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Abstract 
The evacuation of whole cities or even regions is 
an important problem, as demonstrated by recent 
events such as the evacuation of Houston in the 
case of hurricane Rita or the evacuation of coastal 
cities in the case of tsunamis. This paper describes 
a complex evacuation simulation framework for 
the city of Padang, with approximately 1,000,000 
inhabitants. Padang faces a high risk of being 
inundated by a tsunami wave. The evacuation 
simulation is based on the MATSim framework 
for large-scale transport simulations. Different 
optimization parameters like evacuation distance, 
evacuation time or the variation of the advance 
warning time are investigated. The results are 
given as overall evacuation times, evacuation 
curves and detailed GIS analysis of the evacuation 
directions. All these results are discussed with 
regard to their usability for evacuation 
recommendations.  
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 1  Introduction 
The evacuation of whole cities or even regions is an important 
problem, as demonstrated by recent events such as the evacuation of 
Houston in the case of hurricane Rita or the evacuation of coastal cities 
in the case of tsunamis. As a consequence of these events, disaster and 
evacuation planning has become an important topic in science and 
politics. 

Congruent with the importance of the topic, there is a large body of 
research regarding emergency evacuations. As a first classification, one 
may differentiate between two situations: (i) evacuation from within 
buildings, ships, airplanes, etc.; (ii) large-scale citywide or regional 
evacuations, e.g. because of nuclear power plants failures or because of 
hurricanes. Case (i) usually concerns pedestrian evacuation; case (ii) 
usually uses traffic-based evacuation. 

A good overview of pedestrian evacuation modeling and software 
can be found in the books of the bi-annual conference series 
“Pedestrian and Evacuation Dynamics” (Schreckenberg and Sharma, 
2002; Galea, 2003; Gattermann et al., 2006). Pedestrian evacuation 
simulations can be classified into microscopic and macroscopic ones. 
Microscopic models represent space, time, and persons on a fine-
grained level. Possible microscopic approaches are Cellular Automata 
(CA) (Klüpfel et al., 2003), discretized differential equations 
(“molecular dynamics (MD)”) (Helbing et al., 2002, Helbing et al., 
2005), or movement rules based on random utility modelling (Bierlaire 
et al., 2003). Examples of software packages based on microscopic 
models are Exodus (Galea, 2002), Myriad (www.crowddynamics.com), 
Egress (www.aeat-safety-and-risk.com/html/egress.html), and PedGo 
(Klüpfel, 2006). Macroscopic models use the analogy of flows of 
pedestrians and liquids. Examples of software packages based on 
macroscopic models are Aseri (Schneider and Könnecke, 2002) and 
Simulex (www.iesve.com). See Refs. (Jafari et al., 2003) 
and (Kuligowski, 2004) for surveys. Compared to what is known in 
terms of field measurements (e.g. (Predtetschenski and Milinski, 1978; 
Weidmann, 1993)), most if not all packages lead to similar results 
(Rogsch, 2005). 

Once the pedestrian movement model is selected, it is necessary to 
define the evacuation directions. For more complex geometries, this is 
no longer a single movement towards one or two exits, but may involve 
rather complex movements in a building or in a street network. The 
arguably simplest solution is a grid-based potential function where the 
“uphill direction” leads to the nearest exit (Nishinari et al., 2004). The 
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same can be done using essentially continuous spatial variables, at the 
expense of much larger computing times (Hoogendoorn et al., 2002). 
Alternatively, routing can be done along graphs (Hamacher, 2001; 
Gloor et al., 2004a), which is a much faster technique when the 
abstraction to a graph is possible. 

Another line of research concerns citywide or regional evacuations, 
i.e. case (ii). The development of these tools was much influenced by 
the development of tools in the areas of transport planning and traffic 
management. At the core of many of these methods is a static 
assignment routine (e.g. (Sheffi, 1985; Ortúzar and Willumsen, 1995)). 
A typical example for traffic-based evacuation simulation based on 
static concepts is MASSVAC (Hobeika and Kim, 1998) although later 
versions contain dynamic aspects. 

