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Abstract This paper presents results on the simulation of the evacuation of 
the city of Padang with approximately 1,000,000 inhabitants. The model used is 
MATSim  (www.matsim.org).  Three  different  strategies  were  applied:  shortest 
path  solution,  user  optimum,  system optimum,  together  with  a  constraint  that 
moves  should  reduce  risk  whenever  possible.  The  introduction  of  the  risk 
minimization  increases  the  overall  required  safe  egress  time  (RSET).  The 
differences between the RSET for the three risk minimizing strategies are small. 
Further quantities used for the assessment of the evacuation are the formation of 
congestion and the individual RSETs (in comparison with the available SET).

Introduction: Safety, Risk, and the Need for 
Simulation

Safety is a basic need for individuals and societies. Safety can be roughly defined 
by: existing risk < acceptable risk. It can also be discriminated from security by 
dealing with non-intentional threats. In this paper, the potential threat is a natural 
hazard:  a  submarine  earthquake in  the  Indian Ocean  causing a  Tsunami wave 
hitting  the  coast  of  Sumatra,  Indonesia  and the  city  of  Padang.  The risk,  and 
consequently also the safety if the acceptable risk is specified can be quantified 
based on the following formula:

( ) ( )dttPCD=R ⋅−⋅∫ 1 (1)

The  damage  is  denoted  by  D,  the  coping  capability  by  C,  and  P(t)  is  the 
probability of the wave reaching the coast. The criterion usually applied to assess 
a  risk  is:  R < acceptable risk.  Please note that  there is  always a residual  risk 
(RR>0), which cannot be reduced by technical or management means. In case of a 
tsunami, the physical safety or lives of people are at risk. Evacuation is one means 
in  ensuring  the  safety,  especially  to  avoid  the  risk  and  threat  to  human  life. 
Evacuation reduces the damage. Another strategy would be to build tsunami safe 
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buildings which would increase  C.  This is beyond the scope of this paper. We 
focus on the evacuation.
 The condition for a safe egress is RSET < ASET, where ASET is the available 
safe egress time and RSET is the required safe egress time. In this paper,  we 
present the calculation of RSET (based on a microscopic multi-agent simulation). 
ASET is provided by inundation simulations that show the consequences of an 
earthquake  off-shore  the  island  of  Sumatra  (Indonesia)  for  the  coastal  city  of 
Padang. The overall egress time is one major criterion for assessing an evacuation 
plan. Such a plan addresses – among many other issues – evacuation routes for the 
endangered population. There are many models that find optimal routing strategies 
(i.e. minimizing RSET) for a given road and walkway network. In the case of 
large-scale inundation, the network changes with time. Links or edges (i.e. roads 
or lanes) become impassable due to flooding. The evacuation simulation based on 
a  dynamic  network  works  only  as  long  the  advance  warning  time  is  known 
beforehand, though. When this is not the case, the optimal routing strategy might 
increase the risk for some persons on some stretch of way. This issue is addressed 
in the next section on utilities of evacuation strategies. Implementation details are 
given  in  section  3,  experimental  results  discussed  in  section  4.  The  paper 
concludes with a discussion of the simulation results (section 5) and a conclusion 
and recommendations (section 6).

Utility of an Evacuation Strategy

The  utility  of  an  evacuation  path  often  depends  on  uncertain  aspects.  One 
uncertain aspect  is  the advance warning time  warnτ .  We assume that  warnτ  

follows  an  unknown  probability  distribution  with,  for  this  section, 

( ) 10 =>τP warn ,  i.e.  there  is  always  a  warning  before the  event.   Let  us 

consider a situation with two different evacuation paths 0p  and 1p ; 0p  does 

not depend on the advance warning time warnτ  but has considerably longer travel 

time than  1p .  The path 1p  first  leads “towards danger” for a time period  T 

before it leads to safety, i.e. when the warning time is too short one cannot take it. 
An example is a bridge close to the shore heading to a safe area. If an evacuee 
takes 1p , she  moves towards the shore (danger) in order to reach the bridge. As 

a result the utility of 1p  depends on warnτ . The utility for 0p and 1p  can be 

formulated as follows:



U  p0∣τ warn ={ −∞ if τ warn≤0

−t travel  p0 , otherwise}  (2)

U  p1∣τwarn ={ −∞ if τwarn≤T

−t travel  p1  , otherwise }  (3)

where  ttravel(p1) denotes the travel time for path p1. Taking the information of the 

probability  distribution for  warnτ ,  we can  calculate  the  expectation value for 

each utility:

( )( ) ( )( ) ( )000 pt=pUE=τ|pUE travelwarn  (4)

( )( ) ( ) ( )
( )( ) ( ) −∞⋅−

∞−⋅

=ptT<τP+

T<τP=τ|pUE

travelwarn

warnwarn

1

1

1
 (5)

Based on these expectation values, risky evacuation paths 1p  are banned in the 

remainder of this paper, as long as a non risky solution  p0  exists. If no risk-free 
path  exists,  then  the  solution  with  the  lowest  risk  should  be  chosen. 
Implementation details are given in the following section.

