corresponds to the same operations done in
this experiment by the child MSO and they were obtained in the same network scenario (Chapter 3).

82



Chapter 8

The Peer SDN Orchestration (P-ORCH) approach

8.1 Peer Orchestration architecture . . . . . . . . . . . . . . . . . . . 84
8.2 Experimental Assessment and evaluation . . . . . . . ... ... L. 86
8.3 Conclusions . . . . . . . . e 88

Within the transport SDN community, it is commonly accepted that deploying a single, integrated
controller for a large or complex network may present scalability issues, or may not be doable in
practice. Two main reason are: a) Network size, in terms of controllable elements, which has a
direct impact on the controller requirements (e.g. active and persistent TCP connections on top of
which control sessions are established, memory requirements to store in memory e.g. a data structure
representing the network graph that abstracts the network and CPU requirements for processing
message exchange); and b) Security and robustness; a single SDN controller represents a single point
of failure in the control architecture, thus network operators seek for most robust architectures which
provide redundancy in the control plane layer.

To address such shortcomings, it is important to consider the deployment of multiple controllers,
arranged in a specific setting, along with inter-controller protocols. Such network architectures ap-
ply both to heterogeneous and homogeneous control (different or same control plane and data plane
technologies within the domain of responsibility of a given controller). Two approaches to controller in-
terconnection are identified, which depend on the directivity of the interconnection model: hierarchical
and peer.

In the previous chapter, the hierarchical orchestration model was presented, where a the orches-
tration entities are ranged in a topology which is, typically a tree, with a given root being the top-most
controller. For a given hierarchy level, a parent SDN orchestrator handles the automation and it has
a certain number of high level functions, while low level controllers (usually referred to as children)
cover low-level, detail functions and operations.

In this chapter, we introduce the Peer Orchestration (P-ORCH) model where two orchestration
entities manage two independent network administrative domains and cooperate to provide End-to-
End (E2E) connectivity services which span across multiple domains. For the WEST-EAST interface

83



8.1. Peer Orchestration architecture

between the orchestrators, an extended version of the COP protocol is proposed to provide network
topology abstraction, path computation and connectivity provisioning. The chapter is arrange as
follows: in section 8.1 the proposed peer orchestration architecture is presented, including the or-
chestration workflow based on the recursion pattern and the COP extensions introduced to address
the realization of the proposed model. In section 8.2, the P-ORCH architecture is validated in an
international Europe/Japan multi-partner network scenario, involving several administrative domains
with a per-domain dedicated SDN controller instance and a P-ORCH architecture on top consisting
on two MSO components.

[ SDN Orchestrator #1 ] K [ SDN Orchestrator #2 ]
A "'. ............. R *.
.00' -“ “““““ .,' ‘.‘. coP
cop ,cop cop -
e copP K

L_T-API__| L_T-API__| L_T-API__| L 1-API_ ) L T1-API )

SDN o SDN @ SDN P Optical Active

Controller #1 Controller #2™ 7, Controller #3 Network Stateful PCE

Hypervisor &

ﬁPacket ﬁOptical ﬁOptical @ Optical g Packet

DOMAIN A DOMAIN B DOMAIN C DOMAIN D DOMAIN E

Figure 8.1: Proposed Peer Orchestration architecture network architecture

8.1 Peer Orchestration architecture

In the proposed architecture, Figure 8.1, each provider network is controlled though an SDN orchestra-
tor (parent SDN controller, pSDN), which handles several child SDN controllers (¢SDN). Each ¢SDN
is responsible for a single network segment. A recursive hierarchy could be based on technological,
vendor, SDN controller type, geographical domains or network segment basis. The COP, presented in
Chapter 6, was demonstrated in Chapter 7 as a viable protocol for recursive hierarchical interconnec-
tion in between pSDN and ¢SDN entities. In this chapter, we propose to extend the COP to allow a
pSDN from Network Provider A (SDN-O 1) being able to interact with its peer of Network Provider
B (SDN-O 2).

Peer interconnection model corresponds to a set of controllers, interconnected in an arbitrary
mesh, which cooperate to provision end-to-end services. In this setting, it is often assumed that the
mesh is implicit by the actual (sub)domains connectivity; the controllers hide the internal control
technology and synchronize state using East/West interfaces. The SDN controllers manage detailed
information of their own, local topology and connection databases, as well as abstracted views of the
external domains and the East/West interfaces should support functions such as network topology
abstraction, path computation and connectivity provisioning.

Neighbor recursion has been proposed in [70] as the pattern in which SDN controllers peer to
deliver services across multiple SDN control domains. All participants would be expected to expose

84



8. The Peer SDN Orchestration (P-ORCH) approach

comparable levels of abstraction and services. Using neighbor recursion, any SDN controller can act
as either client or server to its neighbors, depending on the requested service endpoints. It can be
noted, that requested peer services will be understood in a call model, including service creation,
service usage, and service release. Peer SDN orchestrators might use neighbor recursion to provision
E2E services, such as DC interconnection. In all cases, the service endpoints must be coordinated and
therefore recursively visible, while the internal details of the network are typically abstracted, and left
for the immediate controller.

SDN

Controller
#A
SDN SDN
Controller Controller Controller Con;rgller
#A #B #C SDN
Controller
#C

Figure 8.2: Neighbor recursion pattern.

Figure 8.2 shows an example for neighbor recursion. Figure 8.2 (left) shows three SDN orches-
trators (pSDN), each responsible for a ¢SDN. For an E2E connectivity request starting in a service
endpoint handled by SDN-O 1 and ending at service endpoint handled by SDN-O 3, Figure 8.2 (right)
shows the neighbor recursion pattern, which results in a balanced hierarchy of SDN-Os. The proposed
neighbor recursion pattern does not detail how inter-domain topology is obtained, as a mechanism
to avoid topological loops shall be implemented. It is assumed that service end-point reachability is
known.

\_ SsbN J\_ SN/

Orchestrator #1 Orchestrator #2

Figure 8.3: Topological views from SDN-OEU and SDN-O-JP.

Figure 8.3 provides the different overall topological views from the proposed scenario in Figure
8.1. The provided topological corresponds to the real scenario proposed for experimental validation

85



8.2. Experimental Assessment and evaluation

in section 8.2. SDN-O 1 is responsible for SDN controllers A and B; and SDN-O 2 is responsible for
SDN controllers C, D, and E. Two inter-domain links are provided between #A:2-#D:1 and #B:2-
#C:1. Moreover, COP has been extended in order to offer the context for a client, which includes
the abstracted topology and the available service endpoints. In the proposed scenario, each SDN-O
announces as service endpoints the different network endpoints on which virtual machines might be
interconnected (SDN-O-JP service endpoints: az; SDN-O-EU service endpoints: A-Z).

El Cloud and Cloud Cloud SDN SDN SDN Active
Network Controller| | Controller SDN-O EU SDN-O JP Controller| | Controller | Controller |Stateful
Orchestrator #1 #2 #1 #2 #3 PCE
T T H T T T 1 T

——>!Create VM1 ! :

Network | : : ; : : ;
request % Ack ; : :
.CaII POST(VM1 vmz #A:a, #E a, ID: 1) : ; ; !
| Call POST/(#A: a,#A 1, ID: 10) | '
= ' ! Ack (:up 10, Con iD: 25)
, ; , CaII POST(#B 2,#B:1, ID: 11). |
i ! i . | Ack (ID: 11, Con. ID: 78)

! : § L call PQST(#C 2, #E:a, ID:12) | 3

Vand . o Ack i | a o
'Create VM2 i : : ! ! ' |

! —_—> '
: | Call POST (#c 2,#C: 1,, ID: 20) |
| ! : : Ack (ID: 20, Con..ID:34)
; ; ; § | call P‘OST(#E 1,#E:a, ID: 21) |
| : i i g Ack (ID: 21 Con./ID:63) '
Aqk(ID 1, 'Con ID:; 1o 11, 12) “°k (ID 12 Con. ID 20 21) §

MAck | | | i 5

Figure 8.4: Message workflow for VM and Connectivity Service creation

Figure 8.4 shows the proposed workflow between a cloud and network orchestrator which requests
two virtual machines (VM) (step 1) and requests their interconnection through a dedicated E2E
connectivity service (step 2). The E2E connectivity request is sent to the SDN orchestrator responsible
for the source service endpoint (SDN-O 1). The intra-domain connectivity is provisioned through SDN
controller #A (step 3) and #B (step 4). Through neighbour recursion, the necessary connectivity is
requested to SDN-O-EU (step 5). SDN-O 2 is responsible for the provisioning of the remaining
intra-domain connectivity though SDN controllers #C (step 6) and #E (step 7). Once the necessary
connections have been established the Cloud and Network Orchestrator is notified.

8.2 Experimental Assessment and evaluation

The experimental setup is shown in Figure 8.5, where Bristol, CTTC, and ADVA domains are con-
trolled by an SDN orchestrator (SDN-O-EU), which is run by Telefénica, based on the ABNO ar-
chitecture [1]. The controllers hide the internal setup of each domain. The MSO presented in 5
implementing the SDN-O-JP, is responsible for handling multiple technology SDN controllers from
KDDI. Each SDN controller provides through COP the abstracted topology as a node. The multiple
SDN orchestrators and controllers are interconnected through an OpenVPN over the public internet
offering a control plane Testbed.

86



8. The Peer SDN Orchestration (P-ORCH) approach

Integrated Cloud & Network Orchestrator

i CTTC?

{ E2E QoS connectivity preee K perne :
provisioning : :

Velefonica

Virtual machine [

SDN Orchestrator JP

SDN Orchestrator EU

]

provisioning

“‘

H “.o ‘-“- K AR "““n :, ‘«.'

H Q ‘, * 0 "

: cop % cop - coP S

ck ”” K Rl ’ s cop "\ pensta
Cloud o 5 R s >, Cloud ™
Controller #2 L_T-API | L _T-API | L_T-API | L _T-API | [TT-AP1 ] | Controller #1
- Optical .
SDN SDN SDN Active
Controller #1 * Controller #2@ Controller #3 * Hc::v::i:;r = Stateful PCE

@ Packet

AN

@Optical @Optical @ Optical @ Packet

AN

[ U
CTTC® CTTC
Voo B eniner S ADVAT AN\

A FARR B imnest s ADV,

CTTC”

Figure 8.5: International Europe/Japan multi-partner network scenario for P-ORCH architecture
demonstration using COP as unified orchestration interface.

Cloud&Net_ORCH  CLOUD_CTRL_1 591 POST /v2.1/=9102671a6004a209f Bccecldcadf 2fd/servers HTTP/1. 1 (application/jsen)
CLOUD_CTRL_1 Cloud&Net _0ORCH HTTP 2005 HTTR/L.1 200 0K (application/json)
Cloud&Net_ORCH  CLOULD_CTRL_Z2 HTTP 592 POST /v2.1/1555bet79ccT42edbE4f c79d2015d66f fservers HTTP/L. 1 (application/json)
CLOULD_CTRL_2 Cloud&Net _0ORCH HTTP 2007 HTTR/L.1 200 0K (application/json)
CEld&Net_ORCH SON-0-JP HTTP F78 POST /restconf/configscallsscallsl HTTP/1.1  (application/json)
= Cloud&Net_ORCH  SDN-0-JP HTTP 762 POST frestconf/configseallsscallsl HTTR/L. 1  (application/json)
@) SDN-0-3P SDN-CTRL-#A HTTP 767 POST Sfrestconf/configfcalls/call /08010, HTTP/1.1 (application/]son) e
[~ SDM-CTRL-#A SDN-0-3F HTTF 57 HTTR/1.1 200 Successful eoperation [(application/jsen)
=} SDN-0-3P SDN-CTRL-#E HTTP 767 POST Sfrestconf/configfcalls/call 08011/ HTTP/1.1 (application/]son) °
- SDM-CTRL -#E SDN-0-IP HTTF 57 HTTR/1.1 200 Successful operation (applicationsjson)
% g SDN-0-3P SON-0-EU HTTP TET POST Srestconf/configfcalls/call /080127 HTTP/1.1 (application/]son)
2llo SDN-0-3P SDN-0-EU HTTP POST /restconf/config/calls/call/@ea12/ HTTP/1.1 (application/j
g Z' SDN-0-EU SDN-CTRL-C  HTTP POST /restconf/config/calls/call/28/ HTTP/1.1 (application/json)
(=) a SDN-CTRL-C SDN-0-EU HTTP HTTP/1.1 288 Successful operation
6 @ SDN-0-EU SDN-CTRL-E  HTTP POST /restconf/config/calls/call/21/ HTTP/1.1 (application/json) 0
SDN-CTRL-E SDN-0-EU HTTP HTTP/1.1 28@ Successful operation
SDN-0-EU SDN-0-1P HTTP HTTP/1.1 28@ OK (application/json)
SDM-0-EU SDN-0-3P HTTP 57 HTTP/L.1 200 Successful operation (applicationsjson)
I Cloud&Net_ORCH  HTTP 146 HTTP/1.1 200 0K (applicatien/jsen)
|_J SDN-0-JP Cloud&Net_ORCH HTTF 162 HTTR/1.1 200 0K

(application/json)

Figure 8.6: Wireshark captures from three viewpoints: Cloud and network orchestrator, SDN-O-JP,

and SDN-O-EU

Figure 8.6 shows the messages exchanged from three different perspectives: a) the captured from
the Cloud and Network Orchestrator; b) from the SDN-O-JP; and c) from the SDN-O-EU.

The objective of the experimental validation is to create two VMs in different DC, and provide

a connectivity service between them.

In step 1, two VMs are requested to each respective cloud

controller. Later, in step 2 a connectivity service is requested to SDN-O-JP. This results in a HT'TP
POST command to create a Call object, which includes the necessary connection endpoints, as well as

87



8.3. Conclusions

the requested QoS, including bandwidth details. The SDN-O-JP processes the request, and triggers
the connectivity service through SDN controllers A and B (steps 3 and 4).

In order to establish the requested service, SDN-O-JP requests the connectivity service to the peer
SDN-O-EU (step 5). This service’s request includes as a source endpoint the interdomain endpoint
#C:1 and as destination endpoint the destination endpoint included in the E2E call. Once this request
is processed in SDN-O-EU, a connectivity service is requested through the SDN controllers C and E
(steps 6 and 7).

Finally, the requested E2E connectivity service has been provisioned in our setup with an average
time of 1.6s; while the VM creation on each cloud controller is in the order of 40s.

8.3 Conclusions

In this Chapter it has been proposed a novel peer SDN Orchestration in order to handle SDN network
orchestration in multiple administrative domains. Neighbour recursion and extensions to Control Or-
chestration Protocol have been proposed and experimentally validated in a control plane international
testbed.

88



Part 111

Integrated Orchestration of Cloud and
Transport Network services

89






Chapter 9

Integrated IT and SDN Orchestration across geographically distributed

Datacenters.

9.1 Distributed DC interconnection . . . . . . . . . . . ... e 92
9.2 Integrated IT and Network Orchestration architecture . . . . . . ... ... ... ... 93
9.3 Experimental validation . . . . . .. .. . o o 95
9.3.1 Use case I: DC interconnection across a multi-domain, multi-layer network. . . 95

9.3.2 Use case II: Seamless Virtual Machine migration between geographically dis-
tributed datacenters . . . . . . ... L 96

9.4 Conclusions . . . . . . . . e 100

As it was introduced in chapter 1, one of the main objectives of network operators in the last years
is to reduce the volume of their operations and capital expenditures (OpEx, CapEx) in order to face
the stagnation of their revenues. In this context, Software Defined Networking (SDN) and Network
Function Virtualization (NFV) have emerged as the key-enabler technologies to achieve more flexibility
and automation in their network operations and an important reduction in the costs associated to the
investment in new equipment.

In the previous chapters we already showed the benefits of SDN in the transport network segment,
now we introduce NFV as a driven technology which benefits from SDN but also seeks for a closer
relationship between the network and cloud management systems. A network service can be defined as
a succession or chain of Network Functions (NFs) performed by physical or virtual appliances, which
together conform a customized network function. In the NFV paradigm, these NFs are expected to be
deployed in virtualized environments (VNFs) being instantiated in one or multiple NFV Infrastructure
Points of Presence (NFVI-PoPs). The network service also includes the network connectivity services
with Quality of Service (QoS) requirements (e.g., dedicated bandwidth, maximum supported latency)
required to interconnect the VNFs.

In this chapter we present an integrated I'T and network orchestration architecture for the joint de-
ployment of Cloud and Transport network services across multiple Data Centers (DCs). The proposed

91



9.1. Distributed DC interconnection

architecture targets the orchestration of multiple Cloud management systems which provide virtual-
ized computing and storage services in geographically distributed DCs, together with the deployment
of the required intra- and inter-DC connectivity services. The design principles for the architecture
proposed in this chapter follow the SDN orchestration approach described in previous chapters, which
has been presented and successfully validated in multiple scenarios, but now is extended to account
for the requirements of virtualized computing and storage instances.

The chapter is organized as follows: in section 9.1 we introduce the scenario and the problem
statement. In 9.2, we present the integrated SDN IT and Network orchestration architecture by ex-
plaining in detail its main building blocks and design principles. Section 9.3 includes the experimental
validation of the proposed architecture. The assessment consist on two different use cases: (i) DC
interconnection across a multi-domain, multi-layer network; (ii) Seamless Virtual Machine migration
between geographically distributed DCs. Finally, section 9.4 outlines the main contributions of this
chapter.

9.1 Distributed DC interconnection

Virtualization of compute, storage and networking resources in DCs is provided by private clouds
through distributed cloud orchestrators that may be deployed over different Virtual Infrastructure
Manager (VIM) software distributions (e.g. OpenStack, OpenNebula). Each VIM enables to seg-
regate the DC into availability zones for different tenants and instantiate the creation/ migration/
deletion of Virtual Machine (VM) instances (computing service), storage of disk images (image ser-
vice), and the management of the VMs network interfaces and the intra- DC network connectivity
(networking service). The target solution should account for SDN-based network control of both, intra-
and inter-DC networks, alongside with the aforementioned management of the virtualized computing
infrastructure across geographically distributed DCs.

The intra-DC network denotes here the L2 network connecting the physical servers which conform
the virtualized infrastructure for the deployment of VMs and also the software based virtual switches
running inside the servers to which the VMs are attached. Each intra-DC network is controlled by
a SDN controller instance which is responsible of discovering the network elements and hosts (IP
and MAC addresses), including the topological associations between hosts and network ports. The
target solution must support different types of VM network deployments, FLAT networking, VLAN
or virtualized network types based on overlay technologies such VXLAN [71] or GRE[72], the detail
description of these technologies is out of the scope of this Thesis. The target solution should be
able to correlate information from both domains (Cloud and Transport network) to characterize the
connectivity services through the matching forwarding rules installed in the network elements. As
it was detailed in Chapters 4 and 6, both the proposed Control Orchestration Protocol (COP) and
OpenFlow protocol, allow the definition of flow’s matching rules as a combination of different packet
headers (MAC, IP, TCP/UDP, VLAN-tags, MPLS) this flexibility will allow the Integrated Cloud and
Network orchestration solution to define the connectivity services upon the different VM’s network
characteristics.

On the other hand, the inter-DC network control is also included in the scope of the proposed so-
lution. As it was detailed in previous chapters, a hierarchical SDN orchestration architecture arranged
upon the network scenario (e.g., depending on the number of domains/technologies the network consist
of), is a suitable solution to guarantee end-to-end network transport services. This inter-DC network
can be exposed explicitly, with full network topology visibility, or abstracted, to improve scalability
and security of the overall solution,as detailed in Chapter 7. One of the requirements introduced by
the NFV paradigm for the Transport Network infrastructure is the capability to slice or virtualize the

92



9. Integrated IT and SDN Orchestration across geographically distributed Datacenters.

physical infrastructure to provide overlay networks to multiple tenants or Virtual Tenant Networks
(VTNs). In chapter 11 this feature will be evaluated in detail but in brief, the proposed solution allows
the creation of Virtual Private LAN Services (VPLSs) over MPLS between different NFVI/DC PoPs.

In brief, the objective is the design of an scalable orchestration architecture for both IT (Cloud)
and network resources within and between geographically distributed DCs.

9.2 Integrated IT and Network Orchestration architecture

The solution proposed is a novel integrated IT and Network orchestration architecture (Figure 9.1),
aligned with the NFV architectural framework proposed by the ETSI [73], which allows the control
and management of the physical or virtual compute, storage and network (including the transport
network) resources which in the referenced architecture is noted as the NFVI. Our proposal allows the
coordination of the cloud management systems and the control systems of the transport network in
order to provide the aforementioned required environment for the deployment of NFV-based network
services. The architecture includes a hierarchical SDN orchestration architecture which accounts for
multiple network scenarios and a distributed cloud computing infrastructure arranged in multiple DC

Jnratiane

n

Network

Core cloud

[ Integrated SDN IT and Network Orchestrator (SINO) ]
T I
j Lo o
[ E2E Network Orchestrator (pMSO) ] ; i : :
: - ' i : P
. 1 . .
[ Wireless SDN Orchestrator (cMSO) ] [ Transport SDN Orchestrator (cMSO) ] ! ; P
1 1 . 1 f
T T e ——— = N —- ! ! OpenStack
1 | -
. Edge Virtual CoreVirtual } 1 !
Controller Cont.roller Manager Contl"oller Contﬂr‘oller Manager : : Window;
RAT1 n . ; i Azure
: [
1 1
o
—

1
1
1
4 1
1
1

f“g}.
X
= t{

RAT2 i
Network %% QL

Metro Access/Aggregattion Network Core Transport Network Public Cloud

Figure 9.1: Integrated SDN IT and Network orchestration (SINO) architecture.

On the top of the architecture, the integrated SDN IT and Network Orchestrator (SINO) tar-
gets the global management of the virtual compute, storage and network resources provided by the
E2E Network Orchestrator (MSO) and the distributed VIMs. It acts as a unified cloud and network
operating system providing, dynamic and global provision, migration and deletion of VMs and the re-
quired connectivity between the distributed VIMs across the corresponding multi-layer, multi-domain
transport network. A key enabler of such an integration is the COP (see Chapter 6), which is pro-
posed interface between the SINO and the E2E Network Orchestrator, providing a common control
primitives for seamless control of the transport network.

The SINO’s northbound interface is based on HTTP RESTful to provide CRUD operations for
VMs, L2/L3 networks, VTNs, Images, Connectivity Services (COP Calls) and a RPC based VM
migration service (section 9.3.2). The VM CRUD mechanism allows, via a REST API, to create,
read, update or delete a VM. A VM might be requested based on its availability zone, its hardware

93



9.2. Integrated IT and Network Orchestration architecture

resources (i.e., flavor), or the disk image to be loaded. A VM must be associated to one or more already
created L2 networks which triggers the creation of a virtual network interface card (vNIC) in the VM
which is attached to the virtualized network switch of the allocated compute node (Hypervisor). The
L2 network CRUD mechanism allows to create, read, update or delete a L2 networks, which allow to
specify the network type (FLAT, VLAN, overlay...).The NBI also includes a L3 CRUD to create IPv4,
IPv6 subnets, from which an IP address is assigned to a VM virtual network interface card (vNIC).

The Connectivity Service CRUD permits the management of connectivity services through the
underlying MSO. The SINO allows to define VMs as the connectivity endpoints and it is responsible
of translating the VM-based request into a network context connectivity service between network
endpoints (node interfaces). This information is obtained directly from the intra-DC SDN controllers
through address tracking services based on the incoming packets or by correlating the Cloud Controller
network ports information (VM’s network attachment points) with the network topology discovered
from the SDN controllers by the MSO.

