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ABSTRACT 

SIMULATING THE IMPACTS OF LAND-USE LAND-COVER CHANGES ON 

CROPLAND CARBON FLUXES IN THE MIDWEST OF THE UNITED STATES 

ZHENGPENG LI 

2016 

 

Understanding the major drivers of the cropland carbon fluxes is important for carbon 

management and greenhouse gas mitigation in agriculture. Past studies found that 

agricultural land-use and land-cover (LULC) changes, such as changes in cropland 

production technologies, tillage practices, and planted crop species, could have large 

impacts on carbon fluxes. However, the impacts remain highly uncertain at regional to 

global scales.  

Satellite remote sensing is commonly used to create products with geospatial information 

on LULC changes. This geospatial information can be integrated into biogeochemical 

models to simulate the spatial and temporal patterns of carbon fluxes.  

We used the General Ensemble Biogeochemical Modeling System (GEMS) to study 

LULC change impacts on cropland carbon fluxes in the Midwest USA. First we 

evaluated the impacts of LULC change on cropland net primary production (NPP) 

estimates. We found out the high spatial variability of cropland NPP across the study 

region was strongly related to the changes in crop species. Ignoring information about 

crop species distributions could introduce large biases into NPP estimates.  



xvi 

 

 

 

We then investigated whether the characteristics of LULC change could impact the 

uncertainties of carbon flux estimates (i.e., NPP, net ecosystem production (NEP) and 

soil organic carbon (SOC)) using GEMS and two other models. The uncertainties of all 

three flux estimates were spatial autocorrelated. Land cover characteristics, such as 

cropland percentage, crop richness, and land cover diversity all showed statistically 

significant relationships with the uncertainties of NPP and NEP, but not with the 

uncertainties of SOC changes.  

The impacts of LULC change on SOC changes were further studied with historical 

LULC data from 1980 to 2012 using GEMS simulations. The results showed that 

cropland production increase over time from technology improvements had the largest 

impacts on cropland SOC change, followed by expansion of conservation tillage.  

This study advanced the scientific knowledge of cropland carbon fluxes and the impacts 

of various management practices over an agricultural area. The findings could help future 

carbon cycle studies to generate more accurate estimates on spatial and temporal changes 

of carbon fluxes.
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CHAPTER 1. INTRODUCTION 

Cropland provides necessary food supplies for human society and is an important 

component of the biosphere carbon cycle. Cropland is also under intensive management 

and has significant social and economic impacts. Climate disruptions to cropland 

production have increased in the past 40 years and are projected to increase over the next 

25 years (Hatfield et al., 2014). A sustainable management plan on croplands should not 

only mitigate/adapt to the climate change but also meet the demands of human society. 

Such management plans can only be built with a good understanding of the carbon cycle 

on croplands and the mechanisms that drive it. Thus, it is important to quantify the spatial 

and temporal variations in the cropland carbon dynamics and investigate the major 

driving factors behind these variations. 

Many efforts have been made to assess carbon dynamics in cropland during the past 

decade (Eve et al., 2002; Liu et al., 2011; Ogle et al., 2003; West et al., 2010; Zhu and 

Reed, 2012). The complex interplay of multiple factors such as climate, land cover, and 

management practices has made the estimation of carbon sinks and sources from regional 

to global scale very challenging. For example, the European carbon assessment found 

that satellite based models estimated lower cropland net primary production (NPP) (419 – 

494 gC m
-2

 yr
-1

) than process based model (585 gC m
-2

 yr
-1

), and yield statistics (646 gC 

m
-2

 yr
-1

) (Ciais et al., 2010). A recent comparison in the USA also found that cropland net 

ecosystem exchange (NEE) estimates from inventory based methods (-264.3 TgC yr
-1

, 

negative values indicate carbon sinks and positive ones are carbon sources) were 

significantly different from the estimates of atmospheric inversion models (-136.8 TgC 

yr
-1

) and terrestrial biosphere models (-94.6 TgC yr
-1

) (Hayes et al., 2012). Although 
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some of the variations can be attributed to differences in model structure and model 

driver data, more research is needed to more precisely quantify the impact of model 

formulation and driver data on the uncertainties of the simulation outputs (Huntzinger et 

al., 2012).  

