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ABSTRACT 

 

 

The objective of this research was to explore for the signatures of seeping hydrocarbons on 

the surface using spectral remote sensing technology. Two comprehensive literature reviews 

were produced on the capacity and potential of the technique for direct and indirect 

seepage detection. Using these theoretical guides, RS was applied to investigate two 

distinctive test sites located in Iran and Brazil known to retain active microseepage systems 

and bituminous outcrops, respectively. The Alborz oilfield, located near the city of Qom in 

Iran, is buried under Oligocene sediments of the Upper-Red Formation. The Anhembi oil-

sands, whose outcrops occur near the town of Anhembi, on the eastern edge of the Paraná 

Basin in Brazil, includes bitumen accumulations in Triassic sandstones of the Pirambóia 

Formation. The work on the Qom area integrated evidence from (i) petrographic, 

spectroscopic, and geochemical studies in the laboratory, (ii) outcrop investigations in the 

field, and (iii) broad-scale anomaly mapping via orbital remote sensing data. Novel 

mineralogical (in terms of abundance, composition, and crystallinity) and geochemical 

indicators for seepage characterization were revealed and a classification scheme for 

microseepage-induced alterations was introduced. The study indicated that active 

microseepage systems occur in large parts of the lithofacies in the Qom area, implying that 

the extent of the petroleum reservoir is much larger than previously thought. The Anhembi 

area was sensed by a multitude of sensors in the VNIR–SWIR range (400–2500nm), at 

different scales, including WorldView-3 multispectral instrument and AisaFENIX airborne and 

ground-based hyperspectral imaging system. Spectroscopic characterization of hand samples 

was accomplished in the laboratory using both imaging (sisuCHEMA) and nonimaging (ASD) 

instruments. The study demonstrated that a multi-scale spectroscopic approach could 

provide a complete picture of the variations in the content and composition of bitumen and 

associated alteration mineralogy. The oil signature, especially the one centered at 2300 nm, 

proved to be consistent and comparable among observations, and capable of estimating the 

bitumen content of oil-sands at all imaging scales. Furthermore, WorldView-3 satellite data 

were proved capable of detecting petroleum by resolving the absorption feature centered at 

1700 nm. 

 

Keywords: Seepage, Petroleum Prospecting, Onshore Basin, Remote Sensing, Spectral 

Analysis. 

 

 

  



 

 

RESUMO 

 

 

O objetivo desta pesquisa foi explorar as assinaturas de exsudações de hidrocarbonetos na 

superfície terrestre usando a tecnologia de detecção remota espectral. Duas revisões 

abrangentes da literatura foram produzidas sobre a capacidade e potencial da tecnologia 

para a detecção direta e indireta de exsudações. Com base nessa fundamentação teórica, o 

sensoriamento remoto foi aplicado para investigar dois locais de teste distintos localizados 

no Irã e no Brasil, conhecidos por conter sistemas de exsudação ativos e afloramentos 

betuminosos, respectivamente. O campo petrolífero de Alborz, localizado perto da cidade de 

Qom, no Irã, encontra-se encerrado por sedimentos oligocênicos da Upper-Red Formation. 

As areias betuminosas de Anhembi, cujos afloramentos-tipo ocorrem próximos à cidade de 

Anhembi, na borda leste da Bacia do Paraná, no Brasil, incluem acumulações de betume nos 

arenitos Triássicos da Formação Pirambóia. O trabalho na área de Qom integrou evidências 

de (i) estudos petrográficos, espectroscópicos e geoquímicos em laboratório, (ii) 

investigações de afloramentos no campo, e (iii) mapeamento de anomalias espectrais em 

larga escala via dados de sensoriamento remoto orbital. Novos indicadores mineralógicos 

(em termos de abundância, composição e cristalinidade) e geoquímicos para caracterização 

da micro-exsudações foram revelados e um novo esquema de classificação para alterações 

induzidas por micro-exsudação foi introduzido. O estudo indicou que sistemas ativos de 

exsudação ocorrem em grande parte das litofácies na área de Qom, implicando que a 

extensão do reservatório de petróleo é muito maior do que o estimado originalmente. A 

área de Anhembi foi detectada por uma série de sensores na faixa VNIR–SWIR (400–2500 

nm), em diferentes escalas, incluindo o sistema multiespectral orbital WorldView-3 e o 

escanner imageador hiperespectral AisaFENIX, nos modos aerotransportado e terrestre. A 

caracterização espectroscópica das amostras coletdas no campo foi realizada em 

laboratório, utilizando sistemas imageadores (sisuCHEMA) e não-imageadores (ASD). O 

estudo demonstrou que uma abordagem espectroscópica multi-escala pode fornecer uma 

imagem completa das variações no conteúdo e composição do betume e da mineralogia 

associada à alteração. A assinatura espectral do óleo, especialmente aquela centrada em 

2300 nm, mostrou-se consistente e comparável entre as observações e capaz de estimar o 

teor de betume das areias betuminosas em todas as escalas de imageamento testadas. Além 

disso, os dados do satélite WorldView-3 provaram ser capazes de detectar petróleo 

resolvendo a característica de absorção centrada em 1700 nm. 

 

Palavras-chave: Exsudação, Petróleo Prospecção, Bacia Continental, Sensoriamento Remoto, 

Análise Espectral.  
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Chapter 1 

Research summary 

 

The objective of this research was to explore for the surficial signatures of seeping hydrocarbons 

(HCs) using spectral remote sensing technology. In petroleum geochemistry, the manifestation of 

liquid/gaseous petroleum that is clearly visible to the naked eye is called ‘macroseepage’ (or simply 

seepage) and the trace amounts of invisible HCs (C1–C5) in soils and sediments is termed 

‘microseepage’. Whereas an oily seepage could be targeted directly using the spectral signatures of 

leaking HCs centered at 2300 and 1700 nm wavelengths, a microseepage should be explored 

indirectly via the mineralogical (and other physio-chemical) footprints of migrating HCs on the strata 

overlying an accumulation. In this way, remote sensing technique is employed to characterize the 

depletion, enrichment, or transformation of diagenetic minerals such as clays, carbonates, iron 

oxides/oxyhydroxides, and sulfides/sulphates in the system using the diagnostic absorption features 

of the targets in the visible-near infrared (VNIR) and the shortwave infrared (SWIR) wavelengths. The 

outcomes are then interpreted in the geologic context of the area aiming to interrelate the 

anomalies to posible subsurface petroleum accumulations. In this research, we intended to 

investigate both the direct and indirect spectral detection techniques over two distinctive test sites in 

Iran and Brazil. The first study area is located near the city of Qom, some 100 km to the south of 

Tehran, Iran. This arid to semi-arid area consists of the Alborz oilfield in a structural trap sealed by a 

very thick evaporitic sequence of the late Miocene and buried by Oligocene sediments of the Upper-

Red Formation (URF). The Anhembi test site, which is located near the town of Anhembi, on the 

eastern edge of the Paraná Basin, Brazil, conform to an exhumed HC reservoir and includes bitumen 

accumulations in the early Triassic sandstones of the Pirambóia Formation. 

The research was firstly grounded on a comprehensive literature review of macro-, and 

microseepage approached with remote sensing, which involved overviewing hundreds of scientific 

articles on the subject and tabulating the relevant case studies. The work benefited from illustrative 

products generated over two study areas located in the Ventura Basin, State of California, USA and 

the Tucano Basin, State of Bahia, Brazil, known to host distinctive macro-, and microseepage 

systems, respectively. This review article is provided in Chapter 2. Furthermore, our attempts to 

better understand different sorts of spectral processing techniques available to geologic remote 

sensing gave rise to a second review paper on the subject outlined in Chapter 3. 

In the Qom area, our research characterized the footprints of HC microseepage on Upper Red 

Formation (URF) lithofacies and provided insights into the chemical and physical processes 

responsible for diagenetic alterations. This was accomplished by integrating evidence from (i) 

outcrop-scale fieldwork and sampling, (ii) lab-based spectroscopy and analytical geochemistry, and 

(iii) reservoir-scale alteration mapping using orbital remote sensing data.  

In the URF outcrop-scale studies, we developed a good knowledge about the color variations and 

patterns of diagenetic minerals of the strata and collected a large suite of samples for follow-up 

laboratory analysis. In the Lab, the samples were measured spectrally using a FieldSpec-4 

spectrometer. While performing spectral analysis, we found the current commercial software 

packages (i.e. the TSG or PRISM) insufficient, and thus developed our own methodology and software 
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for spectral analysis using the Interactive Data Language (IDL) program. The developed package 

(>2000 lines of code), named Automated Absorption-based Mineral Spectral Analyzer (AMISA), 

optimizes the number of bands utilized for curve fitting and retrieves the spectral parameters (e.g. 

wavelength position and depth) of a given absorption feature within an array of spectra 

automatically, with no need for user interference. Some technical aspects of the embedded 

algorithms are described in Chapter 4. AMISA was deployed to analyze the spectral data collected 

from both study cases in Iran and Brazil. It was particularly utilized to characterize the microseepage-

induced diagenetic changes over Alborz petroleum reservoir. The details of the spectroscopic analysis 

are explained in Chapters 5. 

Based on field observation and spectroscopic studies, we nominated ~75 specimens for various 

geochemical analysis including Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; n = 22), X-

Ray Fluorescence (XRF; n = 35), X-Ray Powder Diffraction (XRD; n = 41), and stable isotope 

geochemistry (n = 15). Further 25 samples were also prepared for petrographic studies. To give a 

clear picture of the changes induced in the URF, we contrasted the geochemical, petrographical, and 

mineralogical aspects of the HC-affected samples with unaltered counterparts from a nearby control 

area. The results provided novel mineralogical indicators for remote sensing microseepage mapping. 

Ultimately, the readily available multispectral datasets from ASTER and Sentinel-2 instruments were 

used to outline the footprints of the microseepage systems. Our study indicated that active 

microseepage systems occur in large parts of the area implying that the extent of the petroleum 

reservoir is much larger than previously thought. Chapter 6 presents the findings of these studies. 

Following the successful launch of WorldView-3 (WV-3) satellite in orbit, we set out to discover its 

potentials for direct HC detection aiming to extend the capability of hyperspectral data to orbital 

remote sensing of global coverage. By using simulated imaging and non-imaging datasets from oil-

bearing sediments/samples in the lab/field, we demonstrated that the instrument is capable of 

detecting oil via its SWIR bands. The results of this study are reported in chapter 7. Following this 

achievement, DigitalGlobe, the major provider of high-resolution multispectral imageries worldwide, 

agreed to image our Anhembi test site with WV-3, using the 16 VNIR-SWIR bands sensor arrangment. 

Fresh data acquired in February 2016 was delivered to us to complement the experiment with a real 

case study. 

In the Anhembi area, the aim of the research was twofold: (i) to delineate the diagenetic 

alteration mineralogy associated with bitumen emplacement in sandstone beds, and (ii) to detect 

and quantify the bitumen content of oil-sands by spectral remote sensing technology at multiple 

operational scales. Accordingly, besides WV-3 data already collected, the oil-sand outcrops/walls 

were imaged by an AisaFENIX hyperspectral imaging system from the air onboard an airplane and on 

the ground by mounting the camera on a tripod. During the follow-up fieldworks, we also collected 

representative samples (n=20) from both impregnated and oil-devoid outcrops of the Pirambóia 

Formation. In the laboratory, these samples were spectroscopically studied using a FieldSpec-4 

spectrometer. A handful of the samples were also scanned using a sisuCHEMA hyperspectral imaging 

system. Our study indicated that both HC features centered at 1700 and 2300 nm are capable of 

determining the Total Bitumen Content (TBC) of the samples/outcrops. Even though the feature at 

1700 nm yielded higher correlation with the TBC of the sample, unlike the feature at 2300 nm, it was 

adversely affected by within scene illumination variations and was prone to atmospheric 

contaminations and confusion with dry vegetation. This multi-scale hyperspectral data acquisition 
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and processing experiment indicated that HC signatures, especially the one centered at 2300 nm, is 

consistent and comparable among scales, and upon employing proper calibration data and analysis 

approach, is capable of estimating the bitumen content of oil-sands at all imaging scales. This case 

study is covered in Chapter 8.  

 To further explore the capability of current multispectral sensors comprising ASTER, Sentinel-2, 

and Landsat-OLI for direct HC detection, we repeated the simulation experiments by resampling the 

datasets to the response of the noted sensors. We indicated that besides WV-3, ASTER data is also 

capable of resolving HC feature centered at 2300 nm. However, WV-3 was shown to produce better 

performance. The results of this study are given in the appendix-2. The concluding remarks and some 

hints for future studies are provided in Chapter 9.   

Overall, this research led to four publications in top remote sensing and geology journals, two 

submitted manuscripts (Chapter 5 and 8), seven presentations (talk/poster) at national/international 

conferences, two international awards from Geological Remote Sensing Group (UK) and the AAPG 

foundation (USA), and a software package (AMISA) for spectral analysis. An additional manuscript 

(chapter 6) is currently under preparation for submission to the AAPG Bulletin.  
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Chapter 2 

Spectral remote sensing for onshore seepage characterization: A critical 

overview
1
 

 

In this chapter, we overview the application of spectral remote sensing data collected by multi-, 
and hyperspectral instruments in the visible-near infrared (VNIR), short-wave infrared (SWIR), and 
longwave infrared (LWIR) wavelengths for characterization of seepage systems as an exploration 
indicator of subsurface hydrocarbon (HC) accumulations. Two seepage systems namely macro-, and 
microseepage are recognized. A macroseepage is defined as visible indications of oil and gas on the 
surface and in the air detectable directly by a remote sensing approach. A microseepage is defined as 
invisible traces of light HCs in soils and sediments that are detectable by its secondary footprints in 
the strata, hence an indirect remote sensing target. Based on these broad categories, firstly, a 
comprehensive set of well-described and reliable remote sensing case studies available in the 
literature are thoroughly reviewed and then systematically assessed as regards the methodological 
shortcomings and scantiness in data gathering, processing, and interpretation. The work 
subsequently attempts to go through seminal papers published on microseepage concept and 
interrelated geochemical and geophysical techniques, exhumed HC reservoirs, lab-based 
spectroscopic analysis of petroleum and other related disciplines from a remote sensing standpoint. 
The aim is to enrich the discussion and highlight the still unexplored capabilities of this technique in 
accomplishing exploration objectives using the concept of seepage system. Aspects of seepage 
phenomenon in environmental pollution and uncertainties associated with their role in global 
warming are also underlined. This work benefits from illustrative products generated over two study 
areas located in the Ventura Basin, the State of California, USA and the Tucano Basin, State of Bahia, 
Brazil known to host distinctive macro-, and microseepage systems, respectively. In conclusion, we 
recommend further research over a diverse range of seepage systems and advocate for a mature 
conceptual model for microseepage phenomenon. 

2.1. Introduction 

A large portion of hydrocarbon (HC) traps is not perfectly sealed and thus, their accumulations 

leak to the surface over time. When the surface manifestation of oil and gas is clearly visible to naked 

eye, it is termed as macroseepage, whereas the traces of invisible light HCs in near-surface soils and 

sedimentary rocks (sediments henceforth), which are only detectable by analytical methods and 

careful geochemical sampling, is called microseepage (Horvitz, 1985; Tedesco, 1995). Historically, 

seepage and HC accumulations have been tied together and, as a result, a large number of the 

world’s oil and gas fields have been explored by drilling in the immediate area of a seep (Hunt, 1996; 

Yergin, 1992). In modern exploration programs, macroseeps are typically regarded as direct clues for 

the existence of mature source rock(s) and a compelling evidence for the formation of a petroleum 

system in a given sedimentary basin (Magoon and Beaumont, 1999; Schumacher, 2010), whereas 

microseeps, which are argued to occur in a near vertical fashion over an accumulation, are employed 

as a targeting tool for petroleum exploration. 

Recent investigations have also revealed that seeps are a potent source of methane (with ethane 

and propane) greenhouse gasses to the atmosphere. It has been estimated that in the natural 

                                                           
1
 A version of this chapter is published in the Earth-Science Reviews journal. 
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methane budget, seeps are the second most important source of emissions after wetlands. The 

estimates also reveal that onshore seepages are a more significant emitter of CH4 than their offshore 

counterparts (Etiope, 2015; Etiope and Ciccioli, 2009; Etiope and Klusman, 2010; Etiope et al., 2008). 

Over the years, a diverse range of techniques, including remote sensing, has been employed for 

seepage detection. The remote sensing approach holds a great promise for this aim because it is a 

fast and cost-effective tool applicable to different operational scales for both direct and indirect 

seepage mapping. In the marine environment, this technology already provides a variety of sensing 

methods comprising laser florescence, synthetic aperture radar (SAR), and thermal infrared, to name 

a few (Leifer et al., 2012a). Terrestrial seepage detection, however, has relied heavily on spectral 

remote sensing collected by multi-, and hyperspectral instruments in the visible-near infrared (VNIR; 

0.4–1.0 µm), the short-wave infrared (SWIR; 1.0–2.5 µm), and very occasionally in the longwave 

infrared (LWIR; 8–14 µm) wavelengths. This methodology has been employed to detect oil and gas 

seeps in a direct manner and the footprints of HC leakage in sedimentary units indirectly. 

Whereas direct detection of HCs is a new research topic conducted mainly by airborne imaging 

spectroscopy, the indirect HC prospecting commenced with the launch of the first Landsat-MSS 

multispectral scanner (ERTS) in the 1970s (Simpson, 1978). The advent of the hazy anomaly over 

some productive/prospective fields was simultaneous to a renewed interest in microseepage 

concept (Donovan, 1974) and thereupon led to several research studies, including a NASA-Geosat 

joint project, to evaluate the use of satellite technology for HC prospecting (Abrams et al., 1985). 

Since then, sporadic case studies have appeared in the literature demonstrating the potentials and 

premises of this approach for oil and gas exploration (see van Der Meer (2002) and Yang (2000) and 

references therein) that in comparison to extensively studied offshore cases are almost negligible 

(Fingas and Brown, 2014; Leifer et al., 2012a).  

Despite all the merits of spectral remote sensing, the technique does not yet hold a good place 

amongst unconventional exploration methods for oil and gas resources nor is acknowledged as a 

mature exploration tool by explorationists. In this article, we set out to discover the full potential of 

this state-of-the-art technology for seepage characterization and understand the reasons for which 

the approach is somehow underutilized by the petroleum industry. To fulfill this aim, we provide a 

systematic and critical overview of the subject based on well-described and reliable remote sensing 

case studies reported in the literature and thereupon attempt to address methodological 

shortcomings and inadequacies in data gathering, processing, and interpretations. In addition, we go 

through the seminal papers published on microseepage theory and interrelated geochemical and 

geophysical techniques from a remote sensing standpoint to enrich the discussion and highlight the 

unexplored capabilities of the technique in accomplishing the objectives of exploration sector. We 

also attempt to engage the attention of the community to useful case studies conducted over 

exhumed HC reservoirs as an analogy to depleted traps. In the case of direct seepage detection, we 

review the few present case studies and contrast their achievements to the findings of interrelated 

disciplines to underline a wide range of possibilities from spectral products. Lastly, we accentuate the 

uncertainties about the role of natural seepage in greenhouse gas emission and the possible ways to 

resolve it. This paper benefits from illustrative products generated over two case studies located in 

the Ventura Basin, California, USA and the Tucano Basin in Bahia state, Brazil known to host 

distinctive macro-, and microseepage systems, respectively. 
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2.2. Petroleum seepage 

Surface manifestation of oil and gas can be divided into two broad categories namely macro- and 

microseepage (Fig. 1). Macroseepage is the surface expression of a leakage pathway, typically related 

to tectonic discontinuities, along which natural liquid or gaseous HCs is (has been) flowing from a 

subsurface source (Clarke and Cleverly, 1991; Link, 1952; Macgregor, 1993). Microseepage, in 

contrast, refers to the slow, invisible, but pervasive migration of light alkanes (C1 – C5) and volatiles 

from accumulation to the surface (Etiope, 2015; Price, 1986; Schumacher, 1999). A microseepage is 

not related to faults but it can be enhanced by the presence of faults and large fractures (Richers et 

al., 1982). Here we emphasize that this division is not certain and in reality, there is a seepage 

continuum from minute microseeps to visible macroseeps (Etiope, 2015; Schumacher, 1999). 

Through this paper, ‘seeps’ and ‘seepage’ are used as generic terms to refer to both of the seepage 

systems. Furthermore, ‘petroleum’ and ‘hydrocarbon’ terms are interchangeably used to denote oil 

and gas, and any similar organic (natural/artificial) compounds, however, ‘oil’ is exclusively used to 

refer to ‘crude oil’.   

2.2.1 Macroseepage systems 

Macroseeps have been classified according to their geological context, underlying tectonic 

regime, activity manner, migration pathway, leakage rate (intensity), occurrence environment, and 

associated alteration patterns (Abrams, 2005; Clarke and Cleverly, 1991; Link, 1952; Macgregor, 

1993; Thrasher et al., 1996). However, for the purpose of this paper, we only distinguish them to be 

either oil or gas seepage, respectively dominated by liquid and gaseous phases. In terms of activity, 

flowing (active) oil seeps shall be differentiated from paleo-seeps (impregnations) wherein no 

evidence for their replenishment exists (Macgregor, 1993). Depending on their leaking state, oil 

seeps can incorporate liquid and solid petroleum, tar, and bitumen. 

Some macroseeps have a diffused lateral flow in near-surface fractures thereupon trigger the 

formation of local alterations around the principle oil/gas seep (Fig. 1). To discriminate such 

alterations from those associated with a microseepage system (section 2-2), a new term called 

miniseepage has been introduced in the literature (Etiope, 2015). Here we adopt the same 

terminology to discern between the two seepage-related alterations, but since the final mineral 

assemblages are rather identical, we discuss them under the same section. Some studies have 

demonstrated that around 30% of the known macroseeps are associated with surficial anomalies of 

one type or another (Clarke and Cleverly, 1991), which based on the given definition, can indicate the 

overall proportion of miniseeps. 

2.2.2 Microseepage systems 

The long-term leakage of HCs in a microseepage system normally induces an array of diagenetic 

physio-chemical and mineralogical transformations in the chimney column above HC accumulations 

(Fig. 1). The activity and by-products of bacteria and other microbes are believed to change the pH-

Eh of the overlying stratigraphic column and initiate a series of diagenetic changes including (i) 

biological (microbial/geobotanical) anomalies; (ii) mineralogical alterations; (iii) electrochemical 

changes and resistivity abnormalities; (iv) magnetic iron oxides and sulfides; and (v) radiation 
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anomalies (Etiope and Martinelli, 2002; Price, 1986; Saunders et al., 1999; Schumacher, 1996; 

Tedesco, 1995; Warren, 2012) (Fig. 1). 

The mineralogical changes of the classic microseepage model, which is the focus of this review 

paper, comprises the following patterns (Fig. 1): 

Carbonate precipitation: carbonate cements is quite common in microseepage systems. The 

diagenetic carbonate species detected so far is very diverse and ranges from calcite and ferroan 

calcite to dolomite, ankerite, siderite, rhodochrosite, and aragonite; though calcite by far is the 

dominant secondary carbonates (Al Shaieb et al., 1994; Saunders et al., 1999; Schumacher, 1996). 

The extent of carbonate cementation is not commonly known, albeit, in Cement Field, it was 

reported to cover an area of about 3.0 km2 in total (Kirkland et al., 1995). Several studies have 

indicated that carbon of carbonates can be originated from HC oxidation (Donovan et al., 1974), 

however, it is not always the case and carbon can originate from other sources like meteoric or 

Interstitial water (Beitler et al., 2005). The ultimate species of carbonate in diagenetic facies is shown 

to be related to the concentrations of Fe, Mg, and Ca ion in the system (Al Shaieb et al., 1994).  

Bleached red-beds: the discoloration, or bleaching, occurs due to the removal of ferric iron oxides 

(i.e. hematite) coating from red-beds. This phenomenon, which is chiefly controlled by the fabric of 

the host rock, is responsible for most of the visual color changes in the chimney column (Donovan, 

1974; Schumacher, 1996). The iron discoloration can be due to bleaching, which involves chemical 

reduction and removal of iron from the system, or enrichment, which is the secondary precipitation 

of additional patchy iron oxide cement in the strata (Nielson et al., 2014) (see also Fig. 6e). The 

bleached ferric iron can ultimately take the following forms: (i) reduction into ferrous species; (ii) 

partial/total removal from the system; and (iii) re-precipitation as iron oxide concretions (Parry et al., 

2009). Whereas some ferrous irons are likely to be carried away from a system, a significant 

proportion of it can be introduced into lower strata by descending meteoric water. Subsequent 

oxidation of these iron-rich horizons can bring about ironstones and ferricrete features (Nielson et 

al., 2014). 

Clay formation: clay formation/transformation is mostly related to slightly acidic conditions in the 

chimney column. Kaolinite, which by far is the prevalent clay in microseepage-induced alterations, is 

believed to form after the alteration of feldspars or the conversion of then unstable illitic/smectitic 

clays (see Fig. 6d). This process can liberate potassium (K) from clays, and thus lead to low gamma-

ray radiations above HC deposits (Saunders et al., 1993a). The conductive anomalies noted over 

some chimney column are attributed to the presence of dioctahedral and trioctahedral clays in the 

system (Warren, 2012). 

Sulfide formation: pyrite constitutes the dominant sulfide mineral, though other sulfides like 

pyrrhotite, marcasite, galena, greigite, and native sulfur are locally abundant (Al Shaieb et al., 1994; 

Schumacher, 1996). The abundance of pyritic zone depends on several parameters including the 

abundance of sulfur (S) in the environment. The sulfur itself has been postulated to be originated 

either from H2S associated with seeping HCs or from sulfates after bacterial metabolism (Lilburn and 

Zuhair, 1984). The native sulfur can be the result of hydrogen sulfide oxidation or the reaction of 

non-methane HCs with anhydrite (Worden et al., 1997). Sulfidization is a rather uncommon process 

in alteration facies. 

The occurrence of pyrrhotite and greigite along with maghemite and magnetite are known to be 

responsible for anomalous magnetic susceptibility above many chimney columns (Schumacher, 
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1996). Due to the role of magnetotactic bacteria in forming such magnetic bodies, some have 

postulated that magnetic anomalies shall approximate the ‘fossil’ bacterial activities within a system 

(Foote, 2013; Saunders et al., 1999).

 

Fig. 1. Schematic representation of microseepage, miniseepage, and macroseepage concepts and associated HC-induced anomalies 

(adapted and modified partly after (Duchscherer, 1982; Eventov, 2000; Saunders et al., 1993b; Saunders et al., 1999; Schumacher, 1996; 

van der Werff, 2006)). The HC accumulation and induced alterations are shown by dark-gray and gray shades, respectively. The 

anomalous signatures encompass geochemical (soil-gas), geophysical, and remote sensing (geobotany and mineralogical alterations) 

sub-groups. 

For decades, the microseepage theory has been controversial among explorationists. However, 

now there are several (empirical and theoretical) lines of evidence that support this postulation: (i) 

the C1 to C5 composition of the migrating gas that is similar to the gas phase of the pool; (ii) the 

isotopic content of the seeping HCs that matches that of the underlying reservoir; (iii) the dynamic 

character of the leakage in responding to reservoir depletion or recharge; (iv) the close conformity of 

the anomalies with the surface projection of HC reservoir; (v) the bloom of HC-degrading bacteria 

over accumulations; (vi) the direct evidence provided by well-cutting measurements; and (vii) the gas 

chimneys imaged by high resolution 3D seismic data (Connolly et al., 2013; Donovan, 1974; 

Duchscherer, 1980; Foote, 2013; Holysh and Toth, 1996; Horvitz, 1980; Horvitz, 1985; Jones and 

Drozd, 1983; Price, 1986; Tedesco, 1995; Thompson et al., 1994). The concept of chimney cube, 



22 

 

which highlights the chaotic behavior of seismic characters due to gas migration (Aminzadeh et al., 

2001), not only is providing a new imaging indicator for HC leakage, but also is bridging the gap 

between seismic and geochemical surveys and likely is going to end the skepticism and debate on the 

concept. 

The migration processes of gaseous HCs is not well understood, but some computer simulations 

have shown that pressure-driven continuous gas-phase flow through fractures or the transition from 

bubble regimes to continuous phase flow can be the plausible mechanism (Brown, 2000; Etiope and 

Martinelli, 2002). The proposed mechanism was demonstrated, for example, to successfully explain 

the rapid emerge of gaseous anomalies over gas storage fields. 

2.2.3. Macro- versus microseepage 

Macroseeps typically migrate laterally for a few to dozens of kilometers through major tectonic 

discontinuities (Link, 1952; Macgregor, 1993; Thrasher et al., 1996) and thus occur distal to 

accumulations, whereas microseeps migrate almost vertically and hence are proximal to the pool. 

Different aspects of macro-, and microseepage systems are compared in Table 1.  

Table 1. A comparison between different aspects of micro- and macroseepage systems. 

Parameter Microseepage Macroseepage 

Detection approach Analytical Visual 

Agent (HC content) 
Light HCs (C1 - C5),  
volatiles (aromatics) 

Heavy/light crude oil, 
volatiles, gaseous HCs 

Migration mechanism 
Continuous gas-phase  
flow in micro-fractures 

Effusion through tectonic 
discontinuities 

Abundance in petroliferous 
areas 

More than 80% Around 20% 

Migration fashion Mostly vertical Mostly lateral 

Alteration 
Yes, extensive  
(chimney column) 

Yes/No, limited 
(miniseep) 

Spatial (areal) extent Pervasive halo Point targets 
Associated trap Structural, stratigraphic Mainly structural 

Flux (mg/m
2
/d) Tens Hundreds to thousands 

Exploration significance Indirect Direct 

Types of activity Active vs fossil (inactive) 
Active vs passive 

Flowing vs impregnations 

Targeting potential Yes No 
Relationship to accumulation Simple, proximal Complex, distal 

Historically, macroseeps have been the stimulus for early exploration drilling, and statistics reveal 

that almost all of the world’s major oil fields at the beginning of 20th century have been associated 

with seeps. By 1950s, at least half of the proven reserves were discovered by drilling near 

macroseeps, whereas by the end of the last century, this proportion plummeted to around 20% 

(Clarke and Cleverly, 1991; Hunt, 1996; Link, 1952; Macgregor, 1993). On the other hand, more than 

80% of the HC reservoirs are associated with microseeps of different manifestations (Schumacher, 

2010), and unlike macroseeps that are general basinal scale prospecting indicators (Macgregor, 

1993), microseeps have proved to be a targeting tool for subsurface HC accumulations. For example, 

with surface geochemical methods, 70-82% of subsequently commercial discoveries, and about 90% 

of the eventually dry holes have been reliably predicted, which are respectively equivalent to 11% 

false-negative and 18% false-positive proportions (Schumacher, 2010). Other statistics have revealed 
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that 76% of the prospects with soil gas anomaly above them have ended up as commercial 

discoveries (Schumacher, 2000). Further discussion on this topic is provided in section 6-2-8. 

Even though many onshore macroseeps have already been accounted for and their attributes are 

reflected in compiled global databases (Clarke and Cleverly, 1991; Etiope, 2009), the distribution and 

varieties of onshore microseeps have remained largely unknown. The great number of documented 

seeps (>10,000 entities) indeed implies that there is a staggering potential for microseeps yet to be 

detected. Fortunately, the spectral remote sensing is quite capable of closing the gap in our 

knowledge of petroleum seepage systems. Typically, the higher flux of macroseeps (several to 

hundreds of kgd-1) permits remote sensing techniques to ‘directly’ target them using the diagnostic 

spectral signatures of escaping HCs (solid/liquid/gas), whereas the existence of microseeps (with 

fluxes in the order of a few to tens of mgm-2d-1) are usually inferred ‘indirectly’ using the alteration 

mineralogy induced by microseepage systems. 

In the literature, there is no account of the sizes of macroseepage as potential targets for remote 

sensing. However, our experience indicates that the majority of them constitute tiny targets of a few 

meters (See for instance Fig. 5e–5f). In contrast, microseepage-induced changes are proportional to 

accumulation extent and thus set larger targets. 

2.3. Remote sensing of macroseepages 

2.3.1. Spectroscopy of petroleum 

A number of structural bonds in petroleum including CH, CH2, CH3, and C=C give rise to several 

fundamental absorption bands between 3000–9000 nm wavelengths (Cloutis, 1989; Coates, 2006; 

Lammoglia and Souza Filho, 2011) (Table 2). Within the VNIR–SWIR wavelengths, petroleum also 

retains a series of absorption bands due to overtones and combinations of noted stretching 

fundamentals. The most notable feature in the VNIR–SWIR range includes a triplet between 1700–

1750 nm and a doublet between 2290–2360 nm (Fig. 2 and Fig. 5d). Occasionally, subtle features 

around 1120–1230 and 1350–1550 nm can be present in the spectra of some lighter oils (Fig. 2).  

To promote our understanding of the absorbing bands involved in each feature, we measured a 

light oil sample (API=43.2) with an ASD FieldSpec-4 spectrometer between 0.35–2.5 m (the details 

of the sample and measurement protocol is provided in Asadzadeh (2016a)). The resulting spectrum 

was then analyzed by means of the Modified Gaussian Model (MGM) deconvolution technique 

(Sunshine et al., 1990). Results indicated that around 20 individual absorption bands are resolvable 

(Fig. 2) with each of the noted features being decomposed into multiple overlapping bands. A case in 

point is the prominent features at 2300 and 1700 nm that are respectively comprised of seven and 

five overlapping bands of varying width and intensities (Fig. 2).  

Based on the fundamental absorption features reported in Table 2 and the physical basis of 

spectroscopy, we attempted to calculate the position of resolved absorption bands by considering 

the overtones and combinations of the fundamentals bands along with the combination of 

overtones, the combination of overtones and fundamentals, and the overtone of combinations. The 

findings are reported in Table 3 and illustrated in Fig. 2. Seemingly, there is a close match between 

the observed bands and the results of mathematical calculations. Moreover, each individual band 
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usually corresponds to a collection of theoretical possibilities (Table 3), indicating the complexity of 

the spectra and the difficulty of such interpretations. In a highly complicated compound like 

petroleum, a sheer number of absorbing bands can develop in the SWIR range, albeit the majority of 

them are averaged out due to overlapping and only the more pronounced bands or the contributors 

with constructive bands are left out as absorption features in the spectrum (Clark et al., 2009; 

Cloutis, 1989). This process is responsible for an intense backdrop absorption and a low overall 

reflectance (<20%) of petroleum. Based on band assignment outcomes, we roughly divided the SWIR 

wavelength into three sub-ranges: (i) between 1050–1350 nm in which first/second overtones are 

dominant; (ii) between 1350–2100 in which first overtones and combinations are dominant; and (iii) 

beyond 2100 nm in which the combinations are the dominant absorption mechanism (Fig. 2). 

Table 2. The main fundamental absorption bands of organic compounds and HCs (Modified after (Cloutis, 1989; Coates, 2006)). 

Band 

Fundamental 
Wavelength/wavenumber Fundamental group/assignment 

m cm-1 

a 2.81 3550       Hydroxyl O-H stretch 
b 3.28–3.30 3030–3050                  Alkene, aromatic (aryl) C-H stretch 
c 3.38 2960       Asymmetric CH3 (methyl) stretch 
d 3.42 2925       Asymmetric CH2 (methylene) stretch 
e 3.48 2870       Symmetric CH3 stretch 
f 3.50 2855       Symmetric CH2 stretch 
g 5.78–5.88 1700–1730       Carbonyl-carboxyl C=O stretch 
h 6.06–6.25 1600–1650       Aromatic, alkenyl carbon (C=C) stretch 
i 6.82–6.90 1450–1465       Asymmetric CH3, CH2 bend 
j 7.27 1375       Symmetric CH3 bend 
k 9.71 1030       Aromatic C-H bend 

The pronounced absorption feature occurring in the VNIR was modeled by a single Gaussian band 

and ascribed to the pi (π) electronic bonding between carbon atoms (Fig. 2). Typically, the minimum 

of this broad absorption shifts towards longer wavelength as the average number of aromatic rings 

per molecule (i.e. the aromatization type and degree) and the complexity of HC molecules increases 

(Cloutis, 1989; Cloutis, 1990). In other words, as oil becomes heavier in terms of API gravity, the 

absorption tends to become broader while its minimum moves towards longer wavelengths (see Fig. 

3 in (Asadzadeh and Souza Filho, 2016a)). As a result, the stretching wing of this broad absorption 

that reaches up to 1500 nm and beyond can potentially mask the subtle (and rather weaker) features 

occurring at 1200 and 1400 nm. We should emphasize that except the feature centered at 1400 nm 

that coincides with atmospheric water vapor, other features can be potentially used for remote 

sensing HC detection. 

Due to similar processes, methane and other lightweight alkane molecules (C1–C10+) show 

distinctive absorption features in the SWIR as well as in the mid-infrared (MIR) and LWIR (e.g. 

between 7–8 µm) ranges. Reflectance spectroscopy of alkane series has been comprehensively 

covered in (Clark et al., 2009) (see also section 3-3). 

  



25 

 

Table 3. Calculated wavelength positions of HCs arising from overtones and combinations of the fundamental absorption bands listed in 

Table 2. The numbers “2”, “3”, and “+” symbols denote the 1st and 2nd overtones and combinations of relevant bands, respectively. 

Overtone/combination 
band 

Wavelength 

(m) 

Observed 

(m) 
Overtone/combination 

band 
Wavelength 

(m) 

Observed 

(m) 

          3e 1.16 1.16               2f 1.75 
1.76 

          3f, 2(f + j) 1.17 1.19               2j + d 1.76 
          2k + 2b 1.22 1.21               2g + 2k 1.81 1.81 
          2d + i 1.37 

1.39 
              3g 1.93 1.94 

          2d + j 1.38               d + h  2.18 
2.19 

          2a, 2b + k 1.40 1.41               c + h, f + g 2.19 
          2d + k 1.45 1.45               e + h, f + h 2.23 2.23 
          a + c 1.68 

1.70 

              c + i 2.27 2.28 

          2c, b + e 1.69               c + j, e + i 2.31 
2.31 

          b + f, c + d 1.70               d + j, 2i + j 2.32 

          2d, c + e 1.71               e + j 2.35 
2.35 

          c + f, 2i + d 1.72 

1.73 

              f + j 2.36 

          d + f 1.73               2j + i 2.38 2.39 

          2e 1.74               b + k 2.46 2.47 

 

 

Fig. 2. Spectral deconvolution of a light HC spectrum using the MGM deconvolution technique. Plausible absorption mechanisms are 

provided for each of the resolved bands in the figure. The details of the band assignment are indicated in Table 3. The dashed red line 

represents the continuum modeled as a second-order polynomial. The solid yellow line illustrates the fitting error. The solid blue lines are 

the individual Gaussian bands. The original spectrum in gray is superimposed by the modeled spectrum (the combination of resolved 

bands) and shown in green. 
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2.3.2. An overview of the case studies 

Despite he merit of spectral remote sensing in macroseepage detection, only a handful of case 

studies are available in the literature on the subject that is summarized in Table 4. The first study of 

this kind was facilitated by the Geosat Committee in 1998, wherein a Probe-1 hyperspectral scanner 

was flown over some well-known seeps in the Ventura basin, California. The study demonstrated 

that the seeping oil is spectrally mappable by a far-range system provided that the sensor has 

enough spatial and spectral resolution (Ellis et al., 2001). Although this study merely focused on the 

2300 nm features, later investigations employed the feature centered at 1700 nm for HC detection 

using some simulated oil contaminations (Table 4). On the basis of that experiment, a ‘hydrocarbon 

index’ was proposed for HC targeting using the mere radiance dataset (Hörig et al., 2001; Kühn et al., 

2004). In 2013, the oil seeps at the Ventura basin were surveyed once more using a bundle of 

hyperspectral imaging systems in the VNIR–SWIR–LWIR ranges. The conducted experiment with the 

SWIR subset indicated that a systematic remote sensing survey in a mature basin not only can map 

the extent of already known seeps accurately but also can lead to new seepage discoveries (Prelat et 

al., 2013). Correspondingly, in the case study reported in Fig. 5, the authors were unaware of the 

existence of Seep-4 beforehand and it was recognized just after spectral analysis (see Fig. 5f). 

Table 4. Summary of the case studies directed towards the detection of petroleum macroseeps (and onshore oil contaminations) using 

spectral remote sensing techniques. The detection limit is defined as the smallest dimension of a target detectable spectrally. The 

acronyms used in the table are BR: Band ratioing, RBD: relative absorption band-depth, DT: decision tree, SAM: spectral angle mapper, 

MF: matched filtering, MTMF: mixture-tuned matched filtering, GSD: ground sampling distance, HSI: Hyperspectral imaging. 

Location target Background 

Remote sensing tools Employed 
Features 

(nm) 

Processing 
methodology 

Detection 
limit (%) 

Results Reference Distal 
(GSD) 

Proximal 
(Spectroscopy) 

Ventura, 
Santa 
Barbara, 
USA 

Natural oil 
seeps 

Monterey, Saugus, 
and Fernando 

Formations 

Probe-1  
(5 m) 

Field 
spectroscopy 

2300 
Spectral 
unmixing 

25 Excellent 
(Ellis et al., 

2001) 

Spandau, 
Germany 

Simulated oil 
contamination 

Sand 
HyMap 
(4 m) 

In situ 
spectroscopy 

1700 
Color 

composite, BR 
2.5 Promising 

(Hörig et al., 
2001; Kühn 
et al., 2004) 

Ventura 
basin, USA 

Natural oil 
seeps 

Saugus and 
Fernando 

Formations 

HSI (not 
specified) 

(3 m) 

Field 
spectroscopy 

2300 SAM + DT Unknown Excellent 
(Prelat et al., 

2013) 

Barataria 
Bay, USA 

Oil-impacted 
sites 

coastline 
AVIRIS 

(3.5–7.6 m) 
Field 

spectroscopy 
2300 & 1700 

Feature fitting 
via MICA 

16 Excellent 
(Kokaly et 
al., 2013) 

North 
Charleston, 
USA 

 Environmental 
pollution 

(diesel, crude 
oil, motor oil) 

Estuarine area 
(dominated by 
clay minerals) 

AVIRIS 
(20 m) 

Field/Lab 
spectroscopy 

1700 & 2300 

Mixture 
simulation and 

spectral 
matching via 

SAM/MF ratio 

10 Promising 
(Smailbegovi

c et al., 
2009) 

Doberitzer 

Heide, 

Germany 

Contamination
s & plastics 

Different soils 
HyMap 
(5-6 m) 

Lab simulation 
& in situ 

spectroscopy 

2300, 1700 
& 1200 

BR Unknown Promising 
(Winkelman

n, 2005) 

Casper, 
Wyoming, 
USA 

Simulated oil-
show 

Sandy, clayey, and 
dolomitic soils  

Simulated 
WV-3 

(4–7.5 m) 
In situ 

spectroscopy 

1700 
BR, RBD, 

MF 
~35 Promising 

 Asadzadeh 
and de 

Souza Filho, 
2016a) 

ProspecTIR 
(0.6m) 

2300 & 1700 MTMF 5 Excellent 
(Scafutto, 

2015) 

More recently, case histories over contaminated sites in Barataria Bay marshes affected by the 

Deepwater Horizon spill indicated the applicability of imaging spectrometer data to assess oiled sites 

onshore2. Spectral feature analysis incorporated both the HC features centered at 2300 and 1700 nm 

                                                           
2- Such case histories are noted here because of their direct relevance to oil-seep detection.  

https://www.tripadvisor.com/Attraction_Review-g4055394-d8019405-Reviews-Doberitzer_Heide-Wustermark_Brandenburg.html
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to compare the AVIRIS (Airborne Visible/InfraRed Imaging Spectrometer) data to the reference 

spectra collected in the field (Table 4). The maps derived from AVIRIS datasets with different dates 

and spatial resolutions were demonstrated to be ~90% accurate in predicting the oiled shorelines. 

The smallest oily target detected at 7.6 m Ground Sampling Distance (GSD) was shown to be 1.2 m, 

which is equivalent to 16% detection limit for the sensor (Kokaly et al., 2013). 

In another environmentally oriented study, a suite of clean soil samples was impregnated by 

10%, 30%, and 50% volume of four different HCs namely crude oil, motor oil, diesel, and kerosene 

and then measured spectrally. The compiled spectral library was then used to detect polluted sites in 

an estuarine area using AVIRIS data acquired at a GSD of 20 m (Table 4). The data successfully 

detected muddy and/or sandy estuarine sediments contaminated by around 10% HC contents. The 

HC features, however, were more apparent in the sandy samples rather than darker loamy mud 

(Smailbegovic et al., 2009). The study was incapable of distinguishing between the varieties of HC 

contaminations in the sediments. 

So far, HC detection has been confined to airborne hyperspectral sensors, but some simulation 

experiments have demonstrated that the newly launched WorldView-3 (WV-3) satellite system can 

potentially be employed for direct HC detection using the bands coinciding with HC’s 1700 nm 

feature (Table 4) (Asadzadeh and Souza Filho, 2016a). If further case studies with real datasets 

support this finding, the WV-3 satellite data then will be the first spaceborne instrument capable of 

detecting onshore oil directly and unambiguously. 

2.3.3. Gas-plume sensing 

Contrary to the marine environment in which gas seeps are easily noticeable, terrestrial seepage 

detection has been biased towards more visually evident oil seeps and, thereof, many tiny gas 

leakages have gone unnoticed. Generally, where the emission of such seeps occur as concentrated 

point sources, the escaping methane can form discernible gas-plume in the atmosphere and thus 

constitute detectable target. Current orbital gas remote sensing instruments like the Scanning 

Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and the Greenhouse 

Gas Observing Satellite (GOSAT) have the capability to measure methane and other trace gasses but 

only in continental scales (Watanabe et al., 2015). The delineation of point source plumes at local-

scale, however, is a niche that is filled with high spatial (GSD<20 m) and spectral resolution 

hyperspectral imaging instruments. 

The detection and mapping of methane plumes from natural and anthropogenic sources relies on 

its diagnostic absorption features in the SWIR (~2.3 m) and/or the LWIR (~7.6 m) wavelengths. In 

the SWIR, AVIRIS and AVIRIS-NG are the highly explored systems for this aim. For example, high-glint 

AVIRIS imagery was successful in detecting the concentrated sources of CH4 in the Coal Oil Point 

(COP) seeps in the Santa Barbara Channel, California. In this test site, radiance data were processed 

using band ratioing and MODTRAN-based simulated radiance spectra to generate a ‘methane index’ 

over some known marine gas seeps (Bradley et al., 2011; Roberts et al., 2010) (Table 5). In the case of 

terrestrial methane mapping where emissions occur over non-uniform and heterogeneous 

background albedo, encouraging results were achieved by more advanced processing algorithms 

such as the Cluster-Tuned Matched Filter (CTMF) and the Iterative Maximum a Posteriori Differential 

Optical Absorption Spectroscopy (IMAP-DOAS) (Frankenberg et al., 2016; Thorpe et al., 2013) (Table 
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5). This approach was not only effective in detecting a plume but also was capable of quantifying the 

flux of CH4 in the atmosphere (see section 6-1-1).   

    Some parallel studies using the LWIR wavelength has already given rise to encouraging results 

for methane detection. For instance, data from the airborne Hyperspectral Thermal Emission 

Spectrometer (HyTES) at ~2m GSD were successful to map several individual methane plumes over 

oil fields in the San Joaquin Valley, California (Table 5).  

Table 5. Summary of the case studies directed towards gas-plume (methane) sensing over natural seepage systems. 

Location Target Instrument 
(GSD) 

Employed  
feature 

Processing 
methodology 

Results Reference 

Coal Oil Point, 
California, USA 

Natural seep 
(offshore) 

AVIRIS 
(7.5 m) 

2.298 µm 
(SWIR) 

Band ratioing 
Spectral 
residuals 

Promising 
(Bradley et al., 
2011; Roberts 
et al., 2010) 

Inglewood Oil 
Field, LA, USA 

Natural seep 
(onshore) 

AVIRIS 
(~3 m) 

CTMF Promising 
(Thorpe et al., 
2013) 

San Juan Basin, 
USA 

Natural seep 
(onshore) 

AVIRIS-NG 
(1-3 m) 

IMAP-DOAS Promising 
(Frankenberg 
et al., 2016) 

San Joaquin 
Valley, Ca, USA 

Natural seep? 
(onshore) 

HyTES 
(~2 m) 

7.66 µm 
(LWIR) 

CMF Promising 
(Hulley et al., 
2016) 

Aside from the emerging airborne technology, ground-based sensing instruments have been 

utilized for gas seepage detection. For a comprehensive review of active ground-based systems, 

including laser and Lidar sensors, the reader is referred to Chapter 4 of Etiope’s book (Etiope, 2015) 

and references therein. In the lab, reflectance spectroscopy has been further attempted to facilitate 

the detection of adsorbed gas (and probably aromatics/petroleum?) within clay particles. The trial 

with soil samples collected over three oil and gas fields indicated that meaningful spectral trends 

coexist over petroliferous areas (McCoy et al., 2001). 

It is worth mentioning that X-band radar was indicated to be capable of detecting atmospheric 

seepage anomaly (ASA) above terrestrial accumulations. The scientific concept along with some case 

studies was discussed in a series of papers by T. Bailey (Bailey, 1996; Bailey and Grubb, 2006; Bailey 

and Skolnik, 1996). 

2.4. Microseepage remote sensing 

Since the majority of the mineralogical assemblages in microseepage systems (section 2-2) show 

diagnostic spectral features within VNIR–SWIR wavelengths (Hunt, 1977), they have been the focus 

of several remote sensing investigations. This section firstly attempts to overview the case studies 

available on the subject and then summarize the closely related surveys on exhumed HC reservoirs. 

2.4.1. An overview of the case-studies 

Near-surface diagenetic changes have been known for a long time (e.g. Davidson (2004) and 

references therein); however, the first systematic and comprehensive study on the topic was 

conducted only in the 1970s by Donovan (1974), which was simultaneous to the concept of ‘hazy 

anomaly’ from ERTS data. A term that was brought about to explain the peculiar subtle tonal areas 
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observed in enhanced imagery over some productive/prospective onshore fields3 (Simpson, 1978). 

Thereafter, different generations of remote sensing data have been employed for this aim, each 

revealing further details of the diagenetic mineralogy within microseepage systems. 

In this paper, we define three levels for remote sensing-derived anomalies including (i) tonal 

(hazy) anomaly, (ii) spectral anomaly, and (iii) mineral map (Table 6). The tonal anomaly is 

interpreted visually, thus its exact mineralogical attribute is not clear. The spectral anomaly is 

routinely derived from multispectral imagery following simple spectral analysis. In this level, altered 

zones are discriminated in a broad sense without attempting to discriminate mineral species (e.g. 

OH-bearing minerals derived from Landsat data). In latter, however, the majority of the minerals 

appearing in a microseepage system are either distinguished (e.g. Al-OH) or identified individually 

(e.g. kaolinite). 

Key case studies demonstrating the application of remote sensing methods for microseepage 

delineation are summarized in Table 6. We devised a variety of attributes comprising field 

characteristics, geologic/mineralogic features (e.g. exposed stratigraphic units), remote sensing 

approach (i.e. distal airborne/spaceborne and proximal sensing tools), specifications of the yielded 

target, ground-truthing strategy along with complementary analytical techniques, and then tabulated 

the case studies on their basis. In this table, we distinguished active microseepage systems with 

ongoing leakage to the surface from fossil (inactive) systems wherein the HC migration has halted. In 

addition, for clarification purposes, case studies addressing miniseeps (See section 2-1 and Fig. 1) 

were segregated from microseepage systems. More importantly, the potential targets revealed by 

fieldwork were contrasted against mapping results achieved through spectral analysis in order to 

emphasize the weakest link(s) in the processing chain. We made a subjective judgment about the 

shape of the resulting anomaly and its correspondence with the surface projection of the 

accumulation and the overall outcome of every case study. Subsequently, we assigned the following 

scores to each of the attributes: very-high>high>medium>low>slim for the former and 

excellent>promising>average>poor for the latter (Table 6). 

Due to the significance of ground-truthing in demonstrating the capability of remote sensing, in 

this table, we also reported the number of collected samples, the likely spectroscopy of the sample 

suite, the sampling scheme (traverse vs. selective), and the locality of sampling sites ‘on’ and ‘off’ the 

petroliferous (altered) zones considering the same geologic unit. Ultimately, because many case 

studies were supplemented by geochemical and/or geophysical techniques of one type or another, 

we accounted for them under a category named analytical approach (Table 6). To better reflect the 

trends in the compiled case histories (28 individual cases), we generalized the attributes of Table 6 to 

construct a series of bar charts illustrated in Figs. 3-4. 

Apparently, the case studies are not uniformly distributed, for the majority of them are conducted 

in the United States or China and paramount petroliferous regions such as the Middle East are not 

adequately investigated (Fig. 3a). Although the cases have evenly covered oil and gas accumulations 

(Fig. 3b), they are biased heavily towards the structural traps and the important stratigraphic entities 

are not satisfactorily incorporated (Fig. 3c). 

                                                           
3- According to our experiment, a hazy anomaly arises likely due to the dissolution/re-deposition of authigenic minerals and subsequent disappearance of 
the texture and fabric of the original facies. 
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Table 6. Summary of the remote sensing case studies directed towards the detection and characterization of alterations induced by onshore mini-, and microseepage systems (the miniseep cases are marked in 

gray). 

Location 

Field characteristics Geologic/mineralogic features Remote sensing approach Target specification Fieldwork and sampling 
Analytical 
approach 

Results Reference HC 
charge 

Trap 
Seepage 
activity & 

type 

Outcrop 
lithology 

Age Exploration signatures 
Distal 
tool 

Proximal 
tool 

Processing 
method 

Anomaly 
type 

Anomaly 
shape 

Mapped 
target(s) 

Corresp
ondence 

Locality Strategy 
No 

On Off Selective Traverse 

Lisbon Valley; 
Utah, USA 

Oil & gas 
Structural 

(faulted trap) 
Active 

Wingate  
sandstone 

Early 
Jurassic 

  Bleaching of red beds 

  High clay content 

  High precipitation of limonite and carbonate 

  Anomalous weathering patterns 

MSS 

TMS 

TM 
Spectroscopy BR 

Spectral 
anomaly Elongated 

patches at 
the hinge 
points of 
the fold 

Rocks poor 
in limonite 
with high 
clays 

Medium x x x - 15 
- XRD 
- Petrography 
- Whole-rock geochemistry 

Promising 

(Segal and 
Merin, 1989; 
Segal et al., 

1986) 

ASTER 
JERS 

Spectroscopy ML, PCA Mineral map 
Bleached 

facies 
Medium x - x - 

7 
(altered) 

- ICP-AES 
- Petrography 

Promising 
(Petrovic et al., 

2008) 

HyMap 
ASD 

spectroscopy 
SAM, SFF Mineral map 

Kaolinite, 
calcite, 

hematite 
Medium x x x - 37 

- Petrography 
- ICP-MS/AES 
- Isotope Study: O, C 

Promising 
(Petrovic et al., 

2012) 

Navajo; Utah 
 USA 

Oil/gas - Ancient 
Navajo 
Sandstone 

Jurassic 
  Iron Oxide beaching & goethite 

  Clays 

  Carbonate (calcite) 

HyMap 
ASD & FTIR 

spectroscopy 
MF Mineral map 

Elongated 
patches of 
minerals 

Goethite, 
hematite, 
carbonate 

Medium x x x - 170 
- Petrography 
- XRD 

- ICP-MS 
Excellent 

(Bowen et al., 
2007) 

Patrick Draw 
Wyoming, USA 

Oil Stratigraphic Active 
Calcareous/silty 
sandstone 

Eocene 
  Clays (illite, kaolinite/smectite)  

  Iron oxides (ferrihydrite, goethite) 
Hyperion 

ASD 
spectroscopy 

SAM Mineral map 
Scattered 
patches 

Bleaching? Low x - x - 40 
- ICP 
- XRD 
- Isotope Study: C 

Average 

(Khan and 
Jacobson, 

2008) 

Santa Barbara 
County, USA 

Heavy 
oil 

Structural 
Active 

(Miniseep) 
Saugus and 
Fernando Fm? 

Pliocene   Jarosite, siderite, calcite AVIRIS - SAM, SFF Mineral map 
Scattered 
patches 

? Not verified - - - - - - Poor 
(Freeman, 

2003) 

Sulphur 
maountain, 
Ventura, Santa 
Barbara, USA 

Oil Structural 
Active 

(Miniseep) 
Fernando Fm. Pliocene 

  Peripheral alteration around macroseeps 
characterized by goethite and calcite 

Probe-1 
(HyMap) 

- SAM, CCSM Mineral map 
Small 

patches 
Goethite Slim - - - - - - Average 

(van Der Meer 
et al., 2002) 

Dutton Basin, 
Wyoming, USA 

Oil Anticline 
Ancient/ 
inactive 

(Miniseep)  

Nugget/Chugwater 
Fm. (siltstone, 
Sandstone) 

Triassic 
  Fe hydroxides (goethite) 

  Calcite veins 
AVIRIS Spectrometer BR Mineral map Pointy Goethite Medium x - x - 3 - XRD Average 

(Jengo and 
Vincent, 1999) 

Paradfurdo; Matra 
Mountains, 
Hungary 

Gas ? 
Active? 

(Miniseep) 
? ? 

  Botanical anomaly 

  Mineralogical alterations 
DAIS Spectrometer 

Unmixing 
Knowledge-based 

method 

Spectral 
anomaly 

Scattered 
patches 

Clays? Medium x - x - 56 
- 

(Aerial photography) 
Promising 

(van der Werff, 
2006) 

Sheep Mountain, 
Bighorn basin, 
Wyoming, USA 

Oil Anticline Active 
Cleverly Fm. 
(sandstone, shale) 

Triassic 
  Absence of kaolinite in shale 

  Red bed bleaching 
TM Spectrometer BR Tonal anomaly ? Bleaching ? x x x - Several 

- XRD 
- Ph measurement 

Average 
(Malhotra et 

al., 1989) 

North Tucano 
Basin, Brazil 

Gas Anticline Active 

Marizal Fm. and 
Tona Sequence 
(Sandstone, 
siltstone) 

Tertiary 

  Bleaching and/or limonitic yellow soils 

  Development of clay minerals 

  Silicification & kaolinite depletion 

  Geobotanical anomalies  

ASTER 
ETM+ 

ASD 
spectroscopy 

BR, PCA 
SAM, MTMF, NN 

Spectral 
anomaly 

Scattered 
over the 

field 

Clays, iron 
oxides 

Medium x - x - 7 - Gasometry Promising 
(Lammoglia et 

al., 2008) 

TM 
ASD 

spectroscopy 

BR 
(2/3, 4/3) 

Spectral 
anomaly 

Integrated 
over 

gaseous 
anomaly 

Iron oxides High x - - x 25 
- Gasometry 
- Radiometry 
- Petrography 

Promising 

(Almeida-Filho 
et al., 2002; 

Almeida-Filho 
et al., 1999) 

Remanso do 
Fongo, Brazil 

Gas ? 
Active 

(Miniseep) 
Alluvial sediments 

Holocen
e 

  Ferric iron and kaolinite 

  Geobotanical anomalies 

ASTER 
TM 

- BR, PCA 
Spectral 
anomaly 

Integrated 
Kaolinite 

iron oxides 
Medium - - - - - 

- Radiometry 
- Magnetic survey 

Average 

(Curto et al., 
2011; Souza 
Filho et al., 

2008) 

Table Rock, 
Wyoming, USA 

Gas Anticline Active? 

Green River & 
Wasatch Fm. 
(sandstone, 
mudstone, etc.) 

Eocene 
  Mixed-layer illite-smectite, kaolinite, chlorite 

  Hematite, pyrite, jarosite, gypsum 

  Carbonate cement 

TMS 
Airborne 

spectroradiome
ter 

- Visual 
interpretation 

- BR 

Tonal Anomaly 
& 

Mineral map 

Integrated 
along the 
crest of 
anticline 

? High x - - x 10s 
- XRD 
- Petrography 
- Ph measurement 

Average 
(Marrs and 

Paylor., 1987) 
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Table 6 (Continue). 