Y.
REST Multi-domain SDN Orchestrator (MSO)

v [ Orchestration Controller ]

PCEP ;
Multi-layer 5 H‘:::I’Ier
PCE

4 3

Cloud Controller n openstack

CLOUD SOFTWARE

[ Nova I Glance I Neutron ] [-,

Topology XML

Manager [TED;

......

-
Controller Datacenter 2
5 2 N
Compute Host 1 , z, ! \ T Compute Host 3
Z s emps | N T
, 4 Controller \\ VM 1
GMPLS o GMPLS |
Controller H Controlle
L |
3
GMPLS H
Controller M
“r :
oS N H
’< : \H- ] Compute Host 4
o/ m \.ﬂ nw
«ar
“y
WSON
—— Ethernet link 1 Gbps
OpenFlow Switches w=mm  DWDM link 10 Gbps OpenFlow Switches
(OFs) OpenFlow 1.3 (OFs)
- ——  PCEP
- - RabbitMQ

Figure 9.2: Experimental DC interconnection scenario.

94



9. Integrated IT and SDN Orchestration across geographically distributed Datacenters.

9.3 Experimental validation

This section includes the experimental validation of the proposed architecture which cover the VM
creation and migration operations in a geographically disperse multi-DC scenario. These experiments
are based on FLAT network type for the VM interconnection, where the VM’s connectivity services
are provided end-to-end, i.e, from the first virtual switch attachment point of source VM to the virtual
switch in the target host where the destination VM is instantiated.

9.3.1 Use case I: DC interconnection across a multi-domain, multi-layer network.

The proposed architecture has been validated in the Cloud Computing platform and Transport net-
work of the ADRENALINE Testbed (Chapter 3). The COP has been employed as a transport API
for the orchestration of: two SDN OpenDaylight Helium controllers responsible of controlling the Eth-
ernet intra-DC domains via OpenFlow 1.3; and the optical transport network via an AS-PCE with
instantiation capabilities as a single interfacing point for the GMPLS control plane. In the experi-
mental validation, we have introduced COP agents on top of SDN controllers in order to translate
the received COP commands to SDN controllers NBI. Figure 9.2 shows the multi-domain network
scenario considered for this experiment, where two geographically distributed DCs are interconnected
through the WSON.

Figure 9.3 presents the integrated IT/SDN orchestration workflow for the on-demand deployment
of two VMs in the cloud (one on each DC location) and the E2E connectivity provisioning across
the proposed scenario. The orchestration process consists of two different steps: the VM creation
and network connectivity provisioning. Firstly, the SINO requests the creation of virtual instances
(VMs) to the VIM implemented with OpenStack Liberty release, which, is responsible for the creation
of the instances. The VIM is also responsible to attach the VMs to the virtual switch inside the
corresponding compute node. When the VMs creation has finished, the VIM replies to the SINO with
the VMs networking details (MAC address, IP address and physical computing node location) which
will be used as a match filter within the E2E connectivity service provisioning.

For the network orchestration the interface between the SINO and the MSO is based on the
COP and also between the MSO and the per-domain controllers. For this experimental validation,
a bidirectional CALL_SERVICE is requested by the SINO to provide an E2E connectivity to the
previously deployed VMs. The MSO firstly requests the creation of a virtual link in the upper layer
topology (L2) which is translated internally by the VNTM MSO module into two unidirectional L0
CALL_SERVICEs sent to the AS-PCE through the Provisioning Manager. They trigger, in the
AS-PCE, the creation of the corresponding GMPLS connections (Label Switched Paths (LSPs)).
Afterwards the provisioning of the E2E service in the upper layer is requested to the SDN controllers,
by two new unidirectional CALL__SERVICESSs to each domain.

The traffic capture showed in Figure 9.4 validates the use of the COP as common interface for
the configuration of the transport network forwarding plane. Firstly, we can observe the request for
Virtual Machine (VM) creation from the SINO towards the Cloud Controller (which is running on the
same server). The creation time for a single VM is of 15 seconds, which include the necessary time to
boot up the VM. Secondly, in Figure 9.5 we can observe the JSON encoded body of the Call request
(Call Id: 1) sent from the SINO to the multi-domain SDN orchestrator which includes several traffic
parameters (such as requested bandwidth), the requested transport layer and the MAC addresses of
the interconnected VMs. The MSO computes the necessary domain Call requests and sends them
towards the AS-PCE for the optical domain (Call Id: 00002, 00005), the SDN Controller 1 (Call Id:
00001, 00006) and the SDN Controller 2 (Call Id: 00003, 00004). The multi-domain call service set-up
delay is of 2.52 seconds.

95



9.3. Experimental validation

(M—)

POST/ Ci
POST/ Ci
H

Multi-domain SDN GMPLS Control plane SDN/OpenFlow domains
Orchestrator (MSO
(Ms0) g AS- % son @ovs1
[ABNO ][ VNTM IPTOV- @] PCE Controller #1
Controller Manage!
ATE VM

ATE_VM}
—

TTP/ 200 OK gMPLS‘ ‘ gMPLS
dhhiliade RPC/ PUT/ PUT/RESTCONF/ L/ \

— ]

PUT/ RESTCONF/CONFIG/CALLS/ CREATE create CONFIG/ >3

CALLA1 % connection. CALLS/CALL/{00001}
PUT/ PCINITIATE

RESTCONF/.../ RSVP-TE path

CALL/{00002 PCINITIATE el
———> RSVP-TE
PCRPT

—
HTTP/ 200 OK +——— Resv
—————

PUT/ create
o o1 T
connecion, puT/ RESTCONF/CONFIG/CALLS/CALLA00003} (1 rrow mon

PUT/RESTCONF/CONFIG/CALLS/CALL/{00004} e
HTTP/ 200 OK HITTP/ 200 OK " 2LL LLOW MO
PUT/ create
connection  PUT/ RESTCONF/CONFIG/CALLS/CALL/{00005}
PUT/ RESTCONF/CONFIG/CALLS/CALL/{00006}
HTTP/200 OK_OFP FLOW MOD,

OFP_FLOW MOD,

HTTP/200 OK HTTP/200 OK %

Time
*REF*
16.178267 SINO-ABNO SINO-AEBNO HTTP HTTP/1.1 2808 OK (text/html)
16.181848 SINO-ABNO SINO-ABNO  HTTP POST /create_wvm HTTP/1.1 (application/json)
30.9140899 SINO-AEBNO SINO-ABNO HTTP HTTP/1.1 280 OK (text/html)
*REF*

| S L R N I R T T e R e v

.123129
. 287926
.329396
.439163
.493375
.527963
.628074
.B60056
.699451
.308023
.358390
.502622
.519650

Figure 9.3: Integrated SDN/IT Orchestration workflow.

Source Destination Protocol Info
SINO-ABNO SINO-ABNO  HTTP POST /create wm HTTP/1.1 (application/json)

SIND-ABNO SINOD-ABNO HTTP POST /restconf/config/calls/call/1 HTTP/1.1 (af
SINO-ABNO  SDN-CTL-1 HTTP POST /restconf/config/calls/call/eeeel HTTR/1.1
SDN-CTL-1 SINO-ABNO HTTP HTTP/1.1 280 OK (application/json)
SIND-ABND AS-PCE HTTP POST /restconf/config/calls/call/e@e82 HTTR/1.1
AS-PCE SINO-ABND HTTP HTTP/1.1 280 OK (application/json)
SINO-ABNO SDN-CTL-2 HTTP POST /restconf/config/calls/call/e8883 HTTR/1.1
SDN-CTL-2 SINO-ABMNO HTTP HTTP/1.1 280 OK (application/json)
SINO-ABNO SDN-CTL-2 HTTP POST /restconf/config/calls/call/e8884 HTTR/1.1
SDN-CTL-2 SINO-ABMNO HTTP HTTP/1.1 280 DK (application/json)
SIND-ABNO AS-PCE HTTP POST /restconf/config/calls/call/eeee5 HTTR/1.1
AS-PCE SINO-ABMNOD HTTP HTTP/1.1 280 OK (application/json)
SINO-ABNO  SDN-CTL-1 HTTP POST /restconf/config/calls/call/e@886 HTTR/1.1
SDN-CTL-1 SINO-ABNO HTTP HTTP/1.1 260 OK (application/json)
SINO-ABNO SINO-ABNO HTTP HTTP/1.1 280 OK (application/json)

Figure 9.4: Control traffic capture - IT and Network orchestration workflow based on COP.

9.3.2 Use case II: Seamless Virtual Machine migration between geographically
distributed datacenters

The second experiment on which we are going to base our evaluation of the proposed architecture
consist on the seamless VM migration between two DCs across a multi-layer, multi-domain transport
network. VMs do not run isolated, typically a VM is connected with other VMs in the same network
to offer a joint service. If one of the VMs from a network is migrated, its connection state must be
maintained, which is known as a VM seamless migration [74]. The migration of a virtual instance

96



9. Integrated IT and SDN Orchestration across geographically distributed Datacenters.

» Hypertext Transfer Protocol
= JavaScript Object Wotation: application/json
- Object
¥ Member Key: "trafficParams”
» Member Key: "callId"
= Member Key: "zEnd"
= Object
= Member Key: "routerId"”
String value: 77:77:77:77:77:77:77:03
¥ Member Key: "interfaceId"
¥ Member Key: "endpointId”
Member Key: "aEnd"
= Object
= Member Key: "routerId"”
String value: 77:77:77:77:77:77:77:01
¥ Member Key: "interfaceId"
¥ Member Key: "endpointId"
Member Key: "transportLayer”
Member Key: "match”
- Object
- Member Key: "ethDst"
String value: 88:14:f5:ce:%e:13
- Member Key: "ethSrc”
String value: 88:15:3f:5d:01:6¢C

|

-

{

Figure 9.5: Control traffic capture - COP Call request detail.

must be transparent for all the hosts connected to the virtual machine migrated (i.e., after a disruption
time the connectivity between them will be recovered).

VM 1 VM 1
(Host1) (Host3)
oy
VM 2 VM 2
(Host2) (Host2)

Figure 9.6: VM Migration scenario.

In the proposed scenario (Figure 9.2) the VM1 is connected to the VM2 both are running into
the DC-1. We validate that the proposed architecture is able to provide seamless migration of VM1
to DC-2. The experiment assesses a block migration using the inter-DC network (Figure 9.6) and
measures the disruption time in which VM2 cannot access to the VM1. The process involves six steps,
detailed in Figure 9.7.

When the SINO receives a VM1 migration request through HTTP request, firstly all the flows
established in the network in which the target VM is involved must be removed before start the
migration. The MSO looks into the Flow Server database for all flows involving VM1, the provisioning

97



9.3. Experimental validation

Scheduler n openstack NO AS- 4 oDL
App SINO —|PCE

1
1
1
G ' Migrate VM
1

O-

VM migrated

ACK flow

T T 1
| | |
: | '
| ' |
i E Remove flow VIM1-VM2 ! :
1 1
! e - | ! | Remove FIow_M'od |
' i ACK remove flow ! ; !
1 = T 1 1
E E Create flow Hoist1/Host3 E PClnitiate{ERO} i '
1 1 1 I ' |
: ! : ! PCRpt{Lspld}! ,
1 1 1 1 1 1
1 | 1 1 1 1
: | ' ACK flow | 1ow_Med : :
1 t 1 1 I
1 — 1 1 1 1 1
! e ! _Create flow Host1/SINO ] 1 i
- ! - ' Flow_Mod
! ! ' ACK flow ' =10 : '
1 1 T 1 1 !
1 1
: ! Create flow HoEst3ISINO ! Flow_Mod ! \
| : i ACK flow | : |
L + 1 1 1
| [ ! Migrate VM1 (Host1-Host3) 1 : :
S ! 1 1
| 0 |_VM1 migrated ! | : .
- 1
i |_Create flow VM1-VM2 : ! I
. : . Flow_Mod ! :
l i | : l
| . | | |
1 I 1 : :

Figure 9.7: VM migration flow diagram.

manager deletes all of them by sending the related HT'TP requests to the corresponding OpenDaylight
controller which in turn will send the OFPT_FLOW__REMOVED messages to the OFSs. Then, the
physical servers involved in the migration (the controller node, the source and destination compute
nodes) must be connected during all the migration process in order to exchange the VM images data.
The SINO adds each of the three hosts (Controller, Computel and Compute3) as external hosts into
the MSO available endpoints, and request an end-to-end connectivity service between each node pair.
The inter-DC connectivity service triggers the creation of an optical connection within the WSON
domain through the AS-PCE and several flows in the two packet domains through each corresponding
SDN controller.

The VM migration process of the computing instance start by stopping VM1. Then a snapshot
image of VM1 is taken in and stored in the Cloud Controller image database (Openstack Glance image
service). Once the VM1 snapshot is ready, the VM1 instance is removed and a new instance based
in the recently created snapshot is deployed into the destination compute node. To conclude, the
connections are restored between the migrated VM and all the rest of VMs to which was connected.
In the proposed scenario, the new path between VM1 and VM2 is calculated by the NO PCE, the
LSP between DCs is reused, and it is only necessary to establish the flows of the OFSs. Finally, the
acknowledgment of virtual machine successful migration is sent by the SINO to the client application.

Figure 9.8 shows the traffic capture taken at the SINO’s host which includes the orchestration
messages sent to the Cloud controller and the MSO and, the traffic captured in the control interface
between the MSO, the SDN controllers and the AS-PCE. We can obtain this detailed capture as we

98



9. Integrated IT and SDN Orchestration across geographically distributed Datacenters.

o *REF* 192.168.20.10 192.168.20.10 HTTP
[ DEO04Z73Na0an7a33 101733 HTTP
0.008317 10.1.7.33 10.1.7.33 HTTP
0.0185721 10.1.7.33 1 (e AT openFlow
e 4 0.019096 10.1.7.34 10:1.7:33 openFlow
0.025400 10.1.7.33 10.1.7.34 openFlow
L 0.025749 10.1.7.34 10157233 openFlow
[ 0.088574 10.1.7.33 d0IT o33 HTTP
0.094136 10.1.7.33 10.1.7.33 HTTP
0.098982 10.1.7.33 10°1.7.33 HTTP
0.103972 10.1.7.33 10157233 HTTP
L Lpa bl Al ia by 10.1.7.33 HTTP
2.476685 10.1.7.33 iyl A A 6] PCEP
2.724859 10.1.1.111 10.1.7.33 PCEP
2.739916 10.1.7.33 10.1.1.106 HTTP
7.251549 10.1.7.33 10.1.1.106 openF low
9 7| 7.298130 10.1.7.33 10.1.1.107 openFlow
7.566124 10.1.7.33 s [0 LRy E k] HTTP
8.485021 10.1.7.33 203 L7 s = ) HTTP
9.684772 10.1.7.33 10.1.7.38 OpenFlow
9.720443 10.1.7.33 OIS HTTP
10.519642 10.1.7.33 10.1.7.33 HTTP
11.845031 10.1.7.33 TOESEI07 openFlow
L 11.890491 10.1.7.33 105107540 openFlow
41.243253 10.1.7.33 10.1.7.33 HTTP
0 { 42.540537 10.1.7.33 L Ealris HTTP
[ 151.65523010.1.7.33 1 [0 IS ) ] HTTP
152.550584 10.1.7.33 10:72.7.33 HTTP
9 — 156.53083910.1.7.33 10.1.7.36 OpenF'Iow
L 157.129914 10.1.7.33 10.1.7.36 OpenF'Iow
G 157.137822192.168.20.10 192.168.20.10 HTTP

322 POST /migrate_virtualMachine HTTP/1
337 POST /remove_flow HTTP/1.1
1414 POST /remove_EndToEndrath HTTP/1.1
148 Type: OFPT_FLOW_MOD

156 Type: OFPT_FLOW_REMOVED

148 Type: OFPT_FLOW_MOD
156 Type: OFPT_FLOW_REMOVED
536 POST /add_external_host HTTP/1.1
536 POST /add_external_host HTTP/1.1
537 POST /add_external_host HTTP/1.1
347 POST /create_flow HTTP/1.1
1022 POST /create_EndToEndPath HTTP/1.1
196 PATH COMPUTATION INITIATE MESSAGE
208 PATH COMPUTATION REPORT MESSAGE
321 PUT /set_channel HTTP/1.1
148 Type: OFPT_FLOW_MOD

148 Type: OFPT_FLOW_MOD

349 POST /create_flow HTTP/1.1
1025 POST /create_EndToeEndPath HTTP/1.1
148 Type: OFPT_FLOW_MOD

349 POST /create_flow HTTP/1.1

1025 POST /create_gEndToEndPath HTTP/1.1
148 Type: OFPT_FLOW_MOD

148 Type: OFPT_FLOW_MOD
3142 DELETE /remove_vm HTTP/1.1
3432 POST /create_vm HTTP/1.1
347 POST /create_flow HTTP/1.1
1080 POST /create_endToEndPath HTTP/1.1
148 Type: OFPT_FLOW_MOD

148 Type: OFPT_FLOW_MOD
579 HTTP/1.1 200 oK (text/html)

Figure 9.8: Wireshark capture of SINO commands;

are running on the same machine the SINO, the Cloud Controller Node and the MSO. In Figure 9.9,
the incoming traffic to DC-2 is shown by sampling each 5 seconds the packets received in the border
Openflow Switch of DC-2. A significant increase of the number of packets occurs after the trigger of
creation of a VM1 into Compute Node 3 due to the download of the VM1 image from Cloud Controller
Node (which is physically located in DC-1). Finally, a traffic capture of the dialog between VM2 and
VM1 is shown in Figure 9.10 which provides the total disruption time occurred due to the seamless
migration process. We can observe that after a downtime of 158s the connectivity between VM1 and
VM2 is recovered. It can be observed that the MAC address of VM1 has changed due to the block
migration, the final L2 flows connecting VM1 and VM2 reflect this change thanks to the orchestration

of the SINO.

99



9.4. Conclusions

QA5
Sa0 e 1) Virtual machine migration request trigger
= 2) Deletion of VM connections
B[/ 3) Inter-DC connectivity

W30 4) IT migration

T 5) Restore VM connections

S

©

a

I

0O 8 18 28 38 49 59 69 79 89 99 109 118 128 138 148 158 168
Time (s)

Figure 9.9: VM migration traffic (packets/s) received in DC2 over time

*REF* VM2 VM1 ICMP : 98 Echo (ping) request
0.000801 VM1 VM2 ICMP 98 Echo (ping) reply
Ethernet II, Src: fa:16:3e:e0:07:92 (fa:16:3e:e0:07:92), Dst: fa:16:3e:64:63:06

Internet Protocol Version 4, Src: VM2 (10.10.0.15), Dst: VM1 (10.10.60.12)

158.164090 VM2 VM1 ICMP 98 Echo (ping) request
159.172043 VM1 VM2 ICMP 98 Echo (ping) reply
Ethernet II, Src: fa:16:3e:e0:07:92 (fa:16:3e:e0:07:92), Dst: fa:16:3e:cd:d9:75

Internet Protocol Version 4, Src: VM2 (10.10.0.15), Dst: VM1 (10.10.0.12)

Figure 9.10: ICMP traffic capture between VM1 and VM2 during VM1 seamless migration.

9.4 Conclusions

In this chapter has been presented an integrated I'T and Network Orchestration architecture, which
is aligned with the NFV architectural framework proposed by the ETSI, that assesses the need of
holistic management of storage, compute and networking resources. The proposed architecture in-
cludes a novel software component named SDN IT and Network Orchestrator (SINO) which provides
E2E orchestration of IT (compute, storage) and network resources over distributed cloud manage-
ment systems and SDN-based heterogeneous network segments. The proposed architecture benefits
from the usage of open standard interfaces (COP, OpenStack API) to provide the holistic control of
heterogeneous resources which can be deployed in a coordinated manner conforming and E2FE service.

The context of application of this work is a distributed Data Center (DC) scenario where com-
puting pools of resources are geographically distributed across Wide Area Networks (WANs). The
Multi-domain SDN Orchestration (MSO) component is a key enabler for inter-DC network control and
allows efficient and flexible allocation of network resources in such a dynamic scenario where virtual
machines need to be created, deleted and migrated, while maintaining network services with other
instances. These concepts have been successfully demonstrated in the Adrenaline Testbed 3, including
the VM creation and migration across distributed cloud sites.

The dynamic management of interconnected computing resources (VMs) lays the foundation for

100



9. Integrated IT and SDN Orchestration across geographically distributed Datacenters.

the next chapters, where the deployment of virtual network services consisting on interconnected
Virtual Network Functions (VNFs), will be evaluated. NFV and SDN are the key enablers for the
upcoming 5G, which will be also a central topic to be discussed in the following chapters.

101






Chapter 10

IT and Network resource allocation and orchestration

10.1 Virtual Infrastructure Manager and Planner (VIMAP) architecture . . . . . . . .. .. 104
10.2 Virtual Machine Graphs (VMG) resource allocation . . . ... ... ... .. ..... 105
10.2.1 Problem definition . . . . . . . . . .. 105
10.2.2 VMG mapping problem . . . . . . . . .. ... 106
10.2.3 Baseline VMG embedding algorithm . . . . . . .. .. ... ... 107
10.3 VMG allocation results . . . . . . ... ... 109
10.4 Conclusions . . . . . . . . . . e 110

The new 5G paradigm seeks for a scalable architecture able to efficiently manage the increasing
volume of traffic generated by smart devices to be processed in a distributed cloud infrastructure.
To this end, a coordinated management of the network and the cloud resources forming an end-
to-end system, is of great importance. Software Defined Networking (SDN) and Network Function
Virtualization (NFV) architectures are the key enablers to integrate both network and cloud resources,
enabling cross-optimization in both sides. This optimization requires efficient resource allocation
algorithms which take into account both computing and network resources.

In Chapter 9, an end-to-end orchestration architecture for distributed cloud and network resources
aligned with the ETSI NFV architectural framework was presented. In this chapter, the Virtual
Infrastructure Manager and Planner (VIMaP) component it is introduced to enable dynamic resource
allocation for interconnected virtual instances in distributed cloud locations. The VIMAP extends
the SINO architecture presented in the previous chapter to introduce two main new features: (a) the
inclusion of a resource planner component responsible of run resource allocation algorithms for the
optimal allocation of computing, storage and network resources for incoming infrastructure deployment
requests; and (b) the management of multiple tenants to perform context-aware IT and Network
orchestration.

103



10.1. Virtual Infrastructure Manager and Planner (VIMAP) architecture

This chapter formally defines and models the resource allocation problem of dynamically provi-
sioning of Infrastructure-as-a-Service (IaaS), which we refer here as Virtual Machine Graphs (VMGs)
placement. In order to solve this problem, an heuristic baseline solution based on greedy approach for
the selection of DCs and First Fit (FF) for the VM allocation is proposed. The objective is to provide
a baseline implementation of a resource allocation algorithm for the latter experimental validation
of the whole architecture (with a special focus on the VIMaP component and the VMG allocation).
However, to verify its validity, the proposed algorithm performance is evaluated and compared with a
Random Fit based solution in a controlled simulation scenario.

The chapter is organized as follows: section 10.1 includes the proposed architecture and the
novelties of the VIMaP respect to the one presented in the previous chapter. In section 10.2, the
VMG allocation problem and the proposed heuristic are formally presented. Finally, in section 10.3,
the proposed heuristic algorithm is evaluated including description of the simulation environment the
simulation results.

4 1
I OSS/BSS 1! TENANT1 1 . o
l 1 ) Virtualised Infrastructure Manager
S | ——
R : and Planner
_____ Y _ Y _
VIMaPNBI | s
"""" RESOURCE
........ [S— > FPPPPPT T
[ VIMaP LOGIC ]: MANAGER
x ) I
v A 4 V A 4
NETWORK MANAGER CLOUD INFRASTRUCTURE MANAGER
TOPOLOGY CONNECTIVITY COMPUTE NETWORK IMAGE
HANDLER HANDLER HANDLER HANDLER HANDLER
ST oo oo mmm o mm s oo N T v [ TPROVIDER | .
( CONTROL ORCHESTRATION PROTOCOL ) ; OPENSTACK API f__‘l CLOUD APl |
1

_____________________ |
I__PWGIN " oy

Figure 10.1: VIMaP internal architecture, building blocks.