A severe shortcoming of static assignment is that it does not possess 
any consideration of the time-of-day dynamics. Dynamic traffic 
assignment (DTA) is defined as a distribution of time-dependent trips 
on routes. A typical approach to implement DTA is day-to-day re-
planning: The traffic flow simulation (also called network loading) is 
run with pre-specified routes, route costs are extracted, some or all of 
the routes are modified, the traffic flow simulation is run again, etc., 
until some stopping criterion is fulfilled. Examples of stopping criteria 
are that either every trip uses a route which minimizes expected travel 
time (time-dependent Nash equilibrium), or it selects between different 
route alternatives following a pre-specified distribution function (time-
dependent SUE). 

Many DTA packages have been tested in the evacuation context: 
MITSIM (Jha et al., 2004), Dynasmart (Kwon and Pitt, 2005, Chiu 
et al., 2005), PARAMICS (Chen and Zhan, 2004), and VISSIM (Han 
and Yuan, 2005). Oak Ridge National Laboratory has a package named 
“OREMS” (cta.ornl.gov/cata/One_Pagers/OREMS.pdf) explicitly for 
evacuation traffic. Publications stressing dynamic aspects of traffic-
based evacuation as a novelty can be found as recent as 2000, e.g. 
(Sattayhatewa and Ran, 2000; Barrett et al., 2000). For a review, see 
(Alsnih and Stopher, 2004). 

A further distinction is if travelers can re-route while they are on 
their way (within-day re-planning; en-route re-planning), or only before 
their trip (day-to-day re-planning; pre-trip re-planning) (Cascetta and 
Cantarella, 1991). Clearly, en-route re-planning capability is more 
realistic. It is, however, also more demanding: Adaptation of the plans 
needs to be called frequently from within the network loading, rather 
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than only having to alternate between the network loading and the 
mental layers as one does in day-to-day re-planning.  

A large body of work (e.g. (Theodoulou and Wolshon, 2004, Lim 
and Wolshon, 2005)) uses microsimulation to investigate the issues of 
contraflow evacuation, i.e. the reversal of inbound lanes of a freeway in 
order to obtain additional outbound capacity.  

To our knowledge, none of the above approaches is able to simulate 
large-scale scenarios (with millions of entities) while remaining 
microscopic:  

• With a CA model, an area of 40 km×40 km translates into  cells. 
Even if every cell only needs 1 Byte, this still translates into 
10 GByte of memory, resulting in large simulation times. 

• For the MD approach, the problems are the sub-second time 
resolutions that are typically used (Farkas, accessed 2008). 

• DTA approaches seem the most likely candidates, but to our 
knowledge their implementation of the traffic flow dynamics 
usually is still too time-consuming for scenarios of that size: 
Ref. (Sbayti et al., 2007) reports a study using Dynasmart-P 
consisting of 1347 nodes and 3004 links. 200,000 vehicles were 
loaded onto the network. The runtime for about 30 iterations of 2 
hours of simulation was almost 8 hours. This means running one 
iteration with this 1347 nodes/ 3004 links scenario takes about 16 
minutes. If the runtime scales with the scenario size it would be 
very time consuming to run larger scenarios. In Ref. (Wen et al., 
2006), the DynaMIT framework was applied to a real-time 
scenario but on a small network (243 nodes and 606 links). In 
that study a rolling horizon approach was chosen to have a 5 min 
estimation and 30 min prediction on that network. Two iterations 
of estimation and two iterations of prediction took about 1 min. 
If the runtime scales with the size of the network the 
performance is comparable to the Dynasmart-P approach and 
again too slow for large-scale scenarios. 

One way to achieve faster computation with a microscopic model is to 
use a model with deliberately large time steps and to computationally 
concentrate on those areas (links) where the pedestrian movement 
actually takes place (Gloor et al., 2004b). Another approach is based up 
on a modified queuing model (Gawron, 1998, Simon et al., 1999). The 
queuing model simplifies streets to edges and crossings to nodes; the 
difference to standard queuing theory is that agents (particles) are not 
dropped but spill back, causing congestion. This graph-oriented model 
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is defined by lengths/widths, free speed and flow capacity of the edges. 
This simplification leads to a major speedup of the simulation while 
keeping results realistic. The combination of these two approaches 
(switching off unused links; queue model) is used in this paper. 

