1,107 research outputs found

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Risk Minimizing Evacuation Strategies under Uncertainty

    Get PDF
    This paper presents results on the simulation of the evacuation of the city of Padang with approximately 1,000,000 inhabitants. The model used is MATSim (www.matsim.org). Three different strategies were applied: shortest path solution, user optimum, system optimum, together with a constraint that moves should reduce risk whenever possible. The introduction of the risk minimization increases the overall required safe egress time (RSET). The differences between the RSET for the three risk minimizing strategies are small. Further quantities used for the assessment of the evacuation are the formation of congestion and the individual RSETs (in comparison with the available SET).BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Microsimulation models incorporating both demand and supply dynamics

    Get PDF
    There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework. The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamic

    How to Apply Assignment Methods that were Developed for Vehicular Traffic to Pedestrian Microsimulations

    Get PDF
    Applying assignment methods to compute user-equilibrium route choice is very common in traffic planning. It is common sense that vehicular traffic arranges in a user-equilibrium based on generalized costs in which travel time is a major factor. Surprisingly travel time has not received much attention for the route choice of pedestrians. In microscopic simulations of pedestrians the vastly dominating paradigm for the computation of the preferred walking direction is set into the direction of the (spatially) shortest path. For situations where pedestrians have travel time as primary determinant for their walking behavior it would be desirable to also have an assignment method in pedestrian simulations. To apply existing (road traffic) assignment methods with simulations of pedestrians one has to reduce the nondenumerably many possible pedestrian trajectories to a small subset of routes which represent the main, relevant, and significantly distinguished routing alternatives. All except one of these routes will mark detours, i.e. not the shortest connection between origin and destination. The proposed assignment method is intended to work with common operational models of pedestrian dynamics. These - as mentioned before - usually send pedestrians into the direction of the spatially shortest path. Thus, all detouring routes have to be equipped with intermediate destinations, such that pedestrians can do a detour as a piecewise connection of segments on which they walk into the direction of the shortest path. One has then to take care that the transgression from one segment to the following one no artifacts are introduced into the pedestrian trajectory.Comment: contribution to PANAM 2014 conferenc

    Quickest Paths in Simulations of Pedestrians

    Full text link
    This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic walk approximately along a path of estimated minimal remaining travel time to their destination. Usually models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into personal space do not produce motion on quickest paths. Therefore a special model element is needed, if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a station hall who are late for a train). Here such a model element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte
    • …
    corecore