10.1 Virtual Infrastructure Manager and Planner (VIMAP)
architecture

In this section we present the VIMaP architecture including the description of its main building blocks,
which are shown in Figure 10.1. The VIMaP has been designed to provide coordinated orchestration
of network and cloud resources distributed among different cloud providers and locations. The VIMaP
provides per-tenant programmability of its own dedicated resources, it performs the partitioning of the
underlying infrastructure exposing an abstracted view of virtual infrastructure slices to each tenant.

Initially, the VIMaP is requested to provide a virtual infrastructure slice to a dedicated ten-
ant. This request includes a set of virtual instances interconnected forming a Virtual Machine Graph
(VMG). The VIMaP architecture includes a Planner component dedicated to perform resource plan-
ning optimization. Different resource optimization policies may be applied depending on the tenant
and provider requirements. In [75], the authors assessed the problem of VMGs resource allocation in

104



10. IT and Network resource allocation and orchestration

distributed DC scenarios by finding the minimum diameter graph (in terms of distance) to minimize
the latency between VMs. Authors in [76] proposes a resource allocation approach taking into account
the distance between DC and the network load to select the connection path. The VIMaP architec-
ture allows the VIMaP LOGIC component to select the preferred algorithm depending on the desired
resource allocation policy. The algorithm receives the resource allocation requests from the VIMaP
logic and it obtains all the substrate infrastructure information from the Resource Manager component
which maintain up-to-date information of both the cloud and the network underlying infrastructure.

The VIMaP includes a dedicated configuration interface for slice provisioning which is exposed
to OSS/NMS management systems through a RESTful API. The VIMaP LOGIC component is the
responsible of orchestrate the workflows among the different architectural components in order to
provision the cloud and network resources for an upcoming request. It is the responsible for performing
context-aware orchestration, exposing to each tenant only those resources allocated to the tenant by
means of virtual representation. It includes a northbound interface (NBI) which exposes the custom
set of VIMaP programmable resources to each tenant.

The Resource Manager is responsible for storing and maintaining up-to-date state of all virtual
and physical sources controlled by the VIMaP. It is also responsible for maintaining the resource
allocation relationship between the requested virtual resources and the allocated physical resources.

Network Manager functions are two-fold: first it provides the southbound interface towards net-
work infrastructure controllers including the necessary application programmable interfaces (API) or
protocols implementations. As it was presented in Chapter 6, the COP is the protocol chosen to unify
the network orchestration interface towards different SDN controllers. Secondly, the Network Manager
is responsible for managing the virtual network resources of each tenant. The network manager corre-
lates the VI'N representation with the dedicated SDN controller slice, there is a 1:1 relation between
a VTN and a SDN Controller Slice.

Cloud Infrastructure Manager is responsible for distributed cloud orchestration. Differently to
the Network Manager, it is responsible of the partitioning and aggregation of cloud resources which
might be distributed across different clouds (private, public). Once the selected DCs are allocated
for a given tenant, it is responsible of creating a tenant session on each child cloud system and
mapping all these client sessions to the corresponding VIMaP TenantID. Once this initial abstraction
is performed, it is responsible for aggregating all the resources distributed among different clouds into
a single unified view accessible by the tenant through the VIMaP NBI. This is performed populating
the Resource Manager database with virtual representation of the resources deployed in the underlying
infrastructure, these resources are segmented by its corresponding VIMaP global TenantID.

10.2 Virtual Machine Graphs (VMG) resource allocation

In this section it is firstly described the proposed Virtual Machine Graph (VMG) allocation problem.
Then, a reduction of the problem is presented based on constructing the aggregated VMG solution
graph, where the objective is to find groups of VMs to be allocated together in the same substrate
hosting nodes. This reduction is modeled based on a constrained mapping function. Finally, a heuristic
algorithm solution to this problem is proposed and simulation results for the algorithm behavior are
provided.

10.2.1 Problem definition

Substrate infrastructure. We model the substrate infrastructure as a directed graph and denote it
by G5 = (NS, HY, LS), where N9 is the set of substrate switching nodes, H® is the set of substrate
hosting nodes (DCs) and L denotes the set of substrate links 1* = (u,v),l* € L% Yu,v € N U H.

105



10.2. Virtual Machine Graphs (VMG) resource allocation

Virtual machine graph request. We denote by a directed graph G° = (HY, L") the VMGP
request. H" denotes the set of virtual hosts (VMs) and LY denotes the set of links between virtual
hosts.

Now a set of capacity functions are defined for the substrate and virtual resources. Each host
(physical or virtual) h* € H*, x € {S,V} is attributed with a set of A attributes whose capacities
are denoted as c,(h%),a € A,h* € HX A € {CPU,MEM,STO} (only CPU, memory and storage
have been considered as host attributes). Moreover, each link {* € L¥ is associated with a bandwidth
capacity bw(I*). We also denote P as the set of free loop paths in the substrate network between
hosting nodes.

The objective is to find a mapping function for all virtual hosts and links to the substrate infras-
tructure as:

M: (HY,LV) — (HS, P%)

In the next subsection, a reduction of the problem is proposed and the constrains in terms of
capacities for hosts and links are introduced.

10.2.2 VMG mapping problem

To solve the above described problem, we propose a first reduction which consist in: a) finding a VM
allocation among the substrate hosting nodes and, b) find an feasible allocation solution for the links
connecting VM in different hosting nodes. It is assumed that several virtual hosts can be placed in
the same substrate hosting node if enough computing resources are available in the substrate node for
the aggregated capacity of the virtual hosts allocated to it.

We model the aggregated VMG solution graph as G = (H',L'), where each h/ € H’ denotes
a subset A’ C HV of virtual hosts. Given the powerset of all possible subsets of H" denoted as
P(H"), the subsets included in a hosting allocation solution H' C P(H"), must be complementary
and disjoint, i.e., that satisfies both Uy ' = HY and Ny b’ = 0.

On the other hand, L’ denotes the set of links between virtual hosts in different aggregated subsets
I'= (u,v),Yl' € L' ;u € hj,v € h; and h; # h’.

Once G’ has been described, we can define the mapping function between the VMG solution graph
and the substrate infrastructure as:

M : (H',L') — (H%, P%)
where HS" C HS, PS' C P, The mapping function can be split hosting and link mapping as:
e Hosting mapping function:
M. (H') — (HY)
which satisfies:

vi' e H' Vi € HY, 3 co(h’) < ca(h®) (10.1)
Vhveh!
In order to compare the sizes of the hosts (physical or virtual) in relative terms, we define

the function weight, as the weighted sum of the individual computing capacities, we use the
constants «, 3,7 to weight up the CPU, Memory and Storage capacities respectively:

weight(h”) = acopy(h®) + Beyprpa (BY) + vesro(h”) (10.2)

106



10. IT and Network resource allocation and orchestration

e Link mapping function:
ML (L)) — (P5)

which satisfies:
vI' e L' )Wp* € PY, bw(l') < BW(p®) (10.3)

where, BW (p*) = miny. .« bw(l*)

10.2.3 Baseline VMG embedding algorithm

The problem has been reduced to find a feasible allocation for the solution graph G’ which satisfies
(10.1) and (10.3).

We asses the problem in two steps:

e Step 1: Following a Greedy procedure, we select the minimum number of substrate hosting nodes
with enough capacity to allocate all the virtual hosts in H", which are embedded sequentially
following a First Fit approach (see Algorithm 1).

e Step 2: Based on the selected H*' C H® we employ the Constrained Shortest Path First (CSPF)
algorithm to find a feasible path in the substrate network, for each s-t pair allocated in different
substrate hosting nodes (see Algorithm 2).

Algorithm 1 first computes the Greedy and the First Fit (FF) host mapping procedure to find
the minimum cluster with enough capacity to allocate virtual hosts within the VMG request. Firstly,
it sorts the substrate host set in decreasing order by weight and it sequentially allocates the virtual
hosts into the substrate hosting nodes with higher capacities. As a result this function returns the
solution subset with minimum size H"' C HS.

Algorithm 2 receives the host solution subset and both substrate and virtual links of the VMG
request. Based on the host mapping solution, for each virtual link I(u, v), a feasible path p’ between
nodes allocated to different h!,, h! i # j is calculated. We use the CSPF algorithm with the bw(u,v)
as a constrain parameter. If there is a feasible path for each I’ € L’ , the mapping solution is returned

: (H',L') — (HY,P").

107



10.2. Virtual Machine Graphs (VMG) resource allocation

Algorithm 1 GreedyFFHostMapping(H*, H)

Input: H?®: Substrate hosting nodes, H": Virtual hosts.
Output: H’, HS": host solution set
Sort HS = h$, h3, ..., h3 in decreasing order by its weight.
HY
H + 0
HY HV
while 3y cgsi(ca(h®)) < Xypoenv (ca(h?)),
Va € A do
h® « H>.pop()
currentCy < cq(h*),Va € A
currents < 0
for v in H" do
if oneOf currentC, < ¢,(v),Va € A then
HY « HY — current,
break
else
currents < currents U {v}
currentCy < currentCy — cq(v),Va € A
end if
end for
H' «+ H'Ucurrents
Hs/ — Hs/ U hs
end while
return M7 : H' — HY

Algorithm 2 CSPF Link Mapping (H’, HY LS, L)

Input: H' H 5. substrate host solution set,
LS: Input substrate links,
LV Input links request
Output: M : (H',H*), (L', P5"): Mapping solution from GV — G°
for (u,v) in LY do
if hl, # h!, then
L'+ L'U(u,v)
end if
end for
for I'(u,v) in L' do
p¥ + CSPF(G® 1, b, bw(l"))
end for
return M : (H',L') — (HY, P%)

108



10. IT and Network resource allocation and orchestration

10.3 VMG allocation results

’ Parameter ‘ Values ‘
H® CPU values [100, 200, 400]
H?® Memory values | [200, 400, 800]

H?® Storage values

[10000, 20000, 40000]

L° Bandwidth

100 Gbps

HV CPU values 1, 2, 4, 8]

HY Memory values | [2, 4, 8, 16]

HV Storage values | [20, 40, 80, 160]
LV Bandwidth (0.1:1) Gbps

Table 10.1: Experiments parameter configuration

In this section the evaluation of the proposed heuristic baseline solution is presented and compared
with a Random Fit based algorithm. The random solution differs on the DC selection strategy but
keeps CSPF to assure path feasibility in the virtual link selection stage.

The substrate infrastructure scenario employed for the experiments is an extended version of the
NSFNet of 14 nodes and 42 unidirectional links and 6 DCs (Figure 10.2a). For simplicity, the DCs
are co-located within the same network node locations and the connectivity between DC’s and its
corresponding network nodes is modeled to have infinite bandwidth. The substrate infrastructure is
initially configured with a pre-defined capacities which are maintained along all the experiments. The
values of the capacities of each DC are uniformly distributed among the values included in each range
depicted in Table 10.1.

U |
* A
. A (
- : ‘
v = ’ ( L
7 /| ~ JA 1 ) l\ 101
/ / \
i e =
3

—e— GreedyFF+CSPF

10-3 |-

I
30

CA1‘|‘ / . ‘/; 4 47/7,(% g - Random
2 f T e MM
¥ S e - z
[\ S Iv”,'f’"‘;c N"' E
W\ e @@ Pt
L\ ‘c’o NE I == I g7
&S 3 1 o/ E
cA2 L / :
\ ol =
. e
N W e
\ K\‘
\ A
e J

| |
40 50
Request Load A/u

(b)

Figure 10.2: (a) NSF Network of 14 nodes with 6 DC; (b) VMG request blocking orobability of
GreedyFF+CSPF and Random Fit+CSPF algorithms.

In the VMG requests, the number of virtual nodes is randomly determined by a uniform distri-
bution between 2 and 20. Each pair of nodes are randomly connected with probability 0.5, in total
we will have n(n — 1)/4 links in average. The capacities of the virtual hosts and the virtual links are
also selected randomly following an uniform distribution along the values depicted in Table 10.1.

The VMG requests arrives to the VIMaP following a Poisson process on which the arrival rate
is varying. The holding time of the VMG requests in the system follows an exponential distribution

109



10.4. Conclusions

with 10 time windows on average. We run all the simulations for 10000 requests for each instance of
the simulation.

The results of the simulation for different loads can be seen in Figure 10.2b. The results show
a slightly better performance of the GreedyFF approach compared with the Random. This result is
explained by the fact that the Greedy approach minimizes the number of DC selected in the first stage,
minimizing as well the number of connections between DCs and thus decreasing network utilization.
The differences obtained are minimal, showing that the dominant factor for the blocking probability in
this experiment is not the exhaustion of network resources but the cloud. In this paper, the target is to
present the problem of VMG allocation and the baseline solution for the proposed VIMaP architecture.
It is intended for future work the evaluation of more complex algorithms and its comparison within
the VIMaP.

10.4 Conclusions

In this chapter we have presented the Virtual Infrastructure Manager and Planner (VIMaP) compo-
nent which extends the SINO architecture introduced in the previous chapter to to introduce two main
new features: (a) the inclusion of a resource planner component responsible of run resource allocation
algorithms for the optimal allocation of computing, storage and network resources for incoming infras-
tructure deployment requests; and (b) the management of multiple tenants to perform context-aware
IT and Network orchestration.

The VMG placement problem has been mathematically defined and a baseline resource allocation
heuristic algorithm, based on a Greedy approach for the selection of DCs and First Fit (FF) for the
VM allocation, was also defined. The algorithm has been evaluated in a simulation environment based
on the NSFNet14 reference scenario and the results compared with a simple RANDOM FIT heuristic.

The main contribution of this work is the introduction of a resource optimization engine in the
architecture, for the deployment of NFVi slices to dedicated tenants. The objective is to provide the
architectural basis for the provisioning of 5G network slices which will be the central topic of the
next part of this PhD Thesis. The VMGP problem can easily extended for the reservation of pools
of resources in multiple DCs and aggregated pipes of bandwidth capacity in the transport network to
interconnect those pools conforming a L2 VTN.

The next part which consist on Chapter 11 and Chapter 12 will be focused on the network slicing
concept. The architecture proposed is the base for the 5G Network Slicing architecture and the VIMaP
and the MSO its main building blocks.

110



Part IV

5G Network Slicing

111






Chapter 11

Multi-tenant 5G Network slicing

11.1 Multi-tenant 5G Network slicing architecture . . . . . . . . .. ... ... ... .... 114
11.2 Dynamic deployment, operation and management of 5G network slices . . . . . . . .. 116
11.2.1 Virtualization of the Transport Network infrastructure. . . . . . . . .. .. .. 116
11.2.2 Virtualization of SDN controller instance. . . . . . . . .. .. ... ... .. .. 117
11.2.3 Virtualization of Management and Orchestration (MANO) instances. . . . . . . 118
11.3 Experimental validation and results . . . . . . . . . . . ... L Lo 119
11.3.1 Use case I: Creation and operation of a 5G Network Slice. . . . . . . .. .. .. 120
11.3.2 Use case II: Deployment of virtual Mobile Network Operator (vMNO) . . . . . 121
11.4 Conclusions . . . . . . . . . o e 124

As it was previously described in the introduction (see section 1.5.2), the 5G architecture shall
accommodate a wide range of use cases derived from the new needs of vertical industries, customers
and enterprises. This new requirements impose the need of offering different combination network
performance metrics (bandwidth, latency, availability) in a customized way for the different 5G use
cases.

In order to face this challenge, the ‘5G network slicing’ concept introduced by the NGNM, is
presented and experimentally assessed through novel multi-tenant 5G network slicing architecture that
dynamically provides 5G network slices addressing specific tenant requirements, including virtualized
SDN/NFV control and management instances for a full tenant control of allocated resources.

113



11.1. Multi-tenant 5G Network slicing architecture

o Edge cloud . MEC __CoreCloud
Radio Access s “functions ! ’
i [ Local Video ]!
Network (&) s

" Optical Optical
Metro Core
Network Network
Edge Cloud Core Cloud

X Radio Py D 218, = !

8 Access A i H BfllJ i Virtualize
§ Network osteling i dEPC
(] . : @ jFunCtIOﬂS

. Optical Optical S /
(@] Metro Core
© Network Network
Internet
Radio
Edge cloud Core Cloud
i: &) Access .
S
Optical Optical
Metro Core
Network Network

Internet

Figure 11.1: 5G network slicing

11.1 Multi-tenant 5G Network slicing architecture

The proposed 5G slicing architecture aims at providing multiple, highly flexible, end-to-end network
and cloud infrastructure slices operated in parallel over the same physical resources, to fulfill vertical-
specific and mobile broadband services’ requirements. A 5G slice is composed of tailored virtualized
network and cloud resources, as well as the required Virtualized Network Functions (VNFs) that can
be controlled by third-parties (we will refer here generally as tenants) through their own management
and orchestration (MANO) instance, consisting on a SDN controller, a cloud orchestrator and a NFV
orchestrator (NFVO), via a suitable open APIs. Bearing this in mind, the proposed 5G architecture
for network slicing is depicted in Figure 11.2. It is composed of three main building blocks or layers:
the Virtualized Infrastructure Manager (VIM), the Network Function Virtualization Orchestrator
(NFVO), and the Multi-tenant Slicing Manager (MTSM).

The VIM acts as a unified cloud and network operating system providing the allocation and
orchestration of I'T and network resources across multiple distributed clouds and multi-domain multi-
technology networks [77]. The VIM comprises an End-to-End (E2E) SDN Orchestrator component
consisting of: (i) the Multi-domain SDN Orchestrator (MSO), which is responsible of the orchestration
of multiple network domains with heterogeneous transport (wireless/optical) and control technologies
(SDN/GMPLS) following the same procedures described in chapters 5 and 7; and (ii) an E2E Network
Hypervisor (ENH) component which is responsible of dynamic creation and control, at a higher and
abstracted level, of end-to-end virtual networks for multiple tenants [78]. The main task of the ENH is
to provide an abstraction layer exposing virtualized network resources as they were real to customized
tenant SDN controllers.

On the other hand, the VIM must provide multi-cloud orchestration, enabling the management
of multiple cloud systems on distributed data center (DC) sites (edge, core, and public cloud). It
allows to create administrative tenants across multiple cloud sites, exposing an unified view of the
computing, storage and intra-DC network resources allocated to the customized tenant VIM instance.
It also provides the API to instantiate the creation/deletion of virtual machine (VM) instances, disk

114



11. Multi-tenant 5G Network slicing

Management
(BSS/05S)

@ TenantA T tB
o [ Slicing Orchestrator enan
5 ; P —— i ( NFVO NFVO
: AR R SO I, S T a
=y 1 ' T TOMANG. i VIMAP VIMAP
% E ! ! | VMANO Virtualized SDN Controller, Cloud = T T
g = ! i ' Manager orchestrator and NFV > VSDN H VSDN '
s T T ' Orchestrator Repository \.__\_controller 1 | controller !
] 1 P 1 1 1 !
e . \ R
5 i i i LocalCloud | _______—-----"""777 ' 1 | i
2 -==zzzIIIIIIC _
= ! ! :\ Controller |} T TTTTTTEmmo----o Hypervisor
____________ T
5 I .
® ! ! |
£ & b !
o w I B
g 2 v [ NFV Orchestrator ,
EC = i !
268 : !
HEH : VNF :
E 5 : Manager (5 NS Catalogue VNF Catalugue NFV Resources 1
2 : !
— '
! [ Virtualized Infrastructure Manager and Planner (VIMAP)
i | i
E 1 io- : 1
2 . Z® E2E Network Hypervisor (ENH
§ s [ Multi-Cloud Orchestrator J 3 % : [ vP ( )
= w
82 T - o5 [ Multi-domain SDN orchestrator (MSO)
. 1 o
R=RT} : T T
3 ED [ Mulit-DC Orchestrator ] ! 1 1
== . . ! [ Wireless SDN Orchestrator ] [ Transport SDN Orchestrator ]
E : 1 1 T 1 T 1 T
s 1

1 ! ! H 1
Edge Cloud Core Cloud Public RAT2 RAT1 LAN MAN WAN
Controller Controller Cloud Controller Controller Controller Controller Controller

Figure 11.2: Proposed 5G slicing architecture

images, and overlay networks between VMs. The VIM includes the VIMAP component presented in
Chapter 10 as unified I'T and network orchestrator, acting as a resource broker which maps the virtual
resources pertaining to the tenant with the actual physical resources allocated to it. It also exposes a
network slicing API which allows to customize the tenant infrastructure slice with the definition of the
Virtual Tenant Network (VTN) topology, the quotas of computing and storage resources for each DC
exposed to the tenant and the creation of VNF templates (disk images) to be available into vMANO
instance provided to the tenant.

The Operator NFVO is responsible of the deployment of Network Services (NS), VNF forwarding
graphs (VNF-FGs) and VNF packages on top of a 5G Network Slice. The VNFs run in virtual instances
that can be allocated in the most appropriate NFV Infrastructure Point-of-Presence (NFVI-PoP) (DC
site). These VNFs shall be interconnected with each other and with the user service end-points (SEPs)
conforming a forwarding graph, to perform the desired overall end-to-end functionality or NS. The
NFVO can request to the VIM the creation of: (1) the VNFs consisting on a VNF image template
running into a VM with a custom networking configuration (i.e., IP address, VLAN ports, IPTables
configuration); (2) the provisioning of the connectivity services between the VNFs; and (3), to the
VNF Managers, the life-cycle management of each of the individual VNFs which form the VNF-FG
or NS, including the bootstrap configuration for the NS, the VNF are part of, the monitoring of the
VNFs performance and the modification (e.g., scaling, migration) or release of the reserved resources
in case the network service changes or is set to be terminated.

The MTSM is responsible for the dynamic life-cycle management (provisioning, modification and
deletion) of not only the requested infrastructure slices but also of the virtualized MANO instance
associated to each tenant which conform the 5G Network Slice. Virtualized MANO instances enable
tenants to have full SDN/NFV control of all virtual resources (network, cloud, and VNFs) assigned to

115



11.2. Dynamic deployment, operation and management of 5G network slices

its slice as if they were real. The MTSM layer consist on a Slice Orchestration application, a vMANO
manger which is in charge of the lifecycle management of the vMANO instances and a local cloud
which is used by the operator to deploy the tenant vMANO instances.

11.2 Dynamic deployment, operation and management of 5G
network slices

The network slicing operation is a complex task which involves the orchestration of cloud and network
resources but it also adds the management of dedicated control VNFs deployed on a per-tenant basis.
The main idea beneath is to provide a completely autonomous infrastructure slice to each tenant which
includes the virtual VIM and the vMANO instances which control a portion of the provider resources
dedicated to that tenant.

In this section we are introducing the operational workflows involved in the deployment of a 5G
network slicing under the proposed architecture.

11.2.1 Virtualization of the Transport Network infrastructure.

We consider the term transport network virtualization as the partitioning (slicing) of the physical
infrastructure to create multiple co-existing and independent VI Ns on top of it. For the VTN slice
composition, the abstracted topology view shall be defined by the tenant, including a set of physical
network interfaces connected following a determined graph and the characterization of the network
elements (nodes, interfaces) at the data plane level (i.e., Layer 2-3). On the other hand, the virtual-
ization is carried out by the ENH, which upon the VTN composition request, performs the mapping
between the logical and physical network elements (VTN topology abstraction) and request to the
MSO the required data plane connectivity services within the physical network interfaces to provide
the desired level of data plane abstraction.