A robust simulation framework will help to find feasible solutions 
for arbitrary evacuation scenarios. The aim of this work is to find 
feasible evacuation solutions for an evacuation of large cities or regions 
by foot. This means we are looking for solutions from which it is 
possible to derive recommendations for the real world. This work is 
part of the current multi-disciplinary project “Last-Mile” (Birkmann 
et al., 2007). The overarching goal of “Last-Mile” is to develop jointly 
with local partners a numerical last mile tsunami early warning and 
evacuation information system on the basis of detailed earth 
observation data and techniques as well as hydraulic numerical 
modeling of small-scale flooding and inundation dynamics of the 
tsunami including evacuation simulations in the urban coastal 
hinterland for the city of Padang, West Sumatra, Indonesia. It is well-
documented that Sumatra’s third largest city with one million 
inhabitants is located directly on the coast and partially sited beneath 
the sea level, and thus, is located in a zone of extreme risk due to 
severe earthquakes and tentatively triggered tsunamis. 

To develop an evacuation simulation for such a big city one needs 
much preparatory work, i.e. one needs detailed picture of the walkable 
area of the city, the socio-economic profile and of the expected 
extension of the inundation. In this article we will not go into detail 
how this information was explored. The interested reader is referred to 
(Lämmel et al., 2008) for more information about how to get the 
necessary input data. 

 2  Simulation framework 
The simulation framework is based on the MATSim framework for 
transport simulation (MATSIM www page, accessed 2008). Since 
MATSim is focused on simulation of motorized traffic, several 
adaptations were necessary. The key elements are:  

• The agent database, where every agent represents one evacuee.  
• The simulation network, based on links and nodes.  
• The traffic flow simulator, where all the agents plans are 

executed.  
• The plans generator, which generates an escape plan for every 

agent.  
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• There is a mechanism that allows improving the performance of 
the agents’ plans by repeatedly trying to find faster evacuation 
routes.  

 2.1  Synthetic population, plans, agent 
database 

MATSim always start with a synthetic population of all involved 
individuals. A synthetic population is a randomly generated population 
of individuals which is based as much as possible on existing data such 
as census data. For evacuation, the synthetic population is the 
collection of all synthetic individuals that are involved in the 
evacuation.  

Every synthetic individual possesses one or several plans. These 
plans are “intentions” of the synthetic individuals, to be tested in the 
traffic flow simulation described later, and scored afterwards. For 
evacuation, the plans are evacuation strategies. For example, such a 
strategy may be to leave the building 5 minutes after a second warning, 
and follow a predetermined route to safety. The collection of agents 
together with their plans is sometimes called an agent database. 

People can have different positions within the city when a warning 
occurs. For example, they can be at home or at work. Therefore, also in 
the evacuation context it makes sense to consider MATSim plans in 
their more conventional meaning, as a description on what a synthetic 
traveler intends to do during a normal day. One can then run a regular 
traffic flow simulation with these plans, stop it at the time of an 
evacuation warning, and use the positions of all agents at the time of 
that warning as the initial condition to the evacuation. 

 2.2  Simulation network 
The simulation network represents the area that is accessible by the 
evacuees. In the case of a vehicular evacuation this network consists of 
all accessible streets. Each street segment defines a link. The 
parameters of the links are the length, capacity and the free flow speed. 
For a pedestrian evacuation the links in the simulation network also 
consist of squares and sidewalks. The flow capacity is given by the 
width of a link as described in the next section. A good way of creating 
the simulation network is by extracting the needed information from 
satellite imagery. 

In the case of an evacuation simulation the network has time 
dependent attributes. For instance large-scale inundations or 
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conflagrations do not cover all the endangered area at once. In fact the 
spreading of the threat could be seen as a function of time. One 
solution would be by modeling this as a time variant network. This 
means streets, bridges etc. will be blocked as soon as they no longer 
passable. In MATSim time variant aspects of the network are modeled 
as network change events. A network change event modifies 
parameters of a link in the network (e.g. free speed or flow capacity). 
As soon as a link is no longer passable its free speed will be set to zero. 

