5 research outputs found

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    Creating Procedural Animation for the Terrestrial Locomotion of Tentacled Digital Creatures

    Get PDF
    This thesis presents a prototype system to develop procedural animation for the goal-directed terrestrial locomotion of tentacled digital creatures. Creating locomotion for characters with multiple highly deformable limbs is time and labor intensive. This prototype system presents an interactive real-time physically-based solution to procedurally create tentacled creatures and simulate their goal-directed movement about an environment. Artistic control over both the motion path of the creature and the localized behavior of the tentacles is maintained. This system functions as a stand-alone simulation and a tool has been created to integrate it into production software. Applications include use in visual effects and animation where generalized behavior of tentacled creatures is required

    User-Controlled Physics-Based Animation for Articulated Figures

    Get PDF
    We present a physics-based system for the guided animation of articulated figures. Based on an efficient forward dynamics simulator, we introduce a robust feedback control scheme and a fast two-stage collision response algorithm. A user of our system provides kinematic trajectories for those degrees of freedom (DOFs) of the figure they want direct control over. The output motion is fully generated using forward dynamics. The specified motion trajectories are the input to a control system which computes the forces and torques that should be exerted to achieve the desired motion. The dynamic controllers, designed based on the Model Reference Adaptive Control paradigm, continuously self-adjust for optimal performance in trajectory following. Moreover, the user is given a handle on the type and speed of reaction of the figure 's controlled DOFs to sudden changes in their desired motion. The overall goal of our system is to provide a platform for generating and studying realistic, user cont..
    corecore