In Chapter 7, two abstraction models were proposed for virtual network composition: single virtual
node and abstract link model. The former represents either completely or partially network topology as
a single virtual node. By doing so, the internal domain topology is hidden by the abstraction function.
On the other hand, the abstract link model provides a summarized view of the internal topology of
the network domain. For instance, the abstract view on this model may present the different network
domains as network nodes interconnected by virtual links, which are internally mapped to physical
routes.

At the data plane level, the network virtualization can be performed at different layers. Layer 0 or
Optical Virtual Networks (VON) can be realized by means of logically split the available wavelengths
in a fiber which are reserved to different VONs which are controlled by a virtualized, dedicated con-
trol instance (i.e., GMPLS [79]). Layer 2 virtual private networks (L2VPN) [80] provides a suitable
reference framework for Layer 2 network virtualization. Specifically, point-to-point Virtual Private
Wire Services (VPWS) model can be directly applied for the proposed virtual link abstraction, and
Virtual Private LAN Services (VPLS) can enable a logical L2 switch through the creation of multiple
point-to-multipoint connections among the logical interfaces composing the virtual node (Node Ab-
straction model). Provider Edge (PE) network elements can be connected by MPLS Label Switched
Paths (LSPs) or Generic Routing Encapsulation protocol (GRE) tunnels, providing data isolation
across WANSs [81]. The connection between the Customer Edge (CE) and the PE, i.e., the attach-
ment circuit (AC), can be a dedicated physical interface (i.e., Ethernet port) or a tagged interface
i.e., a VLANSs, which can be mapped to a logical port/interface in the VTN topology. At the Layer

116



11. Multi-tenant 5G Network slicing

3, the composition of overlay networks through tunneling mechanisms i.e., VXLAN or GRE, severely
increases the number of coexistent Layer 2 collision domains (VXLAN support up to 16 million logical
networks) that can be transported over the same physical network. L3VPNs can also be implemented
using MPLS or GRE tunneling mechanisms together with Virtual Routing Forwarding tables (VRF)
in the PE network elements.

Back to the SDN context, the OpenFlow protocol (OF) allows to implement the two key virtual-
ization mechanisms used to implement L2VPN and L3VPN networks: (i) VRF concept is implemented
through the multiple table pipeline processing system inherently supported by most OpenFlow Virtual
Switches (OVS) implementations since OpenFlow v1.1 specification. (ii) MPLS and GRE tunneling
allows traffic encapsulation, which can be filtered based on any combination of L2-L4 packed headers,
enabling that logical SEPs in the VTN can be mapped to physical Ethernet ports, VLANs or Layer
3 overlay IP interfaces. Both protocols (MPLS, GRE) are supported since OpenFlow v1.3.

11.2.2 Virtualization of SDIN controller instance.

The ENH, proposed in [78], is the element responsible for receiving VTN requests, processing them and
allocating physical resources. Moreover, the ENH is responsible for the mapping between the allocated
physical resources and the abstracted resources that are offered to the Customer SDN Controllers
(CSCs), and the control of such abstract networks, acting as a proxy for the OF protocol between a
CSC and the underlying Provider SDN Controller (PSC). The partitioning of the resources is performed
by the ENH, and to this aim, the proposed system architecture relies on the MSO, which provides a
generic network abstraction mechanism for the different transport infrastructure resources (e.g., OPS,
flex-grid).

(s (o, (W05 )... 75 ), A
ez CONTROLLER 1 S
£z x T v2p
25 | "ESSEHCE |< VoWITCH HANDLER INTERPRETER
_g g ALLO%ATION --E-."; ...’[ ] ?
w i :
o E + L. ,[ VTN DB :
£ 2 £ 5
\'-H L — » TOPOLOGY ) /
I

Control Orchestration Proti)col (COP)

Multi-domain SDN Orchestrator (MSO) ]

—\

Figure 11.3: 5G Slice creation workflow

Once the VTN has been successfully created, the CSC acts as a standard SDN controller where the
controlled VTN is an abstracted slice of the different allocated physical resources, which are managed
by the MSO. The ENH architecture (Figure 11.3) is as follows. The VTN Controller is the component
that is responsible for providing the ENH interface to request virtual switches and virtual links to
deploy a VITN. To do so, also the IP address of the CSC is necessary, so that the Virtual Switch
Handler is able to provide an abstract network view of the allocated VIN to the CSC. A virtual
switch request includes the related physical domains (abstracted as nodes by the MSO) and a number
of virtual Ethernet ports. A virtual link request includes the source and destination virtual switches.
The Resource Allocation (RA) component is responsible for the allocation of the physical ports of

117



11.2. Dynamic deployment, operation and management of 5G network slices

the physical domains to the virtual switches and to request to the MSO (through the provisioning
component) the necessary multi-domain connections to interconnect the requested virtual switches,
which are related to physical domains. Once the connections have been established, the RA allocates
the virtual port identifiers, to which the connections are related.

For each VTN, the Virtual Switch Handler establishes the necessary OF datapaths with the
provided IP address of the corresponding CSC. Each OF datapath is provided by an emulated OF
virtual switch. The different emulated OF virtual switches are interconnected with virtual links, so
when the CSC triggers the LLDP to the emulated virtual switches, it is able to recover the VN topology.
The emulated virtual OF switches are connected to the Virtual to Physical (V2P) Interpreter, which
is the responsible to translate the received OF command (e.g., FLOW MOD) from the CSC using
the abstract VIN topological view, to the allocated physical resources. To this end, it consults the
VTN Database for the allocated physical ports and the established LSPs. The processed requests are
sent to the provisioning module, which is the responsible to request the provisioning of the physical
resources to the MSO. The connectivity provisioning interface between the ENH components and the
MSO, is the COP (Chapter 6).

11.2.3 Virtualization of Management and Orchestration (M ANO) instances.

The mode of operation of the proposed architecture for the virtualization of the MANO instances is
the following: the vMANO instance provisioning is requested from Slicing Orchestrator to the NFVO
which, in sequentially, requests the activation of a vMANQO Manager which triggers the creation of
a VMANO instance in the MTSM’s local cloud. This VNF is generated by a customized vMANO
image template with a Linux OS and a SDN controller (e.g. OpenDaylight), a VIMAP instance, and
a NFVO (e.g., OpenMano) software appliances with the specific configuration of the target slice.

SDN Transportdomains
3 LCO DCO E2E NET
[OSS/BSS] [Sllce -0 ] [ o ] [ NFV—O] ﬁ/IMAP] [uopema(k] [Hype,v,-so,} [MSO] [ N

AS- SDN
PCE Controller #1
J -

Create Slice
———— Create tenant

Deploy Slice VNF templates

Create project, user, role
_—

C

r .
LCreate image
images

Create vYMANO (tenant configuration)
Create image

Pt
Create VM
V]
Create VTN -
Create virtual network POST/Call
*PC Initiate
PCRpt
Create flow Compute1 — Compute3
HTTP/ 200
HTTP/ 200 HTTP/200 «——mM——

HTTP/200

Figure 11.4: 5G Slice creation workflow

In Figure 11.4 is shown the complete 5G network slice creation workflow following the proposed
architecture. First, when the Slicing Orchestrator receives a 5G network slice provisioning request from
the operator management systems (BSS/OSS), it requests the creation of a new tenant instance to be
deployed in the distributed cloud orchestrator (DCO) through the VIMAP. As it was detailed in the
previous chapter, this operation requires that the VIMAP provides a mapping between a single tenant
view of their allocated resources and the multiple tenant sessions created on each Cloud controller
managed by the VIM. Second, the set of VNF templates (disk images), which will be available for the
tenant vMANO instance, are requested to be deployed in the cloud tenant slice through the first the
NFVO (who manage the VNF templates) and then to the VIM (who manage the infrastructure).

118



11. Multi-tenant 5G Network slicing

Afterwards, the Slice orchestrator request the instantiation of a vMANO instance to the NFVO.
The NFVO then instantiates a vMANO manager which is in charge of the life-cycle management of
the vMANO instance. The VNF configuration requires the information about the cloud tenant slice,
i.e., the VIMAP network address and the user credentials. Finally, when the vMANO instance is
created, the VTN creation is requested to the VIMAP with the tenant SDN controller information,
required to configure the tenant OF datapaths generated by the ENH.

AQA Tenant Tenant vSDN DCO E2E NET MSO SDN Transport domains
: NFVO VIMAP = o VIMA B ovenstack Hypervisor as
— : - SDN
Create PCE Controller #1
Scenario create VM (DPI) — 1 X
Create VM (DPI)
HTTP/200 Create VM |
Create Flow
> Create Flow OPF/
FLOW MOD
HTTP/ 200 . HTTP/200 « HTTP/200 POST/ Cell ; ¢ o ot Fiow (physical namespace)!
‘ HTTP/200

Figure 11.5: DPI VNF instance and network services provisioning operations done by Tenant MANO
instance.

DPI

.
[ SE1 ]‘—‘hrs_;[ OFS SE2]
7 7

VTN

Figure 11.6: DPI forwarding graph.

11.3 Experimental validation and results

The proposed architecture has been validated in the cloud-computing platform and transport network
of the ADRENALINE Testbed. The IT infrastructure consists of a local cloud (LCO) for vMANO
tenant instances deployment and a distributed cloud (DCO) provider infrastructure, both controlled
with Openstack Liberty cloud computing software. The DCO is geographically distributed in two
locations across a SDN multi-layer transport network composed by three domains: two intra-DC
networks, consisting on OpenFlow switches deployed on COTS hardware and using OpenVSwitch
(OVS) and an optical WSON with 2 ROADMs and 2 OXCs based on GMPLS distributed control.
Per-domain SDN controllers control the electrical and optical domains are orchestrated by a Multi-
domain SDN Orchestrator based on ABNO architecture. E2E network virtualization is done by the
ENH component as detailed in section 11.2.2.

119



11.3. Experimental validation and results

11.3.1 Use case I: Creation and operation of a 5G Network Slice.

Firstly, we experimentally validate the deployment of a dedicated tenant 5G slice by provisioning a
new tenant session, within the DCO, which includes the VNF images requested and the quota of IT
resources allocated to the tenant. A vMANO, with a customized catalog of VNFs, is instantiated
within the LCO, including a vSDN controller (OpenDaylight) for a dedicated VTN interconnecting
a defined set of SEPs (user defined physical Ethernet switch ports and the DCO points-of-presence
(PoP)). The VTN is composed by a virtual node (vNode) for every physical switch on which a SEPs is
attached. Each vNode pair is connected by a virtual link supported by a MPLS tunnel connecting the
peer nodes in the physical infrastructure, which encapsulates all the vNodes outgoing traffic. When a
new VNF is deployed within the VI'N, a new virtual port is attached to the corresponding vNode by
the ENH.

SLICE-O wMFEVD HTTF POST fcreate_image
wNFVO VIM HTTP POST /vim/images/image/simagel
| vzm DCo HTTP FOST /v2/images
SLICE-O VIM HTTP POST /vim/tenants/tenant /demod
o | VIM Do HTTP POST /v3/projects
(u:')l VIM DCo HTTP POST /v3fusers
:Z(( VIM DCo HTTP POST /v3/roles
(>) =| VIM LCD HTTP POST /v2. 1/1555bes79cc742edbe4f c79d2015d66f /servars
% | SLICE-O VIM HTTP POST Svimap/virtual_tenant_network/vtno
W VIM NV HTTP POST JNVC/S HTTP/L.1
-~ % WVC ABNOD HTTP POST srestconf/configicalls/call 101
o 5 ABNO AS-PCE PCEP Path Computation LSP Initiate (PCInitiate)
9 =} ABNO AS-PCE PCEP Path Computation LSP Initiate (PCInitiate)
'E‘_: E AENG SON_CTRLL HTTP POST /stats/flowent ry/add
< .
é) T O | ABHO SDN_CTRLZ HTTP POST /stats/flowent ry/add
g f 5 WVC ABNOD HTTP POST srestconf/configifcalls/call 102
3 <DE 5 ABMND SDN_CTRLZ HTTP POST /stats/flowent ry/add
o B Z | WV ABNOD HTTP POST srestconf/configicalls/call 103
al S| 2| seno SON_CTRL1 HTTP POST /stats/flowent ry/add

Figure 11.7: 5G slice provisioning traffic capture

_| TENANT VvNFVO HTTP 167 POST /create_scenario HTTP/1.1

o | VNFVO vCloudOrch HTTP 429 POST /create vm HTTP/1.1 (application/json)

§ vCloudOrch VIM HTTP 544 POST /v2/982579¢753464T689087906b43ecl5al/servers

€ VIM DCO HTTP 637 POST /v2.1/982579c753464768908T906b43ecl5al/servers

8 VIM ABNO HTTP 408 POST /get PortFromNodeId HTTP/1.1

% VIM NVC HTTP 374 POST /NVC/ HTTP/1.1

tQ vNFVO vCloudOrch HTTP 378 POST /create flow HTTP/1.1 (application/json)

+ | vCloudOrch wSDN Ctrl HTTP 642 PUT /controller/nb/v2/flowprogrammer/0F/00:00:00:00:00:00:00:05
S| VSDN Cctrl vSwitch OpenFlow 148 Type: OFPT_FLOW _MOD

o) O NVC ABNO HTTP 664 POST /restconf/config/calls/call/105

E 5 ABNO SDN CTR1 HTTP 522 POST /stats/flowentry/add

8 ~1 aBND SDN CTR1 HTTP 522 POST /stats/flowentry/add

: vCloudOrch vSDN Ctrl HTTP 642 PUT /controller/nb/v2/flowprogrammer/QF/00:00:00:00:00:00:00:06
o vSDN Ctrl wSwitch OpenFlow 148 Type: OFPT_FLOW MOD

E % NVC ABNO HTTP 664 POST /restconf/config/calls/call/106

E 2 ABNO SDN CTR2 HTTP 522 POST /stats/flowentry/add

5’ ~ 1 ABND SDN CTR2 HTTP 522 POST /stats/flowentry/add

52 vCloudOrch vSDN Ctrl HTTP 642 PUT /controller/nb/v2/flowprogrammer/0F/00:00:00:00:00:00:00:06
=S| vSDN Ctrl wSwitch OpenFlow 148 Type: OFPT_FLOW MOD

§ NVC ABNO HTTP 664 POST /restconf/config/calls/call/107

k= = | ABNO SDN CTR2 HTTP 522 POST /stats/flowentry/add

= > | aBno SDN CTR2 HTTP 522 POST /stats/flowentry/add

Figure 11.8: DPI VNF deployment traffic capture.

120



11. Multi-tenant 5G Network slicing

Secondly, we will validate the operation of the created 5G Network Slice, through the deployment
of a network service based on a Deep Packet Inspector (DPI) VNF, deployed in the tenant slice, to
inspect the traffic between the user-defined SEPs (11.5). To this aim, the vMANO orchestrates the
creation of the DPI-VNF and the VNF forwarding graph through its vSDN instance, to forward the
traffic between the SEs across the DPI (Figure 11.6).

3 152,168.30.115:8080/# 1oy - <

W OPENDAYLIGHT  pevices  Flows  Troubleshoot

Flow Entries
[Faror oz

o\
[0  Flow Name Node

OF|00:00:00:00:00:00:00:05 OF|00:00:00:00:00:00:00:06

O flow1 ExpiringSwitch
O flow2 ExpiringSwitch
O flow3 ExpiringSwitch

1-3 of 3 items 4 Page|1 | of1 p

Figure 11.9: a) vSDN controller view, b) DPI statistics.

Figures 11.7 and 11.8 shows the network traffic capture for both validations (Slice provisioning
and DPI use case). In Figure 11.9-a, it is shown the vSDN controller view (GUI) of the VIN and,
in Figure 11.9-b, it is shown the traffic statistics gathered by the DPI. Finally, Table 11.1 recap the
setup delay for the different experimental validations.

’ ‘ Setup Delay (s) ‘

Create Slice 22,075
Tenant session 0,969
vMANO VM instance | 16,191
VTN Setup 5,034

Deploy VNF (DPI) 17,333

VNF Forwarding 3,196

Table 11.1: Experimental setup delays

11.3.2 Use case II: Deployment of virtual Mobile Network Operator (vMNO)

The Virtual Operator use case can be defined as the ability of partitioning the physical network infras-
tructure for the deployment of multi-tenant, application specific and customized virtual infrastructures
(VIs). Each VI will have its own control plane to enable custom provisioning of the network services.
This use case foreseen a scenario where a provider operator, which owns a physical infrastructure, is
willing to resell it to other client operators (virtual operators).

The virtual operator use case fits with the new challenges faced by mobile network operators
(MNOs) due to the drastic growth of mobile traffic. This traffic growth is pushing MNOs to invest in
their backhaul network to cope with such demands. Typically MNOs deploy new dedicated network
appliances for both control and data planes which are generally over-dimensioned, resulting into non-
efficient cost-efficient strategy in terms of both CapEx and OpEx. Virtualization of network functions
(NFV) and infrastructure (SDN) are appealing to be more scalable, cost-efficient and flexible for MNO
deployment, in particular, in the backhaul infrastructure.

121



11.3. Experimental validation and results

vSDN1

Physical Topology Vi vERCt

&1 VMN

RAN MNO1

Aggregation Aggregation MPLS Packet “@ DC
MPLS packet Optical domain Core Domain :
domain

RAN MNO2

. SDN1 ... OFP
Abstracted view of OFP.—~ R

MNO1

Abstracted MPLS Node

Abstracted view of ~ oFp.—
MNO?2

Abstracted MPLS Node Abstracted MPLS Node

Figure 11.10: Physical multi-layer aggregation network connecting RANs and DCs and abstracted
view of the backhaul networks per MNO.

We assume a scenario (Figure 11.10) where that a number of MNOs owning their radio area
network (RAN) are connected to a common physical multi-layer (packet and optical) aggregation
infrastructure. This common and physical infrastructure is partitioned to compose individual virtual
backhaul tenants on top of it. Furthermore, the MNO Evolve Packet Core (EPC) functions are as
well virtualized into the cloud connected to the aggregation network.

The physical multi-layer (packet and optical) aggregation infrastructure, as it has been extensively
discussed, may consist on multiple domains and technologies, thus the proposed solution in STRAUSS
for multi-domain network virtualization is based on the MSO (chapter 5) and MNH entities. The
MSO provides E2E network orchestration while the MNH, placed on top of the MSO architecture
(Figure 11.11), provides abstracted VIs that can be controlled through SDN controllers by individual
customers. The SDN controller instance can be offered as a Virtualized Network Function (VNF)
in the cloud. In the proposed architecture the NFV orchestrator is responsible of the deployment of
VNFs on top of a common cloud and network platform (NEFV infrastructure, NFVI).

The Cloud and Network Orchestrator (VIM) handles the coordination and management of cloud
resources (virtual machines, VM) and network resources in the multi-layer aggregation infrastructure.
Hence, it provides a common framework for a cloud and network operating system towards deploying
the MNO virtual backhaul and vEPC function. For the backhaul service the MSO dynamically set
up packet MPLS tunnels for backhauling upcoming mobile LTE signaling and data bearers (i.e., S1-
MME and S1-U interfaces) between the RAN and vEPC. The interfaces for E2E network orchestration

122



11. Multi-tenant 5G Network slicing

N\
NFV Orchestrator
NFV Management ! .
and Orchestration )
vSDN manager VEPC manager VNFs
_,—""’ J
VvSDN )
Controller Cloud and Network Orchestrator SINO
J
; ' coP :
Multi-domain network hypervisor ] Corppute
. Services
. CcoP E

Multi-Domain SDN Orchestrator

' COP ! CcoP ! COP :

f Optical Network SDN
SDN Controller L SDN Controller
L ] [ Hypervisor ] [ ] [ Controller J [ Compute ]

(Ethernet)

Packet MPLSY)),, Optical 22ABYA packet MPLSCTTC

@ Domain 4
Domain 1 Domain 2 Domain 3 X

Figure 11.11: SDN/NFV orchestration architecture providing MNO backhaul virtual networks.

between SINO, MNH and MSO is implemented using COP.

Figure 11.12 shows the workflow between the involved functional blocks of the SDN/NFV orches-
trator to manage the creation of an SDN-controlled virtual backhaul and the corresponding vEPC.

In Step 1, the NFV orchestrator to request the provisioning of the vSDN controller (for the virtual
backhaul) and the vEPC. This is handled by the corresponding VNF managers sending requests to
the Compute controller of VMs with the respective implementation (image) of the VNFs (vSDN and
vEPC). Next, in step 2, the MNO virtual backhaul and the connectivity for the created vSDN controller
to configure such an infrastructure are deployed. To do that, the MNH receives the request and it
sends a COP/Call request to the MSO to provide an MPLS E2E service between the MNO RAN and
the vEPC. Then the MSO orchestrate a multi-layer service provisioning generates a bidirectional L0
optical connection to support the MPLS tunnel which transport the backhaul service.

Once the virtual backhaul connectivity is ready, this is notified to the NFV orchestrator, and at
that time, the vSDN has a view of the virtual packet backhaul used to transport LTE bearers between
the RAN and the vEPC. The complete capture of the experimental control traffic for setting up the
VNFs and the virtual backhaul network is depicted in Figure 11.13.

123



11.4. Conclusions

NEv || vspn VEPC Cloud (" b, |[ MD Net mD SON SDN
&Net. SDN Opt.
orch. mnger. mnger. rch Ctrler Hyperv. Hr D2 DC D4

VM req w/ SDN ctrler

image >
VM rep w/ |P & MAC address

VM req w/ EPC image Creation of the VMs for
> the vSDN ctrir and VEPC

VM rep w/ addressing of EPC elements (MME: SGW/PGW, etc.

<

~ Req for MNO virtual backhaul w/ SDN ctrir IP address

Req for opt. tunnel on D2 between in/out ports

—_— Req for creating an opt. connection

Rep created opt. connection
Rep for opt. tunnelon D2 €
D ——

Req for e2e connectivity D1, D3 and D4 w/ in/out ports

Req for pkt flow on D1 b/w in/out ports

Creation of MNO virtual Rep pkt flow
b.

7 @ backhaul

All the requests are
duplicated to allow
bidirectional

connectivity __ Rep pkt flow

Req for pkt flow on D3 b/w in[out ports

Rep pkt flow

Req for pkt flow towards the vEPC

\ 4

Rep for e2e pkt connectivity
Rep MNO virtual backhaul

N

Figure 11.12: Workflow for provisioning MNO virtual backhaul network and VNFs.

Time Source Destination Protocol Length Info

*REF* CLIENT SINO-MNH HTTP 427 POST /create vm HTTP/1.1 (application/json)

9.637631  SINO-MNH  CLIENT HTTP 680 HTTP/1.1 200 0K (text/html) VSDN and
9.641444 CLIENT SINO-MNH HTTP 427 POST /create vm HTTP/1.1 (application/json) [-VEPC creation
21.292404  SINO-MNH  CLIENT HTTP 680 HTTP/1.1 200 OK (text/html)

#REF* CLIENT SINO-MNH  HTTP 317 POST /virtual network/® HTTP/1.1 (applicati® Virtual
0.0622389  SINO-MNH  MSO HTTP 699 POST /restconf/config/calls/call/10 HTTP/1.1 [ Backhaul req
#REF* SINO-MNH  MSO HTTP 701 POST /restconf/config/calls/call/10 HTTP/11 o (o 0
0.252098 M50 ADVA HTTP 760 POST /restconf/config/calls/call/00002/ HTTP; | =P% :
9.262254  ADVA MS0 HTTP 73 HTTP/1.1 200 Successful operation (applicati|[ Red & Rep

9.357014 M50 SDN-CTL-2  HTTP 913 PUT /restconf/config/opendaylight-inventory:r
0.368302  SDN-CTL-2 MSO HTTP 139 HTTP/1.1 200 OK Virtual
8.719156 M50 SDN-CTL-1  HTTP 686 PUT /controller/nb/v2/flowprogrammer/default, Packet
0.724417  SDN-CTL-1 MSO HTTP 73 HTTP/1.1 201 Created (text/plain) -
0.757416  MSO SINO-MNH  HTTP 588 HTTP/1.1 200 OK (application/json) Creation
0.774124 M50 SINO-MNH  HTTP 6378 HTTP/1.1 200 OK (application/json)
0.777602  SINO-MNH  CLIENT HTTP 413 HTTP/1.1 200 OK (application/json) ——3Backhaul Rep

Figure 11.13: Capture of the experimental control messages for setting up the VNFs and virtual
backhaul network.