1.1 BIOGEOCHEMICAL MODELS FOR CARBON CYCLE STUDIES 

The understanding of ecosystem carbon cycles can be improved through both 

observations and modeling activities (Huntzinger et al., 2012; Michalak et al., 2011). 

Biogeochemical models have been developed since the 1970s to study carbon cycles on 

croplands, such as CENTURY (Parton et al., 1987), EPIC (Williams, 1990) , and STICS 

(Brisson et al., 2003) . These biogeochemical models were developed based on long term 

field studies and have been validated across multiple sites. The Intergovernmental Panel 

on Climate Change (IPCC, 2006) referred to these models as Tier 3 method to estimate 

soil organic carbon (SOC) changes in countries.  Using these models for regional and 

global studies are likely to provide more precise and accurate results comparing with Tier 

2 (country-specific emission factors) and Tier1 (global emission factors) methods (Smith 

et al., 2012). Bondeau et al. (2007) simulated the cropland use change from 1901 to 2000 

using a dynamic global vegetation model integrated with the STICS model (Bondeau et 

al., 2007). Using DAYCENT and historical land use data, Hartman et al. (2011) 

simulated the impact of historical land-use changes on greenhouse emissions in 21 

counties in the Great Plains (Hartman et al., 2011). Using the CENTURY model and the 

National Resources Inventory (NRI) data, Ogle et al. (2009) estimated that the SOC stock 

in croplands increased by 14.6 TgC yr
-1

 from 1990 to 1995 and 17.5 TgC yr
-1

 from 1995 

to 2000 in the USA. Another study using the NRI data and EPIC model estimated the 
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SOC changes in croplands was much smaller, only increased 55.89 TgC in 30 years 

(Potter et al., 2009). Although these studies provided useful information across large 

extents, these researches did not include the land-use land-cover (LULC) change 

dynamics at an adequate temporal frequency and did not have enough spatial resolution. 

1.2 SPATIAL LAND COVER DATA 

    Satellite-based land cover datasets have been developed since the 1980s. The 

biophysical variables measured from remotely sensed data can be used to produce land 

cover data across large region (Townshend et al., 1991). Several global land cover 

products were produced using the Advanced Very High Resolution Radiometer (AVHRR) 

and the Moderate Resolution Imaging Spectroradiometer (MODIS) data, such as the 

International Geosphere–Biosphere Programme (IGBP) land cover, the IGBP Data and 

Information Systems,  the University of Maryland (UMD) land cover layer and the 

MODIS land cover product (Friedl et al., 2010; Hansen et al., 2000; Loveland and 

Belward, 1997; Loveland et al., 2000). These global land cover products generally have 

the spatial resolution between 1 km and 1 degree. Many studies used these land cover 

data sets in biosphere models to study different ecosystem carbon fluxes globally and 

regionally (Cramer et al., 1999; Ito, 2011; Lobell et al., 2002; Zhao et al., 2006).  

In the USA, higher resolution satellites, such as the Advanced Wide Field Sensor 

(AWiFS) and Landsat Thematic Mapper (TM) data have been used to generate LULC 

data sets that have spatial resolutions between 30 m to 56 m. These data sets include the 

National Land Cover Dataset (NLCD), USDA Cropland Data Layer (CDL), and North 

American Forest Dynamics Project (Boryan et al., 2011; Goward et al., 2008; Vogelmann, 



4 

 

 

2001). These data sets provide detailed information on LULC and have been used to 

estimate the spatial and temporal variations of carbon fluxes (Tan et al., 2006; West et al., 

2008; Zhang et al., 2014; Zhao et al., 2009). Recent developments in carbon modeling 

make it possible to couple these high resolution datasets with biogeochemical models to 

simulate regional carbon dynamics (Causarano et al., 2008; Liu et al., 2011; Zhao et al., 

2009; Zhu et al., 2010).  