Location 

Field characteristics Geologic/mineralogic features Remote sensing approach Target specification Fieldwork and sampling 
Analytical 
approach 

Results Reference HC 
charge 

Trap 
Seepage 

activity & 
type 

Outcrop 
lithology 

Age Exploration signatures 
Distal 
tool 

Proximal 
tool 

Processing 
method 

Anomaly 
type 

Anomaly 
shape 

Mapped 
target(s) 

Corresp
ondence 

Locality Strategy 
No 

On Off Selective Traverse 

Palm Valley, 
Amadeus basin, 
N.T; Australia 

Gas Anticline Active 
Hermannsburg 
sandstone 

Devonian 

  Iron oxide anomaly (magnetite high and 
hematite low) 

  Calcrete (dolomite, calcite) 

  Clays (montmorillonite and kaolinite) 

  Surface weathering/crust 

TM 
TMS 

IRIS 
spectrometer 

BR Tonal anomaly Integrated 
Probably 

iron oxides 
Medium x ? - x 

60 
spectra 

- Gasometry 
- Isotope studies 
- Ph measurement 

Average 
(Simpson et al., 

1991) 

GEOSCAN 
AMSS 

IRIS 
spectrometer 

SFF Mineral Map Integrated 
Calcite, 

silica 
Medium x - x - several - Average (Agar, 1999) 

Los Chihuidos 
High, Argentina 

Gas & oil Exhumed reservoir 

Huincul Fm. 
(fine to coarse-
grained 
sandstone) 

Upper 
Cretaceous 

  Bleaching of red beds attributed to the 
migration of HCs 

ETM+ - 
Visual 

Interpretation 
spectral 
anomaly 

Pervasive 
halo 

Bleached 
beds 

High x x - 
x  

(7 profiles) 
40 

 

- Petrography 

- ICP-AES/MS 
- XRD 
- Microprobe 
- FTIR spectroscopy 

Promising 
(Rainoldi et al., 

2014) 

Baku Region,  
Azerbaijan 

Oil Structural 
Active 

(miniseep) 
Alluvial (Clay 

and sand) 
Pliocene 

  Clays (Montmorillonite, chlorite, illite, 
kaolinite) 

  Bleached/discolored red sandstones 

  Ferrous carbonate 

ASTER 
InSAR 

FieldSpec FR 
spectrometer 

VMESMA Mineral Map 
Patchy 

above mud 
volcanos 

Smectite, 
kaolinite 

- x - x - several - Promising 

(Scholte, 2005; 
Scholte et al., 

2003) 

Ramhormoz, Iran Oil & gas Anticline 
Active 

(miniseep) 

Gachsaran & 
Mishan Fm. 
(Marl) 

Miocene 

  The formation of gypsum and S in marly 
limestone. 

  Removal of Fe oxides and calcite 

ASTER 
WorldView-

2 

ASD 
spectroscopy 

(In the lab) 

BR, PCA 
BRT 

Spectral 
anomaly 

Pointy Bleaching? Slim x - x - 88 
- ICP-OES 
- XRD 
- Stable isotopes: C,O,S 

Poor 
(Salati et al., 

2014a; Salati et al., 
2014b) 

Masjed Soleiman, 
Iran 

Oil Anticline 
Active 

(miniseep) 

Gachsaran 
formation 
(gypsum) 

Miocene 

  Decrease in gypsum/anhydrite (Gach-e-
Turush) 

  Increase in calcite, dolomite, aragonite, 
native Sulphur (S) 

  Jarosite, Na-alunite, illite, 
montmorillonite 

- - - - - - - x - x - 18 

- ICP-AES 
- XRD 
- Isotope Study: C 
- Ph measurement 

Promising 
(Tangestani and 

Validabadi, 2014) 

Kor Mor Field; 
Kurdistan, Iraq 

Oil Anticline Active 

Upper & lower 
Fars Fm. 
(sandstone, 
siltstone, marl) 

Miocene 

  Calcite, dolomite 

  Illite, chlorite 

  Iron oxides + jarosite 

ETM+ 
ASTER 

ASD 
spectroscopy 

(In the lab) 

BR, PCA 
SFF, SAM 

Mineral Map 
Pervasive 

apical 
Bleaching, 

calcite 
Very high x - x - >30 - Promising 

(Perry and Kruse, 
2010) 

Qiulitage Anticline, 
China 

Oil 
Thrust-and-

fold 
Active 

Red beds with 
sandstone & 
gypsum 

Pliocene 

  Bleaching 

  Carbonates & gypsum 

  Clay & OH bearing minerals 

ASTER 
ASD 

spectroscopy 
(In the lab) 

BR 
(2/1, 4/9) 

Spectral 
anomaly 

Pervasive 
apical 

Bleached 
beds 

High x x x - 10 

- Petrography 
- Scanning Electron 
Microscope (SEM) 
- XRD 

Excellent (Shi et al., 2012) 

Fula’erji, Songliao 
Basin, China 

Heavy 
oil 

Stratigraphic Inactive 
Alluvial flood-
plain 

Holocene   Bleaching and clay anomaly? ETM+ - BR, PCA Tonal anomaly ? ? ? - - - - 19 
- Magnetic susceptibility 
- Delta carbonate 

Poor (Zhang et al., 2009) 

Dushanzi Anticline, 
China 

Oil Structural Active 

Red beds 
interbedded 
with 
conglomerate 

Pliocene 

  Bleaching (hem-Fe3+) to (para-Fe3+) 

  Carbonates (calcite, siderite) 

  Chlorite 

ASTER 
ASD 

spectroscopy 
(In the lab) 

BR 
(2/1, 4/6, 4/8) 

Tonal anomaly 
Pervasive 

apical 
? Very high x - x - 8 

- XRD 
- XRF 
- Mössbaur spectroscopy 
- XANES 

Excellent 
(Fu et al., 2007; 

Zheng et al., 2010) 

Karamay Field, 
China 

Oil & gas Structural Active 
Sandy breccia 
conglomeratic 
sandstone 

Triassic 
  Clays (Chlorite, montmorillonite) 

  Carbonate (siderite) 
Hyperion 

ASD 
spectroscopy 
(In the field) 

MTMF, SAM Mineral Map 
Narrow 
linear 

patches 

Siderite, 
clays 

Slim x - - x? ? - Poor (Qin et al., 2016) 

Lake Albert Basin, 
Uganda 

Oil & gas Structural Active 
Alluvial 
Sediments  

Pleistocene-

Holocene 
? 

ASTER 
ETM 

QuickBird 
- ? 

Microseepage 
anomaly? 

Pervasive 
apical 

Altered 
units? 

Very high - - - - - - Excellent (Frassy et al., 2015) 

Ordos Basin, China Oil Structural? Active 
Yanchang Fm. 
(Sandstone, 
siltstone) 

Upper Triassic 
  Clays (Illite, kaolinite) 

  Carbonates (Siderite, calcite) 
CASI/SASI 

ASD 
spectroscopy 
(In the field) 

SFF Mineral map 
Scattered 
along the 

field 

Siderite, 
calcite, 
illite, 

kaolinite 

Medium x - x - 12 
- XRD 
- AAS 

Average (Chen et al., 2016) 

East-Sichuan Fold 
Belt, China 

gas Structural Active ? Triassic? 

  Clays (montmorillonite, illite, kaolinite, 

and chlorite) 

  Carbonates (calcite and dolomite) 

  Ferric & ferrous iron 

TM 
Hitachi 
VIS–NIR 

spectrometer 
BR 

Spectral 
anomaly 

Scattered & 
patchy 

Clays, 
bleaching 

facies 
Low x x - x 23 

- XRD 
- Chemical analysis 

Poor 
(Wang and Ding, 

2000) 

 
The acronyms used in the table are the following: TM: Landsat Thematic Mapper, ETM+: Landsat Enhanced Thematic Mapper plus, TMS: Thematic Mapper Simulator, ASTER: The Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASD: Analytical Spectral Devices, BR: 

Band Ratioing, PCA: Principal Component Analysis, ML: Maximum Likelihood, SAM: Spectral Angle Mapper, SFF: Spectral Feature Fitting, MF: Matched Filtering, MTMF: Mixture Tuned Matched Filtering, CCSM: Cross-Correlogram Spectral Match, NN: Neural Network, VMESMA: Variable 

Multiple Endmember Spectral Mixture Analysis, BRT: Boosted Regression Tree, XANES: X-ray Absorption Near-edge Structure analysis, XRD: X-Ray Diffraction, SEM: Scanning Electron Microscope, XRF: X-Ray Fluorescence, ICP: Inductively Coupled Plasma, AAS: Atomic Absorption 

Spectroscopy.  
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Fig 3. Bar chart representation of different attributes of the case studies summarized in Table 6.  a) distribution of case studies around the 

world. b) charge of the reservoir/accumulation c) type of trap. d) seepage type (microseep vs miniseep) and activity. e) exposed lithologic 

units affected by microseepage system (here sandstone represents sandstone, siltstone, and conglomerate). f) generalized age of the host 

rocks (Quaternary encompasses Holocene and Pliocene sediments). g) described mineralogical signature of the alteration array (here the 

bleaching is distinguished from the excess of iron oxides). h) reported mineralogy of carbonates. i) detailed mineralogy of iron oxides. j) 

diversity of clay species. k & l) mineralogy of sulfates and sulfides. m) deployed remote sensing instruments (all the Landsat series are 
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reported as TM and airborne hyperspectral imaging systems as HSI). n) number of cases performing field/lab spectroscopy. o) processing 

methods employed in the analysis chain (band calculation indicate PCA and band ratio techniques). For more explanation about the 

processing methods, the reader is referred to (Asadzadeh and Souza Filho, 2016b). Fig.3g-3k were prepared by incorporating the data 

from Table 7. 

In terms of seepage type, several case studies have focused on miniseeps (Fig. 3d), which 

according to the definition provided in section 2-1, constitute smaller point targets typically off the 

accumulations. The chiefly accounted host rocks over microseepage systems are sandstones and 

other relevant clastic sediments (Fig. 3e) that extend in time from Devonian to Holocene (Fig. 3f). 

This bias is likely because the footprints left by migrating HC in these units are vast and easily 

recognizable. Concerning the type of alteration mineralogy, iron oxides (i.e. bleaching and/or 

enrichment) sounds to be the dominant entity followed closely by clays and carbonates (Fig. 3g). 

Within each of these assemblages, a variety of minerals were observed, albeit some individuals came 

up to be more important. For example, while calcite is the dominant recorded carbonate (Fig. 3h) 

dolomite and siderite can be potentially important targets. In the literature, great emphasis has been 

given to kaolinite as the most prevalent clay alteration; however, our graph (Fig. 3j) clearly shows 

that other clay minerals such as illite, smectites, and chlorites are equally significant and indicative of 

diagenetic facies. Likewise, iron oxides and sulfates (Fig. 3i and 3k) assemblages reveal remarkably 

rich varieties of spectrally active minerals.  

 

Fig 4. Bar chart representation of different attributes of the case studies summarized in Table 6. a) different types of anomalies yielded 

from remote sensing imageries. b) mapped targeted minerals. c) locality of the samples collected in outcrop studies defined to be ‘on’ or 

‘off’ the affected zones. d) strategy in sample collection. e) number of samples collected in each case study. f) supplementary exploration 

methods. The analytical geochemistry (Anl. Geochem) column depicts XRF, ICP-MS/AES, and other analytical methods commonly used to 

analyze major/minor/trace elements. 

In the outlined case studies, different generations of remote sensing instrument have been 

employed (Fig. 3m) to map the anomalous zones and field/lab spectroscopy has been regularly used 

to verify the results (Fig. 3n). Because the processing of spectral data has relied largely on simple 

techniques such as band ratios (Fig. 3o), many of the yielded anomalies reside in the category of 

spectral anomaly (Fig. 4a). As a result, the variation/pattern in the mineralogy of microseepage 



34 

 

systems is ill-understood (Fig. 4b). According to the adopted sampling strategies, a large proportion 

of the cases have collected <30 samples from localities ‘on’ the affected zones in a selective manner 

(Figs. 4c-4e). Ultimately, the studies have been supplemented by a variety of analytical techniques, 

including petrography and XRD analysis (Fig. 4f).  

 

2.4.2. Exhumed HC reservoirs 

There is a constellation of well-explored case studies on exhumed HC reservoirs/fairways in 

southwestern US basins (Table 7) within which the documented mineralogical suite (in microscopic, 

outcrop, and occasionally regional scales) remarkably resemble the microseepage-induced 

alterations discussed earlier (Eichhubl et al., 2004; Garden et al., 2001; Rainoldi et al., 2014). We 

speculate that such cases, which are characterized by intense alteration and chemical bleaching (e.g. 

Beitler (2005)), exemplify an endmember of the spectrum of alterations induced by HC 

migration/entrapment. Therefore, a deeper understanding of such changes could be an asset to the 

understanding of microseepage phenomenon and the characters it retains in different geologic 

settings. 

Aside from exhumed HC reservoirs, the array of secondary mineralogy occurring within currently 

active oil and gas reservoirs and oil-sand deposits indeed indicate similar trends in diagenetic 

alteration (Cloutis et al., 1995; Matthews, 1986; Parry et al., 2009). A case in point is the Athabasca’s 

oil-sands in which the bitumen is accompanied by clays (i.e. kaolinite, illite, montmorillonite, and 

chlorite), Fe-carbonates (siderite), and pyrite (Cloutis et al., 1995). This trend, however, does not 

imply that all the alteration/bleaching patterns observed in sedimentary environments arise from 

thermogenic HCs; because the circulation of other reducing agents such as biogenic methane, 

organic acids, CO2, and H2S can give rise to similar alteration arrays (Chan et al., 2000; Nielsen et al., 

2009). To denote this analogy, we included two case histories on CO2-induced transformations in 

Table 7. This underlines the significance of novel mineralogical indicators to distinguish the two 

phenomena apart. The subject is discussed in sections 6-2-2 and 6-2-6. 

2.5. Demonstration datasets 

Within this article, examples of remote sensing data over two study areas with distinctive macro-, 

and microseepage systems are presented as illustrative products. The first area located in the 

Ventura Basin (CA, USA) hosts a typical oil seepage system (e.g. (Ellis et al., 2001; Prelat et al., 2013; 

van Der Meer et al., 2002)) among outcrops of sandstone, conglomerate, mudstone, and shale units 

belonging to Pico, Sisquoc, and Monterey Formations (Fig. 5b). The data covering this test site were 

collected on August 26, 2014, during the HyspIRI Preparatory Campaign by AVIRIS instrument at an 

altitude of 20 km and a GSD of 15.9 m (Fig. 5a). The georectified reflectance dataset was acquired 

from the AVIRIS webpage and then was spectrally processed by a combination of matched filtering 

(MF) and logical operators designed to track the diagnostic absorption features of petroleum at 2300 

and 1700 nm. The resulting anomaly map is presented in Fig. 5c. Selected anomalies namely Seep-1, 

Seep-4, Roof-1, and Plastic Paint were verified spectrally (Fig. 5d) and visually (Fig. 5e-5h) using 

respectively the spectral content of the imagery and high-resolution satellite imagery. 

The second study area is located in Northern Tucano basin in Bahia, Brazil. The area is ruled by a 

semi-arid climate and consequently, the bedrock is fully exposed to satellite sensors (Fig. 6c). The 
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main rock units in the area are conglomerate, sandstone, shale, and silicified limestone that 

collectively belong to Tona Sequence and Marizal Formation (Fig. 6a). Possible HC accumulation in a 

structural trap in this area is accompanied by marginal soil-gas anomalies (Almeida-Filho et al., 2002; 

Lammoglia et al., 2008). The soil-gas data were employed to assess the remotely-sensed spectral 

anomalies. For this aim, ethane to pentane readings were firstly normalized by dividing them to their 

maximums and then summed up to represent the total HC content of gasses heavier than methane 

(∑ 𝐶2 − 𝐶5). The data were subsequently interpolated using the Empirical Bayesian Kriging technique 

available in ArcMap 10.3 software (www.esri.com) and illustrated in color-coded raster format (Fig. 

6b). The datasets from Landsat-OLI (Fig. 6c) and ASTER multispectral instruments acquired 

respectively on 2016/10/06 and 2006/11/04 were used to map the intrinsic alterations within this 

microseepage system. In the spectral processing stage, we mapped the distribution of clays, ferrous 

iron (e.g. Fe-carbonates, chlorite, etc.), and ferric iron oxides/oxyhydroxides (e.g. goethite, hematite 

± ferrihydrite) by employing a partial unmixing technique and proper endmembers derived manually 

from ASTER-SWIR and Landsat imageries. The resultant maps are shown in Fig. 6d–6f. 

Table 7. Summary of case studies directed towards exhumed HC reservoirs and paleo-fluid fairways in permeable sedimentary facies. The 

summarized mineralogical contents of this table were incorporated into bar charts of Fig. 3. 

Location Target 
Outcrop 
Lithology 

Alteration signatures 
Outcro
p study 

Mapping 
tool(s) 

Reference 

Valley of Fire; 
NV, USA  

Exhumed 
reservoir 

Aztec 
sandstone 

  - Clay minerals (kaolinite, illite/smectite, dickite) 
  - Goethite & hematite banding (without pyrite)  
  - Quartz overgrowth & carbonate cement 
  - Sulfates (alunite & jarosite) 

× 
Color aerial 
photograph 

(Eichhubl et 
al., 2004) 

Moab 
anticline, 
Utah, USA 

Exhumed 
reservoir 

Entrada 
sandstone 

  - Iron oxides 
  - Calcite cementation 
  - Pyrite, ankerite, kaolinite 

× 
Color aerial 
photograph 

(Garden et al., 
2001) 

Southeast 
Utah, USA 

Paleo-fluid 
migration 
footprints 

Navajo 
sandstone 

  - Iron cementation 
  - Iron bleaching 

× 
Color aerial 
photograph 

(Nielson et al., 
2014) 

Zion NP; 
Utah, USA 

Remnants of 
reducing fluid  

Navajo 
sandstone 

  - Iron bleaching 
  - Iron enrichment 

× - 
(Nielsen et al., 

2009) 

Southern 
Utah, USA  

Exhumed 
reservoir 

Navajo 
sandstone 

  - Secondary iron oxides 
  - Late calcite cement (+ dolomite) 
  - kaolinite & illite 

× 
Landsat 

ETM 
(Beitler et al., 

2005) 

Kaibab, Utah, 
USA 

Exhumed 
reservoir 

Navajo 
sandstone 

  - Secondary hematite cement 
  - Calcite 
  - Illite and kaolinite 

× - 
(Parry et al., 

2004) 

Elaterite 
Basin, Utah, 
USA 

Exhumed 
reservoir 

Permian 
White Rim 
sandstone 

  - Bleaching of red beds 
  - Secondary diffused or concretionary iron  
  - Pseudomorphs of pyrite 
  - Calcite precipitation  
  - Illite and kaolinite 

× 
GPS, 

geologic 
map 

(Gorenc and 
Chan, 2015) 

Colorado 
Plateau, USA 

Exhumed 
reservoir 

Glen Canyon 
sandstones 

  - Bleaching of iron oxides 
  - Clays 

× 
Landsat 

ETM 
(Beitler et al., 

2003) 

Onshore wells, 
Denmark 

Unknown 

Skagerrak 
Fm. (Arkosic 

red 
sandstone) 

  - Dolomite, anhydrite 
  - Mixed-layer illite/smectite, kaolinite 
  - Chlorite (Mg-rich in red and Fe-rich in whitish parts) 
  - Pyrite 

- - (Weibel, 1998) 

O’Neill 
forebay 
CA, USA 

Gas 
microseepage? 

Pleistocene 
Corcoran clay 

  - Alunite, jarosite, and gypsum 
  - pyrite and iron sulfates 
  - Native sulfur and Acidic pH 

- - 
(Prokopovich 
et al., 1971) 

San Rafael 
Swell, UT, USA 

Roll front of a 
CO2 reservoir 

Navajo 
sandstone 

  - (Oxyhdr) oxides (lepidocrocite/goethite/hematite) 
  - Clays 
  - Carbonate cementation (dolomite) 

× - 
(Potter-

McIntyre et 
al., 2013) 

Green River, 
Utah, USA 

Exhumed 
natural CO2 

Entrada 
sandstone 

  - Bleaching 
  - Pore-filling calcite, dolomite, ferroan dolomite 
  - Gypsum veins 
  - Illite-smectite 

× - 
(Wigley et al., 

2012) 
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Fig 5. Macroseepage demonstration case study located in the Ventura Basin, California, USA. a) natural color composite of the AVIRIS 

data. b) geologic units of the area adapted from 1:100,000-scale geologic map of the Santa Barbara 30' × 60' quadrangle compiled by 

Gutierrez (2008). The location of the study area is shown in the inset map. c) anomaly map extracted from hyperspectral data following 

spectral analysis. Arrows indicate the location of the oil seeps and other spectrally similar petroleum-bearing compounds. d) continuum-

removed reflectance spectra of four typical anomalies mapped in (c) achieved by averaging the relevant pixels in the hypercube data. The 

two major absorption features of petroleum centered at 1700 nm and 2300 nm are shown as gray columns in the left and right panels, 

respectively. e-h) high-resolution satellite imagery (GSD of ~1 m) of selected anomalies shown in (c) and (d), including oil seep-1 (e) 

located at coordinates 34°22’43.7”N and 119°17’40.5”W; oil seep-4 (f) located at 34°22’13.2”N and 119°16’59.5”W, roof-1 (g), and the 

plastic paint (?) of twin tanks (h). Source: Google Earth, imagery acquired in 1st May 1, 2015. 
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Fig 6. Microseepage demonstration case study located in the Northern Tucano basin, Bahia, Brazil. a). generalized geologic map of the 

area. The location of the study area is shown in the inset map. b) Interpolated soil-gas anomaly map calculated by summing the 

normalized C2 – C5 readings. The sampling sites are shown by open circles. c) false color composite (𝑅 =  𝑏7 (2201), 𝐺 =

𝑏5 (864), 𝐵 = 𝑏2 (482 𝑛𝑚)) imagery of the Landsat-OLI data. d) relative abundance of clay alteration (including kaolinite, illite, and/or 

smectites) mapped using ASTER data. e) relative abundance of ferric iron minerals (e.g. goethite and hematite) extracted from Landsat 

data. f) relative abundance of ferrous iron minerals (e.g. Fe-carbonate, chlorite, and so forth) extracted from ASTER data. The overlaid 

contour lines in (d) to (f) were achieved by setting a threshold of 0.33 for the map shown in (b). The mineral abundances were calculated 

relative to image-derived endmembers. 

2.6. Discussion 

2.6.1. Direct sensing methods 

The capability of remote sensing to detect and map oil and gas seeps can be used to: (i) screen 

frontier basins for any seepage manifestations, (ii) record the size, type, and possibly the likely 

replenishment of a leakage; (iii) update/map the seepage activity in mature/productive basins; (iv) 

assess the instant and long-term flux of the known seeps; and (v) compile global thematic databases 

for natural HC seeps. 
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Gas-plume sensing capability depends heavily on the seepage flux, wind speed, the specification 

of the deployed sensor (i.e. the spectral resolution and signal-to-noise ratio; SNR), and background 

cover, with spectrally uniform images being more advantageous relative to spectrally and thermally 

heterogeneous scenes (Frankenberg et al., 2016; Leifer et al., 2012b; Thorpe et al., 2014). Unlike the 

SWIR range, which is dependent on surface albedo, sensors in the LWIR range rely merely on the 

thermal emission and thermal contrast between ground and target gas. Hence, gas sensing in the 

LWIR could be more robust over a wider variety of land covers (Hulley et al., 2016). Indeed, 

simultaneous SWIR–LWIR data acquisition is required to investigate this notion. In both ranges, 

however, high spectral resolution data are required to distinguish the signatures of trace gas from 

interfering components (Hulley et al., 2016; Leifer et al., 2012b; Thorpe et al., 2016). Gas-plume 

sensing case studies thus far have been confined to methane detection that is highly significant for 

partitioning the sources of greenhouse gasses; albeit for oil and gas exploration, ethane (C2+) 

constitutes a better exploration indicator (Jones and Drozd, 1983). Because methane emissions from 

geologic sources can incorporate 2–6% ethane on average (Etiope and Ciccioli, 2009), the recorded 

signal over natural plumes can be the overlap of methane and ethane signatures. The possibility of 

tracing ethane across geologic plumes is yet to be explored. 

On the other hand, oil seepage detection is a function of seepage areal coverage, flowing rate, 

petroleum type, and geologic context, to name a few. Typically, petroleum sensing is bound to 

diagnostic absorption features centered at 1700 and 2300 nm (Fig. 5d), for the features centered at 

1200 and 1400 nm are respectively uncommon and interfered by atmospheric water vapor. Within a 

seepage indicator, crude oil tends to mix physically with its background; thus, both of the absorption 

features are consistently modified by the mixed material(s). The 1700 nm feature is only overlapped 

by an absorption feature of sulfates (i.e. gypsum and alunite) centered at ~1750 nm (Fig. 7). 

However, in vegetated areas, the feature could be confused with non-photosynthetic vegetation. 

Furthermore, due to its proximity to water vapor band at 1900 nm, the long-wave side of the feature 

is prone to residual atmospheric contamination (Kokaly et al., 2013).  

The feature at 2300 nm is particularly noticeable and persistent, albeit it is susceptible to be 

overlapped by clays and carbonates (Scafutto and Souza Filho, 2016) (Fig. 7). Although the feature 

centered at 1200 nm has been infrequently used for HC delineation (Clark et al., 2010), investigations 

have demonstrated its usefulness in differentiating false anomalies arising from plastic 

contaminations (Winkelmann, 2005). In the case study shown in Fig. 5, the limitations imposed by 

SNR of the data (likely due to poor atmospheric correction) hampered the efforts to accomplish this 

goal. However, marked differences in the 1700 nm feature of oil seeps and artificial compounds were 

noticed (left panel in Fig. 5d). 

 

Fig 7. Spectral signature diagram of typical oil (obtained from Fig. 2) contrasted to absorption features of common sedimentary minerals as 

well as dry/fresh vegetation. The width of black bars indicate the relative widths of relevant absorption features. 
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To detect oil seeps effectively, a sensor should be equipped with proper spectral bands to resolve 

the features at 2300 and/or 1700 nm wavelengths (Fig. 5). For this reason, published case studies are 

confined to airborne systems (Table 4). Alternative spaceborne platform for this aim is due to be 

attained; albeit trials with WV-3 data has indicated the potentials of the sensor for this aim 

(Asadzadeh and Souza Filho, 2016a).  

In terms of processing methodology, techniques like anomaly detection can be inadequate for HC 

mapping (Winkelmann, 2005). Instead, knowledge-based approaches (Asadzadeh and Souza Filho, 

2016b) or hybrid methodologies that incorporate spectral-based decision-making system with 

feature tracking have been proven to yield superior results (Kokaly et al., 2013; Prelat et al., 2013) 

(see also the anomaly map in Fig. 5c). 

The small size of oil seeps implies that high spatial resolution data (sub-decameter; Table 4) 

would be required to characterize them. The inclusion of alteration halos associated with a good 

portion of the seeps (i.e. miniseeps described in Table 6), however, can be used to facilitate their 

detection. A basic algorithm of this kind is developed by van der Werff (2006). 

We should emphasize that petroleum detection includes but is not limited to the SWIR range. Crude 

oil is demonstrated to retain distinctive absorption features in the LWIR indeed (Lammoglia and 

Souza Filho, 2011). Nevertheless, due to the lack of a typical spectral library for crude oil diversity 

(and similar organic and petrochemical compounds) between 2.5–15 µm and also a limited number 

of hyperspectral sensors operating in this range, the potential applications of the LWIR for oil 

seepage detection has remained largely unknown. 

2.6.1.1. The detection limit of HCs  

The detection limit in remote sensing is defined as the smallest areal extent of a target (here a 

seep) within a pixel detectable spectrally.  The detection limit for the case studies in Table 4 was 

reported to vary between 2.5 to 25% of a pixel. However, due to limited studies, this finding cannot 

be conclusive. In soil sciences, by comparison, the detection limit for the Total Petroleum 

Hydrocarbon (TPH) yielded from infrared spectroscopy varies from a few percent to a few 

hundredths of a percent (Chakraborty et al., 2015; Chakraborty et al., 2010; Correa Pabón and Souza 

Filho, 2016; Okparanma et al., 2014; Schwartz et al., 2013; Stallard et al., 1996). Correspondingly, the 

Total Bitumen Content (TBC) of oil-sand ores at around 1% wt. is routinely estimated via close-range 

spectroscopy (Lyder et al., 2010; Shaw and Kratochvil, 1990). 

Some examinations have demonstrated that oil detection in the environment has a dependency 

upon physical and chemical properties of the soil matrix. For example, oil in siliciclastic or coarse-

grained soils was easier to detect (at lower concentration levels) than in calcareous or fine-grained 

soils. The detection limit was also observed to be a function of API gravity, with heavier oils setting 

easier targets for spectral detection. The latter was likely due to the fact that heavier oils 

impregnated only the surface of the grains without being absorbed by porous media (Scafutto et al., 

2016). 

Overall, close-range investigations indicate that oil in the environment could be detected 

spectrally in very low quantities, albeit this finding cannot be directly linked to seepage 

reconnaissance. Apart from the fact that many studies were carried out by HCs other than crude oil, 
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the experimental settings incorporated instant physical mixing of oil with some predetermined soils 

in volumetric fashion, whereas seeps and their pollution counterparts appear as areally (or combined 

areally and volumetrically) mixed targets in the imagery. This could complicate the underlying 

principles of mixture analysis and affect the smallest extent of oiled surfaces detectable spectrally. 

Further research is required to appreciate the possibility of upscaling the lab findings to remote 

sensing imagery and figure out the practical detection limit of far-range systems. 

Concerning the methane detection limit, in controlled release experiments, thermal sensing 

technology was shown to detect methane fluxes as small as 4–5 kg/h (Hulley et al., 2016; Tratt et al., 

2014), whereas in the SWIR range, this level, depending on wind speed, was varied between 2–5 

kg/h (Frankenberg et al., 2016; Thorpe et al., 2016). Based on field measurements, the leakage flux 

for high-level microseepage is >50 mg m-2d-1 that increases to an average of 2×104 gd-1 (~1 kg/h) for 

macroseeps (Etiope, 2015). It means that current technology can detect macroseeps that are 

emitting average to high levels of gaseous HCs, albeit it is not appropriate to detect microseepage-

level fluxes. Above all, available technology can only afford to detect distinct point sources. For areal 

(diffused) sources, which are most common in petroliferous areas, a sensor with higher sensitivity 

(lower detection limit) would be required.  

2.6.1.2. Petroleum quantification 

In the seepage context, spectral techniques can be employed to quantify the dimension of a seep 

and possibly the amount of HCs in the environment. In close-range experiments, the TPH is assessed 

by a predictive model initially derived from a suite of training samples using the Partial Least Squares 

Regression (PLSR) technique (e.g. (Okparanma et al., 2014)). This approach, however, is not 

appealing to image data mostly because it is case dependent and requires auxiliary data. An 

alternative approach is to use the continuum band-depth of HC’s diagnostic absorption features for 

abundance quantification in relative or absolute terms (Asadzadeh and Souza Filho, 2016b). 

The few studies on the use of 1700 and 2300 nm features have indicated the merits of spectral 

parameters, especially the ‘depth’ and ‘area’ of the absorption, for HC quantification (Correa Pabón 

and Souza Filho, 2016; Scafutto et al., 2016). Nonetheless, the significance of each feature for this 

aim has been a matter of debate. For instance, in an analysis based on the correlation coefficients of 

different wavelet scales with TBC, it was demonstrated that the feature at 2300 nm appears 

correlated in several scales (from 1–7), whereas the 1700 nm feature shows correlation with only 

two (4 and 5) scales (Lyder et al., 2010). Based on this persistency, it was concluded that the 2300 nm 

feature is more successful in delineating the HC content of oil-sand samples. In the demonstration 

case study (Fig. 5a), the depth of these features was calculated after continuum removal, but due to 

the low spatial resolution of the imagery (~16 m), it was difficult to identify a meaningful trend and 

thus was discarded. 

Even though the depth of the feature at 1700 nm was shown to be linearly correlated to specific 

levels of HCs (Correa Pabón and Souza Filho, 2016), in general, the correlation between HC content 

and the noted spectral parameters tends to exhibit nonlinear behaviors. Experiments with the 

incremental level of oil also showed that in a certain level, the soil sample becomes saturated, 

thereby breaking the correlative relationship. Identical to the detection limit, the saturation point 

was proved to be a function of oil type and intrinsic soil characters (Scafutto et al., 2016). By 

comparison, the feature at 1700 nm reaches to saturation at higher HC levels than the 2300 nm 
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feature. A related point to consider is that the saturation level was observed in volumetric 

experiments and it is not known as if it would be the case for the areal mixture. 

In conclusion, such observations imply that potential (nonlinear) predictive models for HC 

quantification from spectral data would be valid between the ‘detection limit’ and ‘saturation point’. 

Further research is required to better understand the behavior of noted spectral parameters against 

different levels of petroleum in a sample/pixel. 

2.6.1.3. Petroleum characterization 

Infrared spectroscopy is unlikely to be able to identify petroleum types (e.g. kerosene vs. diesel), 

particularly where it is mixed with soil particles. Instead, it was proved to be effective in 

characterizing oil types based on API gravity (a measure of how heavy liquid HC is, compared to 

water) and SARA (Saturate, Aromatic, Resin, and Asphalten) fractionation index (Aske et al., 2001; 

Lammoglia and Souza Filho, 2011). The approach incorporates a mathematical model experimentally 

constructed using a sort of correlation algorithm (e.g. PLSR) to predict the noted chemical properties. 

Although the methodologies have been successful in characterizing the API and SARA index of given 

oils in the lab, so far, only the API has been remotely assessed (mapped) in the marine environment 

using multispectral ASTER data (Lammoglia and Souza Filho, 2012) and similar onshore 

demonstration is yet to be provided. The latter, on the other hand, has remained a laboratory 

experiment and not attempted via image data. Although the spectroscopic-based API model was 

developed using a specific collection of crude oils (°API between 14–40), the underlying principle can 

be extrapolated to other compounds like fuel HCs. 

2.6.2. Indirect RS methods 

In oil and gas exploration, remote sensing could be utilized to screen a frontier basin for signs of 

a petroleum system, generate new exploration prospects, and evaluate the existence of 

microseepage anomaly over previously defined exploration leads (van Der Meer et al., 2002). Alike 

other surveying methods relying on microseepage theory, this approach neither can indicate the 

depth of an accumulation nor predict the economic success of wildcat drilling. In contrast to the soil-

gas method that can directly verify the presence of HC, this technique should be applied to ‘infer’ the 

HC presence in a trap (Jones and Drozd, 1983; Schumacher, 1999). This technique shall be effective in 

dealing with bedrocks covered by sparse vegetation (i.e. <30%). Above this threshold, the use of 

mineralogical signature becomes limited and one should consider other realms of remote sensing 

including geobotany for microseepage detection. Obviously, spectral technique merely measures the 

reflected/emitted energy from topmost parts of the surface and is unable to penetrate into it. 

A close inspection of the documented case studies in Table 6 reveals a large gap between the 

true potentials of remote sensing and the achieved results. Here, we highlight several of the 

shortcomings and subsequently give some guidelines for further case studies in the future. 

2.6.2.1. The shortcomings of the case studies 

Unfortunately, the number of well-documented publications on the subject, as summarized in 

this paper, is not considerable (<30 cases), while a large proportion of them was dedicated to 

miniseeps that are indications of macroseeps rather than microseepage systems. A typical remote 
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sensing study in local/regional scale should be augmented by detailed fieldwork and lab analysis. 

Nevertheless, a look at Table 6 indicates that the number of collected samples in each case study is 

inadequate and the sampling schemes are mostly disordered (Figs. 4d-4e), resulting in poor 

relationships between sampling sites and remote sensing anomalies. The benefits of detailed outcrop 

studies as a missing link in such investigations is best exemplified by the outlined studies in Table 7. 

Because target minerals of a microseepage system are already common in sedimentary basins, it 

is important to draw the comparison in a relative term. In other words, a microseepage-affected 

zone should be compared to a ‘reference area’ inside the intact (unaffected) extent of the same 

lithologic unit. This effective strategy, which is commonly used to determine the background in 

geophysical and geochemical surveys (Abrams, 2005; Saunders et al., 1991), has been adopted by 

very few investigations (Fig. 4c). In addition, due to basic processing algorithms (Fig. 3o), the 

approach was only able to separate HC affected zones (anomaly) from their surroundings 

(background), without delineating individual minerals of the assemblage (Fig. 4a). To accomplish this 

objective and complement the results, spectroscopy (in situ or in the lab) could be used, but in the 

reviewed cases, this capacity has been rather underutilized. Spectroscopy not only can facilitate the 

identification of minerals, but can also be utilized to characterize slight compositional changes 

present in clays, carbonates, iron oxides/oxyhydroxides, and sulfates with reasonable accuracy. 

A couple of studies have already shown that microseepage-induced alterations could be 

associated with spatial zoning. For example, some comprehensive fieldworks denoted that an 

extensively bleached area in red-beds surrounds an intense carbonate cementation zone along with 

pyrite patches occurring over productive limits of the reservoir (Al Shaieb et al., 1994). Despite the 

capability of image data to reveal possible spatial patterns of alterations, due to the scarcity of 

similarly detailed accounts, the zoning within microseepage systems has remained largely unknown. 

Furthermore, the spatial relationships between surface mineralogy relative to the 3D architecture of 

a reservoir are poorly understood. The only clue in this regard provided by measurements of 

magnetic susceptibility of exploration drill cuttings demonstrated that authigenic magnetic minerals 

(i.e. maghemite) are mostly distributed in depth range of 60–600 m above HC reservoirs (Foote, 

1992; Foote, 1996; LeSchack and Van Alstine, 2002). Comparative studies between remote sensing 

anomalies and seismic data (e.g. (Shi et al., 2012)) or drill cuttings can be an asset for this aim. 

All the outlined case studies investigate charged (productive/prospective) plays and none is 

focused on failure cases or unproven/dry prospects to have a fair unbiased estimate for false-positive 

and false-negative anomalies (see the next section). From a mineralogical point of view, it is entirely 

unclear if secondary anomalies are present where a trap retains no accumulation, or if the features 

are unique to already charged traps. Based on exhumed reservoir case studies, however, it seems 

that several (but not all) of the classic characteristics (including bleaching) are shared between fossil 

(paleo) and active microseepage systems. Additionally, the characters of underlying traps including 

underpressured vs. overpressured reservoirs (given that pressure is the main drive for HC migration), 

stratigraphic vs. structural traps, and the sealing are not yet properly addressed. 

The effect of microseepage on sediment covers (e.g., transported floodplain alluvium and loess) 

is not extensively evaluated in the literature. Although some have reported that transported covers 

(i.e. glacial drifts) can obscure the microseepage-induced radiometric signals (Price, 1996; Saunders 

and Terry, 1985), there are numerous other studies that denote it is not the case (e.g. (LeSchack, 
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1997)). The surficial nature of radiometric survey (<25cm penetration depth) implies that secondary 

alterations can extend into a cover (provided a physically stable cover), and thus remote sensing 

approach should be able to detect the effects of microseepage in a similar manner. Some 

observations on the pace of mineralogical transformations can support such notion (see section 6-2-

5). 

So far, the outlined case studies deal with nearly mono-lithologic sandstone units (Fig. 3e). 

Although clastic rocks and oxidized continental facies (red-beds) form at the latest depositional cycle 

of a sedimentary basin, they cannot represent the whole variety of the bedrocks present above HC 

accumulations. Sandstones at best account for around 25% of the sedimentary rocks (Boggs, 2009) 

and most likely cover the sedimentary basins with the same proportion. Nonetheless, a ubiquitous 

proportion of HC traps are either overlaid by sediments other than sandstones, are multi-lithologic in 

essence, or are concealed by recent sediment covers. To have a complete picture of the variations, 

studies shall be diverted towards more diverse lithologies exposed over HC accumulations. The 

sandstones themselves retain large within-group variations that are neither considered in remote 

sensing studies nor in the classic microseepage model (see also section 6-2-4). 

2.6.2.2. False-positive/negative anomalies 

While there are statistics for positive and negative geochemical anomalies above exploration 

targets (section 2-3), such data have not been compiled for mineralogical-based remote sensing 

studies (see also section 6-2-8). In a sedimentary basin, any false-positive anomaly should be 

regarded as important as true anomalies, because a cross-comparison between these two groups can 

provide insights about how to distinguish them spectrally. As discussed by Brown (2000), present 

(and past) surface geochemical anomalies and associated alterations may result from uneconomic 

petroleum accumulations or migration pathways. Whereas remote sensing cannot distinguish 

between active microseepage systems arising from uneconomic and economic accumulations, it can 

be potentially used to exclude some other sources of false-positive anomalies. Generally, the 

following sources of false-positive anomalies in sedimentary basins should be recognized: (i) 

anomalies arising from processes unrelated to HC accumulations; (ii) anomalies occurring above 

depleted traps that once retained an active microseepage system; and (iii) anomalies intrinsic to 

sedimentary units. 

In the first group, a number of already known geological processes give rise to roughly similar 

alteration assemblages. For example, the calcite cement in several soil profiles may be ‘caliche’, 

which is an amorphous soil salt originating from near-surface processes (Price, 1996). Pedogenic 

processes linked to climate conditions can initiate redox zones and precipitate maghemite, thereby 

yielding characters that may bear a resemblance to microseepage effects (Klusman, 2002; 

Schumacher, 1996). Similar alterations can also arise from shallow gasses of biogenic rather than 

thermogenic sources (Schumacher, 1999). Moreover, the circulation of abnormal amounts of H2S, 

CO2, and organic acids in permeable sediments may develop signatures similar to microseepage-

induced alterations (Parry et al., 2004; Schumacher, 1996) (see also Table 7). 

As petroleum system implies, HCs are preserved in a trap if the sum of leakage or destruction is 

less than the petroleum charge; otherwise, a trap would be devoid of HCs  (Hunt, 1996; Magoon and 

Beaumont, 1999). Therefore, paleo-microseepage systems over depleted traps would possibly leave 

mineralogical footprints that are similar to active systems. The best analogy where this phenomenon 
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could be investigated is exhumed HC reservoirs cropping out throughout the Colorado Plateau (Table 

7). This phenomenon substantiates that when the intensity of alteration is severe, the induced 

changes can survive through geologic time and emerge as false-positive anomalies in present-day 

surveys. Parallel outcrop studies also demonstrated that several episodes of fluid flow (meteoric and 

interstitial water and migrating HCs) could coincide to shape the final alteration facies (see Table 7). 

Finally, because the seeking diagenetic minerals (e.g. clays and carbonates) are intrinsically abundant 

in the background strata, occasionally, they could become a source of false-positive anomalies. Such 

anomalies are subject to inter-, and intra-unit variations. 

 All of the abovementioned instances create ambiguity in remote sensing data interpretations. 

Whereas part of the ambiguity is intrinsic to the approach and unavoidable, we believe the other 

part could be avoided by applying an efficient methodology, enhanced imaging tools, and above all, 

by promoting our understanding of the diagenetic changes. A case in point is the problem of alike 

background mineralogy that could be circumvented by setting a reference area off the affected zone 

for cross-comparison. The gained experience in mineral exploration implies that spectroscopic 

products including abundance, composition, and association of minerals derived from hyperspectral 

data may offer potentials for segregating real anomalies from false ones (see also section 6-2-6). In 

this regard, the authors believe that comparative studies between active microseepage systems and 

exhumed HC reservoirs could facilitate the development of mineralogical indicators to eliminate 

false-positive anomalies over fossil systems. Altogether, true anomalies typically are expected to 

cover vast areas and conform to regular spatial patterns (Fig. 6; see also section 6-2-7). 

In the literature, there is no unbiased evaluation of remotely-sensed false-negative anomalies. To 

assess this parameter, the outcomes of this technique should be compared to geochemical data or 

evaluated by wildcat drilling indeed. 

2.6.2.3. Sensor obstacles 

Part of the reasons for the limited success of remote sensing in microseepage delineation is due 

to limitations imposed by multispectral sensors. In contrast to technological refinement in 

geochemical and geophysical analytical methods, the operational sensing capability of this approach 

has not witnessed dramatic advancements in the last decades. In Earth resource exploration, in 

particular, the only promotion in three decades has been the launch of ASTER multispectral 

instrument and more powerful hyperspectral technology has been pursued solely from airborne 

platforms. Newer satellite systems with better performances such as Sentinel-2 (2015) and WV-3 

(2014), which could be potentially used for enhanced spectral mapping, were launched only recently. 

A leap that is due to revolutionize this discipline, however, is the arrival of spaceborne hyperspectral 

imaging systems like the EnMap satellite (http://www.enmap.org/). Because microseepage 

phenomena are bound to yield large targets, they would be fully resolved with moderate spatial 

resolution (i.e. 30 m) of such instruments. In the case study shown in Fig. 6, the 30 m resolution of 

ASTER/Landsat data were enough to resolve the targets, however, due to a limited number of bands, 

the discrimination of mineral species was not straightforward. 

Thus far, the majority of published studies for microseepage characterization are limited to the 

VNIR–SWIR window and the literature is deficient in case studies using thermal infrared (LWIR) data. 

A suite of diagenetic changes in the chimney column such as silica enrichment (Almeida-Filho et al., 

2002; Thompson et al., 1994) or feldspars depletion (alteration) are solely mappable via this dataset. 

http://www.enmap.org/
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The LWIR wavelength or an integrated multi-wavelength spectral analysis can also promote the 

mapping of aforementioned alterations with greater accuracy.  

2.6.2.4. The inadequacy of the microseepage model 

In remote sensing data analysis, the microseepage model is used to define target minerals and 

subsequently to attribute the mapped minerals to microseepage effects. We believe the inadequacy 

of the present model is causing considerable uncertainties in the interpretation of resultant maps 

because it fails to fully delineate the quantity, quality, and diversity of mineralogical components 

present in a system. The existing theory, which evolved during the 1970s and 80s principally to 

explain anomalous gas levels over HC accumulations, was ultimately formulated in 1990s to account 

for alteration facies in a general term (Saunders et al., 1999; Schumacher, 1996; Thompson et al., 

1994). Unfortunately, this model simply assumes global identical features for the phenomenon 

without taking into consideration the effects of local environmental variables (i.e. climate, 

hydrogeology, erosion, and soil-forming processes) and geologic setting (i.e. lithology and 

stratigraphy of the near-surface units) in which the microseepage occurs. 

Microseepage and hydrothermal processes are somehow comparable phenomena. In a 

hydrothermal system, magma, as a source of energy, triggers fluid circulations and oxidation-

reduction reactions in the host rock, leading to wall-rock alterations and ore deposition (Pirajno, 

2009). In both systems, fractures provide the conduits for fluid transportation and subsequent 

mineral deposition, with macroscopic fractures playing a critical role in the overall mass transfer. 

Using this analogy, one can expect a similar trend in the diversity of alteration products within a 

chimney column, of which the collection described by the present model representing only a 

fraction. We postulate that upon providing a bigger picture of the mineral diversity, they could be 

categorized into a series of descriptive models, each tailored for specific geological settings. Such a 

multiplicity would then facilitate spectral processing and likely would contribute towards more 

efficient HC exploration. Below we attempt to outline some aspects of the mineralogy not reflected 

in the existing model. 

The accepted notion about diagenetic clay minerals is based on kaolinite enrichment, but as we 

discussed earlier (e.g. Fig. 3j), a suite of indicative clays consisting of illite, smectites, and chlorites 

can be expected above HC accumulations. For instance, in Fig. 6f, the ferrous mineral map is 

expected to incorporate chlorite as well. Moreover, sulfates constitute a key mineralogical signature 

that has been overlooked altogether in the classic microseepage model. Due to a steady influx of O2, 

the vadose zone above the water table is strongly oxidized, thus many of the reduced minerals, 

including pyrite and Fe-carbonates, become unstable and eventually weather (partially or fully) to 

other more stable forms. The oxidation of pyrite, in particular, can trigger the formation of several 

metastable pH-sensitive iron sulfates such as jarosite, copiapite, melanterite, and schwertmannite in 

the system. Subsequent oxidation of this array gives rise to a series of ferric iron oxyhydroxides in the 

diagenetic facies, including ferrihydrite, maghemite, lepidocrocite, goethite, and occasionally 

secondary hematite (Elwood Madden et al., 2004). Unlike pyrite, all the subsequent sulfates and 

oxides are spectrally active in the VNIR–SWIR windows, thus are potentially detectable remotely 

(Crowley et al., 2003). A case in point is the suite of Fe-sulfate and oxide minerals successfully 

mapped using AVIRIS data over the Dutton Basin Anticline (Staskowski et al., 2004). In a very arid 

environment, however, jarosite has reported to endure weathering and constitute a potential target 

over several microseepage-related facies (Bell et al., 2010; Elwood Madden et al., 2004; Everett et 
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al., 2002; Perry and Kruse, 2010). Ultimately, secondary hematite cement formed due to severe and 

prolonged oxidation of initial ferrous minerals have been observed in several oil and gas fields 

(Donovan et al., 1979-1982; Kirkland et al., 1995; Segal et al., 1986). The weathering, in a similar 

manner, can be responsible for the absence of magnetic bodies (e.g. maghemite) in near-surface 

(<60 m on average) section of the strata as recorded by well cuttings measurements (Foote, 1992; 

Foote, 1996). 

Although many have emphasized the combined role of pH/Eh in diagenetic changes, the pH of 

the soils and sediments is not commonly reported (Fig. 4f) and its contribution in shaping the 

mineralogical facies is not fully addressed. This parameter is highly significant for it controls the 

mineralogy of clays and regulates the species of iron oxyhydroxides in the strata (Marrs and Paylor., 

1987). 

2.6.2.5. Microseepage within time 

Microseepage anomaly, as scrutinized by soil-gas and microbial techniques, is a dynamic and 

rapid phenomenon that can appear/disappear within several months (Rice et al., 2002; Schumacher, 

2000; Tedesco, 1999). By contrast, the pace of mineralogical changes over chimney column has not 

yet been realized, mainly because of the lack of systematic investigations and different 

transformation timescales. Some sporadic observations, however, have demonstrated that the pace 

could be very quick in geologic time. For instance, a study conducted over a gas-storage area 

revealed that anomalous magnetic susceptibility in soil appears in less than 24 yrs. (Saunders et al., 

1991). Observations in sanitary landfills also have revealed that mineralogical transformation above a 

seeping methane source, which supposedly bears some resemblance to microseepage system, is 

rapid and happens in less than a decade or two (Ellwood and Burkart, 1996). In a quite exceptional 

case, more rapid transformation, in the order of several months, has been witnessed in a dam 

construction area (Prokopovich et al., 1971). Such rapid rate of changes conforms to our 

observations of soil bleaching by the gas flow in a controlled environment. 

According to Saunders (1999), microseepage is a dynamic phenomenon and gradually moves 

from the center of the accumulation to the outer edges. When the gas anomaly merely shifts or 

becomes extinct altogether, the evidence of the leakage, including anomalous secondary minerals, 

are preserved and accumulated in the sediments as ‘fossil’ geochemical anomalies (Saunders et al., 

1991). Due to the accumulative nature of such fossilized footprints within time, they typically 

constitute major targets for remote sensing, even though it can bring about false-positive anomalies 

over depleted traps. Subsequent weathering/erosion is likely to fade the footprints out, albeit 

profound authigenic changes, much like exhumed reservoirs (Table 7), would survive into the present 

time. As an example, the spectral anomaly yielded from satellite data over an oil field in Tennessee 

has been observed to diminish over 25 years of production (Perry, 2006). As stated earlier, novel 

mineralogical indicators should be quested to tell the active and fossil systems apart. A relevant point 

to consider is that the secondary cementation of the strata and the accumulative character of 

diagenetic changes are the likely reasons behind some disagreements between soil-gas and 

mineralogical anomalies (Klusman and Saeed, 1996). In the case study shown in Fig. 6, however, the 

soil-gas and alteration signatures maintain a close spatial relationship (e.g. Fig. 6d).  
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2.6.2.6. The necessity for quantitative mineral maps 

In the literature on microseepage topic, it is uncommon to account quantitatively for 

mineralogical changes. A typical example is the ‘bleaching’ term regularly used to indicate the loss of 

ferric iron without attempting to quantify the original and final levels. Based on few reports 

available, anomalous terrains were recognized by an increase in clay content between two to five 

times; sulfide content between two to three times; and 45% more total carbonates (Marrs and 

Paylor., 1987; Schumacher, 1996; Segal and Merin, 1989). In absolute term, such anomalies were 

characterized by a reduction in iron content from 2.9% in the periphery to just 1.0% in the center of 

the alteration; a concentration of up to 2.0% wt. kaolinite; the occurrence of 1.6–5.7% sulfides; and 

40–50% added carbonate cement (Donovan et al., 1975; Kirkland et al., 1995; Schumacher, 1996). 

In order to increase the efficiency of remote sensing for microseepage delineation, we 

recommend adopting a quantitative approach for spectral processing using methodologies 

embedded in either knowledge-based or data-driven approaches (Asadzadeh and Souza Filho, 

2016b). For example, it is possible to achieve a semi-quantitative map for hematite, kaolinite, and 

calcite by calculating the depth of the diagnostic absorption features centered at ~850, ~2200, and 

2340 nm, respectively (e.g. Fig. 6d-6f). To eliminate the effect of background mineralogy and intra-

unit variations, however, the interpretation shall be based upon the concept of ‘reference area’ 

introduced earlier.  

The lack of quantitative maps has also hampered the efforts to establish relationships between 

alteration intensity/zoning and seeping activity over HC pools. To unravel such likely relationships, 

quantitative remote sensing results should be interpreted in the context of geochemical anomalies or 

wildcat drilling (see section 6-2-9). 

Apart from abundance, spectral data can be used to map the variations in composition and 

crystallinity of selected minerals. A case in point is the capability of hyperspectral data to track the 

shift in the wavelength of absorption minimum at ~900 nm to discriminate between different iron 

oxide/oxyhydroxide species, namely maghemite, goethite, hematite, and ferrihydrite. This 

unexplored capability has important implications for exploration, because maghemite, for instance, is 

known to be responsible for the bulk of micromagnetic anomalies detected by geophysical surveys 

(Foote, 1996; Foote, 2013; Holysh and Toth, 1996; Saunders et al., 1991). Moreover, due to the 

sensitivity of Fe-bearing minerals to the pH of the environment (Swayze et al., 2000), a map like the 

one noted could be used to predict the pH over microseepage systems. Similar spectral products 

could be developed to differentiate carbonate species (dolomite, siderite, ankerite, calcite, and 

rhodochrosite) using the wavelength of the absorption feature between 2320–2350 nm (Gaffey, 

1987). Possible variations in the physicochemistry of clays comprising illite-smectites, chlorites, and 

kaolinite (see (Asadzadeh and Souza Filho, 2016b) for the details) has not been deeply investigated; 

albeit in the case of chlorite, some well data analysis has shown dominant occurrence of Fe-rich 

chlorite in bleached zones (Weibel, 1998). More research is required to uncover the full potential of 

such spectral products for microseepage exploration and indeed false-positive elimination. 
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2.6.2.7. The shape of anomalies 

A proper understanding of the shape of the microseepage-induced anomalies and their 

compliance with underlying accumulation is critical to oil and gas exploration (Jones and Drozd, 1983; 

Xuejing, 1992). Because the overall shape of anomalies largely depends upon the employed 

prospecting tool, here we first overview the known shapes yielded from other exploration methods 

and then discuss the expected and observed anomalies from image data. 

Soil-gas anomalies can have various shapes that in the order of importance are: (i) halo 

(annular/ring) pattern, in which anomalous readings are aligned over the edges of the underlying 

accumulation (Figs. 8a and Fig. 6b); (ii) apical (bell-shaped), in which an area of high values is 

surrounded by a low background (Fig. 8b); (iii) crescent type, which is found over accumulations 

trapped against a fault; and (iv) linear, which is observed over surface traces of faults, likely due to 

the effusion of HCs along fault planes (Duchscherer, 1980; Duchscherer, 1982; Horvitz, 1980; Price, 

1986; Price, 1996; Xuejing, 1992). 

The noted patterns may be either continuous or discontinuous (patchy/broken), consisting of 

several unconnected patches (Fig. 8 and Fig. 6b) over an accumulation (Xuejing, 1992). Typically, due 

to offsets between the location of an anomaly and the underlying reservoir, geochemical anomaly is 

unlikely to closely resemble the shape of the underlying reservoir (Brown, 2000; Holysh and Toth, 

1996; Jones and Drozd, 1983; Richers et al., 1986; Saunders et al., 1999; Thrasher et al., 1996). 

Likewise, (micro)magnetic anomalies over HC accumulations can have four different types: (i) 

double hump anomaly, corresponding to more intensive values on the edges; (ii) ripples, which is 

composed of high frequency signals superimposed on higher amplitude regional trend; (iii) positive 

anomaly that is composed of increased magnetism over the entire field; and (iv) negative anomaly 

due to pyrite precipitation (Eventov, 2000). Radiometric anomalies, on the other hand, are reported 

to occur either as halo or saddle-shaped (apical) forms over reservoirs (Fig. 1). Whereas geophysical 

anomalies are not highly accurate in outlining accumulations (Saunders et al., 1993b; Saunders et al., 

1999), microbial prospecting is known to yield apical anomaly and coincide exactly with the extent of 

the field (Price, 1986; Price, 1996). 

Overall, the ‘halo anomaly’ is acknowledged to be the most common form among exploration 

techniques (see Fig. 6). Several reasons have been given to explain the occurrence of this pattern 

including: (i) higher density of fractures over the edges of a structure, (ii) lower bacterial activity over 

the edges (relative to apical zone), (iii) conformity to gas-water and oil-water contact, and (iv) 

caprock clogging (Eventov, 2000; Horvitz, 1980; Price, 1986; Saunders et al., 1999). Based on 

numerical modeling, Brown (2000) concluded that the halo anomaly and irregular distribution of 

apical anomalies are mainly due to fracture distribution. The locality of such anomalies is believed to 

overlap with the areas of maximum stress in a structure (Eventov, 2000). 
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Fig. 8. Common surface geochemical anomalies over HC accumulations. a) Annular (halo). b) Apical. Solid and hatched fills indicate 

continuous and broken anomalies, respectively (Modified after (Xuejing, 1992)). 

Based on field observations, a number of patterns for microseepage-induced mineralogy are 

already proposed as is illustrated in Fig. 1. However, in the absence of quantitative methodology, 

several of the illustrated forms have not been replicated via spectral data. Although some have 

pointed that the alteration anomalies over HC accumulations would exhibit a halo pattern (Klusman, 

2002) (see also the case study in Fig. 6), in reality, the clogging of escaping routes (Saunders et al., 

1999) along with the cumulative effect of alterations imply that the patterns should incorporate both 

apical and halo shapes. In other words, it could resemble an extended apical anomaly that depending 

on the mineralogy type will show positive or negative configuration. On the other hand, according to 

the descriptions provided in Table 6, it seems the ‘disconnected apical’ is the most likely pattern for 

mineralogical manifestations. 

Saunders (1993a) has stated that “radiometric anomalies may be found only over portions of 

fields and thus it cannot be used to determine the production boundary accurately”. In a similar way, 

it is rather unlikely that mineralogical indicators accurately conform to the shape of the underlying 

reservoir, albeit it is still a useful tool to locate microseepage systems arising from HC accumulations. 

2.6.2.8. The overall efficiency of remote sensing approach 

Owing to the fact that failure cases are absent in the reviewed case studies, an overall 

assessment of the efficiency of remote sensing in oil and gas exploration, much like geochemical 

method (e.g. (Schumacher, 2010)), is not feasible. Therefore in this section, we only overview the 

accounted success rates appeared in the literature.  

In the early days of satellite data, it was reported that among the 57 hazy anomalies extracted 

from ERTS imagery in the Anadarko basin, 42 coincide with producing oil fields, corresponding to 73% 

coincidence (Short, 1977). In the era of Landsat, 75% of all mapped tonal anomalies (equivalent to 59 

individual anomalies) were shown to be associated with economic HC plays (Feder, 1985). After 

drilling through 1177 geomorphic/tonal anomalies achieved from Landsat data in the Rocky 

Mountain, the average efficiency was assessed to be 54% (Land, 1996), whereas in search of 

stratigraphic traps by an integrated exploration approach, success rates were reported to vary 

between 29–53% (Saunders et al., 1999). In an objective assessment of unconventional exploration 

methods, the performance of Landsat data in predicting the outcome of wildcat drilling over 

conventionally generated prospects was evaluated to be better than 75%, which placed it among the 

best prospecting techniques evaluated (Calhoun, 1991). 
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In the era of ‘spectral anomaly’ extracted from ASTER data, 85% coincidence (18 out of 21) 

between spectral signatures and follow up fieldwork and geochemical sampling was recorded 

(Everett et al., 2002). In a recent study conducted in the Lake Albert basin in the East Africa Rift 

system, mineralogical anomalies due to HC migration were mapped using multisensory and multi-

temporal satellite data (Table 6). Remarkably, spectral anomalies were detected in 18 out of 19 

discovered (18 oil + 1 gas) fields, corresponding to 95% success rate (Frassy et al., 2015). This study, 

however, neither provided the characteristics of the anomalies nor the results of probable field 

verifications. 

Conceptually, the performance of spectral techniques could be compared to radiometric and 

magnetic methods, as both aim to detect microseepage-induced mineralogical indicators in a direct 

way. As an example, after investigating the radiometric data collected over 706 oil and gas fields in 

the US, it was discovered that 72.7% of them are associated with typical K and U anomalies 

(Saunders et al., 1993a). Based on other accounts, the radiometric and magnetic techniques were 

reported to correctly predict a production hole, respectively, at 59–85% and 58–75% of the times 

(Land, 1996; Potter II et al., 1996). With improvements in analytical instrumentations and processing 

methodology, higher success rates were witnessed by the noted techniques. A case in point is the 

statistics yielded from micromagnetic surveys indicating that over 80% of producing petroleum fields 

are associated with anomalous magnetic susceptibilities (Foote, 1992; Saunders et al., 1991; 

Wolleben and Greenlee, 2002). By using modern sensing technologies and processing methods, we 

can expect similar incremental trends in the performance of spectral remote sensing. 

Microseepage-based prospecting tools are reportedly successful in predicting dry holes. For 

instance, 29 out of 30 (96%) or 15 out of 19 (79%) negative geochemical anomalies drilled in the field 

were ended up to be dry holes (Davidson, 2004). The geophysical methods, on the other hand, have 

been 70–90% successful, on average, in predicting a dry hole (Foote, 1992; Potter II et al., 1996). A 

similar calculation is yet to be carried out for remote sensing studies.   