11.4 Conclusions

This chapter presented the design and experimental validation of the proposed 5G network slicing
architecture for 5G infrastructures with distributed cloud and multi-domain networks.

124



11. Multi-tenant 5G Network slicing

The network slicing concept has been introduced in detail, describing the different virtualiza-
tion operations needed to provided a fully operational 5G Network Slice for a dedicated tenant over
geographically DCs interconnected through a multi-domain, multi-layer WAN.

Finally, to validate the architecture proposed, we have presented the results of two different use
cases realized through our proposed 5G network slicing architecture over the CTTC ADRENALINE
Testbed: the creation and operation of a 5G Network Slice together with the deployment of a Deep
Packet Inspection network service; and the deployment of a virtual Mobile Network Operator (vMNO)
use case.

This chapter describe the result of many years of research on SDN and NFV technologies which
have led into the different components of which the 5G network slicing solution proposed relays on.
As next steps, the evaluation of the scalability of the solution along with the introduction of security
requirements will be two key drivers to be analyzed in order to push the proposed solution into real
network deployments.

125






Chapter 12

Cascading of tenant SDN and cloud controllers for 5G network slicing

12.1 Cloud and Network Cascading architecture for 5G Network Slicing . . . . . . . .. .. 128
12.2 Experimental validation and results. . . . . . . . .. ... oo 0oL 130
12.2.1 Network Slice provisioning . . . . . . . . . . . . . oo 130
12.2.2 Network Slice operation . . . . . . . . . . . . 130
12.3 Conclusions . . . . . . . . . . e 132

The main contribution of this last chapter was extending the VIMaP architecture to enable the
cascading of tenants SDN orchestrators (Chapter 5), cloud and VIMAP controllers (Chapters 9 and
10) and MANO instances (Chapter 11) in a multi-tenant scenario. Moreover, we have also extended
the Network Slicing architecture presented in Chapter 11 in order to support the proposed cascading
of resources. We have extended the VIMaP in order to support Transport API [82] and Openstack
APIs [50] [83] as the NBI to enable the cascading of tenants SDN and cloud orchestrators, which
allows to provide per-tenant network slices. As depicted in Figure 12.1, the proposed architecture
can be applied recursively, and to enable that tenants can offer part of the virtual network and cloud
resources allocated to their slice to other tenants, by cascading the VIM components.

127



12.1. Cloud and Network Cascading architecture for 5G Network Slicing

5] ~ 22
~
VIMaP
SDN Orch Cloud Orch |)

— = — = Transport API
Physical
Openstack API L Cloud and

P— Virtual network, . SDN
B i Edge Cloud MAN SDN Metro Cloud WAN SDN Core Cloud
computing and [ g ] [ } [ ] [ ] [ J controllers

storage resources Controller Controller Controller Controller Controller

L Physical
Infrastructure

Figure 12.1: Cascading of SDN orchestrators, cloud orchestrators and VIMs for multi-tenant network
slicing

12.1 Cloud and Network Cascading architecture for 5G Network
Slicing

Virtual resources are logical partition and aggregation of the physical infrastructure. These logical
representations can be exposed through well-designed APIs in the same manner that are physical
resources, allowing the cascading of control components. This in one of the key concepts intended to
be exploited by the proposed architecture. Therefore, the use of standard APIs plays a crucial role to
achieve the proposed concept. The Transport API provides a standard interface for the orchestration
of heterogeneous networks. On the other hand, the OpenStack APIs have become the open-source
de-facto standard for cloud computing. By using the same interfaces as a Northbound Interface (NBI)
and Southbound Interface (SBI) of the components of the proposed architecture, they can be stacked
recursively to create dedicated slices for different tenants.

Bearing this in mind, the proposed architecture (Figure 12.2) is supported by the following main
building blocks: the SDN orchestrator, the cloud orchestrator, the VIMaP which conform the VIM;
and the network slicing service orchestrator (SLICE-O) (Figure 12.2).

The SDN Orchestrator is responsible for providing network discovery, programmability and traffic
engineering functionalities over the underlying heterogeneous network resources. The Cloud Orches-
trator provides computing, storage and networking functions over datacenters, which may be located
in different sites and provided by independent cloud controllers. The VIMaP (Figure 12.3) coordi-
nates the Cloud and Network by means of correlating the resources information from both domains
and performing efficient allocation policies based on the resources’ status. Finally, the SLICE-O is
responsible for the dynamic lifecycle management (provisioning, modification and deletion) of not
only the requested network slices but also of the virtualized MANO (vMANO) instance associated to
each tenant. Virtualized MANO instances enable tenants to have full SDN/NFV control of all virtual
resources (network, cloud, and VNFs) assigned to its slice as if they were real. Each VIMaP can slice,
upon request of the SLICE-Q, its underlying resources by providing dedicated VTN and virtual cloud
resources to another tenant VIMaP. In order to provide these resources, the VIMaP is able to handle
two contexts: provider and virtual. The provider context provides control and management for the
underlying network resources, including network and cloud infrastructure managers, which are able to
handle underlying heterogeneous resources (virtualized or not) using Transport API and OpenStack

128



12. Cascading of tenant SDN and cloud controllers for 5G network slicing

-~

o / A
(5] HaH l —-=-=
.g [ Network slicing orchestrator (SLICE-O) } 8 —
'g, . Virtualized Virtualized SDN/ NFV g
% o! SDN/NFV SDN/NFV Controller and g |3
%3 Manal er Manager orchestrator % =
= : Repository -
<] ! 1
2 : |
s .
= [ Local Cloud Orchestrator (LCO) ]- -----------
Y _-" ' /
\ - 1 ’
‘\__ - ' ‘//
- 1
=z 1
P tiag i
- 1
® Transport API + PPt ': Transport API +
2 OpenStack APl___--"~ . OpenStack API
2 E // = \\‘ /,‘ .\\
il | VIMaP J1 [ VimMaP ]
- . . . ! : i
R [ Multi-site Cloud ] [ Multi-domain SDN J P Multi-site Cloud Multi-domain SDN i
s gi orchestrator orchestrator P Orchestrator orchestrator |
£\ : ! : : ! ! T
5 - . i i - : : ' |
iOpenSlack APl |Transport API | OpenStack API i Transport APl !
Edge Cloud RATISDN [ RAT2SDN [ Metro Cloud ] [ Core Cloud J MANSDN _|( WAN SDN
Orchestrator Controller Controller Orchestrator Orchestrator Controller Controller
Figure 12.2: Network Slicing architecture.
[ V-0 1
I SLICE-O ' TENANT1 !
| 11 |

Virtual
Context

Provider
Context

Virtualized
Resource
Manager

-
DDBB

Provider ) FEEszszzzzzszszsszzzz=s
Resourcs ST | Multicloud Cascading |
Manager Virtual
Network Topology Connectivity ( Compute ‘ Network ’ ( Image
Handler Handler Handler Handler Handler Handler
T e e ‘."'.
""""""""""""""" { TRANSPORT API OPENSTACK API |

Figure 12.3: VIMaP extended architecture.

API. The virtualized infrastructure controller is responsible for mapping the requested virtual context
upon the provider one. It is also responsible for providing the allocated virtual resources to the cas-
cading vVIM or vMANO, depending on the composed cascade. To do so, it exposes to each tenant
its virtual context resources through the Transport API and OpenStack API

129



12.2. Experimental validation and results

12.2 Experimental validation and results

The proposed architecture has been validated in the cloud-computing platform and transport network
of the CTTC ADRENALINE Testbed. The IT infrastructure consists of a local cloud (LCO) for the
deployment of yYMANO and vVIM, for network slicing, and different cloud sites as provider infrastruc-
ture, all controlled with Openstack Liberty cloud computing software. Two independent cloud sites
(OpenStack) are geographically distributed across a SDN multilayer transport network composed by
three domains: two intra-DC networks, consisting on OpenFlow switches deployed on COTS hard-
ware and using OpenVSwitch (OVS), and a metro-core optical WSON with 2 ROADMs and 2 OXCs
based on GMPLS distributed control. Per-domain SDN controllers control the electrical and optical
domains are orchestrated by a Multi-domain SDN Orchestrator. The multi-domain SDN orchestrator
(MSO) and VIMaP entities have been mostly implemented in Python. For the current implementation
the Control Orchestration Protocol has been employed. Following, we describe the message exchange
workflows for provisioning and operating a network slice and its validation in our Testbed.

12.2.1 Network Slice provisioning

The SLICE-O is responsible for creating the network slice upon demand. The workflow (Figure 12.4)
is as follows, firstly, it requests the creation of a new tenant towards the VIMaP which subsequently
duplicates the tenant creation on each of the cloud sites through its corresponding cloud orchestrator.
Then, it creates the necessary vMANO and vVIM instances in a customized VNF instantiated in the
LCO. Due to resources constrains, we employed one of the two cloud sites orchestrator controlled by
the provider VIMaP as LCO. Finally, it provisions a dedicated VTN interconnecting the two cloud
sites intra-DC networks points of presence (PoPs), through MPLS tunnels, across the metro-core
segment. Figure 12.5) shows the traffic capture of the network slice provisioning workflow.

. LCO l[ Cloud #N MD SDN-O ﬂDN Transport domains\
Slice-O ] [ ] [V]Map]
tack openstack
[ nupens ac n [ . ] [ on
‘g PCE Controller #1
Create tenant e ) |
) HTTP/ 200 (TenantiD) reate project, user, role
Create VM
(Slice VNF)
HTTP/ 200
Create VTN > Create virtual network _
. PC Initiate .
Create| PQRpt
virtual| ' Create Flow Cpmpute1 — Compute3
link >
HTTP/ 200 | HTTP/ 200

’ ' - J

Figure 12.4: 5G Slice provisioning workflow

12.2.2 Network Slice operation
Once created, the tenant vMANO is able to allocate network services on top of the assigned resources.

Requests for networks, compute and connectivity resources are cascaded, resulting in the necessary
resource allocation. To validate this operation, the vMANO request of the creation of a new subnet

130



12. Cascading of tenant SDN and cloud controllers for 5G network slicing

SLICE-O VIMAP

POST /vim/slices/slice/slicel HTTP/1.1

VIMAP CLOUDSITE 1 pPOST /v3/auth/tokens HTTP/1.1

VIMAP CLOUDSITE 1 POST /v3/projects HTTP/1.1

VIMAP CLOUDSITE 1 POST /v3/users HTTP/1.1

VIMAP CLOUDSITE 1 POST /v3/roles HTTP/1.1

VIMAP CLOUD SITE 2 POST /v3/auth/tokens HTTP/1.

VIMAP CLOUDSITE 2 POST /v3/projects HTTP/1.1

VIMAP CLOUD SITE 2 POST /v3/users HTTP/1.1

VIMAP CLOUD SITE 2 POST /v3/roles HTTP/1.1

VIMAP CLOUD SITE 2 POST /v2.1/8el7 ... 9aa54660/servers

VIMAP CLOUDSITE 2 POST /v2.1/8el17... 9aa54660/servers/actic

VIMAP MD SDN-O POST /restcont/contig/virtual_networks
MD SDN-O SDN CTRL2 POST /stats/flowentry/add

MD SDN-O
MD SDN-O
AS-PCE
MD SDN-O
AS—-PCE
MD SDN-O

MD SDN-O

SDN CTRL1
AS-PCE

MD SDN-O
AS-PCE

MD SDN-O
SDN CTRL1

SDN CTRL2

e owen fadd

[Unknown Message (12 PCEP_INITIATE

uUnknown mMessage (10).

. PCEP_RPT

POST /stats/flowentry/add

POST /stats/flowentry/add

Figure 12.5: Network Slice provisioning traffic caputure.

(cloud domain) and two VMs, for further deployment of VNFs, towards the vVIM. It results in a
cascaded network creation operation which triggers a duplicated network creation in the two provider
cloud sites. Instead, the cascaded VM creation request, triggers resource allocation selection in the
VIMaP among the provider cloud sites (12.6). Availability zones segmentation is used by VIMaP to
select the appropriate cloud site to which forward the VM creation request. Please, notice the VM
is allocated just once, in a single DC but a new logical representation is created in the Slice vVIM.
To conclude, the cascading vVIM request a L3 end-to-end connectivity service (Call) between the
newly created VMs based on its IP addresses. Figure 12.7) shows the traffic capture of the proposed

workflow.

Tenant

Physical Infrastructure

Tenant Cascading
vMANO WIM

Create Netwo kv2.0 Inetwork

- SDN Transport domains\
[ VIMaP ] Qoud 24 ] [MD SDN-O ] /

n openstack

S

HTTP/ 200

"v2.0/subnets

Create VM

=== ‘\El{tenantld}/ser\lers

HTTP/ 200 V2/{tenantld}/servers

Create VM | v2/{tenantld}/servers

| HTTP/ 200
Create
- POST/ Call
Conneotivity — POST/ Call »Create Flpws (physical network)
HTTE/ 200 < HTTP/200 + HITP/ 200 \ ™ /

» v2.0/networks
—_—

» v2.0/subnets
HTTP/ 200 ——M8M»

, V2/{tenantld}/servers

W1
o
(9]
m

[

AS- SDN
Controller #1

Figure 12.6: 5G Slice provisioning workflow

131



12.3. Conclusions

Tenant cVIM

VIMAP
VIMAP
Tenant cVIM
Tenant cVIM
VIMAP
VIMAP
VIMAP
VIMAP
Tenant cVIM
Tenant cVIM
VIMAP
Tenant cVIM
VIMAP
Tenant cVIM
VIMAP
Tenant cVIM
VIMAP
VIMAP
VIMAP

VIMaP
Cloud Site
Cloud Site
vIMAP
vVIMAP
Cloud Site
Cloud Site
Cloud Site
Cloud Site
vIMAP
VIMAP
Cloud Site
VIMAP
Cloud Site
vVIMAP

Tenant cWVIM

VIMAP

MD SDMN-
MD SDN-
Tenant cVIM

1
2

1

2

O
O

508 POST /vw2.0/networks HTTP/1.1 Capplication/json)
426 POST /v2.0/networks HTTP/1.1 (application/json)
426 POST /v2.0/networks HTTP/1.1 (application/json)
391 GET /v2.0/networks HTTP/1.1
581 POST /w2.0/subnets HTTP/1.1 (application/json)
309 GET /w2.0/networks HTTP/1.1
499 POST /v2.0/subnets HTTP,/1.1 (application/json)
309 GET /v2.0/networks HTTP,/1.1
499 POST /v2.0/subnets HTTP/1.1 (application/json)
391 GET /v2.0/networks HTTP/1.1
670 POST /v2.1/418364F6c4e74183%9e0c07aB89dd127dc/servers
588 POST /w2.1/4Ff8769Fbc0e04483910700a8%edd24db/servers
670 POST /v2.1/418364T6c4e741839e0c07a89dd127dc/servers
588 POST /v2.1/8el7e7blad3242898de7ccal9aas4660/ servers
261 GET /restconf/confia/topologies HTTP/1.1
352 HTTP/1.1 200 OK Capplication/json)
743 POST /Srestconf/config/calls/call/ 00002 HTTP/1.1

760 POST /restconf/config/calls/call/ /1L HTTP/1.1

760 POST /restconf/config/calls/callys2 HTTP/1.1
352 HTTP/1.1 200 OK (application/json)

Figure 12.7: Network Slice operation traffic caputure.

12.3 Conclusions

In this chapter it has been presented the design and experimental validation of the concept of resource
cascading applied to both network and compute resources as an enabler for a 5G network slicing
architecture for 5G infrastructures with distributed cloud and multi-domain networks.

132



Part V

Dissemination and Exploitation Results

133






Chapter 13

Scientific publications

13.1 Journals . . . . . ..o 135
13.2 Conference papers . . . . . . . o o oo e 136
13.3 Collaborations . . . . . . . . . . . 137

This chapter presents the scientific publications published, accepted or submitted. Publications
are classified in journals, international conferences, and collaborations, in inverse chronological order.

13.1 Journals

1. A. Mayoral, R. Vilalta, R. Munioz, R. Casellas, R. Martinez, “SDN orchestration architectures
and their integration with Cloud Computing Applications”; in Special Issue on Advances in Path
Computation Element, Optical Switching and Networking (OSN), Elsevier, February 2016.

2. R. Vilalta, A. Mayoral, R. Mufioz, R. Casellas, R. Martinez, “Multi-Tenant Transport Networks
with SDN/NFV” | IEEE/OSA Journal of Lightwave Technology, Vol. 34, No. 8, January 2016.

3. A. Mayoral, R. Vilalta, R. Mufioz, R. Martinez, R. Casellas, V. Lopez, “Need for a Transport
APTin 5G for Global Orchestration of Cloud and Networks Through a Virtualized Infrastructure
Manager and Planner” , Journal of Optical Communications and Networking, Vol. 9, No. 1, pp.
A55-A62, January 2017.

4. A. Mayoral, R. Vilalta, R. Muiioz, R. Casellas, R. Martinez, M. Svaluto Moreolo, J. M. Fabrega,
A. Aguado, S. Yan, D. Simeonidou, J. M. Gran, V. Loépez, P. Kaczmarek, R. Szwedowski,
T. Szyrkowiec, A. Autenrieth, N. Yoshikane, T. Tsuritani, I. Morita, M. Shiraiwa, N. Wada,
M. Nishihara, T. Tanaka, T. Takahara, J. C. Rasmussen, Y. Yoshida, K. Kitayama, “Control
Orchestration Protocol: unified transport API for distributed cloud and network orchestration”
, Journal of Optical Communications and Networking, Vol. 9, No. 2, pp. A216-A222, February
2017,

135



13.2. Conference papers

5. R. Martinez, A. Mayoral, R. Vilalta, R. Casellas, R. Munoz, S. Pachnicke, T. Szyrkowiec, A.

Autenrieth, “Integrated SDN/NFV Orchestration for the Dynamic Deployment of Mobile Virtual
Backhaul Networks Over Multilayer (Packet/Optical) Aggregation Infrastructure” , Journal of
Optical Communications and Networks, Vol. 9, No. 2, pp. A135 - A142, February 2017.

13.2 Conference papers

1. A. Mayoral, R. Vilalta, R. Munoz, R. Casellas, R. Martinez, “Experimental validation of au-

136

tomatic lightpath establishment integrating OpenDaylight SDN controller and Active Stateful
PCE within the ADRENALINE Testbed”,in International Conference on Transparent Optical
Networks (ICTON) 6-10 July 2014, Graz (Austria).

. A. Mayoral, R. Vilalta, R. Munoz, R. Casellas, R. Martinez, “Integrated IT and Network Or-

chestration Using OpenStack, OpenDaylight and Active Stateful PCE for Intra and Inter Data
Center Connectivity”, 40th European Conference on Optical Communication (ECOC 2014).

A. Mayoral, R. Vilalta, R. Mufioz, R. Casellas, R. Martinez, “Experimental Seamless Virtual
Machine Migration Using an Integrated SDN IT and Network Orchestrator” , in Proc. of Optical
Fiber Communication Conference (OFC), 2015.

A. Mayoral, R. Vilalta, R. Mufioz, R. Casellas, R. Martinez, “Performance analysis of SDN
orchestration in the Cloud Computing Platform and Transport Network of the ADRENALINE
Testbed”,in International Conference on Transparent Optical Networks (ICTON) 5-9 July 2015,
Budapest (Hungary).

A. Mayoral, R. Vilalta, R. Mufoz, R. Casellas, R. Martinez, “Traffic Engineering enforcement
in multi-domain SDN orchestration of Multi-Layer (packet/optical) networks”, 41th European
Conference on Optical Communication (ECOC 2015).

R. Vilalta, A. Mayoral, R. Mufoz, R. Casellas, R. Martinez, “Hierarchical SDN Orchestration
for Multi-technology Multi-domain Networks with Hierarchical ABNO” | in Proceedings of 41st
European Conference on Optical Communication (ECOC 2015), 27 September-1 October 2015,
Valencia (Spain).

R. Vilalta, A. Mayoral, R. Munoz, R. Casellas, R. Martinez, The SDN/NFV Cloud Computing
Platform and Transport Network of the ADRENALINE Testbed , in Proceedings of 1st IEEE
Conference of Network Softwarization, 13-17 April 2015, London (UK).

R. Vilalta, V. Lépez, A. Mayoral, N. Yoshikane, M. Ruffini, D. Siracusa, R. Martinez, T.
Szyrkowiec, A. Autenrieth, S. Peng, R. Casellas, R. Nejabati, D. Simeonidou, X. Cao ,T. Tsuri-
tani, I. Morita, J. P. Ferndndez-Palacios, and R. Munoz, “The Need for a Control Orchestration

Protocol in Research Projects on Optical Networking”, in European Conference on Networks
and Communications (EuCNC), Paris, France, June 29/July 2, 2015.

A. Mayoral, R. Vilalta, R. Mufioz, R. Casellas, R. Martinez, M. Svaluto Moreolo, J. M. Fabrega,
S. Yan, A. Aguado, E. Hugues-Salas, S. Peng, F. Meng, Y. Shu, G. Zervas, R. Nejabati, D. Sime-
onidou, J. Manuel Gran, V. Lépez, O. Gonzalez de Dios, J.P Fernandez-Palacios, P. Kaczmarek,
R. Szwedowski, T. Szyrkowiec, A. Autenrieth, N. Yoshikane, X. Cao, T. Tsuritani, I. Morita, M.
Shiraiwa, N. Wada, M. Nichihara, T. Tanaka, T. Takahara, J. C. Rasmussen, Y. Yoshida, K.
Kitayama, “First experimental demonstration of a distributed cloud and heterogeneous network
orchestration with a common Transport API for E2E services with QoS” , in Proceedings of the
Optical Fiber Communication Conference and Exhibition (OFC), 20-24 March 2016, Anaheim,
California (USA).



13. Scientific publications

10. R. Munoz, A. Mayoral, R. Vilalta, R. Casellas, R. Martinez, V. Lopez, “The Need for a Trans-
port API in 5G networks: the Control Orchestration Protocol” , in Proceedings of the Optical
Fiber Communication Conference and Exhibition (OFC), 20-24 March 2016, Anaheim, Califor-
nia (USA).

11. A. Mayoral, R. Vilalta, R. Casellas, R. Martinez, R. Munoz, “Multi-tenant 5G Network Slicing
Architecture with Dynamic Deployment of Virtualized Tenant Management and Orchestration
(MANO) Instances” , in Proceedings of 42nd European Conference and Exhibition on Optical
Communications, 18-22 September 2016, Diisseldorf, Germany.

12. R. Vilalta, A. Mayoral, V. Lopez, V. Uceda, R. Casellas, R. Martinez, R. Mufioz, A. Aguado, J.
Marhuenda, R. Nejabati, D. Simeonidou, N. Yoshikane, T. Tsuritani, I. Morita, T. Szyrkowiec, A.
Autenrieth, “Peer SDN Orchestration: End-to-End Connectivity Service Provisioning Through
Multiple Administrative Domains” , in Proceedings of 42nd European Conference and Exhibition
on Optical Communications (ECOC 2016), 18-22 September 2016 Diisseldorf (Germany).

