8,884 research outputs found

    The Internet of Things Connectivity Binge: What are the Implications?

    Get PDF
    Despite wide concern about cyberattacks, outages and privacy violations, most experts believe the Internet of Things will continue to expand successfully the next few years, tying machines to machines and linking people to valuable resources, services and opportunities

    Chapter 13 - Sharing strategies: carsharing, shared micromobility (bikesharing and scooter sharing), transportation network companies, microtransit, and other innovative mobility modes

    Get PDF
    Shared mobility—the shared use of a vehicle, bicycle, or other mode—is an innovative transportation strategy that enables users to gain short-term access to transportation modes on an “as-needed” basis. It includes various forms of carsharing, bikesharing, scooter sharing, ridesharing (carpooling and vanpooling), transportation network companies (TNCs), and microtransit. Included in this ecosystem are smartphone “apps” that aggregate and optimize these mobility options, as well as “courier network services” that provide last mile package and food delivery. This chapter describes different models that have emerged in shared mobility and reviews research that has quantified the environmental, social, and transportation-related impacts of these services

    Car Assistant

    Get PDF
    Smart devices continue to proliferate as the Internet-of-Things expands. Advances in both automotive and computing device technology now allow smart device functionality to be integrated into automobiles. In some circumstances, smart device functionality can be incorporated into the computing system of the automobile itself. In other circumstances, smart device functionality can be present in an automobile via a secondary electronic device, such as a dongle coupled to an automobile’s on-board diagnostic port or a twelve-volt electric port. In either circumstance, smart device functionality can be integrated into the automobile without the need of, or compromising the performance of, a driver’s or passenger’s mobile device

    Carpooling Liability?: Applying Tort Law Principles to the Joint Emergence of Self-Driving Automobiles and Transportation Network Companies

    Get PDF
    Self-driving automobiles have emerged as the future of vehicular travel, but this innovation is not developing in isolation. Simultaneously, the popularity of transportation network companies functioning as ride-hailing and ride-sharing services have altered traditional conceptions of personal transportation. Technology companies, conventional automakers, and start-up businesses each play significant roles in fundamentally transforming transportation methods. These transformations raise numerous liability questions. Specifically, the emergence of self-driving vehicles and transportation network companies create uncertainty for the application of tort law’s negligence standard. This Note addresses technological innovations in vehicular transportation and their accompanying legislative and regulatory developments. Then, this Note discusses the implications for vicarious liability for vehicle owners, duties of care for vehicle operators, and corresponding insurance regimes. This Note also considers theoretical justifications for tort concepts including enterprise liability. Accounting for the inevitable uncertainty in applying tort law to new invention, this Note proposes a strict and vicarious liability regime with corresponding no-fault automobile insurance

    Road Traffic Management using Vehicle-to- Everything (V2X) Communication

    Get PDF
    Traffic congestion is the primary concern in dense cities; while the increased number of automobiles is becoming uncontrollable in some cities, it is more challenging to manage or change how people use cars. To contribute to solving traffic congestion in cities, this project examines the study of transferring vehicles to be competent in a way that can help the government entities analyze the received vehicles’ data and for better decisions on reducing traffic congestion as well as the real-time monitoring of traffic wherever it is located using the Vehicle-to-Everything (V2X) communication methodology. This study proposes a hardware “system” that can be attached to any vehicle to collect real-time data from vehicles and communicate with the Road and Transportation Authority. The hardware system, however, is connected to the cars through a wireless On-Board Diagnostics (OBD) connection in favor of collecting all the necessary information from the vehicle, such as the car speed and Revolutions Per Minute (RPM) data. On the other hand, a GPS sensor is used to inquire about the vehicle’s location, a GSM module to make sure the device is always connected to the internet for data transmission, a LiDAR sensor for distance and safety measurement, and a camera module accessed only by the driver for object detection such as cars, pedestrians, traffic signs, damaged roads, and road hazards. Moreover, system updates and maintenance can be done remotely to reduce the number of visits to the traffic department since all devices are to be connected to a single platform. As a result, it was possible to create a prototype for a single vehicle, including the sensors mentioned above, returning valuable data that include vehicle speed and exact location, which will help future researchers develop an application platform to monitor and track traffic congestion in real time

    Energy and Smart Growth: It's about How and Where We Build

    Get PDF
    By efficiently locating development, smarter growth land use policies and practices offer a viable way to reduce U.S. energy consumption. Moreover, by increasing attention on how we build, in addition to where we build, smart growth could become even more energy smart. The smart growth and energy efficiency movements thus are intrinsically linked, yet these two fields have mostly operated in separate worlds. Through greater use of energy efficient design, and renewable energy resources, the smart growth movement could better achieve its goals of environmental protection, economic security and prosperity, and community livability. In short, green building and smart growth should go hand in hand. Heightened concern about foreign oil dependence, climate change, and other ill effects of fossil fuel usage makes the energy-smart growth collaboration especially important. Strengthening this collaboration will involve overcoming some hurdles, however, and funders can play an important role in assisting these movements to gain strength from each other. This paper contends there is much to be gained by expanding the smart growth movement to include greater attention on energy. It provides a brief background on current energy trends and programs, relevant to smart growth. It then presents a framework for understanding the connections between energy and land use which focuses on two primary issues: how to build, which involves neighborhood and building design, and where to build, meaning that location matters. The final section offers suggestions to funders interesting in helping accelerate the merger of these fields

    The ARPANET after twenty years

    Get PDF
    The ARPANET began operations in 1969 with four nodes as an experiment in resource sharing among computers. It has evolved into a worldwide research network of over 60,000 nodes, influencing the design of other networks in business, education, and government. It demonstrated the speed and reliability of packet-switching networks. Its protocols have served as the models for international standards. And yet the significance of the ARPANET lies not in its technology, but in the profound alterations networking has produced in human practices. Network designers must now turn their attention to the discourses of scientific technology, business, education, and government that are being mixed together in the milieux of networking, and in particular the conflicts and misunderstandings that arise from the different world views of these discourses
    • …
    corecore