 2.3  Traffic flow simulator 
The traffic flow simulation is implemented as a queue simulation, 
where each street (link) is represented as a FIFO (first-in first-out) 
queue with three restrictions (Gawron, 1998). First, each agent has to 
remain for a certain time on the link, corresponding to the free speed 
travel time. Second, a link flow capacity is defined which limits the 
outflow from the link. If, in any given time step, that capacity is used 
up, no more agents can leave the link. Finally, a link storage capacity is 
defined which limits the number of agents on the link. If it is filled up, 
no more agents can enter this link. The difference to standard queueing 
theory is that agents (particles) are not dropped but spill back, causing 
congestion.  

An illustration of the queue model is shown in Fig. 1 a). The 
parameters of the model are:  

• Link minimum width w  
• Link area A  
• Link length l  

• Flow capacity 
sm
pwCwFC
*

3.1** max ==  

• Free flow speed 
s
mv 66.1max =  

• Storage capacity 2max 4.5**
m
pADASC ==  

where  is the maximum flow capacity per unit width, and  is the 
maximum density per unit area. 
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The parameters have been chosen to approximate Weidmann’s 
fundamental diagram (Weidmann, 1993).1 He pointed out that the 
relation between density and velocity is adequately captured by the so-
called Kladek-formula: 

]1[)(
)

11
(

,,
maxDD

hfFhiF evDv
−×−

−×=
γ  

  
With:  

•  hiFv , the velocity at a particular density ]/[ sm ,  

•  hfFv , the velocity at free flow ]/[ sm ,  

•  γ a free parameter ]/[ 2mpersons ,  

•  D the actual density ]/[ 2mpersons  and  

•  maxD the density at which no flow occurs ]/[ 2mpersons .  
Empirical studies showed the best results with 913.1=γ , 

smv hfF /34.1, = and 2max 4.5
m

persons
D = . 

Our study uses the same maximum density, but the free flow speed 
was set to 1.66 m/s. This value is slightly higher then the 1.34 m/s used 
by Weidmann, but the values presented by Weidmann reflect the 
pedestrian flow under normal conditions and not in a case of 
emergency.  

Our queuing model, however, generates a speed-density relationship 
of the form v=min[ vmax ,FC /D] (Simon and Nagel, 1999). The flow 
capacity FC is a free parameter that has to be chosen to fit the desired 
fundamental diagram. Even if a complete agreement is not possible, 

with  
sm
pFC
*

3.1=  the flow dynamics produced by our queue model 

is not too far away from Weidmann’s fundamental diagram (cf. Fig. 1 
b)). Furthermore, Predtechenskii’s and Milinskii’s (Predtetschenski and 

Milinski, 1978) empirical study supports a value of approx.  
sm
p
*

3.1  

for the flow capacity. 

                                                             
1 Newer studies (Schadschneider et al. , to appear) imply other fundamental 
diagrams then those from Weidmann. An adaptation of these values could, in 
consequence, become necessary in future. 
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 2.4  Plans generation 
Initial plans use the shortest path (according to free speed travel time) 
out of the evacuation area for all agents. Within the MATSim 
framework a shortest path router based on Dijkstra’s shortest path 
algorithm (Dijkstra, 1959) has been implemented. This router finds the 
shortest path in a weighted graph from one node to any other, whereby 
the actual weights for a link are defined by a time- and distance-
dependent cost function. Since we want to evacuate the city as fast as 
possible, the weights represents the (expected) travel time. There is, 
however, no particular node as the target of the shortest path 
calculation, as the evacuees have more than one safe place to run to. 
Instead, in the underlying domain every node outside the evacuation 
area is a possible destination for an agent that is looking for an escape 
route. To resolve this, the standard approach (e.g. (Lu et al., 2005)) is 
to extend the network in the following way: All links which lead out of 
the evacuation area are connected, using virtual links with infinite flow 
capacity and zero length, to a special “evacuation node”, and all paths 
are routed to that special evacuation node. Doing so, Dijkstra’s 
algorithm will always find the shortest route from any node inside the 
evacuation area to this evacuation node and, in consequence, to safety. 