13. A. Mayoral, R. Vilalta, R. Mufioz, R. Casellas, R. Martinez, V. Lopez, “Cascading of tenant
SDN and cloud controllers for 5G network slicing using Transport API and Openstack API” | in

Proceedings of International Conference on Optical Fiber Communications (OFC), 19-23 March
2017, Los Angeles (USA).

13.3 Collaborations

1. R. Vilalta, R. Mufioz, A. Mayoral, R. Casellas, R. Martinez, D. Loépez, V. Lopez, Transport
Network Function Virtualization , Journal of Lightwave Technology, Vol. 33, No. 5, pp. 1-8,
April 2015.

2. R. Martinez, R. Vilalta, A. Mayoral, R. Casellas, R. Mufioz, “Experimental Validation of a SDN
Orchestrator for the Automatic Provisioning of Fixed and Mobile Services” , in Proceedings
of the 41st European Conference on Optical Communication (ECOC 2015), 27 September-1
October 2015, Valencia (Spain).

3. R. Vilalta, A. Mayoral, D. Pubill, R. Casellas, R. Martinez, J. Serra, C. Verikoukis, R. Mufioz,
“End-to-End SDN Orchestration of IoT Services Using an SDN/NFV-enabled Edge Node” ,
in Proceedings of the Optical Fiber Communication Conference and Exhibition (OFC), 20-24
March 2016, Anaheim, California (USA).

4. J. M. Fabrega, M. Svaluto Moreolo, A. Mayoral, R. Vilalta, R. Casellas, R. Martinez, R. Mufioz,
Y. Yoshida, K. I. Kitayama, Y. Kai, M. Nishihara, R. Okabe, T. Tanaka, T. Takahara, J. C.
Rasmussen, N. Yoshikane, X. Cao, T. Tsuritani, I. Morita, K. Habel, R. Freund, V. Lépez, A.
Aguado, S. Yan, D. Simeonidou, T. Szyrkowiec, A. Autenrieth, M. Shiraiwa, Y. Awaji, N. Wada,
“Demonstration of Adaptive SDN Orchestration: A Real-time Congestion-aware Services Provi-
sioning over OFDM-based 400G OPS and Flexi-WDM OCS” , Journal of Lightwave Technology,
Vol. 35, No. 3, pp. 1-7, February 2017.

5. V. Loépez, 1. Maor, K. Sethuraman, A. Mayoral, L. Ong, K. Mréwka, F. Marques, A. Sharma, F.
Bosisio, O. Gonzéilez de Dios, O. Gerstel, F. Druesedau, R. Vilalta, H. Silva, A. Autenrieth, N.
Borges, C. Liou, G. Cazzaniga, J.P. Fernandez-Palacios, “E2E Transport API demonstration in
hierarchical scenarios” , in Proceedings of SDN & NFV Demo Zone at International Conference
on Optical Fiber Communications (OFC), 19-23 March 2017, Los Angeles (USA).

137



13.3. Collaborations

6. J. Mangues, J. Nufiez, R. Casellas, A. Mayoral, J. Baranda, J. Xavier Salvat, A. Garcia-Saavedra,
R. Vilalta, I. Pascual, X. Li, R. Martinez, R. Mufioz, “Experimental Evaluation of Hierarchical
Control over Multi-Domain Wireless/Optical Networks” , in Proceedings of the 26th edition of

European Conference on Networks and Communications (EUCNC’17), 12-15 June 2017, Oulu
(Finland).

138



Chapter 14

International, European and national R&D projects and standardization activities

14.1 International R&D projects . . . . . . . . . . 139
14.1.1 STRAUSS - Scalable and efficient orchestration of Ethernet services using software-
defined and flexible optical networks . . . . . . .. ... ... ... .. ..... 139
14.2 European R&D projects . . . . . . . . . 140
14.2.1 COMBO - COnvergence of fixed and Mobile BrOadband access/aggregation
networks . . . ... L 140
14.2.2 5G-CROSSHAUL - The 5G Integrated fronthaul/backhaul . .. ... ... .. 141
14.3 Standardization activities . . . . . . . . . .. 142
14.3.1 ONF Transport APT . . . . . . . . . . . . . 142
14.3.2 Optical Internetworking Forum - OIF . . . . . . . ... ... ... ... . ... 142

Some experimental results obtained in this PhD thesis are used in several National, Furopean and
International R&D projects in optical networking. This chapter introduces these R&D projects and
how this PhD thesis is related with them.

14.1 International R&D projects

14.1.1 STRAUSS - Scalable and efficient orchestration of Ethernet services
using software-defined and flexible optical networks

14.1.1.1 Project abstract

The STRAUSS project aims to define a highly efficient and global (multi-domain) optical infrastruc-
ture for Ethernet transport, covering heterogeneous transport and network control plane technologies,

139



14.2. European R&D projects

enabling an Ethernet ecosystem. It will design, implement and evaluate, via large-scale demonstra-
tions, an advanced optical Ethernet transport architecture. The proposed architecture leverages on
software defined networking principles, on optical network virtualization as well as on flexible optical
circuit and packet switching technologies beyond 100 Gbps.

In particular, the STRAUSS project focuses on the integration and development of a) cost/energy
efficient and extremely fast-performing switching nodes, based on variable-capacity and fixed-length
optical packet switching technology for access and aggregation networks, and on flexi-grid DWDM
optical circuit switching technology for long haul transport; b) highly integrated and scalable software
defined optical transceivers supporting bandwidth variable multi-flows for flexible Ethernet transmis-
sion; ¢) a virtualization layer for dynamic and on-demand partitioning of the optical infrastructure
offering virtual optical Ethernet transport networks (slices); d) legacy (e.g. GMPLS) and new (e.g.
OpenFlow based) control plane approaches for control and management of virtual slices and finally
e) a service and network orchestration layer for the interworking and coordination of heterogeneous
control plane and transport technologies to offer end-to-end Ethernet transport services.

Outcomes of this project will be experimentally validated by means of demonstrations on large
scale testbeds in EU & Japan. STRAUSS will provide technological roadmaps, technical approaches
and deployment strategies aiming at shortening innovation and exploitation cycles in the area of future
optical Ethernet transport networks for both academia and industry in EU and Japan.

14.1.1.2 PhD Thesis relationship

The work performed in this PhD Thesis has resulted in the design of the Multi-domain SDN Orches-
tration (MSO) architecture (Chapter 5) which addresses one of the main goals of STRAUSS project
which was the E2E transport of Ethernet service over heterogeneous transport and network control
plane technologies.

On Chapter 6 one of the main outcomes of STRAUSS project has been presented, the Control
Orchestration Protocol (COP). In STRAUSS, me and my thesis coordinators we have lead the first
experimental validations of the COP over a multi-partner international Testbed involving Japan and
EU partners.

Finally, the Integrated IT and Network orchestration architecture and experiments presented
in Chapter 9 contributed significantly to WP3 - Network Virtualization, Control Plane and Service
Orchestration and WP4 - Integration and Demonstration, STRAUSS work packages.

14.2 FEuropean R&D projects

14.2.1 COMBO - COnvergence of fixed and Mobile BrOadband
access/aggregation networks

14.2.1.1 Project abstract

COMBO project (http://www.ict-combo.eu/) proposes new integrated approaches for Fixed / Mobile
Converged (FMC) broadband access / aggregation networks for different scenarios (dense urban,
urban, rural). COMBO architectures are based on joint optimization of fixed and mobile access /
aggregation networks around the innovative concept of Next Generation Point of Presence (NG-POP).

140



14. International, European and national R&D projects and standardization activities

The main objective of COMBO will be to define, develop and technically assess network scenarios
organized around the concept of Next Generation Point of Presence (NG-POP) and which embody the
most promising directions for FMC at network level. So as to show experimentally the high potential
of FMC for future networks, COMBO will develop proof of concept demonstrations including both
a unified access / aggregation network and a Universal Access Gateway (UAG), the key elements to
implement NG-POP concept.

The overall project targets of COMBO are:

e Define and develop FMC architectures for future networks, which will be technically assessed
with respect to FMC use cases defined by the project;

e Demonstrate experimentally key FMC network features to show the feasibility of proposed ar-
chitectures;

e Influence standardization bodies with respect to FMC architectures to push COMBO concepts.

14.2.1.2 PhD Thesis relationship

The contribution of this PhD Thesis includes the proposed Multi-domain SDN Orchestration (MSO)
architecture (Chapter 5) which was employed for the automatic provisioning of Fixed and Mobile
Services over the ADRENALINE Testbed within the COMBO projects activities. A novel SDN-based
tunnelling approach based on MPLS tags was proposed to provide the transport network data plane
for LTE communication between the eNodeBs and the Evolved Packet Core (EPC) located in the core
of the network.

Moreover, the Network Slicing architecture presented in Chapter 11 was also employed for the
validation of the virtual Mobile Network Operator (vMNO) use case.

14.2.2 5G-CROSSHAUL - The 5G Integrated fronthaul/backhaul
14.2.2.1 Project abstract

The 5G-Crosshaul project (http://5g-crosshaul.eu/) aims at developing a 5G integrated backhaul and
fronthaul transport network enabling a flexible and software-defined reconfiguration of all networking
elements in a multi-tenant and service-oriented unified management environment. The 5G-Crosshaul
transport network envisioned will consist of high-capacity switches and heterogeneous transmission
links (e.g., fibre or wireless optics, high-capacity copper, mmWave) interconnecting Remote Radio
Heads, 5GPoAs (e.g., macro and small cells), cloud-processing units (mini data centers), and points-
of-presence of the core networks of one or multiple service providers. This transport network will
flexibly interconnect distributed 5G radio access and core network functions, hosted on in-network
cloud nodes, through the implementation of: (i) a control infrastructure using a unified, abstract
network model for control plane integration (Crosshaul Control Infrastructure, XCI); (ii) a unified
data plane encompassing innovative high-capacity transmission technologies and novel deterministic-
latency switch architectures (Crosshaul Packet Forwarding Element, XFE).

Demonstration and validation of the 5G-Crosshaul technology components developed will be in-
tegrated into a software-defined flexible and re-configurable 5G Test-bed in Berlin. Mobility-related
5G-Crosshaul experiments will be performed using Taiwans high- speed trains. 5G-Crosshaul KPI
targets evaluated will include among others a 20% network capacity increase, latencies <1 ms and
30% TCO reduction.

141



14.3. Standardization activities

14.2.2.2 PhD Thesis relationship

The contribution of this PhD Thesis to the 5G-Crosshaul project was two fold: on one hand the
Hierarchical Multi-domain SDN Orchestration architecture included in Chapter 7 was proposed for
the integration of different Radio Access Network (RAN) technologies such mmWave or IEEE 802.11ac,
with optical DWDM core networks. The proposed architecture was validated over the integration of
ADRENALINE and EXTREME CTTC Testbeds by employing a hierarchy of SDN control entities
over which the MSO plays a crucial role on the E2E service orchestration.

On the other hand, the Virtual Infrastructure Manager and Planner (VIMaP) component pre-
sented in Chapter 10 for optimization of cloud and network resource allocation, has been developed
in the scope of WP3 - Xhaul Control and Data planes activities of 5G-Crosshaul project.

14.3 Standardization activities

This section highlights the main contributions of this PhD. Thesis to the standardization bodies in
the field of Optical Communications, SDN and NFV.

14.3.1 ONF Transport API

Ricard Vilalta co-director of this PhD.Thesis as Research Associated of the ONF invited Arturo May-
oral (the author) to participate in the Optical Transport Working Group (WG) for the development of
the Transport SDN API initiative [82]. The motivation for this collaboration was the close relationship
between the Control Orchestration Protocol (COP) developed during STRAUSS project as a research
oriented activity, with the emergent standard proposed by the ONF.

The Open Transport project address the SDN control capabilities of transport networks of differ-
ent types, including optical and wireless. The work carried out by the ONF in this project includes
identifying and addressing different use cases, defining the application of SDN architecture and infor-
mation modelling to transport networks, and defining standard SDN interfaces for transport networks,
including transport controller APIs.

Since November 2015, Ricard Vilalta and Arturo Mayoral have been collaborating in differ-
ent ONF Open Transport sub-projects (Snowmass-ONFOpenTransport, EAGLE-Open-Model-Profile-
and-Tools and Englewood) where the experience acquire during the design and testing of the COP
within STRAUSS was applied to the Transport API. In particular, the COP YANG-modeling tools and
automatic code generation based on SWAGGER specification [68], were shared with the community
as open source code in a public github repository within the EAGLE-Open-Model-Profile-and-Tools
(https://github.com/OpenNetworkingFoundation/EAGLE-Open-Model-Profile-and-Tools).

14.3.2 Optical Internetworking Forum - OIF

In September 2016 a inter operability event was launched by the OIF to test the implementation of the
Transport API between several optical vendors. Arturo Mayoral and Ricard Vilalta participated in
this event as external technical experts to help in the coordination of the testing activities in Telefonica
labs in Madrid. The results obtained in this activity were presented in the Optical Fibre Conference
(OFC) 2017 as an interactive demo [84].

142



Part VI

Conclusions and Future Work

143






Chapter 15

Conclusions and future work

15.1 Conclusions . . . . . . . o o 145

15.2 Future work . . . . . . . e 147

15.1 Conclusions

This PhD Thesis has discussed about a novel holistic approach for end-to-end Network and Cloud
Computing resources orchestration applying Software Defined Networking concepts. The two main
shortcommings transport networks suffer, are that they remain managed partitioned by technology
and also by the equipment supplier, and, the control of these networks is tightly coupled with the
switching hardware, implying a highly complex and extremely slow network operations. These two
realities are the main motivations of introducing SDN as the technology enabler to achieve higher
degrees of automation and control to multi-layer networks.

The contiguous objective being assessed during the work done in this Thesis, has been the design
and demonstration of a multi-layer, multi-technology and multi-domain, cloud and transport network
management architecture capable of offering end-to-end (E2E) service management and control and
virtualization of network resources. The orchestration of network and cloud resources has been demon-
strated critical to achieve the higher degrees of dynamicity and resource’s utilization required by the
emergence of the 5G paradigm.

The SDN orchestration architecture solution proposed, based on a clear separation between the
data, control and management planes, and the abstraction of network technologies and control layers
has been developed along the Chapters 4-8 corresponding to the second part of this Thesis (first part
introduced the background and motivation and also the objectives of the current work). Firstly, in
Chapter 4, the multi-layer network control was proposed to be solved by a single SDN Controller
instance (based on open source distribution OpenDaylight) by integrating OpenFlow protocol for the
IP layer and the PCEP protocol for the intent-based dynamic provisioning of Label Switched Paths
(LSPs) in a distributed GMPLS control plane over the WDM network.

145



15.1. Conclusions

In chapter 5, a deeper discussion about the network orchestration problem in multi-domain net-
works was introduced. The proposed solution, the Multi-domain SDN Orchestration (MSO) archi-
tecture features different southbound plugins for the orchestration of different control technologies by
applying the main SDN concepts (control and data plane separation, definition of open and standard
APIs). The MSO has been evaluated in the Cloud Computing Platform and Transport Network of
the ADRENALINE Testbed for the demonstration of two different use cases: (i) SDN orchestration of
TE-aware multi-domain, multi-layer networks, and (ii) Automatic Provisioning of Fixed and Mobile
Services. Moreover, a performance evaluation of the MSO has been carried out to measure the E2E
connection provisioning and the topology discovery and transfer features. The results presented have
shown a performance of an average of 300ms setup delay for single-layer requests and of 1350ms for
multi-layer E2E connections. These results, although improvable through the use of more efficient
core programming languages for the development of the MSO implementation, highlights the fact
that service provisioning in multi-layer, multi-domain networks can be reduced from hours or days to
seconds or milliseconds by the introduction of the proposed MSO.

In chapter 6, the Control Orchestration Protocol (COP) has been presented as a common and
technology agnostic information model for the development of management interfaces, enabling the
inter working of heterogeneous control plane paradigms. The COP abstracts a common set of control
plane functions shared by different technologies and transport layers, such topology visualization, ser-
vice and connection provisioning and path computation. The COP was experimentally demonstrated
in a multi-partner international control and data plane testbed, by two proof of concepts: the dynamic
provisioning of E2E network resources across the aforementioned network; and E2E QoS assurance,
including per-domain and E2E QoS recovery based on data-plane monitoring. The value of the COP,
as innovation enabler in the network management research field, has been demonstrated by the in-
fluence of the COP on the development of the ONF Transport API information models, which has
become of one of the most mature standard information models employed in production multi-layer
transport networks.

To conclude this part, the chapters 7 and 8, discussed the hierarchical vs peer approaches on the
SDN Orchestration of multiple domains. The experimental results obtained suggests that certain levels
of hierarchy can cope with the upcoming network heterogeneity from a multi-(technology, domain,
and vendor) perspective. On the other hand, the peer approach, fostering the neighbor recursion
and extensions introduced to the COP, can alleviate the scalability problems introduced in network
orchestration scenarios with multiple domains.

The second objective of the PhD Thesis was to the integration of the management of IT/Cloud
computing resources within the SDN Orchestration architecture. In chapter 9, an integrated IT and
Network Orchestration architecture aligned with the NFV architectural framework proposed by the
ETSI was presented. The context of application of this work is a distributed Data Center (DC) sce-
nario, where computing pools of resources are geographically distributed across Wide Area Networks
(WANSs), introduces the need of holistic management of storage, compute and networking resources.
The proposed solution is based on a novel software component named SDN IT and Network Orchestra-
tor (SINO) and the benefits of introducing open standard interfaces (COP, OpenStack API) between
the different components of the the architecture (SINO, MSO and OpenStack cloud controllers). The
solution has been experimentally demonstrated in the Adrenaline Testbed 3, including the VM creation
and migration across distributed cloud sites.

In chapter 10, the Virtual Infrastructure Manager and Planner (VIMaP) architecture which ex-
tends the SINO architecture introduced in the previous chapter with an resource deployment algorithm
engine was presented. The main enhancements introduced by this new architecture: (a) the inclusion
of a resource planner component responsible of run resource allocation algorithms for the optimal allo-
cation of computing, storage and network resources for incoming infrastructure deployment requests;

146



15. Conclusions and future work

and (b) the management of multiple tenants to perform context-aware IT and Network orchestration.
The Virtual Machine Graphs (VMG) placement problem was mathematically defined and a baseline
resource allocation heuristic algorithm, based on a Greedy approach for the selection of DCs and First
Fit (FF) for the VM allocation, was also defined. The algorithm has been evaluated in a simula-
tion environment based on the NSFNet14 reference scenario and the results compared with a simple
RANDOM FIT heuristic.

The final part of this PhD Thesis which consist on Chapter 11 and Chapter 12 were focused on
the network slicing concept. The VIMAP architecture proposed in chapter 9 is the base solution for
the 5G Network Slicing architecture and the VIMaP and the MSO its main building blocks.

The third major contribution is the result of the previous two. With a converged cloud and
network infrastructure controlled and operated jointly, the holistic view of the network allows the
on-demand provisioning of network slices consisting of dedicated network and cloud resources over a
distributed DC infrastructure interconnected by an optical transport network. The last chapters of
this thesis discuss the management and orchestration of 5G network slices based over the control and
management components designed and developed in the previous chapters. Thus, the design of one of
the first network slicing architectures and the deployment of a fully operational 5G network slice in a
real Testbed conforms one of the major contributions of this thesis, and completes a circle where the
different architectures, software components and interfaces were demonstrated key building blocks for
the forthcoming 5G era.

15.2 Future work

Although the main proposed objectives have been dealt with, this PhD Thesis is a mirror of the
continuous work performed by research institutions in optical network virtualization. As it is an
on-going research, future results are expected in the proposed topics.

In order to continue enhancing network management and control in multi-domain, multi-layer
and multi-technology transport networks one of the topics which is getting a lot of attraction is
the development of open and standard information models to be used in the Southbound Interface
(SBI) of the SDN architectures discussed in this Thesis. Open initiatives such OpenROADM for
the WDM and OTN transport segments, and OpenConfig also including IP, are interesting works
which need to be closely followed in the following years as they might be easily introduced in the
SDN Orchestration architectures proposed in this work. Specifically, the introduction of the so-
called optical disaggregation, where the different components of an optical WDM network can be
independently managed by a centralized controller following the SDN approach is getting a lot of
attention by Telecom Operators as it brings new opportunities of opening a market which has been
traditionally managed by few big equipment suppliers.

On the other hand, the advent of Network Function Virtualization (NFV) is driving the need of
improving current management and orchestration (MANO) techniques to bring NFV to real deploy-
ments. The evolution of this field, leaded by the ETSI, is also an interesting opportunity for research.
Also novel, network slicing approaches are yet to come, where traditional data plane virtualization
technologies will play an important role for the resource partitioning and isolation between network
tenants.

Furthermore, higher levels of network security, for such shared environments, is foreseen to be
the key challenge the industry will need to assessed in order to bring 5G into a reality. In this line,
recent research topics such Quantum Key Distribution (QKD) based Networks can also be of special
relevance for 5G.

147






Bibliography

1]

[10]

[11]

D. King and A. Farrel, “A PCE-based architecture for application-based network operations,”
2015.

N. F. V. N. A. Framework, “Etsi gs nfv 002 v1.2.1 (2014-12),” 2014.

H. Zimmermann, “Osi reference model-the iso model of architecture for open systems intercon-
nection,” IEEE Transactions on communications, vol. 28, no. 4, pp. 425-432, 1980.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou,
M. Zhu, et al., “B4: Experience with a globally-deployed software defined WAN,” ACM SIG-
COMM Computer Communication Review, vol. 43, no. 4, pp. 3—14, 2013.

G. Recommendation, “694.1. Spectral grids for WDM applications: DWDM frequency grid,”
tech. rep., International Telecommunications Union, Tech. Rep, 2012.

P. Roorda and B. Collings, “Evolution to colorless and directionless ROADM architectures,” in
Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC
2008. Conference on, pp. 1-3, IEEE, 2008.

D. M. Marom, D. T. Neilson, D. S. Greywall, C.-S. Pai, N. R. Basavanhally, V. A. Aksyuk, D. O.
Loépez, F. Pardo, M. E. Simon, Y. Low, et al., “Wavelength-selective 1 x k switches using free-
space optics and mems micromirrors: theory, design, and implementation,” Journal of Lightwave
Technology, vol. 23, no. 4, p. 1620, 2005.

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, 1. Clarke, and S. Poole, “Flexible and grid-less
wavelength selective switch using lcos technology,” in Optical Fiber Communication Conference
and Ezposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, pp. 1-
3, IEEE, 2011.

I. Rec, “G. 872: Architecture of optical transport networks,” International Telecommunication
Union, ITU-T, 2001.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-efficient
and scalable elastic optical path network: architecture, benefits, and enabling technologies,” IEFEFE
Communications Magazine, vol. 47, no. 11, 2009.

O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo, “Elastic optical networking: A new dawn for the
optical layer?,” IEEE Communications Magazine, vol. 50, no. 2, 2012.

149



Bibliography

[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

[26]

[27]

150

G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core
optical networking,” IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 65-87, 2013.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-
WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photonics Technology Letters,
vol. 22, pp. 1129-1131, Aug 2010.

L. Velasco, M. Klinkowski, M. Ruiz, and J. Comellas, “Modeling the routing and spectrum
allocation problem for flexgrid optical networks,” Photonic Network Communications, vol. 24,
no. 3, pp. 177-186, 2012.

A. Mayoral, V. Lépez, O. G. de Dios, and J. P. Fernandez-Palacios, “Migration steps toward flexi-
grid networks,” Journal of Optical Communications and Networking, vol. 6, no. 11, pp. 988-996,
2014.