2.6.2.9. Guidelines for future studies 

The study of microseepage phenomenon shall incorporate multi-scale data from fieldwork, lab 

analysis, and regional surveys. Outcrop investigation in this sequence, which includes but is not 

limited to sampling, maintains the essential link between regional and microscopic studies. To our 

knowledge, sampling along profiles is the best approach to intersect the bulk of variations induced by 

HC microseepage. We recommend establishing at least one reference area in unaffected (intact) part 

of the target unit(s) for cross-comparison of the induced changes. Certainly, this approach would 

require a priori knowledge about the stratigraphy of the units provided by a detailed geologic map. 

The overall number of samples collected from on/off zones should be large enough (typically >30) to 

reflect the concurrent effects of intra-unit and induced variations within a given area. Instead of 

simply differentiating anomaly from the background, it is more appropriate to characterize and 

quantify the mineralogy of anomalous zones (e.g. Fig. 6) by employing a proper spectral technique 

(Asadzadeh and Souza Filho, 2016b). This approach would help determine the shape of anomaly and 

reveal the spatial relationships between the mapped anomaly and possible subsurface pool. 

The best supplementary analytical methods to corroborate remote sensing studies are those that 

provide fresh insights into the particularity of minerals in a system. Hence, beside the indispensable 

reflectance (and emittance) spectroscopy, the investigation should be rather complemented by XRD, 
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optical microscopy, and Mössbaur spectroscopy. The latter has superiority in identifying the species 

of ferric/ferrous minerals in given samples. A deeper understanding of fluid-rock interactions, 

however, would be achieved when the studies are accompanied by stable isotope geochemistry. 

Eventually, remote sensing data shall not be used in isolation. The integration of resultant maps 

into other non-seismic prospecting techniques not only can provide new insights into microseepage 

phenomenon, but can also add more value to the existing exploration data and improve the success 

of subsequent drilling (Prelat et al., 2013; Rice et al., 2016; Saunders et al., 1999). 

2.7. Seepages and the environment 

Although seeps have been a topic of concern to explorationists for a long time, until recently, 

there was little understanding of their role in carbon emission to the atmosphere. Based on recent 

assessments, macro-, and microseeps in total constitute the second most important sources of 

natural methane (and also ethane/propane) emissions to the air (Etiope and Ciccioli, 2009; Etiope 

and Klusman, 2010; Etiope et al., 2008). It has been estimated that between 21–36% of the geologic 

methane budget is emitted by seeps, of which microseepage-prone areas and macroseeps emit 10–

25% and 11%, respectively (Etiope, 2015). The revised global budget via isotope data, however, 

suggested that methane emission from geologic sources is 60–110% greater than current estimates 

(Schwietzke et al., 2016). The estimation of macroseepage flux has been relatively straightforward as 

a large portion of them are already known and monitored in the field. However, the global emission 

of microseepage is still uncertain because the calculations are based on averaging field contributions 

from identifiable homogeneous areas. The current flux is based on a database of 563 measurements 

in dry soils (Etiope and Klusman, 2010). 

The potential microseepage-prone areas in the globe are estimated to be in the order of 3.5–4.2 

million Km2 distributed within 937 petroliferous provinces or basins in 112 countries (Etiope and 

Klusman, 2010) that are approximately equivalent to 7% of the global dryland areas. Positive fluxes 

are typically a few to tens of mg m-2d-1 that can reach hundreds of mg m-2d-1 over widely tectonized 

zones (Etiope, 2015). Etiope and Klusman (2010) admitted that their calculation should be 

considered as a first spatial disaggregation of emission factors. They stated, “…the uncertainties in 

global emission estimates are mainly due to a poor knowledge of the dryland area of invisible 

microseepage”. It is evident that all microseepage terrains occur within petroliferous provinces, but 

so far the actual microseepage areas have remained unknown (Etiope and Klusman, 2010). We 

postulate that there is a possibility to detect a large portion of microseeping areas using the 

capability of spectral remote sensing to map induced mineralogical signatures. Such maps would 

then facilitate evaluating the contribution of every sedimentary basin or petroleum field in natural 

methane inventory. 

From another perspective, the oxidation of pyrite in a sulfide-rich microseepage system may 

produce acid rock drainage and affect the ecosystem and the quality of drinking water in nearby 

areas (Swayze et al., 2000). Screening of microseepage areas by spectral remote sensing can help 

geologists gain a better understanding of the relative distribution of secondary minerals formed after 

sulfide oxidation and predict potential acid generation areas. 

Unlike the natural seepage of crude oil into the marine environment, onshore seepage is not 

considered an important source of oil pollution. However, owing to the fact that several aspects of 



52 

 

natural seepage are shared by anthropogenic oil spillage, any progress towards remote sensing 

seepage characterization can be an asset to environmental protection and vice versa. 

2.8. Conclusion 

Whereas oil production from offshore basins is rapidly growing, in terms of yet-to-find reserves, 

it has been estimated that around half of the world’s total conventional oil would still come from 

onshore basins, of which about half is expected to be new discoveries (Schenk, 2012; 2000). The 

macro-, and microseepage systems associated with these unexplored (and explored) onshore 

accumulations have been proven to contribute substantially towards natural methane emission and 

global warming. Consequently, any attempt to develop methods for seepage characterization has 

dual implications: in one way, it can be employed as a reliable indicator for oil and gas exploration; 

and in the other, it can be used to disaggregate the geological emission factors in environmental 

assessment. 

Spectral remote sensing is offering a unique opportunity to detect the full range of onshore 

seepage indications; typically, the VNIR–SWIR wavelengths have been used to map the alteration 

footprints of microseepage systems and the SWIR–LWIR wavelengths to detect the manifestation of 

oil and gas macroseeps. Despite the encouraging results outlined here, we believe the potentials of 

this state-of-the-art technology for seepage inspection is not yet fully exploited. In the case of oil 

seepage, this approach not only can detect the oil-shows but also has a great capacity to quantify 

and characterize their HC content provided that the sensor has high spatial and spectral resolutions. 

The emerging capability of this technique in mapping trace gas anomalies is very promising; however, 

it should be expanded to sense other lightweight HCs. Correspondingly, alongside methane sensing, 

which is particularly valuable for environmental issues, further experiments should be devised for 

mixed methane and ethane (C2+) detection, as the latter is a very useful indicator for oil and gas 

exploration. Overall, we need to develop additional case studies over petroliferous terrains with 

different oil and gas seepage properties and flow rates to evaluate the robustness of the techniques 

in determining the outline, content, and quantity of leakages. Such studies shall benefit from sensors 

available in the SWIR and LWIR wavelength ranges. 

In the case of microseepage systems, the existing ambiguities in anomaly interpretation are 

believed to arise from several contributory factors including data restrictions, incomplete study 

cases, a simplistic methodology for data analysis, and above all, an immature conceptual model. In 

order to increase the efficiency of remote sensing approach, studies should be enriched by advanced 

spectral products such as the abundance and physicochemistry of minerals and supplemented by a 

novel mineralogical indicator; an objective that is mainly achievable by hyperspectral remote sensing. 

Moreover, further studies should be directed towards a diverse range of host-rocks and geologic 

settings by considering the basic guidelines provided in this article aiming to give insights into the full 

range of secondary changes and evaluate their detectability via spectral techniques. Ultimately, a 

new composite microseepage model capable of accounting for the variety of secondary changes 

should be devised and employed in the future investigations. 
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Chapter 3 

A review on spectral processing methods for geological remote sensing
4
 

 

In this chapter, many of the fundamental and advanced spectral processing methods available to 
geologic remote sensing are reviewed. A novel categorization scheme is proposed that groups the 
techniques into knowledge-based and data-driven approaches, according to the type and availability 
of reference data. The two categories are compared and their characteristics and geologic outcomes 
are contrasted. Using an oil-sand sample scanned through the sisuCHEMA hyperspectral imaging 
system as a case study, the effectiveness of selected processing techniques from each category is 
demonstrated. The techniques used to bridge between the spectral data and other geoscience 
products are then discussed. Subsequently, the hybridization of the two approaches is shown to yield 
some of the most robust processing techniques available to multi- and hyperspectral remote sensing. 
Ultimately, current and future challenges that spectral analysis are expected to overcome and some 
potential trends are highlighted. 

3.1. Introduction 

Spectroscopy is the measurement of light as a function of wavelength reflected or emitted from a 

material (Clark, 1999; Hapke, 1993). The resultant spectrum conveys information about the state of 

the target that in geology is usually, but not necessarily composed of rocks and minerals. Pioneering 

work of John Hunt and Ronald Lyon in the early 70s paved the way for the interpretation of such 

spectra using quantum mechanics concepts (e.g. (Hunt and Salisbury, 1971; Lyon and Burns, 1963)). 

Their work established a link between observed variation in reflectance/emittance spectra with 

chemical and physical properties of minerals and demonstrated their potential use in remote sensing 

(Hunt, 1977, 1979). Minerals, rocks, and other terrestrial compounds like hydrocarbons exhibit 

diagnostic absorption features in either the visible-near infrared (VNIR) (0.4-1.0 µm), shortwave 

infrared (SWIR) (1.0-2.5 µm), mid infrared (MIR) (3-5 µm), and/or longwave infrared (LWIR) (8-14 

µm) wavelength ranges due to electronic and vibrational processes, as well as overtones and 

combinations of the fundamental (Clark, 1999; Gaffey et al., 1993; Hapke, 1993; Hook et al., 1999; 

Hunt and Salisbury, 1971, 1974). 

Historically, remotely sensed multispectral imaging (MSI) has been used to produce colorful 

photographs for visual interpretation of lithologic units and geologic structures (Goetz and Rowan, 

1981; Gregory and Moore, 1975). Meanwhile, its multispectral content has been processed by simple 

techniques, like band arithmetic, to discriminate broad alteration patterns (Goetz and Rowan, 1981; 

Rowan et al., 1974; Sabins, 1999). Early experiments with airborne imaging spectrometer (AIS) 

prototypes revealed its potential for remote mineral detection, which subsequently led to the 

development of NASA’s Airborne Visible-InfraRed Imaging Spectrometer (AVIRIS) hyperspectral 

imaging (HSI) sensor (Goetz et al., 1985; Vane and Goetz, 1991). HSI has matured to such extent that 

advanced systems of this kind are currently orbiting Earth and Mars (e.g. Hyperion and OMEGA) (Bell, 

2008; Pearlman et al., 2003). This technology has also evolved as a tool for field spectroscopy (Goetz, 

2009; Thompson et al., 1999), drill core and chips logging (Mason and Huntington, 2012; Roache et 
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al., 2011; Tappert et al., 2011), wall-rock imaging (Kruse et al., 2012; Kurz et al., 2012; Murphy and 

Monteiro, 2013; Ragona et al., 2006), and sensor-based mineral sorting (Goetz et al., 2009). Overall, 

proximal and distal sensing technologies in the VNIR-SWIR have been matured and readily available 

(Goetz et al., 1985), whereas the LWIR hyperspectral data are only now becoming routinely available 

(Hook et al., 2013; Mason and Huntington, 2012; Vaughan et al., 2003).  

HSI with hundreds of contiguous spectral bands has resulted in plethora of near laboratory-quality 

spectra for every pixel (Clark and Swayze, 1996; Goetz, 2009; Goetz et al., 1985), thus creating its 

own breed of spectral analysis methods (e.g. (Adams et al., 1986; Vane and Goetz, 1991)). Spectral 

processing (also known as spectral mapping, or spectral analysis) refers to “the extraction of 

quantitative and/or qualitative information from remotely sensed reflectance (or emittance) spectra 

based on the albedo-, and wavelength-dependent properties of the material” (Mustard and 

Sunshine, 1999). It encompasses most of the techniques proposed for detection, classification, 

discrimination, identification, characterization, and quantification of materials in a given hyper-, or 

multispectral scene (Chang, 2003, 2007; Schott, 2006). 

There are numerous review papers devoted to the topic of spectral analysis and geologic remote 

sensing in the last two decades. In a tutorial paper on spectral unmixing by Keshava & Mustard 

(Keshava and Mustard, 2002), linear versus nonlinear mixing is clarified and algorithms for linear 

unmixing are discussed. Recent advances in this subject including geometrical, statistical, and sparse 

regression-based approaches, along with unmixing challenges are highlighted in (Bioucas-Dias et al., 

2012; Plaza et al., 2011). There are also papers concentrated on very specific themes like subpixel 

detection algorithms (Chang, 2003), nonlinear unmixing (Heylen et al., 2014), image classification (Lu 

and Weng, 2007; Richards, 2005), support vector machine (Mountrakis et al., 2011), or the evolution 

of HSI technology (Goetz, 2009; Schaepman et al., 2009; Vane and Goetz, 1991).  

On the other hand, a wealth of review papers is dedicated to the application of remotely sensed 

imagery for natural resource assessment (Agar and Coulter, 2007; Bedell et al., 2009; Gregory and 

Moore, 1975; Rajesh, 2004; Sabins, 1999). Van der Meer et al. (van der Meer et al., 2012) provided a 

balanced review of multispectral and hyperspectral remote sensing data, the common products, and 

their applications to different geologic areas, with a brief discussion on historic and current 

processing techniques used for both data types. More in-depth evaluation of analytical techniques 

for extraction of compositional mineralogical information from hyperspectral remote sensing data 

was provided by Cloutis, some two decades ago (Cloutis, 1996). 

While these review papers are seminal and have made science impacts, they either focus on the 

application of remote sensing in geology, or take stock in specific algorithmic research areas, or are 

not wide-ranging and up-to-date. None of them provide a categorization strategy for the vast 

spectral processing methodologies, nor study them in a comparative manner. 

In this paper, many of the known and off-the-shelf spectral analysis methods currently available 

for geologic remote sensing are reviewed. According to the availability and usage of reference data, a 

categorization scheme is proposed that groups the techniques into knowledge-based and data-driven 

approaches. The two categories are compared and their outcomes in terms of geologic information 

are discussed. The methods used to bridge the spectral data and mineralogical, lithological and 

geochemical datasets are considered. Subsequently, current and potentially new hybridization 
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concepts are discussed, and future challenges that spectral processing methods are expected to 

overcome are highlighted. 

3.2. Test dataset 

Throughout this paper, a hyperspectral datacube of an oil-sand sample is processed and used to 

illustrate the effectiveness of selected processing techniques discussed within the text. The sample 

was taken from an exhumed hydrocarbon reservoir located in the eastern edge of the Paraná basin, 

some 170 km to the NW of São Paulo city, Brazil. The area consists of bitumen accumulations in early 

Triassic sandstones (de Araújo et al., 2006). XRD analysis shows that the sample is dominated by 

quartz and montmorillonite, plus titanomagnetite, brushite, and orthoclase as minor phases. 

Montmorillonite is present as inter-layers and small spots in the sandy matrix, probably as a result of 

alteration due to hydrocarbon migration (Fig. 1a). The sample was scanned using the sisuCHEMA-

SWIR hyperspectral imaging instrument (Roache et al., 2011). Using a 31mm lens, a spatial resolution 

of 390 µm in length and 680 µm in width was achieved, and later resampled to equal-sized pixels 

using 0.57 multiplying factor. The 256 spectral bands between 928-2524 nm were transformed into 

reflectance using built-in instrument routines. 

We retained 240 spectral bands and omitted 16 noisier bands at both ends of the spectra (13 

between 928-1004 nm, and 3 between 2512-2524 nm). The tray background and at least two pixels 

at the margins of the sample were masked out. To cancel the illumination variation between the scan 

lines, we transformed the image into the frequency domain using the fast Fourier transform. In this 

domain, the sub-horizontal frequencies related to noise and striping was left off from the data, and 

the remaining part was transformed back into image domain (de Souza Filho et al., 1996). Finally, the 

spectra of each pixel underwent spectral smoothing using the Sav-Gol filter of 2nd order polynomial 

(section 3-1-1). To check out the validity of the results, we collected 9 representative spectra using an 

ASD FieldSpec spectrometer (Goetz, 2009), and a Spectralon panel as a reference to convert the 

measurements into reflectance. These curves are compared with their relevant image-derived 

spectra in Fig. 1b. Note the correspondence in overall spectral shape between the two series and 

specific features at 1900, 2200, 2300, and 2350 nm. The image spectra at around 1650 nm, however, 

have a higher albedo and are noisier between 1500 to 1800 nm ranges. In general, the image spectra 

show greater spectral contrast than ASD spectra. The bitumen and montmorillonite are the only 

spectrally (SWIR) active compounds of the sample and the image spectra are dominated by their 

diagnostic absorption features (Fig. 1b). 

3.3. Categorization and description of the algorithms 

There is neither a standardized, universally accepted methodology for the spectral processing of 

remotely sensed data, nor a comprehensive framework to categorize the existing methods. In the 

literature, the methods are grouped according to (i) their date of emergence (conventional, or 

traditional, vs. new, or advanced (Landgrebe, 2003; van der Meer and De Jong, 2002)); (ii) presumed 

randomness (parametric vs. non-parametric (Keshava et al., 2000; Tso and Mather, 2009)); (iii) type 

of data they are applied to (multispectral vs. hyperspectral (Richards and Jia, 2006; Schott, 2006)); 

(iv) the way pixels are treated (hard, or per-pixel vs. soft, or sub-pixel  classifier (De Jong and van der 

Meer, 2005; Lu and Weng, 2007; Schowengerdt, 2007)); (v) the need for training data (supervised vs. 
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unsupervised (Richards and Jia, 2006; Tso and Mather, 2009)); (vi) and data representation fashion 

(geometric vs. statistics, or statistical vs. non-statistical (Keshava et al., 2000; Landgrebe, 2003)). 

 

Fig. 1. a) Color photograph of the bituminous sandstone sample, which was scanned to produce the hyperspectral datacube using a 

sisuCHEMA-SWIR imaging system. The red box (≈ 12 x 11 cm) illustrates the subset used during the processing. Circles are parts 

measured by the ASD spectrometer. Montmorillonite is evident as white inter-layers and pockets enclosed by dark-colored bitumen. b) 

Comparison of the representative reflectance spectra collected using the ASD FieldSpec-4 spectrometer (upper stack) and extracted from 

sisuCHEMA imagery (lower stack). The latter spectra are obtained by averaging the pixels inside each circle. The numbers match the 

circles in (a) and the spectra are stacked. Absorption bands related to bitumen are indicated by blue arrows (@ ≈1700, 2300, and 2350 

nm), and those related to montmorillonite by green (@ ≈1400, 1900, and 2200 nm). 

Mustard & Sunshine (Mustard and Sunshine, 1999) proposed three basic categories for spectral 

processing, including: (i) simple methods of spectral analysis for the definition of broad-scale units, 

(ii) feature mapping and the absorption band modeling, and (iii) full spectral mapping for material 

quantification. Schott (Schott, 2006) divided the multitude of spectral analysis algorithms into three 

perspectives including the geometric, stochastic and spectral feature. 

The basis in which a spectral processing technique requires a priori reference data, or not, is used 

here to establish a categorization scheme. In the case of no reference data, the method is usually 

able to make direct use of spectral patterns available in a pixel (or measured spectra). In contrast, 

there are those techniques that try to describe the spectral content of a pixel according to some 

predefined representative facts known as reference data, or endmembers. This initial difference 

gives rise to two distinct categories for spectral processing methods: the knowledge-based approach, 

and the data-driven approach. This division is followed here to review, describe and compare the 

majority of the spectral processing methods. To make the manuscript more concise, we will avoid 

providing details on the mathematical formulation of each method, and the reader should refer to 

the cited work for specifics. 



64 

 

 

Fig. 2. Taxonomic tree describing the spectral processing methods as proposed and discussed in this work. The “nonlinear plug-ins” indicates that these methods can be plugged into nonlinear algorithms for 

abundance corrections. The acronyms used in the tree and throughout the text are: BR: Band ratio, RBD: Relative absorption band-depth, PCA: Principal component analysis, LS-Fit: Least-square fitting, DA: 

Derivative analysis, SFP: Spectral fingerprints, MMWT: Maximum modulus wavelet transform, CBD: Continuum band-depth, FP: Fitted polynomial, QF: quadratic fitting, CF: Curve fitting, LO: Logical operator, DT: 

Decision tree, ES: Expert systems, MGM: Modified Gaussian model, EGO: exponential Gaussian optimization, WA: Wavelet analysis, FSD: Fourier self-deconvolution, Hapke: Hapke (bidirectional) scattering theory, 

Iso-grain: Iso-grain scattering theory, Shkuratov: Shkuratov scattering theory, BE: Binary encoding, ED: Euclidean distance, NED: Normalized Euclidean distance, SD: Spectral distance, SGA: spectral gradient 

angle, SAM: Spectral angle mapper, SCM: Spectral correlation mapper, SID: Spectral information divergence, CCSM: Cross-correlogram spectral match, SSM: Spectral similarity mapper, SFF: Spectral feature 

fitting, PLSR: Partial least square regression, MD: Minimum distance, MHD: Mahalanobis distance ML: Maximum likelihood, ANN: Artificial neural network, SVM: Support vector machines, DT: Decision tree, RF: 

random forests, FLC: fuzzy logic classifier, IK: indicator kriging, OSP: Orthogonal subspace projection, MF: Matched filtering, CEM: Constrained energy minimization, ACE: Adaptive coherence estimator, MTMF: 

Mixture tuned matched filtering, TCIMF: Target-constrained interference-minimized filter, LSU: Linear spectral unmixing, ICA: Independent component analysis, SVM: Support vector machines, ANN: Artificial neural 

network, BM: Bayesian model, GA: Genetic algorithm, ISU: Iterative spectral unmixing, MESMA: Multiple endmember spectral mixture analysis, ISMA: Iterative spectral mixture analysis, EB: Endmember bundles, 

SA: Simulated annealing.
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3.3.1. Knowledge-based approach 

The knowledge-based approach incorporates the user knowledge about the spectral behavior of a 

target to extract meaningful information from individual spectrum without (at least no direct) 

reliance on reference data. The building block of knowledge-based approach is the distinct 

characteristics of the absorption features (i.e. position, depth, asymmetry, and width) in different 

materials (Clark, 1999; Hunt, 1979; Mustard and Sunshine, 1999; van der Meer, 2004). Generally, 

each spectrum consists of three basic components: (i) a continuum (also called “hull” or “base line”); 

(ii) absorption bands; and (iii) residual or noise (Maddams, 1980; Pontual et al., 2008b). Virtually all 

the knowledge-based methods strive to give an estimate of the quantity or quality of one or more of 

these components in an interactive or automated way. In this work, we have divided the diversified 

knowledge-based techniques into two broad categories named “absorption modeling” and “spectral 

modeling” (Fig. 2). In the former, a limited portion of the spectrum covering a typical absorption is 

considered for the analysis, whereas in the latter all the absorptions and components of the 

spectrum are incorporated. The absorption modeling includes band calculation (partial modeling), 

and feature mapping (full modeling). The spectral modeling on the other hand encompasses several 

groups including an expert system, spectral deconvolution, wavelet analysis, and scattering theory 

(Fig. 2). The following section provides a description of the methods available to each of these 

groups. 

3.3.1.1. Band calculation 

Band arithmetic is the simplest and most common image processing method. It provides an 

estimate of the shape or gradient of the absorption feature using basic math operations. The band 

ratio (BR) uses the difference in reflectance between an absorption band and one of its shoulders 

(Goetz and Rowan, 1981; Rowan et al., 1974) (Fig. 3b-3f). While it is more resistant to many scene 

variations, including the topography, the outcome is often ambiguous (Agar and Coulter, 2007). To 

overcome this limitation, the average of the channels from both feature shoulders was proposed and 

coined relative absorption band-depth (RBD) (Crowley et al., 1989). The RBD is typically used for the 

detection of compounds with strong absorption bands (e.g. Al-OH), and can provide a semi-

quantitative measure of mineral abundance and/or the “crystallinity” (Clark et al., 1993; Cudahy et 

al., 2008) (Fig. 3g-3i). Principal component analysis (PCA) makes use of spectral gradients, but in a 

statistical fashion. It entails a linear projection of the selected bands into a new orthogonal space. 

The features of interest are then located in a PC band according to the eigenvector values (Crosta 

and McMoore, 1989) (Fig. 3k, 3l). While BR and RBD are still in use with both MSI and HSI datasets, 

PCA has been mostly confined to multispectral imagery, perhaps because it relies merely upon 

empirically chosen input bands, or because of the difficulties in equating PCs to specific features in 

the imagery (Crosta et al., 2003; Crosta and McMoore, 1989). PCA used together with contrast 

stretching is comprised in a technique coined the “decorrelation stretch” and has been used to 

enhance image color and highlight specific targets in MSI data (e.g. silica in TIMS data) (Mustard and 

Sunshine, 1999). The trend in a feature can also be modeled with least-squares fitting (LS-Fit) and 

then subtracted from the original spectrum to help predict anomalous regions associated with 

specific absorbing bands (Green and Craig, 1984) (Fig. 3m, 3n). 

In the case study shown in Fig.3, the BR highlights both targets, but the results rely on the 

selected feature and its shoulder. For bitumen, the results of each feature are different (Fig. 3c-3e) 
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with the 2300 nm absorption feature providing the best results. The image scores are sharper for the 

RBD and PCA method, but again they are prone to variation between absorbing bands. On the other 

hand, the LS-fit shows no superiority over other band calculation methods.   

The derivative of a spectrum (first, second, or higher order) involves the calculation of reflectance 

variation relative to the wavelength (Tsai and Philpot, 1998). It is commonly calculated using a finite 

approximation method; hence, it bears a resemblance to band calculation. The derivative is a 

parameter that is more sensitive to the shape rather than the magnitude of the spectra (Zhang et al., 

2004). Lower order derivatives seem to be more sensitive to the spectral inflections, whereas higher 

orders are relatively insensitive to illumination variations (Demetriades-Shah et al., 1990; Tsai and 

Philpot, 1998). In geological remote sensing, derivative analysis (DA) is exploited for deriving 

parameters like band position and bandwidth from absorption features in both direct, and indirect 

manners (Huguenin and Jones, 1986). For example, DA is used directly to separate ore from gangue, 

or estimate ore content (Murphy and Monteiro, 2013). It is indirectly applied to eliminate 

background signal, enhance the spectral contrast, or derive other target parameters (Demetriades-

Shah et al., 1990; Huguenin and Jones, 1986; Zhang et al., 2004) (see section 5 and 3-1-2-2). 

The DA is notoriously sensitive to noise, hence some sort of preprocessing for noise suppression is 

always required (Cloutis, 1996; Tsai and Philpot, 1998). The most popularly used spectral filters for 

smoothing spectral data include moving average (median and mean), Savitzky-Golay, Kawata–

Minami, cubic spline, geostatistical filter, and wavelet-based thresholding (Mitchley et al., 2009; 

Oskouie and Busch, 2008; Schmidt and Skidmore, 2004; Tsai and Philpot, 1998). Among them, Sav-

Gol is most commonly used (Fig. 1b), because it can provide simultaneous data smoothing and 

differentiation (Tsai and Philpot, 1998). While the spectral smoothing should be exerted with caution 

to avoid any loss of information (Cloutis, 1996), overall, it is functional, and has been shown to 

improve the accuracy of many processing algorithms (Monteiro et al., 2009). 

3.3.1.2. Feature mapping 

Feature mapping routines aim to fully quantify an absorption band using characteristics like 

wavelength position, depth, width, and asymmetry. Typically, they demand the absorption be 

defined or detected, and the continuum to be removed first. 

3.3.1.2.1. Continuum removal 

To isolate the absorption bands, the continuum should be initially removed. The continuum is the 

background absorption due to a different process with overall concave shape onto which other 

absorption bands are superimposed (Clark and Roush, 1984). Though its physical meaning is not 

thoroughly understood, the continuum is thought to be the manifestation of non-selective multiple 

scattering due to the matrix effect, Fresnel reflectance, and the presence of spectrally inactive 

minerals (Clark and Roush, 1984; Mustard and Sunshine, 1999; Thompson et al., 1999). The 

continuum may also be influenced by the physical (particle size, texture, roughness, etc.) and the 

chemical properties of the surface, along with the illumination condition (Clark, 1999; Clark and 

Roush, 1984; Hapke, 1993; Mustard and Sunshine, 1999; Roy et al., 2009). As a result, the prediction 

of an appropriate function for the continuum is not a straightforward task. 
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In the empirical way of continuum removal (CR), a convex hull is fitted over the top of the 

spectrum using straight (tangent) line segments, linking the reflectance maxima and bridging over all 

absorption features. Next, the original spectrum is divided by this continuum to produce a 

continuum-removed or hull quotient spectra (Clark and Roush, 1984; Kruse et al., 1993b). 

Nevertheless, there are several disadvantages around this method: (i) it can be problematic at the 

endpoints and where the absorption bands are subtle, (ii) it may suppress the broad absorption 

bands associated with electronic processes in the VNIR range, and (iii) the results may not be similar 

and comparable (Pontual et al., 2008b; Roy et al., 2009). The modified variant of this routine 

calculates a linear “local hull” to reach more appropriate results (Clark et al., 2003). 

The original version of the modified Gaussian model technique uses a straight line as a continuum 

in logarithmic reflectance ordinate (section 3-1-4). This representation of the continuum has been 

adapted for HSI and is shown to outperform the empirical approach (Combe et al., 2006), while 

remaining immune against grain size effects (Sunshine and Pieters, 1993). To give more flexibility to 

the continuum, the second order polynomial in wavelength space, the Gaussian low-pass filter, and 

the low-frequency cubic spline are also suggested (Berman et al., 1999; Clenet et al., 2013; Roy et al., 

2009). The Gaussian filter divides each pixel spectrum by its trend curve to reach a normalized 

reflectance without the need to model the entire spectrum (Roy et al., 2009). On the other hand, the 

spline approach implements simultaneously the fitting and the mineral identification (Berman et al., 

1999). Due to the important role that continuum plays in spectral analysis, its modeling is the subject 

of active research. 

3.3.1.2.2. Absorption detection 

Traditionally, absorption detection has been implemented manually, but now there are a number 

of algorithms to automate this process. A common routine is to search directly for the local spectral 

minima using the continuum-removed spectra (Clénet et al., 2011; Kruse et al., 1993b); however, 

since an absorption corresponds to an inflection in the spectrum, DA can be a choice for its 

detection. The absorption occurs where the fifth derivative of a spectrum equals zero, the fourth 

derivative has a positive sign, and the second derivative is negative (Brown, 2006; Huguenin and 

Jones, 1986). In the scale-space representation of the spectrum, inflection points seem to remain 

stable at different scales, therefore methods like spectral fingerprints (SFP) can robustly recover 

them (Piech and Piech, 1990; Piech and R., 1987). The SFP applies a convolution with a Gaussian 

kernel (with incremental variance) to achieve the scale-space representation, and the first-order 

derivative to identify the points themselves. The maximum modulus wavelet transform (MMWT) is 

the generalized form of SFP that instead makes use of second-order derivative in wavelet domain 

(Hsu, 2003). Other detection methodologies worth mentioning are local boundary hunting and 

unimodal segmentation (van der Meer, 1994; Zhouyu et al., 2007). The continuum removal and 

absorption detections are prerequisites to absorption quantification. 

3.3.1.2.3. Absorption quantification 

There are correlations between spectral feature characteristics (wavelength position, shape, and 

asymmetry) of absorption bands and the mineralogic content of a target. The wavelength is related 

to the chemistry of a mineral, whereas the intensity (depth) of the feature is proportional to the 

abundance of the compound (Clark and Roush, 1984; Duke, 1994; Hunt, 1979). Typically, the 

http://en.wikipedia.org/wiki/Ordinate
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abundance of a material is quantified by calculating the depth of its diagnostic absorption feature 

relative to the continuum background (Clark and Roush, 1984; Cudahy et al., 2008; Sunshine and 

Pieters, 1993). However, there are several drawbacks to the continuum band-depth (CBD) technique 

for abundance estimation: (i) the depth of an absorption is more or less proportional to particle size 

and amount of opaque materials (Clark, 1999; Gaffey et al., 1993), (ii) the parameter may become 

saturated for certain minerals (Pompilio et al., 2009; Pontual et al., 2008a), (iii) it may behave 

nonlinearly in relation to areal/weight percentage due to intimate mixing (Dalton et al., 2004; 

Shipman and Adams, 1987; Thompson et al., 1999), and (iv) it is likely for the absorption bands to 

overlap each other (Cudahy et al., 2008). Even so, the CBD is still the most accepted spectroscopic-

based method for abundance quantification (Fig. 3o, 3p) (e.g. (Haest et al., 2012)). Recently there 

have been attempts to boost this criterion. For example, a regression model named vegetation 

corrected continuum depth (VCCD) is designed to compensate for the obscuring effect of vegetation 

on the 2.2 µm band depth of the Al-OH absorbing species (Rodger and Cudahy, 2009). 

The “asymmetry” of an absorption is defined by the wavelength difference between a minimum 

and its two shoulders (van der Meer, 2004), or by the difference in the area of the two halves, 

whereas the “width” is typically measured as the full-width at half-maximum (FWHM) (Clénet et al., 

2011; Kruse et al., 1993b) (Fig. 3q, 3r). To track the shifts in wavelength position that are associated 

with compositional variation, the linear approximation is proposed and is shown to give a very rough 

estimate of the parameter (van der Meer, 2004), while fitted polynomial (FP) of higher orders is 

shown to achieve more accurate results. For instance, a fitted 4th order polynomial is used to model 

and map the level of Tschermak substitution in white micas (Cudahy et al., 2008). For broader 

absorptions like iron oxides, however, a 2nd order polynomial has been utilized (Cudahy and 

Ramanaidou, 1997) (Fig. 3s). Whereas the polynomial is commonly fitted to entire absorption, within 

a method called quadratic fitting (QF), three spectral bands are used to achieve the estimation 

(Rodger et al., 2012). The derivative of the fitted polynomial is then used to derive the wavelength 

information. 

A more general form of FP is called curve fitting (CF), within which a curve of a specific type is 

fitted to the absorption (normally after CR), to facilitate the extraction of noted information. For 

example, absorption bands are modeled using the amplitude (α), a central frequency (ν0), and full-

width at half-maximum (δ) of Gaussian, Lorentzian, or Voight functions. In order to achieve a greater 

number of measurement points however, a cubic spline fit can be used to interpolate the 

hyperspectral data (Brown, 2006) (Fig. 6b). 

The CBD image in Fig.3, which is calculated after the continuum removal, has sharp boundaries for 

both compounds and portrays the relative content of the targets well (Fig. 3o). The asymmetry of the 

2200 nm feature yields averages results. Over the white, montmorillonitic patches exclusively, the 

feature is almost symmetrical, but where the clay is mixed with bitumen, it is more asymmetrical 

(Fig. 3q). The minimum of the same feature calculated by the FP method varies between 2206 -2211 

nm, with the higher wavelengths being related to isolated patches of pure montmorillonite. The total 

area of the 1700 nm absorption (Fig. 3r) is correlated to the abundance of bitumen, however, it is 

better describing the limits of the high bituminous parts of the rock (Fig. 3g). 
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3.3.1.3. Expert systems 

The objective of expert systems (ES) is to automate the process of mineral identification by 

gathering together the spectroscopic knowledge and feature mapping procedures (Clark et al., 2003; 

Kruse et al., 1993b). In the case of the logical operator (LO), several BRs or RBDs are combined to 

attain a type of binary hard classifier. Although the LO was developed for the analysis of both multi-, 

and hyperspectral datasets (Brown, 2010; Mars and Rowan, 2006), transferable thresholds appear to 

be elusive. A similar solution may come from the knowledge-based decision tree (DT) partitioning 

techniques (Fig. 3t) (Friedl and Brodley, 1997; Tso and Mather, 2009), but again it suffers from the 

same problem. Other systems try to mimic human experts by extracting and measuring the noted 

spectral parameters, and then devising (hard) rules for mineral identification (Cudahy et al., 2008; 

Kruse and Lefkoff, 1993; Kruse et al., 1993b) (see also section 5). 

3.3.1.4. Spectral deconvolution 

Unlike the CF, spectral deconvolution techniques strive to deconvolve the whole spectrum into 

the three noted components (Maddams, 1980). The Modified Gaussian model (MGM) is a 

(parametric) spectral deconvolution method for modeling the electronic transition bands of 

reflectance spectra (Sunshine et al., 1990). MGM assumes that bond length, and the distribution of 

absorbing energies are random variables (Huguenin and Jones, 1986; Sunshine et al., 1990), hence 

their absorbing bands can be described by a Gaussian distribution (Huguenin and Jones, 1986; 

Sunshine et al., 1990). The MGM states that for a given absorption, there is a distribution in energy 

(x) with a standard deviation (δ), mean (µ), and amplitude (s). This is given by equation (1): 

𝑚(𝑥) = 𝑠 × 𝑒
−(𝑥−1−µ−1)

2

2𝛿2      (1)  

where m (x) is the modified Gaussian expressed as a function of energy. To establish an additive 

linear system, the reflectance data are first converted to natural log reflectance. The initial conditions 

for each band (position, width, strength) and the continuum are provided manually, and then a 

nonlinear least-squares algorithm is used to determine the MGM solution to the spectra in an 

iterative way (Sunshine et al., 1990). According to this model, absorption bands are essentially 

symmetric and any apparent asymmetry is caused by hidden overlapping bands (Brown, 2006; 

Sunshine and Pieters, 1993). 

MGM deconvolution has been successfully applied in the lab to extract modal abundances and 

compositional information from charge transfer absorptions bands in the VNIR, in both linear and 

intimate mixing scenarios, as well as overtone and combination of OH absorption bands in the SWIR 

range (Mustard, 1992; Sunshine and Pieters, 1993). Recently, the original MGM has been modified to 

automatically handle large amounts of hyperspectral datasets (Clénet et al., 2011), and then is 

implemented to characterize the modal and chemical composition of a priori unknown mafic 

mineralogy on Earth and Mars (Clenet et al., 2013). 

A recent variant of the MGM is called exponential Gaussian optimization (EGO), which is designed 

to account for the non-Gaussian behavior of the absorption features, and alike the MGM, it 

decomposes a spectrum into several EGO models superimposed on a continuum. The technique is 

shown to be able to model band asymmetry and flattening due to saturation effect and nested bands 

(Pompilio et al., 2010; Pompilio et al., 2009). 
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3.3.1.5. Wavelet analysis 

MGM deconvolution and all the other processing methods are implemented in signal (spectral) 

domain, but there are methods specific to the wavelet or frequency domain as well. Wavelet analysis 

(WA) has been attractive to hyperspectral data processing, because the signal is varying in both 

amplitudes (feature depth), and scale (feature width) (Bruce and Jiang, 2001). The WA decomposes a 

spectrum into a series of shifted and scaled versions of the mother wavelet function as either 

continuous wavelet transforms (CWT), or discrete wavelet transforms (DWT) (Bruce et al., 2001). The 

CWT aims to deconvolve the spectrum into linearly additive wavelets, enabling the isolation of 

spectral features from their continuum over a broad spectral region. In such a representation, 

narrow absorption features in the original spectrum are captured by the low-scale wavelet 

component, while the continuum is associated with the higher scale components (Rivard et al., 

2008). The lower components are chiefly used to map chemical variations associated with given 

minerals (Rivard et al., 2008) (Fig. 6). 

In the frequency domain, Fourier self-deconvolution (FSD) is used to narrow the width of 

absorbance bands, without affecting the corresponding position, or its total area (Kauppinen et al., 

1981). In this method, the spectrum is Fourier transformed to the frequency domain, multiplied by 

an exponential function, and then is transformed back to the spectral domain. The result is a 

mathematically enhanced spectrum with more distinct absorptions in the overlapping wavelengths 

(Griffiths and de Haseth, 2007). Clearly, FSD is an enhancement technique; nonetheless, it has been 

rarely used with reflectance spectra. 

3.3.1.6. Scattering theory 

Scattering theory utilizes a radiative transfer equation to describe the scattering behavior of light 

from particulate media (Hapke, 1993). An approximate analytic solution to this equation is provided 

by what is called scattering theories. The most popular of them are Hapke (Hapke, 1981), iso-grain (a 

derivative of the first) (Hiroi and Pieters, 1992), and Shkuratov scattering theories (Shkuratov et al., 

1999). These models are able to give an accurate estimate of abundance and grain size in the case of 

the powdered surface. Both theories have proven to be effective in laboratory and field testing on 

deriving abundance as well as grain size information to within 5-10% accuracy (Mustard and Pieters, 

1989; Poulet and Erard, 2004; Shipman and Adams, 1987). Even so, they are notoriously complex and 

require extensive empirical data to perform, which makes them notably unpopular (e.g. (Bioucas-

Dias et al., 2012; Cloutis, 1996; Keshava and Mustard, 2002)). An alternative strategy has been the 

simpler, but physics-inspired nonlinear models (section 3-2-7). 

3.3.2. Data-driven approach 

Data-driven methods illustrate an alternative spectral analysis approach in which only the 

hyperspectral data themselves and some additional reference data (spectra) are required. Based on 

the algorithm involved, reference data are commonly called training classes, or endmember sets (e.g. 

(Chang, 2007; Richards and Jia, 2006)), each comprised of a single or multiple spectra (Boardman, 

1989; Winter and Winter, 2000) (Fig. 4). The endmembers may be imported to the image (e.g. from a 

spectral library), or derived from it. The latter has distinct advantages, and therefore is mostly 

preferred and practiced (Chang, 2013). 
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Fig. 2. Examples of mineralogic products of the oil-sand sample extracted from the sisuCHEMA-SWIR hypercube dataset using the 

knowledge-based approach. a) false color composite of the cube (RGB=bands at R1174, R1801, and R2425). b) BR of the left shoulder of the 

2200 nm absorption using R2170/ R2207. c) BR of the right shoulder of the 1700nm absorption using ∑ 𝑅1783−1801/ ∑ 𝑅1720−1739. d) BR 

of the left shoulder of the 2300 nm absorption using R2282/ R2307. e) BR of lethe ft shoulder of the 2350 nm absorption using R2331/ R2350. f) 

BR of the right shoulder of the 2350 nm absorption using R2375/ R2350. g) RBD of the 1700 nm absorption using ∑ R1657−1664 +

∑ R1789−1795 / ∑ 𝑅1720−1739. h) RBD of the 2200 nm absorption using R2170 + R2251/R2207 + R2213. i) RBD of the 2300 nm absorption 

using R2282+R2331/R2307+R2313. j) RBD of the 2350 nm absorption using R2331+R2375/R2350. k) Inverse of PC2 of the 2200 nm absorption 

using PCA of bands between R2145 –R2244. l) PC1 of the 2300 nm absorption using PCA of bands between R2282 – R2331. m) LS-Fit of the 

1700nm absorption used with bands between R1776 – R1795, predicting R1726. n) LS-Fit of the 2200nm absorption used with bands between 

R2170 – R2188, predicting R2213. o) Relative abundance of bitumen calculated by CBD of the 2300nm absorption. p) Relative abundance of 

montmorillonite calculated by CBD of the 2200nm absorption. q) Relative asymmetry of the 2200nm absorption calculated using the area 

to the left-, and right-side of the absorption minimum between 2151-2238 nm (blue: almost symmetrical, red: asymmetrical). r) Total area 

of the 1700 nm absorption calculated using the 2nd order FP between 1657-1789 nm. s) Montmorillonite composition calculated using the 

4th order FP between 2151-2244 nm (blue: 2206 nm, red: 2211 nm). t) DT-based classification using a combination of knowledge-based 

techniques and interactive thresholding (green: bitumen, red: montmorillonite). The thresholds vary for each product, but for 

montmorillonite-related products is between 85%-99.4%, and for bitumen between 60-99.4%. The absorption features are defined in Fig. 

1b. 

We have divided the sheer number of data-driven processing methods into two broad categories 

named “per-pixel” and “sub-pixel” (Chang, 2003; Lu and Weng, 2007; Tso and Mather, 2009) (Fig. 2). 

The per-pixel category, which is also called a hard classifier, compares each reference spectra to 
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unknown pixels one by one, based on criteria like similarity metric, image statistics, or least-square 

estimation. By contrast, in the sub-pixel category, or soft classifier, multiple and variable labels at 

each pixel is permissible (Keshava and Mustard, 2002; Schowengerdt, 2007). The mixture-based 

group may be further divided into two main sub-groups, known as partial and full unmixing. The 

following section provides a description of the methods available to each group. 

 

Fig. 4. The two endmembers used with the data-driven approach. Montmorillonite was automatically extracted from the imagery (using the 

sequential maximum angle convex cone (SMACC) tool embedded in the ENVI (Environment for visualizing images) software from Exelis 

Visual Information Solutions, Boulder, Colorado), whereas bitumen was defined manually based on the knowledge-based results, and then 

nonlinearly tuned to reduce the widespread mixing effect of montmorillonite. a) Normal representation, b) The continuum removed and 

stacked of (a). 

3.3.2.1. Similarity-based group 

The spectral similarity (or matching) techniques strive to find a measure of mathematical or 

physical similarity between a known reference spectrum, x, and an unknown test (target) spectrum, 

y (van der Meer, 2006a). The binary encoding (BE) technique encodes the test and reference spectra 

into 0 and 1, based on the mean of the spectrum, and then uses an exclusive OR function to measure 

their similarity (Mazer et al., 1988). The reference and test spectrum can also be compared however, 

based on the “angle” or the “distance” between them in n-dimensional space. The spectral angle 

mapper (SAM) technique assesses the spectral angle between x and y by applying a dot product 

multiplication between them (Kruse et al., 1993a) (Fig. 5a). The Euclidean distance (ED), on the other 

hand, measures the distance of x and y in n-dimensional space (Richards and Jia, 2006) (Fig. 5b). It 

has been shown that SAM is essentially the ED when the spectral angle is small (Du et al., 2004; van 

der Meer, 2006a). The normalized Euclidean distance (NED) works in the same manner as the ED, but 

it normalizes the vectors first, causing the values to range between 0 and 1 (Keshava, 2004; Robila 

and Gershman, 2005) (Fig. 5c). Spectral distance (SD) is another measure in this family that is very 

similar to NED, except that the calculation is carried out in natural logarithm reflectance, and the x 

and y are continuum removed beforehand (Combe et al., 2005). 

To enhance the precision of SAM, two new variants called RAF-SAM (Wang et al., 2009) and BAO-

SAM (Keshava, 2004) were proposed. The former represses the impact of an additive factor on the 

spectral angle value in the feature space, while the latter attempts to iteratively increase the angular 

separability between x and y by selecting the optimum bands. Another variation is the Spectral 

https://en.wikipedia.org/wiki/Exelis_Visual_Information_Solutions
https://en.wikipedia.org/wiki/Exelis_Visual_Information_Solutions
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Gradient Angle (SGA), which calculates gradient or slope changes for x and y. Some experiments, 

however, have shown no superiority of SGA over SAM (Robila and Gershman, 2005). 

SAM is regarded as a variant of the more general Pearson correlation coefficient, and based on 

that, the spectral correlation mapper (SCM) method was introduced (Carvalho Junior and Menezes, 

2000). The SCM has distinct advantages in providing a direct measure of the similarity between the 

shapes of two spectra and has the ability to detect false positive results. The major difference 

between SAM and SCM is that SCM standardizes the data, centralizing the cloud in the mean of x and 

y; therefore the results inevitably range between -1 to 1 (Carvalho Junior and Menezes, 2000) (Fig. 

5d). Cross-correlogram spectral matching (CCSM) is another similarity measure based on correlation 

(van der Meer and Bakker, 1997). Here, a cross correlogram is constructed by calculating the cross 

correlation coefficient between x and y at different match positions, m, by shifting the x spectrum. 

The cross correlogram for a perfectly matching reference and test spectrum is a parabola around the 

central matching number (m=0) with a peak correlation of 1. Deviations from this shape indicate a 

different test spectrum (van der Meer and Bakker, 1997). 

The other similarity technique is spectral information divergence (SID) that calculates the distance 

between the probability distributions produced by the spectral signatures of the two spectra (x and 

y) using the means of Kullback-Leibler information measure (Du et al., 2004) (Fig. 5e). In this 

measure, spectral variations among the spectral bands can be captured more effectively in a 

stochastic manner [32]. 

There are other similarity algorithms in which two measures are combined to generate a hybrid 

method inheriting the benefits of both sides. The spectral similarity mapper (SSM) calculates two 

numbers for each pixel; the first is the Euclidean distance between the x and y and the second is a 

correlation value, which respectively gives a measure of brightness difference and similarity in shape 

between x and y (Granahan and Sweet, 2001; www.exelisvis.com/ProductServices/ENVI.aspx): 

𝑆𝑆𝑀 (𝒙, 𝒚) =  √𝑑𝑒
2 +  𝑟̂2     , 𝑟̂ =1-r2  (2)  

where de is the ED and r2 is the correlation coefficient between the target and reference 

spectrum. The spectral similarity value will range between 0 and √2 (Granahan and Sweet, 2001) 

(Fig. 5f). In a similar way, the SID and SAM are combined by trigonometric functions into mixed 

measures (Du et al., 2004) (Fig. 5g). 

In the case study, shown in Fig.5, the performance of similarity metrics considering most methods 

is very close. The ED has lower performance in delineating the boundary of montmorillonite and 

bitumen (Fig. 5b), whereas the SID ×sin (SAM) shows better results in describing the boundaries of 

the target, specifically for bitumen (Fig. 5g).    

The significance of similarity measures to search out the spectral libraries or to analyze multi-, and 

hyperspectral images have led to several comparative studies. Van der Meer (van der Meer, 2006a) 

compared the performance of deterministic-empirical measures (SAM, ED, and CCSM) relative to the 

stochastic measure (SID), and concluded that: (i) SID outperforms other techniques, (ii) CCSM better 

exploits the overall shape of the spectrum, (iii) SAM and ED give nearly similar results, and (iv) CCSM 

is more sensitive to noise. The major problem associated with similarity measures, however, is their 

inability to deal with mixed spectra as well as subjective thresholding. 
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3.3.2.2. Least squares-based group 

Least squares regression techniques aim to model dependent variables by the means of an 

independent variable (Esbensen, 2006). Spectral feature fitting (SFF) is a feature-based methodology 

that uses linear least square regression to work out a fit between a continuum removed reference (x) 

and test (y) spectra (Clark et al., 1990). The fit (matching) between absorption features comprised in 

y and x is provided by the total root mean square (RMS) error of the regression and the coefficient of 

determination (R2). This method is able to use single or multiple features over a spectrum, and 

accepts user-defined constraints (Clark et al., 1990; Clark et al., 2003; Xu et al., 2011) (Fig. 5h). In 

practice, SFF uses the user knowledge of the features and CR procedure to do the regression; hence, 

it can be considered a hybrid method (section 5) as well. 

Partial least square regression (PLSR) is another technique of this family that is now gaining 

popularity in spectral analysis. The PLSR, which inherits features from principal component analysis 

and multiple regression, establishes a linear regression model to concentrate information contained 

in the spectra in a few latent variables that are optimized to produce the best correlation with the 

desired property of interest (Esbensen, 2006). PLSR is mostly used to relate spectral data to other 

non-spectral variables. For example, it is utilized to build a predictive mineral model from VNIR-SWIR 

spectra, or to compare LWIR spectra with X-ray diffraction (XRD) results, as well as thin section 

studies (Cudahy et al., 2001; Goetz et al., 2009; Hecker et al., 2012). 

3.3.2.3. Training-based group 

Traditional training-based classifiers aim to cluster the imagery by comparing the test spectrum 

with the training classes using a statistical criterion (Landgrebe, 2003; Tso and Mather, 2009). The 

minimum distance (MD) classifier takes into account the Euclidean distances, whereas the maximum 

likelihood (ML) classifier calculates a probability distance using the mean and covariance matrices of 

the clusters. The Mahalanobis distance (MHD) classifier, on the other hand, is direction-sensitive, but 

assumes an equal covariance for all classes (Landgrebe, 2003; Richards and Jia, 2006; Schowengerdt, 

2007; Tso and Mather, 2009). While these algorithms are helpful for land-cover classification, 

generally they are found to be inefficient at the practice of lithology discrimination on both multi- 

and hyperspectral datasets (Agar and Coulter, 2007; Mustard and Sunshine, 1999; Sabine, 1999). 

3.3.2.4. Learning-based group 

Different studies show the considerable advantages of artificial neural networks (ANN) over 

conventional training-based methods (Licciardi and Del Frate, 2011; Mas and Flores, 2007; Richards 

and Jia, 2006). ANN has the ability to learn the relationship between a set of example patterns, 

generalize and combine the results, and then apply it to new input patterns (Mas and Flores, 2007; 

Yang, 1999). ANN is free of distribution assumptions, is capable to generalize even in noisy 

environments, and works rapidly once it is trained (Foody et al., 1997; Licciardi and Del Frate, 2011). 

A variety of ANN, including back-propagation neural network (BPN) and self-organizing maps (SOMs) 

are shown to be good supervised (hard) classifiers for HSI datasets (Mas and Flores, 2007; Villmann 

et al., 2003; Yang, 1999) (Fig. 5i). On the other hand, it is possible to train the ANN with endmembers 

or with mixed pixels and derive abundance maps in both linear and nonlinear mixing scenarios 

(Foody et al., 1997; Licciardi and Del Frate, 2011). In linear scenarios, multilayer perceptron (MLP) 

models are used for feature reduction, as well as abundance estimation (Licciardi and Del Frate, 
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2011). In nonlinear scenarios, ANN has been used, for example, to estimate the SiO2 content of 

igneous rocks (Ninomiya, 1995). A thorough review of ANN for the analysis of remotely sensed data 

is provided by Mas & Flores (Mas and Flores, 2007). 

Support Vector Machines (SVM) draws on statistical learning theory for pattern recognition 

(Vapnik, 1998). This non-parametric approach is based on constructing a separating hyperplane (or 

decision boundary) within an n-dimensional feature space using the properties of training samples. 

The so-called structural risk minimization is used to iteratively optimize the margins between the 

hyperplane and the closest training samples, known as support vectors (Vapnik, 1998). The classifier 

only requires this small subset at class boundary for classification, even with the case of high 

dimensional datasets (Melgani and Bruzzone, 2004; Tso and Mather, 2009). In geologic remote 

sensing, the SVM is mostly utilized in lithology classification and occasionally in mineral detection and 

ore discrimination (Cracknell and Reading, 2014; Gilmore et al., 2008; Monteiro et al., 2009; Waske 

et al., 2009) (Fig. 5j). The state-of-the-art and diverse applications of SVM in data mining are 

reviewed by Mountrakis et al. and many others (Camps-Valls and Bruzzone, 2009; Lu and Weng, 

2007; Mountrakis et al., 2011; Plaza et al., 2009). Typically the prime issue around SVM and ANN is 

reported to be parameter assignment (Lu and Weng, 2007). 

Another non-parametric technique to be noted is the decision tree (DT), which hierarchically 

subdivides the dataset based on a set of tests defined at each of its branches. While univariate DT is 

shown to outperform the ML classifier or yield comparable results (Friedl and Brodley, 1997; Pal and 

Mather, 2003), its recent variant is known as Random Forests (RF) – logic-based learner, has been 

shown to be a superior choice for lithology classification when compared to SVM and ANN (Cracknell 

and Reading, 2014). 

Where applied to the case study, SVM displays better performance relative to ANN (Fig. 5i, 5j); 

however, they cannot outperform the results produced by the DT based on user-provided thresholds 

(Fig. 3t). 

Fuzzy logic classifier (FLC) accommodates multiple class membership for each pixel considering 

fuzzy rules (Bardossy and Samaniego, 2002; Lu and Weng, 2007; Wang, 1990). The hindrance of the 

method however, is to find the correct rules and to select the relevant features. The sub-pixel niche 

that FLC belongs to has been mostly filled by unmixing methodologies (section 3-2-7). 

3.3.2.5. Geostatistics-based group 

Indicator kriging (IK) has been proposed as an efficient geostatistical technique for image 

classification and extraction of absorption features for mineral mapping. The IK is a non-parametric 

method in which variables are transformed into (0, 1) depending on the presence or absence of a 

feature of interest, or whether a threshold is exceeded or not. It directly benefits from spectral 

information in a supervised manner and has the capability of dealing with spatial information (van 

der Meer, 1994, 1996, 2006b). Although areas smaller than a pixel can be estimated, the probability 

distributions of ordinary kriging was integrated with Bayesian statistics to yield a hard classifier (van 

der Meer, 2006b). The IK was as well used by Chiang (Jie-Lun et al., 2014) to estimate the class 

probabilities in feature space instead of image space. Individual pixels were then assigned to classes 

using the maximum class probability. It has been shown that this linear hard classifier can 

outperform nonlinear SVM method (Jie-Lun et al., 2014). 
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3.3.2.6. Partial unmixing group 

In many applications, it is not essential to fully decipher the content of a pixel. Instead the aim is 

to isolate spectral features of interest from the background (Ahlberg and Renhorn, 2004). In this 

case, the problem is reduced to the detection of spectral signatures that match the known target 

(Camps-Valls et al., 2012; Chang, 2003; Manolakis et al., 2003; Mustard and Sunshine, 1999; Schott, 

2006). Target detection algorithms vary from matched filtering (MF) (Boardman et al., 1995), 

constrained energy minimization (CEM) (Chang et al., 2000), orthogonal subspace projection (OSP) 

(Harsanyi and Chein, 1994), and adaptive coherence estimator (ACE)(Kraut et al., 2005), to target-

constrained interference-minimized filter (TCIMF)(Ren and Chang, 2000), and mixture tuned matched 

filtering (MTMF) (Boardman and Kruse, 2011) (Fig. 2). An exhaustive list of target detectors is 

provided by (Chang, 2003) and (Manolakis et al., 2003). They are compared theoretically and 

practically in (Manolakis and Shaw, 2002). 

In the OSP detector, the subspace of the background basis functions is removed from the 

analyzed pixel, leaving only the part related to the known endmember (Harsanyi and Chein, 1994) 

(Fig. 5k). In MF, the response of the target signature is maximized and the response of the 

background subspace is minimized by a likelihood ratio, thus matching the signature (Boardman et 

al., 1995) (Fig. 5l). The CEM utilizes a finite impulse response filter to pass through the target 

signature, while minimizing its output energy resulting from the composite background (Chang et al., 

2000) (Fig. 5m). Mathematically though, the MF is a mean-centered version of the CEM (Chang, 

2003). The TCIMF can be viewed as the extension of CEM, where the filter not only detects the 

desired target and eliminates the background, but also is constrained to exclude the response of 

non-targets (Ren and Chang, 2000) (Fig. 5n). The ACE detector is based on the generalized likelihood 

ratio and thus is invariant to relative scaling of the test data (Kraut et al., 2005) (Fig. 5o). In the 

MTMF, beside the MF, an “infeasibility” image is also calculated for each target signature and then 

the predominant material and its abundance is determined using the combined criteria of high MF 

and low Infeasibility scores (Boardman and Kruse, 2011). 

In essence, these detectors carry out a partial unmixing and their output is a single score 

(abundance of the target) per pixel, which bear some resemblance to similarity measures. These 

methods are not yet comparatively studied for geologic applications. However, based on the current 

case study, it seems they yield acceptable results for the smaller bright target (Fig. 5k, 5m, 5n), with 

the exception of the MF and the ACE. These methods are only able to detect the strongest signals 

(Fig. 5i, 5o); but for the pervasive darker signal, they yield poor results. For example, MF and ACE 

failed to detect the signal altogether (Fig. 5i΄, 5o΄), while the CEM has confusion in discriminating 

between the targets (Fig. 5m΄). The performance of these detectors is found to broadly improve 

using clustering or feature extraction techniques (e.g. (Funk et al., 2001)). 

3.3.2.7. Full unmixing group 

Full unmixing attempts to linearly (or nonlinearly) decompose the pixel spectrum into a collection 

of deterministic constituent spectra (endmembers) and to estimate their corresponding abundances 

(Adams et al., 1986; Smith et al., 1990). A linear mixture model (LMM) is valid where the mixing is 

from a checkerboard mixture of macroscopic scale and the incident light interacts with just one 

material, whereas multiple scattering between the light and materials of the scene results in 

nonlinear mixing (Hapke, 1993; Keshava and Mustard, 2002). The simplicity of the LMM has given 
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rise to many algorithmical developments in this era as are reflected in the relevant review papers 

(Bioucas-Dias et al., 2012; Keshava and Mustard, 2002). Spectral unmixing typically consists of three 

major steps: (i) searching for the number and the best endmember set to represent the entire scene 

variation; (ii) finding the best endmember subset that firmly accounts for the spectral variation in a 

pixel; and (iii) estimating the accurate abundances of each endmember within the pixel. 

The first step is called endmember extraction (EE), and the last two are optimization and inversion 

steps which are performed simultaneously. Because the type and the number of endmembers has a 

profound effect on unmixing results, EE has been the focus of many studies leading to numerous 

algorithmic developments (e.g. N-FINDER (Winter and Winter, 2000)). A fair review of the 

advancements on this field is provided in (Chang, 2013) and the performance of the algorithms are 

compared in (Camps-Valls et al., 2012; Plaza et al., 2004; Winter and Winter, 2000). Despite this 

intense diversification, there is still no guarantee for the extraction of desired geological 

endmembers in a given scene (Rivard et al., 2009). One solution has been the partitioning of the 

input dataset (García‐Haro et al., 2005; Zare and Gader, 2010) or the inclusion of spatial 

preprocessing (Zortea and Plaza, 2009), while the other inevitable key has been the supervised 

sample/spectral collection (Rivard et al., 2009). For an image scene, apart from the type, the number 

of endmembers are largely unknown a priori. Traditionally, minimum noise fraction (MNF)(Green et 

al., 1988) has been used to estimate the inherent dimensionality (ID) of the data, and recently a rich 

variety of concepts including the virtual dimensionality (VD) are offered to fulfil this requirement 

(Chein and Qian, 2004). 