Routing strategies

In  this  section  we  discuss  three  different  routing  strategies.  The  most 
straightforward approach to an evacuation problem is the shortest path solution, 
where every evacuee takes the shortest path to safety. The Dijkstra shortest path 
algorithm [] finds the shortest  path in a weighted graph from one node to any 
other. The weights for a link are defined by a time- and/or distance-dependent cost 
function. The algorithm relies on the information about the free-flow travel time 

aτ  for every link a. Algorithm 1 shows the shortest-path routing logic.

The shortest path solution does not take congestion into consideration, though. 
In  reality,  the  link  travel  time  depends  on  the  level  of  congestion.  In  the 
underlying traffic flow simulation every link has a specific flow capacity; if this 
capacity is exceeded, congestion occurs and increases the link travel time. Since 
the  demand  on  a  link  is  not  constant  over  time  the  link  travel  time  is  time 
dependent.  There are different  optimization approaches to find better  solutions 
than the shortest path solution. In this paper we discuss the Nash equilibrium (NE; 
= user optimum) and the system optimum (SO).



Algorithm 1. Shortest path routing 

1. initialize aτ  with the free-flow travel time for all links 

2. calculate routes based on link costs aa τ=C

The NE is named after John Forbes Nash and describes a state in a competitive 
two or more player game where no player can gain by unilateral deviation from 
her current strategy []. In the evacuation context the NE describes a state where no 
evacuee can improve her evacuation performance by unilateral deviation from her 
current  evacuation  route  (user  optimum).  In  most  (but  not  all)  evacuation 
situations, the NE leads to a shorter overall evacuation time than the shortest path 
solution. In the NE nobody has an incentive to change his path. It is therefore a 
solution that can be reached by appropriate training. In multi-agent simulations the 
solution can move towards the NE through iterative learning [,  ].  An iterative 
learning algorithm starts  with a  given starting solution and tries  to  improve it 
through trial  and error.  Learning means re-planning agents paths. The learning 
algorithm uses a cost function based on travel times. Formally, the real-valued 
time is divided into K  segments (“bins”) of length T , which are indexed by 
k=0,…K-1. The time-dependent link travel time when entering link  a  in time 
step k  is denoted by τa(k). Implementation details are given in [10]. Algorithm 2 
shows the Nash-equilibrium routing logic.

Algorithm 2. Nash equilibrium routing

1. initialize ( )kτ a  = free-flow travel time for all links a  and time steps 

k
2. repeat for many iterations:

(a) recalculate routes based on link costs ( ) ( )kτ=kC aa

(b) load vehicles on network, obtain new ( )kτ a or all a  and k
The SO can be achieved by applying a similar learning algorithm as for the NE 

approach. The only difference is that for a SO, the travel time based on which 
agents evaluate their routes needs to be replaced by the marginal travel time []. 
The marginal travel time of a route is the amount by which the total system travel 
time changes if one additional evacuee  takes that route. It is the sum of the cost 
experienced by the added evacuee and the cost imposed on other evacuees. The 
latter  is  denoted here as  the  “social  cost”  (CS).  Implementation details  for  the 
approximated system optimum (SO) in the evacuation context are discussed in []. 
An application of this result  to  a  system optimal  route assignment  requires  to 

calculate ( )kC s
a  for every link a  and entry “time bin” k  in the network and 

to add this term to the time-dependent link travel time that is evaluated in the route 
re-planning  of  every  agent.  Algorithm  3  outlines  the  arguably  most 
straightforward implementation of this approach.

Algorithm 3. System optimum approach



1. initialize ( ) 0=kC s
a  and ( )kτ a  with the free-flow travel time for all 

links a  and time steps k
2. repeat for many iterations:

(a) recalculate routes based on link costs Ca k =τa k +C a
s k 

(b) load vehicles on network, obtain new ( )kτa and ( )kC s
a

for all a  and k

Risk costs

In this section we propose a strategy that allows only risk-decreasing moves, as 
long as such moves exist. This approach is similar to the system of priority levels 
proposed by Hamacher and Tjandra [7]. A move is defined as risk-decreasing if it 
increases  the  evacuee’s  distance to  the danger.  Inside  the endangered area the 
distance describes the temporal distance. For inundation scenarios this means that 
the evacuee's position before the move will be flooded earlier than the position 
after the move. But even people outside the area directly affected should keep 
some distance to the danger.  This is important because otherwise those people 
could block evacuees from leaving the endangered area. Therefore we propose an 
additional buffer around the endangered area that also has to be evacuated. Within 
this buffer a move is defined as risk-decreasing if it increases the evacuee’s spatial 
distance to the danger. In general, some evacuation paths might always be risk 
decreasing others not. In our simulation, the only decision points are at nodes. As 
soon as an evacuee has entered a particular link she has to travel along that link 
until the next node. Therefore we calculate risk levels for nodes. If a link leads 
from a node with lower risk to a  node with higher  risk than that  link will  be 
charged an additional penalty. This is achieved by adding a risk cost term rC  to 

the cost function C . The cost terms for algorithms 1, 2, 3 are thus extended by 

the static risk cost rC . 

The cost term for the shortest path routing and the NE approach is now:

( ) r
αα

k
α C+kτ=C (6)

for the NE; for the system optimal approach it is

( ) ( ) ( ) r
a

s
aaa C+kC+kτ=kC  . (7)

The risk cost for link a  connecting nodes ( ji, ) with risk levels r i  and jr :

Ca
r
={la⋅penalty if ri<r j

0, otherwise }  (8)



where  al  is the length of link  a  and  penalty  is a constant that has to be 

chosen so that the cheapest risk increasing path is more expensive then than the 
most expensive risk decreasing path. In the underlying scenario,  penalty  has 
been set based on a heuristic estimate to 30 hours per 100 meters. We conducted 
experiments for each of the three routing strategies (shortest path, user optimum, 
system  optimum)  with  risk  avoidance  and  compared  them  to  the  NE  (user 
optimum) approach without additional risk costs. The results of the experiments 
are given in the following section.

Simulation results

The  risk  minimizing  routing  strategy  has  been  investigated  through  the 
application to a real world evacuation scenario namely the evacuation of the city 
of Padang in the case of a tsunami warning. Padang is located at the West Coast of 
Sumatra Island and is exposed to earth quakes triggered tsunamis (see, e.g. [8]). 
The city has more then 800 000 inhabitants, where several hundred thousand are 
living in the endangered area. The geographical data, socio-economic profile and 
expected inundation scenarios for the city have been discussed in many of our 
previous publications (see, e.g. [9]). The simulations have been performed in the 
MATSim simulation  framework.  The MATSim simulation frame work  and its 
adaptation to pedestrian evacuation simulation have also been discussed broadly 
(see,  e.g.  [4,10]).  We  conducted  four  runs  to  investigate  the  risk  minimizing 
strategy. Run 1 implements the NE approach (w/o risk costs),  Run 2 implements 
the risk minimizing shortest path solution, Run 3 the risk minimizing NE approach 
and Run 4 the risk minimizing SO approach. The synthetic population is the same 
for all runs. It consist of 277 299 agents. The number of agents and the initial 
distribution corresponds to the real population of Padang.

The overall run-time for  Run 3 was 12 hours and 21 minutes. For  Run 4 the 
overall  run-time  was  26  hours  and  4  minutes.  This  demonstrates  that  the 
pedestrian flow model can deal with large-scale scenarios. Some visualizer screen 
shots of the first 30 minutes are shown in fig. 2. The agents are colored according 
to their evacuation time: green indicates fast, red slow escape. It is shown that Run 
1 (left  column  in  the  figure,  reference  case)  performs  best.  In  the  visualizer 
snapshots, no major differences between the three risk minimizing runs (2 to 4) 
can be identified. In Run 2 there are many red colored agents in the northern part 
of  the  city,  indicating  a  longer  evacuation time.  Run 3 and  Run 4 are  almost 
identical. Based on the screen shots alone, no advantage of the risk minimizing 
approach  (compared  to  the  reference  case)  can  be  identified.  A  detailed 
examination of the results shows the advantage of the risk minimizing approach, 
though.

In fig. 3 (right) there are two visualizer screen shots of the Siti Nurbaya Bridge 
each taken after 5 minutes The left part shows Run 1 (reference case) and at the 



right part Run 3 (risk minimization). In Run 1 agents cross the bridge towards the 
mountains in the south.  This strategy would be a good strategy if the advance 
warning time was known to be long enough; otherwise, if the wave arrived earlier 
than expected, this strategy would be disastrous. In contrast in  Run 3 the agents 
avoid the bridge and move away from the river (and from the danger).

As a consequence of risk minimization, many agents in the northern part of the 
city  do not  have  enough time to  evacuate  (RSET < ASET).  This  fact  is  also 
reflected in the evacuation curves. Fig. 4 (left) shows the evacuation curves for the 
four runs discussed The simulation results show that the risk minimization does in 
our scenario comprise agents which do not have enough time for evacuation.