 2.5  Agents learning 
After an execution of the traffic flow simulation, every agent will score 
the performed plan. The score of a plan is calculated by a scoring 
function as it is described later. The scored plans remain in the agents’ 
memory for further executions. For the learning procedure two 
different learning strategies were used. The ReRoute strategy 
generates new plans with new evacuation routes based on the 
information of the experienced travel times from the last run. This uses 
the router described in the previous section, but using time-variant link 
travel times as link costs. The other strategy is called 
ChangeExpBeta. This strategy decides if the just performed plan 
should be used again, or if a random plan out of the memory should be 
selected for the next iteration. The probability to change the selected 
plan is calculated by  

 )*,1min( 2/)(* currentrandom ss
change ep −= βα  

With:  
• α : The probability to change if both plans have the same score  
• β : A sensitivity parameter  
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• },{ currentrandoms : The score of the current/random plan  
If the system is “well-behaved”, this set-up converges to a steady state 
where the probability that agent a uses plan i is  

∑
=

j

s

s

ia ja

ia

e
ep

,

,

*

*

, β

β

 

i.e. the standard multinomial logit model (e.g. (Ben-Akiva and Lerman, 
1985)). 
The plans score (utility) is determined by the scoring function:  

idistitrtri dtU ββ += ,  
where  is the (dis)utility of plan i,  is the marginal utility (in 1/h) for 
travel (normally negative),  is the experienced travel time for plan i,  
represents the marginal utility (in 1/km) of distance (normally 
negative), and  the distance covered by executing plan i. 

Each strategy is selected with a certain probability. These 
probabilities are assigned before the simulation starts, but they can be 
varied during the iterations. Typically, ReRoute is called with a 
relatively small probability, say 10%, and ChangeExpBeta is called 
in the remaining cases. 

After re-planning every agent has a selected plan that will be 
executed in the next iteration. Repeating this iteration cycle of learning, 
the agentsâ™ behavior will move towards a Nash equilibrium. If the 
system were deterministic, then a state where every agent uses a plan 
that is a best response to the last iteration would be a fixed point of the 
iterative dynamics, and at the same time a Nash Equilibrium since no 
agent would have an incentive to unilaterally deviate. Since, however, 
the system is stochastic, this statement does not hold, and instead we 
look heuristically at projections of the system. From experience it is 
enough to run 100 iterations until the iterative dynamics has reached a 
steady state. In most (but not all) evacuation situations, the Nash 
equilibrium leads to a shorter overall evacuation time than when 
everybody moves to the geographically nearest evacuation point. On 
the other hand, a Nash equilibrium means that nobody has an incentive 
to deviate. The Nash equilibrium in an evacuation situation can 
therefore be considered as a solution that could be reached by 
appropriate training. 



11 

 3  Scenarios 
The aim of this work is to find feasible solutions for the evacuation of 
the city of Padang in the case of a tsunami. There are several aspects 
that have to be taken into consideration. At first one needs a synthetic 
population for the agent database. In the studies described in this paper 
it is assumed that all people are at home. The information about the 
distribution of the population was derived from existing census data 
(BPS, 2005). The agent database consists of about 320,000 agents 
living in the endangered area. 

Another important aspect is the information about safe places. In the 
future it is planned to identify buildings that are suitable for a vertical 
evacuation. For the time being we use a simpler approach: All areas 
with an elevation of more than 10 m above sea level are defined as safe. 
Fig. 2 shows an image of the city with the endangered area.  

However, just evacuating the so-defined endangered area as quickly 
as possible is not necessarily the best solution: Based on models of 
small-scale flooding and inundation dynamics of the tsunami 
(Goseberg et al., in press) it is not expected that all the area below 10 m 
will be flooded. Based on these simulations, one also learns that the 
estimated time between the earthquake and the inundation of the city is 
about 28 min. The results are backed by the results of large-scale 
tsunami simulations for the west coast of Sumatra Island (McCloskey 
et al., 2008). Making all links impassable after they are flooded makes 
the agents learn a more risk averse behavior: they are not only trying to 
reach the safe area as fast as possible, but they also try to avoid the 
flooding. Since this is an additional constraint, this will in general 
increase the evacuation time of the full “endangered” area.2 

But even in this setup the learned behavior is not necessarily 
plausible: One can still find simulated people who flee for a long time 
in parallel to the shore line, turning inland only shortly before the 
tsunami approaches. One way to get a more risk averse behavior is 
given by the fact that a solution for a scenario where the tsunami 
reaches the shore line earlier (e.g. after 10 min) is also a solution for the 
“28 min” scenario. At the same this solution is more risk averse 
because the agents are forced to leave the flooding area earlier. Once 
more, in general this will increase the the evacuation time for the full 
endangered area. 