When endmembers are identified, the problem reduces to model inversion. In linear spectral 

unmixing (LSU), the unconstrained or constrained least-squared inversion, singular value 

decomposition etc. are used to solve the inversion problem (Boardman, 1989) (Fig. 5p). In addition, 

there are techniques like independent component analysis (ICA) (Comon, 1994; Nascimento and 

Bioucas Dias, 2005), SVM (Camps-Valls and Bruzzone, 2009), ANN (Licciardi and Del Frate, 2011), 

Bayesian model (BM) (Dobigeon et al., 2008), and genetic algorithm (GA)(Farzam et al., 2008) which 

are specifically adapted for linear unmixing process. Such unmixing has been performed on wavelet-

transformed spectra as well (Mitchley et al., 2009). 

Spectral unmixing may end up giving unrealistic results, because the selected endmembers might 

not account for the spectral variability present in a scene/pixel (Manolakis et al., 2003). The so-called 

iterative unmixing algorithms, including multiple endmember spectral mixture analysis (MESMA) 

(Roberts et al., 1998), iterative spectral unmixing (ISU) (van der Meer, 1999), iterative spectral 

mixture analysis (ISMA) (Rogge et al., 2006), multiple-endmember linear spectral unmixing model 

(MELSUM) (Combe et al., 2008), and endmember bundles (EB) (Bateson et al., 2000) have been 

developed to account for pixel-scale variability of endmember types and numbers (step ii). A recent 

algorithm of this kind is simulated annealing (SA) (Debba et al., 2006), which involves normalizing a 

random combination of initial endmember vectors and calculating the Euclidian distance between 

them and the target vector in an iterated way (Debba et al., 2006; Penn, 2002). The endmember 

variability topic is fully reviewed in (Somers et al., 2011). Classically, the optimization criteria in 

iterative (and fixed) algorithms have been the RMS error minimization (Roberts et al., 1998), decline 

in the rate of RMS (Rogge et al., 2006), anisotropy of RMS (van der Meer, 1999), or Χ2 residual 

(Combe et al., 2008).  
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Although the iterative unmixing techniques attempt to give a reliable estimate of the contributing 

materials to a pixel’s spectrum, the accuracy of the estimated abundances under linear assumption 

may not be assured (Keshava and Mustard, 2002; Mustard and Sunshine, 1999). The common 

solution has been the incorporation of nonlinear unmixing models and methods (Dobigeon et al., 

2014; Keshava and Mustard, 2002). These family of algorithms benefit from nonlinear functions like 

neural networks, kernel methods, or machine learning approaches in their architecture (Camps-Valls 

and Bruzzone, 2009; Licciardi and Del Frate, 2011). However, such algorithms rely heavily on 

simplified assumptions, and largely overlook the physics of intimate mixing (section 3-1-6), and are 

rather complicated and difficult to implement. The details of important nonlinear unmixing methods, 

which are now rising in popularity, are given in (Bioucas-Dias et al., 2012; Camps-Valls and Bruzzone, 

2009; Dobigeon et al., 2014; Heylen et al., 2014). 

The inaccurate estimate of the abundance quantity could be circumvented by plugging a 

nonlinear inversion method (like those mentioned earlier (Camps-Valls et al., 2012)), or by including 

nonlinear regression into the end of the linear unmixing chain (Fig. 2). The bias in the estimation of 

the abundances is known to be induced by “camouflage” between mineral classes, and hence 

camouflage (CF) correction is proposed (Kuosmanen and Laitinen, 2008). The CF correction involves 

removing the bias from estimated abundances by a case dependent nonlinear polynomial function, 

helping to reach to a mean absolute residual error of around 1% for the case of mineral powders 

(Kuosmanen and Laitinen, 2008).  

The reflectance spectra in a pixel can be imported fully and directly into most of the data-driven 

methods. Nevertheless, sometimes it is beneficial, or crucial, to select or extract specific bands. A 

“Feature selection” function aims to reduce the data dimensionality, improve the processing, and 

maximize the output reliability. Procedures like BandMax 

(www.exelisvis.com/ProductServices/ENVI.aspx), information-theory-based optimal bans sets (Shen 

and Bassett, 2002), genetic algorithm and SVM (Li et al., 2011), neural networks (Licciardi and Del 

Frate, 2011), Fuzzy ROC curves (Mitchley et al., 2009), spectral screening (Robila, 2005), and stable 

zone unmixing (Somers et al., 2010) are specifically designed to serve this need. In contrast, “feature 

extraction” aims to create a feature subset, by transforming the data into an uncorrelated new space 

with lower dimensionality and improved signal-to-noise ratio (SNR). Principal component analysis 

(PCA (Jolliffe, 1986), minimum noise fraction (MNF) (Green et al., 1988), and independent 

component analysis (ICA) (Comon, 1994) are the widely used feature extraction techniques. 
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Fig. 5. Examples of mineralogic products of the oil-sand sample extracted from the sisuCHEMA-SWIR hypercube dataset using different 

techniques comprised of the data-driven approach and the twin endmembers shown in Fig. 4. a) SAM, b) ED, c) NED, d) SCM, e) SID, f) 

SSM, g) SID x sin (SAM), h) SFF in scale/RMS mode, i) ANN-based classification using hyperbolic activation (green: bitumen, red: 

montmorillonite), j) SVM-based classification using 2nd order polynomial kernel (green: bitumen, red: montmorillonite), k) OSP, l) MF, m) 
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CEM, n) TCIMF, o) ACE, p) LSU with sum to 1.0 constraint. The full spectra of the endmembers are used with all methods. In all cases the 

left figure belongs to montmorillonite and right to bitumen. The output scores or abundance images are all color coded. The target 

detectors are used without background estimation. The score or abundance thresholds used with color representation is typically between 

82-99% for montmorillonite and between 63-99% for bitumen. 

3.4. Comparative study of the approaches and their products 

The knowledge-based and data-driven approaches derive from different disciplines, with 

dissimilar assumption, procedures, and algorithmic architecture. Nonetheless, both aim to 

decompose a multi-, or hyperspectral signal into meaningful, quantitative or qualitative geologic 

information. Accordingly, it is possible to compare the similarities as well as the differences among 

them (table 1). 

The knowledge-based approach is physically-based and is derived from the concepts of 

spectroscopy. The techniques in this category can be used in a processing chain without the need for 

reference data. In contrast, the data-driven approach is mathematically-based and relies directly on 

reference data for information extraction. It treats each pixel as a n-dimensional vector (with “n” 

being the number of spectral bands) in feature space, and attempts to model the “whole scene” 

variation by a set of endmembers (Landgrebe, 2003). Since n is inter-correlated, the dataset should 

undergo a feature extraction process prior to the processing. On the other hand, the knowledge-

based approach strives to describe the variation observed in a “single spectrum” through absorption 

band modeling in spectral space, and as a preprocessing step, it only possibly demands the 

continuum to be removed. While the search for the endmembers (their numbers and types) in the 

data-driven approach is automated, the detection of absorptions (their numbers and positions) in the 

knowledge-based approach is largely manual and based on user knowledge (table 1); though 

recently, a number of automated algorithms have been proposed to serve this need (e.g. (Zhouyu et 

al., 2007)). 

Due to their structure, knowledge-based methods are sensitive to data type, meaning that their 

input has to be in reflectance/emittance unit (except for PCA), whereas data-driven methods can be 

conducted on both radiance and reflectance/emittance data (except for SFF). Because the 

knowledge-based methods merely rely upon spectral space, it is feasible to compile regional to 

continental-scale mineral maps on their basis (e.g. (Cudahy et al., 2008)). The only critical 

requirements are an accurate atmospheric correction and seamless mosaicking (e.g. (Gao et al., 

2009; Granahan and Sweet, 2001)). On the other hand, because data-driven methods are scene 

dependent (for either endmember selection or spectral mapping), the challenges posed for large-

scale applications are more difficult to transcend. The reliance of the former techniques upon 

spectral space, however, make them increasingly vulnerable to noise. Hence, a spectral smoothing 

step may be required to be incorporated into the process (section 3-1-1). In comparison, data-driven 

techniques are less sensitive to noise, but where needed, they can make use of spatial, spectral, or 

frequency-domain filters (Monteiro et al., 2009; Schott, 2006; Schowengerdt, 2007). 

Algorithms belonging to full unmixing and least square groups benefit from an embedded error 

metric. Training-, and learning-based classifiers use ground truth data for overall accuracy 

assessment (Tso and Mather, 2009). In contrast, knowledge-based methods completely lack such 

metrics (except for MGM and FP). Occasionally, however, the RMS error or R2  of the regression 
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performed for validation or calibration purposes can be used as an indirect error metric (e.g. (Swayze 

et al., 2014)). 

 

Table 1. A comparison between different aspects of the knowledge-based and data-driven approaches. 

Parameter 
Approach 

Knowledge-based Data-driven 

Domain Spectral space (spectral/absorption modeling) Feature space (scene modeling) 

Background theory 
Spectroscopy  
(physically-based) 

Statistical, geometrical, etc. 
(mathematically-based) 

Reference data Not required Required 

Input data 
Reflectance/emittance 
Rarely radiance 

Reflectance/emittance   
Radiance  

Applicability MSI (except for FP and MGM), HSI  HSI, MSI (except for SFF) 

Spectral band range Partial (2-10 bands) or full Full or partial 
Feature selection 
criteria 

Essential/manual 
Optional/ interactive, or 
automated 

Treatment with pixels Soft and hard Hard and soft 
Information unit Absorption Endmember/class 

Required preparation  Absorption detection (assignment) 
Endmember extraction/class 
definition 

Preprocessing/normal
ization 

CR and DA (over the spectrum) MNF, PCA, ICA (over the scene) 

Products 
Thematic map (occurrence), abundance image, 
composition, and crystallinity maps 

Thematic map, abundance 
image 

Main capability 
Discrimination, classification, identification, 
quantification 

Detection, classification, 
quantification 

Abundance metric Depth (area?) of absorption Fraction of endmember 
Abundance quantity Relative Absolute 

Algorithm type Mainly linear (except for physical models) Linear/nonlinear 

Sensitivity to noise Very sensitive Sensitive 
Noise suppression Spectral filters Spatial/spectral filters 

Error metric Not available (except for MGM and FP) RMS error/ confusion matrix 
Processing time  Short Long 

Pros and cons 

- Simple, easy to execute and available 
- Diverse products 
- Transferable between scales 
- Less robust (esp. with MSI data) 

- More mature and diverse 
- More robust 
- Complicated and time 
consuming 
- Unavailable 

The data-driven approach properly implements both soft and hard classifications and has 

distinctive algorithms for each task (Fig. 2). The major product of this approach is either a “thematic 

map” or an “abundance image” (Schott, 2006; Schowengerdt, 2007). The thematic map in geologic 

remote sensing includes a classified lithology/mineralogy map obtained chiefly from the statistics-

based group (Fig. 5). The abundance image, which represents the areal fraction of an endmember in 

a pixel, is obtained from mixture-based category (Keshava and Mustard, 2002). In contrast, the 

knowledge-based approach is in essence a soft classifier, because it pinpoints very specific spectral 

region(s) for identification and/or quantification (Fig. 3), hence raising the possibility for multiple 

mineral mapping using a single spectrum (e.g. (Cudahy et al., 2008)). Nevertheless, where the 

absorption bands are overlapping, the knowledge-based algorithms are inevitably switched to a hard 

classifier (the exception is MGM). Generally, the conversion of knowledge-based methods into a hard 

classifier is challenging, because every case needs its own threshold, which is not always available, 

nor universal (Mars and Rowan, 2006). The abundance image in this approach is achieved by 
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calculating the absorption band depth (Haest et al., 2012). From the perspective of outcomes, the 

knowledge-based approach is able to produce both abundance image and classified maps, but the 

latter is by no means comparable to the products of the data-driven approach. Although the data-

driven approach is able to account for endmember variability between pixels, individual 

endmembers are still treated as spectrally rigid quantities. Nevertheless, the majority of the geologic 

materials (rocks and minerals) are chemically and therefore spectrally variable. The knowledge-based 

approach accounts for this variability and provides two parametric maps known as “composition” 

and “crystallinity” that respectively are indicators of chemical variation and crystal order of the 

minerals (Clark et al., 1993; Clénet et al., 2011; Cudahy et al., 2008). 

The similarity-based methods (Fig. 2) are used to search for spectra of interest in an image data or 

within a spectral library. In contrast, knowledge-based methods (especially absorption modelers) are 

employed to search for a specific feature(s) in an image or in a suite of spectra. Their typical 

outcomes are discriminated alteration index or detected mineral index. Where the whole spectrum is 

involved, this approach (e.g. by an expert system) enables mineral (material) identification as well 

(Clark et al., 2003; Kruse et al., 1993b); a process that is not at all straightforward for data-driven 

methods. 

The majority of the algorithm noted so far may have emerged as VNIR-SWIR data processing 

tools, but they can handle LWIR data as well. A case in point is the application of BR (Feng et al., 

2006), least square (Feng et al., 2006), CR (Cudahy et al., 2009), FP (Cudahy et al., 2009), PLSR 

(Hecker, 2012), ANN (Ninomiya, 1995), LSU (Ramsey and Christensen, 1998), MF (Funk et al., 2001), 

MTMF (Kruse, 2015), MESMA (Funk et al., 2001), and WA (Feng et al., 2011) routines to radiance or 

emittance thermal datasets. 

In general terms, the data-driven approach is “deductive”, since it looks on the spectra as a whole 

to find out the contents of every pixel, while the knowledge-based approach is “inductive” by 

resolving the contents of an individual pixel to understand the whole. Overall, the knowledge-based 

approach has the advantages of being simple, straightforward, easily attributable to 

mineralogy/geochemistry needs, transferable between different scales and cases, and more 

importantly, available to all. Its major drawback is that it cannot handle overlapping/mixing 

absorption features, and is not robust enough, specifically with MSI data (Fig. 3). In comparison, the 

data-driven approach is more mature and robust, but is typically complicated; it demands more 

computing power, has fewer outcomes (Fig. 5), and is out of access for many users. An initial stage is 

needed to set the reference data, or train the algorithm, which makes the data-driven techniques 

more time consuming (table 1). The best solution for geological application however, may come from 

the hybridization of these approaches. 

3.5. Hybrid methods 

Given the strength and limitations of the individual spectral processing algorithms, it would be 

favorable to combine (crossbreed) multiple perspectives to yield advanced algorithms. In the very 

simple form, methods like PCA of ratios, derivative ratio, or ratio classification have been suggested 

(Fraser, 1991; Philpot, 1991; Rud et al., 2006). In addition, there are many examples of mathematical 

hybridization within similarity-based methods including SSM (Eq. 2), MF/SAM ratio, and SID-SAM 

techniques (Du et al., 2004; Granahan and Sweet, 2001; 
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www.exelisvis.com/ProductServices/ENVI.aspx). Likewise, the joint use of CR procedure to these 

similarity measures, in order to enhance their performance, can be deemed as a hybridization action. 

A case in point is the attachment of CR to SAM, CCSM, ED, and SID routines (Bue et al., 2010; Kruse et 

al., 1993a; van der Meer, 2000). The last uses a weighted combination of continuum intact (CI) and 

CR for the spectral measurement. The continuum-removed spectra are also used with MESMA 

approach and are shown to improve its classification performance (Youngentob et al., 2011). The SFF 

technique discussed in section 3-2-2 is in reality a hybrid method that combines user knowledge of 

the feature(s) and CR prior to the least-square fitting (Clark et al., 1990). 

CR is employed to level out or normalize the hyperspectral signal for cross-comparison (Clark and 

Roush, 1984); however owing to its quotient nature, its incorporation into unmixing procedure is 

believed to be problematic (Rivard et al., 2008). To scale up the endmembers during unmixing, some 

prefer to add in a shadow component (Keshava and Mustard, 2002), but this only cancels out the 

linear effect of illumination and cannot account for the continuum which in essence, is nonlinear 

(section 3-1-2-1). So far, only an unmixing-like routine called canonical variates analysis (CVA) has 

incorporated the CR procedure into its structure. The CVA simultaneously estimates both the 

continuum and the mineral abundances, and is reported to estimate the abundance of a mineral with 

15% average accuracy (Berman et al., 1999). Other spectral normalization procedures prior to 

unmixing are the division of  a (multispectral) spectra to its mean (called mean normalization) 

(Berman et al., 2004), standardization using the mean and standard deviation (García‐Haro et al., 

2005), and derivative unmixing (Zhang et al., 2004). Derivative spectral unmixing (DSU) is shown to 

quantitatively estimate the fraction of an endmember, in spite of having only a general knowledge of 

the spectral shapes of the remaining endmembers (Zhang et al., 2004). The derivative is also 

beneficial for estimation of abundances, or classification of spectrally similar, and mathematically 

correlated endmembers, as is the case with SA algorithm (Debba et al., 2006; Monteiro et al., 2009). 

The fact that some spectral variation in the deterministic LMM is intrinsically stochastic has 

helped the stochastic mixing model (SMM) to emerge as another line of hybridization. The SMM 

combines the stochastic property of endmembers with LMM to capture the variations that otherwise 

could not be described by standard models (Eismann and Stein, 2007). Likewise, MTMF and kernel 

methods could be regarded as hybrids of deterministic and stochastic perspectives (Boardman and 

Kruse, 2011; Camps-Valls and Bruzzone, 2009). 

An interesting hybridization between LMM and similarity measures has given rise to the 

optimized cross correlation mixture (OCCM) analysis (Coulter, 2006). Its basic philosophy is to match 

the entire shape of each pixel spectra to a linearly synthesized mixture of endmember spectra using 

the SCM method. The method tries to keep the maximum cross-correlation close to 1, and 

simultaneously optimizes the endmember weights in an iterative way (Coulter, 2006). The main 

difference between LSU and OCCM is that the former attempts to minimize the error of inversion, 

while the latter tries to maximize the “goodness of fit” through fraction optimization (Coulter, 2006; 

Keshava and Mustard, 2002). Therefore, it is more capable of tackling the issue of correlated 

endmembers. However, up to now, the performance of this technique has not been tested against 

iterative unmixing algorithms. The idea behind OCCM may be extended to construct other 

“similarity-based unmixing algorithms” or other optimization criteria. 
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The most recent and promising line of hybridization comes from WA. The wavelets can be added 

to boost the performance of other algorithms (Fig 6). For instance, instead of directly mapping the 

spectral feature, Bruce et al. incorporated wavelet coefficients’ scalar energies as features into an 

automated statistical classification system (ML) for spectral mapping (Bruce et al., 2001). A similar 

method for comparison of spectral angles known as “Wavanglet” was also proposed, which defines a 

more effective way of measuring the spectral angles between the reference and test spectrum in 

wavelet domain (Schmidt et al., 2007). Furthermore, the linear additive character of the wavelet 

domain is used to facilitate the linear unmixing and abundance estimation (Rivard et al., 2008), which 

is exemplified in Fig. 6. Here the wavelet is combined with other methodologies to yield results that 

are more accurate. For example, the composition or abundance of montmorillonite (Fig. 6b, 6f) is 

better quantified relative to analogous maps in Fig 3s, 5p. The CWT is employed to minimize the 

combined influence of variable mineral grain size, illumination, and surface roughness (continuum) 

on the spectra, and increase the SAM classification accuracy of drill cores (Feng et al., 2011). 

Eventually, the derivative are computed more efficiently in the transformed wavelet domain (Bruce 

and Jiang, 2001). 

 

Fig. 6. Examples of spectral products using the wavelet-transformed hypercube data of the oil-sand sample. Three out of ten components 

(scales) most relevant to absorption features in the wavelet domain is retained, summed, and then used during the processing. a) The ratio 

between R2213 and R1914 is used as a measure of montmorillonite crystallinity masked by its abundance image (Blue: poor-ordered, red: 

well-ordered). b) Montmorillonite composition calculated using the Gaussian curve fitting between 2151-2244 nm after spline interpolation 

(blue: 2206 nm, red: 2212 nm). This product is equivalent to Fig. 3s. c) Total area of the 2300 nm absorption calculated using the 2nd order 

FP between 2282-2331 nm. d) NED similarity-based measure of bitumen endmember. e) and f) LSU of bitumen and montmorillonite 

calculated using the image-extracted endmembers. The contrast stretch is the same as used in Fig. 3 and Fig. 5. 

While the above-mentioned hybrid methods are sensible, we do believe that the most advanced 

and rigorous processing methodologies are achieved when two completely different perspectives 

(i.e. physically- and mathematically-based approach) inter-breed. On this basis, we have conceived 

two major hybrid species: (i) those that incorporate the spectroscopy knowledge and mixing models 

to build enriched spectral libraries; and (ii) those that supplement a priori geological knowledge with 

mixture theory, and vice versa. 

The core of the first species is a highly enriched spectral library and a decision making mechanism 

to compare with the image (test) spectra. One of the first of this kind was developed by Kruse et al. 

(Kruse and Lefkoff, 1993; Kruse et al., 1993b) and Kruse (Kruse, 2008). It benefits from a lab or image 

extracted spectral library and a set of spectroscopic-based rules (as described in section 3-1-3) to 
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implement the identification. The most sophisticated and successful form of mineral identification 

system based on reflectance spectra is indeed the Tetracorder package developed by the US 

Geological Survey (Clark et al., 2003). In this system, the spectral library is enriched by binary and 

ternary mineral mixtures (in both linear (Clark et al., 2003), and nonlinear (Dalton et al., 2004) 

scenarios), vegetation, etc.; and then grouped based upon spectroscopic similarities. Two metrics, 

the goodness of fit (R2), and the band depth (D), are calculated on the basis of continuum removed 

image and library spectra (section 3-2-2), and are then used within an intelligent expert system 

decision-making framework to identify and map the geologic materials from AVIRIS hyperspectral 

data. Its superior performance is demonstrated in (Clark et al., 2003; Dalton et al., 2004; Swayze et 

al., 2014). A modified version of the early Tetracorder with graphical user interface (GUI) designation 

known as material identification and characterization algorithm (MICA) is described in (Kokaly, 2012). 

 

Fig. 7. Examples of linearly simulated spectral library and similarity-based measures for abundance estimation. a) 

Abundance image of the montmorillonite. The correlation between this mineral map and that shown in Fig. 5p is as high as 

0.987. b) Abundance image of the bitumen. The contrast stretch applied here is similar to Fig. 5. 

To rigorously define the mixture amounts in a field-adjusted HyMap data, Roy et al. (Roy et al., 

2009) have developed a simulated spectral library consisting of three and four rock components to 

represent mantle and crustal sequences, respectively. The increment used is 0.1 for every pair of 

spectra. Both the simulated spectral library and image pixels are normalized for continuum by 

dividing them by their Gaussian low-pass trend. Finally, every pixel is compared to the library by the 

SD measure to find out its lithologic content and quantity (Roy et al., 2009). A linearly simulated 

mixture between bitumen and montmorillonite is compared to image spectra by a similarity measure 

in Fig. 7.  

The state-of-the-art methodology belonging to the first species is the hypersensitive mineral 

identification method (HMIM), developed by ERSDAC, for the analysis of multispectral ASTER satellite 

data (Sanga and Tachikawa, 2006). The HMIM comprises a very sophisticated spectral library yielded 

by simulating various mixtures of 13 minerals for every 10% abundance using the iso-grain model 

cited above. The model takes into consideration not only the abundances, but also the refractive and 

reflectance indices, grain size, and the scattering coefficients (ERSDAC, 2006). To avoid complication, 

the simulation was carried out in two different batches namely acidic and phyllic˗propylitic. The 

image pixel was then compared to the library by similarity measures and the content of the top five 

simulators were averaged and reported as minerals’ abundance in the relevant pixel. This package 

combines the knowledge of alteration mineralogy with nonlinear scattering theories, and uses 

similarity metrics to search for the best answers to each pixel (ERSDAC, 2006; Sanga and Tachikawa, 

2006). 
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In many geological applications (e.g. mineral exploration and rock type classification), the type of 

target minerals and their associations are usually predictable (Sabine, 1999; Sillitoe and Thompson, 

2006; Thompson et al., 1999). This a priori knowledge can be involved within the spectral processing 

chain. In other words, unmixing can be performed in the geologic context. Despite the possible 

theoretical framework, a hybrid method of the second species has not yet been developed. However, 

the usefulness of such a priori knowledge has been sparsely explored for mapping hydrothermal 

systems (e.g. by methodologies like MESMA (Bedini et al., 2008), HMIM (Sanga and Tachikawa, 

2006), OCCM (Coulter, 2006)) and lithologic variations (e.g. (Gilmore et al., 2008; Roy et al., 2009)). 

Other hybrid methods worthy noting are those unmixing procedures with roots in physical 

models, and the ability to fully unmix the spectra of a pixel, or pixels of a scene by combined linear 

and/or nonlinear models (e.g. (Close, 2011)). 

3.6. Discussion 

Geologists find spectroscopy appealing because it is fast, cost-effective, non-destructive, and more 

importantly, multiscale. It is a method capable to provide data and information from proximal to 

distal sensing. Traditionally, spectral data have been used to detect surficial alteration minerals, but 

now this versatile tool is used to quantify a diverse range of chemical and physical parameters 

related to a wealth of Earth Sciences disciplines, as summarized in table 2. These parameters are 

extracted directly, or inferred indirectly from the four basic products of spectral analysis (table 1) in a 

qualitative or semi-quantitative way. The spectral solution has been widely acknowledged by the 

mining industry and to a lesser extent the energy sector, and the interest in spectral technology for 

geological applications is steadily growing (van der Meer et al., 2012). 

Table 2. The common geoscience parameters estimated and quantified by spectral data. The spectral solution is based on 

the basic spectral products reported in table 1. The “spectral range” indicates the appropriate range(s) for information 

extraction. 

Parameter Spectral solution Spectral range References 

Material detection 
(Minerals, rocks, and other 
compounds) 

Thematic map SWIR-LWIR-VNIR 
(Kozak et al., 2004; 
Sgavetti et al., 2006; 
Thompson et al., 1999) 

Spectral assaying 
(elements and other compounds) 

Abundance image 
Composition map 

VNIR-SWIR-LWIR 
(Dai et al., 2013; Lyder 
et al., 2010; Murphy 
and Monteiro, 2013) 

Whole rock geochemistry Abundance image LWIR-VNIR-SWIR 
(Walter and Salisbury, 
1989) 

Temperature, pressure, and 
metamorphic grade 

Thematic map (mineral occurrence) 
Composition map 
Crystallinity map 

SWIR-LWIR (Duke, 1994) 

Weathering 
Crystallinity map 
Composition map 

Thematic map (mineral occurrence) 
VNIR-SWIR (Cudahy et al., 2008) 

Fluid pathway Composition map SWIR-LWIR 
(Cudahy et al., 2008; 
Herrmann et al., 2001) 

Ph/Eh Thematic map (mineral occurrence) VNIR (Swayze et al., 2000) 

 

Spectral mapping techniques available to geologic remote sensing largely aim to retrieve 

information about mineralogic, lithologic, and to a lesser extent, chemical content of a target (table 1 
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& 2). The mineralogic pattern (2D/3D) is a key factor in understanding the geological processes in 

general, and mineral systems in particular (e.g. (Holliday and Cooke, 2007; Sillitoe and Thompson, 

2006; van der Meer et al., 2012; Wyborn et al., 1994)). Owing to its fundamental role in resource 

exploration and recalling its close relationships to spectroscopic concepts, mineralogy has been the 

focus of many studies. Nevertheless, there are quite a few accounts of the absolute accuracy and 

precision of the processes used for abundance estimation. The physical models are reported to 

estimate the abundance to within 5-10% accuracy (Mustard and Pieters, 1989; Poulet and Erard, 

2004; Shipman and Adams, 1987), whereas for hybrid methods like HMIM and CVA this figure is 

within the 10-15% range (Berman et al., 1999; ERSDAC, 2006). Although values as precise as 2% are 

reported for CBD (Kruger et al., 1998), there have been cases of fractional error by as much as 30% 

absolute or more (Keshava and Mustard, 2002; Kuosmanen and Laitinen, 2008). From the 

spectroscopic viewpoint, minerals forming less than 1% in abundance in a mixture have been 

detected spectrally (Pontual et al., 2008a); though, in general, minerals that encompass less than 5% 

in a rock are usually difficult to identify. As a basic rule, spectroscopic detection limits for bright and 

dark minerals are considered to be 10 and 20%, respectively (Thompson et al., 1999). Accordingly, 

the accuracy of estimation and the detection limit is dependent not only on the algorithm in use, but 

also on the type of target material and its spectral contrast. The accuracy of abundance estimation is 

as well affected by the sensing approach (proximal vs. distal), the sensor technology, and the imaging 

scale.  

At present, the detection limit of the current sensing approach for individual minerals is largely 

unknown and only a few algorithms yield an estimation of the abundance accuracy. We believe that 

in the absence of real and independent ground truth data, the described abundances in the literature 

are at most a relative quantity, as with the case study shown here. To obtain absolute quantities for 

the abundance, many have used a training or correction stage, respectively, at the beginning or at 

the end of the processing chain, using ancillary data (e.g. (Kuosmanen and Laitinen, 2008; Lyder et 

al., 2010)).   

Regarding the compositional variations present in several mineral species (including white mica, 

chlorite, alunite, amphiboles, epidote, montmorillonite, feldspar, etc. (Cudahy et al., 2009; Duke, 

1994; Hecker, 2012; Herrmann et al., 2001; Mustard, 1992; Pontual et al., 2008b; Roache et al., 2011; 

Swayze et al., 2014; Thompson et al., 1999)), there are quite a few effective and practical 

methodologies to quantitatively and robustly map them with hyper-, or multispectral data. Such 

maps have been shown to have great potential for revealing the physicochemistry of minerals not 

only in hydrothermal systems, but also in metamorphosed, metasomatized, and sedimentary 

environments (Cudahy et al., 2008; Duke, 1994; Herrmann et al., 2001; Kurz et al., 2012; Laukamp et 

al., 2011; Sgavetti et al., 2006; Thompson et al., 1999) (table 2). Moreover, despite the partial 

sensitivity of the spectral technique to mineral crystallinity (Thompson et al., 1999), current solutions 

for mapping this parameter remotely appear to be very embryonic (Clark et al., 1993; Cudahy et al., 

2008).  

Since the VNIR reflectance spectra of rare earth elements (REE) are dominantly relevant to 

isolated ions rather than ligands (Adams, 1965; Hunt, 1977), spectroscopy affords a unique 

opportunity to directly detect elements. In the scarce literature on the subject, band depth has been 

the common method used for REE characterization (Dai et al., 2013; Huntington et al., 2012). Other 

major/minor elements (including the transition metals like Fe, Mn, Cu, etc.) are merely indirectly 
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assayed. For this purpose, different regression techniques (section 3-2-2) are used to construct a 

mathematical model by correlating a spectral parameter (i.e. depth, ratio of depths, derivatives, 

abundance, wavelength, and area of absorption) with other reliable, but costly, geoscience products 

acquired from independent analytical tools (Cloutis, 1996; Cudahy et al., 2009; Cudahy et al., 2001; 

Haest et al., 2012; Herrmann et al., 2001; Murphy and Monteiro, 2013; Mustard, 1992; Pontual et al., 

2008b; Post and Noble, 1993; Swayze et al., 2014; Tappert et al., 2011; Thompson et al., 1999; Walter 

and Salisbury, 1989). The degree of substitution of the elements like Al, Si, Mg, Fe, K, etc. in the 

structure of selected minerals may also be estimated using the compositional maps derived from 

knowledge-based techniques. 

Spectral analysis can effectively deal with mono-mineralic rocks (e.g. limestone) (Combe et al., 

2006; Kozak et al., 2004; Kurz et al., 2012), but given the multi-mineralic nature of the many rock 

types, it is challenging to characterize them using current techniques (Rivard et al., 2009; Sgavetti et 

al., 2006). For instance, the statistically based classification algorithms (e.g. IK, RF, SVM, and ANN) 

cannot compete with the outcomes of visual interpretation by an analyst (Cracknell and Reading, 

2014; Jie-Lun et al., 2014; Mas and Flores, 2007). This is a gap that may be partly bridged by more 

advanced methodologies, but a better and effective solution is provided by incorporating the LWIR 

data (e.g. (Cracknell and Reading, 2014; Feng et al., 2011; Roy et al., 2009)), 

While VNIR-SWIR data are valuable to study the alteration mineralogy, LWIR data are able to 

provide information on the composition of the rocks and rock forming minerals, as they have their 

fundamental vibrational bands (e.g. Si-O stretching in silica tetrahedral) in this region  (Gaffey et al., 

1993; Hook et al., 1999; Hunt and Ashley, 1979; Walter and Salisbury, 1989). The LWIR sensing can 

augment the noted spectral outcomes (table 2) and, at the same time, holds promise to bring new 

spectral products into existence. Examples are the deduction of mineral orientation (Tappert et al., 

2013), rock hardness/crushability (Huntington et al., 2010), and modal mineralogy of the rocks 

(Hamilton and Christensen, 2000). LWIR data can facilitate the detection of compounds like gaseous 

hydrocarbons as well (Johnson et al., 2014; Thorpe et al., 2013). 

In the self-similar geological environment, spectral mixing is an established fact that should be 

acknowledged by all the processing methods at all scales. The self-similarity principle, however, does 

not imply that every mappable phenomenon is shared among the scales. For example, while some 

products are already shared between proximal and distal sensing techniques (e.g. white mica 

composition); ore detection is possibly going to remain exclusive to proximal methods. Presently, 

there are challenges regarding the transferability of a product between scales (e.g., the chemical 

variation of chlorite) which need to be tackled in the future. 

The performance of spectral processing methods is seriously affected by the spectral resolution 

and intrinsic SNR of the sensor, along with the quality of the atmospheric compensation (Clark and 

Swayze, 1996; Green et al., 1998). Currently, there exist rigorous correction algorithms based on 

radiative transfer codes (e.g. (Gao et al., 2009)), but their residual error hampers the detection and 

identification of materials by hybrid methods like Tetracorder. To attain absolute reflectance, a 

further refinement step is taken by incorporating ground measurements (Clark et al., 2003). In the 

case of MSI, however, ground-based or cross-sensor calibration has been the only reliable method 

for accurate radiance to reflectance conversion (Cudahy et al., 2008; ERSDAC, 2006; Mars and 

Rowan, 2010). 
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3.7. Conclusions 

Despite important algorithmic developments in recent years, there is still no universal and 

optimal recipe for remote identification, classification, and quantification of geologic materials. In the 

past decade, linear spectral unmixing has received a great attention from algorithm developers, but 

so far, the outcomes have not been utterly convincing. Recently, unmixing has been augmented by 

incorporating the contextual (spatial) information, or by bringing nonlinear methods into the scene 

(e.g. (De Jong and van der Meer, 2005; Heylen et al., 2014; Plaza et al., 2009)). The nonlinear 

unmixing methods are proposed to give more accurate estimates of abundances, whereas the 

spatial-spectral unmixing is exploited to incorporate the pictorial character of the image. Indeed, we 

anticipate other types of hybridizations to take form. As discussed in this paper, there are many 

opportunities and promises in hybridization between spectral and feature domains.  

In geological remote sensing, the most complicated mixtures happen between spectrally similar 

minerals (from the same absorbing species), which unfortunately are associated with each other in 

real geological environments. In such cases, distinctive absorption features are very near or 

overlapping and the spectra (endmembers) are highly correlated. This correlation hinders any 

attempts to identify or discriminate the minerals by routine ways. While FP is promising for those 

solid solutions that manifest themselves as linear wavelength shifts in the absorption minima, there 

are few remedies for more complicated overlaps. We anticipate the solution may come from hybrid 

methods like “similarity-based unmixing”, or “simulation-tuned similarity measurement” algorithms. 

The successful Tetracorder package is a good example of the latter solution, although the decision-

making system of Tetracorder and its successor are still governed by hard rules. 

In addition, unlike physical models, current unmixing algorithms are not sensitive to the type of 

spectra (minerals) they are unmixing. Such knowledge, already available in the spectra of each pixel, 

can supplement the unmixing procedure to pinpoint the camouflaging spectra, or predict the proper 

and probable combinations of endmembers present in each pixel, leading subsequently to better 

abundance estimation. This is what we call “unmixing in the geologic context”, a discipline-oriented 

hybrid model of the second species. Generally, the delivery of a set of abundance images has been 

regarded as the final step in the remote sensing processing chain. We do believe this chain is 

complete only when a sensible interpretation is given to these final maps in the context of the 

geologic system under survey. 

Unlike the unmixing techniques that decompose a spectrum into its constituent endmembers, the 

MGM experiment has shown that a spectrum can also be decomposed into a continuum, and a 

collection of absorbing bands as physically meaningful quantities. The few data-driven techniques 

that incorporated the continuum-removed spectra have shown to give higher overall performance, 

yet none has adapted to account for the continuum components or decompose the spectrum into 

absorption bands. The continuum modeling itself is not yet satisfactorily matured, but there are clues 

that point towards the potentials of wavelet analysis for this aim. 

Studies show that within the VNIR-SWIR range, we are at most measuring 50% of the minerals 

present in a system. The other half needs to be dealt with using LWIR sensing technology (Hook et 

al., 1999; Huntington et al., 2010). Up to now, LWIR (and partly VNIR) data have been processed and 

interpreted in isolation; however there are clues that underline the significance of simultaneous 
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“multiple wavelength processing” (e.g. (Chen et al., 2007; Huntington et al., 2010; Kruse, 2015)). The 

geologic remote sensing community is only beginning to understand and explore the potentials of 

this spectral range and the merits of integrated processing. 

Regarding the rock type classification (in both close-, and far-ranges), we have not gone far from 

traditional “image classification”, which is hardly comparable to the outcomes of visual techniques, 

and a system similar to Tetracorder for automated rock type identification is still absent. Given the 

richness of contextual information embedded in rocks, ores, veinlets, and alteration facies as texture 

or zoning, it is conceivable to tap into this information using spatial-spectral hybrid techniques. Such 

a system may inherit its character from hybrid techniques specifically adopted to analyze the spatial-

spatial pattern, as well as multiple wavelength spectral ranges. 

As discussed in this paper, the use of ancillary data, which are essential for accurate spectral 

quantification, makes the processing techniques case specific and nontransferable. As concluded in 

(van der Meer et al., 2012), this ‘hampers automating processing chains and standardized (qualitative 

or quantitative) products’. 

Thus far, the processing routines have been confined to sensor frames (scene/strip), which are 

not a match for orderly quadrangles used for standard geoscience maps. To have similar standard 

end products for the earth surface from orbital sensors, the spectral processing techniques are 

required to be applied to seamlessly mosaicked reflectance data. It means that the next generation 

of satellite sensors must be equipped with proper spectral bands to compensate for atmospheric 

effects. 
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Chapter 4 

Iterative curve fitting: A robust technique to estimate the wavelength position 

and depth of absorption features from spectral data
5
 

 

In this chapter, we introduce a robust method coined iterative curve fitting to estimate the 
wavelength position and depth from spectral absorption features. The technique iteratively fits a 
curve to a continuum-removed spectrum and subsets the bands based on the minimum of the 
previous fit until fulfilling a specified threshold for residual error. The minimum of the latest iteration 
and its substituted reflectance value are then retrieved as the feature wavelength and depth. Two 
variants of the technique named iterative Gaussian fitting and iterative polynomial fitting (IPF) are 
presented. The superiority of these algorithms over current methods is demonstrated using four 
different absorption features between 400 and 2500 nm collected from an array of sandstones in the 
laboratory. The methods can achieve rmse values of ±1.0 nm for the wavelength and 1% for the 
feature depth. The estimated wavelength position in a hyperspectral sensor with less than 10 nm 
sampling interval is demonstrated to be in error by at most ±3 nm at 95% confidence level. 
Experiments with varying signal-to-noise ratios (SNRs) indicate the robustness of the technique 
against noise. The IPF is able to estimate the wavelength of narrow features with an rmse of ±2.7 nm 
at an SNR of 150:1 and broad features with an rmse of ±4.2 nm at an SNR of 400:1. The method, 
which is embedded in a package named Automated Absorption-based Mineral Spectral Analyzer 
(AMISA), enables the simultaneous calculation of width, area, and asymmetry of spectral data 
acquired from imaging and nonimaging sensors. 

4.1. Introduction 

The analysis of spectral data collected in the visible-near infrared (VNIR), short-wave infrared 

(SWIR), or longwave infrared (LWIR) by imaging or non-imaging remote sensing systems can be 

performed using either data-driven or knowledge-based approach [1]. In the former, the data is 

compared against a set of endmembers and corresponding abundance images are obtained [2]. In 

the latter, every spectrum is assumed to be composed of a series of absorption bands superimposed 

on a continuum background [3]. The bands are routinely characterized by their wavelength position, 

depth, full-width at half maximum depth (FWHM), area, and asymmetry [1, 4-6]. By incorporating 

these collective spectral parameters with user-knowledge, semi-quantitative to quantitative 

information is obtained about the identity, abundance, and chemistry of a terrestrial or planetary 

remote sensing target [4, 6-8]. 

In the modified Gaussian model (MGM), all the components of a spectrum are simultaneously 

modeled by a series of Gaussian bands and a continuum line in the natural log reflectance space [9]. 

Normally, initial conditions (i.e. the center, FWHM, strength, and continuum) are provided by the 

user, and then the routine seeks an optimum nonlinear least-square solution for the provided 

collection. This method interactively decomposes all the features of a given spectrum into symmetric 

Gaussian bands, each of which characterized by a center, width, and strength parameter [9]. Albeit 

the merits of this technique, the initial estimation of the Gaussians, particularly for hyperspectral 

imaging (HSI) data, can be troublesome. Moreover, many applications do not demand for the 

spectral decomposition nor need to analyze the entire spectrum. Instead, a partial solution for a 

                                                           
5
 A version of this chapter is published in the IEEE Transaction on Geoscience and Remote Sensing journal. 
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limited portion of the spectrum covering a typical absorption feature is deemed appropriate for 

information extraction. In such situations, the absorption(s) of interest are directly described by the 

noted spectral parameters.  

An accurate determination of the wavelength position is essential and prerequisite for absorption 

quantification, as it will significantly impact the accuracy of the depth and subsequently width and 

asymmetry of a feature [10]. Above all, this parameter is frequently used in geologic remote sensing 

for: (i) target detection and material identification [11, 12], (ii) discrimination among different 

species within a mineral group (e.g. carbonates) [13], (iii) delineation of subtle variations in the 

chemistry of a mineral due to cation substitution as an indicator of the physicochemistry of the 

environment (e.g. white mica compositional variation) [14], (iv) estimation of the relative quantity of 

a mineral in a solid solution (e.g. hematite/goethite ratio) [15], (v) determination of spectral mixing 

between different compounds, and (vi) occasionally, indication of grain-size variations (e.g. in iron 

oxides) [16]. The depth of an absorption feature, which is determined at the minimum wavelength, is 

widely used for abundance quantification [3, 17]. The whereabouts of the absorption feature itself is 

commonly revealed by the user; however, now several algorithms are proposed to automate this 

process [1]. 

The wavelength of absorption maximum may be directly determined from a spectrum, but this 

approach can be easily affected by noise. Accordingly, a preliminary spectral smoothing step has 

been embedded to this method for noise suppression [18]. Within this procedure, it is common to 

calculate the spectral derivatives and then apply them for wavelength determination [19]. The 

accuracy of such methods, however, is constrained by the instrument’s sampling regime; in this way, 

an increase in the sampling interval gives rise to a decrease in the accuracy of wavelength position. 

Hence, the method is only appropriate for very high resolution (and noise-free) spectral data [20]. 

In the case of HSI data, a linear approximation method based on trigonometry was proposed by 

[5]. Nevertheless, it reduces the curvature of a feature into simply interpolated lines, thus causing a 

low accuracy (i.e. +/-15 nm) in wavelength estimation [5]. 

The fitted polynomials (FP) of higher order on the other hand, seem to be more suitable for this 

aim. In this approach, a polynomial of certain order (from second up to fifth) is fitted to the entire 

range of an absorption feature using a least-square technique, and then, based on the resultant 

equation, the wavelength and depth of the absorption feature are estimated [15, 17, 20-22]. Despite 

the widespread use, the accuracy of the technique is barely evaluated against independent datasets. 

Moreover, there is no accepted basis for choosing a polynomial of certain order for specific 

applications. In a study to determine the wavelength position of ferric absorption features centered 

at 900 nm, it was argued that a fifth order polynomial yielded better results compared to direct 

minimum determination. The average accuracy of this method was reported to be within +/- 8 nm at 

4.6 nm sampling intervals [20]. 

In practical applications (e.g., mineral compositional mapping), the error in wavelength position 

estimation is required to be very low (i.e. few nanometers) in order for the real variations to stand 

out. As the spectrum of ferric absorption feature in Fig. 1 illustrates, second to forth order 

polynomials fitted to the entire range of the absorption between 776-1074 nm cannot successfully 

model the spectrum and cause errors in the estimation of wavelength position, depth, or both. To 

address this issue, three alternatives have been considered: (i) dramatic increase in the order of the 
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polynomial [20]. This solution can indeed improve the accuracy, though in practice, for example with 

HSI data, there are limitations upon the polynomial order (i.e. N-1 with N bands) increment. In 

addition, it is possible that a higher order polynomial overfit a noisy absorption band; (ii) restriction 

of the number of fitted bands to only three, including the absolute minimum and its neighbors. Such 

a procedure, named quadratic fitting to the minimum (QFM), was shown to be efficient for narrow 

absorptions present in SWIR region of HSI dataset [23]. However, it may not be appropriate for 

broader absorption features or datasets with higher spectral resolution (Fig. 1 and 6a); (iii) 

independent estimation of wavelength position and depth using two different FPs [17]. This solution 

may alleviate the results, but it cannot resolve the inherent uncertainties around FPs of fixed order 

(Fig. 1). 

 

Fig.1. Spectral plots of a continuum-removed ferric absorption feature between 776–1074 nm, and fitted polynomials of second to fifth 

orders, quadratic fitting to the minimum (QFM), and iterative polynomial fitting (IPF) used to model the spectrum. The wavelength of the 

absorption minimum (determined directly after spectral smoothing) occurs at ≈ 903 nm with a feature depth of 0.03 relative the local 

continuum. The errors in estimating the wavelength position and feature depth from noted techniques relative to the reported values are, 

respectively, as following: second order (+13 nm, 20%), third order (-8 nm, 16.5%), fourth order (7 nm, 5%), fifth order (0.5 nm, 0.4%), 

QFM (-5 nm, -1.3%) and IPF (1.1 nm, 0%). Arrows indicate the shoulders of the feature. 

Here, an alternative technique coined Iterative Curve Fitting (ICF) is introduced for the estimation 

of wavelength position and depth of spectral absorption features. The performance of the algorithm 

relative to current methods are assessed using four different absorption features collected from an 

array of sandstones in the laboratory. The algorithm is then tested against varying signal-to-noise 

ratios and different sampling intervals from ProspecTIR, HyMap, and the upcoming EnMap 

hyperspectral systems. 

4.2. Iterative Curve Fitting (ICF) 

The simplified flowchart of the ICF technique is outlined in Fig. 2. Initially, it removes the 

continuum from a spectrum, as this component tends to displace the absorption minimum [17, 19, 

24]. We developed a simple methodology that iteratively calculates and removes the ‘local’ 

continuum over a given absorption feature. Let’s consider the spectrum over an absorption feature 
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as a one-dimensional vector 𝒔 (𝜆), confined between 𝜆1 and 𝜆2 wavelengths (normally provided by 

the user) with K discrete spectral bands. The steps for continuum removal are as follows:    

(i) The maximum reflectance values, 𝒔 (𝜆𝑚𝑎𝑥) on either side of the median band (𝑏𝑚) 

are determined. 

(ii) A ‘straight line’ is fitted to the maximums (dashed line in Fig. 3) and the continuum is 

removed by dividing the spectrum to it. 

(iii) In the resultant spectrum, the local maximums are determined again (step 1) and 

their relevant positions are projected over 𝒔 (𝜆). A new line (dash-dot line in Fig. 3) is fitted 

to 𝒔 (𝜆) and a continuum-removed spectrum is re-calculated (step ii). 

(iv) Step (iii) is repeated until at least one spectral band on each side of 𝑏𝑚 yields a value 

equal to 1.0 and there is no band with a value greater than 1.0. 

The resultant continuum line (solid line in Fig. 3) should be tangent to the curve at both feature 

shoulders and the continuum-removed spectrum (𝑺𝐶𝑅(𝜆)) should comprise values lower than or 

equal to 1.0. 

 

Fig. 2.  Simplified flowchart of the proposed ICF technique for the estimation of feature wavelength position and depth. 𝜆𝑚𝑖𝑛 denotes 

minimum wavelength, 𝑡, threshold, 𝑁, band number, and 2, residual error according to Eq. 7. 

Following the continuum removal, a preliminary curve is fitted to the spectrum (i.e. 𝑺𝐶𝑅(𝜆)). The 

algorithm assumes that the absorption of 𝑺𝐶𝑅 is located between the two shoulders, thus the fitting 

is confined between them (the arrows in Fig. 1). As a result, the number of available bands is reduced 

to 𝑁 (𝑁 ≤ 𝐾). We developed two variants of ICF named iterative Gaussian fitting (IGF) and iterative 

polynomial fitting (IPF), which respectively benefit from a Gaussian and a polynomial function for the 

fitting. A Gaussian function is defined as: 

𝑮(𝜆) =  𝛼. 𝑒
−

(𝜆−𝜇)2

2𝜎2    (1) 

Remove the local continuum 

(over user-defined wavelengths) 

Check if an absorption exists by 

analyzing a fitted polynomial 

Find the λmin of the function 

Define a range around λmin 

and subset the spectrum 

Fit a new polynomial/Gaussian 

over the subset range 

 2 < 𝑡   
OR         

𝑁 ≤ 4 

Retrieve λmin and 

Depth parameters 

No 

Yes 

Fit a polynomial/Gaussian 

Function between the shoulders 
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where  is the wavelength of the center,  is the height of curve in the center, and  is the width 

of the function. 

A polynomial function is defined as: 

𝑷(𝜆) = 𝑎𝑛𝜆𝑛 + 𝑎𝑛−1𝜆𝑛−1 + ⋯ + 𝑎2𝜆2 + 𝑎1𝜆 + 𝑎0   (2) 

where 𝑎0, ⋯ , 𝑎𝑛 are constants and 𝑛 is the order of the polynomial. 

 

 
Fig. 3. Calculation of local continuum by the ‘iterative continuum removal’ algorithm. For a ferric (Feox) absorption feature, the continuum 

line tangent to the spectrum is depicted after two iterations. 

 

The minimum of the fitted Gaussian function occurs at  (Eq. 1), whereas that of the polynomial is 

determined from the roots of the explicit first derivative. The minimum for a quadratic function can 

be defined as:  

𝜆min =  
−𝑎1

2𝑎2
    (3) 

For higher order polynomials, however, the minimum is determined from (the real part of the) 

roots of the first explicit derivative derived from the Lagrange method [25]. The minimum 

materializes where the following conditions are fulfilled: 

𝑷𝐼(𝜆) = 0 , 𝑷𝐼𝐼(𝜆) > 0  (4)  

This initial minimum is considered as a center (Fig. 4), and a range is defined around it using the 

following formulation: 

𝑟𝑎𝑛𝑔𝑒 = (0.5 − 𝑟) × 𝑁   (5) 

where 𝑁 is the number of available bands and 𝑟 is a constant (0 < 𝑟 < 0.5), which is 

experimentally determined to be 0.25 for Gaussian and 0.2 for polynomial functions (see also section 

4.8). The range is then used to subset the spectrum: 

𝑺𝑠𝑢𝑏(𝜆) =  𝑺𝐶𝑅[𝜆𝑚𝑖𝑛 − 𝑟𝑎𝑛𝑔𝑒 ∶ 𝜆𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑔𝑒]   (6) 
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A new curve is fitted to the subset spectrum (Fig. 4) and the residual error, 2 (chi squared) is 

calculated as: 

 2 = √
1

𝑁
∑(𝑺𝑠𝑢𝑏(𝜆𝑖) −  𝑭(𝜆𝑖))2

𝑁

𝑖=1

   (7) 

where 𝑺𝑠𝑢𝑏(𝜆) is the subset spectrum, 𝑭(𝜆) is the fitted curve (either 𝑮(𝜆) or 𝑷(𝜆)), and 𝑁 the 

number of available bands at current iteration. 

If the residual error is below a certain threshold, the iteration is ended; otherwise, it uses the 

newly fitted function and repeats the previous steps (i.e. subsetting and re-fitting; Fig. 2). These steps 

for both Gaussian and polynomial functions are illustrated in Fig. 4.  

The threshold (𝑡) values for 2 are dependent on the dataset under study and is experimentally 

determined (see section 4.8). With quasi noise-free lab datasets, values between 1 × 10−4 to 

3 × 10−4 give rise to optimum results. In practice, however, besides checking the 2 threshold, when 

𝑁 reaches 4 for Gaussian and 3 for polynomial functions, the iteration is terminated. 

When the iteration number (𝑛) exceeds 2, an index is calculated from the 𝜆𝑚𝑖𝑛 values of the last 

three iterations in the following way:  

𝑖𝑛 =
𝜆min (𝑛−2) +  𝜆min (𝑛)

2𝜆min (𝑛−1)
    (8) 

The value of this index normally varies between 0.6 and 1.4 in converging conditions. If the index 

acquire a value outside this range, the algorithm is reinitiated with a different (normally lower) value 

for 𝑟. The algorithm does this modification for four times and if the desired conditions are not met, 

the loop is exited. 

Once the fitting meet the required conditions, the minimum of the function from the latest 

iteration is reported as the wavelength position of the absorption feature (𝜆𝑚𝑖𝑛; Fig. 4). The depth of 

the absorption (𝐷) for a Gaussian is proportional to  (Eq. 1) and for a polynomial, it is achieved by 

replacing 𝜆𝑚𝑖𝑛 to the equation and subtracting from 1.0: 

𝐷 = 1.0 −  𝑷(𝜆𝑚𝑖𝑛)   (9) 

Before initiating the iteration process, the method checks if an absorption exists in the given 

range by analyzing the explicit first and second derivatives of a higher (commonly fifth or sixth) order 

fitted polynomial (Fig. 2). The algorithm is executed if at least one minimum exists between the two 

local maximums of the fitted polynomial (see also section 4.4).  

While a fixed second order polynomial is used within the IPF routine, a more robust solution is to 

let the order vary according to the available number of bands, the level of noise, and the residual 

error. Correspondingly, the IPF can start with higher order and decline gradually to second degree 

polynomial, as the minimum allowed. We coined the former IPF-fixed, and the latter, IPF-float 

routines. 
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The polynomial and Gaussian fittings are performed using linear and non-linear least-square 

techniques [26]. All the routines were developed using IDL 8.3 from EXELIS visual information 

solution (http://www.exelisvis.com). 

 

Fig. 4. Gaussian and polynomial fitted curves at different iterations to a continuum-removed clay (AlOH) absorption feature between 2151–

2276 nm. a). The IGF meets the threshold after 3 iterations and estimates the wavelength position (𝜆𝑚𝑖𝑛) at 2205.27 nm. b) The IPF 

demands 4 iterations for the same feature and estimates the wavelength position at 2205.29 nm. Arrow pairs indicate the subset of the 

spectrum used for fitting at each iteration. The threshold (t) used for both techniques was 1× 10−4. 

4.3. Materials 

 We used a suite of 326 samples collected from Qom sedimentary basin in central Iran for 

experiments. The samples were selectively acquired from sandstone beds of the upper red bed 

formation. In the lab, the dried samples were measured using an ASD's FieldSpec-4 spectrometer 

(ASD Inc., Boulder, CO) under artificial illumination from a contact probe. This instrument covers the 

spectral range between 350–2500 nm with 1 nm sampling intervals. For each measurement, fifty 

individual scans were averaged to reduce the contribution of instrumental noise. The measured 

spectra were converted to absolute reflectance using a Spectralon white reference panel and, 

subsequently, were corrected for splice error between the three sub-systems. Four different spectral 

regions were selected from the collected spectra to evaluate the performance of the ICF 

methodology. The regions encompass wavelength ranges between 776–1074, 1845–2085, 2151–

2276, and 2308–2387 nm, respectively related to ferric iron oxides and hydroxides, hydroxyl 

ion/adsorbed water, clays, and carbonates absorptions (Fig 5). The absorptions, which will be 

henceforth referred as ‘Feox’, ‘OH’, ‘AlOH’, and ‘Carbonate’, are virtually present in all samples; their 

approximate maximum depths occur at 900, 1900, 2210, and 2345 nm, respectively (Fig 5). 

The collected spectra show slight noise, especially in the VNIR, which is probably due to the 

occurrence of magnetite or other dark minerals in sandstone matrix. While the noise was retained 

during the assessments of ICF algorithm, for direct determination of wavelength position, it was 

removed using a Savitzky-Golay convolution filter with a 17 nm smoothing window and second order 

polynomial. 

This dataset was used to assess the performance of ICF relative to other fitting techniques (Fig. 1) 

and to compare the variants of ICF against each other. Additionally, it was used to analyze the 
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sensitivity and accuracy of the algorithm with varying noise, sampling intervals, spectral 

interpolation, and constant (e.g. 𝑟 and 𝑡) levels.  

An additive white Gaussian noise was systematically added to the dataset at different signal-to-

noise ratios (SNRs). SNRs of 100, 150, 200, 250, 300, 400, and 500:1 were generated for this aim. The 

original dataset was also convolved to the spectral response of three different hyperspectral remote 

sensing instruments including (i) the ProspecTIR airborne system, with 357 spectral bands covering 

the wavelength ranges between 400–2450 nm (SpecTIR LLC, Reno, USA); (ii) the HyMap airborne 

system, with 126 spectral bands between 450–2500 nm [27]; and (iii) the upcoming Environmental 

Mapping and Analysis program (EnMap) satellite system, with 244 spectral bands spanning between 

420–2450 nm [28]. 

 

Fig. 5. A typical reflectance spectrum of sandstone with distinctive absorption features including ferric iron oxides/hydroxides (Feox), 

hydroxyl ion (OH), clays (AlOH), and carbonate. The features delimited within specific wavelength ranges were used to evaluate the 

performance of the ICF method. 

4.4. Results and discussion 

4.4.1. Iterative local continuum removal 

We calculated the ‘average’ iterations required for removing the local continuum from OH, 

Carbonate, Feox, and AlOH features to be respectively equal to 1.03, 1.16, 1.22, and 1.3. This average 

may soar to 2.34 for more complex features like those yielded by goethite (not discussed in this 

paper). The method demonstrated to be highly successful with laboratory spectra, though, it 

encountered difficulties when it was applied to noise-added datasets (see section 4.7). 

4.4.2. The consistency of the ICF technique 

The wavelength position and depth estimated by IPF, IGF, QFM, and FP techniques were 

compared to similar parameters directly determined from the features following spectral smoothing. 

In the case of FP, a polynomial of second to sixth order was fitted to the features and the parameters 

were derived from the roots of the explicit first derivative. Except for the second order, all the others 
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were fitted to the entire range. The former was limited between the shoulders to avoid ill-fitting. The 

wavelength difference between each of these techniques and the direct method was calculated and 

used for accuracy assessment. In order to portray an intelligent depth parameter, the absolute 

difference was normalized against the depth of the direct method and expressed in percentage. The 

results are illustrated in Fig. 6.  

Evidently, the performance of FPs of different orders are not identical and depends on the 

absorption under study. The polynomials of second to fourth order are shown to be inaccurate in at 

least three cases (Fig. 6a to c) with the estimated wavelength to be in error by as much as 29 nm (e.g. 

OH absorption; Fig. 6b). In the case of Feox and Carbonate (Fig. 6a and d), the wavelength position 

was underestimated, whereas for OH and AlOH features the same parameter was overestimated. An 

increase in the polynomial order has increased the estimation accuracy, but even the fifth or sixth 

order polynomial has not guaranteed the accurate simultaneous estimation of both parameters (e.g. 

Fig. 6a). The only feature successfully modeled by a FP (of sixth order) belongs to Carbonate (Fig. 6d).   

In contrast, the IPF and IGF outperformed all of these techniques in terms of accuracy, precision 

and consistency. The root-mean-square error (RMSE) in wavelength estimation from both variant 

was better than 1.3 nm for all features (i.e. Feox: 1.3, OH: 0.45, Carbonate: 0.65, and AlOH: 0.33 nm) 

and their means were very close to zero, which signify their higher precision. For broad Feox 

absorption, however, our visual inspection revealed the results from IPF/IGF to be more viable than 

the direct method. Therefore, the RMSE of estimation by these techniques could be expected to be 

better than 1 nm. Correspondingly, both IPF and IGF methods yielded superior results in depth 

estimation (Fig. 6), with an average error not exceeding 1.5%.  

As expected, the QFM technique achieved relatively similar results for the narrow absorptions 

(i.e. OH, AlOH, and Carbonate features; Fig. 6b to d), whereas for the broader Feox feature, it 

underestimated the wavelength minimum. This is evident by the RMSE of −20 nm in the 

determination of wavelength positions (Fig. 6a). 

