628 research outputs found

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing

    From Flames to Forage: How Wildfire Affects Elk Behavior and Abundance

    Get PDF
    The Rocky Mountain elk (Cervus elaphus nelsoni) is an ecologically and culturally important wildlife species in the Intermountain West, but it is facing habitat changes caused by increasing fire activity. Wildfire frequency is projected to continue to change into the future, yet increases in annual area burned and increases in area burned at high severity may actually represent opportunities for some species. Large herbivores like elk may benefit from increased access to regenerating areas where forage abundance and quality are often elevated. Therefore, effective management of wildlife populations may depend on quantifying how large ungulates, like elk, alter their behavior in the context of rapidly shifting fire regimes. In order to evaluate elk foraging activity in previously burned areas, my research examined differences in severity and habitat types. I used two sampling methods to understand elk behavior and habitat selection post-fire. First, I ran a Hidden Markov Model (HMM) on GPS collar data to assign one of three behavioral states (‘resting’, ‘foraging’, or ‘commuting’) to each of the approximately 730,000 elk positions located in a previously burned fire perimeter. I statistically tested whether the probability of an elk position being assigned a ‘foraging’ state depended on fire severity and time since fire, while controlling for other potential behavioral drivers (remote-sensed vegetation type, cover, and productivity). I then used camera data from 40 camera traps, stratified by fire severity (unburned, low, moderate, and high severity), to monitor elk use of burned areas. Results suggest that elk probability of foraging in burned areas peaks 3-4 years post-fire in conifers, but peaks between 7-9 years in aspen. Also, elk have higher probabilities of being in a foraging state in areas where aspen is burned at high severity. From camera data, I found that the post-fire abundance of herbaceous biomass is the strongest driver of elk abundance, and abundance is highest at higher burn severity. Combined, this research provides information on wildfire’s influence on elk behavior and abundance and can help inform management decisions for elk on increasing fiery landscapes in the western United States

    Caracterização e estudo comparativo de exsudações de hidrocarbonetos e plays petrolíferos em bacias terrestres das regiões central do Irã e sudeste do Brasil usando sensoriamento remoto espectral

    Get PDF
    Orientador: Carlos Roberto de Souza FilhoTese (doutorado) - Universidade Estadual de Campinas, Instituto de GeociênciasResumo: O objetivo desta pesquisa foi explorar as assinaturas de exsudações de hidrocarbonetos na superfície usando a tecnologia de detecção remota espectral. Isso foi alcançado primeiro, realizando uma revisão abrangente das capacidades e potenciais técnicas de detecção direta e indireta. Em seguida, a técnica foi aplicada para investigar dois locais de teste localizados no Irã e no Brasil, conhecidos por hospedar sistemas ativos de micro-exsudações e afloramentos betuminosos, respectivamente. A primeira área de estudo está localizada perto da cidade de Qom (Irã), e está inserida no campo petrolífero Alborz, enterrado sob sedimentos datados do Oligoceno da Formação Upper Red. O segundo local está localizado perto da cidade de Anhembi (SP), na margem oriental da bacia do Paraná, no Brasil, e inclui acumulações de betume em arenitos triássicos da Formação Pirambóia. O trabalho na área de Qom integrou evidências de (i) estudos petrográficos e geoquímicos em laboratório, (ii) investigações de afloramentos em campo, e (iii) mapeamento de anomalia em larga escala através de conjuntos de dados multi-espectrais ASTER e Sentinel-2. O resultado deste estudo se trata de novos indicadores mineralógicos e geoquímicos para a exploração de micro-exsudações e um modelo de micro-exsudações atualizado. Durante este trabalho, conseguimos desenvolver novas metodologias para análise de dados espectroscópicos. Através da utilização de dados simulados, indicamos que o instrumento de satélite WorldView-3 tem potencial para detecção direta de hidrocarbonetos. Na sequência do estudo, dados reais sobre afloramentos de arenitos e óleo na área de Anhembi foram investigados. A área foi fotografada novamente no chão e usando o sistema de imagem hiperespectral AisaFENIX. Seguiu-se estudos e amostragem no campo,incluindo espectroscopia de alcance fechado das amostras no laboratório usando instrumentos de imagem (ou seja, sisuCHEMA) e não-imagem (ou seja, FieldSpec-4). O estudo demonstrou que uma abordagem espectroscópica multi-escala poderia fornecer uma imagem completa das variações no conteúdo e composição do betume e minerais de alteração que acompanham. A assinatura de hidrocarbonetos, especialmente a centrada em 2300 nm, mostrou-se consistente e comparável entre as escalas e capaz de estimar o teor de betume de areias de petróleo em todas as escalas de imagemAbstract: The objective of this research was to explore for the signatures of seeping hydrocarbons on the surface using spectral remote sensing technology. It was achieved firstly by conducting a comprehensive review of the capacities and potentials of the technique for direct and indirect seepage detection. Next, the technique was applied to investigate two distinctive test sites located in Iran and Brazil known to retain active microseepage systems and bituminous outcrops, respectively. The first study area is located near the city of Qom in Iran, and consists of Alborz oilfield buried under Oligocene sediments of the Upper-Red Formation. The second site is located near the town of Anhembi on the eastern edge of the Paraná Basin in Brazil and includes bitumen accumulations in the Triassic sandstones of the Pirambóia Formation. Our work in Qom area integrated evidence from (i) petrographic, spectroscopic, and geochemical studies in the laboratory, (ii) outcrop investigations in the field, and (iii) broad-scale anomaly mapping via orbital remote sensing data. The outcomes of this study was novel mineralogical and geochemical indicators for microseepage characterization and a classification scheme for the microseepage-induced alterations. Our study indicated that active microseepage systems occur in large parts of the lithofacies in Qom area, implying that the extent of the petroleum reservoir is much larger than previously thought. During this work, we also developed new methodologies for spectroscopic data analysis and processing. On the other side, by using simulated data, we indicated that WorldView-3 satellite instrument has the potential for direct hydrocarbon detection. Following this demonstration, real datasets were acquired over oil-sand outcrops of the Anhembi area. The area was further imaged on the ground and from the air by using an AisaFENIX hyperspectral imaging system. This was followed by outcrop studies and sampling in the field and close-range spectroscopy in the laboratory using both imaging (i.e. sisuCHEMA) and nonimaging instruments. The study demonstrated that a multi-scale spectroscopic approach could provide a complete picture of the variations in the content and composition of bitumen and associated alteration mineralogy. The oil signature, especially the one centered at 2300 nm, was shown to be consistent and comparable among scales, and capable of estimating the bitumen content of oil-sands at all imaging scalesDoutoradoGeologia e Recursos NaturaisDoutor em Geociências2015/06663-7FAPES