1.3 OBJECTIVES OF THE DISSERTATION RESEARCH 

More precise and accurate estimates of carbon dynamics are needed to develop 

effective management plans (Michalak et al., 2011; Smith et al., 2012). Previous studies 

have demonstrated the importance of temporal interval and spatial details of LULC 

change information on estimating regional carbon dynamics in the southeastern United 

States (Zhao and Liu, 2014; Zhao et al., 2009, 2010). Without integrating the LULC data 

into carbon cycle studies, it would be impossible to accurately quantify the spatial 

distributions of carbon sources and sinks and understand the mechanisms behind them. A 

recent study, the USGS National Assessment of Ecosystem Carbon Sequestration and 

Greenhouse Gas Fluxes, has simulated the ecosystem carbon dynamics with spatially 

explicit LULC data and provided valuable information for policy makers and resource 

managers (Zhu et al., 2010; Zhu et al., 2011; Zhu and Reed, 2012). However, 

uncertainties in these assessment results remain high because of insufficient input data 

and inherent uncertainty related to the structure and the parameterization of the models 

used in the assessments (Zhu et al., 2010). 
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I will use the available LULC data sets and the General Ensemble Biogeochemical 

Modeling System (GEMS) in this study to simulate the spatial and temporal variations in 

carbon fluxes in croplands, assess the uncertainty of the model estimates, and find the 

mechanisms driving these variations in the Midwest USA. GEMS is an integrated 

modeling framework designed to simulate the spatial and temporal variations of 

ecosystem carbon fluxes using spatially explicit LULC data, as well as climate, soil and 

management information (Liu, 2009; Liu et al., 2004).   

I address the following key science questions in this study: 

Question 1: Since multiple crops can be planted on the cropland, can we estimate the 

cropland carbon fluxes accurately if the cropland is treated as a single crop types? 

Hypothesis 1: Changes in the spatial patterns of planted crop types will not change the 

spatial patterns of cropland carbon fluxes.  

Many process-based models studies still treat cropland as a single land cover type in 

simulating regional carbon fluxes. For example, in the 19 models compared in the NACP 

regional interim synthesis, 8 of them used land cover inputs from MODIS or IGBP land 

cover data sets, which only have one cropland cover type (Huntzinger et al., 2012).  This 

approach ignores the fact that multiple crop species can be planted in croplands and crop 

species can be rotated annually.  

I will use GEMS to simulate the carbon fluxes with the changes of the crop species in 

croplands. The results will be compared with the carbon fluxes estimates from other 

methods to test this hypothesis.  



6 

 

 

Question 2: Multiple models have been used to simulate cropland carbon fluxes in the 

past. What is the impact of the differences among cropland cover type on the 

uncertainties of the carbon fluxes estimates? 

Hypothesis 2: The uncertainties of the carbon fluxes estimated from multiple models 

are randomly distributed across croplands.  

How to quantify and reduce uncertainty is a high priority in the most recent US carbon 

cycle science plan (Michalak et al., 2011). A comparison between multiple terrestrial 

biosphere models at flux tower sites found the biome classification was the most 

important factor controlling the model-data mismatch of the estimated carbon fluxes 

(Schwalm et al., 2010). Another comparison of global NPP estimates from multiple 

biosphere models also found that different vegetation classifications partially caused 

higher NPP differences at the borders of vegetation types (Cramer et al., 1999). These 

earlier studies indicated the differences in the land cover type (with associated differences 

in model parameterization) could bring large uncertainty in carbon fluxes estimates.  

It is important to study the influence of land cover characteristics on the uncertainties 

of the carbon fluxes estimates. The hypothesis I make here is a null hypothesis and will 

be tested using geospatial statistics. The carbon fluxes estimates from GEMS and other 

methods will be used to compute the uncertainties. Then the relationships between the 

uncertainties spatial distributions and the land cover inputs will be analyzed to test the 

hypothesis. 