4.4.3. IPF versus IGF 

Due to similarities in performance, the IPF and IGF techniques can retrieve very close results (Fig. 

4 and 6). We used the same data of Fig. 6 to evaluate comparatively the performance of these 

methods. The results are summarized in Table 1. 

There are strong correlations between the outcomes of IPF and IGF for all cases. The average 

difference in feature position and feature depth between them lies below 0.5 nm and ≈ 1%, 

respectively (Table 1). The IGF demands lower iteration to converge and its RMSE and 2 error are 

slightly lower for all features, which is probably due to the ability of the Gaussian function to better 

model the curvature of an absorption feature (Fig. 4). However, in their current architecture, the IPF 

is 4 to 17 (average 8.5) times faster than IGF, using identical computer hardware (Table 1). Indeed, 

this capability makes the IPF more suitable for massive data processing characteristic of remote 

sensing. Owing to this fact, only the IPF was evaluated in the remaining part of paper; however, we 

expect the conclusion to be equally valid for IGF as well. In different situations, we employed both 

IPF-fixed and IPF-float variants of the technique. Whereas they yielded similar results, the latter 

proved to be more straightforward when the feature was asymmetric. 
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Fig. 6. Variability of the wavelength position and depth of selected absorption features (a) Feox, (b) OH, (c) AlOH, and (d) Carbonate. The 

left panel represents the wavelength difference (in nm) and the right panel the depth difference (in percent). The calculations are 
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performed relative to ‘direct’ method. The percentage is calculated using 
|𝐷−𝐷𝑑𝑖𝑟𝑒𝑐𝑡|

𝐷𝑑𝑖𝑟𝑒𝑐𝑡
 × 100, where 𝐷 is the depth yielded from tested 

technique. The abbreviations corresponds to the legend in Fig. 1. The graphical elements of the box plots indicate the following statistical 

attributes: Box boundaries the 25th and 75th percentiles; the smaller square and the line bisecting the box the median and mean of the 

data, respectively; whiskers the 5th and 95th percentiles; smaller bar the 1st and 99th percentiles; and filled circles the maximum and 

minimum of the data series. In all settings, 𝑡 was fixed to 2 × 10−4 and 𝑟 was 0.25 and 0.2 for IGF and IPF, respectively. 

Table 1. Comparison of the results obtained from IGF and IPF techniques over the selected spectral regions ( = Average difference).  

Spectral 
region 

Wavelength position Depth 
Relative processing 

time (IGF/IPF) R2 
 (nm) R2 

 (%) 

Feox 0.992 0.46 0.999 1.05 4.13 
OH 0.999 0.09 1.000 0.07 17.08 
AlOH 0.996 0.06 0.999 0.28 6.44 
Carbonate 0.952 0.19 0.999 0.97 5.91 

4.4.4. The effect of spectral shape 

As noted in section 2, a built-in procedure verifies if an absorption exists in a given spectrum in 

advance. As such, the algorithm is capable to tackle absorption features with highly diverse shapes. 

For instance, the IPF was successful in estimating the wavelength position of a suite of Carbonate 

features with varying levels of depth, width, and asymmetry (Fig. 7a). However, the ultimate fitting 

and the accuracy of the results are affected by the threshold (𝑡) used for residual error (section 4.8; 

Eq. 7). A lower threshold may give rise to a better fit, but the wavelength determined on its basis is 

not necessarily a good representative of the absorption feature (e.g. feature # 3 in Fig.7a). 

 

Fig. 7. The performance of IPF in estimating the wavelength position of various spectral features. a) Carbonate absorption features with 

varying depth, asymmetry, and width. b) OH features with multiple (triple) overlapping absorption bands defined by gray columns in the 

background (due to OH and adsorbed water of gypsum). The spectra are illustrated by dashed lines and the fitted polynomials by solid red. 

The arrows indicate the corresponding estimated minimum(s). 

The core of the IPF/IGF algorithms can handle a single feature at a time. However, the algorithm 

also comprises complementary procedures that examine a spectrum for multiple absorption 

features. Firstly, during the analysis of an absorption feature (Fig. 2), if multiple absorptions are 

detected following the analysis of the derivatives of the fitted polynomial, the range is divided into 

multiple sub-ranges, each consisting of a single absorption. Secondly, if the constants of the final fit 

are not consistent with a minimum (𝑎2 < 0 for quadratic and  > 0 for Gaussian; Eq. 1 and 4), then 
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the returned wavelength is regarded as a local maximum, the range is broken into two sub-ranges, 

and the algorithm is rerun for each of them separately (Fig. 7b). 

Correspondingly, in the case of overlapping absorption features, the algorithms can resolve a 

feature if it is accompanied by a local minimum. For example, in the spectra shown in Fig. 7b, IPF can 

only resolve a ‘doublet’ for feature # 4, though in all cases at least three bands are overlapping. 

Accordingly, the performance of ICF techniques would not be identical to the deconvolution methods 

discussed earlier [9, 29]. 

4.4.5. Consistency in different sampling intervals 

Because a hyperspectral sensor flown in an aircraft or satellite cannot sense the OH absorption 

between 1845–2085, we excluded this feature from our resampled dataset. The remaining three 

spectral regions were firstly resampled to the spectral resolution of ProspecTIR, HyMap and EnMap 

sensors, and then processed by the IPF algorithm for the estimation of wavelength position and 

depth. We interactively tested different initial parameters to find the ideal settings. The optimum 

parameters are shown on the caption of Figs. 8 to 10. 

 

Fig. 8. The performance of IPF in estimating the wavelength position of Feox feature at different sampling intervals, considering the 

spectral resolution of (a) ProspecTIR, (b) HyMap, and (c) EnMap sensors. The dotted lines are, respectively, ± 3, ± 4.5, and ± 2.5 nm 

from the 1-to-1 line (solid magenta), as determined by WE95. The dashed (blue) lines represent the line best fitted to the data. The 

equation and 𝑅2 of the fitting are reported on each plot. The settings (t, r) were equal to (4 × 10−4, 0.1), (5 × 10−4, 0.12), and (2 ×

10−4, 0.12), respectively. 

 

Fig. 9. The performance of IPF in estimating the wavelength position of AlOH feature at different sampling intervals, considering the 

spectral resolution of (a) ProspecTIR, (b) HyMap, and (c) EnMap sensors. The dotted lines are, respectively, ± 0.5, ± 2.4, and ± 0.8 nm 

from the 1-to-1 line, as determined by WE95. The settings (t, r) were equal to (2 × 10−4, 0.1), (1 × 10−3, 0.1), and (2 × 10−4, 0.15), 

respectively. 

To evaluate the results in terms of accuracy, a new parameter called wavelength position error at 

95% confidence level (WE95) was defined. The WE95 means that the error in wavelength position is 

represented within the stated accuracy 95% of the times. A similar parameter named DE90 was 
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defined for the depth at 90% confidence level and expressed by a percentage relative to reference 

data (Table 2). 

 

Fig. 10. The performance of IPF in estimating the wavelength position of Carbonate feature at different sampling intervals, considering the 

spectral resolution of (a) ProspecTIR, (b) HyMap, and (c) EnMap sensors. The dotted lines are, respectively, ± 1.7, ± 3.5, and ± 1.5 nm 

from the 1-to-1 line, as determined by WE95. The settings (t, r) were equal to (1 × 10−4, 0.12), (1 × 10−3, 0.3), and (2 × 10−4, 0.2), 

respectively. 

The results of the resampled Feox feature revealed the WE95 to be equal to 3, 4.5, and 2.5 nm for 

ProspecTIR, HyMap and EnMap, correspondingly (Fig. 8). The same parameter for AlOH was 0.5, 2.4, 

and 0.8 nm (Fig. 9), and for Carbonate 1.7, 3.5, and 1.5 nm, respectively (Fig. 10). All calculations 

were performed relative to the original higher resolution dataset reported in Fig. 6. 

Table 2. The performance of IPF in estimating the depth of resampled Feox, AlOH, and Carbonate features at DE90 (%). 

Sensor/Feature 
DE90 (%) 

Feox AlOH Carbonate 

ProspecTIR 8.70 3.09 4.16 

HyMap 6.11 14.10 16.46 

EnMap 5.82 3.34 8.92 

Evidently, the sampling regime of a sensor has pronounced effect on the accuracy of the IPF 

algorithm, because the highest WE95 values (e.g. 4.5 and 3.5 nm) are related to the wider sampling 

interval (17 nm) of the HyMap system. However, such relationship is not straightforward. For 

example, an increase in sampling interval from 7 to 17 nm decreases the accuracy of Feox estimation 

by 2 nm (Fig. 8), while in the case of AlOH, it gives rise to a decrease of only 1.6 nm (Fig. 9). 

Nevertheless, the sampling interval alone is not determining the accuracy of IPF technique, because 

with a constant sampling interval given by the ProspecTIR system (6 nm), different accuracy levels 

(between 0.5–3 nm) are achieved for different features. We believe the shape of an absorption is 

playing a role in the accuracy of wavelength determination. In this context, higher WE95 values for 

HyMap maybe as well related to the depth or asymmetry of the absorption features under study. 

Overall, the accuracy presented by the IPF algorithm is slightly better than or equal to the QFM 

method reported in [23]. 

A similar trend is observed in the depth estimation as well (Table 2); as long as the sampling 

interval is below 10 nm (e.g. ProspecTIR sensor), the accuracy at DE90 is below 9% (relative to the 

original data) and an increase of sampling interval diminishes the accuracy to around 17%. 

Nonetheless, the reduction rate as well seems to be dependent upon the type and characteristics of 

the absorption feature under study. 
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4.4.6. The effect of interpolation 

The processing was repeated for HyMap-resampled data after applying a linear two point 

interpolation procedure as the optimum approach [29]. The results indicated that the WE95 of Feox 

could be improved by around 0.5 nm, whereas the WE95 of Carbonate declined by 2.2 nm. It seems 

that it is not appropriate to incorporate interpolation with the IPF algorithm, and when included, any 

possible improvement should be validated. 

4.4.7. The robustness of IPF against noise 

The IPF has a stable performance against added noise up to 100:1 SNR level. However, the RMSE, 

which was calculated using the difference between noise-free and noise-added signals, steadily 

increases with decreasing SNR. The RMSE of wavelength estimation is below ± 2.7 nm at SNR of 

150:1 for narrow AlOH and Carbonate features in the SWIR region. Indeed, at 500:1 level, the 

technique is able to estimate the feature wavelengths to an RMSE of ± 1.6 nm (Fig. 11a). Similar to 

sampling interval, the effect of noise varies among features, with the Feox being the mostly affected 

feature by noise. The RMSE of wavelength estimation for this feature at SNR of 400:1 is equal to ± 

4.2 nm. Such uncertainty is likely inherent to any broad absorption features (e.g. in the case of Feox, 

the FWHM is equivalent to 160 nm) and will probably arise in similar conditions. 

The depth parameter estimated by IPF suffers from a serious error. For instance, at SNR of 150:1, 

the error expressed by DE90 is 57%, 19%, and 74%, respectively, for Feox, AlOH, and Carbonate 

features (Fig. 11b). The high error for the Carbonate feature may be connected to its comparatively 

shallow feature; however, in general, this error is introduced by inaccurate estimation of the 

continuum line. The noise tends to elevate the touching points of the continuum, thus giving rise to 

depth overestimation. Further improvement in the continuum removal methodology (section 2) is 

required to tackle this problem.  

At each level of this experiment, a specific threshold for residual error (𝑡) was interactively 

determined and applied to the algorithm (section 4.8). 

 

Fig. 11. The effect of SNR on wavelength position and depth determination of Feox, AlOH, and Carbonate features using the IPF (float) 

algorithm. a) Variation of RMSE of wavelength position against SNR. b) Variation of DE90 (%) against SNR. The RMSE was calculated 

from the difference between estimated values at specific noise level relative to original data. 
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4.4.8. Setting the constants 

The two variants of ICF are sensitive to the range (𝑟) and threshold (𝑡) constant values (Eq. 5 and 

7). These constants can influence the number of iterations, as well as the accuracy of estimations. A 

low value for 𝑟 increases the likelihood of finding the best 𝜆𝑚𝑖𝑛, but it will demand more iterations. 

In contrast, a high value for it will reduce the processing time, but likely, the algorithm will not find 

the optimum wavelength position or miss it altogether. 

By using the parameters directly determined from the AlOH feature as a reference, we repeatedly 

changed the 𝑟 values between 0.05 ≤ 𝑟 ≤ 0.45 and recorded the average number of iterations 

(from 326 spectra), as well as the average error between estimated and direct wavelength position 

using the IPF algorithm. The 𝑡 value was set to 5 ×  10−4 and remained constant in all attempts. We 

deliberately increased the threshold to let the effects of 𝑟 to be easily seen. The plot of iteration and 

error against values of 𝑟 is illustrated in Fig. 12. In the case of the AlOH feature, the optimum value 

for 𝑟 using the IPF algorithm is 0.25. However, values between 0.1 ≤ 𝑟 ≤ 0.3 seems to be balanced. 

When we repeated the same assessment using the Feox feature and the IGF algorithm, relatively 

similar results (0.15 ≤ 𝑟 ≤ 0.35) were obtained. For this reason, we set 𝑟 for laboratory spectra 

equal to 0.2 and 0.25, respectively, for the IPF and IGF methods. The values used for resampled 

datasets (Figs. 8 to 10) were kept in the same range; though, we let them vary in each case to 

achieve the best results. 

 
Fig. 12. Diagram of the average iteration and average error at varying range (𝑟) levels. This plot was calculated using the AlOH feature 

and the IPF algorithm with a threshold set to 5 × 10−4. The results are the average of all the 326 spectral features. 

The threshold (𝑡) that is used with residual error (Eq. 7) to leverage the accuracy and terminate 

the iteration has dependency on noise level, as well as the sampling interval of the dataset. An 

analysis of 𝑡 against different SNR levels using the Feox feature and the IPF algorithm is shown in Fig. 

13. Obviously, they are inversely related, because with a decrease in SNR, a higher threshold value is 

needed to maintain the accuracy. While this diagram can provide some hints on how to set the 

threshold, in practice, different values should be evaluated. For instance, our experiment with the 

Feox feature resampled to the ProspecTIR resolution indicated that a lower 𝑡 does not necessarily 

give rise to greater accuracy (Fig. 8a). Ideally, an automated criterion could be used to estimate the 
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best initial 𝑡 value directly from the dataset – a feature we shall develop in future versions of the 

code. 

 

Fig. 13. The relationship between threshold (𝑡) and SNR level using the Feox and Carbonate features and the IPF algorithm. The 𝑟 

constant was set to 0.2 in all experiments. 

4.4.8. Other spectral parameters 

The described techniques are embedded in a package preliminarily named Automated 

Absorption-based Mineral Spectral Analyzer (AMISA), in which beside wavelength position and 

depth, enables the calculation of FWHM, area, and asymmetry of absorption features. In the case of 

FWHM, its whereabouts is estimated by half the depth (D/2) value on both sides of 𝜆𝑚𝑖𝑛; next, a line 

is fitted to each of these points and their immediate neighbors. The exact wavelengths are 

determined using the equations of these fitted lines, and then the absolute difference between the 

retrieved pairs is reported as FWHM. This strategy will ensure the accurate determination of the 

FWHM in varying sampling intervals and noise levels. The area of the absorption (𝐴) is calculated by 

the trapezoidal summation technique. The asymmetry (𝑆) is estimated using either area or width of 

the absorption (Eq. 10a and 10b), or the residual error of mirroring one-half of the absorption over 

the other half: 

𝑆𝑎 =  
2𝐴𝑙𝑒𝑓𝑡

𝐴𝑎𝑙𝑙
− 1   (10𝑎)  

𝑆𝑤 =  
2𝑊𝑙𝑒𝑓𝑡

𝐹𝑊𝐻𝑀
− 1   (10𝑎)  

where 𝐴𝑙𝑒𝑓𝑡 is the area of the absorption from left shoulder to 𝜆𝑚𝑖𝑛, 𝐴𝑎𝑙𝑙 is the total area of an 

absorption, and 𝑊𝑙𝑒𝑓𝑡 is the width of the absorption to the left of 𝜆𝑚𝑖𝑛 at half maximum depth [10]. 

The values of 𝑆𝑎 and 𝑆𝑤 range between -1.0 to 1.0, and in practice are strongly (𝑅2 > 0.9) 

correlated. In the case of mirroring, when an absorption is symmetric, the residual error is around 

zero and it escalates with increasing asymmetry. 
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The AMISA embodies means to analyze a given spectral data for the existence of an absorption 

and is able to return multiple absorption features. It is capable to process both spectral data from a 

spectrometer and HSI imagery and provide the spectral parameters as spreadsheet or image format. 

4.5. Conclusion 

A new methodology for the retrieval of wavelength position and depth from spectral data was 

proposed. Two variant of the technique including iterative polynomial and iterative Gaussian fitting 

(IPF and IGF) were introduced and tested. Instead of fitting the curve to the entire feature, these 

techniques attempt to minimize the fitting error merely around the desirable portion of the 

spectrum containing the minimum reflectance. The experiments proved that with high resolution 

data from a spectrometer, they can achieve accuracies better than ± 1.0 nm for the wavelength 

position and 1% for feature depth.  

Although the IGF proved superior in modeling an absorption feature and gave rise to lower 

residual error, the IPF showed advantages in terms of processing speed. With IPF, the initial fitting 

helps reveal the approximate location of a minimum and the later iterations optimize the results. 

This algorithm unifies all the available polynomial fitting techniques into a single unit capable of 

handling different absorption features present in VNIR–SWIR and probably LWIR range. In fact, the 

QFM method discussed in [23] can be deemed as a special case of IPF on which the number of bands 

has reached down to three. 

This method could be adapted to process hyperspectral imagery as well. Several parameters 

including the sensor’s sampling interval, noise level, and the intrinsic character (shape) of the 

absorption feature, however, will contribute towards the accuracy of wavelength position and depth 

estimations. Our experiment indicated that when the sampling interval is better than 10 nm, the IPF 

could estimate the wavelength position of absorption features to within ± 3 nm at WE95. To 

maintain this accuracy level for narrow features, the imaging system is required to have SNR better 

than 150:1. For broad features, however, the SNR should be equivalent to 400:1 or higher. The 

experiment with Feox feature showed that at such level, the wavelength position could be estimated 

to an RMSE of ± 4.2 nm. The IPF is able to provide a proper estimation of depth from HSI dataset as 

well. The estimation accuracy was demonstrated to be better than 16.5% at DE90, but this could be 

profoundly affected by noise. To sustain this level of accuracy, a noise-resilient continuum removal 

methodology would be demanded. 

The described ICF technique is embedded in a package called AMISA that as well allows the 

simultaneous calculation of width, area, and asymmetry. Further work is planned to equip this 

package with expert system rules to enable the identification of mineral species and predict possible 

mixtures using the quintuple spectral parameters. 
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Chapter 5 

A new insight into the microseepage-induced alterations in redbeds through 

detailed spectroscopic analysis
6
 
7
 

 

According to microseepage theory, hydrocarbon reservoirs leak to the surface and trigger an array 
of diagenetic physicochemical and mineralogical changes in overlying sediments. The induced 
alterations have been widely used for microseepage targeting, albeit, the ambiguities associated with 
such indirect techniques have hindered its usefulness in facies determination. This ambiguity is partly 
due to gaps in our understanding of the diversity of changes in microseepage environments. In this 
article, an integrated spectroscopic approach was adopted to investigate the details of diagenetic 
mineralogical changes induced by active microseepage systems over Alborz oilfield in the Qom 
district, Iran. For this aim, a large suite of samples collected from petroleum-affected zones was 
spectrally characterized within 350–2500nm wavelengths and then contrasted with unaffected 
samples from a control area using statistical approaches. Spectral analysis indicated that smectites 
(montmorillonite, nontronite), secondary illite/smectite (Al-rich), and Fe-rich chlorites constitute the 
clay alteration in affected zones. The high iron content of the redbeds coupled with the arid climates 
prevented the sediments from complete bleaching. The chemical weathering of the relict irons 
contributed towards the formation of secondary goethite and ferrihydrite. Consequently, besides 
bleaching, modifications in the mineralogy of iron oxyhdroxides is proposed as an indicator for 
microseepage characterization. It was also observed that pyrite could be weathered to gypsum at the 
expense of carbonate dissolution. The resulting sulphates (gypsum ± jarosite) along with secondary 
carbonates constitute an additional indication of diagenetic facies. The geochemistry of the redbeds 
as revealed by infrared spectroscopy was verified using X-Ray Florescence (XRF) analysis. 
Subsequently, based on the silica contents of the host-rocks, the microseepage-induced alteration 
assemblages were classified into two broad categories namely felsic (SiO2>60%) and mafic 
(45<SiO2<60%) lithofacies wherein the latter is represented by the collection delineated in this study. 
This research has implications for the characterization of microseepage systems using spectral 
remote sensing. 

5.1. Introduction 

According to microseepage theory, the caprocks above hydrocarbon (HC) traps are not perfectly 

efficient and thus light gaseous HCs can migrate to the surface over time. The long-term leakage of 

HCs coupled with bacterial activities feeding on them triggers an array of physicochemical and 

mineralogical changes in the stratigraphic column above petroleum accumulations (Saunders et al. 

1999; Schumacher 1996; Thompson et al. 1994). The bacterial and microbial oxidation of HCs and 

their by-products is believed to change the pH-Eh of the environment, thereby altering the 

mineralogy of the HC-affected soils and sediments. These changes broadly comprise clay alteration, 

carbonate and sulfide precipitations, and bleached facies (Al Shaieb et al. 1994; Donovan 1974). The 

array of changes in petroleum microseepage is considered to be highly significant for oil and gas 

exploration because it provides a context in which powerful surface exploration technologies could 
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be developed to help locate subsurface HC accumulations (Schumacher 2012). Moreover, any 

development in the methodology for microseepage characterization could benefit the environmental 

sciences, because it could be used to outline areas prone to methane emission to the atmosphere 

(Asadzadeh and Souza Filho 2017). 

The majority of the microseepage-induced alterations retain diagnostic absorption features within 

the Visible-Near Infrared (VNIR) or the Shortwave Infrared (SWIR) wavelengths (Hunt 1977). 

Correspondingly, over the years, close-, and far-range spectroscopic techniques have been employed 

to characterize the mineralogic indicators associated with microseepage systems (Asadzadeh and 

Souza Filho 2017). Segal et al. (1986) used spectroscopy to detect diagenetic changes in Wingate 

Sandstone cropping out at Lisbon Valley, Utah. The unaffected bedrocks in this area were observed 

to contain large amounts of illite and mixed-layer clays and iron oxides. In contrast, the bleached 

facies was characterized by the removal of hematite and a large amount of kaolinite that was then 

postulated to be derived from the dissolution of mixed layer clays (i.e. illite). It was indicated that the 

high proportion of kaolinite in the area could approximate the limits of subsurface HC pools (Segal 

and Merin 1989). Other studies, however, have noticed a reverse trend in clay mineralogy. For 

instance, the transition from hematite towards more goethite compositions was noticed to be 

associated with the disappearance of the kaolinite doublet feature in favor of more illitic clays 

(Bowen et al. 2007; Petrovic et al. 2008). 

Other studies have indicated a widespread carbonate cementation diagenetically formed over 

microseepage-affected areas (Petrovic et al. 2008; Schumacher 1996; Segal et al. 1986; Shi et al. 

2012). The species of carbonates is reported to be highly diverse, varying from calcite, ferroan 

calcite, and dolomite to ferroan dolomite, ankerite, and siderite (Schumacher 1996). The dominant 

carbonate mineralogy was indicated to correspond to relative concentrations of Ca, Fe, Mg, and Mn 

ions in the environment; however, calcite (Ca) constitutes by far the dominant carbonate mineralogy 

in diagenetic facies (Al Shaieb et al. 1994). Whereas carbonates typically occur as pore-filling cement, 

there have been cases in which gypsum was entirely replaced by secondary calcite (Donovan 1974). 

In contrast to other analytic techniques, infrared spectroscopy alone is capable of differentiating 

between various types of carbonates minerals (Gaffey 1987), hence a useful tool for microseepage 

research.  

Bleaching of ferric iron oxides is a common phenomenon observed in microseepage affected 

zones (Al Shaieb et al. 1994; Asadzadeh and Souza Filho 2017; Bowen et al. 2007; Donovan 1974; Fu 

et al. 2007; Schumacher 1996). This process involves the chemical dissolution of iron oxide coating 

(primary hematite) from redbeds through the reduction of ferric (Fe3+) iron into ferrous (Fe2+). The 

released iron is either removed from the system or is embedded into ferrous-bearing minerals 

comprising sulfides and ferroan carbonates. The bleaching accounts for most of the visual color 

changes in microseepage-prone areas, though is not exclusively correlative. Because spectroscopy is 

highly sensitive to iron oxide content (Balsam et al. 2014), it provides the best tool to delineate any 

changes in the mineralogic contents of iron oxides in altered facies. 

Even though spectroscopy has been incorporated in many microseepage remote sensing surveys, 

the technique has been utilized only to verify anomaly maps derived from multi-, and hyperspectral 

remote sensing through analysis of a handful of samples collected from affected zones (see 

Asadzadeh and Souza Filho (2017)). Thus far, very few studies have systematically investigated the 
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diagenetic changes in soils and sediments using reflectance spectroscopy and, consequently, the 

potential of this powerful tool for microseepage characterization has remained rather 

underexplored. Spectroscopy is a fast, non-destructive and cost-effective analytic tool. It is not only 

capable of identifying diagenetic mineralogy in microseepage systems, but also offers great potential 

for characterizing the physicochemistry and composition of minerals with reasonable accuracy. 

Spectroscopic outcomes can be readily integrated with remote sensing image data to collectively 

characterize the distribution, proportion, and composition of diagenetic minerals at outcrop to 

reservoir/basin scales and thereby facilitate the correlation of remotely sensed anomalies to 

microseepage phenomenon. 

In this article, we adopted an integrated spectroscopic approach to investigate the details of the 

mineralogical variations induced by an active microseepage system over the Alborz oilfield located in 

the Qom district, Iran. For this aim, a large suite of samples systematically collected from affected 

zones was spectrally characterized and then were contrasted with unaffected samples from a control 

area using a statistical approach.  

5.2. Geologic setting of the study area 

The Qom study area is located near the city of Qom, some 100 km to the south of Tehran, Iran, 

and encompasses an area of about 1400 km2. The area coincides with the western edges of a back-

arc basin known as the Central Basin of the Iranian Plateau. It includes a proven reservoir named 

‘Alborz’, which occurs in an anticlinal trap with axial length and width of ~50 and 6–8 km, 

respectively (Fig. 1). The Alborz oilfield, which was only productive for a short duration, has potential 

reserves that are estimated at 20–100 MMBLO (million barrels of crude oil). The reservoir consists of 

limestones of the Qom Formation sealed by thick evaporitic sequences of the late Miocene and 

buried beneath >2500 m of Oligocene sediments of the Upper-Red Formation (URF) (Berberian and 

King 1981; Morley et al. 2009). The URF, which hosts the Alborz microseepage system, contains a 

thick sequence of interbedded sandstone, siltstone, conglomerate, and mudstone (collectively called 

sandstone henceforth), with local layers of marl, shale, and gypsum (Amini 2001). The thickness of 

the units varies from millimetric laminated strata to beds of several meters. The URF sandstone is 

largely a lithic arenite as it is predominantly (>50%) composed of lithic fragments (Fig. 2a). Over the 

reservoir, the URF beds are commonly friable and thus have been very prone to erosion (Fig. 2b).  
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Fig. 1. Generalized geologic map of the study area superimposed on a shaded relief digital elevation model. The sampling sites are shown 

by cyan circles along 14 profiles crossing the Alborz oilfield and the Mil (control) area. 

 

Fig. 2. Photographs showing sandstone beds of the Upper-Red Formation (URF) in the Qom area. a) The unaffected sandstones over the 

Mil area off-field are hard and reddish brown. b) The URF beds overlying the Alborz oilfield are commonly yellowish gray, friable, and 

prone to cavities. 
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5.3. Materials and methods 

Fieldwork and sampling were carried out along carefully planned profiles perpendicular to 

stratigraphic variations (Fig. 1). To draw a fair comparison, we covered off-field areas with unaltered 

bedrocks in parallel with altered zones associated with the Alborz oilfield (Fig. 1). The off-field control 

area (also referred to as Mil area) was used to define the mineralogic background and cross-validate 

the diagenetic changes observed over HC-affected zones. Overall, we collected about 340 samples 

(280 from Alborz + 60 from Mil) along 14 profiles, resulting in an average of one sample per ~120 m 

profile length (Fig. 1). The samples covered a variety of lithofacies including fresh cuts from 

sandstone beds, siltstones, shales, conglomerates, and gypsum as well as the soil covers. The 

majority of the samples were collected from exposed areas, but vertical faces were also sampled. 

In the Lab, the entire sample suite was spectrally measured using a FieldSpec-4 spectrometer with 

1 nm sampling intervals between the 350–2500 nm range. The measurements were performed 

under artificial illumination of a contact probe; and then the acquired data were converted to 

reflectance using a Spectralon panel. For each record, 50 individual scans were averaged to suppress 

the contribution of instrumental noise. Consequently, >2400 spectra (2100 from Alborz + 320 from 

Mil) were collected and integrated into two separate spectral libraries for Alborz and Mil areas. The 

residual splice drift of the spectrometer was corrected by extrapolating the position of the channels 

immediately before and after the SWIR1 detector, using a pair of channels on either side of the array. 

The offsets were then applied to the VNIR and SWIR2 channels one-by-one to yield uniform spectral 

data over the entire range. The data were ultimately converted to absolute reflectance using the 

response of the Spectralon reference (Clark et al. 1990).  

All the noted corrections and subsequent processing were performed using the AMISA 

(Automated Absorption-based Mineral Spectral Analyzer) package developed in the Interactive Data 

Language (IDL, version 8.3) program. The package calculates the wavelength position of a given 

absorption feature (called ‘wavelength position’ henceforth) along with its depth, width, area, and 

asymmetry in a fully automated fashion (Fig. 3) (Asadzadeh and Souza Filho 2016). For a user-

specified spectral range, the algorithm fits a local continuum and then divides the data by it to yield a 

continuum-removed spectrum. When there is no absorption based on some predefined criteria, it 

returns no values for the spectral parameters. In case more than one absorption feature is present in 

the specified range, the algorithm returns multiple values for every spectral parameter (Asadzadeh 

and Souza Filho 2016). 
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Fig. 3. Spectral parameters retrieved from each absorption feature following a local continuum removal using the AMISA code: wavelength 

position of the absorption feature, depth of the absorption, the full-width at half maximum depth (FWHM) or simply the width, and areas to 

the left and right side of the minimum (used to calculate the absorption asymmetry). For details, see Asadzadeh and Souza Filho (2016). 

Visual inspection of the compiled library indicated that nine diagnostic absorption features are 

present in the VNIR–SWIR window, as illustrated in Fig. 4 and listed in Table 1. A spectral range was 

carefully defined for each absorption feature (see Table 1) and then used as inputs into an iterative 

polynomial fitting (IPF) algorithm to retrieve the desired spectral parameters. The threshold to end 

the iterations was varied from 1.5×10-4 to 2.5×10-4 (Table 1). For the ferrous iron feature, however, 

a fixed two-iteration polynomial fitting (PF) was employed to estimate the wavelength position to 

within an accuracy of ± 18 nm at 95% confidence level. To make the interpretation easier, the spectra 

of some dark samples (e.g. rich in manganese oxides) and a few malachite-bearing specimens were 

omitted from the collection. The outcomes of AMISA was a spreadsheet containing the noted 

spectral parameters for every individual measurement. The data provided by this procedure were 

then used to create histograms and scatter plots to address the inter-, and intra-relationships 

between different spectral parameters of the diagnostic absorption features. An example of a 

histogram generated in this way is illustrated in Fig. 6.  

Table 1. The major absorption features detected in the spectral data and mechanism of absorption. The fitted range defines the spectral 

range along which a local continuum is calculated and removal. RMSE denotes the thresholds used to end the iterative polynomial fitting 

(IPF). The last column represents the accuracy of wavelength position estimation at 95% confidence level. 

Feature Absorption mechanism 
Fitted Range 

(nm) 
Methodology 

Threshold 

(RMSE) 

Accuracy 

(nm) 

Ferric iron (Fe
+3

) 

Crystal Field transition 

600–800 IPF 1.7×10
-4

 ±1 

Feox (Ferric oxides) 776–1074 IPF 2.5×10
-4

 ±1.5 

Ferrous iron (Fe
+2

)
 

1000–1370 PF - ± 18 

OH/ H2O 
OH stretch (1

st
 overtone) 

H2O stretch 
1364–1560 IPF 2.0×10

-4
 ±1 

H2O H2O stretch + bend 1845–2060 IPF 2.0×10
-4

 ±1 

Al–OH OH stretch + Al–OH bend 2151–2276 IPF 2.0×10
-4

 ±1 

Fe–OH1 (Chlorite) OH stretch + Fe–OH bend 2231–2274 IPF 1.5×10
-4

 ±1 

Fe–OH2 (Nontronite) OH stretch + Fe–OH bend 2276–2306 IPF 1.5×10
-4

 ±1 

CO3 (Carbonates) C–O stretch (2
nd

 overtone) 2308–2387 IPF 2.0×10
-4

 ±1 
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Fig. 4. Representative examples of spectra collected over the Alborz oilfield and characteristics of the absorption features in the VNIR-

SWIR window. Gray bars indicate the spectral ranges analyzed by the AMISA (see Table 1 for the details). The names given to each 

feature (shown on top of the columns) are adopted to present the results. A spectrum from the Mil library (solid blue) is included to highlight 

the difference in the pattern and albedo of the spectra. 

To verify the geochemistry of the redbeds as revealed by spectroscopy, we performed X-Ray 

Florescence (XRF) analysis to a subset of 36 samples (28 for Alborz + 8 for Mil) aiming to determine 

the major-oxides compositions of the sandstones. The results are listed in Table 2. 

5.4. Results and discussion 

Visually speaking, the originally dark reddish gray sandstones (10R, 4/1 based on Munsell rock 

color chart) display varying color changes that range from light gray (5Y, 7/1), due to the bleaching of 

iron oxide (hematite) coatings, to pale yellow (5Y, 8/2), related to the neomineralization of iron 

oxyhydroxides or changes in the abundance of ferric minerals (Fig. 5). The changes in color are 

controlled by the iron oxide content, and the fabric of the original units. Beds with higher iron 

concentrations marked by dark reddish color (Fig. 5a) are transformed into moderate yellow facies 

(Fig. 5c), whereas beds with lower iron concentrations (Fig. 5b) are altered to light gray beds (Fig. 5d). 

The color transformation is also associated with changes in the morphology of the rocks. The hard 

and uniform strata (Fig. 2a) becomes friable and porous, hence very prone to erosion (Fig. 2b). This 

geomorphological change is presumably due to the dissolutin of sadstone cements. 
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Table 2. Major-oxide compositions (weight %) from XRF analysis for unaltered (Mil) and altered (Alborz) facies in the URF sandstones. 

Sample SiO2 Al2O3 Fe2O3 TiO2 MnO MgO CaO Na2O K2O P2O5 LOI SO3 Total 

Mil-25 49.43 17.07 6.41 0.720 0.115 1.93 6.92 7.14 0.77 0.113 8.74 - 99.4 

Mil-31 48.05 16.53 6.40 0.674 0.108 2.78 7.20 7.14 0.76 0.114 9.79 - 99.5 

Mil-55 49.59 18.36 6.34 0.687 0.108 2.83 5.50 8.45 0.43 0.114 7.88 - 100.3 

Mil-61* 36.79 8.72 3.54 0.347 0.053 1.62 23.43 1.11 1.52 0.093 22.29 - 99.5 

Mil-64 47.25 17.33 7.57 0.732 0.137 3.68 4.77 8.19 0.67 0.132 9.93 - 100.4 

Mil-73 49.26 16.50 7.49 0.816 0.120 2.66 6.26 6.34 0.73 0.148 9.45 - 99.8 

Mil-84 48.70 18.14 7.99 0.674 0.142 3.17 7.25 5.50 0.34 0.133 7.64 - 99.7 

Mil-92 50.09 18.27 6.40 0.571 0.112 2.77 4.97 9.15 0.38 0.071 7.06 - 99.8 

Alb-16 54.28 12.33 3.74 0.437 0.080 1.18 11.15 3.22 1.47 0.099 11.30 - 99.3 

Alb-25 51.80 11.33 4.18 0.451 0.102 1.80 13.22 2.27 1.48 0.082 13.18 - 99.9 

Alb-29 53.49 12.32 4.10 0.535 0.088 1.44 11.83 3.20 1.40 0.107 10.97 - 99.5 

Alb-32 51.20 11.83 3.79 0.503 0.096 1.23 13.54 3.04 1.29 0.116 12.68 - 99.3 

Alb-38 50.98 10.71 3.91 0.500 0.116 1.18 14.13 3.49 1.06 0.066 13.64 - 99.8 

Alb-61 55.76 10.25 3.02 0.358 0.106 1.10 12.67 3.06 1.24 0.043 12.35 - 100 

Alb-73 55.81 11.84 4.30 0.499 0.081 1.36 10.43 3.37 1.31 0.098 10.13 - 99.2 

Alb-80 52.31 10.75 3.82 0.469 0.115 1.05 13.47 3.76 1.03 0.048 13.07 - 99.9 

Alb-85 48.17 9.93 3.67 0.461 0.108 1.20 16.27 3.17 1.02 0.063 14.66 1.16 99.9 

Alb-88 54.22 11.23 3.75 0.428 0.097 1.68 12.33 3.42 1.19 0.048 11.52 - 99.9 

Alb-110 50.01 9.33 3.43 0.517 0.153 1.38 16.34 1.97 1.09 0.099 15.17 - 99.5 

Alb-130 48.53 15.26 7.07 0.624 0.136 2.35 9.22 6.98 0.50 0.091 9.11 - 99.9 

Alb-131 51.29 10.71 4.62 0.557 0.116 1.14 13.64 3.35 1.07 0.083 13.31 - 99.9 

Alb-150 53.80 10.70 4.46 0.544 0.090 1.44 12.49 2.54 1.37 0.059 12.37 - 99.9 

Alb-156 50.06 14.51 5.62 0.593 0.103 2.09 9.51 5.17 1.01 0.112 10.73 - 99.5 

Alb-162 51.45 11.89 4.51 0.542 0.103 1.27 12.60 3.35 1.41 0.105 12.29 - 99.5 

Alb-178 34.39 7.56 2.90 0.335 0.059 1.64 17.54 5.73 1.04 0.040 16.07 12.44 99.7 

Alb-186 45.94 9.73 3.41 0.449 0.129 1.10 17.50 2.95 0.98 0.053 16.10 0.12 98.5 

Alb-194 55.78 11.31 3.27 0.366 0.076 1.11 11.78 3.80 1.20 0.046 11.13 - 99.9 

Alb-198 52.51 10.78 4.75 0.479 0.104 1.62 12.54 3.87 0.96 0.059 12.23 - 99.9 

Alb-201 40.90 9.41 6.67 0.897 0.154 0.98 17.84 2.92 0.85 0.049 12.95 5.85 99.5 

Alb-217 61.99 10.96 4.69 0.677 0.096 1.17 7.91 3.12 1.68 0.097 7.18 - 99.6 

Alb-231 54.13 10.98 3.77 0.462 0.093 1.26 12.17 3.49 1.21 0.065 12.24 - 99.9 

Alb-238 50.37 10.74 3.99 0.498 0.116 1.26 14.54 3.18 1.08 0.061 14.04 - 99.9 

Alb-243 48.86 9.99 6.35 0.927 0.192 1.32 14.80 3.00 1.05 0.052 13.36 - 99.9 

Alb-253 51.68 10.76 6.75 1.038 0.115 1.63 12.81 2.51 1.26 0.114 10.56 - 99.2 

Alb-257 46.66 10.17 3.06 0.336 0.083 0.97 15.47 3.76 0.93 0.032 12.00 6.4 99.9 

Alb-282 48.69 10.02 4.11 0.564 0.151 1.66 16.08 2.61 0.94 0.056 14.99 - 99.9 

Mean: Mil 48.91 17.46 6.94 0.70 0.12 2.83 6.12 7.42 0.58 0.12 8.64 - - 

Mean: Alb 50.41 10.90 4.32 0.53 0.11 1.39 13.70 3.36 1.16 0.07 12.81 5.19 - 

* This sample was collected from the alteration halo around a macroseep, hence was considered along with Alborz samples. 

5.4.1. Diagenetic mineralogy within the VNIR range 

The original redbeds in the Mil area are characterized by a broad absorption feature centered at 

~880 nm, corresponding to hematite coating (see Fig. 5a and 6), whereas the specimens collected 

from petroliferous zones are mainly associated with a shift towards longer wavelengths (between 

~890–930 nm) that is interpreted to be representative of goethite (Sherman et al. 1982) (Fig. 6a). 

The goethite-rich facies, which is exclusive to petroliferous areas, is presumably linked to the 

transformation of hematite to goethite in the environment (Schwertmann 1971). In the reducing 

condition imposed by microseeps, hematite is known to dissolve by transformation into ferrous iron. 

In vadose zones, in which both oxygen and percolating meteoric water are present in high quantities, 

goethite (FeOOH) can precipitate from ferrous iron through oxidation and hydrolysis (reaction 1) or 

by the conversion of other metastable oxyhydroxides (Cornell and Schwertmann 2003).  
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Fe2+ + ¼ O2 + 1.5 H2O →  FeOOH  + 2H+     (1)  

The pervasive and evenly distributed goethite over the petroleum deposit indicates that the 

reducing environment near the surface has been overprinted by oxidation promoted by chemical 

weathering. The dominance of goethite could also be indicative of a high concentration of carbon-

rich organic compounds in the environment (Schwertmann 1971). 

 

Fig. 5. Photographs exhibiting the variations in color of the URF sandstones in hand specimens. a-b) unaltered, and c-d) altered bedrocks. 

The changes in color are controlled by the iron oxide content (and the fabric) of original units. Beds with higher iron concentrations, marked 

by dark, reddish color (a), are transformed into a yellowish rock (c). Beds with lower iron concentrations (b) are altered to light gray facies 

(d). The scale in (a) applies to all photographs. 

An alternation between oxidation-reduction phases is reported to favor the formation of 

maghemite in soils (see Ellwood and Burkart (1996) and the references therein). Maghemite and 

ferrihydrite display distinctive absorption features respectively at ~955 and ~915 nm (Sherman et al. 

1982). The wavelength positions exhibited in Fig. 6a is confined to 925 nm, hence are not evidential 

of maghemite presence. However, when ferrihydrite is present, most likely it is physically mixed with 

goethite or hematite (Cornell and Schwertmann 2003) and thereby, is not easily distinguished by 

reflectance spectroscopy. We reckon that the formulation of ferrihydrite proportion in intimate 

mixture with goethite requires some further spectral simulation experiments, which is out of the 

scope of this work. 

Goethite is also characterized by a distinctive absorption feature centered at ~668 nm (Sherman 

et al. 1982). The wavelength positions observed within the 600–800 nm window, however, extend 

across a wider range, thereby implying that the features are not solely related to goethite (Fig. 7a). 

Apart from goethite, four additional minerals are known to have diagnostic absorption features 

between 600–800 nm wavelengths: nontronite (at ~650 nm), hematite (subtle feature below 660 

nm), jarosite (at ~665 nm), and Fe-chlorite/chamosite (at ~720 nm) (Bishop et al. 2008; Hunt and 

Ashley 1979). Correspondingly, the features identified below 660 nm could be related to nontronite 

and/or hematite and those beyond 690 nm to chlorite. Since nontronite constitutes a subtle 
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component of the samples (interpreted from the SWIR data discussed in section 4.2), it is unlikely 

that its iron feature contributes much in this range; therefore, the wavelength positions should be 

assigned to hematite (or a mixture of hematite + goethite). The jarosite feature overlaps with 

goethite in the 900 nm range and, thus, is not distinguishable in the histogram. Seemingly, there are 

intermediate phases that arise from a physical mixture of these minerals, particularly between 

goethite and chlorite. Goethite by far is the most dominant mineral in this range, for the mean of the 

histogram ( = 675 nm) closely corresponds to its wavelength position (Fig. 7a). It is worth 

mentioning that due to the presence of carbonates, lepidocrocite (the polymorph of goethite) was 

considered to be unlikely to form in the system (Cornell and Schwertmann 2003) and, consequently, 

was dismissed from the spectral processing. 

 

Fig. 6. a) Histogram of the wavelength position of Feox (ferric oxides) absorption feature extracted from the Alborz spectral library. n, , 

and  represent the number of contributed features, the data mean, and standard deviation, respectively. b) Continuum-removed spectra 

typifying short (hematite-rich), medium, and long (goethite-rich) endmembers of the Feox absorption feature wavelength position. The 

numbers denote the calculated wavelengths positions. A Sav-Gol filter was used to smooth the spectra. 

Aluminum can substitute both hematite and goethite and shift their wavelength position by up to 

30 nm (from 860 to ~875 nm for hematite and from 895 to ~930 nm for goethite) (e.g. Buckingham 

and Sommer (1983)). On this basis, we deduced that primary hematite in the redbeds is Al-

substituted by as much as 20 mole percentage aluminum. Regarding the secondary goethite, it is not 

straightforward to estimate its substituted Al percentage; however, the restricted range of goethite 

wavelength position (confined between 900–925 nm ranges) implies that in the case of substitution, 

the amount should be very low. In fact, if we consider the wavelengths between 900–910 nm ( + 

1; see Fig 6a) to be representative of goethite in this area, then the Al-substitution results to be <5 

mole percent (Buckingham and Sommer 1983). In other words, the secondary goethite is ordered 

and well-crystalline. Further investigation is required to develop Al-substitution in goethite (and 

hematite) into an indicator for the discrimination of secondary iron oxides and indeed for 

microseepage characterization. 

In a microseepage system similar to Alborz, wherein iron is in excess (Fe2O3 > 6% in unaltered beds 

vs. < 4% in altered units; see Table 2), siderite or ankerite are likely to form as ferroan carbonate (Fe 

content: siderite > ankerite > ferroan dolomite). Such Fe-carbonates should be revealed by diagnostic 

ferrous features centered, respectively, at ~1270 and ~1050 nm (Gaffey 1987). However, the 

analysis of the Ferrous spectral range (see Fig. 4) demonstrated that the wavelength positions occur 

between 1050–1230 nm (with the mean at around 1140 nm; Fig. 7b) that is characteristic of chlorite 
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rather than Fe-carbonate. Most likely, any possible ferroan carbonates in the system have been 

chemically weathered into iron oxyhydroxides (i.e. goethite) by the following reaction: 

FeCO3 + ½ H2O + ¼ O2      FeOOH  +  CO2    (2) 

       Siderite                                     Goethite 

The subtle feature was interpreted to be due to Ferrous-rich chlorite, because the derived 

wavelengths are confined between 1050–1230 nm, thereby closely correspond to chlorite that has 

absorptions centered at the 1050–1160 nm range. It is worth mentioning that adsorbed water 

exhibits a sharp absorption near 1135 nm due to fundamental O–H stretching and bending (Hunt 

1977) that potentially could overlap with ferrous features. However, the meaningful correlation 

between ferrous and Fe–OH feature (see Fig. 10d) indicates that the observed absorptions in this 

range originate mainly from chlorite. 

5.4.2. Diagenetic mineralogy within the SWIR range 

The occurrence of chlorite is also corroborated by additional Fe–OH absorption feature at ~2253 

nm (Bishop et al. 2008). As is illustrated in Fig. 7f, the majority of the microseepage-affected 

specimens retain an absorption that stretches between 2245–2260 nm wavelengths. There are 

several lines of evidence that support the interpretation of this feature in favor of chlorite rather 

than palygorskite, which happens to have an absorption feature at similar position: (i) palygorskite’s 

OH/water absorption occurs at 1421 nm but, in the histogram (Fig. 7c), very few spectra correspond 

to this wavelength; (ii) the H2O absorption for palygorskite occurs at around 1918 nm, whereas in the 

histogram displayed in Fig. 7d absorption features within such wavelengths are almost absent 

(Pontual et al. 2008). 

The presence of clay minerals was confirmed by considering four characteristic absorption 

features namely Al–OH, Fe–OH, OH, and H2O within the SWIR window (Fig. 7c-g). The rounded singlet 

absorption at around 2205 nm (the Al–OH histogram in Fig. 7e) was interpreted to be related to Al-

smectites (montmorillonite) that is known to hold a diagnostic absorption feature at the same 

wavelengths. Montmorillonite is differentiated from other white micas through the absence of an 

additional absorption at ~2345 nm and the OH and H2O absorptions centered at 1904 and ~1412 

nm, respectively (Bishop et al. 2008; Hunt 1977). The subtle feature at ~2290 nm arising from Fe–OH 

bond was assigned to nontronite, which is a Fe endmember of the smectite series (Bishop et al. 

2008) (Fig. 7g). Likewise, nontronite retains deep water absorptions at 1908 and ~1415 nm, which is 

characteristic of smectites (Fig. 7c-d). Remarkably, the spectroscopic analysis indicates that no 

kaolinite exists in neither the HC-affected nor unaltered rocks of the Qom region. The situation in 

which kaolinite is absent in either environment is barely reported in the literature, but presumably is 

not uncommon (Fu et al. 2007; Perry and Kruse 2010). 

The other mineral that substantially contributes to aforementioned features is gypsum. The 

gypsum has multiple features in the SWIR range, including a triplet at around 1490 nm, a singlet at 

1750 nm, a broad water band at 1945 nm, and a doublet centered at ~2215 nm (Bishop et al. 2014) 

(Fig. 7c-e). The latter was observed to overlap with the Al–OH feature at a longer wavelength, albeit, 

based on the wavelength position of Al–OH against H2O, we interpreted the features beyond ~2210 

nm to be mostly due to gypsum (see Fig. 7c-e and Fig. 14 for the details). 
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The few samples containing jarosite were identified by a characteristic absorption feature at 

~2265 nm (Hunt and Ashley 1979) (Fig. 7f). Jarosite was only present in some iron-rich localized 

veins among the URF beds and was missing from the background lithology of the area. It seems the 

high concentration of calcite has maintained the pH neutral/alkaline and thus prevented the 

development of jarosite in the environment. In extreme cases, however, jarosite was shown to occur 

as a prevalent alteration product in microseepage environment (Perry and Kruse 2010).  

Our spectral analysis also revealed that calcite (with a feature at ~2340 nm) is the dominant 

carbonate mineral present in the samples. However, trace amounts of ankerite (with absorptions 

between 2332–2338 nm) was also recorded in the samples (Fig. 7h). Even though calcite dramatically 

increases in the samples collected above the reservoir, it has not contributed much in the re-

cementation of the sandstones, for the carbonate-rich facies are commonly friable and highly eroded 

(e.g. Fig. 2b). In contrast, where gypsum is present, it substantially takes part in the cementation of 

the units, hence forms the local highlands and cliffs. In such circumstances, gypsum shows a negative 

correlation with calcite abundances. Presumably, gypsum has precipitated at the expense of calcite 

dissolution. We speculate that the weathering of probable pyrite in nonacidic conditions imposed by 

the presence of calcite (along with oxygen and water) could give rise to more neutral minerals such 

as gypsum and ferric hydroxides, according to the following reaction (Bethke 2008; Ritsema and 

Groenenberg 1993): 

FeS2 + 2CaCO3 + 11/2 H2O + 15/4 O2      Fe(OH)3  +  2CaSO4 . 2H2O + 2CO2     (3)  

Pyrite     Calcite                                        ic hydroxide   Gypsum 

Considering this reaction, even though pyrite is oxidized, due to the buffering effect of calcite, the 

pH will not drop below 6 (Bethke 2008). However, where the oxidizing situation is pervasive and 

there is no carbonate, the oxidation of pyrite can trigger the precipitation of metastable, pH-sensitive 

iron sulphates, including jarosite, copiapite, melanterite, and schwertmannite. Subsequent oxidation 

of this array could produce a range of ferric oxyhydroxides, comprising ferrihydrite, goethite, and 

eventually hematite (Asadzadeh and Souza Filho 2017; Elwood Madden et al. 2004). 
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Fig. 7. a) Histograms of the wavelength position of different absorption features extracted from the Alborz spectral data overlaid with 

interpreted mineralogy. a) Ferric iron feature. b) Ferrous iron feature. c) OH/H2O features. In this plot, the feature of jarosite at ~1473 nm 

was excluded for clarity. d) H2O feature. e) Al–OH feature. f) Fe–OH(1) feature. g) Fe–OH(2) feature. h) Carbonate feature. n, , and  

represent the number of contributed features, the mean of the data, and the standard deviation, respectively. The acronyms are Goet: 

goethite, Hem: hematite, Mont: montmorillonite. The ‘white mica’ comprises montmorillonite and mixed-layer illite/smectite clays. 
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Reaction (3) can potentially explain (i) the unusual abundance of gypsum as a secondary cement 

in the altered facies, (ii) the complete absence of pyrite in outcrop studies, (iii) the remarkable excess 

of ferric irons, and (iv) the scarcity of calcite in gypsum-dominated samples. The presence of gypsum 

and ferric hydroxides indicate the extensive weathering of the host-rocks in the area and, indeed, an 

increase in the pH level of the soils and sediments (Elwood Madden et al. 2004). The presence of 

gypsum as a diagenetic mineral in seepage system is also reported by Shi et al. (2012) and Salati et al. 

(2014). 

Even though gypsum was detected only in a limited number of samples through its diagnostic 

absorption feature (Fig. 7c-e), the plot of the H2O wavelength position against its asymmetry denotes 

that the mineral is pervasive as a minor component. This is deduced from the fact that the shift in the 

water feature towards longer wavelength makes the feature more asymmetric, attesting the subtle 

presence of gypsum (Fig. 8). 

 

Fig. 8. Scatterplot exhibiting the variation of the wavelength position of H2O at around 1900 nm against its asymmetry. The introduction of 

gypsum causes the feature to shift toward longer wavelengths and become more asymmetric.   

5.4.3. The paradox of iron oxides abundances 

The plot of Feox wavelength against its depth and asymmetry show that the transformation of 

iron oxides from hematite to goethite is associated with an unusual increase in the depth of the 

absorption feature (Fig. 9a) along with a decrease in the feature asymmetry (Fig. 9b). The decrease in 

the asymmetry (corresponding to an increase in the area of the right wing of the feature; see Fig. 3) 

could be linked to either overlapping ferrous feature (i.e. chlorite) or higher albedo of goethite 

beyond 1100 nm. The increase in the depth of the absorption is proportional to a rise in the amount 

of ferric iron. On the other hand, the formation of secondary goethite has been associated with iron 

oxide enrichment. This unusual tendency, which is in contrast to the established pattern in 

microseepage model (i.e. bleaching and iron oxide depletion), could presumably be due to (i) the 

introduction of iron from upper strata into the underlying layers by percolating meteoric water and 

then precipitation as meta-stable iron oxides; (ii) the oxidation of detrital magnetite or other 

secondary ferrous minerals noted above (eq. 2-3) into ferric iron during multiple oxidation-reduction 

phases; (iii) modification in the spectral behavior of the samples (e.g. the continuum slope or total 

reflectance) during the transformation from hematite to goethite; (iv) a decline in the amount of Al 

substitution in goethite lattice compared to Al-rich hematite, hence deepening the absorption 

feature; (v) a decrease in the particle size of iron oxides. 
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The first hypothesis is incoherent, because the bulk-rock geochemistry revealed by XRF analysis 

indicated that, on average, around 2.5% of the total Fe2O3 of the redbeds is depleted (Fe2O3 drops to 

<4% in affected facies; see Table 2 for more details). Moreover, the concentration of TiO2 decreases 

together with Fe2O3, (Table 2) presumably indicating that Ti is released from titanomagnetite (Fe3-

xTixO4) grains. Concerning the second and third assumptions, our calculations (considering the 

maximum reflectance at ~1350 ± 70 nm) showed that the albedo of Alborz spectra is, on average, 

30% higher than the Mil spectra (compare, for example, the Mil68 spectrum to the remaining spectra 

in Fig. 4). The increase in the albedo of the altered rocks could partly be related to the accumulation 

of clays; however, we believe the depletion of opaque minerals, including magnetite, is similarly 

important. Regarding the forth assumption, as discussed earlier, the amount of Al-substitution in 

secondary goethite in the HC-affected area is much lower than hematite (<5 mole %). Because Al-

substitution can modify both the depth and wavelength position of goethite (Scheinost et al. 1999), a 

well-crystalline goethite gives rise to a deeper absorption and is likely to bring about a decrease in 

the asymmetry of the feature, as documented in Fig. 9a-b. The fifth and more plausible explanation, 

however, is a decrease in grain-size of iron mineralogy that is shown to be associated with a dramatic 

increase in the depth of the 900 nm absorption feature (e.g. Ramanaidou et al. (2008)). Overall, we 

believe a combination of these factors (grain-size effect alongside changes in the Al-substitution and 

albedo) should be responsible for the unusual trend documented in this study. To convert the ferric 

absorption depth into a direct measure of iron oxides abundances, one should develop some sort of 

corrections for the grain-size effects. 

 

Fig. 9. Scatterplots exhibiting the variation of the wavelength position of the Feox feature against its depth and asymmetry. The step at 900 

nm in (b) could be indicative of a change in the mineralogy of the sample from a hematite + goethite mixture into a dominant goethite 

phase. 

5.4.4. The co-occurrence of diagenetic minerals  

We investigated the co-occurrence of diagenetic minerals by applying statistical analysis to the 

wavelength position and depth of their diagnostic absorption features (Fig. 10). The weak negative 

correlation between Al–OH and goethite (Feox) wavelength positions shown in Fig. 10a provides an 

additional indication for a subtle Al-substitution in goethite, corroborating the abovementioned 

deduction. This trend could also suggest that goethite mainly coexists with Al-rich species of white 

micas characterized by shorter absorption wavelengths. The depth of the Al–OH feature has no 

meaningful correlation (zero correlation; not shown here) with Feox wavelength position. This means 

that the clay alteration/transformation is not interrelated with specific goethite concentration (recall 
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that the wavelength position of Feox feature defines the proportion of goethite to hematite in a 

binary system (Ramanaidou et al. 2008)), and therefore, it forms in a wide range of conditions 

alongside goethite. 

 

Fig. 10. Scatterplots exhibiting the relationships between different spectral parameters of diagnostic absorption features. a) the wavelength 

position of Feox (ferric iron) against the wavelength of Al–OH absorption. b) The wavelength position of carbonate feature against Al–OH 

absorption depth at 2200 nm. c) the wavelength position of Feox against the depth of Fe–OH (chlorite) absorption feature depth at 2245 

nm. d) the wavelength position of ferrous feature against the depth of Fe–OH absorption feature depth. The legend in (c) applies to (d) as 

well. 

One of the remarkable relationships observed among the spectral parameters was between the 

wavelength position of carbonate and Al–OH absorption depth, on which an increase in clay content 

pushes the feature towards longer wavelengths (Fig. 10b). We interpreted this positive relationship 

to be due to a second Al–OH feature beyond 2340 nm (Hunt 1977) overlapping with the carbonate 

feature in the same region. The development of this feature indicates that the secondarily formed 

clays in microseepage system tend to be mixed-layer illite/smectite. The composition of Al–OH clays 

is further discussed in section 4.6. 

There is a positive correlation between the Feox wavelength position and the Fe–OH1 (chlorite) 

absorption depth (Fig. 10c), indicating that the transformation of hematite into goethite is associated 

with chlorite formation. This could imply that both goethite and chlorite originate from the same 

source, which is the reduced ferric iron produced in the microseepage system. Furthermore, the co-

occurrence of goethite and chlorite indicates that the secondary chlorite in the environment is 

relatively iron-rich. As a reference, we have also included chlorites detected over the Mil area in Fig. 
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10c. Obviously, the noted relationship is typical of the microseepage-affected zones and the samples 

from the control area do not show a similar trend. Ultimately, we observed a meaningful negative 

correlation between the chlorite absorption depth and the ferrous feature (Fig. 10d). This correlation 

further supports the interpretation of the ferrous feature in favor of chlorite rather than Fe-

carbonates. Moreover, it indicates that as the Fe–OH(1) absorption depth increases, the ferrous 

feature shifts towards shorter wavelengths, possibly implying that the higher abundance of chlorite is 

interrelated with Fe-rich species manifested by shorter-wavelength ferrous features. The few 

chlorites identified in the Mil samples are scattered at the long-wavelength end and do not exhibit a 

similar trend. The composition of chlorite is further discussed in section 4.6. 

To illustrate the similarity and interrelationships between the delineated mineralogy, we 

conducted cluster analysis by using the depth of the corresponding absorption features of a subset of 

spectra wherein all the nine features were already present. The result is shown in Fig. 11. On this 

basis, three different groups could be defined including (i) carbonates (CO3), Feox (ferric iron), Al–OH, 

(ii) chlorite (Fe–OH1), nontronite (Fe–OH2), ferrous iron, goethite, and (iii) OH and H2O as two distant 

clusters. The dendrogram displays a cluster of carbonates, Feox, and aluminous clays together, 

indicating that they originate from the same process comprised in the microseepage-induced 

alteration. The second cluster encompasses iron-rich minerals consisting of chlorite (chlorite + 

ferrous ± ferric feature) and nontronite. 