“Guidelines for creation, selection, and registration of an Autonomous System (AS).” RFC 1930,
Mar. 1996.

D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, “Requirements for traffic
engineering over mpls,” tech. rep., 1999.

D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview and principles of internet
traffic engineering,” tech. rep., 2002.

I. Rec, “G. 805: Generic functional architecture of transport networks,” International Telecom-
munication Union, ITU-T, 2000.

A. Farrel and 1. Bryskin, GMPLS: architecture and applications. Academic Press, 2005.

A. Ayyangar, A. Farrel, E. Oki, A. Atlas, A. Dolganow, Y. Ikejiri, K. Kumaki, J. Vasseur, and J.-
L. L. Roux, “Path Computation Element (PCE) Communication Protocol (PCEP).” RFC 5440,
Mar. 2009.

E. Crabbe, I. Minei, J. Medved, and R. Varga, “PCEP extensions for stateful PCE,” tech. rep.,
draft-ietf-pce-stateful-pce-09 (work in progress), 2014.

E. Crabbe, S. Sivabalan, I. Minei, and R. Varga, “PCEP Extensions for PCE-initiated LSP Setup
in a Stateful PCE Model,” tech. rep., 2013.

R. Casellas, R. Martinez, R. Muioz, L. Liu, T. Tsuritani, and I. Morita, “Dynamic provisioning via
a stateful PCE with instantiation capabilities in GMPLS-controlled flexi-grid DWDM networks,”
in Optical Communication (ECOC 2013), 39th European Conference and Ezhibition on, pp. 1-3,
IET, 2013.

T. Benson, A. Akella, and D. Maltz, “Unraveling the Complexity of Network Management,” in
Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDTI’09, (Berkeley, CA, USA), pp. 335-348, USENIX Association, 2009.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “Openflow: enabling innovation in campus networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 69-74, 2008.

B. Pfaff, B. Lantz, B. Heller, et al., “Openflow switch specification, version 1.3.0,” tech. rep.,
2012.



Bibliography

[28] S. Das, G. Parulkar, and N. McKeown, “Why OpenFlow/SDN can succeed where GMPLS failed,”
in Buropean Conference and Exhibition on Optical Communication, pp. Tu—1, Optical Society of
America, 2012.

[29] M. Channegowda, R. Nejabati, and D. Simeonidou, “Software-defined optical networks technology
and infrastructure: Enabling software-defined optical network operations [invited],” Journal of
Optical Communications and Networking, vol. 5, no. 10, pp. A274-A282 2013.

[30] M. Bjorklund, “Special Report: OpenFlow and SDN State of the Union,” tech. rep., SDNCentral
LLC., 2016.

[31] L. Ong et al., “Optical Transport Protocol Extensions,” tech. rep., March 2015.

[32] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong, “Packet and circuit
network convergence with OpenFlow,” in Optical Fiber Communication Conference, p. OTuGl,
Optical Society of America, 2010.

[33] “OpenDaylight: An Open Source Community and Meritocracy for Software-Defined Networking
(White Paper),” tech. rep., April 2014.

[34] R. T. Fielding, Architectural styles and the design of network-based software architectures. PhD
thesis, University of California, Irvine, 2000.

[35] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer,
P. Shelar, et al., “The design and implementation of open vswitch,” in 12th { USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 15), pp. 117-130, 2015.

[36] “Light switch - thin switching for bare metal physical and virtual switches.” Available online at
http://go.bigswitch.com/rs/974-WXR-561/images/Switch¥%20Light%200verview.pdf.

[37] Y. Nakajima, W. Ishida, T. Fujita, T. Hirokazu, T. Hibi, H. Matsutahi, and K. Shimano, “High-
performance vSwitch of the user by the user for the user,” in DPDK Summit, 2014.

[38] Y. Yiakoumis, J. Schulz-Zander, and J. Zhu, “Pantou: Openflow 1.0 for openwrt (2011).”
[39] T. Bray, “The javascript object notation (json) data interchange format,” tech. rep., 2017.

[40] T. Bray, J. Paoli, C. Sperberg-McQueen, Y. Mailer, and F. Yergeau, “Extensible markup language
(xml) 1.0 5th edition, w3c recommendation, november 2008.”

[41] R. Enns, M. Bjorklund, A. Bierman, and J. Schonwalder, “Network Configuration Protocol (NET-
CONF).” RFC 6241, June 2011.

[42] A. Bierman, M. Bjorklund, and K. Watsen, “RESTCONF Protocol.” RFC 8040, Jan. 2017.

[43] M. Bjorklund, “YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF).” RFC 6020, Oct. 2010.

[44] P. Mell, T. Grance, et al., “The nist definition of cloud computing,” 2011.
[45] “VMware ESXi” Available online at https://www.vmware.com/products/esxi-and-esx.html.
[46] “linux KVM.” Available online at https://www.linux-kvm.org/page/Main_Page.

[47] R. Kumar, K. Jain, H. Maharwal, N. Jain, and A. Dadhich, “Apache cloudstack: Open source
infrastructure as a service cloud computing platform,” Proceedings of the International Journal
of advancement in Engineering technology, Management and Applied Science, pp. 111-116, 2014.

151



Bibliography

[48]

[61]

[63]

152

A. Vogel, D. Griebler, C. A. Maron, C. Schepke, and L. G. Fernandes, “Private iaas clouds: a
comparative analysis of opennebula, cloudstack and openstack,” in 2016 2/th Furomicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing (PDP), pp. 672—679,
IEEE, 2016.

D. Miloji¢ié¢, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud management tool,” IEEFE
Internet Computing, vol. 15, no. 2, pp. 11-14, 2011.

O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-source solution for cloud
computing,” International Journal of Computer Applications, vol. 55, no. 3, pp. 38—42, 2012.

Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 20152020 (White Paper),” tech.
rep., November 2016.

R. Buyya, R. Ranjan, and R. Calheiros, “Intercloud: Utility-oriented federation of cloud com-
puting environments for scaling of application services,” Algorithms and architectures for parallel
processing, pp. 13-31, 2010.

R. Nejabati, S. Peng, and D. Simeonidou, “Role of optical network infrastructure virtualization in
data center connectivity and cloud computing,” in Optical Fiber Communication Conference and
Ezposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2013, pp. 1-3,
IEEE, 2013.

5G PPP, “5G Vision: The 5G Infrastructure Public Private Partnership: the next generation of
communication networks and services.,” March 2015.

5G PPP, “5G empowering vertical industries.,” February 2016.

N. F. V. NFV and U. Cases, “Etsi gs nfv 001 v1. 1.1 (2013-10),” 2013.

N. Alliance, “5G white paper,” 2015.

N. Alliance, “Description of network slicing concept,” NGMN 5G P, vol. 1, 2016.

E. Mannie, “Generalized Multi-Protocol Label Switching (GMPLS) Architecture” RFC 3945,
Nov. 2004.

R. Casellas, R. Munoz, R. Martinez, R. Vilalta, L. Liu, T. Tsuritani, I. Morita, V. Lépez, O. G.
de Dios, and J. P. Ferndndez-Palacios, “SDN Orchestration of OpenFlow and GMPLS Flexi-
Grid Networks With a Stateful Hierarchical PCE [Invited],” J. Opt. Commun. Netw., vol. 7,
pp- A106-A117, Jan 2015.

Y.Yoshida, A. Maruta, K. Kitayama, M. Nishihara, T. Tanaka, T. Takahara, J. C. Rasmussen,
N. Yoshikane, T. Tsuritani, I. Morita, S. Yan, Y. Shu, M. Channegowda, Y. Yan, B. Rofoee,
E. Hugues-Salas, G. Saridis, G. Zervas, R. Nejabati, D. Simeonidou, R. Vilalta, R. Muifioz,
R. Casellas, R. Martinez, M. S. Moreolo, J. M. Fabrega, A. Aguado, V. Lépez, J. Marhuenda,
O. G. de Dios, and J. P. Ferndndez-Palacios, “First international SDN-based Network Orches-
tration of Variable capacity OPS over Programmable Flexi-grid EON,” in PDP Optical Fiber
Conference (OFC), Mar. 2014.

R. Casellas, R. Martinez, R. Mufioz, L. Liu, T. Tsuritani, I. Morita, and M. Tsurusawa, “Dynamic
virtual link mesh topology aggregation in multi-domain translucent WSON with hierarchical-
PCE,” Optics express, vol. 19, no. 26, pp. B611-B620, 2011.

A. Farrel and G. Ash, “A Path Computation Element (PCE)-Based Architecture” RFC 4655,
Aug. 2006.



Bibliography

[64]

[72]

[73]

[74]

[75]

[76]

[79]

R. Martinez, R. Casellas, R. Munoz, and R. Vilalta, “Experimental evaluation of delay-sensitive
traffic routing in multi-layer (packet-optical) aggregation networks for fixed mobile convergence,”
in 89th European Conference and Ezxhibition on Optical Communication (ECOC 2013), pp. 1-3,
Sept 2013.

“Ryu OpenFlow controller.” Available online at http://osrg.github.io/ryu/.

N. Baldo, R. Martinez, P. Dini, R. Vilalta, M. Miozzo, R. Casellas, and R. Munoz, “A Testbed for
Fixed Mobile Convergence Experimentation: ADRENALINE-LENA Integration,” in FEuropean
Wireless 2014; 20th European Wireless Conference, pp. 1-6, May 2014.

3GPP, “E-UTRA and E-UTRAN; Overall description - T'S 36600,” March 2012.
S. Software, “OpenAPI Specification v2.0,” 2014.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer,
M. Dreschmann, M.Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error Vector
Magnitude as a Performance Measure for Advanced Modulation Formats,” IEEE Photonics Tech-
nology Letters, vol. 24, pp. 61-63, 2012.

“SDN Architecture,” tech. rep., April 2016.

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and C. Wright,
“Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized
Layer 2 Networks over Layer 3 Networks.” RFC 7348, Aug. 2014.

D. T. Li, D. Farinacci, S. P. Hanks, D. Meyer, and P. S. Traina, “Generic Routing Encapsulation
(GRE).” RFC 2784, Mar. 2000.

ETSI Group Specification, “Network Function Virtualization (NFV): Architectural Framework,”
ETSI GS NFV 002 v.1.1.1,, 2013.

F. Travostino, P. Daspit, L. Gommans, C. Jog, C. De Laat, J. Mambretti, I. Monga, B. Van Oude-
naarde, S. Raghunath, and P. Y. Wang, “Seamless live migration of virtual machines over the
MAN/WAN,” Future Generation Computer Systems, vol. 22, no. 8, pp. 901-907, 2006.

M. Alicherry and T. Lakshman, “Network aware resource allocation in distributed clouds,” in
INFOCOM, 2012 Proceedings IEEFE, pp. 963-971, IEEE, 2012.

B. Martini, M. Gharbaoui, and P. Castoldi, “Cross-Functional resource orchestration in optical
telco clouds,” in 2015 17th International Conference on Transparent Optical Networks (ICTON),
pp- 1-5, July 2015.

R. M. noz, A. Mayoral, R. Vilalta, R. Casellas, R. Martinez, and V. Lopez, “The Need for a Trans-
port APT in 5G networks: the Control Orchestration Protocol,” in Optical Fiber Communication
Conference, p. Th3K.4, Optical Society of America, 2016.

R. Vilalta, R. M. noz, R. Casellas, R. Martinez, F. Francois, S. Peng, R. Nejabati, D. E. Sime-
onidou, N. Yoshikane, T. Tsuritani, I. Morita, V. Lépez, T. Szyrkowiec, and A. Autenrieth, “Net-
work Virtualization Controller for Abstraction and Control of OpenFlow-enabled Multi-tenant
Multi-technology Transport Networks,” in Optical Fiber Communication Conference, p. Th3J.6,
Optical Society of America, 2015.

R. Vilalta, R. M. noz, R. Casellas, and R. Martinez, “Dynamic virtual GMPLS-controlled WSON
using a Resource Broker with a VNT Manager on the ADRENALINE testbed,” Opt. Express,
vol. 20, pp. 29149-29154, Dec 2012.

153



Bibliography

[80] E. C. Rosen and L. Andersson, “Framework for Layer 2 Virtual Private Networks (L2VPNs).”
RFC 4664, Sept. 2006.

[81] J. Drake, W. Henderickx, A. Sajassi, R. Aggarwal, D. N. N. Bitar, A. Isaac, and J. Uttaro, “BGP
MPLS-Based Ethernet VPN.” RFC 7432, Feb. 2015.

[82] “Functional Requirements for Transport API ,” tech. rep., June 2016.
[83] T. O. Foundation, “Openstack api documentation.”

[84] V. Lopez, I. Maor, K. Sethuraman, A. M. L. de Lerma, L. Y. Ong, R. Szwedowski, F. Marques,
A. Sharma, F. Bosisio, O. G. de dios, O. Gerstel, F. Druesedau, R. Vilalta, H. Silva, A. Aut-
enrieth, N. Borges, C. Liou, G. Cazzaniga, and J. P. Fernandez-Palacios, “E2E Transport API
demonstration in hierarchical scenarios,” in Optical Fiber Communication Conference, p. Tu3L.4,
Optical Society of America, 2017.

154



Appendix A

Control Orchestration Protocol specification

Al

A2

Al

Al1l

COP data model definition based on YANG . . . . . . ... . ... .. ... 155
A1l Call Service . . . . . o oL 155
A.1.2 Topology Service . . . . . . . . . 164
A.1.3 Path Computation Service . . . . . . . . . . .. L 168
A.1.4 Virtual Network Service . . . . . . . . . .. Lo 169
COP interface definition based on RESTCONF/SWAGGER . . . . ... ... .. ... 172
A2.1 Call Service . . . . . o o e 173
A.2.2 Topology Service . . . . . . . . 174
A.2.3 Path Computation Service . . . . . . . . . . . . .. . . e 177
A.2.4 Virtual Network Service . . . . . . . ... .. 177

COP data model definition based on YANG

Call Service

module service—call {

yang—version 1;

namespace "http://ict—strauss.eu/cop/service—call";

prefix s—call;
organization "CITTC";

description "YANG version of the Common Orchestration Protocol (COP).";

155



A.1. COP data model definition based on YANG

revision "2015-05-30" {
description
"Service call module for STRAUSS';

}

typedef qos_class_enumeration {
type enumeration {
enum gold {
description "Gold QoS Class";
value 1;

enum silver {
description "Silver QoS Class";
value 2;

}

typedef transport_layer_type_enumeration {
type enumeration {
enum dwdm_ link {
description "Setup a dwdm link";
value 1;

}

enum ethernet {
description "Setup an end to end ethernet path";

value 2;

}

enum ethernet__broadcast {
description "Setup an ethernet Flood";

value 3;

}

enum mpls {
description "Setup an MPLS path';

value 4;

}

typedef direction_type_enumeration{
type enumeration{
enum unidir{
description "Unidirectional service";
value 1;

enum bidir {
description "Bidirectional service";
value 2;

}

grouping transport_layer—type{
description "";
leaf layer {
type transport_layer_type_enumeration;
}

leaf layer_ id {
type string;
}

leaf direction{

156



A. Control Orchestration Protocol specification

type direction_type__enumeration;

}

typedef protocol—type{
type enumeration {
enum TCP;
enum UDP;
enum ARP;
enum DHCP;

}

typedef address—type{
type enumeration {
enum IPv4 {
value 0;
}

enum IPv6 {
value 1;
}

enum DatapathID {
value 2;

}

enum MAC {
value 3;

}

}

grouping label{
description
leaf label—type{
type enumeration{
enum GMPLS FIXED {
value 0;
}

enum GMPLS FLEXI {

[
)

value 1;
}
}
}
leaf label—value{
type int32;
}

}

grouping path—type{
description "The Path represents the individual routes of a Connection.";
leaf id{

type string;
}

list topo_components{
key "endpoint_id";
uses endpoint;

}

leaf no_path{
type boolean;

}

leaf multi_layer{
type boolean;

157



A.1. COP data model definition based on YANG

158

}

grouping match—rules{
description "Match rules

}

container label{

uses label;

}

leaf in_port{

for

call — OF match rules + extentions

//type inet:port—number; // Switch input port.

type string;

}

leaf in_phy_port{

//type inet:port—number; // Switch physical input port.

type string;

}

leaf metadataf{

type string; // Metadata passed between tables.

}

leaf eth_src{

//type yang:mac—address; // Ethernet source address.

type string;

leaf eth_dst{

//type yang:mac—address; // Ethernet destination address.

type string;

type int32; // Ethernet frame type.

type int32; // VLAN id.

type int32; // VLAN priority.

type int32; // IP DSCP (6 bits in ToS field).

type int32; // IP ECN (2 bits in ToS field).

type int32; // IP protocol.

}

leaf eth_type{
}

leaf vlan_ vid{
}

leaf vlan_pcp{
}

leaf ip_dscp{
}

leaf ip__ecn{
}

leaf ip_proto{
}

leaf ipv4_src{

//type inet:ip—address; // IPv4 source address.

type string;

leaf ipv4_dst{

//type inet:ip—address; // IPv4 destination address.

type string;

}

leaf tcp_srcq

type int32; // TCP source port.

}

leaf tcp_dst{

type int32; // TCP destination port.

}

leaf udp_src{

type int32; // UDP source port.

}

",

i



A. Control Orchestration Protocol specification

leaf udp_dst{
type int32; // UDP destination port.
}

leaf sctp_src{
type int32; // SCTP source port.
}

leaf sctp_dst{
type int32; // SCTP destination port.
}

leaf icmpv4_type{
type int32; // ICMP type.
}

leaf icmpv4_code{
type int32; // ICMP code.
}

leaf arp_op{
type int32; // ARP opcode.
}

leaf arp_spaf
type int32; // ARP source IPv4 address.
}

leaf arp_tpa{
type int32; // ARP target IPv4 address.
}

leaf arp_sha{
type int32; // ARP source hardware address.
}

leaf arp_tha{
type int32; // ARP target hardware address.
}

leaf ipv6_src{
//type inet:ipv6—address; // IPv6 source address.
type string;

}

leaf ipv6_dst{

//type inet:ipv6—address; // IPv6 destination address.

type string;

}
leaf ipv6_ flabel{

//type inet:ipv6—flow—label; // IPv6 Flow Label
type string;

}

leaf icmpv6__type{
type int32; // ICMPv6 type.
}

leaf icmpv6__code{
type int32; // ICMPv6 code.
}

leaf ipv6_nd_target{
type int32; // Target address for ND.
}

leaf ipv6_nd_sll{
type int32; // Source link—layer for ND.
}

leaf ipv6_nd_ t11{
type int32; // Target link—layer for
}

leaf mpls_label{
type int32; // MPLS label. x/
}

leaf mpls_tc{
type int32; // MPLS TC. x/

159



A.1. COP data model definition based on YANG

}

leaf mpls_bos{
type int32; // MPLS BoS bit. =/

leaf pbb_isid{
type int32; // PBB I-SID. x/
}

leaf tunnel id{
type int32; // Logical Port Metadata. x/
}

leaf ipv6_ exthdr{
type int32; // IPv6 Extension Header pseudo—field x/
}

leaf experimental gmpls__wson_label{
type int32; // GMPLS-TE Label
}

leaf experimental_ teid{
type int64;// EXPERIMENTAL MATCH
}

grouping endpoint {
description "The End—Point represents the access to the forwarding (as
Connection—End—Point) and/or adjacency (as Link—End—Point) function";

leaf endpoint_id{

type string;

description "Name of the endpoint, for example hostl—portl";
}

leaf router_id{
type string;
}

leaf interface_id{
type string;
}

/xleaf topology—component{
type topo:end—ref;
b/

}

grouping traffic_params{
description "Basic Traffic Parameters to be offered within a Call";
leaf reserved bandwidth {
description "Reserved Bandwidth measured in Mb/s i.e. 10, 100, 1000 Mb/s";
type int32;

leaf latency {
description "Connection latency measured in ms";
type int32;

}

leaf estimated PLR {
description "Estimated packet loss ratio in %";
type decimal64{
fraction—digits 2;
}

leaf OSNR {
description "Optical Signal—to—noise ratio";
type decimal64{
fraction—digits 2;

160



A. Control Orchestration Protocol specification

}
}

leaf qos_class {
type qos_.class__enumeration;
}

}

grouping connection {
description "The Connection represents an enabled potential for forwarding
(including all circuit and packet forms) between two or more endpoints";

leaf connection_id{
type string;
}

container aEnd{
uses endpoint;
}

container zEnd{
uses endpoint;
}

container path{
uses path—type;
}

container match {
uses match—rules;

container traffic params {
uses traffic_params;

leaf controller__domain_id{
type string;
}

container transport_layer{
uses transport_layer—type;
1

leaf operStatus {
description "Running status';
config false;
type enumeration {
enum down {
value 0;
description "down'";
}
enum up {
value 1;
description "up';

}

grouping call {
description "A call represents an intent—request for connectivity within a
Forwarding—Domain between the endpoints. Call is distinct from the Connection
that realizes the Call.";

leaf call_id{
type string;
}

container aEnd{
uses endpoint;
}

161



A.1. COP data model definition based on YANG

container zEnd{
uses endpoint;
}

container transport_layer{
uses transport_layer—type;
}

leaf operStatus {
description "Running status";
type enumeration {
enum down {
value 0;
description "down';
}
enum up {
value 1;
description "up';

}
}

container match{
uses match—rules;
}

container traffic_params {
uses traffic_params;
}

list connections{
config false;
key "connection_id";
uses connection;

}

notification update_call{
uses call;
}

notification remove_ call{
uses call;
}

container calls{
list call {
key "call_id";
uses call;
}
}

container connections{
list connection {
key "connection_id";
uses connection;

162



A. Control Orchestration Protocol specification

service-call

cTTc
Revision : 2015-05-30

(@) qos._class @) direction_type_enumeration
dwdm ik
ertet unidir
g bidir
MORE

otification

@ protocoltype| (@) =ddresstype

notification Tcp 1Pva
uop 1Pv6
AR Datapathid
MORE MORE

<< notification>>] 1
update_call <container=>]
connections

<< notifcation>>]
remove_call

uses

=

o

<< fist=>
connection

uses |uses

@ ~=5orne>
call

all_id : string
operStatus - enumeration : {down,up.}

uses

<<list>>
onnections

1
(@-<ortziner=>] <<container=>
aEnd traffic_params

<< grouping>>
connection

Config = false ™)

connection_id - stri
Controller domain id - str
operstanis  enumieration . (donn.up.}_{Confy : alse)

]
match
.