Question 3: Given the considerable LULC and management changes in the cropland 

from 1980 to 2012 in the Midwest temperate prairie, where are the major SOC sinks and 

sources in croplands and what are their magnitudes? 
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Hypothesis 3: Cropland is a major carbon sink from 1980 to 2012. 

Since 1980s, changes in crop management practices in cropland were substantial in the 

Midwest USA. These changes include technology improvements (irrigation, fertilization, 

pest management, etc.), conversion from intensive tillage to conservation tillage, 

enhanced crop rotation and implementation of cropland conservation programs. The 

combination of these cultivation improvements has led to considerable enhancement in 

cropland production and cropland SOC (Hicke et al., 2004; Parton et al., 2007; Prince et 

al., 2001).  For example, the National Agricultural Statistics Service (NASS) of the 

United States Department of Agriculture (USDA) reported the yields of the three major 

crops (corn, soybean and wheat) increased about 40%, 33% and 16% respectively in 

2000s from the basis of the 1980s  (USDA, 2012). An analysis of NASS data showed that 

cropland area decreased by 4% while the average crop production increased by 40% from 

1972 to 2001 in the USA, with large production increases occurring across the Great 

Plains and Midwest regions (Hicke et al., 2004). From 1989 to 2004, the percentage of 

cropland that used conservation tillage increased from 25% to 41.5% in the USA (CTIC, 

2008). In addition to improved tillage practices, more than 13 Mha cropland were 

enrolled in Conservation Reserve Program (CRP) since 1986 (USDA, 2012).  Eve et al. 

(2002) used Intergovernmental Panel on Climate Change (IPCC) methods to estimate the 

SOC sequestrated on planted cropland from 1982 to 1997 is about 15.1 TgC yr
-1

 in the 

USA. A later study gave a much lower estimate with consideration of the SOC loss in 

organic soil (Ogle et al., 2003). The land use and management practice changes on the 

cropland increased SOC in mineral soil by about 6.5 – 15.3 TgC yr
-1

 but decreased SOC 

in organic soil by 6.4 - 13.3 TgC yr
-1

 from 1982 to 1997 (Ogle et al., 2003). Using the 
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CENTURY model and NRI data, Ogle et al. (2009) found that SOC increased by 14.6 

TgC yr
-1

 from 1990 to 1995 and 17.5 TgC yr
-1

 from 1995 to 2000. These studies 

indicated that land use and management practices could result in significant changes in 

the croplands carbon stocks.  All these changes need to be fully assessed to find out 

whether the cropland in the Midwest is a carbon sink or source. It also will be necessary 

to find out the major driving factors of SOC dynamics in croplands and the mechanism 

behind them.  

Question 4: Among the major changes in land use and management practice recorded in 

the region, what is the major driving factor in SOC changes?  

Hypothesis 4: The increase of conservation tillage is the major driving factor of the SOC 

changes from 1980 to 2012. 

   Past research suggested that increase of conservational tillage on cropland has 

sequestrated more SOC on the cropland than other practices (Eve et al., 2002; Lal et al., 

2007; West et al., 2008). But many field measurements showed the increase in soil 

carbon under conservational practice would reach a balance after certain years (West et 

al., 2002; Ogle et al. 2003). West and Post (2002) analyzed many field experiments and 

concluded that carbon accumulation usually occurred over 15 to 20 years with maximum 

SOC increase rate between 5 and 10 years. Environmental Protection Agency (EPA) 

reported the annual net carbon flux on croplands was lower from 2005 to 2010 (4.3 – 5.0 

TgC per year) than in1990 (8.0 TgC per year) (US-EPA, 2012). Since many croplands 

switched to conservation tillage in 1990s, it is possible the tillage impact on these 

cropland soils has reached the saturation level after 2000. As a result, the conservational 
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tillage could show smaller impact on SOC dynamics and become less important after 

2000. 

