128 research outputs found

    Design and Implementation of a Narrow-Band Intersatellite Network with Limited Onboard Resources for IoT

    Get PDF
    Satellite networks are inevitable for the ubiquitous connectivity of M2M (machine to machine) and IoT (internet of things) devices. Advances in the miniaturization of satellite technology make networks in LEO (Low Earth Orbit) predestined to serve as a backhaul for narrow-band M2M communication. To reduce latency and increase network responsivity, intersatellite link capability among nodes is a key component in satellite design. The miniaturization of nodes to enable the economical deployment of large networks is also crucial. Thus, this article addresses these key issues and presents a design methodology and implementation of an adaptive network architecture considering highly limited resources, as is the case in a nanosatellite (≈10 kg) network. Potentially applicable multiple access techniques are evaluated. The results show that a time division duplex scheme with session-oriented P2P (point to point) protocols in the data link layer is more suitable for limited resources. Furthermore, an applicable layer model is defined and a protocol implementation is outlined. To demonstrate the technical feasibility of a nanosatellite-based communication network, the S-NET (S band network with nanosatellites) mission has been developed, which consists of four nanosatellites, to demonstrate multi-point crosslink with 100 kbps data rates over distances up to 400 km and optimized communication protocols, pushing the technological boundaries of nanosatellites. The flight results of S-NET prove the feasibility of these nanosatellites as a space-based M2M backhaul.BMWi, 50YB1225, S-Band Netzwerk für kooperierende SatellitenBMWi, 50YB1009, SLink - S-Band Transceiver zur Intersatelliten-Kommunikation von NanosatellitenDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Analysis of the IEEE 802.15.4a ultra wideband physical layer through wireless sensor network simulations in OMNET++

    Get PDF
    Wireless Sensor Networks are the main representative of pervasive computing in large-scale physical environments. These networks consist of a large number of small, wireless devices embedded in the physical world to be used for surveillance, environmental monitoring or other data capture, processing and transfer applications. Ultra wideband has emerged as one of the newest and most promising concepts for wireless technology. Considering all its advantages it seems a likely communication technology candidate for future wireless sensor networks. This paper considers the viability of ultra wideband technology in wireless sensor networks by employing an IEEE 802.15.4a low-rate ultra wideband physical layer model in the OMNET++ simulation environment. An elaborate investigation into the inner workings of the IEEE 802.15.4a UWB physical layer is performed. Simulation experiments are used to provide a detailed analysis of the performance of the IEEE 802.15.4a UWB physical layer over several communication distances. A proposal for a cognitive, adaptive communication approach to optimize for speed and distance is also presented. AFRIKAANS : Draadlose Sensor Netwerke is die hoof verteenwoordiger vir deurdringende rekenarisering in groot skaal fisiese omgewings. Hierdie tipe netwerke bestaan uit ’n groot aantal klein, draadlose apparate wat in die fisiese wêreld ingesluit word vir die doel van bewaking, omgewings monitering en vele ander data opvang, verwerk en oordrag applikasies. Ultra wyeband het opgestaan as een van die nuutste en mees belowend konsepte vir draadlose kommunikasie tegnologie. As al die voordele van dié kommunikasie tegnologie in ag geneem word, blyk dit om ’n baie goeie kandidaat te wees vir gebruik in toekomstige draadlose sensor netwerke. Hierdie verhandeling oorweeg die vatbaarheid van die gebruik van die ultra wyeband tegnologie in draadlose sensor netwerke deur ’n IEEE 802.15.4a lae-tempo ultra wyeband fisiese laag model in die OMNET++ simulasie omgewing toe te pas. ’n Breedvoerige ondersoek word geloots om die fyn binneste werking van die IEEE 802.15.4a UWB fisiese laag te verstaan. Simulasie eksperimente word gebruik om ’n meer gedetaileerde analiese omtrent die werkverrigting van die IEEE 802.15.4a UWB fisiese laag te verkry oor verskillende kommunikasie afstande. ’n Voorstel vir ’n omgewings bewuste, aanpasbare kommunikasie tegniek word bespreek met die doel om die spoed en afstand van kommunikasie te optimiseer.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte

    Analysis of hybrid-ARQ based relaying protocols under modulation constraints

    Get PDF
    In a seminal paper published in 2001, Caire and Tuninetti derived an information theoretic bound on the throughput of hybrid-ARQ in the presence of block fading. However, the results placed no constraints on the modulation used, and therefore the input to the channel was Gaussian. The purpose of this thesis is to investigate the impact of modulation constraints on the throughput of hybrid-ARQ in a block fading environment. First, we consider the impact of modulation constraints on information outage probability for a block fading channel with a fixed length codeword. Then, we consider the effect of modulation constraints upon the throughput of hybrid-ARQ, where the rate of the codeword varies depending on the instantaneous channel conditions. These theoretical bounds are compared against the simulated performance of HSDPA, a newly standardized hybrid-ARQ protocol that uses QPSK and 16-QAM bit interleaved turbo-coded modulation. The results indicate how much of the difference between HSDPA and the previous unconstrained modulation bound is due to the use of the turbo-code and how much is due to the modulation constraints. (Abstract shortened by UMI.)

    Fiabilisation des transmissions dans les réseaux de capteurs sans fils

    Get PDF
    Over the past decades, we have witnessed a proliferation of potential application domainsfor wireless sensor networks (WSN). A comprehensive number of new services such asenvironment monitoring, target tracking, military surveillance and healthcare applicationshave arisen. These networked sensors are usually deployed randomly and left unattendedto perform their mission properly and efficiently. Meanwhile, sensors have to operate ina constrained environment with functional and operational challenges mainly related toresource limitations (energy supply, scarce computational abilities...) and to the noisyreal world of deployment. This harsh environment can cause packet loss or node failurewhich hamper the network activity. Thus, continuous delivery of data requires reliabledata transmission and adaptability to the dynamic environment. Ensuring network reliabilityis consequently a key concern in WSNs and it is even more important in emergencyapplication such disaster management application where reliable data delivery is the keysuccess factor. The main objective of this thesis is to design a reliable end to end solution for data transmission fulfilling the requirements of the constrained WSNs. We tackle two design issues namely recovery from node failure and packet losses and propose solutions to enhance the network reliability. We start by studying WSNs features with a focus on technical challenges and techniques of reliability in order to identify the open issues. Based on this study, we propose a scalable and distributed approach for network recovery from nodefailures in WSNs called CoMN2. Then, we present a lightweight mechanism for packetloss recovery and route quality awareness in WSNs called AJIA. This protocol exploitsthe overhearing feature characterizing the wireless channels as an implicit acknowledgment(ACK) mechanism. In addition, the protocol allows for an adaptive selection of therouting path by achieving required retransmissions on the most reliable link. We provethat AJIA outperforms its competitor AODV in term of delivery ratio in different channelconditions. Thereafter, we present ARRP, a variant of AJIA, combining the strengthsof retransmissions, node collaboration and Forward Error Correction (FEC) in order toprovide a reliable packet loss recovery scheme. We verify the efficiency of ARRP throughextensive simulations which proved its high reliability in comparison to its competitor.Vu les perspectives qu'ils offrent, les réseaux de capteur sans fil (RCSF) ont perçu un grand engouement de la part de la communauté de recherche ces dernières années. Les RCSF couvrent une large gamme d'applications variant du contrôle d'environnement, le pistage de cible aux applications de santé. Les RCSFs sont souvent déployés aléatoirement. Ce dispersement des capteurs nécessite que les protocoles de transmission utilisés soient résistants aux conditions environnementales (fortes chaleurs ou pluies par exemple) et aux limitations de ressources des nœuds capteurs. En effet, la perte de plusieurs nœuds capteurs peut engendrer la perte de communication entre les différentes entités. Ces limitations peuvent causer la perte des paquets transmis ce qui entrave l'activité du réseau. Par conséquent, il est important d'assurer la fiabilité des transmissions de données dans les RCSF d'autant plus pour les applications critiques comme la détection d'incendies. Dans cette thèse, nous proposons une solution complète de transmission de données dans les RCSF répondant aux exigences et contraintes de ce type de réseau. Dans un premier temps, nous étudions les contraintes et les challenges liés à la fiabilisation des transmissions dans les RCSFs et nous examinons les travaux proposés dans la littérature. Suite à cette étude nous proposons COMN2, une approche distribuée et scalable permettant de faire face à la défaillance des nœuds. Ensuite, nous proposons un mécanisme de contrôle d'erreur minimisant la perte de paquets et proposant un routage adaptatif en fonction de la qualité du lien. Cette solution est basée sur des acquittements implicites (overhearing) pour la détection des pertes des paquets. Nous proposons ensuite ARRP une variante de AJIA combinant les avantages des retransmissions, de la collaboration des nœuds et des FEC. Enfin, nous simulons ces différentes solutions et vérifions leurs performances par rapport à leurs concurrents de l'état de l'art