 

Fig. 11. Dendrogram showing clustering of the depth of the absorption features over the microseepage affected zones. The height of the 

graph represents the Euclidian distance between the absorption features. A subset of the samples wherein all the feature depths are 

present was used to draw this graph. See Fig. 7 and Table 1 for details about the labels. 

5.4.5. The uniformity of the alterations 

To investigate how distinctive the features are, we draw a statistical comparison between the 

samples from microseepage-affected zones and those of the control area (see Fig. 1 for the location) 

using the student’s T-test. To simplify the comparison, the test was restricted to the wavelength 

position and depth of the diagnostic absorption features only. The results are reported in Table 3 and 

illustrated in Figs. 12-13. The same results are displayed in map format in Figs. 17 and 18 (see section 

4.7). 

Table 3. Comparison of wavelength positon and absorption depth over microseepage-affected and control areas using the statistical T-test 

(assuming equal variances). The checkmark (✔) shows a meaningful difference between the pair, whereas the cross (Χ) indicates a 

negligible difference.See Table 1 for more details about feature labels. 

Feature Ferric  Feox Ferrous OH H2O Al–OH Fe–OH1 Fe–OH2 Carbonate 

Wavelength positon ✔ ✔ ✔ ✔ Χ ✔ ✔ ✔ ✔ 

Absorption depth Χ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
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Fig. 12. Bar-chart representation of the differences in the wavelength position of particular absorption features from microseepage-affected 

(Alborz) and control (Mil) areas. The bar and whisker represent the mean and one standard deviation, respectively. 

 

Fig. 13. Bar-chart representation of the differences in the absorption depth of particular spectral features from microseepage-affected 

(Alborz) and control (Mil) areas. The bar and whisker represent the mean and one standard deviation, respectively. The percentages 

printed on the bars represent the proportion of that specific feature in the sample collection. 

The analysis revealed that except the depth of the ferric iron feature (occurring between 600–800 

nm) and water, other spectral parameters in rocks over the oilfield show meaningful differences 

from their counterparts in the control area. More specifically, there was a difference of more than 8 

nm, on average, in the wavelength position of the Feox feature (Fig. 12a), >30 nm in the wavelength 

of the ferrous iron (Fig. 12b), >10 nm in the wavelength of H2O feature (Fig. 12c), and >5 nm in the 

wavelength of chlorite (Fig. 12d) between the two datasets. Regarding differences in the abundance 

of minerals as characterized by the absorption depth, we observed that although the pair of Ferric 

(goethite) features show no meaningful differences (Table 3), the distribution of the mineral within 

the control area is less than half of the petroliferous zones (Fig. 13a). In contrast, the Al–OH clays and 

chlorites absorptions were shown to be, respectively, >80% and >75% more pronounced in the 
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affected area (Fig. 13b-c). The increase in the proportion of clays in the altered sandstones may 

indicate that the secondary illite-smectites formed after feldspars/plagioclase alterations (see next 

section). Albeit the difference for the calcite declines to 15% only, the carbonates are present in only 

40% of the samples of the control area, while it is present in virtually all the specimens collected over 

the oilfield (Fig. 13d). 

As regards the relative proportion of the minerals in the microseepage environment, the Feox 

absorption is by far the dominant feature amongst the collected spectral data. Based on the relative 

abundances derived from spectroscopic analysis, the diagenetic minerals could be sorted as follows: 

goethite > smectite-illite ≥ chlorite ≥ calcite > nontronite > gypsum ≫ hematite ≫ jarosite (see the 

number of spectra “n” in Figs. 6 and 7). 

5.4.6. Composition and crystallinity of clays 

To explore the chemical composition and crystal structure of clay minerals, we plotted the 

wavelength position of the Al–OH feature against the crystallinity of white micas calculated by 

ratioing the absorption depth of the Al–OH to its nearby water feature at 1900 nm (Fig. 14). This plot 

could facilitate the discrimination of smectites from mixed-layer illite/smectite, because the higher 

the crystallinity of the white micas, the deeper the Al–OH feature against H2O and, hence, the 

greater the calculated index (Pontual et al. 2008). In this plot, smectites could be characterized by 

wavelength ranges between 2200–~2210 nm and a crystallinity index <0.3, whereas the mixed-layer 

illite/smectite clays are outlined by values >0.3. Gypsum’s feature coincides with the same 

crystallinity index as smectite; however, it occupies wavelengths longward the ~2210 nm. On this 

basis, the majority of clays from the Mil area are smectites. A large part, however, has near zero 

values and hence lay outside the defined clusters (Fig. 14; see also Fig. 17).  

 

Fig. 14. Scatterplot showing the crystallinity of white mica calculated by the ratio of the Al–OH absorption depth to the water depth at 1900 

nm and plotted as a function of Al–OH wavelength position. Three major categories are recognized: smectite, mixed-layer illite/smectite, 

and gypsum that happens to have an absorption at the same wavelength range. 



137 

 

As noted earlier, both the compositions and abundances of white micas and chlorites vary 

between unaltered to altered facies. To better understand these changes, we plotted the 

concentration of MgO and K2O, respectively, against the Fe–OH and Al–OH spectral features (Fig. 15). 

The three endmembers of chlorites, namely Mg-, Mg/Fe-, and Fe-rich species, display their Fe–OH 

minimum at ~2245, ~2253, and ~2261 nm, respectively (Bishop et al. 2008). In the plot of Fig. 15a, 

the samples from the Mil area occur at around ~2247 nm and comprise the highest MgO content, 

whereas the HC-affected specimens tend to occur at wavelengths between 2250–2260 nm and show 

lower MgO concentration, thereby corresponding to Fe-rich chlorites. Remarkably, the abundance of 

chlorite (exhibited by the size of the symbols) shows a similar tendency and increases towards longer 

wavelenths (Fig. 15a; see also Fig. 18). Chlorite has been reported to occur in other microseepage 

environments (e.g. Fu et al. (2007)), however, thus far there was no account of its compositional 

variations in the system. In the literature, the transition from Mg-, to Fe-rich chlorite was only 

notified, to best of our knowledge, in bleached sandstones from onshore wells (Weibel 1998). 

The white micas show a positive correlation with K2O content and increases from unaltered to 

altered rocks (Fig. 15b). The extra potassium, which at least partly replaces the structural water and 

fills the interlayer sites, increases the crystallinity of the white micas (as discussed above) and brings 

about K-rich dioctahedral clays, including illite or mixed-layer illite/smectite. These secondary clay 

minerals are characterized by wavelength positions between 2207–2202, which in comparison to the 

Mil samples occur at shorter wavelengths and thus correspond to Al-rich white micas (Duke 1994) 

(Fig. 15b; see also Fig. 17). 

 

Fig. 15. a) Correlation of Fe–OH wavelength position against MgO (wt. %). The size of symbols represents the relative abundance of 

chlorite derived from the Fe–OH(1) absorption depth. b) Correlation of Al–OH absorption depth against K2O (wt. %). The color-coded 

symbols exhibit the wavelength position of Al–OH feature. This parameter itself is negatively correlated (R2 = 0.42) to K2O content.  

The plot of Al–OH absorption depth against Na2O displays a nonlinear trendline (Fig. 16), 

indicating that the secondary clays are formed at the expense of sodium depletion from the system. 

The threefold decrease in the Na concentration possibly corresponds to either the alteration of 

feldspatic frameworks grains (i.e. albite) or the transfromation of dioctahedral smectites into illite. 

Since the total amounts of clays increases in the diagenetic facies (Fig. 13b), then it is more likely that 

the new clays are formed after fedspar alterations. Detailed petrographic studies are required to 

understand the processess involved in the formation and alteration of clay minerals in the altered 

lithofacies.   
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Fig. 16. Correlation of Al–OH absorption depth against Na2O (wt. %), indicating that clays are formed at the expense of Na depletion of the 

system. 

5.4.7. Spatial distribution of the diagenetic mineralogy 

To show the spatial distribution of the minerals delineated in this study, we averaged the spectral 

parameters of every sample and assigned it to its geographic coordinates to yield point maps. The 

results are exhibited in Figs. 17 and 18. These maps clearly show the anomalous trends in the 

compositions and abundances of the diagenetic minerals over the Alborz microseepage system. 

Examples are the higher abundances of Al-rich and well-crystalline white micas (Fig. 17a-c) and the 

frequent occurrences of calcite (Fig. 17d). Chlorites on the other hand, tend to be Fe-rich and more 

abundant (Fig. 18a-b), whereas ferric iron oxides transform to goethite-rich facies over the reservoir 

(Fig. 18c). The only exception is an unbleached patch in the center of the anticline that is outlined by 

the dashed line (see Fig. 18c). Nontronite, which is also characteristic of microseepage environment 

(Fig. 18d), specifically co-occurs with goethite and white micas (compare Fig. 18d with 18c and 17c).  

5.4.8. The correspondence with the standard microseepage model 

The microseepage-induced mineralogy described in this study, which is summarized in Fig. 19, is 

consistent with low-temperature moderate alteration regimes characterized by neutral to alkaline 

conditions and high levels of Fe/Mg typical of mafic lithofacies. This mineralogic assemblage is 

fundamentally different from the array commonly noted in the literature (e.g. Asadzadeh and Souza 

Filho (2017)). Remarkably, if we consider the total bleaching and kaolinite occurrences as one end of 

the spectrum, the other end, which is described here, includes partial bleaching and the lack of 

kaolinite altogether (Fig. 19). 
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Fig. 17. Spatial distribution of diagenetic mineralogy interpreted from spectroscopic data overlaid on naturel color composite of Sentinel-2 imagery. a) wavelength position of white micas. b) crystallinity of white 

micas. c) white micas abundances corresponding to the Al–OH absorption depth. d) calcite abundance. Note that a subset of the area in Fig. 1 is exhibited here and the control area to the SW of the area is shown 

as an inset map. The open circles in (d) indicate the absence of calcite in the samples. The samples marked as ‘Mil seepage’ in the inset map were collected from the alteration halo of Mil oil-seepage. 
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Fig. 18. Spatial distribution of diagenetic mineralogy interpreted from spectroscopic data overlaid on naturel color composite of Sentinel-2 imagery. a) wavelength position of chlorite. b) chlorite abundances 

corresponding to the Fe–OH(1) absorption depth. c) wavelength position of ferric iron and the goethite to hematite ratio (Goeth/Goeth+Hem) calculated by the formulation provided by Ramanaidou et al. (2008). d) 

nontronite abundances corresponding to the Fe–OH(2) absorption depth. The control area is omitted in (d) to better show the pattern over the reservoir. 
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Fig. 19. An alternative model proposed to account for microseepage-induced alterations in mafic lithofacies. See Table 4 for the details of 

the mineralogy. 

We speculate that the geochemistry of host-rock, as well as the weathering overprint induced by 

climate conditions, play a key role in shaping the ultimate alteration facies and mineralogic outcomes 

in a microseepage environment. Based on the silica content of the host-rock lithology, we tentatively 

classified the diverse range of diagenetic mineralogy induced by microseepage systems into two 

broad categories, namely felsic (SiO2 > 60%) and mafic (45% < SiO2 < 60%) assemblages. The results 

are summarized in Table 4. 

Table 4. A tentative classification of the diagenetic alteration mineralogy commonly observed in microseepage environments. 

Alteration 
mineralogy 

Host-rock lithology 

Felsic Mafic 

Clays 
Kaolinite 
Illite (?) 

Montmorillonite 
Illite (Al-rich) 
Mixed-layer illite/smectite 
Nontronite 
Chlorite (Fe-rich) 

Ferric iron 
Intense hematite 
bleaching 

Moderate bleaching 
Goethite 
Ferrihydrite 
Maghemite 
Secondary hematite 

Ferrous iron 
Pyrite 
Siderite 

Fe-chlorite 
Ankerite  
Pyrite (?) 

Sulphates (?) 
Gypsum 
Jarosite, etc. 

Carbonates 

Calcite 
Dolomite 
Ferroan dolomite 
Ankerite 

Calcite 
Siderite (?) 
Ankerite (?) 
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5.5. Conclusion 

Infrared spectroscopy coupled with a multi-band spectral processing approach provided an 

unparalleled wealth of information about the abundances, compositions, and crystallinity of the 

microseepage-induced alterations over the Alborz oilfield. The study demonstrated that a rich variety 

of clay minerals, including smectites (montmorillonite, nontronite), mixed-layer illite/smectite, and 

chlorites are present in the HC-affected zones. The white micas composition in the altered facies 

proved to be Al-rich with a higher degree of crystallinity (structural order), whereas the chlorite 

composition showed a change to Fe-rich in the microseepage environment. Though the loss of ferric 

iron (bleaching) is widely noted to be indicative of petroleum microseepage, it was demonstrated 

that in the iron-rich host-rocks, which is characteristic of the mafic lithofacies in the Qom region, 

ferric iron might not be completely depleted, thus the chemical weathering of the relict ferrous irons 

could bring about secondary oxyhydroxides, including goethite and ferrihydrite. The variation in the 

composition (and crystallinity) of this assemblage (marked by a shift in the absorption feature 

centered at ~900 nm) is considered to constitute an additional indicator for microseepage systems. 

Despite some earlier studies that denoted the replacement of gypsum by calcite, it was observed 

that possible pyrite in the bedrocks could weather into gypsum at the expense of calcite dissolution. 

The diagenetic sulphate minerals (gypsum and, in parts jarosite) could be considered as additional 

targets for remote sensing microseepage detection. Regarding the carbonates, our spectroscopic 

analysis revealed that calcite constitutes the dominant carbonate mineralogy in the sandstone beds. 

In the absence of ferroan carbonates and sulfides, Fe-rich chlorite appears to be the only ferrous iron 

mineral within the Alborz microseepage system. 

Overall, the authors support that the ultimate mineral assemblages in a microseepage system are 

controlled by the characteristics of the petroleum reservoir, as well as the geochemistry of the host-

rocks, and the chemical weathering overprint and in turn, the local climate conditions. The 

incorporation of the characterized mineralogic indicators could give rise to a more robust composite 

model for delineation of microseepage-induced alterations in soils and sediments. 
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Chapter 6 

Characterization of microseepage-induced diagenetic changes in the Upper-Red 

Formation, Qom district, Iran
8
 
9 

 

This work explores the surficial signatures of seeping hydrocarbons in parts of the Saveh-Qom 
sedimentary basin, Iran. The area includes the effectively sealed Alborz oilfield buried under 
Oligocene sediments of the Upper Red Formation (URF). The aim of the study was to prove the 
presence of leaking HCs over the reservoir, understand the chemical and physical processes 
responsible for diagenetic changes in the strata, and translate the diagenetic alterations into 
exploration indicators for remote sensing microseepage exploration worldwide. To achieve such 
objectives, the work integrated evidence from (i) petrographic and geochemical studies in the 
laboratory, (ii) outcrop investigations in the field, and (iii) broad-scale anomaly mapping using ASTER 
and Sentinel-2 orbital multispectral datasets. To build up a clear picture of the changes, the 
mineralogy, geochemistry, and petrography of the microseepage-affected lithofacies were 
contrasted with its unaffected counterpart in a nearby control area. The study indicated that even in 
the case of near perfect evaporitic capping, the reservoir still leaks HC to the surface. The induced 
physio-chemical and mineralogical changes were shown to be a function of the geochemistry of the 
lithofacies hosting the microseepage and the local environmental variables (i.e. climate and 
hydrogeology among others). The principally mafic URF lithofacies in this area coupled with an 
alternation between oxidizing and reducing regime have given rise to a novel array of mineralogical 
and geochemical indicators for microseepage systems. The major oxides, specifically the ratio of 
CaO+K2O/Na2O+MgO+CaO+K2O, were substantiated to be a reliable indicator of microseepage-
induced alteration. Regarding the iron oxides, we indicated that iron oxyhydroxides (i.e. goethite) 
constitute an additional indicator for microseepage remote sensing. The clay mineralogy was 
revealed to be dominantly smectites, mixed-layer illite/smectite, and chlorite with no traces of 
kaolinite. Based on isotopic studies, a combination of three sources of carbon including oxidized 
hydrocarbons was recognized to participate in the carbonate cements of the strata. Satellite remote 
sensing was successful in mapping the reservoir-scale footprints of the seeping petroleum. It 
indicated that the extent of microseepage-induced alteration, and thereby the petroleum reservoir, 
is much larger than previously thought. The anomalous zones over the reservoir were shown to 
conform to an annular pattern. This study demonstrated that an integrated exploration approach 
could facilitate the characterization of active microseepage systems and reduce the exploration and 
development risks in frontier and mature basins. 

6.1. Introduction 

In spite of traditional principles, seals above hydrocarbon (HC) reservoirs are not perfectly 

efficient and, as a result, HC accumulations leak to the surface over time. When the surface 

manifestation of oil and gas is clearly visible to the naked eye, it is termed macroseepage. A 

microseepage, on the other hand, constitutes minute traces of invisible light HCs in soils and 

sediments that is solely detectable by analytical methods and careful geochemical sampling (Horvitz, 

1985; Tedesco, 1995). Macroseeps typically show on the surface due to major tectonic 

discontinuities cutting the reservoir, and penetrating the surface (Link, 1952; Macgregor, 1993), 

                                                           
8
 This chapter is under preparation for submission to the AAPG Bulletin. 

9 A part of this chapter was presented as oral talk in the 48° Congresso Brasileiro de Geologia, Porto Alegre, Brazil. 
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whereas microseeps are the results of imperfect reservoir sealing wherein HCs migrate in an almost 

vertical fashion (Price, 1986). 

Microseepage-induced settings are characterized by a diverse range of anomalies including (1) 

anomalous gas concentration; (2) microbial and geobotanical anomalies; (3) mineralogical changes 

such as clay alterations/transformation, and the formation of carbonates, sulfides (e.g. pyrite), and 

elemental sulfur; (4) bleached facies; (5) electrochemical changes; (6) magmatic iron oxides and 

sulfides; and (7) radiation anomalies (Donovan, 1974; Price, 1986; Saunders et al., 1999; Schumacher, 

1996; Tedesco, 1995) (Fig. 1). Bacteria and other microbes are believed to play a key role in the 

oxidation of seeping HCs. Their activity and by-products can change the pH-Eh of the overlying 

stratigraphic column and initiate the specified array of diagenetic physio-chemical and mineralogical 

transformations in the environment. 

The detection of seepage systems is significant for oil and gas exploration, because it provides 

conclusive evidence for the formation of petroleum systems in a given sedimentary basin and, more 

importantly, because it supplies a powerful targeting tool for HC prospecting (Schumacher, 2012). 

Owing to this significance, a diverse range of unconventional exploration methodologies has 

emerged aiming to detect the footprints of HC migration in either direct or indirect way. The 

motivation for using remote sensing techniques in petroleum exploration has been the occurrence of 

several diagenetic minerals (Fig. 1) in the microseepage systems overlying HC accumulations that are 

spectrally active within the visible-near infrared (VNIR) and shortwave infrared (SWIR) wavelengths 

(Hunt, 1977). 

 

Fig1. Schematic representation of microseepage-induced anomalies overlying HC accumulations (after Asadzadeh and Souza Filho 

(2017)). 
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Despite the merits of remote sensing techniques in microseepage detection, decent case studies 

on the subject are rare in the literature. Only a few cases have used a comprehensive approach to 

scrutinize microseepage-induced anomalies from microscopic to regional scales. Moreover, the 

analytical techniques are seldom used in conjunction with remote sensing data for better 

understanding of the changes induced by microseepage at a multitude of scales. 

6.2. Objectives 

To close the gap in remote sensing microseepage detection and our understanding of the 

microseepage phenomenon, we adopted a multi-scale and multidisciplinary approach to study the 

well-exposed bedrocks overlying Alborz oilfield in the Qom region, Iran. The aim was to prove the 

presence of leaking HCs over the reservoir, understand the chemical and physical processes 

responsible for diagenetic changes in the strata, and then translate the diagenetic alterations into 

exploration indicators for remote sensing microseepage exploration worldwide. To achieve these 

objectives, the work integrated evidence from (i) petrographic and geochemical studies in the 

laboratory, (ii) outcrop investigations in the field, and (iii) broad-scale anomaly mapping using ASTER 

and recently launched Sentinel-2 multispectral datasets. To build up a clear picture of the changes, 

the mineralogy, geochemistry, and petrography of the microseepage-affected lithofacies were 

contrasted with its unaffected counterpart in a control area. 

6.3. Study area and sampling 

6.3.1. Geological background 

The study area is located near the city of Qom, about 100 km to the south of Tehran. The 

approximate coordinates of the site are between 50°35'15" to 51°11'0" east, and 34°33'27" to 

34°47'48" north covering an area of >1400 km2 (Fig. 2). The climate of the region is arid to semi-arid 

with the temperature fluctuating between -15–45°C and <150 mm of annual precipitation on 

average, which slightly increases towards southwest in the mountainous parts. The dominant 

physiographic features of the area include the NW–SE running Kuh-e-Yazdan ridges, the prominent 

Kuh-e-Namak (salt diapir) topographic feature to the west, and low-relief and hilly land surfaces 

(laying at altitudes between 850–1000 m) corresponding to Alborz anticline. The Qom area is covered 

by sparse vegetation and thus have well-exposed bedrocks both on the ground and within the 

satellite imagery. 

Geologically, this area is a part of the Central Basin of Iran Plateau referred to here as the Saveh-

Qom basin. This wedge-shaped basin is bounded by Eocene pyroclastics to the north and tertiary 

volcanics of the Urumieh-Dokhtar Magmatic Arc (UDMA) to the south and southwest whilst to the 

southeast it connects to the Central Basin (Amini, 2001; Morley et al., 2009) (Fig. 2). The UDMA, 

which stretches hundreds of kilometers from northwest to the southeast of the country, is due to the 

subduction of Neo-Tethys oceanic crust beneath the continental crust of Central Iran. The Saveh-

Qom basin is believed to form in the extensional regime within the back-arc of the subduction zone 

with the volcanic arc to the north corresponding to back-arc rifting (Berberian and King, 1981). 

Eocene volcanic rocks underlie the Oligocene to Miocene sequence in the Saveh-Qom basin 

(Berberian and King, 1981; Mostofi and Gansser, 1957). The main stratigraphic units cropping out in 

the basin comprises the Lower Red Formation (LRF; Oligocene), the Qom Formation (Oligocene-early 
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Miocene), and the Upper Red Formation (URF; Miocene) (Morley et al. (2009) and references 

therein) (Figs. 3-4). The lithology of the LRF, which retains limited outcrops to the southwest of the 

area (Fig. 3), includes shales, siltstones, marls, sandstones, and conglomerates. At the base of the 

LRF, there is a sequence of the halite-dominated evaporitic unit which in parts has been attributed to 

intrusion into upper units as salt pillows and diapirs (Morley et al., 2009). 

 

Fig. 2. The location of the study area (black quadrangle), and the outline of Alborz and Serajeh anticlines (red dashed line) overlaid on the 
mosaic of Landsat satellite imagery (RGB = 741). The boundary of the Saveh-Qom Basin is marked by a white dashed line. The inset map 
displays the locality of the study area in Iran. 

The Qom Formation is a 1200 m thick carbonate-dominated unit that is composed of 

carbonates, marls, sandy limestones, and bituminous shales, with occasional anhydrite layers. The 

formation is stratigraphically divided into six different members starting from “a” at the bottom of 

the column to “f” at the top. It is believed that “e” and “f” members of this sequence (also known as 

Qom limestones) form the reservoir rock, with the evaporitic units at the base of the URF (composed 

of gypsum and salt) constituting the caprock (Gansser, 1957) (Fig. 4). The thickness of the caprock 

was indicated to reach up to 200 m in the drilled wells over the Alborz reservoir (Mostofi and 

Gansser, 1957). Qom Formation has outcrops to the west and southwest of the area, but towards the 

northeast, it is buried beneath 3000 m or more of the younger detrital-dominated deposits from the 

URF (Fig. 3). 
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Fig. 3. Generalized geologic map of the Qom area superimposed on shaded digital elevation model compiled from 1:100,000, Qom, sheet 

6159 and 1:250,000, Qom, sheet 046 geologic maps published by Geological Survey of Iran (www.gsi.ir). 

The URF consists of a thick sequence of interbedded reddish sandstones, marly siltstone, 

conglomerate, and mudstone with local layers of marl, shale, and gypsum (Amini, 2001). The 

sandstone beds of the URF vary in thickness from millimetric laminated strata to beds of several 

meters. Most of the URF section was deposited during the transtensional phase of the basin in the 

early-middle Miocene wherein the clastic components were eroded away from nearby highlands 

(Amini, 2001; Reuter et al., 2007). The clastic contents dominated by volcanic detritus were 

demonstrated to be driven from two major sources located at either margin of the basin using 

palocurrent indicators. The volcanics originating from southern end were indicated to be aphanitic 

lithics and more basic in composition, whereas those driven from the northern margin were 

dominated by more acidic lithics (Amini, 1997). 

The main character of the URF is its red color that points to an oxidizing continental environment 

during/after the deposition. The URF, which constitutes the target lithology of this study, is 

composed of at least three members: (i) lower member consisting of dark reddish gypsiferous 

sandstone, shale, siltstone and green marl; (ii) middle member consisting of intercalations of 

cavernous sandstone, conglomerate and shale; and (iii) upper member consisting of siltstone, bright 

yellow gypsiferous marl interbedded by sandstone. The Upper Red and Qom Formations are 

considered to be approximately time equivalent, respectively to the Agajari and Asmari Formations 

in the Zagros oil belt (Morley et al., 2009). 

http://www.gsi.ir/
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Fig. 4.  Simplified stratigraphic column for the Saveh-Qom Basin sedimentary rocks. Adapted from Gansser (1957). 

 
The transpressional deformation phase occurring during the Miocene has given rise to the 

formation of ‘Alborz’ and ‘Serajeh’ anticlines (Morley et al., 2013)(Fig. 2). The Alborz anticline, which 

is the focus of this study, is an asymmetric, overturned structure with over 50 km long and ~12 km 

wide from syncline to syncline (Mostofi and Gansser, 1957) (Fig. 1). The exploration drilling in the 

1950s indicated that oil and gas accumulations are present, respectively, in the Alborz and Serajeh 

structures. Unfortunately, the first well breaching Alborz reservoir in 1956 blew out, and depleted 

more than 7 MMBLO (million barrels of crude oil) from the reservoir (Mostofi and Gansser, 1957). 

The oilfield that was productive for only a short duration, has potential reserves (oil in place) that are 

estimated at 217–274 MMSTB (million stock tank barrel of oil; NIOC internal report). The specific 

gravity (API°) of the oil from this field was estimated to be around 37 with the total sulfur content of 

0.85% (Mostofi and Gansser, 1957). The URF is subject to HC migration from the reservoir to the 

surface. Thus far, however, the characteristics of a possible microseepage system in the area and its 

interrelationships with underlying HC accumulations has remained unknown. The only known 

macroseepage in the area called ‘Mil’ is located 25 km west of the Qom city (Fig. 3). This seep issues 

from gypsiferous units surrounded by very steep southwest plunge marly members of the Qom 

Formation. 

6.3.2. Sampling 

Fieldwork was carried out along 14 profiles defined to cross the distinct stratigraphic variations of 

the area using color composite satellite imageries. Surface outcrop samples were collected along 

these profiles aiming to represent all of the commonly observed diagenetic changes within the URF. 

The studies covered two main sites ‘on’ and ‘off’ the oilfield; the ‘on-field’ site corresponds to 

outcrops overlying the Alborz oilfield, whereas the ‘off-field’ site, which devised to serve as a control 

area, relates to Mil and Kuh-e-Yazdan areas (Fig. 2). The control area that is consisting of unaffected 

outcrops of the URF were used to define the petrographic, geochemical, and mineralogical 

background of the host-rock and cross-validate the diagenetic changes observed over microseepage-

affected zones. Around 20% of the samples came from the control area and the remaining were 
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gathered from the microseepage-affected zones (respectively called ‘Mil’ and ‘Alborz’ area 

henceforth). In total, some 360 representative samples were collected along ~43 km line profiles 

resulting in an average of one sample per ~120 m length. The samples covered a variety of targets 

consisting of rock chips from weathered and fresh lithofacies (mainly sandstones/siltstones with 

occasional conglomerates), soil covers, and oil seeps among others. The majority of the samples 

were collected from the rocks exposed to orbital sensors; however, vertical faces hidden from 

overhead sensors were also sampled. We catalogued the variations in the color of the hand samples 

using a Munsell color chart and photographed typical geologic phenomena in the field. The locations 

of the sampling sites and field observations were recorded using a handheld GPS. 

The entire sample suite was analyzed in the laboratory using reflectance spectroscopy. The details 

of the spectral analysis are provided in a companion article on the area (Chapter 5). A selection of the 

suite (n = 73), chosen by considering the visual characteristics of the samples, its locality along the 

profiles, and the spectroscopic outcomes, is considered here for detailed geochemical and 

petrographical studies as is summarized in Table 1. The  

Table 1.  Summary of the analytic techniques employed to study the samples from Qom area. 

Analysis method Samples 

Infrared spectroscopy 360 

Petrography 25 

X-Ray Diffraction 41 

X-Ray Florescence 36 

ICP-MS 22 

Stable isotopes (C, O) 15 

6.4. Material and methods 

6.4.1. Petrography 

Representative thin sections (n = 25; 17 from Alborz + 8 from Mil) of intact and altered URF 

sandstones were examined petrographically using an optical microscope. The soft and friable 

samples from altered facies were first stabilized by impregnation with epoxy resin before undergoing 

cutting and polishing processes. The grains, cements, and coatings of altered facies were qualitatively 

studied against unaltered samples from Mil area. The percent mineralogy was estimated by point 

counting (500 points) at a spacing of 0.1 mm. Because spectroscopic analysis indicated the 

dominance of calcite in the samples (Chapter 5), we declined to stain the thin section for carbonate 

identification, and assumed all the carbonates to be indicative of calcite. 

6.4.2. Geochemical analysis 

We analyzed 25 variably altered specimens from Alborz area and further 10 specimens from Mil 

area with X-ray diffraction (XRD). The specimens were grinded using agate mortar and pestle and 

then were analyzed directly to detect the main mineralogic phases. For the aim of clay identification, 

the clay particles (<2 m fraction) of a subset of 13 specimens (8 + 5) were extracted by peptizing in 

water and two rounds of centrifuging to make dual oriented smears on glass blades for each 

specimen. The blades were analyzed following heating and glycolation for 24h for the identification 
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of mixed-layer clay minerals. In addition, 6 specimens from the Alborz suite were analyzed by 

quantitative XRD technique. 

We analyzed 36 representative specimens (28 from Alborz + 8 from Mil) with X-ray fluorescence 

(XRF). The pulverized specimens were converted into glass disks and analyzed for eleven major 

oxides including SiO2, Al2O3, Na2O, K2O, CaO, Fe2O3, MgO, TiO2, P2O5, MnO, and SO3. The results are 

reported in Table 2 of Chapter 5. Moreover, 22 pulverized specimens (18 + 4) were analyzed by ICP-

MS (inductively coupled plasma-mass spectrometry) to determine 42 minor/trace elements. The REE 

data were normalized against C1 Condrite standard (McDonough and Sun, 1995) before illustrating in 

diagrams. 

Carbon (13C) and oxygen (18O) isotopes of 15 variably altered specimens were measured from 

calcite embedded in carbonate-rich sandstones aiming to infer the origins and generations of 

cements and fluids and determine their relationship with hydrocarbon microseepage. The samples 

were pulverized and dissolved with 100% phosphoric acid to liberate CO2 (Rainoldi et al., 2014; 

Simpson et al., 1991). Then, the collected gas was measured by an isotope ratio mass spectrometer. 

The results are reported relative to the VPDB standard. 

6.4.3. Reflectance spectroscopy 

As noted earlier, all the collected samples in Qom area were analyzed using reflectance 

spectroscopy. Here, we utilized a subset of the collected spectral data to corroborate the XRD 

analysis, interrelate the mineralogic interpretations, and verify the results yielded from remote 

sensing studies. The details of the data collection and processing approach are provided in a 

companion article in Chapter 5.    

6.4.4. Satellite remote sensing 

For reservoir-scale alteration mapping, we deployed two orbital datasets obtained from ASTER 

and Sentinel-2 satellite sensors. ASTER has 3, 6, and 5 spectral bands in the VNIR, SWIR, and TIR 

wavelengths with 15, 30, and 90 m spatial resolution, respectively (Abrams and Hook, 2000). 

Sentinel-2, on the other hand, retains 9 multispectral bands between 450–2450 nm of which 7 are 

located within the VNIR range. Hence, it provides a powerful tool to map transitional elements, 

particularly iron oxides and hydroxides, at 10–20 m spatial resolution thus complementing the SWIR 

bands of the ASTER imagery. An ASTER Level-1B scene acquired on June 2, 2004 and two adjacent 

tiles of Sentinel-2 data (level-1C) acquired on October 5, 2016 were selected to cover the study area. 

Essential radiometric and atmospheric corrections were applied to both datasets. The radiance at-

sensor SWIR data were converted to apparent surface reflectance using ATCOR atmospheric 

correction software (ReSe Applications LLC, CH). The Sentinel-2 data were also converted to apparent 

reflectance (Level-2A) using Sen2Cor toolbox provided by SANP platform. The results were then 

mosaicked to yield seamless imagery over the area. 

Based on field observations and spectroscopic analysis, a suite of microseepage-induced 

mineralogic targets was specified and then mapped using a combination of feature tracking (e.g. 

band ratioing) and match filtering techniques applied to either of satellite datasets. 
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6.5. Results and discussion 

6.5.1. Field observations 

The most noticeable phenomenon observed in the field was a significant difference in the color of 

the bedrocks between unaffected and microseepage-affected zones (Fig. 5). The color of unaffected 

sandstone and siltstone units (collectively called sandstone henceforth) in Mil area and elsewhere 

was varied from dark reddish gray (10R, 4/1) to pale red (7.5R, 6/3) and from reddish brown (2.5YR, 

5/3) to weak red (10R, 5/4) (e.g. Fig. 5a). Over the reservoir where the sediments were affected by 

microseepage, a wide range of colors was observed varying from pale red (2.5YR, 7/2) and reddish 

yellow (7.5YR, 7/6) to yellow (2.5Y, 7/6) and pale yellow (5Y, 8/2) (e.g. Fig. 5b). In extreme 

circumstances, light gray (5Y, 7/1) and white (2.5Y, 8/1) lithofacies were also observed (Fig. 5c). 

The catalogued variations in the hue of the sediments correspond to changes in their iron oxide 

contents and compositions as well as crystal size and isomorphic substitution (Nielson et al., 2014). In 

the yellowish sandstone beds (Fig. 5b-c), which happens to be the most indicative feature of the 

affected zones, the original iron oxide (hematite) coating has transformed into goethite (see Chapter 

5 for a comprehensive overview of the findings), whereas in the intensely bleached facies, iron oxide 

grain coats has been completely dissolved by chemical processes and removed from the system. The 

noted variability was especially evident in the sandstone lithofacies. In in conglomerates, however, 

due to the breakdown of the rock unit in affected zones, such changes were not easy to notice and 

record (Compare, for instance, Fig. 5d with 5e). The shaly inter-layers, on the other hand, 

demonstrated a reverse trend. In the unaffected zones, these inter-layers tend to appear as light to 

medium gray units, whereas in the affect zones, they retain more yellowish color likely because of 

secondary iron enrichment (Fig. 5f-g) integrated from nearby units during iron mobilization. 

The delineated color changes were selective and controlled by stratigraphy and fabric of the 

facies among which the more permeable strata (i.e. coarse-grained sandstones) were undergoing the 

most dramatic changes (Fig. 5c and 6a). Our fieldwork in Mil area indicated that the variability in the 

colors of the units is also a function of primary hematite proportion/infiltration, for the hematitic 

pigment was not uniformly distributed among the lithofacies in the first place (e.g. Fig. 5 in Chapter 

5). A similar trend is for example, reported in Oklahoma oilfields wherein fine-grained sandstones 

were selectively bleached with other lithofacies like claystones and siltstones remaining largely 

unaffected (Ferguson, 1976-1979). 
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Fig. 5.  Photographs contrasting the microseepage-affected beds of the Upper Red Formation with unaffected counterparts in the Qom 
region. a) unaffected sandstone beds of the URF at Mil-32 sampling site. b-c) affected sandstone beds of the URF, respectively at Alb-217 
and Alb-166 sampling sites. d-e) unaffected and affected conglomerate beds of the URF, respectively at Mil-71 and Alb-144 sampling 
sites. f-g) unaffected and affected shale beds of the URF, respectively at Alb-120 and Alb-62 sampling sites. 
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Fig. 6.  Photographs illustrating the evidence for dissolution and movement of iron within the sandstone beds due to microseepage 
phenomenon. a) the miniature roll-fronts of ferric iron oxides formed due to the oxidation of soluble/mobile ferrous iron; photographed at 
Alb-160 sampling site. b) remnant of the initial hematite coating (banded pattern; black arrow) in bleached strata at the Alb-158 sampling 
site. The white arrow indicates manganese oxides. c) diffuse pattern in the distribution of secondary iron oxides (goethite) at the Alb-74 
sampling site. d) concretionary pattern in the distribution of secondary iron oxides (shown by the black arrow) at Alb-165 sampling site. 

Several patterns related to secondary iron oxide distributions were observed in the URF 

lithofacies including diffuse, banded, spotty, and irregular concretionary among others (Fig. 6; see 

also Fig. 3 in Nielson et al. (2014)). The patterns are known to form due to chemical weathering (re-

oxidation) of the reduced iron (Fe2+) by meteoric water in the vadose zone (Nielson et al., 2014). 

Goethite, as the most common secondary iron oxide, shows a diffuse pattern discernible by evenly 

distributed yellowish color (Fig. 5b and 6c). The dominance of goethite coats not only indicates that 

the environment has been in excess of oxygen but also imply that there has been an alternation 

between oxidizing and reducing regime in the environment. Alternation of redox potential is known 

to arise in Mediterranean soils wherein interstitial waters change from reducing during cold seasons 

to oxidizing during hot, dry summers (Ellwood and Burkart (1996) and references therein). It seems 

that the long and hot summers in the Qom region have imposed alternating oxidizing conditions on 

the soils and sediments within the microseepage system. The risen redox potential then has 

triggered the precipitation of mobilized irons (Fe+2) as diffuse oxyhydroxides overprinting the 

reducing background (e.g. Fig. 5b). The same process could also be responsible for the oxidation of 

possible ferrous minerals such as pyrite and ankerite into metastable iron oxides (i.e. ferrihydrite and 
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goethite). The alternation in redox potential could also explain well-ordered goethite with subtle Al-

substitution characterized by shorter wavelength position at ~900 nm absorption feature (see 

Chapter 5 for the details). 

It should be emphasized that while the role of groundwater flow in displacement or obliteration 

of geochemical anomalies is still disputed (Schumacher, 2000), there is no doubts that underground 

water flow is responsible for mass transfer (deposition/depletion) into or out of the system in 

proportion to flow gradient and the distribution of discharge and recharge zones (Holysh and Toth, 

1996). 

The noted processes have likely participated in shaping the physiography of the area. Given the 

sandstone beds, to the south and southwest it tends to be hard and resistant to erosion, hence 

constitute the rugged topography (i.e. Kuh-e-Yazdan in Fig. 1). Over the oilfield, however, it tends to 

be friable and porous; consequently the progressive erosion has formed a flat-lying topography in 

large parts of the area. 

Other secondary features in the affected lithofacies worth mentioning are localized occurrances 

of colliform manganese oxides growing in joints and alongside the secondary iron oxides (Fig.  6b), 

secondary gypsum cements associated with bleached facies, pore-filling silicic veins, and sparse 

copper mineralizations (mainly malachite) in permeable strata. Presumably, the gypsum cement is 

formed by the oxidation of sulfides (i.e. pyrite) at the expense of carbonate dissolution, as indicated 

in Chapter 5. 

Over the reservoir, there was no structural conduit or any macroseepage indication which is 

characteristics of the lightly deformed basins associated with the back-arc setting (Macgregor, 1993). 

The only macroseepage in the area (Mil oil seep) is located farther southwest and issues from a 

narrow gypsiferous layer bounded by marly units (Figs. 2 and 7a-b). The seepage appears at the 

endpoint of a reservoir penetrating low-angle thrust fault. The fault seems to direct the petroleum 

towards gypsiferous layer before manifesting to the surface, for oil was observed to be trapped in 

between the gypsum cleavage (Fig. 7d). Around the Mil seepage, parts of the gypsiferous strata were 

altered to what is known as Gach-i-Turush in the literature (Clarke and Cleverly, 1991; Thomas, 1952) 

that is the association of oxidized petroleum, calcite, grey powdery gypsum, and jarosite among 

others (Fig. 7c). The other local alteration observed in the marly unit (Fig. 7a) bear a striking 

resemblance to microseepage-induced diagenetic changes. Here, the diffused near-surface flow of 

gaseous phases of the seepage has altered the originally red marls into yellow units characteristics of 

hematite to goethite transformation (Fig. 7a). Even though the involved physiochemical processes 

are identical, we adopt the ‘miniseepage’ term to describe the phenomenon and distinguish it from 

the alterations induced by near-vertical HC migration over the accumulation (Asadzadeh and Souza 

Filho, 2017). The details of mineralogical (and geochemical) changes induced in marly and 

gypsiferous inter-layers are discussed in Section 5-3. The relevant alteration maps are illustrated in 

section 5-4. 
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Fig. 7.  Photographs illustrating the oil-shows and associated alterations around Mil seepage. a) alteration of the marly unit by focused 
seeping petroleum. The red marl to the left side of the quarry (developed to exploit the gypsum inter-layer; red arrow) is transformed into 
yellowish hue indicating hematite to goethite transformation. b) seeping oil impregnating the rocks at the bottom of the quarry. c) local 
alteration of the gypsiferous unit (Gach-i-Turush) around the seepage. d) leaked oil trapped in between the flakes of gypsum crystals. 

6.5.2. Petrography 

The URF sandstones are texturally immature, poorly rounded, medium to coarse-grained, poorly-

sorted, lithic arenite sandstone. The detrital mineralogy was predominantly composed of lithic 

fragments (>50%), feldspars, quartz, opaque minerals (>10%), and to a lesser extent micas and 

pyroxenes (Fig. 8a-b). The poorly rounded grains are indicative of the short distance between 

provenance and the deposition site (Fig. 8b). The unaffected samples were characterized by a 

pervasive hematite coating (Fig. 8a). The occurrence of iron oxide coatings between the grain 

contacts implies that oxidizing condition was prevalent in the early interstitial fluids. In the affected 

zones, the iron coatings are (partially or totally) bleached, but in parts is concentrated as patches of 

iron oxides. In this facies, calcite was observed as pore-filling cement as well as lithic clasts. The clasts 

(primary calcite), likely derived from Qom Formation, was distinguished by its shape and by iron 

oxide coating around the grains (Fig. 8d). The pore-filling cements presumably were precipitated due 

to microseepage-related alteration. In comparison, the dominant calcite phase in the Mil samples 

was lithic clasts and pore-filling calcite was rarely observed. The pervasive calcite precipitations in the 

former correspond to an increased fluid-rock interaction following the dissolution of early hematitic 

cement and porosity enhancement (Bowen et al., 2007). 
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Fig. 8.  Photomicrographs of the diagenetic facies and induced alteration in the URF sandstones. a) framework grains of the sandstones 

composing of lithics (L), quarz (Q), plagioclase (P), calcite (C), and opaque (O) minerals. The unaffected sandstones are associated with 

pervasive hematite grain-coating (arrows). b) secondary silica and calcite cements in affected facies. The cementation is associated with 

partial or complete removal of iron oxide coatings (arrows). c) silicification (secondary quartz; Qs) growing around the primary quartz grain 

(Qp). d) secondary calcite cements (Cs) growing around the primary calcite clast (Cp) that is partly coated by iron oxides. e) alteration of 

feldspar grains to clays (orange arrow) and dissolution and replacement by calcite cement.  f) authigenic illite (Il) in the context of silica 

cements. The red dots (arrow) within secondary calcite are likely magnezioferite crystals. g) transformation of magnetite (Mag) into 

hematite (Hm) at the rims of the grain. Scale bars = 0.1 mm. 

Secondary clays were also observed to be abundant in the affected samples. Large grains of 

secondary illite were detected in between the secondary calcite cements (Fig. 8c). The morphology 

and locality of the grains pinpoint towards its authigenic origin. Some red grains formed in the 

vicinity of illite grains (Fig. 8c) were interpreted to be magnezioferite crystals. Silicification (secondary 

quartz) was also observed to frequently occur in the affected samples, mostly overgrowing around 

the primary quartz grains (Fig. 8f). The lack of coating around the authigenic quartz grains implies 

that silicification is a late stage alteration that takes place after hematite coating removal, thus likely 

corresponds to microseepage effects.      
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6.5.3. Geochemistry 

6.5.3.1. Whole-rock analysis 

The results of major oxides analysis indicated significant differences between the specimens from 

microseepage-affected and unaffected lithofacies within the control area. The weight percent of 

SiO2, K2O, and LOI (loss on ignition) in the affected rocks were enriched, whereas Fe2O3, MgO, Na2O 

and Al2O3 were substantially depleted. The concentration of Fe2O3 in the sample suite varies by over 

5 wt. % between altered and unaltered lithofacies; whereas the Fe2O3 in the unaffected specimens 

reaches to 8 wt. %, in the affected zones it declines below 3.0 wt.%. The most significant difference, 

however, belongs to CaO in which its percentage is almost doubled in the altered facies. The average 

of major oxide composition in either of the environments is illustrated in Fig. 9. SO3 was determined 

to be present in just a handful of specimens (n = 5) of the Alborz area, thereby excluded from the 

charts. 

 

Fig. 9. Bar-chart representation of the major oxide composition of the Alborz and Mil sample suite, respectively corresponding to 

microseepage-affected and unaffected lithofacies. The bar and whisker represent the mean ± standard deviation, respectively. Note that 

the two charts have different scales. 

Statistical analysis (student’s T-test) was deployed to compare the average percentage of 

corresponding major oxides. The result is summarized in Table 2. The analysis revealed that except 

SiO2 and MnO, all the other oxides show meaningful differences from unaffected to microseepage-

affected facies. The variations were interpreted to arise from the interaction of microseepage-

induced solutions with the host-rocks. 

The enrichment of CaO and K2O corresponds to high concentrations of calcite and clays (illite), 

respectively. In sandstones, sodium and potassium typically constitute alkali feldspars and muscovite, 

but are also present in illite and smectites. Calcium, on the other hands, is embedded in calcitic 

plagioclase, calcite cements, and, to a minor extent, smectitic clays (Boggs, 2009). The loss of Na2O 

and Al2O3 together with the enrichment of K2O and CaO is indicative of illite formation at the expense 

of feldspars alteration as demonstrated in Chapter 5. The alteration is also evident by a significant 

negative correlation between Al2O3 and CaO percentage (R2 = 0.83), indicating the removal of calcitic 

plagioclase and simultaneous clay and calcite precipitations. The fact that potassium increases over 

the reservoir is in contrast to conventional microseepage model in which the acidic solutions 

associated with bacterial activity stimulate the loss of potassium of the system (Saunders et al., 

1999). In addition, the positive correlation of Al2O3 with Fe2O3 (R
2 = 0.57) might suggest that a portion 

of the aluminum was depleted from hematite structure corresponding to isomorphic substitution. 
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Magnesium is contained in chlorite, smectite, and if present, dolomite cements (Boggs, 2009). In 

Alborz microseepage, MgO was demonstrated to release mainly from Mg-chlorite (see Chapter 5 for 

details). In the absence of Mg-carbonates to incorporate the released magnesium, it seems the 

element has been removed from the system resulting in MgO loss in the XRF results. In contrast, the 

released calcium is incorporated into the structure of calcitic cements. Moreover, the rise in LOI was 

assumed to correspond to an increase in the CO2 contents of the bleached lithofacies (because there 

is a good agreement between CaO and LOI constituents; R2 = 0.85), and probably also structural 

water and organic matters of the bedrocks. 

Even though silica (SiO2) shows statistically insignificant differences between the two facies, it is 

associated with some enrichment in the altered rocks, which is consistent with the silicification 

witnessed in the petrographic studies and field observations (Sections 5-2 and 5-1, respectively). In 

contrast to Zheng et al. (2010) who reported the enrichment of P2O5 in the petroleum-affected zones 

(presumed to link to bacterial activity), we observed a reverse trend in the concentration of P2O5 over 

the HC-affected zones, likely because of the alteration of detrital minerals such as apatite. Finally, the 

loss of Fe2O3 is closely related to a drop in TiO2 percentage (R2 = 0.69). This could imply that parts of 

the Ti loss are due to chemical weathering of detrital titanomagnetite, which was observed to occur 

frequently in sandstone beds of the area. 

Table 2.  Comparison of the major oxide composition of the affected and unaffected lithofacies using the statistical T-test (assuming equal 

variances). The checkmark (✔) indicates that the observed difference between the pair is significant, whereas the cross (Χ) indicates 

insignificant differences. 

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI 

Χ ✔ ✔ ✔ Χ ✔ ✔ ✔ ✔ ✔ ✔ 

In the literature, several indices are proposed to describe lithogeochemical alterations including 

Ishikawa Index, Silicification Index (SiO2/SiO2 + Al2O3), Sericite Index (K2O/K2O+Na2O), and Chemical 

Index of Alteration to name but a few (Pirajno, 2009). We found the current alteration indices 

insufficient to delineate the alterations induced by microseepage system, for all of them were 

proposed to characterize hydrothermal alteration systems. For this aim, we developed a new index 

named Microseepage-Induced Alteration Index (MIAI): 

MIAI = 
CaO+𝐾2O

𝑁𝑎2O+𝐾2O+CaO+MgO
 

It constitutes the gained elements divided by the sum of gained and lost elements in the 

microseepage environment. By applying this index to the dataset, we noticed that in the unaffected 

zones, the MIAI is generally <0.45, whereas in the microseepage-affected zones, it varies between 

0.5 < MIAI < 0.9, but mostly beyond 0.7. The scatterplots for MIAI versus Silicification and Sericite 

indices are illustrated in Fig. 10. In these plots, the altered lithofacies also retains relatively higher 

indices of Silicification and Sericite corroborating the formation of clays and silica in the affected 

facies as interpreted above. The two specimens (Alb-130 and Alb-156) with moderate indices 

correspond to slightly bleached (altered) facies, whereas the specimen collected over Mil 

miniseepage (see Section 5-1 and Fig. 7a) retained the highest MIAI and Sericite Index (Fig. 10).    
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Fig. 10. Scatterplots exhibiting the variation of Microseepage-induced Alteration Index (MIAI) against a) silicification index and b) sericite 

index. ‘Alborz’ and ‘Mil’ correspond to microseepage-affected and unaffected lithofacies, respectively. The indices are defined along the 

text. 

Trace element data indicated a negative anomaly in V, Co, and Sc over HC accumulations 

compared to Mil area. The elements though show a strong correlation with iron oxide (Fe2O3) 

contents of the samples (R2 = 0.87, 0.83, and 0.94, respectively). It might imply that the elements 

were adsorbed by hematite (Beitler et al., 2005), thereby the dissolution of hematite coats 

stimulated the depletion of these elements as well. 

Heavy metals such as U, Pb, and Th were slightly enriched over petroleum deposit (respectively 

0.4, 6.4, and 1.7 ppm, on average), whereas Mn, Cr, Ni, Cu, Zn, Mo, Ba, and Sr showed no clear 

trends. The fact that minor/trace elements show little or no differences between the two facies 

together with the moderate iron bleaching and abundance of clays indicate that the lithofacies have 

not been thoroughly flushed with fluids. Such condition might arise from the scarcity of meteoric/ 

interstitial water and indeed from the alternation of the redox potential hypothesized earlier. 

6.5.3.2. REE geochemistry 

The patterns of REEs in both Alborz and Mil area show enrichment of LREE (<Eu) relative to HREE, 

but the two series fail to conform to each other (Fig. 11). This inconstant pattern implies that the 

provenance of igneous rock debris has not been the same throughout the sedimentary basin, as the 

REEs are resistant to fractionation during weathering or diagenesis processes (Rollinson, 1993). The 

REE patterns (together with Th/Sc ratio (<1.0), Th/U ratio (>3.0), and Eu concentration (≈1.0) 

described in Boggs (2009)) point toward two sediment provenances, which is consistent with the 

findings of Amini (1997). The contribution of acidic debris from the northern margin seems to be 

responsible for the enrichment of LREE relative to HREE in Alborz samples. This phenomenon is 

known to occur due to the abundance of hornblende or accessory minerals such as zircon in the 

debris (Rollinson, 1993). The great abundance of Zr over the oilfield (114 vs. 68 ppm, which is 67% 

higher on average) presumably could account for the variations observed in the REEs patterns (Fig. 

11). In this context, the two lithofacies (Alborz vs. Mil) are equivalent, hence comparable with each 

other for the sake of this study. 
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Fig. 11. Chondrite-normalized REE diagrams of the microseepage-affected (Alborz) and unaffected (Mil) lithofacies. 

6.5.3.3. X-ray diffraction 

X-ray diffraction patterns revealed the mineralogy of the diagenetic alteration to be composed of 

illite, montmorillonite, palygorskite, calcite, and chlorite (clinochlore) with occasional indications of 

gypsum (Fig. 12). Although kaolinite was reported to occur in a few samples, the dominant clay 

mineralogy was illite and smectite (montmorillonite) in which were absent in the Mil sample suite. 

Calcite was sporadically detected in Mil samples, but it was the dominant carbonate species in the 

microseepage-affected rocks. Palygorskite was detected in only one sample from the affected zone, 

albeit was discovered to be abundant in Mil sample suite (Fig. 12). 
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Fig. 12. Examples of X-ray diffraction patterns from affected and unaffected lithofacies along with mineralogical interpretations. The 
labeled features: chlorite (C), montmorillonite (M), illite (I), palygorskite (P), sepiolite (S), gypsum (Gy), goethite (G), calcite (Ca), quartz 
(Q), albite (A), anorthite (An), analcime (Anl). 

In contrast to XRD, reflectance spectroscopy is highly sensitive to very low levels (<1%) of 

diagenetic minerals including Fe-chlorite, palygorskite, and nontronite. Accordingly, simultaneous 

use of the two techniques provided an accurate picture of the changes induced in the microseepage 

environment. 

Table 3.  Summary of the mineralogy derived from quantitative XRD analysis. Q = quartz, C = calcite, Pl = plagioclase, M = 

montmorillonite, Gy = gypsum, Mc = mica, Z = zeolite, Py = pyroxenes, H = hematite, G = goethite, Ch = chlorite. 

Mineral Q Pl Py Mc Z M Gy C H/G Ch 

Percentage 7–26 13–26.6 0.8–1.1 1–12 1.4–4.1 0–1.2 0–60 6–30 0–0.6 1–3.5 

6.5.3.4. Reflectance spectroscopy 

Reflectance spectroscopy indicated the mineralogy of the samples is composed of 

montmorillonite, illite (and mixed-layer illite/smectite), chlorite, nontronite, hematite-goethite, 

calcite, with occasional appearance of jarosite and gypsum. The Mil samples tend to contain 

hematite and traces of palygorskite, chlorite, and sometimes sepiolite (Fig. 13), whereas in the 

affected zones the same features alter to goethite and smectite-illite. The spectroscopic analysis is 

discussed further in Chapter 5. 
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In contrast to XRD, reflectance spectroscopy is highly sensitive to very low levels (<1%) of selected 

diagenetic minerals including Fe-chlorite, palygorskite, and nontronite. Accordingly, simultaneous 

use of the two techniques provided an accurate picture of the changes induced in microseepage 

environment.  

 

Fig. 13. Representative spectra collected from Alborz and Mil area and corresponding mineralogical interpretations. The labeled 
absorption features: jarosite (j), goethite (G), hematite (H), montmorillonite (M), palygorskite (P), gypsum (Gy), illite (I), chlorite (C), 
nontronite (N), sepiolite (S), and calcite (Ca). 

6.5.3.5. Stable isotopes 

The 18O and 1C of the calcite vary from -1.23 to -4.67‰ and from -5.77 to -8.36‰, respectively. 

The isotopic data represent calcite from three different origins and generations: (i) a cluster 

(encircled in Fig. 14) characterized by 
13C ranging from -2.1 to -1‰ and 18O between -6 to -7‰ 

corresponding to the bleached marly sandstones located to the north of the West-Alborz. (ii) the 

samples scattered at one end of the trendline characterized by 
13C of ~-2.0 and 18O ranging 

between -8 to -8.5‰ corresponding to unaffected lithofacies. The 18O and 13C of these samples are 

slightly lighter when compared to the first group. (iii) the third generation of calcite cement typified 

by continual depletion of 13C from -2 to -5‰ and enrichment of 18O corresponding to highly affected 

(bleached) facies. The multiple origins of the calcite cements was also corroborated by the lack of 

meaningful trend between either 18O or 13C against CaO and carbonate absorption depth. 
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Fig. 14. Cross-plot of 18OVPDB against 13CVPDB from the carbonate (calcite-dominant) cements/clasts of the URF sandstones. The 

numbers correspond to the groups described in the text. 

The carbonate transported to the system (detrital calcite) has definitely incorporated into the 

measured isotopic composition; however, as petrographic studies confirmed, these clasts account for 

a mere 10–20% of the carbonate contents of the samples signifying that the isotopic composition of 

the bedrocks is determined in large parts by pore-filling calcite cements. The 13C and 18O 

composition of the Qom limestone as retreived from well cuttings tend to be ~1 and ~-5‰, 

respectively (Warren et al., 2014). 

On this basis, the unaffected lithofacies (ii) with the severely depleted 18O, was attributed to a 

freshwater source, though some contribution from detrital calcite is plausible. On the other hand, 

the isotopic composition of the altered units in the group (i) was infered to be the results of the 

interaction between a CO2-charged brine with meteoric water in shallow groundwater. The carbon of 

the brine could have been inherited from the dissolution of early marine carbonates (i.e. Qom 

limestone), albeit it might incorporate carbon from the oxidation of seeping hydrocarbons as well. 

Presumably, the same fluid is responsible for the pervasive gypsum cementation in the 

corresponding strata (as described in Chapter 5). The effect of the oxidizing hydrocarbons is more 

evident in the highly altered specimens (Fig. 14). Here, the meaningful trend (R2= 0.73) between the 

two endmembers is further evidence for a mixture of two fluid sources, including the one charged 

with oxidized seeping hydrocarbons. 

Compared to other case studies in the literature (e.g. Donovan et al. (1974)), the 13C is not 

profoundly depleted. This tendency was inferred to reflect the effect of the meteoric water (and in 

turn the surface evaporation of the meteoric water and Rayleigh distillation) in shaping the final 

alteration facies (Chan et al., 2000; Donovan et al., 1974). In the altered facies, there exist a positive 

correlation between 18O and iron oxides wavelength position centered at ~900 nm (R2= 0.24). It 

could indicate that the enrichment of 18O is associated with goethite formation. In other words, the 

secondary goethite has inherited its oxygen from distilled meteoric water. 
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6.5.4. Remote sensing alteration mapping 

6.5.4.1. Microseepage remote sensing 

Visually, the color variability documented in the field is as well evident in the satellite imagery 

wherein the originally dark red facies in the control area is transformed into reddish to whitish hues 

over petroleum deposit (Fig. 15a). Moreover, the stratigraphic sequences of the URF, which is clearly 

visible in the unaffected areas, fades away over the reservoir, presumably because of accelerated 

erosion associated with authigenic cements dissolution, and because of elimination of the 

texture/fabric of the original bedrocks10 (Compare C–D to A–B in Fig. 15a). The lithofacies within the 

boundary of the structure, however, is not equally affected by petroleum microseepage. This is 

clearly indicated on the map of hematite shown in Fig. 15b. Here, a large patch of red-beds to the 

north of East Alborz appears to be hematite-rich and unaffected by diagenetic processes. 

Nevertheless, a large extent of the URF is affected by microseepage-induced alterations. The 

regional-scale alteration is characterized by the partial/complete removal of hematite coatings and 

the formation of secondary iron oxyhydroxides comprising goethite and possibly 

ferrihydrite/maghemite (Fig. 15c). Goethite shows its greatest abundance along the crest of the 

anticline, but towards the edges, its proportion shrinks and transitions to bleached facies. The 

bleached facies then coincides with an excess of clays and secondary carbonates (Fig. 15c-e) that 

collectively could be indicative of extensive microseepage-induced alterations. 

Given the clay alteration map as the indication of diagenetic changes (Fig. 15d), three 

microseepage-prone areas could be recognized over the anticline including a large zone to the south 

of East Alborz of which is comprised of several broken anomalies, and two distinct zones on either 

side of the West Alborz. The anomalies represent an asymmetric microseepage system relative to the 

crest of the anticline. Whereas the phenomenon could correspond to an annular anomaly over the 

accumulations (Asadzadeh and Souza Filho, 2017), the exploration drilling (Wells No. 1-4) indicated 

that at least under a portion of the unaltered terrains no accumulations exists (Fig. 15a). We 

speculate that this asymmetric pattern mirrors the shape of the reservoir beneath conforming to a 

thrusted anticline. In other words, the petroleum accumulations tend to occur towards the south of 

the axis of the anticline; a fact that is corroborated by drilling (Well No. 5 that blew out) and is 

consistent with the microseepage pattern. The absence of alterations on the northern margin of the 

East Alborz reservoir along which the thrust faulting occurs is not yet understood. The only changes 

induced on this end are some narrow and elongated goethitic anomalies that presumably correspond 

to surface manifestation of thrust faults (Fig. 15c). 