    Simulating the Impacts of Land-Use Land-Cover Changes on Cropland Carbon Fluxes in the Midwest of the United States

    Get PDF
    Understanding the major drivers of the cropland carbon fluxes is important for carbon management and greenhouse gas mitigation in agriculture. Past studies found that agricultural land-use and land-cover (LULC) changes, such as changes in cropland production technologies, tillage practices, and planted crop species, could have large impacts on carbon fluxes. However, the impacts remain highly uncertain at regional to global scales. Satellite remote sensing is commonly used to create products with geospatial information on LULC changes. This geospatial information can be integrated into biogeochemical models to simulate the spatial and temporal patterns of carbon fluxes. We used the General Ensemble Biogeochemical Modeling System (GEMS) to study LULC change impacts on cropland carbon fluxes in the Midwest USA. First we evaluated the impacts of LULC change on cropland net primary production (NPP) estimates. We found out the high spatial variability of cropland NPP across the study region was strongly related to the changes in crop species. Ignoring information about crop species distributions could introduce large biases into NPP estimates. We then investigated whether the characteristics of LULC change could impact the uncertainties of carbon flux estimates (i.e., NPP, net ecosystem production (NEP) and soil organic carbon (SOC)) using GEMS and two other models. The uncertainties of all three flux estimates were spatial autocorrelated. Land cover characteristics, such as cropland percentage, crop richness, and land cover diversity all showed statistically significant relationships with the uncertainties of NPP and NEP, but not with the uncertainties of SOC changes. The impacts of LULC change on SOC changes were further studied with historical LULC data from 1980 to 2012 using GEMS simulations. The results showed that cropland production increase over time from technology improvements had the largest impacts on cropland SOC change, followed by expansion of conservation tillage. This study advanced the scientific knowledge of cropland carbon fluxes and the impacts of various management practices over an agricultural area. The findings could help future carbon cycle studies to generate more accurate estimates on spatial and temporal changes of carbon fluxes

    Earth resources: A continuing bibliography with indexes (issue 61)

    Get PDF
    This bibliography lists 606 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors, and economic analysis

    Annual Report: 2009

    Get PDF
    I submit herewith the annual report from the Agricultural and Forestry Experiment Station, School of Natural Resources and Agricultural Sciences, University of Alaska Fairbanks, for the period ending December 31, 2009. This is done in accordance with an act of Congress, approved March 2, 1887, entitled, “An act to establish agricultural experiment stations, in connection with the agricultural college established in the several states under the provisions of an act approved July 2, 1862, and under the acts supplementary thereto,” and also of the act of the Alaska Territorial Legislature, approved March 12, 1935, accepting the provisions of the act of Congress. The research reports are organized according to our strategic plan, which focuses on high-latitude soils, high-latitude agriculture, natural resources use and allocation, ecosystems management, and geographic information. These areas cross department and unit lines, linking them and unifying the research. We have also included in our financial statement information on the special grants we receive. These special grants allow us to provide research and outreach that is targeted toward economic development in Alaska. Research conducted by our graduate and undergraduate students plays an important role in these grants and the impact they make on Alaska.Financial statement -- Grants -- Students -- Research Reports: Partners, Facilities, and Programs; Geography; High-Latitude Agriculture; High-Latitude Soils; Management of Ecosystems; Natural Resources Use and Allocation; Index to Reports -- Publications -- Facult
    corecore