    Energy efficiency evaluation of BLE 5 technology

    Get PDF
    Abstract. As the demand for consumer electronic gadgets keep on growing rapidly day by day, a class of wirelessly connected digital accessories is getting to be built up. In this case, energy efficiency is considered as an essential basic necessity for a wireless communication system to be well adapted for the internet of things (IoT) application. The protocol parameters must be optimized for a given application in order to minimize power consumption. An energy model is therefore required, which can predict the energy consumption of a wireless device based on, Bluetooth low energy (BLE), e.g., for different parameter values. In this case, the BLE 5 technique can be a very effective solution. Lately, the Bluetooth 5 specifications have been introduced in order to offer remarkable improvements in comparison to the previous versions of the protocol. Bluetooth 5 coded is a new special kind of connection that comes with reliable communication features that varies in speed, range, and energy consumption aiming at providing better long-distance connections, but at a lower bit rate. Bluetooth 5 targets to improve twice the speed, four times range, and eight times the advertising in comparison to Bluetooth 4. This thesis describes the evaluation of the energy efficiency of recently specified BLE 5 technique’s coded mode. This work analyses both the analytical, and experimental performance of the energy efficiency of BLE 5 (S = 8) coded mode solution. It includes analytical modelling, Matlab programming, and real-life measurement using Nordic semiconductor nRF52840 development kit. The performance of lately revealed BLE 5 coded technique is compared to the performance of the BLE 4, which is seen today to be mostly used in case of commercial wireless devices. To improve the communication range of this low-power technique for IoT purposes, BLE 5 coded mode uses a forward error correction (FEC) method. Because of coding overhead, the packet length increases, and the throughput decreases. In this thesis, the frequency 2.4 GHz is considered. The LE Coded PHY is responsible for adding two steps into the packet transmissions, and reception. Firstly, FEC method is applied to the packet so that the receiver can make a correction of bit errors when the packet is received, and would be capable to improve the packet error rate (PER). Secondly, a pattern mapper method is applied to the packet. This FEC, and pattern mapping results in getting better sensitivity. The experimental results from this thesis show that BLE 5 technique provides better packet error rate (PER) performance, communication range performance, and received signal strength indicator (RSSI) performance than BLE 4, and BLE 5 consumes less energy than BLE 4, which was found out using analytical modelling

    Energy Efficient Packet Size Optimization for Wireless Ad Hoc Networks

    Get PDF
    PhDEnergy efficiency is crucial for ad hoc networks because of limited energy stored in the battery. Recharging the nodes frequently is sometimes not possible. Therefore, proper energy utilization is paramount. One possible solution of increasing energy efficiency is to optimize the transmitted packet size. But, we claim that only optimal packet size can not boost the energy efficiency in the noisy channel due to high packet loss rate and overhead. Hence, to reduce the overhead size and packet loss, compression and Forward Error Correction (FEC) code are used as remedy. However, every method has its own cost. For compression and FEC, the costs are computation energy cost and extra processing time. Therefore, to estimate the energy-optimize packet size with FEC or compression, processing energy cost and delay need to be considered for precise estimation. Otherwise, for delay sensitive real time applications (such as: VoIP, multimedia) over ad hoc network, energy efficient optimal packet size can be overestimated. We will investigate without degrading the Quality of Service (QoS) with these two different techniques FEC and compression, how much energy efficiency can be achieved by using the energy efficient optimal packet size for different scenarios such as: single hop, multi-hop, multiple source congested network etc. This thesis also shows the impact of time variable channel, packet fragmentation, packet collision on the optimal packet size and energy efficiency. Our results show that, for larger packets, error correction improves the energy efficiency in multi-hop networks only for delay tolerant applications. Whereas for smaller packets, compression is more energy efficient most of the cases. For real-time application like VoIP the scope of increasing the energy efficiency by optimizing packet after maintaining all the constraints is very limited. However, it is shown that, in many cases, optimal packet size improves energy efficiency significantly and also reduces the overall packet loss