Thus far, however, the extent to which the microseepage-induced anomalies coincide with the 

boundary of the underlying reservoir is not known (at least to the authors). Observations over 

Serajeh gas field (not discussed here) indicated that microseepage anomaly occurs as haloes around 

(and over) the surface projection of HC reservoir. Given the annular anomaly pattern, the potential 

reservoir of Alborz could overlap with altered zones and extend beneath the unaffected red-beds. 

Based on alteration mapping outcomes, three prospective zones were defined over Alborz reservoir 

of which only Prospect-1 is tested by drilling (Fig. 15d). Two other microseepage anomalies alongside 

a large portion of the primary target are yet to be tested by drilling. 

                                                           
10

 This phenomenon is believed to justify the ‘hazy anomalies’ reported over productive oilfields in the early days of satellite 
remote sensing. 
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Fig. 15. Microseepage alteration maps derived from Sentinel-2 and ASTER satellite data in Qom study area. a) natural color composite 
imagery. b) the abundance and distribution of hematite corresponding to unaffected lithofacies. c) the abundance and distribution of 
goethite/ferrihydrite corresponding to affected lithofacies. 
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Fig. 15 (Continue). d) the abundance and distribution of clay minerals (smectites and mixed-layer illite/smectite). e) the abundance and 
distribution of carbonates (calcite). The dashed white lines indicate the outline of prospects over the structure.   

The concern arose as to whether the recorded anomalies are induced by microseepage systems. 

Besides the evidence presented above, there are several lines of evidence that support the 

interpretation is favor of microseepage-induced alterations rather than an intrinsic property of 

stratigraphic variations: (i) the diagenetic changes were observed only over the Alborz reservoir. In 

Mil area (and another control site some 60 km to the north of this area not reported here), the 

delineated indicators were largely absent. (ii) the changes fail to show any spatio-temporal 

relationships with the stratigraphy of the area; for instance, the same lithofacies altered to the south 

of East Alborz is unaffected in northern edge. Even along the same beds from east to west, a similar 

pattern could not be followed (Fig. 15a). (iii) there are unaffected inter-layers between the intensely 

bleached facies. (iv) the scale in which iron is mobilized (and then removed or re-precipitated) is very 

large; such a regional-scale iron oxides reduction could only arise from a reservoir-wide 

microseepage system. 

Overall, the resulting mineral maps show a good agreement with field observations and 

spectroscopic studies. However, due to the limitations imposed by multispectral data, it was not 

possible to differentiate between species of clay minerals or map the compositional variations 

associated with, for example, white micas. 
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6.5.4.2. Miniseepage remote sensing 

Remote sensing data was successful in mapping the local alterations induced by Mil miniseepage 

(Fig. 16). The marly unit surrounding the gypsiferous inter-layer tends to retain red color that is 

indicative of hematite coating (Fig. 16b). Albeit, due to miniseepage effects, its eastern contacts with 

gypsum layer has transformed into goethite coats (Fig. 16c). On the other hand, the ASTER data 

collected before the exploitation of the gypsiferous layer provided an opportunity to target sour 

gypsum (Gach-i-Turush) through the area (Fig. 16a). We presumed that the miniseepage affected 

zones should retain very strong water absorptions at 2200 nm (Hunt, 1977) and cover wide areas, for 

the alteration is known to yield powdery gypsum. Accordingly, we decided to vist the localities 

wherein gypsum showed abnormal intensities (Fig. 16a). By this way, we verified the occurrence of 

Gach-i-Turush is several localities. Moreover, a new series of paleo-seeps were detected along the 

outcrops of the gypsiferous unit in the vicinity of altered gypsum. The locations are indicated by stars 

in Fig. 16a. 

These maps show that in comparison to microseeps, miniseepage alterations around oil and gas 

indications constitute smaller targets. Accordingly, their detection would not be straightforward 

using satellite remote sensing technology.  

 

Fig. 16. Mineral maps derived from satellite data over Mil area. a) abundance and distribution of gypsiferous inter-layer. The circles 

pinpoint the location of paleo-seeps verified on the ground. b) abundance of hematite and c) goethite surrounding the Mil seepage 

(miniseepage). The maps in b-c correspond to the rectangle exhibited in (a). The arrow in (c) indicates the position of the photograph 

shown in Fig. 7a.  

6.6. Conclusion 

This study indicated that even in the case of near perfect evaporitic capping, the reservoir still 

leaks HC to the surface. The induced physio-chemical and mineralogical changes were shown to be a 

function of the geochemistry of the lithofacies hosting the microseepage, the local environmental 

variables (i.e. climate and hydrogeology among others) and likely the characteristics of the reservoir 

(i.e. pressure, leakage rate, etc.) and the chemistry of the accumulation (i.e. H2S proportion). The 

mafic lithofacies in this area (i.e. URF) coupled with an alternation between oxidizing and reducing 

regime had given rise to a new array of mineralogical and geochemical indicators for microseepage 
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systems. The major oxides proportions were substantiated to be a reliable indicator of 

microseepage-induced alteration. A new index based on the major oxides was proposed for 

geochemical evaluation of microseepage alterations. Regarding the iron oxides, we indicated that the 

composition of iron oxides/oxyhydroxides along with its proportion (bleaching) could constitute 

additional indicator for microseepage remote sensing. The clay mineralogy on the other hand, was 

revealed to be dominantly smectites, mixed-layer illite/smectite, and chlorite with no traces of 

kaolinite. Nevertheless, the collection could not be mapped remotely due to the limitation imposed 

by multispectral data. 

The extent of microseepage-induced alteration within this area was indicated to be much larger 

than what was known before. The distribution of anomalous zones was shown to conform to the 

annular pattern. Further drilling is required to verify the occurance of economic petroleum 

accumulations in the prospects. 

The findings of this study would be helpful in distinguishing charged traps from dry plays and 

likely will increase the efficiency of remote sensing techniques for oil and gas exploration through 

eliminating false-positive and false-negative anomalies. The global coverage of the datasets would 

facilitate the mapping of active microseepage systems all around the world in a fast and cost-

effective way. 
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Chapter 7 

Investigating the capability of WorldView-3 superspectral data for direct 

hydrocarbon detection
11 

 

The recently launched WorldView-3 (WV-3) satellite is a high spatial resolution instrument with 
eight multispectral bands in the visible and near-infrared and an additional eight bands in the short-
wave infrared (SWIR). Three of the SWIR bands, including bands 9, 12, and 16 (centered at 1210, 
1730, and 2330 nm) respectively overlap with diagnostic absorption features of hydrocarbons (HCs) 
at 1200, 1700, and 2300 nm. This chapter (paper) aims to investigate the capability of this 
superspectral instrument for direct HC detection. For this purpose, we have conducted several 
simulation experiments using multiple datasets comprising (i) spectral libraries of different HCs 
measured in the laboratory, (ii) close-range hyperspectral imagery of a well-known tar-sand sample 
acquired with a sisuCHEMA imaging system, and (iii) far-range ProSpecTIR hyperspectral imagery 
collected over twelve simulated HC-shows. These datasets were convolved to the spectral resolution 
of WV-3 and analyzed using a variety of spectral processing techniques. The absorption features of 
HCs manifest themselves in all cases albeit with varying intensity. The effect of a series of parameters 
on the detectability of the HCs was also scrutinized; these included background geology, spectral 
mixing, HC type, endmember set, spatial resolution, noise level, and topography. We demonstrate 
that the HC absorption feature in WV-3's band 12, accompanied by shoulders sustained at bands 11 
and 13 (centered at 1660 and 2165 nm), is resilient enough and persist under various conditions. 
Potential applications of these finding include hydrocarbon exploration in frontier basins and 
environmental monitoring. 

7.1. Introduction 

Hydrocarbon (HC) is an organic compound found in petroleum (crude oil), bitumen, tar, and 

kerogen. The detection and mapping of HC is important, because it provides a compelling direct 

evidence for the generation of thermogenic HC in basins and plays (Macgregor 1993), and 

simultaneously, because it is currently one of the large contributors to anthropogenic pollution 

(Brown 2009; Jha et al. 2008). In offshore basins, a diverse range of remote sensing technologies are 

used to map the extent of oil spills and/or oil seeps, including synthetic aperture radar (SAR), laser 

fluorescence, thermal infrared (based on apparent thermal inertia), light detection and ranging 

(Lidar), and hyperspectral imaging (Fingas and Brown 2014; Leifer et al. 2012). SAR is by far the most 

extensively used spaceborne technology for this aim. However, it is unable to identify oil type and to 

estimate the thickness of oil spills (Brekke and Solberg 2005). 

A number of structural bonding in HCs, including C–H, CH2, and CH3 give rise to stretching 

fundamentals between 3000-7000 nm regions. The overtones and combinations of these 

fundamentals fall within the near-infrared (NIR) and short-wave infrared (SWIR) wavelengths. 

Pronounced HC features in the NIR-SWIR window include a triplet between 1700-1750 nm due to 

simultaneous overtone/combination, and a doublet between 2290-2360 nm due to combination of 

C–H stretching. Occasionally, a singlet subtle absorption feature between 1150-1230 nm, related to 

the second overtone of the C-H stretching, is also present (Clark et al. 2009; Cloutis 1989; Kallevik et 

al. 2000; Lammoglia and Souza Filho 2011). 

                                                           
11
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Several case studies have demonstrated the merit of hyperspectral data for direct HC detection 

using the aforementioned absorption features. For instance, oils occurring naturally among onshore 

seeps in a sedimentary basin, or the oil-contaminated sands in an urban area have been detected by 

airborne hyperspectral imageries (Ellis et al. 2001; Hörig et al. 2001; Kühn et al. 2004; Prelat et al. 

2013). Similarly, the distribution of oil from the Deepwater Horizon spill in coastal marshes was 

successfully mapped with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral 

data (Kokaly et al. 2013). In offshore basins, imaging spectroscopy was demonstrated to have the 

groundbreaking potential to quantify oil thickness (for slicks >0.1 mm thick) and the oil to water ratio 

(Clark et al. 2010; Leifer et al. 2012). Moreover, infrared spectroscopy has proved to be an effective 

tool in identifying oil types with varying API gravity (Lammoglia and Souza Filho 2011). 

Despite the encouraging results from optical remote sensing for direct12 oil detection and 

characterization, such studies have been confined to airborne systems, which are generally of limited 

access, costly, and with small areal coverage. In contrast, current broadband multispectral orbital 

instruments with global coverage (e.g. the Landsat series or Advanced Spaceborne Thermal Emission 

and Reflection Radiometer; ASTER), are seldom used for this aim. The main reason is probably the 

lack of spectral bands required to resolve the C-H absorption features (Fig. 1). For instance, AVIRIS 

data degraded to 30 m spatial resolution of Landsat ETM were 74% accurate in detecting oiled 

marshes (against 93% of AVIRIS at 7.6 m resolution); however, the same data resampled to the 

spatial and spectral resolution of Landsat ETM (six spectral bands; Fig. 1) failed to detect any oiled 

targets (Kokaly et al. 2013). The ASTER instrument is likely to resolve the 2300 nm absorption feature 

when not mixed with other compounds (Fig. 1).  However, the ASTER SWIR detectors are no longer 

functioning and data acquired since April 2008 are not useable. Regarding oil characterization, ASTER 

instrument has been merely used to estimate the API gravity of oil slicks emanating from offshore 

subsurface reservoirs (Lammoglia and Souza Filho 2012). Other indirect assessment methods like the 

time series analysis of vegetation greenness due to oil spills extracted from Landsat ETM imageries 

(Mishra et al. 2012) was believed to be too complicated to reflect the real impacts of oil on an 

ecosystem (Kokaly et al. 2013). 

The successful launch of WorldView-3 (WV-3) satellite by Digital Globe in August 13/2014 has 

opened up new opportunities to map mineral assemblages, vegetation cover and man-made 

materials with greater spatial and spectral resolution (Kruse and Perry 2013). The coincidence of 

specific WV-3 bands with HC features centered at 1200, 1700, and 2300 nm motivated us to 

investigate whether the sensor has the capability to directly and unambiguously detect HCs.  

In the absence of real WV-3 data acquired over a known HC outcrop, we have simulated WV-3 

data using datasets from i) spectral libraries of different HCs measured in the laboratory, ii) a close-

range hyperspectral imagery (sisuCHEMA), and iii) a far-range (airborne) ProSpecTIR hyperspectral 

imagery collected over twelve man-made HC-shows. Each dataset was convolved to the spectral 

response of the WV-3 instrument, and then analyzed using several spectral processing techniques 

and a suite of parameters including background geology, spectral mixing, HC type, endmember set, 

spatial resolution, noise level, and topography. 
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 Here we emphasize the “direct” detection to differentiate it from “indirect” sensing, which is used for oil and 
gas exploration through mapping of alteration minerals above HC accumulations; for details see (Van Der Meer 
et al. 2002). 
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Fig. 1. Reflectance spectra of two oil-bearing samples resampled to the response functions of ASTER (solid line) and Landsat-8 (dashed 

line). Note that only ASTER can resolve the HC feature at 2300 nm (shown by the arrow). Vertical dotted lines define ASTER band 

positions (numbered b1 to b9). Samples are described in section 3-1. 

7.2. Specifications of the WorldView-3 instrument 

WV-3 is a sun-synchronous, high spatial resolution commercial satellite with moderately large 

spectral bands. In the visible and near infrared, like its predecessor WorldView-2, it provides four 

standard color bands and four additional bands named coastal, yellow, red edge, and near-IR2. The 

major advancement of WV-3, however, is the addition of eight SWIR bands in the 1195-2365 nm 

window (Fig. 2). Furthermore, twelve additional CAVIS (Clouds, Aerosols, Vapors, Ice, and Snow) 

bands guarantee proper estimates of aerosol and water vapor for atmospheric compensation of the 

data. The platform operates at an altitude of 617 km. The spatial resolutions at nadir are 0.31 m 

(panchromatic), 1.24 m (VNIR), 3.7 m (SWIR), and 30 m (CAVIS). The SWIR dataset, however, will only 

be released commercially at 7.5 m resolution in 14-bits dynamic range. The swath width of the 

instrument is 13.1 km, with the descending node at 10:30 A.M.(DigitalGlobe 2014). 

A comparison between the spectral bands of WV-3 with that of ASTER and OLI/Landsat-8 reveals 

the full strengths of this new instrument (Fig.2). In the VNIR range, WV-3 surpasses both of them 

with several additional bands (Fig. 2), which potentially enables a more accurate mapping of iron 

oxides. WV-3 also introduced four SWIR bands in 1200-1750 nm region relative to a single band in 

both ASTER and Landsat-8 instruments (Fig. 2). WV-3’s SWIR bands 13 to 16 (spanning between 

2160-2330 nm; Table 1) are approximately identical to ASTER’s SWIR bands 5 to 8 (spanning between 

2165-2330 nm). However, the equivalent to ASTER’s SWIR band 9 (centered at 2395 nm) is missing in 

WV-3. Consequently, while most of ASTER’s capabilities are expected to be inherited by WV-3, it is 

unlikely that WV-3 could map mineral groups like Mg-OH or carbonates as accurate as ASTER. In 

general, though, WV-3 should significantly outperform ASTER because of additional SWIR bands and 

higher spatial resolution (Fig.2).  
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Fig. 2. Comparison of WV-3 spectral bands with ASTER and OLI/Landsat-8 multispectral instruments. Bars represent the full width at half-

maximum (FWHM) coverage of each numbered band. The atmospheric transmission that is adapted from USGS 

(http://landsat.usgs.gov/landsat8.php) is plotted in the background in grey. 

Table 1. Characteristics and wavelength ranges of WV-3 spectral bands (source: Digital Globe). 

Sub-
system 

Band 
number 

Band 
name 

Wavelength 
range (nm) 

Band 
centers 

(nm) 

Sub-
system 

Band 
number 

Band 
name 

Wavelength 
range (nm) 

Band 
centers 

(nm) 

VNIR 

1 Coastal 400 - 450 425 

SWIR 

9 SWIR-1 1195 - 1225 1210 

2 Blue 450 - 510 480 10 SWIR-2 1550 - 1590 1570 

3 Green 510 - 580 545 11 SWIR-3 1640 - 1680 1660 

4 Yellow 585 - 625 605 12 SWIR-4 1710 - 1750 1730 

5 Red 630 - 690 660 13 SWIR-5 2145 - 2185 2165 

6 Red edge 705 - 745 725 14 SWIR-6 2185 - 2225 2205 

7 Near-IR1 770 - 895 825 15 SWIR-7 2235 - 2285 2260 

8 Near-IR2 860 - 1040 910 16 SWIR-8 2295 - 2365 2330 

7.3. Materials and methods 

7.3.1. Spectral library 

To investigate the spectral behavior of HC-bearing materials at WV-3 spectral resolution, four 

sample suites were collected. Table 2 lists the four suites, their location, and any accompanying 

minerals. The crude oil suite extracted from Brazilian basins is comprised of three samples with 

different API gravities: heavy (API<22), intermediate (22<API<30), and light (API>30) oils. The tar-

sand suite (a heavy hydrocarbon with API<10 and varying clay content) was extracted from an 

exhumed hydrocarbon reservoir host in early Triassic sandstones of the Parana basin. The sampling 

site was near the town of Anhembi, some 170 km to the NW of Sao Paulo city in Brazil. The oil seep 

suite was collected from an active onshore macroseep occurring in gypsiferous strata. The seep is 

associated with low-angle thrust faults penetrating the Alborz structural trap (Miocene) in Qom area, 
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central Iran. The tar-like, oxidized solid oil was taken from the remnant of a wildcat oil gusher over 

the Alborz anticline in Qom area (Table 2). 

 

Fig. 3. Reflectance spectra of HC-bearing compounds acquired from a variety of samples including crude oils, tar-sands, tar, and oil-seeps 

of Iran and Brazil. a) Continuum removed spectra measured in the laboratory using a FieldSpec-4 spectrometer. The wavelength range of 

http://en.wikipedia.org/wiki/Wildcatter
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the WV-3 bands is represented by grey bars, and band numbers are printed on top of each bar. The wavelength region of the main HC 

absorption features is shown by parallel dashed lines and also are enclosed by horizontal arrows. b) The same spectra shown in (a) 

convolved to WV-3 spectral response; vertical solid lines indicate the central wavelength of each band. Vertical arrows denote the 

absorption features resolved by the sensor; those related to HC are shown in green, gypsum in blue (double arrow), and montmorillonite in 

dashed red. Note that spectra given in (b) are not continuum removed. 

The solid samples were collected from surface outcrops and kept in fully sealed, thick plastic bags. 

The liquid samples were collected in specially sealed jars that are standard in the petroleum industry. 

The samples were collected during 2011 to 2013 and since then have been stored at ambient 

temperature in the laboratory. The four suites were measured in the laboratory using an ASD’s 

FieldSpec-4 spectrometer (covering the spectral range between 350-2500 nm at 1 nm intervals) 

under artificial illumination from a contact probe. For each measurement, 50 scans were used to 

reduce the contribution of instrument noise. The measured spectra were converted to absolute 

reflectance using a Spectralon panel. All the measurements were corrected for splice error and then 

convolved to WV-3 spectral resolution using spectral response functions of the sensor provided by 

Digital Globe. The full resolution and resampled spectra are shown in Fig. 3. 

Table 2. Summary of the samples used to study in the laboratory. 

Sample suite 
Number 

of samples 
Accompanying material(s) Sampling site 

Crude oil 3 - Brazilian basins 

Tar-sand 3 Montmorillonite, quartz Anhembi area, Brazil 

Oil seep 3 Gypsum Qom area, Iran 

Tar  1 - Alborz anticline, Iran 

7.3.2. SisuCHEMA hyperspectral dataset 

In the close-range laboratory experiment, we used hypercube data of the tar-sand sample. The 

sample is dominated by bitumen, but montmorillonite is also present as inter-layers and small spots 

in a quartz-dominant matrix (Fig. 4). This particular tar-sand sample was chosen for the study 

because of its unique mineralogy (a binary mixture; as quartz is spectrally featureless in the SWIR 

region), and because of its compositional and spectral similarity to oxidized petroleum. More 

importantly, once proved to be detectable by WV-3’s SWIR bands, tar-sands could be potentially 

targeted by this sensor in exploration surveys. 

The spectral image was collected using a sisuCHEMATM hyperspectral imaging instrument (Specim 

Ltd., Finland). The sisuCHEMA system consists of a moving sample tray, an illumination lamp, and a 

high-resolution spectral camera that measures radiance in the SWIR (Table 3). The image cube 

acquired by this system is converted to reflectance using a white Spectralon reference panel and 

built-in routines of the instrument. The tar-sand sample shown in Fig. 4 was scanned by the system 

and an image cube with 256 spectral bands between 930-2500 nm and average spatial resolution of 

150 µm was obtained. In order to produce symmetric pixels, the image was resampled to 300 µm 

using 0.53 and 0.43 multipliers for X and Y directions, and a pixel aggregate function. In order to 

suppress noise, statistical and Sav-Gol smoothing filters were applied to the imagery. The final cube 

was then resampled to WV-3’s spectral response, yielding eight spectral bands in the SWIR region 

(Fig. 7b). In the processing stage, we worked out a series of simple calculations over the main 

absorption features of bitumen by applying band ratioing (BR) and relative-absorption band depth 

(RBD) techniques (Crowley et al. 1989) to the resampled and original datasets. 
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Fig. 4. Photograph of the tar-sand sample used in the close-range study. The area inside the red box was scanned by the sisuCHEMA 

imaging system. 

Table 3. Technical specification of the sisuCHEMA imaging system 

Spectral range 

(nm) 

Spectral 

bands 

Spectral resolution 

(nm) 

Pixel size 

(µm) 

930-2500 256 10 30-300 

7.3.3. ProSpecTIR dataset 

For the far-range experiment, we employed the dataset acquired over simulated (man-made) HC-

shows in the Casper testing center, located in Wyoming, USA. In this campaign, twelve boxes (2.44 × 

2.44 × 0.15 m) were filled with three types of mineral substrates and four types of liquid HCs. The 

mineral substrates were sandy, dolomitic and clayey soils with varying grain sizes (Fig. 5). The liquid 

HCs used were diesel, gasoline, light oil (API = 29), and heavy oil (API = 41) (Table 4). Each box was 

impregnated with 36 liters of HCs (Fig. 5d), and 30 minutes later, they were imaged by the 

ProSpecTIR-VS hyperspectral instrument. The spatial arrangement of the boxes and a description of 

their content are provided in Fig. 6 and Table 4. 

The ProSpecTIR™ airborne instrument has two major sub-systems operating in the VNIR and 

SWIR. They cover the wavelengths ranges between 400-970-2450 nm with 357 spectral bands at 

respectively 2.9 and 8.5 spectral resolutions. The signal-to-noise ratio (SNR) of the instrument is 

higher than 500:1. In this study, the data were acquired with a ground sampling distance (GSD) of 0.6 

m. The data were atmospherically compensated and then spectrally resampled to WV-3 spectral 

resolution, yielding sixteen spectral bands with 0.6 m spatial resolution (Fig. 6). 

Primarily, we aimed to use the airborne hyperspectral dataset to understand the detectability of 

different HCs in intimate mixtures with distinct soils using three breeds of processing algorithms, 

notably BR and RBD, spectral correlation mapper (SCM), and match filtering (MF) (Boardman et al. 

1995; Carvalho Junior and Menezes 2000). Next, to appreciate the effect of GSD on the detectability 

of HCs, we resampled the dataset to lower resolutions (i.e. 1.2, 2.4, 3.7, 4.2, 6.0, and 7.5 m; in which 

the 3.7 m is the standard WV-3 resolution and 7.5 m is the commercial release of SWIR sub-system) 

using a pixel aggregate function. 
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Fig. 5. Photograph of the geologic substrates used to fill each box in the airborne simulation experiment. a) Sandy soil. b) Dolomitic soil. c) 

Clayey soil. d) Illustration of the impregnation of the substrates with HCs (here light crude oil). The scale for (b) and (c) is similar to (a). 

Table 4. A simple description of the mineralogic and HC content of boxes used with airborne simulation experiment. The arrangement of 

the boxes is shown in Fig. 6. 

Box No Substrate HC type 

1 Sand Crude oil (°API 29) 

2 Sand Crude oil (°API 41) 

3 Sand Diesel 

4 Sand Gasoline 

5 Dolomite Crude oil (°API 29) 

6 Dolomite Crude oil (°API 41) 

7 Dolomite Diesel 

8 Dolomite Gasoline 

9 Clay Crude oil (°API 29) 

10 Clay Crude oil (°API 41) 

11 Clay Diesel 

12 Clay Gasoline 

Primarily, we aimed to use the airborne hyperspectral dataset to understand the detectability of 

different HCs in intimate mixtures with distinct soils using three breeds of processing algorithms, 

notably BR and RBD, spectral correlation mapper (SCM), and match filtering (MF) (Boardman et al. 

1995; Carvalho Junior and Menezes 2000). Next, to appreciate the effect of GSD on the detectability 

of HCs, we resampled the dataset to lower resolutions (i.e. 1.2, 2.4, 3.7, 4.2, 6.0, and 7.5 m; in which 

the 3.7 m is the standard WV-3 resolution and 7.5 m is the commercial release of SWIR sub-system) 

using a pixel aggregate function. 
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Fig. 6. Natural color composite of the ProSpecTIR data resampled to WV-3 resolutions showing the arrangement of twelve boxes 

containing different substrates impregnated with distinctive HCs. The arrow indicates the flight direction. 

Furthermore, to test the robustness of the HC features against noise, scaled random Gaussian 

noise was systematically added to the cube using the following formula: 

      𝜌𝑁(𝜆) = 𝜌(𝜆) (1 +  
𝑅(𝜆)

𝑆𝑁𝑅
)        (1) 

where 𝜌𝑁(𝜆) is the noise-added pixel spectrum, 𝜌(𝜆) is the original WV-3 spectrum, R(λ) is a 

random number from Gaussian distribution (generated using the computer clock), and SNR is the 

desired SNR level (Rodger et al. 2012). Thirteen SNR levels (30, 40, 50, 75, 100, 150, 200, 250, 300, 

350, 400, 450, and 500:1) were used in the computational experiment.  

Since direct HC detection has been hindered by brightness confusion with low albedo pixels 

resulting from shade or moisture (Ellis et al. 2001; van der Werff 2006), we employed a rugged 

terrain (with 800 m elevation difference) to simulate the effect of topography on the HC signatures 

considering sun illumination at mid- latitude winter (20 of December) and summer (20 of June) as 

follows: 

𝑀𝑜𝑑𝑒𝑙𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑖𝑚𝑎𝑔𝑒 (
𝐶𝑜𝑠 𝑖

𝐶𝑜𝑠𝜃
)         (2) 

where 𝑖 is the local incidence angle, and 𝜃 is the solar zenith angle. 

𝐶𝑜𝑠 𝑖 =  𝐶𝑜𝑠𝛽𝐶𝑜𝑠𝜃 + 𝑆𝑖𝑛𝛽𝑆𝑖𝑛𝜃𝐶𝑜𝑠(𝛾 − 𝜑)                                      (3) 

where 𝛽 is the terrain slope, 𝛾 is the local terrain aspect, and 𝜑 is the solar azimuth angle (Feng et 

al. 2003). 
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7.4. Results and discussion 

7.4.1. FieldSpec spectral dataset 

The spectral plots of Fig. 3 shows that WV-3’s bands 9, 12, and 16 approximately overlap with the 

absorption features of HCs at 1200, 1700, and 2300 nm. Among them, band 12 is the most 

interesting for HC detection because it forms a relatively deep and stable absorption feature 

associated with a sharp left-side shoulder (band 11), as well as another broader right-side shoulder 

(band 13) (Fig. 3b). Band 9 is not associated with a proper “shoulder” in its vicinity, thus it is unlikely 

that this single band could uniquely resolve the 1200 nm absorption feature linked to HCs. However, 

in the wavelength region between bands 9 and 10 (920-1640 nm) some heavier HCs (e.g. bitumen 

and oil seeps; Fig.3a) display a uniform positive slope. The resampled spectral library also revealed a 

negative slope between bands 15 and 16 and occasionally between bands 13 to 16. These patterns, 

however, are easily affected and even reversed due to the spectral mixing of HCs with mineral 

substrates. For example, the presence of gypsum in oil-seep 3 or increasing amount of clays 

(montmorillonite) in tar-sand 1 to 3 (Fig. 3b) affect the absorptions features centered at bands 12 

and 16, or their corresponding shoulders at bands 11, 13, and partly band 15. In general, the 2300 

nm features result in more intense absorptions, however, it is potentially obscured by the absorption 

features of clays or carbonates and is not fully resolved by the WV-3 sensor. The 1700 nm absorption 

feature, on the other hand, albeit less pronounced, is not overlapped by absorption features of 

common minerals (Cloutis 1989; Kühn et al. 2004). However, there are reports of false positive 

anomalies due to the interfering effect of dried vegetation with absorption features at the same 

wavelength region (Elvidge 1990; Kokaly et al. 2013). 

7.4.2. SisuCHEMA hyperspectral dataset 

We calculated a series of BRs including b10/b9, b11/b12, b13/b12 and b15/b16, as well as the 

RBD index using (b11+b13)/b12 in order to test the performance of WV-3 bands for detecting 

bitumen in the tar-sand and map the extend of bitumen in the rock. The results are illustrated in Fig. 

7. We used the original hypercube data and calculated an RBD index to cross-validate the image 

maps produced at WV-3 spectral resolution (Fig. 7h). The index (R1657 + R1664 + R1801 + R1808 / R1720 + 

R1726 + R1733 + R1739) was yielded by incorporating reflectance bands (R) positioned at i) the shoulders 

and ii) the absorption minima of the 1700 nm feature as numerator and denominator, respectively. 

The band ratios were in good agreement with the bitumen content of the sample (evident as dark 

patches in Fig. 7b), with the exception of band ratio b11/b12. These maps have successfully 

discriminated montmorillonite (white patches in Fig. 7a and b) from bitumen and defined the relative 

extend of bituminous sands well. The correlation coefficient between the RBD index obtained from 

the original hypercube data and those obtained from the resampled data are reported in Table 5. The 

best correlation (0.93) is achieved when a combination of three bands (b11, b12, b13) are used, 

whereas poor results are yielded when using two of these bands only (b11/b12). The b10/b9 and 

b15/b16 ratios, which benefit from the spectral slope of HCs, produced moderately successful 

results. It seems, however, that the poor performance of the b11/b12 ratio is likely due to either 

nonlinear mixing effect of montmorillonite (section 4.1), the steep slope of bitumen towards shorter 

wavelength, or the inherent noise of the hyperspectral imaging system. This is because removal of 

the continuum from the spectra rose the correlation coefficient to 0.96. Thus, the relative 
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importance in the performance of the WV-3 bands for detecting HC features are as follows: b12 >b16 

>b9. This simple band calculation using a sisuCHEMA hyperspectral dataset shows that the spectral 

response of WV-3 can preserve the HC absorption bands, particularly around 1700 nm, and more 

importantly, the feature can be used for HC mapping. It is worth noting that based on the results 

achieved from hyperspectral studies, the performance of HC absorption features for characterizing 

petroleum could be prioritized as: 2300 nm >>1700 nm >>1200 nm (Clark et al. 2010; Ellis et al. 2001; 

Hörig et al. 2001; Kokaly et al. 2013). 

The depth of the 1700 nm absorption feature of tar-sands is shown to be correlated with the 

volumetric bitumen content of a sample (Donkor et al. 1995; Shaw and Kratochvil 1990). Here, the 

continuum-removed band-depth of this feature at 1726 nm was calculated using the original 

hyperspectral data and compared to similar parameter computed from the resampled WV-3 data at 

band 12. The high correlation coefficient for the two images (> 0.95%) implies that WV-3 is probably 

able to also estimate the HC fraction of a pixel. 

 

Fig. 7. a) Photograph (true color) of the tar-sand sample scanned by the sisuCHEMA imaging system. b) False color composite image 

(RGB=b9, b12, b16) of the tar-sand sample after resampling to WV-3’s SWIR resolution. c) b10/b9 ratio image used to highlight the 

positive slope in HC spectra between 900-1600 nm. d) b11/b12 ratio image. e) b13/b12 ratio image. f) RBD of the 1700 nm feature using 

(b11+b13)/b12. g) b15/b16 ratio image. h) RBD (R1657 + R1664 + R1801+ R1808 / R1720 + R1726 + R1733 + R1739) of the original hypercube data 

used to map the 1700 nm feature. The stretching thresholds for all color-coded figures (c) to (h) are between 3.5% for the lower values 

(shown in blue) and 99.5% for the higher values (shown in red). The scale in (a) applies to all images. 
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Table 5. The correlation coefficient calculated between the RBD image from the original hypercube data and BRs and RBD computed from 

the resampled WV-3 dataset. 

Correlation coefficient 
WV-3 bands 

b10/b9 b11/b12 b13/b12 (b11+b13)/b12 b15/b16 

SisuCHEMA 

bands 

(R1657 + R1664 + R1801 + R1808) / (R1720 

+ R1726 + R1733 + R1739) 
0.83 0.22 0.91 0.93 0.88 

7.4.3. ProSpecTIR dataset 

We processed the resampled WV-3 resolution dataset using three breeds of image processing 

techniques namely BR/RBD, SCM, and MF. The criterion to evaluate the results was the number of 

oil-bearing pixels highlighted in each box after applying a user-defined threshold. This is reported as 

hit pixels per box or pixel # (Fig. 8). To avoid any bias in thresholding, we used predefined fractions 

(e.g. >99.55%), but case-to-case changes were also made to eliminate commission errors as much as 

possible (especially with the null margins of the image). Ultimately, only those pixels that occurred 

exclusively inside the limits of the boxes or in their immediate vicinity were counted (Fig. 8). The limit 

of each box was initially determined by processing the original ProSpecTIR data. 

7.4.3.1. Assessing the performance of the WV-3 bands 

Here, we repeated the same image processing techniques explored in section 4.2., but also 

analyzed the performance of each index for spectral mixing. The results are displayed in Table 6 as 

pixel # scores. The RBD index detected the presence of oils in all of the boxes (Fig. 8a) and also 

highlighted the highest number of pixels. The b13/b12 ratio yielded the poorest results (Fig. 8b), 

because three of the boxes were overlooked altogether using this ratio. The b11/b12 ratio provided 

the second best performance; however, one of the targets was missed by this ratio (box 9; Table 6). 

Table 6. The number of oil-bearing pixels detected in each box using BR and RBD methods applied to the WV-3 dataset (GSD=0.6 m). 

Number 1 to 12 denote the boxes described in Table 4. 

BR/RBD 
(score; pixel #) per box Total 

1 2 3 4 5 6 7 8 9 10 11 12 Pixels Boxes 

b11/b12 9 23 17 20 18 32 25 31 0 14 17 10 216 11 

b13/b12 0 9 9 10 0 12 17 14 0 9 6 4 90 9 

b10/b9
 

10 15 14 14 8 19 14 17 4 4 8 2 129 12 

b15/b16
 

8 9 9 8 2 10 13 12 9 10 9 8 107 12 

(b11+b13)/2×b12 9 20 18 22 13 34 27 36 4 19 16 13 231 12 

The background mineralogy and oil-type content of the boxes (Fig. 9) indicate that the b13/b12 

ratio is very sensitive to HC type. The presence of clays in the background could also affect both 

b13/b12 and b10/b9 ratios. Three of the ratios (b13/b12, b10/b9, and b15/b16) showed average 

performance levels for HC detection. Heavier crude oil (°API 29; oil-29) proved to be the most 

difficult target to detect by spectral band ratios, whereas the detection of lighter oil (°API 41; oil-41) 

was relatively straightforward (Fig. 9b). Dolomitic soils stood out as the best background for HC 

detection examined here even though the b15/b16 ratio showed poorer results (Fig. 9a), which is 

likely due to the overlap of HCs and carbonate absorption bands around 2300nm. Clayey soil, in 

contrast, appears to be a problematic background for HC detection in the same way discussed in 
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section 4.2. In general, the combination of b11, b12, and b13 seems to work well for differentiating 

various HCs in varied background geology. 

 

 

Fig. 8. Examples of the thresholded HC-bearing pixels extracted from simulated WV-3 data shown in Fig 6. a) The RBD index detected all 

the targets (box 1 to 12) and highlighted 231 pixels in total. b) The b13/b12 ratio detected nine targets (neglecting box 1, 5, and 9) and 

highlighted 90 pixels in total. 

 

Fig. 9. The performance of different band ratios and RBD index in detecting HCs using simulated WV-3 data. a) HC detectability in 

different background soils. b) HC detectability considering the type of hydrocarbon. 
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7.4.3.2. The effect of endmember, background soil and band entry 

By selecting a pixel in the center of each box (Fig. 6), twelve image-derived endmembers were 

defined. They were then grouped and averaged, based on background mineralogy of the soil and HC 

types, bringing about seven different endmembers. Additionally, all the twelve imaged-derived 

spectra and the spectra shown in Fig. 3b were averaged to prepare two more generic endmembers 

(Fig. 10). The immediate aim was to examine the sensitivity of HC detection against endmember 

setting. This is important because in real cases there is limited or no knowledge about the spectral 

characters of the target. The performance of SCM and MF processing techniques relative to each 

endmember is shown in Fig. 11. 

 

Fig. 10. Endmember suite used with SCM and MF processing techniques. The endmembers were extracted from the center of each box 

and averaged spectrally based on oil type or background mineralogy as defined in table 4. The library spectra are averaged from the 

resampled library shown in Fig. 3b. Av= average. 
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Fig. 11. Performance of the SCM and MF processing techniques in detecting HCs using different endmember sets and simulated WV-3 

SWIR bands. a) and b) The effect of endmembers considering the type of soil substrate and HCs using the SCM method. c) and d) The 

effect of endmembers considering the type of soil substrate and HCs using the MF method. The endmembers abbreviated in the x-axis are 

illustrated in Fig. 10. The digits above the graphs in (a) and (c) define the number of target boxes detected using that specific endmember. 

SCM and MF techniques perform poorly when an endmember is selected from soils impregnated 

by different HCs (e.g. the average of four HC-bearing pixels in the clayey background), as shown by 

the clay in the x-axis (Fig. 11 a and c). This means that the average of different HCs from similar 

background does not constitute a good endmember for HC detection, even when the endmember 

and the target are alike (e.g. clay graph versus clay endmember in Fig. 11a and c). On the other hand, 

endmembers selected from similar HCs in different background soils yield better results. This is 

evident for the higher scores achieved with endmembers such as oil-41 or gasoline (Fig. 11a to d). 

Furthermore, oil types are not correlated with their relevant endmembers. For example, in Fig. 11d, 

the maximum score of crude oil-29 is associated with oil-41 endmember and the highest score of 

diesel is correspondent to gasoline endmember. Based on these results, it seems unlikely that WV-3 

could distinguish between the oil types, especially where they are mixed with other materials, which 

is consistent with the results achieved using a classic hydrocarbon index from hyperspectral data 

(Kühn et al. 2004). 

The reliability of detecting HCs varies depending on soils type. Dolomitic soils impregnated with 

the four HCs gave rise to the highest scores, making oil sensing straight-forward in this background 

(Fig. 11c). Clayey soils mixed with HCs, however, showed the lowest scores (Fig. 11c and a). Sandy 

soils have an intermediate level of detectability (Fig. 11a and c). The low clayey soil scores are likely 

due to absorption of the liquid HCs and/or nonlinear spectral mixture with HCs suppressing the band 

12 feature. Three of the lightest HCs (gasoline, diesel, and oil-41) are approximately equally 

responsive to the endmembers and show similar detectability (Fig. 11b and d). Oil-29, as the heaviest 

oil in the set, clearly singles out as a difficult target, implying the critical role of API gravity in the 

detectability of oils by remote sensing instruments. In general, where both the HC targets and the 

endmembers show deep 1700 nm absorption feature (Fig. 10 and 3a), they create easier targets or 

better endmembers for spectral mapping.  

The SCM method calculates the correlation of an endmember with each pixel spectra and yields a 

score between -1 to + 1 (Carvalho Junior and Menezes 2000). The results achieved with this method 

(Fig. 11a and b) illustrate that the SCM is very sensitive to the type of endmember or target 

environment. This instability in the spectral signature, which is likely due to the physical/spectral 

mixing of liquid petroleum with background soils, makes similarity measures inappropriate for HC 

detection. In contrast, the MF technique provided higher overall scores and detected all 12 targets in 

various scenarios (Fig. 11c). Moreover, the MF was more stable against variations in endmember 

setting, which was a function of oil type, API gravity, and spectral mixing (Fig. 11c). Furthermore, the 

good performance of generic endmembers (constructed from averaging the image-derived or library-

derived spectra; Fig. 10) is promising, because in practice, with little knowledge about the oil type or 

its occurrence environment, they could be effectively applied to partial unmixing techniques to 

detect HC-prone areas. 

We repeated the same MF processing scheme described above, but employed the sixteen WV-3 

(VNIR+SWIR) bands instead of eight SWIR bands. The best results were achieved when only the SWIR 

bands were used for spectral analysis (Fig. 12), which is likely because most relevant absorption 
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features of HCs are concentrated in the SWIR part of the spectrum. We have implemented the other 

processing steps in this work based on the findings described in this section. 

 

Fig. 12. The assessment of HC detecting using MF technique with different endmembers applied to simulated WV-3 with sixteen spectral 

bands (VNIR+SWIR) versus the SWIR only bands. The GSD is equal to 0.6 m and the scores are cumulative of all settings. The 

performance of VNIR+SWIR bands are calculated relative to SWIR bands and are printed on top of each bar. 

7.4.3.3. The effect of GSD 

To acknowledge the effect of spatial resolution on HC detectability, we resampled the original 

dataset to higher GSDs and then repeated the processing using both the MF and RBD techniques (Fig. 

13). As GSD increases the average scores and the total number of detected oil targets decrease but at 

different rates for the two techniques. At 3.7 m, the RBD detected seven boxes (Fig. 13a), with the 

dolomitic soil holding the strongest signal. At the same GSD, oil-41 was the most easily detectable oil, 

while oil-29 was not traceable (Fig. 13c). At this resolution, the areal ratio of target to pixel is 0.43, 

meaning that around half of the pixel is covered by oil (Fig. 13c). At 7.5 m resolution, although the oil 

signal from dolomitic soil still remained, the HC signal from other soils vanished altogether. At this 

resolution, three out of four targets with dolomitic substrate (including only lighter oils) were 

detected, wherein each target encompassed merely 11% of a pixel. 
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Fig. 13. The effect of GSD on HC detectability using simulated WV-3 data. a) The effect of different soil substrates using the RBD 

(b11+b13/b12) processing method. b) The effect of different soil substrates using the MF processing method. c) The effect of different HC 

types using the RBD method. d) The effect of different HC types using the MF method. The MF technique was used with SWIR bands and 

the endmember were yielded from averaging of all-boxes. The numbers above each GSD in (a) and (b) indicate the total number of boxes 

detected. The numbers in (c) define the target-to-pixel areal ratio. 

MF is a partial unmixing technique and can resolve spectral signatures at sub-pixel level more 

efficiently. Despite this fact, the responses of HCs at different substrates were not similar. At the GSD 

of 3.7 m, the spectral response of dolomitic soils impregnated with oil was the strongest. Eleven 

targets out of twelve were successfully detected (Fig. 13b); with the gasoline achieving the highest 

score (Fig. 13d). When the GSD reached up to 7.5 m, the weaker response shown by clayey and 

sandy soils at lower resolutions faded away completely but that of dolomite persisted for all the four 

types of HCs (Fig. 13d).  

The detection limit for oil in dolomitic, sandy, and clayey soils was respectively 11%, 17%, and 

34% (Fig. 13c and d). This means that the HC spectral response is relatively resilient, and wherever 

minor quantities of oil is present in a pixel, it is detectable spectrally. Nonetheless, to have at least 

one pixel selected per oil type on average, a GSD of about 4.0 m is required (Fig. 13c), implying that 

the HC target needs to cover 37% of a pixel (or take part with the same ratio in the outgoing signal). 

Very few studies in the literature have addressed the detectability of petroleum targets via 

spectral methods. In coastal zones, for instance, AVIRIS data with spatial resolutions of 7.6 m have 

been used to map oil-damaged marshes extending 1.2 m or less inland, which is equivalent to 16% 

sub-pixel detection limit. The same dataset resampled to 30 m GSD was still able to detect sub-pixel 

occurrences of 4 m oiled targets, that is equal to 13% detection limit (Kokaly et al. 2013). In the case 

of onshore oil seepage, our field experience indicates that a large portion of seeps provide targets 

with only a few meters wide. Such targets have been successfully detected, for example, using a 

hyperspectral dataset with 3 m spatial resolution (Prelat et al. 2013). In conclusion, the ultimate 

detection limit of WV-3’s SWIR bands (at 7.5 m commercial release) for targeting HCs will only be 

established when real datasets are evaluated at varying environmental conditions. 

7.4.3.4. The effect of SNR 

We analyzed the sensitivity of HC spectral response against different noise levels using the MF 

method. Fig 14a and b shows the results using the 0.6 m, and Fig 14 c and d using the 3.7 m 

resolution datasets. 

We have used the original dataset (before adding noise) with relevant GSD as a reference and 

then calculated the minimum SNR required to detect the HCs by considering a 95% confidence level. 

The results are shown by arrows above each diagram in Fig. 14. The minimum level of SNR depends 

upon the HC background and oil type. For example, while this level was 100:1 for dolomitic soil, for 

clayey substrate this minimum increased to 200:1 (Fig. 14a). When oil type was accounted for the 

level was relatively constant and was less than or equal to 150:1 (Fig. 14b).  
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Fig. 14. The effect of SNR on HC detectability by applying the MF technique to simulated WV-3 data. a) Variation in HC detectability 

considering different soil substrates as a function of SNR at 0.6 m GSD. b) Variation in HC detectability considering different HCs as a 

function of SNR at 0.6 m GSD. c) Variation in HC detectability considering different soil substrates as a function of SNR at 3.7 m GSD. d) 

Variation in HC detectability considering different HCs as a function of SNR at 3.7 m GSD. The processing was performed using SWIR 

bands and an endmember yielded from the average of all-boxes. The numbers above each SNR in (a) and (c) indicates the total number of 

boxes detected. The arrows show the minimum SNR required to detect HC responses at 95% confidence level. 

The same calculation applied for data resampled to 3.7 m resolution yielded variable performance 

inconsistent with those verified at higher resolution. There are two possibilities for such 

observations: (i) fewer pixels (commonly one pixel in each target) make them highly vulnerable to 

random noise, (ii) potential instability and error in thresholding. 

In general, with appropriate spatial resolution, a SNR of 150:1 should be adequate for HC 

detection. At this level, the positive detection of each target type is highly likely (Fig. 14a and c). 

7.4.3.5. The effect of topography 

Our experiment with simulated topography during two different seasons of the year indicates 

that the detectability of HCs is influenced by shadow (Fig. 15), with the wintertime showing the 

largest impact upon the signal. Shadowing in the wintertime reduced the total number of pixels by 

18% (relative to original WV-3 dataset). For the summer time, this rate declined to merely 10%. 

Consequently, as long as a proper acquisition time is used from the instrument, the HC targets can be 

detected without serious disturbance by the shadow.  



191 

 

 

Fig. 15. The effect of rugged terrain and shadowing on the detectability of HCs in a simulated WV-3 dataset. The mid-latitude summer 

topography correspond to June the 20th, and that of winter season to December, the 20th.  All experiments were conducted using SWIR 

bands at 0.6 m GSD. 

7.5. Conclusion 

Unlike other multispectral sensors, the WV-3 instrument is equipped with suitable bands to 

detect HCs. Several of the SWIR bands are located in spectral regions where HCs have diagnostic 

absorption features, including bands 9, 12, and 16, which are respectively centered at around 1200, 

1700, and 2300 nm. Our simulation experiment with close-range and far-range datasets 

demonstrated the relevance of these bands for HC detection. Band 12 was found to be superior 

because it is accompanied by two “shoulders” given by bands 11 and 13. Therefore, a simple index 

such as b11+13/b12 could unambiguously highlight the presence of HC in a pixel. 

The HC spectral response however, is not immune to mixing. For example, petroleum in brighter 

soil substrates with coarser grain size seems to form easier target for the sensor relative to fine-

grained darker clays. Besides, our finding indicated that the detectability of oils is dependent on API 

gravity and lighter oils with higher API are relatively easy to identify.  

Since HCs are virtually featureless in the VNIR part of the electromagnetic spectrum, only WV-3’s 

SWIR bands are adequate for HC detection. Our work clearly shows that the use of SWIR bands alone 

(preferentially acquired at high solar elevation angle) provides superior results in detecting HCs using 

partial unmixing techniques. Furthermore, despite the lack of details on SNR of the SWIR sub-system, 

the results indicate that as long as the SNR level of the sensor is higher than 150:1, the detection of 

petroleum in various environments can be achieved to within a 95% confidence level.  

Regarding sub-pixel target detection, our trial with a linear pixel aggregate function revealed that 

oil fractions of just 0.1 are potentially detectable, however, the oil fraction must typically exceed 0.33 

for confident detection. This has significance for the detection of subtle oil leakage from natural 

reservoir or anthropogenic installations. 

Further research with real datasets are required to fully understand the spectral behavior of 

petroleum as viewed by WV-3 and assess the effect of spectrally similar materials such as non-

photosynthetic vegetation or plastics (Clark et al. 2009; Elvidge 1990) on the signal recorded by this 

sensor. It is also essential to address the accuracy of sub-pixel detection and fraction estimation for 

petroleum targets using the WV-3’s SWIR bands at 7.5 m resolution. 
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We believe the results achieved here are evident in general. However, offshore scenarios will 

demand additional research to fully understand the behavior of oil slicks in aquatic environment as 

seen by WV-3 sensor. 

The demonstrated capability of WV-3 has implications in environmental protection and 

exploration activities in the oil and gas industry. The global coverage of this sensor will facilitate the 

monitoring of pipelines, petroleum installations (wells, tanks, etc.), and oil terminals for any oil 

leakage. It will also help identify contaminants and assess the oil-impacted sites or oil spills onshore 

and offshore. In the energy sector, it will allow prospectors to screen frontier basins for oil seeps and 

will likely promote the detection and mapping of tar-sands and oil-shales. 
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Chapter 8 

Multi-scale mapping of oil-sands in Anhembi (Brazil) using imaging 

spectroscopy
13 

 

In this work oil-sand outcrops in the Anhembi area in the Paraná Basin, Brazil, were studied using 
multi-scale imaging spectroscopy. The study incorporated VNIR-SWIR (400-2500nm) multispectral 
data from the WorldView-3 satellite instrument and hyperspectral data collected on the ground and 
from an airplane using an AisaFENIX imaging system. This was followed by outcrop studies and 
sampling in the field and close-range spectroscopy of the samples in the laboratory using both 
imaging (i.e. sisuCHEMA) and nonimaging (i.e. FieldSpec-4) instruments. The bitumen content of the 
deposit, which proved to be as high as ~12 wt. %, was revealed by close-range imaging to be 
unevenly distributed, even in the scale of a hand sample. The mean bitumen content was estimated 
to vary from 6 % in hand samples to ~5 % in bitumen-rich vertical walls, to 4 % in the aerial oil-sand 
outcrops. The continual decrease in the mean bitumen contents was inferred to be linked to the 
averaging effect of growing pixel sizes of the imagery. The bitumen impregnation was shown to be 
controlled mainly by the permo-porosity of the facies, with sand sheet facies corresponding to 
highest bitumen contents. The induced alteration mineralogy was restricted to clay formations and 
iron oxides bleaching. The clays, identified as montmorillonite, were ubiquitous and mixed 
intimately with bitumen at all studied scales. These collective observations were interpreted to be 
indicative of a single-phase flow of very viscous (API° ~5) HCs to the reservoir. The study showed 
that bitumen determination on the ground requires a system with high signal-to-noise ratio and 
good illumination conditions. Spectral denoising was also shown to be crucial and a prerequisite for 
spectroscopic analysis. WV-3 data showed capable of resolving HC’s feature at 1700 nm wavelength 
by its SWIR band-4 over targets encompassing ~25–30% of the resampled SWIR pixel (7.5 m); albeit 
the data was not successful in determining the total bitumen content of the outcrops. This study 
demonstrated that a multi-scale spectroscopic approach could provide a complete picture of the 
variations in the content and composition of bitumen and associated alteration minerals. The HC 
signature, especially the one centered at 2300 nm, is consistent and comparable among scales, and 
upon employing proper calibration data and analysis approach is capable of estimating the bitumen 
content of oil-sands at all imaging scales. 

8.1. Introduction 

Oil-sands are a complex mixture of bitumen (extra heavy hydrocarbons, with API gravity <10°), 

clays, water, and consolidated sands consisting of quartz, feldspars, and other accessory minerals 

(Cloutis et al. 1995). Oil-sand represents a type of unconventional oil deposit that is exploitable by 

surface mining (Speta et al. 2015). Natural bituminous deposits are reported in many countries, but 

giant reserves are found in the province of Alberta, Canada. In Brazil, the most important oil-sand 

accumulations occur in the eastern margin of the Paraná Basin to the southeast of the country. So 

far, 19 occurrences of oil-sands are reported to exist on this basin, of which the most significant and 

likely mineable deposit occurs in the Anhembi area (Araújo et al. 2005; Thomaz Filho et al. 2008). 

Hydrocarbons (HC) display several diagnostic absorption features between the visible-near 

infrared (VNIR) to short-wave infrared (SWIR) wavelengths due to overtones and combinations of 

the stretching fundamentals. Pronounced features in the SWIR window include a triplet between 
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1700–1750 nm and a doublet between 2290–2360 nm. HCs also show a broad but prominent 

absorption feature in the VNIR due to the pi (π) bonding between carbon (C=C) atoms (Asadzadeh 

and Souza Filho 2017; Cloutis 1989; Lammoglia and Souza Filho 2011). Owing to the presence of 

these diagnostic absorption features, reflectance spectroscopy has been extensively used as a rapid 

and non-invasive tool for characterization of oil-bearing compounds. In soil sciences, this technique 

is employed to track and quantify HC contamination of the soil (Correa Pabón and Souza Filho 2016; 

Schwartz et al. 2013). In the oil-sand industry, in particular, it has been widely used for on-line 

estimation of the total bitumen content (TBC) during ore processing (Rivard et al. 2010). Close-

range imaging spectroscopy, on the other hand, was shown to be a valuable tool in the core logging 

and the determination of TBC of the core samples (Speta et al. 2015). From the air, hyperspectral 

imaging is deployed to detect and quantify oil contaminations or naturally occurring seeps in the 

environment (Ellis et al. 2001; Kokaly et al. 2013). Thus far, however, the capability of orbital 

remote sensing data for direct petroleum detection has remained unexplored, mainly because of 

the lack of proper spectral bands in the operational instruments to resolve HC’s absorption 

features. Some initial spectral simulations demonstrated the potential of WorldView-3 (WV-3) 

satellite data for this aim (Asadzadeh and Souza Filho 2016a), albeit this possibility has not yet been 

tested using real datasets. 

In geologic remote sensing, the gap between proximal measurements in the lab and distal 

imaging spectroscopy collected overhead is closed by means of ground-based hyperspectral 

instruments. This emerging technology is demonstrated to be invaluable to study the petrographic 

and mineralogic aspects of the near-vertical rock faces at submillimeter to centimeter resolution. 

For instance, it has proved useful to characterize sedimentary stratigraphy (Greenberger et al. 2015; 

Okyay et al. 2016), carbonate lithofacies in quarries (Kurz et al. 2012), ferric iron minerals in vertical 

mine faces (Murphy and Monteiro 2013), and outcrops of organic-rich oil shales (Greenberger et al. 

2016). Nonetheless, the usefulness of these high spatial/spectral resolution data in the oil-sand 

mining industry is unaddressed in the literature. 

This work aims to study oil-sand outcrops of the Anhembi area in Paraná basin, Brazil, using 

multi-scale imaging spectroscopy. The motivation to explore this site was the well-exposed outcrops 

of the oil-sands, the easy accessibility of the site for field studies, and the availability of WV-3 

imagery over the entire area provided by DigitalGlobe. The area was further surveyed by ground-

based and airborne imaging systems using an AisaFENIX hyperspectral instrument (Specim Ltd., 

Finland). It was then followed by outcrop studies and sampling in the field and close-range 

spectroscopy in the laboratory using both the imaging (i.e. sisuCHEMA) and nonimaging (ASD 

FieldSpec) instruments. The research in this area was twofold: (i) to detect and characterize the 

bituminous sandstones using spectral technology and evaluate the consistency of HC’s signatures at 

multiple scales ranging from microscopic to deposit scales for bitumen content estimation, and (ii) 

to delineate the diagenetic alteration mineralogy associated with bitumen emplacement in 

sandstone beds and draw an analogy between this phenomenon and microseepage-induced 

alterations. 

  

http://www.specim.fi/products/aisafenix-hyperspectral-sensor/


196 

 

8.2. Geological context 

The Anhembi study area is located in the eastern edge of the Paraná basin, near the town of 

Anhembi, some 170 km to the NW of Sao Paulo city in southeastern Brazil (Fig. 1). The approximate 

coordinates of the site are between 48°01'10" to 48°01'30" west, and 22°45'35" to 22°45'45" south, 

covering an area of <2 km2. The climate of the region is mild, with an average annual temperature 

of 20°C and 1200 mm precipitation. 

The sandstone beds of the Pirambóia Formation cover almost the entire study area. The 

Pirambóia Formation comprises an unconformity-bounded aeolian succession of fluvial and aeolian 

sandstones of the lower Triassic. The sandstones, which vary in thickness from 20–200 m, are 

medium to fine-grained and show cross-stratification in cross section (Fig. 2b). The depositional 

environment of this formation is indicated to be fluvial with channels of floodplain facies. At its 

base, it comprises thick aeolian sand sheet facies, which are overlain by aeolian dune and interdune 

strata (Dias and Scherer 2008). Overall, four eolian facies are defined in the Pirambóia Formation 

comprising (i) foreset beds, (ii) bottomset beds, (iii) wet and (iv) dry interdune facies. The first two 

facies are characterized by high to intermediate permo-porosity, whereas the interdune facies are 

characterized by low permo-porosity and abundant argillaceous minerals (Martins et al. (2015) and 

references therein). 

 

Fig. 1. The worldview-3 natural color composite imagery of the Anhembi area located in southeastern Brazil (inset map). The circle 

sectors (arcs) and the orange dashed polygon respectively represent the wall faces scanned by ground-based hyperspectral imaging and 

the flight path of the airborne system. The gray-shaded polygon outlines the oil-sand outcrops. The white circles indicate the sampling 

sites with the labeled ones corresponding to anomalies derived from either WV-3 or airborne data and verified on the field. Note that 

Pirambóia Formation covers the entire area. A schematic geologic section along A–A′ is shown in Fig. 3. 



197 

 

 

Fig 2. Photographs illustrating the Pirambóia sandstones and oil-sand outcrops in the Anhembi area. a) examples of oil-sand walls 

cropping out in the study area.  b) cross-stratification in the eolian oil-free sandstones of the Pirambóia Formation in nearby areas. c) 

bleaching of the iron oxide coats that is confined to bituminous zones. d) a tripod-mounted AisaFENIX hyperspectral camera in operation 

scanning Outcrop-3. The arrow exemplifies a wet oil-sand wall in the shade. e) the outlines of Outcrop-1 (right) and Outcrop-2 (left) 

scanned by the imaging system. f-g) outcrops of oil-sands detected by airborne hyperspectral (AisaFENIX) and spaceborne multispectral 

(WorldView-3) data corresponding to Anb05 and Anb08 sampling sites, respectively. The locality of vertical walls (d-e) and the sampling 

sites (f-g) are illistrated in Fig. 1. 
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The bitumen accumulations in the Paraná basin occur mainly along fault zones or around 

structural highs on erosion-preserved areas (Fig. 2a) (Araújo et al. 2006). Petroleum in this area was 

derived from the Permian Irati shales (specifically the organic-rich Assistência Member), thermally 

matured due to Serra Geral magmatism, and then migrated to the lower Pirambóia Formation. 

Presumably, oil migrated along the contacts of diabase dykes with sedimentary units and then 

impregnated the eolian sandstones (Fig. 3). The interdune argillaceous beds and fluvial facies along 

with the intruded dykes then acted as local barriers against, the vertical and horizontal HC 

migrations, respectively (Araújo et al. 2005; Thomaz Filho et al. 2008). The restriction of 

accumulations in the basinward (west) side of the dykes (see Fig. 3) is hypothesized to be due to 

hydrodynamic flow from the inner parts of the basin to its periphery (Araújo et al. 2006; Araújo et 

al. 2005). Due to the role of diabase dykes in the maturation and migration of oil, some scholars 

regarded this Permian petroleum system as an atypical system (Araujo et al. 2000). 

As noted earlier, the largest known accumulation in this basin is located in the Anhembi area. 

This deposit, which extends along the edges of a NE–SW trending valley (Figs. 1 and 2a), is 

estimated to contain about 5.7 million barrels of oil in-place based on average bitumen content of 

5.5 wt. %. The oil in this deposit is immature, very heavy, and highly viscose (API ~5°), with 2–3 wt. 