                                                             
2 We say “in general” since our Nash equilibrium (NE) solution is not the 
system optimum (SO), and it may happen that the additional constraint pushes the NE 
towards the SO. The interpretation of the NE is discussed in more detail in Sec. 5.  
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Another important aspect is the large number of bridges in the city. 
Bottlenecks often emerge at bridges. The local non profit organization 
KOGAMI (tsunami alert community http://kogami.or.id) suggests to 
avoid all the bridges in the inner city during an evacuation (cf. Fig. 2). 

As discussed in 2.5, the agents in the simulation improve their plans 
by iterative learning. After a simulation cycle is finished all the agents 
plans will be scored. The scoring function takes both, evacuation time 
and covered distance, into account. The evacuation time should be the 
major criterion for the plans scoring. But also the distance costs can 
important. For example, there could be situations, where two 
evacuation routes have equal travel time but one route is substantially 
longer then the other. If the scoring function only took the travel time 
into account, then both routes would get the same score. In the real 
world one would recommend the shorter route even if there is a bit 
more congestion then on the longer one. 

Taking this all together we define seven different scenarios:  
 

run warning time bridges blocked trβ  distβ  
1 28 no -6 0 
2 8 no -6 0 
3 28 yes -6 0 
4 8 yes -6 0 
5 8 no -6 1 
6 8 no -6 5 
7 8 no -6 10 

  

 4  Results 
For each run 100 iterations of learning were performed. As expected 
the evacuation time decreases significantly with the iterations. Fig. 3 
compares the initial iteration (top) and the last iteration (bottom) of run 
2. It shows the area that has been evacuated after 30 min of evacuation 
and the maximum expansion of the inundation. In the initial iteration 
all agents are on the shortest path, while in the last iteration the system 
has converged towards Nash equilibrium and the agents are on the 
fastest path under the given circumstances. It is clearly shown that with 
the Nash equilibrium approach considerably more agents manage to 
escape in the given time than in the shortest path solution. 

In all runs, the evacuation of all areas below 10 m took at least one 
hour. Nevertheless, in all runs the highly endangered coastal strip, 
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which is expected to be flooded, was evacuated before the tsunami 
waves reach the shore line. However, the runs perform differently in 
terms of the evacuation progress. Fig. 4 shows the evacuation curves 
for run 1 to run 4. While avoiding potentially flooded areas early (run 2 
vs. run 1) makes little difference, it is clearly visible that blocking the 
bridges during evacuation slows down the evacuation of the full 
endangered area. Still, even if the bridges are blocked, there seems to 
be enough time to evacuate the highly endangered area at the coastal 
strip. 

Adding distance costs (runs 5 to 7 vs. run 2) results in longer 
evacuation times. Fig. 5 compares the evacuation curves. The more 
distance costs are added, the longer the evacuation takes. This result is 
not unexpected, because the agents now have to optimize another 
criterion. They do not only try to find the fastest evacuation route, but a 
trade-off between fast and short. 

But even if the additional distance costs increase the evacuation 
time, there are also advantages. Without distance costs, an agent 
chooses with equal probability between two equally fast evacuation 
routes even if one of the routes is substantially longer than the other. 
Not only is this counterintuitive, but from those results it is difficult to 
derive specific recommendations for the real world: It is, for example, 
not realistic that people living in the same street or even the same 
household would follow completely different evacuation routes. In 
emergency situations, people tend to be irrational and to display herd 
behavior (Helbing et al., 2000). From this point of view it is better to 
recommend people living next to each other the same evacuation route. 
Adding additional distance costs helps to find those solutions. This is 
shown in Fig. 6. 