Fig. 2. From left to right: Nash equilibrium without risk, risk minimization (rm) for shortest 
path, Nash (user optimum), and approximated system optimum. Agents with RSET > ASET are 
shown in red. For all three risk minimizing strategies (column 2 to 4), namely shortest path rm, 
Nash rm, and approximated system optimum rm, the results are similar. The time is (from top to 
bottom): 1 minute, 15 minutes, and 30 minutes after the alarm. Please note that the warning time 
is the time between the alarm and the wave reaching the coast.



Fig. 3. Result of penalizing risk in the simulation: Agents use the dangerous bridge in the left 
case, but avoid it if its usage is more costly. In the right case, crossing the bridge is costly (rj>ri 

in eq. (8), i.e. node j will be flooded earlier than node i).

Note  that  the  evacuation  curves  for  Run  3 and  Run  4 almost  coincide. 
Therefore, the risk costs are an additional constraint pushing NE and SO solution 
towards  each  other.  There  are  still  fundamental  differences  between  both 
approaches,  however.  These  differences  are  indicated  by  the  area  where 
ASET<RSET (available time<required time), e.g. the area in the north.

Therefore, this area is highly endangered and an alternative strategy is required. 
A first step is the detailed analysis of this area. Therefore a GIS based analysis of 
the number of endangered agents has been performed (fig. 4, right). This analysis 
demonstrates the differences between Run 3 (NE) and Run 4 (SO). Even if there 
are no big differences in the spatial distribution of the endangered agents for Run 
3 and Run 4, the figure shows one important aspect of the social cost optimization: 
The number of endangered agents further inland is higher in Run 4 than in Run 3 
and vice versa at the coastline. The agents starting near the coast gain through the 
social cost optimization and the agents further inland lose. The latter make space 
for others in order to reduce their own social costs. Such behavior reduces the 
average evacuation time and also increases the number of rescued agents.  The 
price, however, is the organized “sacrifice” of some. In reality, this is does not 
seem to be an option and therefore we argue in support of the NE approach.

Summary and Discussion

We have presented simulation results for the coastal city of Padang. The results 
are based on the MATSim multi-agent simulation framework (www.matsim.org) 
adapted  for  evacuation  simulation.  The  introduction  of  risk  costs  (eq.  (8)) 
increases  the  overall  evacuation  time  (RSET)  considerably.  This  result  holds 
irrespective of the routing strategy. Three different routing strategies have been 
investigated: shortest path, Nash equilibrium (NE; = user optimum), and system 
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optimum (SO). The SO is realized by introducing social costs on each link; those 
social  costs  do  not  represent  an  intrinsic  motivation  but  have  to  be  enforced 
externally, i.e. they depend not only on the agent's own travel time but also on the 
travel time of others. The NE approach leads to a shorter overall evacuation time 
than  the  shortest  path  strategy.  In  the  simulation,  the  NE is  approximated  by 
iterative simulation runs with re-planning based on the results of the previous run.
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Fig. 4. Left: Evacuation curves of the four runs. Right: GIS analysis of the highly endangered 
area on a 300 meter grid. From left to right: Run 3 (rm for NE) and Run 4 (rm for SO). The 
colors of the squares describe the percentage of agents for whom ASET<RSET (red: 50%,≥  
orange: 25% and yellow: <25%). The numbers in the squares denote the total number of agents≥  
departing from that square (top) and the total number of agents with ASET<RSET.

Conclusion and Recommendations
In the case of an evacuation, re-planning as described in the previous section 

does not take place. An evacuation is – other than commuter traffic – a singular 
event. This distinguishes evacuation simulations from traffic simulations. On the 
other hand, the results of the evacuation simulation are intended to provide a basis 
for  an  evacuation  plan  which  has  to  be  implemented  by  local  authorities  and 
groups. And for a recommendation, a stable and acceptable solution is required. 
Such a solution, in terms of evacuation paths, is provided by the NE approach: no 
single agent can gain by unilateral deviation and there is no gain based on the loss 
of someone else. Of course, the evacuation paths have still to be communicated to 
the population, e.g. by signage, the authorities, police, and volunteer groups. One 
of those groups is KOGAMI (kogami.multiply.com), which provides training for 
the local population to prepare for Tsunamis. The recommendations of KOGAMI 
turn out to be most similar to the NE solution for the risk minimization case. One 
prominent example to illustrate this is the bridge shown in fig. 3. In one sentence, 
the strategy derived from the simulations could be summarized as “avoid bridges 
and keep away from the water”. But the simulation allows more detailed analysis, 
including how much one loses through the “risk minimization” approach, or the 
possibility  to  evaluate  changes  to  the  scenario  such  as  capacity  expansions, 
shelters, or changes to the whereabouts of people when the evacuation starts.
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