    Performance measurements of Bluetooth 5 technique under interference

    Get PDF
    Abstract. This thesis focuses on experimental performance of the Bluetooth 5 technology and compares results with the previous version. Bluetooth technology, institute of electrical and electronics engineers (IEEE) Std. 802.15.4, and other techniques share the same unlicensed 2.4 GHz industrial, scientific, and medical (ISM) spectrum. Various technologies are operating in the same frequency band, and if the channel utilized by these technologies overlap, end in cross-technology interference (CTI). Measurements have been performed in indoor scenario and ZigBee nodes were used as an interference. Performance output of the Bluetooth 5 is compared to a previous release Bluetooth low energy (BLE) 4 which is currently one of the popular technologies in commercial wireless devices and expected to be even more widespread in the future. This new Bluetooth technology has featured increased data rate, low power consumption, longer range, higher broadcasting capacity, and improved coexistence with other wireless technologies operating in the same frequency band. The main goal of this work was to evaluate the experimental communication range and throughput of the BLE 5 coded version under interference. Nordic Semiconductor nRF52840 chipset has been used for measurements and result shows the practical communication range and throughput of BLE 5 coded version under interference. In this work, with error correction coding, one-third BLE link gain was achieved when considering packet error rate (PER) less than 10%. In addition, ZigBee interference was found to be very harmful for the Bluetooth communication when operating in the same frequency band

    THE EFFECT OF INTERACTIONS BETWEEN PROTOCOLS AND PHYSICAL TOPOLOGIES ON THE LIFETIME OF WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks enable monitoring and control applications such weather sensing, target tracking, medical monitoring, road monitoring, and airport lighting. Additionally, these applications require long term and robust sensing, and therefore require sensor networks to have long system lifetime. However, sensor devices are typically battery operated. The design of long lifetime networks requires efficient sensor node circuits, architectures, algorithms, and protocols. In this research, we observed that most protocols turn on sensor radios to listen or receive data then make a decision whether or not to relay it. To conserve energy, sensor nodes should consider not listening or receiving the data when not necessary by turning off the radio. We employ a cross layer scheme to target at the network layer issues. We propose a simple, scalable, and energy efficient forwarding scheme, which is called Gossip-based Sleep Protocol (GSP). Our proposed GSP protocol is designed for large low-cost wireless sensor networks with low complexity to reduce the energy cost for every node as much as possible. The analysis shows that allowing some nodes to remain in sleep mode improves energy efficiency and extends network lifetime without data loss in the topologies such as square grid, rectangular grid, random grid, lattice topology, and star topology. Additionally, GSP distributes energy consumption over the entire network because the nodes go to sleep in a fully random fashion and the traffic forwarding continuously via the same path can be avoided

    Simulation of radio networks

    Get PDF
    Radio communication such as licensed mobile phone systems are widely used, and have been over the past five years. This thesis focuses on simulation of radio networks. The aim is to develop a simulation and modelling tool that will allow a wide range of radio systems to be studied at system level, including where the radio element is connected to and interacting with point to point networks. The aim of the work is that the simulation should be as close as possible to real systems. Chapter 1 first introduces the applications, advantages and disadvantages of radio, following a discussion of the differences between radio networks and point to point networks. Chapter 2 briefly introduces the OSI model and the modified model used in this thesis. Radio transceiver chips play the role of the physical layer of radio devices and chapter 3 introduces three popular radio chips. Chapter 4 shows the necessity to simulate radio networks, and introduces C++ as a language for implementing simulators. The design of the simulation tool is also outlined. A local sensor system is simulated in chapter 5. Chapter 6 simulates a WLAN (Wireless Local Area Network) that adopts 802.11b standard. Chapter 7 gives the conclusion and future work in this area
    • …
    corecore