Fig. 6 compares the evacuation destinations between run 2 and 
run 7. The arrows in this figure point towards the place where the 
people flee to. Each arrow represents the home location of one person. 
Arrows pointing to the same destination have the same shade of gray. 
For run 7 this destination depended colorization is much more grouped 
and not so mixed up as it is for run 2. The only difference in the setup 
was the additional distance costs for run 7. This means that from 
simulation runs with additional distance costs it is easier to derive 
recommendations for the real world, at the cost of a slower evacuation 
procedure, as shown in Fig. 5. 
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 5  Discussion 

 5.1  Nash equilibrium vs. other solutions 
The Nash equilibrium (NE) approach is used as a first benchmark: As 
can be seen from Fig. 3, the approach allows to evacuate a much larger 
critical area than with an approach where everybody takes the 
geometrically shortest path to safety. This is clearly a consequence of 
congestion on some of the geometrically shortest paths, making 
evacuees caught in congestion better off if they use a different, 
geometrically longer path. This is confirmed by the fact that adding 
distance into the cost function makes the evacuation take longer again. 

Many people argue that the NE approach is not appropriate for 
evacuation since people will not evacuate often enough for this solution 
to be plausible. We would argue that the NE approach could, if 
designed correctly, established by appropriate training of the 
population, in particular for a nighttime situation as discussed here, 
where families can be assumed to be united from the start. Then, the 
NE solution would have the advantage that nobody in the population 
would have an incentive to deviate from this solution. 

This is in contrast to a system optimal solution, which might be 
even better than the NE solution, but which might give individuals 
incentives to deviate. 

Nevertheless, it is nothing but a possible benchmark. It may be 
unrealistic or problematic at least for the following reasons:  

• It is probable that people will also display other types of 
behavior, such as herd behavior, or uniting the family (possibly 
causing counterflows) before evacuating. In fact, personal 
interviews show that at this point many people do not have the 
intention to evacuate at all (Hoppe, 2007). 

• The NE solution for Padang is most probably not a confluent 
flow solution (see, e.g., (Chen et al., 2004)). This means that the 
“correct” direction from any intersection is not always just a 
single link that remains fixed over time. Instead, the simulation 
shows that it is quite common in the NE solution that flows split 
at intersections, or move into different downstream links at 
different times. 

• Although evacuation flows of pedestrians are reasonably stable 
and thus predictable (Rogsch, 2005), there are still many reasons 
why the simulation could be wrong: parked cars or other 
obstacles could reduce the minimum width of links; some people 
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might have difficulty walking; some people might use other 
means of transport, thus leading to a mix of different vehicles 
rather than a homogeneous pedestrian population; cars might 
even be abandoned (and thus convert to obstacles) in the course 
of an evacuation. Note that pedestrian evacuation reaches a flow 
rate of 1.3 pedestrian per second per meter cross section; the use 
of individual vehicles (cars, motorcycles, bicycles) will probably 
reduce that flow rate, increasing congestion. 

Overall, we believe that it is plausible to say that the simulation at this 
point is rather a “good case” than a bad case scenario. Still, the fact that 
one seems to be able to evacuate the “flooded areas” with 30 min to 
spare (Fig. 3) gives hope that one may be able to construct a workable 
solution. 

 5.2  Risk exposure over time 
Our simulation has so far been defined in terms of a “minimal time to 
evacuate”: Given the network, the initial distribution of the population, 
and pre-defined safe areas, the simulation attempts to answer the 
question which times are plausibly needed in order to get everybody 
into the safe areas. Yet, it is not clear which exactly are the safe areas:  

• In the case of an actual warning, neither tsunami wave heights 
not wave patterns nor the time until the wave reaches the shore 
line will be known. Therefore, it is impossible to define a 
“minimal” dangerous area. On the other hand, it would be quite 
difficult to establish a solution where people need to walk for 30 
min or more, especially since it is probable that there will be a 
fair number of false alarms. – At this point, we are considering to 
take an “envelope” of the inundation (see Fig. 3) from a number 
of worst case scenarios computed by (Goseberg et al. , in press). 
In addition, there will eventually be special “shelters”, buildings 
marked as safe, etc. 

