7,527 research outputs found

    Synopsis of an engineering solution for a painful problem Phantom Limb Pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone

    An integrative framework for tailoring virtual reality based motor rehabilitation after stroke

    Get PDF
    Stroke is a leading cause of life-lasting motor impairments, undermining the quality of life of stroke survivors and their families, and representing a major chal lenge for a world population that is ageing at a dramatic rate. Important technologi cal developments and neuroscientific discoveries have contributed to a better under standing of stroke recovery. Virtual Reality (VR) arises as a powerful tool because it allows merging contributions from engineering, human computer interaction, reha bilitation medicine and neuroscience to propose novel and more effective paradigms for motor rehabilitation. However, despite evidence of the benefits of these novel training paradigms, most of them still rely on the choice of particular technologi cal solutions tailored to specific subsets of patients. Here we present an integrative framework that utilizes concepts of human computer confluence to 1) enable VR neu rorehabilitation through interface technologies, making VR rehabilitation paradigms accessible to wide populations of patients, and 2) create VR training environments that allow the personalization of training to address the individual needs of stroke patients. The use of these features is demonstrated in pilot studies using VR training environments in different configurations: as an online low-cost version, with a myo electric robotic orthosis, and in a neurofeedback paradigm. Finally, we argue about the need of coupling VR approaches and neurocomputational modelling to further study stroke and its recovery process, aiding on the design of optimal rehabilitation programs tailored to the requirements of each user.info:eu-repo/semantics/publishedVersio

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Synopsis of an engineering solution for a painful problem: Phantom limb pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of "mirror box" therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients' interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.Published versio
    corecore