% sulfur content (Thomaz Filho et al. 2008). Studies suggest that petroleum at this accumulation has 

been heavily degraded microbially, with the dry interdune and bottomset facies showing the 

highest and the lowest degree of biodegradation, respectively (Martins et al. 2015). During the 

1980s, there have been some mining activities at this site (see for example Fig. 2g). The excavated 

oil-sands have been used mainly for road pavements of the nearby areas. 

 

Fig. 3. Schematic geologic section representing the mechanism of oil migration along the diabase dykes to eolian Pirambóia sandstones. 

The section corresponds to A–A′ in Fig. 1 (Adapted from Thomaz Filho et al. (2008)). 
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8.3. Data collection and processing 

8.3.1. Fieldwork and sampling 

Fieldwork in this area was carried out at three different levels. Initially, we tried to visit the 

reported outcrops of the oil-sands in the vicinity of Anhembi, particularly those to the east of 

Botucatu city. While several occurrences of oil-sands were reported to exist around this deposit 

(Araújo et al. 2006; Araújo et al. 2005), oil-sands were observed only in one locality14 called Bofete 

to the south of Bofete town (23°11'36.5"S, 48°13'59.5"W). Notwithstanding, due to voluminous 

data collected over the Anhembi test site and the sheer size of accumulations, we restricted the 

scope of our studies to this deposit. 

At deposit-scale, we collected several representative samples (n=15) from oil-impregnated 

outcrops (mostly vertical walls) and the associated alterations (Fig. 1). To obtain the best results in 

the lab, fresh cuts of the oil-sands were collected during sampling. In the field, the relationships 

between the sandstone facies and their bitumen content, as well as the induced alterations, were 

investigated. Moreover, the anomalies derived from WV-3 satellite data were visited and verified in 

the field and sampled (n=10) for follow-up spectral study in the lab (Fig. 1). The same sample suite 

was also used to verify the result of airborne hyperspectral imagery. 

We also studied some well-exposed outcrops of the Pirambóia Formation devoid of bitumen 

from neighboring areas (particularly in road cuts) aiming to achieve a better understanding of the 

secondary mineralogic changes induced by bitumen emplacement and collect representative 

samples (n=11) for comparative spectroscopic studies. The coordinates of the sampling sites were 

recorded using a handheld GPS receiver to within an accuracy of ±3 m.   

To facilitate the referral, henceforth, the oil-impregnated sandstones of the Pirambóia 

Formation are referred to as ‘oil-sands’, whereas the beds devoid of bitumen are called ‘Pirambóia 

sandstones’. 

8.3.2. Infrared spectroscopy 

In the lab, both sets of samples (oil-sands and Pirambóia sandstones) were air-dried (if 

recognized to be wet) and then measured using a FieldSpec-4 spectrometer between 350–2500 nm 

wavelength range at 1 nm sampling intervals. A contact probe with artificial illumination was used 

to perform the measurements and a Spectralon reference panel was used to convert the results to 

reflectance. To reduce the effects of instrumental noise, fifty consecutive scans were incorporated 

into each recorded spectrum. Subsequently, the results were integrated into two separate spectral 

libraries namely oil-sands and Pirambóia sandstone suite. The procedure explained in Chapter 5 was 

used to correct the residual splice drift of the spectrometer between VNIR and SWIR2 channels. For 

comparison with ground-based data, the datasets were converted to absolute reflectance by 

multiplying the results to the response of the Spectralon white reference. Besides measuring the 

reflectance spectra of the sample suite, infrared spectroscopy also provided benchmark for 

checking the accuracy of other imaging instruments in retrieving quality reflectance spectra. 

                                                           
14

 Two known occurrences at Guareí (23°22'11.97"S, 48°15'32.58"W) and Mina farm (22°41'7.80"S, 48°18'3.61"W) were 
not visited during this study. 
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We used the Absorption-based Mineral Spectral Analyst (AMISA) to analyze the spectral datasets 

(Asadzadeh and Souza Filho 2016b). Three absorption features including ferric iron oxides (Feox), 

H2O, and Al–OH, respectively centered at ~900, ~1900, and ~2200 nm (Fig. 4), were considered to 

compare the oil-sands with Pirambóia sandstones. More specifically, we used the wavelength 

position, depth, and asymmetry of the features for cross-comparison. Beside these absorptions, 

which observed to be common in both datasets, some infrequent features occurring at ~2340 and 

~1065 nm were also inspected. For processing of all absorption features, a fixed threshold of 2x10-4 

was applied within the AMISA. 

In order to verify the mineralogy of the samples as revealed by spectroscopy, and understand 

the composition of framework grains of the sandstones, we analyzed three oil-sand samples with X-

ray diffraction (XRD).  

8.3.3. Close-range hyperspectral imaging 

Alongside the point measurement, some of the oil-rich samples were also selected for imaging 

using a sisuCHEMA hyperspectral imaging instrument (Specim Ltd., Finland), aiming to examine 

the distribution and spatial relationships of clays and bitumen in oil-sands. The sisuCHEMA system 

consists of a moving tray to put the sample into, an illumination source, and a high-resolution 

hyperspectral camera measuring radiance within the SWIR wavelength range (Table 1). The system 

can automatically measure a large sample by repeating the scanning along parallel scan lines. The 

acquired image cube is then converted to reflectance using an internal Spectralon reference by 

instrument’s built-in routnines. 

 

Fig. 4. Representative spectra of the Pirambóia sandstones (orange) and oil-sands (gray). Spectra No.1–3 exemplify a bitumen-rich 

sample, bitumen in (areal) mixture with montmorillonite, and a bitumen-free sample dominated by montmorillonite, respectively. The gray 

bars exhibit the analyzed wavelength ranges comprising iron oxides (Feox), hydrocarbons (C–H), water (H2O), and clays (Al–OH). 

For quality scanning, the oil-sand sample was firstly sliced appropriately to form even surfaces. 

Next, the sample (shown in Fig. 15a) was scanned by using a 31 mm lens to yield a hypercube data 

with 256 spectral bands between 930–2500 nm and spatial resolutions of 390 and 680 m, 
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respectively along the length (X) and width (Y) of the sample. To obtain equal-sized pixels, however, 

the image was resampled to 680 μm using 0.57 multiplier factor in the Y direction and a pixel 

aggregate function. Sixteen bands at either side of the cube (consisting of thirteen bands between 

928–1004 nm and three between 2512–2524 nm) were determined to be very noisy and thus 

excluded. The tray in the background and at least two pixels in its vicinity was also nullified. To 

relieve the illumination variations among scan lines, the imagery was transformed into the 

frequency domain using the Fast Fourier transform (FFT). There, the frequencies related to striping 

and illumination variations were discarded, and the remaining image was transformed back into the 

spatial domain (see also section 3-4). Ultimately, to suppress the residual noise, a spectral 

smoothing filter (Sav-Gol filter with a second-order polynomial convolution) was applied to the 

image on a pixel-by-pixel basis. The spectral content of the resulting imagery was validated against 

some representative spectra derived from the same surface using a contact probe connected to a 

spectrometer. The processing of the denoised images is described together with the ground-based 

data in the next section.  

8.3.4. Ground-based hyperspectral imaging 

On June 17, 2016, the vertical walls of the oil-sand deposit were scanned on the ground using an 

AisaFENIX hyperspectral system (Specim Ltd., Finland). This instrument collects data over the entire 

380–2500 nm range in a single continuous image with up to 620 spectral bands at 3.5 (VNIR) to 12 

(SWIR) spectral resolution (Table 1). The signal-to-noise ratio (SNR) of the instrument varies 

between 600–1000:1 and it works as a pushbroom line scanner with 384 pixels per line. 

Table 1. Specification of the hyperspectral imaging systems used in this study.  

Imaging system 
Spectral range 

(nm) 
Spectral bands 

Spectral resolution 
(nm) 

Spatial resolution 

AisaFENIX 380–2500 360–620* 
3.5 (VNIR) 
12 (SWIR) 

384 pixels**
 

sisuCHEMA 930–2500 256 10 30–300 µm 

* it depends on the spectral binning option. 

** it depends on the altitude of the sensor. 

The sensor was used in the ‘field mapping’ mode, which includes a rotating stage attached to a 

tripod, and configured to collect data by along-track rotation of the camera at a determined velocity 

(Fig. 2d). The image data were collected in three binning options namely 2x2, 4x2, and 8x2. 

Whereas the 2x2 data series (with 624 spectral bands) were discovered to be very noisy, the 8x2 

series were found to retain low spectral resolution to resolve the features of interest (with 363 

spectral bands). Thereby, we opted for the 4x2 data series with intermediate properties 

(corresponding to 450 spectral bands and high SNR). In total, three different faces named 

Outcrop1–3 were imaged by the instrument from two scan positions (Figs. 1 and 2e, and Table 2). 

The distance of the sensor from the walls was varied from around 10 to 80 m (Table 2). This 

configuration yielded to a ground sampling distance (GSD) of 1.5 to 8 cm. Both Outcrop-1 and 2 

were illuminated directly by sunlight (Fig. 2e), but Outcrop-3 sat in dark shades (see arrow in Fig. 2d 

as an example). The shadow coupled with dripping wet surfaces, gave rise to very low SNR over this 

outcrop, and thus the data was eliminated from further processing. 
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Table 2. Characteristics of the imaged outcrops and the solar position during the time of ground-based imaging spectroscopy (17th June 

2016). See Fig. 1 for the location of the outcrops. 

Outcrop 
Outcrop 
azimuth 

Local 
time 

Solar 
elevation 

Solar 
azimuth 

Distance 
(m) 

GSD 
(cm) 

Illumination 
condition 

Physical 
condition 

1 ~135° 10:30 37.2° 30.4° ~10 ~1.5 Direct sunlight dry 
2 ~75° 11:12 41.3° 19.1° ~30 ~3.0 Direct sunlight dry 

 3
* 

~5° 12:58 42.5° 346.2° ~80 ~8.0 Indirect sunlight wet 

* This outcrop was found to be very wet and deep in shadow, hence eliminated from further processing. 

For atmospheric compensation, we used a single calibration panel in the field of view (FOV) of 

the imaging system. The panel consisted of a 30 x 50 cm wooden board plastered by a thick layer of 

highly reflective barium sulfate (BaSO4). 

Dark current was recorded in the field by blocking the light entrance of the system while 

averaging the data over about 10 s. This data was then subtracted from the images on a line-by-line 

basis for dark current removal (Fig. 6). The spectral data were calibrated to at-sensor radiance by 

using manufacturer’s calibration factors. The spectral smile of the system is reported by the 

manufacturer to be below 0.2 pixel, thereby was omitted from correction. 

Within the preprocessing stage, the atmospheric effect was first corrected through dividing each 

pixel of the image to the average radiance of the reference panel, which was achieved by 

incorporating the pixels occurring on the center of the panel (Fig. 6). Next, the resulting image was 

multiplied by the absolute reflectance of the panel acquired by the following steps (Fig. 5): (i) the 

reflectance of the barium sulfate plaster was recorded under artificial light using a pistol connected 

to a FieldSpec-3 spectrometer; (ii) an average of ten measurements collected from different parts of 

the panel was calculated and then multiplied to the reflectance of the Spectralon reflectance 

provided by its manufacturer (Fig. 5); (iii) the resulting absolute reflectance was resampled to the 

response of the AisaFENIX dataset. 

 

Fig. 5. The conversion of relative reflectance of barium sulphate (BaSO4) panel (gray) into absolute reflectance (blue) using the 

Spectralon reflectance (red). The black line and the gray error bar illustrate, respectively, the mean ± one standard deviation of the 

reference panel. 
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The following bands were considered as bad-bands and discarded from the data: (i) water vapor 

bands between 1338–1455 and 1812–1989 nm (22 and 33 channels, respectively) and (ii) noisy 

bands between 380–411 and 2445–2500 nm (11 and 12 channels, respectively). The remaining 372 

spectral bands (n) were retained for further processing (Fig. 6). The stripping noise, which arises 

from radiometric calibration differences between charge coupled device (CCD) detector arrays (Kurz 

et al. 2013), was removed in the frequency domain following the Fast Fourier Transform (Fig. 6). 

This process was indicated to be more effective when it is applied to derived products with 

enhanced noise components (Watson 1993). Three transformations were evaluated for noise 

enhancement: independent component analysis (ICA), principal component analysis (PCA), and 

minimum noise fraction (MNF) (see Asadzadeh and Souza Filho (2016c) and references therein). 

Whereas the MNF transform was found to scatter the stripping noise throughout the components, 

thereby making the filtering complicated, the ICA revealed to be very sensitive to slight changes in 

the contents of the components (associated with noise removal) during the inverse transformation. 

PCA, on the other hand, showed superior performances, hence opted for this aim. 

Following forward PCA transform, a subset of m components (PC1-m, where m≪n) determined to 

be spatially coherent (based on visual inspection and eigenvalues) was segregated from the 

remaining components dominated by stationary noise15. The segregated array was treated in three 

different ways: (i) the higher components free from systematic/random noise were preserved 

intact, (ii) the components recognized to retain systematic horizontal or vertical noise (e.g. 

stripping) were transformed into the frequency domain for filtering, and (iii) the remaining coherent 

images associated with random noise were treated by statistical filters. In the frequency domain, 

the frequencies related to striping were discarded and then an inverse FFT was used to transform 

the image back to the spatial domain. Because PCs have distinct noise properties, they were treated 

independently in the frequency domain. An inverse PC was then used to transform the incorporated 

m denoised bands into image domain. Finally, the image was spectrally smoothed by a Savitzky–

Golay (savgol) filter, configured with a second-order polynomial convolution (Fig. 6). 

 

Fig. 6. Workflow diagram showing the preprocessing steps applied to ground-based hyperspectral data. The acronyms are Atm: 

atmospheric, PCA: Principal component analysis, and FFT: Fast Fourier Transform. 

                                                           
15 In the case of ground-based data, ‘m’ was indicated to vary between 20–25 components. 
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The resulting images were spectrally processed to yield the TBC (total bitumen content) image 

along with the Al–OH wavelength position and depth images, respectively indicative of Al-smectites 

composition and abundances. For this aim, a second-order polynomial was fitted to the absolute 

minimum of the Al–OH feature and its immediate neighboring bands between 2151–2244 nm 

wavelengths following continuum removal (Rodger et al. 2012). The coefficients of the polynomial 

were then used to calculate the minimum of the feature and its corresponding depth relative to a 

local continuum. The fitting was performed to the imagery before spectral smoothing to avoid 

altering the position of the absorption feature. The TBC of the samples and walls were estimated by 

employing the two-bands normalization method provided by Rivard et al. (2010), which proved to 

estimate the TBC with a dispersion of ~1.5% in controlled illumination conditions. Albeit, instead of 

R2220nm, we used R2230nm as the shoulder of the Al–OH absorption feature. The distribution of oil-

sands was first mapped by employing the spectral angle mapper (SAM) (Kruse et al. 1993) 

technique and manual endmember selection through averaging dozens of image spectra from 

corresponding imageries. The input image was confined to the spectral bands between 1630–1784 

and 2231–2396 nm wavelengths. The result was then thresholded to yield a mask to outline only 

the oil-sands and then applied to the TBC image. The average of R2220nm and R2230nm were 

thresholded (<0.1) and used to mask very dark shadowy pixels. 

8.3.5. Airborne hyperspectral imaging 

The outcrops of the oil-sands in Anhembi area were also imaged by the AisaFENIX hyperspectral 

scanner on board a twin-engine Seneca II (Piper) airplane at an altitude of 915 m on May 2, 2016 

(See Fig. 1 for the areal coverage). The hyperspectral data were acquired in a clear sky condition 

with a nominal GSD of ~0.35 m in the 8x2 binning mode within which 363 co-registered spectral 

bands are contained between 380–2500 nm wavelengths (see also section 3-4). A single strip best 

covering the area (Fig. 1) acquired at 14:14 PM local time was geometrically corrected 

(orthorectified) using sensor’s built-in navigation (GPS and IMU) system to within an accuracy of 

±10 cm. The radiance data were then converted to apparent surface reflectance using the ATCOR 

atmospheric correction software (ReSe Applications LLC, CH). During this process, the data were 

resampled to 1.0 m spatial resolution using pixel aggregate function.  

The denoising approach described in the previous section was deployed to suppress noise 

components in the imagery. A combination of C–H and Al–OH absorption features were used to 

isolate the outcrops of the oil-sands within the area. Then, the continuum-removed depth of the C–

H and Al–OH features, respectively centered at 2300 and 2209 nm were calculated aimed at 

mapping the bitumen and clay contents of the oil-sands. 

8.3.6. Spaceborne multispectral imaging 

Following the demonstration of WV-3’s capability to detect HCs using simulated data, under our 

request, DigitalGlobe (Westminster, Colorado, USA) acquired VNIR+SWIR imagery over the Anhembi 

test site on 12th February, 2016. WV-3 is a high spatial resolution satellite operational at an altitude 

of 617 km with equatorial crossings at 10:30 AM. The platform comprises sixteen multispectral 

bands in the VNIR–SWIR wavelengths. The SWIR sub-system, which is the focus of this study, 

contains eight spectral bands in the 1195–2365 nm window acquired at 3.7 m spatial resolution in 

14-bits dynamic range. The dataset, however, is resampled to 7.5 m resolution before releasing for 

http://www.specim.fi/products/aisafenix-hyperspectral-sensor/
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commercial use. The sensor benefits from embedded CAVIS bands to estimate aerosol and water 

vapor within the scene and yield atmospherically corrected at-surface reflectance data (Asadzadeh 

and Souza Filho 2016a). 

In this study, WV-3 data were provided to us as at-surface reflectance data at 7.5 m pixel size. A 

combination of feature tracking (applied to continuum-removed SWIR data) and match filtering 

technique (Asadzadeh and Souza Filho 2016c) was used to map the distribution of oil-sands in the 

area.  

8.4. Results and discussion 

8.4.1. Field observations 

In the field, we observed that where bitumen is present, the sandstone has undergone intense 

bleaching (due to the depletion of hematitic coatings) and the amount of clay minerals has gone up 

(Fig. 2a). However, the bleaching is confined mainly to the bituminous zones; within their 

immediate margins, ferric iron oxides reappear (Fig. 2c). Moreover, while many of the white 

patches were observed to be due to the excess of clay alterations, not all the white walls were 

necessarily argillaceous, as the bleaching of aeolian sandstone yield alike white appearance. It was 

witnessed that the degree of HC impregnation is a function of sandstone facies. The sand sheet 

facies with higher permo-porosity present greater impregnation by HCs, whereas the interdune 

facies is somehow devoid of HCs. Albeit, this is a rule of thumb, and there are local variations in the 

bitumen contents of the sandstones, as indicated by ground-based imaging spectroscopy (see 

section 4-5). 

8.4.2. Infrared spectroscopy 

The composition of oil-sands as revealed by infrared spectroscopy was fairly simple: the SWIR 

wavelengths was dominated by characteristics C–H, Al–OH, OH, and H2O signatures, respectively at 

around 1700/2300, 2200, 1400, and 1900 nm (Figs. 4, 7, and 8b) arising from embedded bitumen 

and clay minerals (Fig. 7). The TBC of the oil-sand samples, estimated by the two-band 

normalization method described in Section 3-4, was observed to vary between 6 to 11.5 wt. %, and 

showed proportionality to the depth of the distinctive absorption features at ~1700 and 2300 nm. 

Whereas the feature at 2300 nm is very distinct and more pronounced in the continuum-removed 

spectra (compare Fig. 7a with 7b), the feature at 1700 nm is remarkably more correlated to the TBC 

of the samples (R2 0.975 vs. 0.954), with a lower standard deviation of errors (0.19 vs. 0.25; see 

Table 3). This strong correlation between the TBC of the samples and the continuum-removed 

depth, as indicated by others (e.g. (Correa Pabón and Souza Filho 2016; Scafutto and Souza Filho 

(2016); Shaw and Kratochvil 1990)), opens up alternative opportunities for the estimation of TBC 

content using hyperspectral imagery. The TBC was also indicated to be inversely proportional to the 

clay content of the samples. Accordingly, as the clay content of the samples increases, the overall 

albedo of the sample along with the intensity of the Al–OH, OH, and H2O tends to increase, while 

the distinctive HC features fading away (see Fig. 4). 

Table 3. The performance of the continuum-removed HC absorption features in duplicating the TBC of the oil-sands derived from the 

two-bands normalization model. Dx represents the depth of the feature after local continuum removal. 
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Model 
 True TBC (wt. %) 

Correlation R2  (%) 

TBC = 48.469D1700 nm + 6.9265 0.987 0.975 0.19 
TBC = 16.287D2300 nm + 6.5851 0.976 0.954 0.26 

 

Fig. 7. Examples of the continuum-removed HC absorption features with variable bitumen contents (TBC wt. %) in the Anhembi deposit. 

a) absorption features centered at ~1700 nm. b) absorption features centered at ~2300 nm. Note that the feature at 2300 nm (b) is 

almost 2x deeper relative to the local continuum. The gray columns in the background represent the individual absorbing bands. Both 

features were indicated to be closely correlated with the TBC of the sands. The color table applies to both graphs. 

The clay mineralogy was identified to be montmorillonite, which is marked by the distinctive Al–

OH absorption feature at ~2208 nm and the lack of extra features beyond 2300 nm (Hunt 1977). 

Some unpublished studies have reported illite and mixed-layer illite/smectite in the oil-sands of this 

area using scanning electron microscopy. Such mineral assemblages, in contrast to montmorillonite, 

show additional absorption features between 2342–2350 nm due to Al–OH bonds (Bishop et al. 

2008; Hunt 1977). In the spectral collection, however, only 4 out of 200 spectra displayed this extra 

feature (Fig. 8b), and thus attributable to mixed-layer illite/smectite. The majority of the samples 

are featureless within this range, corroborating the dominance of montmorillonitic clay. This 

mineral is present in almost all of the samples collected from the area, including the impregnated 

sands, implying that the clays are in an intimate mixture with bitumen (this subject is addressed in 

details using sisuCHEMA-derived imagery). The other subordinate mineral detected within the SWIR 

range was calcite (in Anb09; see Fig. 1), determined by a diagnostic absorption feature at 2340 nm 

(Fig. 8b). 

Within the VNIR range, the Feox feature characteristic of the Pirambóia sandstones disappears 

(e.g. Spectra 1–3 in Fig. 4), presumably because of the bleaching of the hematite coatings of the 

facies. Wherever iron oxides are present (normally within the clay-rich zones), however, the 

minimum of the feature shifts towards longer wavelengths (e.g. >910 nm) that is indicative of 

goethite (Fig. 8a) formed after the re-oxidation of reduced ferric coatings. Ferrous iron, on the other 

hand, was rarely seen in the samples and the only ferrous mineral identified thus far belongs to Fe-

chlorite characterized by triple iron absorptions at ~750, ~930, and ~1100 nm (Bishop et al. 2008) 

(Fig. 8a). In the bituminous samples, the ferrous feature is prone to be obscured by the broad 

absorption feature of HCs arising from π (C=C) bonding between 340–1400 nm (Fig. 4). 

The XRD results corroborated the presence of montmorillonite (and quartz) as the dominant 

constituents of the samples. It also revealed that K-feldspars (orthoclase, sanidine), 
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titanomagnetite, brushite, and kaolinite constitute the minor mineralogic phases within the oil-sand 

samples (Fig. 9). The mineralogy of the framework grains also clarified why the spectra are 

dominated by the montmorillonite features, because the other mineralogic components (except a 

subtle feature due to kaolinite; Fig. 9) are spectrally neutral in the VNIR–SWIR range. 

 

Fig. 8. Examples of oil-sands spectra and the interpreted mineralogy. a) features in the VNIR comprising crystall-field band absorptions 

of ferrous (chlorite) and ferric (goethite) minerals. b) absorption features in the SWIR comprising Al–OH, hydrocarbons (C–H), and 

calcite. The subtle features centered at ~2347 nm (enclosed by a dashed square) arise from the second Al–OH absorption of the mixed-

layer illite/smectite. The two spectral collections do not necessarily come from the same samples. 

 
Fig. 9. X-ray diffraction patterns revealing the mineralogy of framework grains of the oil-sands. Shaded bars represent the major mineral 

peaks labeled as: M = montmorillonite, B = brushite, Q = quartz, O = orthoclase, S = sanidine, T = titanomagnetite, K = kaolinite. 

In comparison to the samples from Pirambóia sandstones, the oil-sands are distinguished by the 

absence of a ferric feature (due to bleaching) and an increase in the proportion of montmorillonitic 

clays, presumably caused by the alteration of the host siliciclastic rocks (i.e. K-feldspars; Fig. 9). To 

quantify the clay content, we calculated the depth of the Al–OH feature (Fig. 8b) from both datasets 

and showed them as abundance histograms (Fig. 10a-b). If we put the mixed clays aside and 

consider the clay-dominant facies only (Fig. 10b), then the absorption feature, and thus the 

proportion of clays, is at least 25% higher in oil-sand samples compared to original sandstones (Fig. 

10a), meaning that the emplacement of bitumen has been associated with clay formation. The 
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composition of the Al-smectites, however, showed no significant differences between the two 

collections (Fig. 10c-d). The Al–OH wavelength position in the Pirambóia sandstones spans between 

2206–2211 nm that is similar to wavelength ranges of the oil-sand samples (2207–2212 nm), 

implying that the presence of oil has not affected nor modified the composition of existing, or 

newly formed, Al-smectites. 

 

Fig. 10. Histograms of the wavelength position and depth of Al–OH absorption features. a) Al–OH absorption depth of Pirambóia 

sandstones. b) Al–OH absorption depth of oil-sand samples. c) Al–OH wavelength position of Pirambóia sandstones. d) Al–OH 

wavelength position of oil-sand samples. 

Two basic similarities between some microseepage systems and the alterations induced by oil-

sands were noticed: (i) the strata is devoid of kaolinite and, instead, smectites dominate the clay 

alterations; (ii) the bleaching of hematite coating from sandstone beds and occasional occurrences 

of goethite. Albeit, the secondary goethite displays its minimum absorption at wavelengths >940 

nm indicating higher levels of Al-substitution in the goethite lattice and the excess of aluminum in 

the system. Overall, the oil-sands in the Anhembi area display very limited alteration diversity 

compared to a microseepage system (Fe-chlorite and calcite were limited to a few samples only) or 

counterpart reserves in for example, Alberta, Canada (Asadzadeh and Souza Filho 2017; Cloutis et 

al. 1995). We speculate that it is related to the characteristics of bitumen emplacement in the area. 

Likely, the oil has migrated as a very viscous and single-phase liquid, thereby inducing limited 

mineralogic changes in the environment. This assumption is supported by the confined iron 

bleaching (indicative of no gas-phase involvement) and the crucial role of permo-porosity of the 
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facies in oil emplacement (indicative of very viscous oils). In practice, the reappearance of iron oxide 

coatings marks the front of oil migrations (e.g. Fig. 2c). 

8.4.3. Quality control of the image spectra 

Before going to the details of the results achieved by imaging spectroscopy, we first provide a 

quality assessment of the spectral data provided by imaging systems in the lab and on the ground. 

8.4.3.1. SisuCHEMA image spectra 

Regarding the sisuCHEMA datacube, we collected representative spectra over the oil-rich and 

clay-rich parts of the sample using the contact probe of an ASD spectrometer and compared them 

to the average of corresponding pixels in the imagery. The results are shown in Fig. 11. Obviously, 

there is a correspondence in the overall spectral shape of the two datasets, especially over the 

absorption features centered at ~1900, 2200, 2300, and 2350 nm. Closer inspections, however, 

revealed three important differences between the two series: (i) the reflectance of the image 

spectra at around 1650 nm is unusually high (Fig. 11; encircled); (ii) the image data is noisier 

between 1500–1800 nm; (iii) the shape of the HC feature at 1700 nm is modified in the image 

spectra. The higher reflectance coupled with the altered absorption feature could give rise to a bias 

in the estimation of bitumen content using the feature derived from this type of hyperspectral 

imagery. 

 

Fig. 11. Comparison of the spectra derived from of a FieldSpec-4 point-spectrometer and a sisuCHEMA hyperspectral scanner. The 

spectra were collected from the same sample by averaging the pixels corresponding to the aperture of a contact probe. The circle 

highlights a change in the reflectance (continuum) of the spectrum derived from sisuCHEMA imagery. 

8.4.3.2. Ground-based image spectra 

We calculated the mean and standard deviation of the pixels occurring in the center of the 

reference panel (n≈450 pixels) within the imagery of Outcrop-1 and then divided the mean of each 

band to the standard deviation (/) to yield a graph of signal quality (SNR) against wavelength (Fig. 

12). This measure was used to assess the impact of preprocessing steps (marked by number 1–3 in 

the workflow of Fig. 6) in improving the quality of the signal of the ground-based hyperspectral 

data. The results denote that the steps devised in the workflow continually improve the quality of 
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the signal. In particular, the SNR is greatly enhanced following the atmospheric compensation, 

indicating the significance of this step for ground-based data. The de-noising steps, on the other 

hand, were highly effective beyond 2300 nm wavelengths, where HC’s major absorption features 

occur. Considering, for example, the wavelengths at 600 and 2300 nm, the improvement in the SNR 

was >45% (Fig. 12). The de-noising was demonstrated not only to improve the SNR of the imagery, 

but also was crucial in retrieving the overall shape of the HC’s absorption features in the SWIR range 

(Fig. 13). 

We repeated the same processes for the image of the other walls. The results indicate that with 

the current sensor technology, direct solar illumination is critical for spectral imaging of dark 

targets, including the oil-sands. The data collected over Outcrop-3 were eliminated because of the 

low SNR linked to illumination conditions and surface wetness. Furthermore, over Outcrop-2, the 

poor illumination not only weakened the HC feature at 2300 nm, but also was responsible for the 

disappearance of HC feature centered at 1700 nm (see Fig. 14). The albedo of the image spectra 

located in the shadow was >2x lower compared to the well-illuminated oil-sands nearby. Although 

the weak absorption features could be enhanced by continuum removal, the obtained spectrum 

does not show a good match with its well-illuminated counterpart (Fig. 14). This is particularly 

problematic during the estimation of TBC over poorly-illuminated facies, as discussed in Section 4-5. 

In the circumstance of poor illumination, the atmospheric effect presumably dominates the 

recorded signal, thereby hampering the recovery of the HC’s signal during atmospheric 

compensation. This is already evident by the downward trend of the spectra on either side of the 

water absorption window (note the horizontal arrows in Fig. 14). 

 

Fig. 12. Improvement in the quality (SNR) of the image following the preprocessing steps shown in Fig. 6. The SNR was calculated by 

ratioing the mean () of the pixels over the reference panel in Outcrop-1 to the standard deviation (). The numbers correspond to the 

steps marked in the workflow. “rad” stands for ‘radiance data’. 

It worth mentioning that the idea of averaging several successive images over the same outcrop 

proved to further improve the image quality and increase the SNR in the same way as the 
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implemented steps of the workflow did. However, since the spatial overlap of the sequential images 

in this site was not considerable, we discarded this step from our preprocessing chain.  

Because the spatial resolution of the ground-based data is within 1.5–3 cm range, a pixel 

occupies the same area as a contact probe does, so the image spectra shall be essentially 

comparable to laboratory spectra. Accorddingly, representative spectra for bitumen and 

montmorillonite from well-illuminated parts of the scene were extracted. The results are illustrated 

in Fig. 15. A higher albedo in the ground-based spectra compared to laboratory data is noted. The 

albedo measured at ~1300 nm (± 50) was, on average, 60–70% higher in the ground-based spectra. 

While this difference could be due to the illumination condition of the imagery, we conjecture that 

it could also arise from the single white reference panel deployed for atmospheric compensation. 

Most likely, by using multiple reference pannels (dark, white, and gray) and the empirical line 

correction approach, the issue of higher albedo could be alleviated. Another reason for this 

difference could be the sharp contrast between the very dark oil-sand targets with the surrounding 

high-albedo clays that make the adjustment of the sensor complicated during data collection.   

 

Fig. 13. Improvement in the quality of the signal and the pattern of absorption features of the image spectra after denoising. The 

numbers correspond to the steps defined in the workflow of Fig. 6. 

 

Fig. 14. The effect of illumination on bitumen absorption features. The pixels lying in the shadow retain weaker absorption features at 

2300 nm and lose the feature at 1700 nm altogether. Each spectrum is the mean of 20 adjacent pixels from Outcrop-2 imagery shown in 

Fig. 19a. The horizontal arrows indicate the dominance of atmospheric water absorption in the poorly-illuminated signal. 
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Furthermore, it was observed that the long-wave side of the 1700 nm feature is noisier in the 

ground-based data (Fig. 15; encircled). This problem, which was also noticed in airborne data (see 

Kokaly et al. (2013)), is due to the impact of residual atmospheric contamination. This fact indeed 

underpins the need for accurate atmospheric correction using the empirical line method. 

 

Fig. 15. Comparison of the continuum-removed spectra derived from the ground-based imaging system and a spectrometer in the lab. 

The clay-rich (Al–OH) and oil-rich (C–H) spectra were yielded by averaging four pixels over homogeneous and well-illuminated portions 

of the image shown in Fig. 19a. The circle indicates the residual atmospheric contamination. The laboratory spectra were converted to 

absolute reflectance for this aim. 

8.4.4. Close-range spectral imaging 

The bitumen content of the sample calculated by the two-band normalization method revealed 

that the oil is not homogenously distributed within the host sandstone (Figs. 16b and 17b). While 

the TBC of the sample reaches up to 10.8 wt. %, it conforms to the normal distribution with the 

means and standard deviations equal to 6.0 and 1.4 wt. %, respectively (Fig.17a). The lowest 

bitumen levels correspond to the clay-rich interlayers and vice versa. Mathematically speaking, the 

correlation coefficient of bitumen and clay contents (derived from Al–OH absorption depth; not 

shown here) was calculated to be -0.48. Although not visible to the naked eye (e.g. Fig. 16a), 

montmorillonitic clay (manifested by Al–OH absorption feature) is remarkably ubiquitous and 

occurs virtually in all pixel spectra. The depth of the feature in the bituminous pixels was at least 

one third that of the clay-rich pixels. 

The image of Al–OH wavelength position derived from sisuCHEMA data also show a meaningful 

trend. The bituminous pixels tend to show their minimum Al–OH wavelengths between 2206–2208 

nm, whereas this parameter for clayey interlayers is 2212 nm (Fig. 16c). It is not yet certain, 

however, if the changes in the wavelength position of Al–OH features are linked to compositional 

variation in smectitic clays or it arises from the mixing effect of HCs, especially from a subtle 

asymmetric feature at 2200 nm (see Fig. 2 in Asadzadeh and Souza Filho (2017)).  
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Fig. 16. Spectral products derived from close-range imaging spectroscopy. a) photograph of the sample scanned by a sisuCHEMA 

imaging system. b) Total Bitumen Content (TBC; wt. %) image calculated by employing the two-bands normalization method and 

stretched by 1% from the low end. A TBC profile along A–B is shown in Fig. 17b. c) montmorillonite compositional map corresponding to 

Al–OH wavelength position derived from polynomial fitting to 2151–2244 nm wavelengths. Figs (a) and (c) are modified after Asadzadeh 

and Souza Filho (2016c). 

 

Fig. 17. a) Histogram of the TBC of the oil-sand sample exhibited in Fig. 16a. b) TBC profile corresponding to line A–B in Fig. 16b. 

8.4.5. Ground-based spectral imaging 

The TBC derived from the two-band normalization method revealed to overestimate the 

bitumen in both outcrops by 1–2.9%. The overestimation was especially noticeable over shadowy or 

poorly illuminated faces (e.g. A/B in Figs. 18a and 19a). The consequence was a bimodal distribution 

in the histogram of the TBC images, particularly over Outcrop-2. To resolve this issue, we calibrated 

the continuum-removed depth (CRD) of the HC feature at 2303 nm against the TBC image by using 

carefully selected pixels (n = 61) from well-illuminated parts of the image. The established 

relationships between the two parameters (R2 = 0.93 and  = 0.77 wt. %) is indicated in Eq. 1:  

TBC = 54.188 x CRD2303 + 0.1784       (1) 

As is illustrated in Fig. 19b, by reducing the variations in the albedo/illumination of the imagery, 

continuum removal can improve the estimation of TBC of the facies. We avoided using the feature 

at 1700 nm, because as discussed in Section 4-3-2, it is prone to be missed in the poorly-

illumination portion of the image. By deploying Eq. 1, the TBC was mapped seamlessly throughout 
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the imageries (Fig. 18b and 19c). The only exception was a patch in Fig. 19c, on which due to low 

SNR, the TBC was still overestimated. In this product, we also discovered some contamination from 

the non-photosynthetic vegetation (see, for example, the arrows in Fig. 19a), which is likely due to 

the similarity of the absorption features of the two compounds, particularly around 1700 nm 

wavelengths (Fig. 20). In comparison, the feature of non-photosynthetic vegetation, however, is 

wider at 1700 nm wavelengths and shows its minimum at longer wavelengths. Moreover, the slope 

of the continuum line between 1650–2100 nm is negative in non-photosynthetic vegetation and it 

exhibits an additional absorption feature centered at 2100 nm, which is absent in bitumen (Fig. 20). 

To omit dry vegetation, we first mapped its extent within the image by applying the SAM technique 

to a spectral subset between 1600–2210 nm wavelengths using an image-derived endmember (see 

Fig. 19a). Then, the result was thresholded and transformed into a mask to exclude the non-

photosynthetic vegetation. The refined result is shown in Fig. 19c. 

 

Fig. 18. The oil-sand Outcrop-1 in the Anhembi deposit. a) natural-color composite. b) total bitumen content (Wt.%) image calculated by 

continuum-removed depth (CRD) of the HC feature at 2303 nm and masked for dry vegetation and shadows. c) relative proportion of 

montmorillonitic clays normalized against the deepest Al–OH absorption within the scene. This image corresponds to the right rectangle 

in the photograph of Fig. 2e. A and B in (a) represent examples of shadowy pixels prone to TBC overestimation. The black arrow in (a) 

indicates the BaSO4 reference panel.  
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Knowing that the original two band normalization method (Rivard et al. 2010) has a dispersion of 

~1.5%, and considering the 0.77% dispersion of the model in Eq. 1, the accuracy of the displayed 

TBC maps is within ±2.27 wt. %. To lower the estimation error of spectral assaying (i.e. <1.5%), one 

needs to calibrate the ground-based images against a direct oil content determination process 

known as Dean-Stark analysis (see for example Speta et al. (2015) and references therein). 

 

Fig. 19. The oil-sand Outcrop-2 in the Anhembi deposit. a) natural-color composite. b) continuum-removed natural-color composite. c) 

total bitumen content (Wt.%) image calculated by the continuum-removed depth of the HC feature at 2303 nm and masked for dry 

vegetation and shadows. d) relative proportion of montmorillonitic clays normalized against the deepest Al–OH absorption within the 

scene. The red and blue circles in (a) indicate, respectively the well-, and poorly-illuminated pixels incorporated in the plot of Fig. 14. The 

white arrows represent some of the non-photosynthetic vegetation excluded from the final TBC image. A and B represent the poorly-

illuminated faces prone to TBC overestimation. This image corresponds to the left rectangle in the photograph of Fig. 2e. 
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The heterogeneity in the distribution of bitumen is also observed in the outcrop scale maps.  

Based on the images shown in Figs. 18 and 19, the oil-sand walls could be divided into two main 

facies: (i) the one richer in clays with low bitumen contents corresponding to interdune facies; (ii) 

the other one richer in bitumen with lower clay contents corresponding to sand sheet facies (see 

Table 4 for the statistics). The bitumen impregnation of the facies is controlled by permo-porosity of 

the strata and to a lesser extent, the clay content.  

Table 4. Basic statistics of the estimated bitumen within the interdune and sand sheet facies, as indicated in Figs. 18 and 19. 

Outcrop Facies 
 TBC (wt. %) 

  

1 
Interdune 2.3 1.1 
sand sheet 3.8 1.2 

2 
Interdune 2.9 1.8 
sand sheet 4.9 1.9 

Regarding the clay contents, a relative abundance map was calculated by normalizing the depth 

of the Al–OH feature against the deepest absorption within the scene. The results are shown in Figs. 

18c and 19d. Evidently, montmorillonitic clay remains mixed with bitumen even at outcrop scale 

maps. The clay fraction at bituminous facies was determined to be at least 30% of the clay-rich 

zones by assuming a linear scale for the depth of the Al-OH absorption feature. This fact suggests 

that the clays were already formed (at least partially) at the time of bitumen emplacement and, as 

noted by Thomaz Filho et al. (2008), acted as a barrier against horizontal oil migrations. Since the 

bleaching (as the most distinctive mineralogic changes in the strata) is observed only in the oil-

impregnated zones, then it is likely that the oil was originally very viscous, rather than breaking 

down to heavy oil by subsequent biodegradation processes.  

The trend in the wavelength position of the Al–OH feature, however, was not as significant as 

close-range data (Fig. 16c) hance was discarded from ground-based image maps. 

 

Fig. 20. Comparison of the spectrum of bitumen and non-photosynthetic vegetation extracted from the imagery of Outcrop-2 (arrows and 

red circle in Fig. 19a). Each spectrum is the average of several individual pixels. The inset graph shows the absorption feature between 

1600–1800 nm after continuum removal. 
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8.4.6. Airborne spectral imaging 

The distribution of oil-sands in the Anhembi deposit mapped by airborne imaging spectroscopy 

is shown in Fig. 21a-b. Obviously, the airborne system is capable of duplicating the HC (and clay) 

features as sensed by close-range (and ground-based) spectroscopy. The close association of 

bituminous outcrops with clays in the provided maps is because besides intimate mixing, the two 

components are areally mixed in the sub-meter scale of the maps (see, for example, Fig. 2f). The 

two-fold mixtures, however, could adveresly affect the accuracy of bitumen assying using the 

continuum-removed feature derived from the airborne data. The mean and standard deviation of 

the oil-sand outcrops in Fig. 21b was estimated to be 4.0 and 1.1 wt. %, respectively, which is lower 

than the contents estimated over vertical faces. The closest figures to the average reported in 

Thomaz Filho et al. (2008) is, in fact, provided by ground-based data (~5 vs. 5.5%). 

The lowest bitumen content detected (2.6 %) closely corresponds to the dispersion of the model 

in Eq. 1 (2.3 wt. %). This figure could also approximate the detection limit of the far-range data for 

estimation of the bitumen content over this deposit. The model used for TBC determination was 

developed originally for close-range spectroscopy in perfect illumination conditions. Further 

calibration data and investigation is required to appreciate the effects of scaling the laboratory 

results to far-range remote sensing data and establish a robust and scale-independent model for 

bitumen content estimations. 

8.4.7. Space-borne spectral imaging 

The oil-sands sensed by the WV-3 data were characterized by a conjunction of absorption 

features at SWIR band-4 (S4) and band-6 (S6) (Fig. 22a), respectively indicative of bitumen and Al–

OH clays. During the processing, we noticed that the HC feature at S4 could be accentuated by 

continuum removal. In the continuum-removed image, the HC absorption was indicated by a 

minimum at S4 relative to S3 and S5 shoulders (Fig. 22a). The feature was present within a large 

part of the oil-sand pixels. By making use of this distinctive feature, the exposed oil-sands were 

successfully mapped at 7.5 m resolution. The results are shown in Fig. 21c. Evidently, there is a good 

match between this map and the one yielded from airborne data shown in Fig. 21b. In comparison, 

the WV-3 derived anomalies are in parts larger, but in terms of the numbers are limited, because 

some anomalies already mapped by airborne data are missing (marked by stars in Fig. 21c). The 

missing anomalies consist mainly of small oil-sand outcrops (~2–5 m2) not resolvable by the GSD 

(3.7 resampled to 7.5 m) of the sensor. The areal expansion of bituminous anomalies is likely due to 

the effect of larger pixel size (3.7 vs. <1.0 m) and subsequent resampling to 7.5 m resolution. The 

resampling (in conjunction with geolocation error) is also responsible for a shift (~7 m equivalent to 

1 pixel) in the locality of some anomalies (indicated by arrows in Fig. 21c) in the resulting map. It 

was not possible to estimate the TBC by the current model as it is based on the feature centered at 

2300 nm. It was not also straightforward to estimate the bitumen contents of the pixles using the 

continuum-removed depth of the S4 band. 

This experiment revealed that where bituminous targets occupy one-sixth (1/6) of the area of 

the resampled SWIR pixel (~10 m2), it could be unambiguously detected via WV-3 data. This 

overestimated fraction, however, should be explicit to Anhembi oil-sands of which due to the 

contrasting effect of coexisting clays, the HC targets were accentuated, thereby facilitating remote 
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sensing-based detection. A conservative estimate, however, could be around one-third of a pixel, as 

demonstrated using simulation data (Asadzadeh and Souza Filho 2016a). 

The pixel spectra derived from WV-3’s SWIR bands at two different sites conform to ground-

truth data collected using a spectrometer in the lab. In comparison, the depth of the C–H and Al–OH 

features as well as the overall reflectance at S5 were lower in the imagery. In one case, the pixel 

spectrum was associated with an additional chlorophyll absorption (Fig. 22a). 

 

Fig. 21. The distribution and abundance of clays and bitumen over the Anhembi deposit derived from airborne hyperspectral and WV-3 

superspectral data. a) relative proportion of montmorillonite normalized against the deepest Al–OH absorption within the imagery. b) the 

TBC map estimated from airborne data using Eq. 1. c) relative abundance of bitumen derived from WV-3 data using match filtering 

technique. The white pentagons and stars indicate the anomalies verified on the ground and missed in the WV-3 map, respectively. The 

labeled anomalies (Anb05 and 08) correspond to the photographs shown in Fig. 2f and 2g, respectively. The WV-3 spectra from these 
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sites are compared to ground spectra in Fig. 22a. Note that a subset of the image in Fig. 1 is displayed here and the points in (b) are 

shifted to not obscure the anomalies. The arrows in (c) indicate the offset in the locality of anomalies. 

The finding that WV-3’s SWIR bands can resolve the subtle HC feature at 1700 nm wavelength is 

very promising, because the bitumen in this area consists of extra heavy HCs with very low API° 

(~5). Certainly, in other cases in which the target consists of lighter oils (corresponding to higher 

API°), it displays a deeper absorption feature (Lammoglia and Souza Filho 2011); thus constitute an 

easier target to detect using orbital WV-3 imagery (Fig. 22b). In other words, oil-sands establish the 

toughest target (worst-case scenario) to detect via WV-3 data, as it retains one of the lowest signal 

intensities among HC-bearing materials at 1700 nm wavelengths. 

A substance that could potentially interfere with HC’s feature at 1700 nm is non-photosynthetic 

vegetation (see Fig. 20). In this area, the extent of which the non-photosynthetic vegetation 

interfered with bitumen map (as a false-positive anomaly) is unknown, because fieldwork was not 

simultaneous with data acquisition nor there were systematic attempts to outline it within the area. 

 

Fig. 22. a) Comparison of pixel spectra derived from WV-3 data with ground-truth data collected in the lab using a FieldSpec-4 (FS4) 

spectrometer over two sites namely Anb05 and Anb08 (see Fig. 21c for the localities). Si on top of the vertical dashed lines indicates the 

central wavelength of the SWIR bands S1 to S8. b) the effect of API° on the intensity of absorption feature centered at ~1700 nm 

(adapted from Lammoglia and Souza Filho (2011)). The gray bars in (b) exhibit the wavelength range of SWIR bands S3 and S4. 

8.5. Conclusion 

Multi-scale studies of oil-sands in the Anhembi area via imaging and non-imaging spectroscopic 

techniques provided a complete picture of the changes in the content and composition of bitumen 

and accompanying alteration minerals. This work indicated that the HC signature, especially the one 

centered at 2300 nm, is consistent and comparable among scales, and upon employing proper 

calibration data and analysis technique, it could confidently map the bitumen content of the oil-

sands at all imaging scales. The TBC of the deposit was determined to vary between 0–11.5 % with 

the mean of ~5 wt. %.  

The induced alterations in the Pirambóia sandstones (i.e. montmorillonitic clay and iron oxides 

bleaching) bear some resemblance to microseepage alterations. The clay minerals were indicated to 

be ubiquitous and mixed intimately with bitumen at all studied scales. The restricted alteration 

diversity along with the heterogeneity in the distribution of bitumen, which is strongly controlled by 
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permo-porosity of the facies, were interpreted to be indicative of a single-phase flow of very viscous 

(API° ~5) HCs to the reservoir. 

Ground-based technology can effectively bridge the gap in bitumen content determination over 

vertical faces of oil-sand mines. For effective bitumen determination on the ground, besides the 

high SNR of the imaging system, a good illumination condition was demonstrated to be required. To 

recover HC’s features in poorly illuminated conditions, at least two reference panels (white + dark ± 

gray) should be deployed within the field of view of the system. Spectral denoising also seems to be 

crucial and a prerequisite for spectroscopic analysis.  

WV-3 satellite data was proved to resolve HC’s feature at 1700 nm wavelength by its SWIR band-

4 provided that the target is large enough to encompass ~20–30% of the area of the resampled 

SWIR pixel. 
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Chapter 9 

Concluding remarks and future studies 

 

Spectral remote sensing techniques were successfully deployed to characterize different aspects 

of petroleum manifestations on the surface. It was used to target the footprints of microseepage 

systems and provided novel mineralogical indicators (in terms of abundance, composition, and 

crystallinity) for microseepage characterization. The techniqe was also successful in mapping oil 

indications corresponding to oil-sands, oil-seeps, and oil-contaminated soils by making use of HC’s 

signatures at 2300 and 1700 nm wavelengths. Thus far, remote sensing of petroleum was confined 

to hyperspectral data; however, we substantiated that multispectral datasets from WV-3 and to a 

lesser extent ASTER instruments could be utilized for onshore HC detection. Our study indicated 

that WV-3’s SWIR bands could resolve even the subtle feature arising from extra heavy HCs. The 

finding is encouraging as the oil-sands retain the weakest signal at ~1700 nm range. A particular 

concern about direct HC detection is the sub-pixel (and intimate) mixture of oil with the background 

in which it occurs. In vegetated areas, for instance, the feature might not be straightforward to 

distinguish from non-photosynthetic vegetation that bears some resemblance to HC signal. Careful 

spectral simulations in future works should be able to address this issue. Even though we indicated 

that HC targets in the order of ~25–30% of a pixel could be resolved using WV-3 data, the finding is 

not yet conclusive, particularly for oil-seepage detection. More case studies in different 

petroliferous terrains are required to account for the effect of seepage dimension (as well as 

background composition) on target detection. 

The multi-scale spectroscopic study of oil-sands indicated that the feature at 2300 nm is 

consistent among scales and maintains a linear relationship with the TBC of samples/pixels. 

However, to obtain a robust spectral model for this aim, remote sensing data should be calibrated 

against geochemical assaying. It is worth mentioning that despite the merits of the feature in 

bitumen characterization, a standard technique for HC detection requires taking both HC’s features 

into consideration.  

The detection of microseeps in the arid environment was proved not to be a formidable 

challenge considering the wealth of soils and sediments exposition at the surface. However, in a 

tropical climate, where bedrock is partly exposed and the soil profile is deeply weathered, this 

methodology should be employed with caution. An effective remote sensing method in such 

environments should incorporate in-situ spectroscopy and measure the changes relative to a 

control area. Further studies should be conducted in different climates, bedrock covers, and 

geologic settings to provide insights into the full range of secondary changes in microseepage 

systems. Furthermore, the studies should be expanded to incorporate the longwave infrared (8–14 

μm) wavelengths. We believe a new microseepage model capable of accounting for a large variety 

of secondary changes should be devised and employed in future investigations. 

Foreseen enhancements in the AMISA package, including automated absorption feature 

detection and spectral deconvolution techniques, will turn it into a powerful tool for spectral 

analysis in the VNIR–SWIR–LWIR range in the near future. 
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Appendix 1 

Spectral analysis of fresh and weathered rocks overlying the Alborz hydrocarbon 

trap, Qom area, Iran: remote sensing implications
16 

 

1. Introduction  

The near-vertical seepage of hydrocarbons (HC) from a trap to the surface gives rise to a diverse 

array of mineralogical and geochemical changes in the overlying soils and sediments (Schumacher 

1996). To investigate the effect of weathering on microseepage-induced alterations in an arid 

environment, we surveyed the lithofacies overlying Alborz oilfield located in the Qom district, central 

Iran. The reservoir is covered in large part by sandstone, siltstone, marl, and conglomerate belonging 

to the Upper-Red Formation (URF) (Amini 2001). During fieldworks, we noticed that a thin but 

discernible weathering crust blankets the outcrops of the URF in the study area (Fig. 2). To 

characterize this pervasive crust, we collected > 160 samples from 11 traverses in a way to 

incorporate both fresh cuts and weathered coatings topping the URF bedrocks. 

 

Fig. 1. The sampling sites with dual spectral measurements overlaied on the simplified geologic map of the area. 

In the spectroscopic lab, both the fresh cuts and the weathered covers (intact surfaces) were 

systematically measured using a FieldSpec-4 spectrometer. The results were compiled into a 

particularly paired up spectral library (Fig. 2). The library was then analyzed by the AMISA package 

(Asadzadeh and Souza Filho 2016) to retreive the wavelength of minimum, depth, width, and 

asymmetry of the diagnostic absorption features centered at ~670, ~900, ~1900, ~2200, ~2290, 

and ~2340 nm wavelengths. These retreived spectral parameters were then used to assess the slight 

changes in the abundances and compositions of diagenetic minerals from fresh cuts to the 

corresponding weathered coatings. 
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Fig. 2. The weathering crust in which blankets the outcrops of the URF in the region. 

2. Results and discussion 

The results revealed that iron oxides/oxyhydroxides (including hematite, goethite, and 

ferrihydrite), clays (montmorillonite and nontronite), carbonates (calcite with traces of ankerite), and 

gypsum are present as alteration minerals in the sample suite. However, we recorded distinctive 

differences in the absorption features, the intrinsic composition, and the distribution of the mineral 

collections. The band absorption minimum for iron oxides in fresh cuts was centered between 885–

915 nm interval. This absorption systematically shifted some 5 nm towards shorter wavelengths for 

the weathered surfaces (Fig. 4a). Goethite, evident by its absorption feature at ~670 nm (yellowness 

index), was absent in 15% of the weathered samples and where it occurred, the depth of the feature 

was 15% lower relative to fresh surfaces (Fig. 4b). A similar trend was observed in the abundance of 

nontronite by considering its subtle absorption band at 2290 nm (Fig. 4f). An inverse tendency was 

also observed in the abundance of carbonates and montmorillonitic (Al–OH) clays. The carbonate 

feature at ~2340 nm, on the other hand, showed to be twofold deeper in the fresh cuts. The 

reduction in montmorillonite proportion from fresh to weathered crust was around 25% (Fig. 4c-e). 
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The modification of the wavelength minimum of iron oxides signifies that goethite is transformed 

to hematite at the top of the surface. Hematite is known to favor positive Eh and neutral to alkaline 

pH that is characteristics of hot and semi-arid climates (Turner, 2003). Accordingly, the tranformation 

of goethite into hematite could indicate a change in the Eh of the environment at the topmost cover 

of the sediments. A similar transformation from nontronite to montmorillonite has likely taken place 

in the crust capping the fresh beds. Moreover, the weathered surface hosted more gypsum, which 

was marked by an increase in the width of the H2O absorption feature at 1900 nm (Fig. 4f-h). 

 

Fig. 3. Examples of the paired up spectra collected from fresh cuts and the weathered coating of the samples. Gray arrows show the 

assessed features. 

3. Conclusion 

A comparison between the mineralogic content of fresh surfaces against weathered counterparts 

over Alborz microseepage system in the Qom region indicated that in arid environments, a thin but 

pervasive weathering (oxidized) blanket could overly the bedrocks and partially modify the signal 

recorded by a remote sensing system. This signifies that a remote sensing survey over HC 

accumulations in arid regions requires taking the effect of surficial weathering into consideration for 

accurate mapping of the alteration footprints of underlying microseepage system. 
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Fig. 4. Scatterplots of the wavelength, depth, width, and asymmetry of the absorption features exhibited in Fig. 3. a) Wavelength position 
of the ferric iron feature. b) depth of the goethite absorption feature centered at 680 nm. c) depth of the Al-OH absorption feature centered 
at 2200 nm. d) asymmetry of the Al–OH absorption feature. e) depth of the carbonate absorption feature centered at 2340 nm. f) depth of 
the Fe–OH (nontronite) absorption feature centered at 2290 nm. g) Wavelength position of the H2O absorption feature at 1900 nm. h) 
width of the H2O absorption feature at 1900 nm. The dashed red line indicates the 1-to-1 line. 
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Appendix 2 

Hydrocarbon detection with spaceborne remote sensing platforms
17 

 

Hydrocarbons (HC) have several absorption bands in the short-wave infrared (SWIR) wavelengths 

due to the overtones and combinations of stretching fundamentals with the features happening at 

2300 and 1700 nm comprising the most prominent of them. HCs have been successfully identified 

and mapped with hyperspectral imaging systems. However, the potentials of orbital multispectral 

instruments to replicate this capability has remained largely unknown. To address the capability of 

common multispectral data including WorldView-3 (WV-3), Sentinel-2, Landsat ETM/OLI, and ASTER 

for direct HC detection onshore, we conducted a series of experiments using simulated and real 

spectral datasets. In the lab, we recorded the spectra of several HCs yielded from different types of 

oils and oil-sand samples collected from Brazilian and Iranian basins using a FieldSpec-4 spectrometer 

and a sisuCHEMA hyperspectral imaging system. Also, we employed airborne ProspecTIR 

hyperspectral imagery over twelve synthetic oil-shows with different background soils. All datasets, 

which are described in details in Chapter 8, were resampled to the response of aforementioned 

sensors and processed with the aim of detecting HCs spectrally. Some known outcrops of oils and oil-

contaminated soils currently exposed in the Qom area, Iran was also used as a control area to 

confirm (or not) the capabilities of operational multispectral data for HC detection in real exploration 

scenarios. 

 

Fig. 1. Spectra of oil-bearing samples resampled to Sentinel-2 and Landsat-OLI instruments. 

The results indicated that both Landsat and Sentinel-2 lack proper bands to resolve HC features 

(Fig. 1). The use of partial unmixing with these datasets led to the detection of a few boxes from the 

simulated oil-shows, albeit with a large error of commission (i.e., confusion with other dark 

substances in the scene). The sensors also failed to detect oil patches of the Qom area altogether. 
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In contrast, ASTER’s band 8 and WV-3’s band 12 coincide with intense HC features, respectively at 

2300 nm and 1700 nm, thereby sounds to be appropriate for HC detection (Fig. 2). ASTER and WV-3 

showed comparable results in detecting the extents of HC in the oil-sand sample when the sub-

millimeter image cube was resampled to their SWIR’s response (Fig. 3). However, their performance 

was different in the case of synthetic oil-show. Using the relative-absorption band depth (RBD) and 

three bands from each sensor (b6+b9/b8 for ASTER and b11+b13/b12 for WV-3), WV-3 was able to 

detect all the 12 targets with >2.5 times higher average score (231/91) relative to ASTER, which 

detected 11 targets, albeit with higher commission errors (see Table 1). ASTER had average to poor 

performance in detecting oil-contaminated soils in Qom (Fig. 4). The resultant map showed the 

excessive confusion of oil anomalies with limestone, shadowy areas, and some dark minerals (i.e. 

chlorites). However, through careful anomaly selection, we verified the occurrence of oil in at least 

seven of the proposed targets by this sensor (Fig. 5). Despite the exceptional performance of 

simulated WV-3 data in this study, however, its full potential for direct HC detection is yet to be 

tested with real datasets (this is addressed in Chapter 10). 

 

Fig. 2. Spectra of oil-bearing samples resampled to a) ASTER and b) WV-3 instruments. Arrows show the position of HC absorption 

features. The original spectral library is shown in Fig.3a in chapter 8. 

Table. 1. The results of pixel counting derived from oil-show simulated data resampled to ASTER and WV-3. Note that the number of oil-

bearing pixels detected by WV-3 is >2.5 times higher than ASTER. 

Sensor 
# hit pixels per box Total 

1 2 3 4 5 6 7 8 9 10 11 12 Pixels Boxes 

WV-3 9 20 18 22 13 34 27 36 4 19 16 13 231 12 

ASTER 3 9 10 8 8 16 14 11 0 4 6 2 91 11 
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Fig. 3. The results of the oil-sand experiment. a) false-color composite imagery of hypercube data. b) RBD over 2300 nm feature of 

original data. c) RBD (b11+b13/b12) over 1700 nm feature after being resampled to WV-3 response. d) RBD (b6+b9/b8) over 2300 nm 

feature after being resampled to ASTER response. Images in (c) and (d) are, respectively 93 and 94% correlated to the original image in 

(b). 

While ASTER SWIR detectors are no longer functional, the successful launch of WV-3 sensor opens 

up new opportunities for spaceborne detection of HCs. Such capability has important implications for 

oil and gas industry. The global coverage of WV-3 and its fine spatial resolution (7.5 m) could 

facilitate the monitoring of petroleum installations and help prospectors to screen frontier basins for 

oil seep indications. 

 
Fig. 4. HC anomaly map derived from ASTER data over Qom area. Three types of anomalies are defined: false (red arrows), true (green 

arrows), and true, but not related to oil contaminations (yellow arrows). 
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Fig. 5. Oil-contaminated soils detected by ASTER imagery and verified in the field. 

 