• It is unclear how to proceed with the time-dependence of the 
problem. Clearly, bridges will eventually be unsafe. But so will 
be certain other streets, and it might be better to use a bridge to 
get into safety right afterwards than to stay on risky streets for a 
much longer time. This problem is apparent in all of our 
situations: Given a certain warning time, it makes sense for some 
of the evacuees to take a path that increases their risk temporarily 
in order to be really safe much earlier.  
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This problem is confounded by the “minimal time to evacuate” 
approach: There will eventually be a warning time which cannot 
be reduced any further without accepting loss of life in the 
simulations. If this, however, is the minimal warning time ever 
used in the simulations, the simulated agents can assume that all 
of the city is safe for that amount of time, and route themselves 
accordingly. If then, in reality, the warning time is even shorter, 
such routes might not be advantageous. 
Our current plan is to investigate approaches where we designate 
different “risk levels” to different links, and devise evacuation 
paths where agents always reduce risk. This will avoid the 
situation described above, but will result in a less efficient 
evacuation. This efficiency reduction will be tested and 
quantified by the simulation. 

• It is not possible to designate non-flooded areas directly as 
“safe”, since evacuees both in the simulation and in reality would 
stop there, causing congestion for evacuees that follow. 

 6  Conclusion 
This paper describes a microscopic evacuation simulation based on the 
MATSim framework for transport simulation. The key elements of 
MATSim are the synthetic population, the simulation network, the 
traffic flow simulator, and a mechanism that lets the members of the 
synthetic population improve their evacuation plans. The scenario for 
this study is the Indonesian city of Padang with approximately 
1,000,000 inhabitants. The city faces a high risk of being inundated by 
a tsunami wave. About 320,000 people live in a highly endangered 
area. The simulation runs were performed with 320,000 agents forming 
a corresponding synthetic population.  

In this study, seven different runs with different parameters were 
conducted. Parameters that were varied are the advance warning time, 
blocking of the bridges, and the distance cost for traveling. With the 
variation of these parameters the system moves towards different Nash 
equilibria. Results regarding the overall evacuation time, evacuation 
curves and evacuation directions are given. Sec. 5 discusses under 
which circumstances a Nash equilibrium would be a good solution for 
the evacuation problem. Some points that are presently not covered by 
the simulation framework are also addressed (e.g. abandoned cars in 
the streets as obstacles). Finally problems with a definition of safe 
areas are discussed.  
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In future work we are going to integrate tsunami proof shelters into 
the simulation framework as additional safe areas. This is of particular 
interest because in currently running studies the buildings in the city 
will be classified regarding their usability as shelters. Furthermore we 
are currently investigating methods for risk averse evacuations. This 
will be done by adding additional risk costs to links depending on their 
direction. Overall we have shown in this paper that the MATSim 
framework is a good analysis tool for evacuation scenarios, especially 
if they are large-scale. 
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Figures 

  
Figure 1: Functioning of the queue model is shown in (a) and its 
corresponding fundamental diagram in (b). 
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Figure 2: Satellite imagery of the city shows the evacuation area (light 
gray) and some main bridges where bottlenecks are expected during an 
evacuation. Satellite imagery by the German Aerospace Center, 
Oberpaffenhofen (2007) 
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Figure 3: The area that could be evacuated within 30 min and the 
maximum expansion of the inundation. Top: A solution where every 
agent is on the shortest path. Bottom: Result of run 2 after 100 itations 
of learning (Nash equilibrium approach). The evacuated area in the 
Nash equilibrium approach is considerably larger than in the shortest 
path solution. Satellite imagery by the German Aerospace Center, 
Oberpaffenhofen (2007) 
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Figure 4: Evacuation curves for run 1 to run 4. These curves look 
similar, but if the bridges are blocked (run 3 and run 4) the overall 
evacuation time increases by about 40 min compared to run 1 and run 
2, where all bridges are open. 
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Figure 5: Evacuation curves of run 5 to run 7 compared with run 2. It 
is shown that increasing the distance costs does not increase the overall 
evacuation time. But the comparison of run 2 with run 7 shows that 
without distance costs (run 2) about 300 000 agents managed to 
evacuate within 60 min, where in run 7 (distance costs of 10 units per 
kilometer) in the same time only 250 000 agents managed to escape.  
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Figure 6: Comparison of the evacuation destinations for run 2 und 
run 7: The arrows point towards the evacuation destinations, with same 
color indicates the same destination. Satellite imagery by the German 
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