<<container=>
transport_layer

| \
<<container>> P
| transport_layer I |© I (© traffic_params match | uses
[transport_layer-type {uses} | |pnw;== qusesy | [traffic_params (uses)l |mit:h-mles(us=s)|

fuses uses uses

<< grouping>>
match-rules

[

rouping>>
@ (oo @ g3mre= traffic_params
transport Jayer-type pathiype reserved banduidth 2
e LTt i string latenc,
layer id no_path : boolear Coimated PR decimales
ecion : aretsin_type_snumertion ki layer : bastean OSNR : dezimals:
Gos class  aos. dlass_snumeration

vt ndarget 2
ipve_nd sl : ints2
ipve_nd 1l int32
moiebalfinez

mp\s bos muz

tunnel w mtzz
ipv6,_exthdr

Gepssmantal omle_ waon labe  nts2

experimental_teid - int6d.

uses

Z

[@ ) [@siru]  Lees
[bei quzey | [ndvort twsesy |

uses
= - << grouping>>

‘ . grouping: . endpoint

Tabeltype - enumeration - {GMPLS_FIXED, GHPLS_FLEX.} © it 0 s Y

Iabelatue nts2 e

UML Generated : 2016-03-10 13:17

Figure A.1: COP Call service UML diagram 163



A.1. COP data model definition based on YANG

A.1.2 Topology Service

module service—topology {
yang—version 1;
namespace "http://ict—strauss.eu/cop/service—topology";
prefix s—topology;
organization "CTTC';
description "YANG version of the Common Orchestration Protocol (COP).";

revision "2015-05-30" {
description
"Service Topology module for STRAUSS";

}

typedef topology—ref {
type leafref {
path "/topologies/topology/topology_id";
}

description

"A type for an absolute reference a topology instance.";

}

typedef edge_type_enumeration {
type enumeration {

enum dwdm_edge {
description "DWDM link ";
value 1;

}

enum eth_edge {
description "Ethernet link";
value 2;

}

typedef switching cap_enumeration {
type enumeration {

enum lsc {
description "lsc sw_cap";
value 1;

}

enum psc {
description "psc sw_cap";
value 2;

}

grouping topology{
leaf topology_id{
type string;
}

leaf—1list underlay—topology {

description "List of topologies from which this depends on."
type topology—ref;

164



A. Control Orchestration Protocol specification

}

list nodes{
key "node_id";
uses node;

}

list edges{
key "edge_id";
uses edge;

grouping edge_end{

leaf edge_end_id{
type string;
}

leaf switching_cap{
type switching cap_enumeration;
}

leaf name{
type string;
}

leaf peer_node_id{
type string;
}

grouping node{

leaf node_id{
type string;
}

leaf—1list underlay—abstract—topology{
description "List of topology_ids which are
type topology—ref;

}

leaf name{
type string;

}

leaf domain{
type string;

leaf nodetype{
type string;
}

list edge_end{
key "edge_end_id";
uses edge_end;

grouping edge{

leaf edge_type{
mandatory true;
type edge_type_enumeration;

leaf edge_id{
type string;
}

leaf name{
type string;
}

leaf switching_cap{
type string;

represented by this node.";

165



A.1. COP data model definition based on YANG

}

leaf metric{
type string;
}

leaf max_resv_bw{
type string;
}

leaf unreserv_bw{
type string;
}

container source{
config false;
uses node;

}

container target{
config false;
uses node;

}

container local_ifid{
config false;
uses edge_end;

}

container remote_ ifid{
config false;
uses edge_end;

}

grouping dwdm_ channel{
leaf g694 id{
type int32;
}

leaf state{
type int32;
}

}

grouping bitmap{
leaf numChannels{
type intl6;
}

leaf—1list arrayBits{
type intl6;
}

}

grouping dwdm_ edge{
container bitmap{
uses bitmap;
}

list channels{
key "g694_id";
uses dwdm_ channel;

}

uses edge;

}

grouping eth_edge{
uses edge;
}

container topologies{

166



A. Control Orchestration Protocol specification

config false;

list topology{
key "topology_ id";
uses topology;

http:/fict-strau
Prefix: s-topology
Organization :
cTTC

Revision : 2015-05-30

s-topology: service-topology’

service-topology

[@sw\tchmgicapisnumeraucn |

l@ edge_type_enumeration||

<< module>>

Isc
psc

dwdm_edge opology|

<th_edge

0.N

1

@ < pecer>

‘topology-ref

<<container>>]
topologies

topology-ref

topology_id\, 0.N

<< list>>

topology Config = false

topology {uses}

luses

<= grouping>>
topology
topology_id : st

ring
underlay-topology [I: topology-ref

<< grouping>>| < figt=>]
sth_edge edges

edge {uses} cdge {uses)

\uses luses

@ ~=oowine>>
edge

dge_type - edge_type_enumeration {mandatory}

edgeCid : string

namé ; strin

switching_cap  string

metric  string

max_resv_bw - string

unreSery bw - string

a

uses

< grouping>>|
dwd

edge {uses}

1

(@ =corzainer>
bitmap

<< fist>>
channels

[bitmap uses}

[@wam_channel tusesy |

uses

uses

e >>| ]
s (O

)
l@ remote_ifid_|

@ Gimap

@ i chomrel

©<<comamer>>
source

[node qusest

[node gusesy ] [edge_end tusesr |

[edge_end tusesr |

uses

uses

@ <<oropre>>
node

de_id: st

stri
domain : strin
nodetype - string

- id: string
undeflay-abstract-topology [I: topology-ref
ring

Config = false

numChannels : int16
arrayBits [I: intl6

694 1d - int32
state” int32

Config = false

uses

<< list>>

edge_end

edge_end {uses}

@ <=spoweng>>
edge_end

dge_end_id : string
switching cap : switching_cap_enumeration
name : sirin

peer_node_id : string

UML Generated : 2016-03-10 13:17

Figure A.2: COP Topology service UML diagram

167



A.1. COP data model definition based on YANG

A.1.3 Path Computation Service

module service —path—computation {
yang—version 1;
namespace "http://ict—strauss.eu/cop/service—path—computation";
prefix s—path;

import service—call {
prefix sc;
}

organization "CTTC";

revision "2015-05-30" {
description
"Service Path Computation module for STRAUSS';

grouping path_request{

. . nono,
description ;

leaf request—id{
type string;
}

container aEnd{
uses sc:endpoint;

container zEnd{
uses sc:endpoint;

container traffic_parameters{
description "TrafficParam covers service specific traffic attributes";
uses sc:traffic_params;

}

grouping path_reply{
description "";
leaf reply—id{

type string;
}

container path{
uses sc:path—type;
}

rpc path_computation{
input {
uses path_request;
}

output{
uses path_reply;
}

168



A. Control Orchestration Protocol specification

service-path-computation

Namespace: http:/fict-strauss.eujcop/service-path-computation
Prefix: s-path

Organization :

CTTC

Revision : 2015-05-30

sciservice-call

’
’

s-path: 5ervice-path-c0mputati0n\

@ << module>>
senvice-path-computation

path_computation( in: path_request out: path_reply)

/ES uses

=< grouping == << grouping ==
path_request path_reply
raquest id : string reply-id : string
<==container==| <==container==| ==container== <=container==|
aEnd zEnd traffic_parameters path
scendpoint {uses} scendpoint {uses} sc:traffic_params {uses} scpath-type {uses}

UML Generated : 2016-03-10 13:18

Figure A.3: COP Path Computation service UML diagram

A.1.4 Virtual Network Service

module service—virtual —network {
yang—version 1;
namespace "http://ict—strauss.eu/cop/service—virtual —network";
prefix s—vnet;
import service—topology{

prefix s—topo;
}

organization "CITH
description "YANG version of the Common Orchestration Protocol (COP).";
revision "2015-06-23" {

description

"Service Virtual Network module for STRAUSS";

}

typedef virtual -—network—ref {
type leafref {
path "/virtual_networks/virtual _network/virtual_network_id";
}

description

169



A.1. COP data model definition based on YANG

170

"A type for a virtual network instance.

grouping virtual_network{
leaf virtual network id{

type string;
}

leaf tenant ip{
type string;
}

list vNodes{
config false;
key "vNode_id";
uses vNode;

}

list vEdges{
config false;
key "vEdge_ id";
uses vEdge;

}

grouping vEdge_end{
leaf vEdge_end_id{
type string;
}

container pNode{
uses s—topo:node;
}

container pEdgeEnd({
uses s—topo:edge_end;
}

}

grouping vNode{
leaf vNode_id{
type string;
}

list vEdge_ends{
key "vEdge end_id";
uses vEdge_end;

}

grouping vEdge{
leaf vEdge_ id{
type string;
}

container source{
config false;
uses vNode;

}

container target{
config false;
uses vNode;

}

container local ifid{
config false;
uses vEdge_end;

[

)



A. Control Orchestration Protocol specification

container remote_ifid{
config false;
uses vEdge_ end;

}

container virtual_networks{
list virtual_network{
key "virtual_ network_id";
uses virtual network;

171



A.2. COP interface definition based on RESTCONF/SWAGGER

service-virtual-network

- httpjict-strauss.et ice-virtual-network
s-topo: service-topology | Prefix: s-vnet
T ization :
cTTC
Revision : 2015-06-23

’

s-vnet:service-virtual-network |

@ << module>>
service virtual-network|

== typedef~>
virtual-network-ref

[teafref - pvirtual_networksfvirtual_networkivirtual_network_id

<<container>>
virtual_networks

\virtual-network-ref

virtual_network_id

<= list>>
virtual_network

virtual_network {uses}

uses

<< grouping>>
virtual_network

virtual_network_id : string
tenant_ip : string

i

<< fist>> << fist=>
(@i (@i

[vnode qusesy [vedge qusesy

uses

<< grouping =]
VEdge

cConfig = false Config = false

vEdge_id : string

/

<<container>>] <<container>>] <<container>>] <<container>>|
target source remote_ffid local_ifid
\ [vhode qusesy [vhode {usesy [vEdge_end {usesy VEdge_end {uses}

Config = false H Config = false

®.

vEdge_cnd {uses}

.<< grouping=>=|
vNode

WNode_id

Config = false

string

<< list=>
£dge_ends

<< grouping>>
vEdge_end

vEdge_end_id : string

<=container=>| <<container>>
pNode PEdgeEnd
[ s-topoinade {usesy [ s-tono:edge_end {usesy

UML Generated : 2017-05-12 17:13

Figure A.4: COP Virtual Network service UML diagram

A.2 COP interface definition based on RESTCONF/SWAGGER

Following, a detailed set of examples of the COP configuration data store, operations and notification
following the RESTCONF standard are presented in the next subsections. The examples show the
HTTP Request commands required to excite the COP RESTCONF interface including examples of

172



A. Control Orchestration Protocol specification

the JSON-encoded body messages included in the HT'TP Requests.

A.2.1 Call Service

service-call API
sarvice-call AP| generatad from service-callyang
Version 1.0.0
Paths
[streams fupdate_call/ *
|
-
|
Jeonfigfecalls/ *
Jeonfigfeallsfcallf{eallld}/ *
|
POST /config/calls/call/{callld}/ |
DELETE |
GET fconfig/calls/call/{callld}l/ |
Jeonfig/callsfcallf{callld}/aEnd/ *
Jeonfig/callsfcallf{callld}/zEnd/ -
Jeonfig/callsfcallf{callId}/transport_layer/ -
Jeonfig/callsfcallf{callId}/match/ -
JeonFig/eallsfeall/{eall1d]} /traffic_params/ -
feonfig/callsfeallf{callld}/connections/{connectionld}/ -
Fig/calls/call/{callld}/connections/{connectionId}/
[eonfigfcallsfcallf{callId}/connections/{connectionId} /aEnd/ *
feonfig/callsfeallf{callld}/connections/{connectionld} /zEnd/ -
Jeonfigfcallsfcallf{callIld}/connections/{connectionId} /path/ *
Jeonfigfcallsfcallf{callId}/connections/{connectionId} /path/topo_components/{endpointId}/ *
Jeonfigfeallsfcallf{callId}/connections/{connectionId} /path/label/ *
Jeonfigfcallsfcall/{callld}/connections/{connectionId} fmatch/ *
Jeonfig/callsfcallf{callId}/connections/{connectionId} ftraffic_params/ -
Jeonfig/callsfcallf{callId}/connections/{connectionId} /transport_layer/ *
Jconfigfconnections/ *
Jconfig/connections/connection/{connectionId}/ *
|
POST [config/connecti onnection/{connectionId}/ |
|
|
Jconfig/connections/connection/{connectionId}/aEnd/ -
Jconfig/connections/connection/{connectionId}/zEnd/ *
Jeonfig/connections/connection/ {connectionld}/path/ *
Jeonfig/connections/connaction/ [connectionTd} /path/topo_components/{endpointTd]/ -
Jconfigfconnections/connection/{connectionId}/path/label/ -
Jconfig/connections/connection/{connectionId}/match/ *
Jconfig/connections/connection/{connectionId}/traffic_params/ *
Jconfig/connections/connection/{connectionId}/transport_layer/ *

Figure A.5: COP Call service RESTCONTF interface.

173



A.2. COP interface definition based on RESTCONF/SWAGGER

Models

Endpoint
vEndpoint {
routerTd: atring
= interfaceld: string

endpointId: string

I3
TransportLayerType

¥ TransportlayarTypa {

layexz: » stzing

= direction: » string

layezId: stzing

}
Connection

¥ Connection {

controllerDomainld: string

trafficParams:
connectionld:
=End-
= ocperStatus:
aEnd:
path:
transportlayer:
match:
I3
TrafficParams
v TrafficParama {
latency:
OSHR:
= estimatedPLA:

qesClass:

»TrafficParams [ }
string

»Endpoint { }

» string

»Endpoint { }
»PathType { }
»TransportLayerType { }
rMatchRules { }

v

integer
» number

» number

R

string

reservedBandwidth: » integer

t
Label

v Label {

lsbelType: » string

lsbelValue: » integer

Call
vCall {
cperStatus:
callld:
zEnd:

connections:

trafficParams:
aEnd:
transportLayer:

mateh:

» string
string
»Endpoint { }
v

»Connection [ }
1
»TrafficParams { }
»Endpoint { }
»TransportlLayerType { }
sMatchRules { }

MatchRules

vMatchRules {
mplsLabel:
ethType:
ipEcn:
icmpvdType:
ethDst:
vlanPcp:
ipvdDst:
arpTpa:
arpSha:
ipwEExthdr:
icmpwEType:
ipweSrec:
mplsTec:
tunnelld:
sctpDat:
ethirc:
ipvéNdTarget:
tepSre:
ipviSre:
icmpvéCode:
mplsBos:
experimentalTeid:
ipvENdT11:
sctpSreo:
udpDst:
pbbIsid:
ipvéFlabel:
inPort:
icmpvdCode:
ipDacp:
inPhyPort:
ipProto:
arpTha:
arpdpa:
ipvéDst:
udpdzre:
arplp:
ipweNdS1l:
vlanVid:

experimentalCmplsiscnlabel:

metadata:
topDat:
}
PathType
v PathType {
multiLayer: boolean
noPath: boolean
= id: string
topoComponents: » []
label: *Label { 1}
}

» integer
» integer
*» integer
» integer
string

» integer
string

» integer
» integer
» integer
» integer
string

*» integer
» integer
*» integer
string

» integer
» integer
atring

» integer
» integer
* integer
» integer
*» integer
» integer
» integer
atring

atring

» integer
» integer
string

* integer
» integer
» integer
string

» integer
» integer
» integer
» integer
» integer
atring

» integer

Figure A.6: COP Call service RESTCONF interface.

A.2.2 Topology Service

174




A. Control Orchestration Protocol specification

service-topology API

service-topology API generated from service-topology.yang

Version 1.0.0

Paths

Jconfig/topologies/

GET /config/topologies/ }

/config/topologies/topology/{topologyld}/

GET /config/topologies/topology/{topelogyld}/ }

/config/topologies/topology/{topologyld} /nodes/{nodeld}/

GET /config/topologies/topology/{topelogyld} /nodes/{nodeld}/

/config/topologies/topology/{topologyld} /nodes/ {nodeld} /edge_end/{edgeEndId}/
GET /config/topologies/topology/{topologyld}/nodes/{nodeld}/edge_end/{edgeEndId}/
Jconfig/topologies/topology/{topologyld} /edges/ {edgeld}/

GET /config/topologies/topology/{topologyld} /edges/{edgeld}/

/eonfig/topologies/topology/{topologyld} /edges/{edgeld} /source/

GET /config/topologies/topology/{topologyld}/edges/{edgeld}/source/ }

Jconfig/topologies/topology/{topologyld} /edges/ {edgeld} /source/edge_end/{edgeEndId}/

GET /config/topologies/topology/{topologyld}/edges/{edgeld}/source/edge_end/{edgeEndId}/

/eonfig/topologies/topology/{topologyld} /edges/{edgeld]} /target/

GET /config/topologies/topology/{topologyld}/edges/{edgeld}/target/ ‘

Jconfig/topologies/topology/{topologyld} /edges/ {edgeld} /target/edge_end/{edgeEndId}/

GET [config/topologies/topology/{topologyld}/edges/{edgeld}/target/edge_end/{edgeEndId}/

Jconfig/topologies/topology/{topologyld} /edges/ {edgeld} /local_ifid/

GET /config/topologies/topology/{topologyId} /edges/{edgeld}/local ifid/ ‘

/eonfig/topologies/topology/{topologyld} /edges/{edgeld}/remote_ifid/

GET /config/topologies/topology/{topologyld} /edges/{edgeld}/remote_ifid/ ‘

Figure A.7: COP Topology service RESTCONTF interface paths SWAGGER editor display.

175



A.2. COP interface definition based on RESTCONF/SWAGGER

Models

Node DwdmChannel
vHode { v DwdnChannel {
domain: string atate: » integer
nodetype: atring gE&S4Id: » integer
nams: string }
edgeEnd: [ Dwdm Edge
. »EdgeEnd { }
= - v DwdnEdge {
all of:
nodeId: string vEdge |
underlayibstractTopology: v [ name - string
atring
- edgeld: string
1 edgelype: +» string
awitchingCap: string
EthEdge metric: string
vEdge { maxfesvEw: string
name: string source: »Node { }
edgeld: string - localIfid: »EdgeEnd { }
edgelype: » string remoteIfid: »EdgeEnd { 1}
awitchingCap: string unreserviw: string
metric: string target: »Node { }
] maxtegvBuw: string '
source: »Hode { } v i
localIfid: »EdgeEnd { } shannsls: v [

] »DwdmChannel { }
remoteIfid: »EdgeEnd { }

unreservBw: atring bitmap: »Bitmap { }
target: rNode { } }
! }
Bitmap Topology
vBitmap { ¥ Topology |
= arrayBits: -0 topologyId: string

numChannels: » integer underlayTopology: ¥ [

t

atring
Edge :
+Edge . nodes: v [
g - sHode { }
name: string 1
edgeld: atring edges: v
edgeType: » string vEdge [ }

awitchingCap: string 1

metric: string 1
= maxEesviw: string
Source: eHode { } EdEEEnd
localIfid: »EdgeEnd [ } v EdgeEnd {
remotelfid: »EdgeEnd { } awitchingCap: » string
unreservBw: string . edgeEndld: string
=

target: sHode { } name: string

} peerNodeld: string

Figure A.8: COP Topology service JSON Data models SWAGGER editor display.

176



A. Control Orchestration Protocol specification

A.2.3 Path Computation Service

service-path-computation API

service-patn-compuration AP| generatea from service-patn-computation.yang

Version 1.0.0

Paths

foperations/path_computation/

POST /operations/path_computation/ |

Figure A.9: COP Path Computation service RESTCONF interface paths SWAGGER editor display.

Models
PathReply
¥ PathReply {
path: v PathType {
multilayer: boolean
noPath: boolean
id: string

topoComponents: v [
w»Endpoint { }
= 1
label: vLabel {
lakbelType: » string

labelValue: = integerxr

}
}
replyld: string
}
PathReguest
v PathRecquest {
aEnd: »Endpoint { }

reguestId: string

trafficParameters: v TrafficParams {

latency: » integer

OSNR: » number

= eatimatedPLA: = number
goaClass: string

reservedBandwidth: » integer
}
ZEnd: »Endpoint { }

Figure A.10: COP Path Computation service JSON Data models SWAGGER editor display.

A.2.4 Virtual Network Service

177



A.2. COP interface definition based on RESTCONF/SWAGGER

Paths
Jeconfig/virtual_networks/ +*
Jconfig/virtual_networks/virtual_network/ -
GET /config/virtual_networ| rtual_network/ |
Jeconfig/virtual_networks/virtual_network/{virtualNetworkId}/ -
|
|
DELETE / virtu etw u {virtualNet <Id}/ I
GET /config/virtual_networks/virtual_network/{virtualNetworkId}/ |
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vNodes/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vNodes/{vNodeId}/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vNodes/{vNodeId}/vEdge_ends/ -
Jeconfig/virtual_networks/virtual_network/{virtualNetworkId}/vNodes/{vNodeId} /vEdge ends/{vEdgeEndId}/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vNodes/{vNodeId} /vEdge_ends/{vEdgeEndId}/pNode/ -
Jconfig/virtual_networks/virtual_network/{virtualNetworkId}/vNodes/{vNodeId} /vEdge_ends/{vEdgeEndId}/pNode/edge_end/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vNodes/{vNodeld} /vEdge_ends/{vEdgeEndId}/pNode/edge_end/{edgeEndId}/ *
Jeconfig/virtual_networks/virtual_network/{virtualNetworkId}/vNodes/{vNodeId}/vEdge_ends/{vEdgeEndId}/pEdgeEnd/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/ -
Jconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/source/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/source/vEdge_ends/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/source/vEdge_ends/{vEdgeEndId}/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId} /source/vEdge_ends/{vEdgeEndId}/pNode/ -
Jconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeld}/source/vEdge_ends/{vEdgeEndId}/pNode/edge_end/ -
fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/source/vEdge_ends/{vEdgeEndId}/pNode/edge_end/{edgeEndId}/ -
feconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeld}/source/vEdge_ends/{vEdgeEndId}/pEdgeEnd/ -
[fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeIld}/target/ -
Jeconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeld}/target/vEdge_ends/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/target/vEdge_ends/{vEdgeEndId}/ -
feonfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/target/vEdge_ends/{vEdgeEndId}/pNode/ -
Jfconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/target/vEdge_ends/{vEdgeEndId}/pNode/edge_end/ -
fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/target/vEdge_ends/{vEdgeEndId}/pNode/edge_end/{edgeEndId}/ -
fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/target/vEdge_ends/{vEdgeEndId}/pEdgeEnd/ -
fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeIld}/local_ifid/ -
feconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/local_ifid/pNode/ -
fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeIld}/local_ifid/pNode/edge_end/ -
Jeconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeIld}/local_ifid/pNode/edge_end/{edgeEndId}/ -
Jeconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeld} /local_ifid/pEdgeEnd/ -
feconfig/virtual_networks/virtual_network/{vi rtualNetwurkId}/vEdges/&vEdgsId}/remutejfid/ -
fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/remote_ifid/pNode/ -
Jeonfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/remote_ifid/pNode/edge_end/ -
fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/remote_ifid/pNode/edge_end/{edgeEndId}/ -
fconfig/virtual_networks/virtual_network/{virtualNetworkId}/vEdges/{vEdgeId}/remote ifid/pEdgeEnd/ -

Figure A.11: COP Virtual Network service RESTCONF interface paths SWAGGER editor display.

178



A. Control Orchestration Protocol specification

Models
VirtualNetwork EdgeEnd
rVirtualNetwork { vEdgeEnd {
virtuallNetworkId: string switchingCap: string
tenantIp: string _ edgeEndId: string
- vEdges: *[1 - name: string
vNodes: +[1 peerNodeId: string
¥ B
VEdgeEnd EthEdge
vVEdgeEnd { vEdge {
pNode: =Node { } name : string
= vEdgeEndId: string edgeld: string
pEdgeEnd:  +~EdgeEnd { } edgeType: string
} switchingCap: string
VEdge metric: string
+VEdge { _ maxResvBw: string
source: *VNode { } - SOUrce: *Node { }
remoteIfid: »VEdgeEnd { } locallfid: »EdgeEnd { }
vEdgeId: string remotelfid: *EdgeEnd { }
= localIfid: =VEdgeEnd { } unreservBw:  string
target: *VNode { } target: *Node { }
$folded: $folded:
} r
VNode Bitmap
*VNode { vBitmap {
vEdgeEnds: »[] B arrayBits: *[1
vHodeId: string B numChannels: »* integer
} r
Node Edge
vNode { vEdge {
domain: string name : string
nodetype: string edgeld: string
name : string edgeType: string
= edgeEnd: *[1 switchingCap: string
nodeld: string metric: string
underlayAbstractTopology: *[]
r

Figure A.12: COP Virtual Network service JSON Data models SWAGGER editor display.

179