    Ogle et al. (2005) synthesized the results from field experiments and evaluated 

different agricultural management impacts on SOC storage. Their study showed that 

increasing carbon input through cropping practices is as important as reducing tillage 

intensity. Studies have found the production in crops experienced large increase since 

1980 (Hicke et al., 2004; Prince et al., 2001).The increase in crop production not only 

produced more residues but also increased the root biomass of the crop, both could bring 

more carbon inputs into the soil and potentially increase SOC (Follett, 2001; Lal et al., 

2007). Given the large increase in crop production from 1980 to 2000, the increasing 

carbon inputs into the soil may become a major factor driving the SOC changes in 

croplands.  

    It will be necessary to find out the major driving factors of SOC dynamics in the 

Midwest croplands and the mechanism behind them. These findings will help to develop 

more effective carbon management plans. 
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Figure 1.1  Mid-Continent Intensive Campaign region boundary and land cover class in 

2001 (combined from National Land Cover Database 2001 and Cropland Data Layer) 

The research areas I choose to study are both located in the Midwest. The first research 

area is the Mid-Continent Intensive Campaign (MCI) region of the National America 

Carbon Program (NACP) (Ogle et al., 2006).  The MCI region encompasses 678 counties 

from 11 states in the Midwestern United States (Figure 1.1). The second research area is 

EPA ecoregion 9.2 Temperate Prairies in central and northern part of the Great Plains 

(Wiken et al., 2011). The northern part of this ecoregion is located in North Dakota, 

western Minnesota and eastern South Dakota (Figure 1.2). The central part includes the 

major portions of Iowa. The southern part of the region covers eastern Missouri, western 

Kansas and northern Oklahoma. Both areas cover multiple major land resource areas 

(MLRA) and have large variations in climate, soil, and cropping systems (USDA, 2006).  
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Figure 1.2. Land cover class in the Temperate Prairies (Ecoregion 9.2) from FORE-SCE 

model in 1992.  

1.4 STRUCTURE OF THE DISSERTATION RESEARCH 

Chapter 2 presents a study of LULC impacts on the cropland carbon flux estimates. 

The research in this chapter is to test the hypothesis 1. I compared three estimates of 

cropland NPP: the MODIS NPP product, crop inventory data and GEMS in the MCI 

region. Both GEMS and crop inventory estimates included crop species information 

while MODIS product did not. I analyzed the difference in the spatial and temporal 
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variability of NPP from the three methods. This paper was published in Ecological 

Modelling in 2014. 

Chapter 3 presents the study of model uncertainties associated with land cover data in the 

MCI region. The research in this chapter is to test hypothesis 2: the model uncertainties 

between multiple models are randomly distributed on croplands. This study compared the 

NPP, NEP, and SOC change in 2007 and 2008 from three methods: crop inventory, EPIC 

and GEMS. In this paper, I used spatial statistical analysis method to study the spatial 

distributions of the uncertainties and investigated the relationships between uncertainties 

and the land cover characteristics. This paper was submitted to Ecological Modelling and 

accepted with moderate revision. 

Chapter 4 presents a study of land use and management changes and their impacts on the 

SOC dynamics from 1980 to 2012 in the temperate prairies ecoregion 9.2. This study 

tests hypotheses 3 and 4: cropland is a major carbon sink from 1980 to 2012; and the 

increase of conservation tillage is the major driving factor of the SOC changes from 1980 

to 2012.I used spatially explicit land use data and built multiple management scenarios to 

simulate historical impacts on cropland SOC and analyze the spatial patterns. This paper 

will be submitted to Ecological Modelling.   

Chapter 5 reviews the results of all the studies presented, emphasizes the linkages 

between the studies, and highlights how the GEMS model was used with spatial land use 

data to advance the study of regional carbon dynamics in the Midwest USA. 
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ESTIMATES FROM INVENTORY, A SATELLITE-BASED MODEL, AND A 

PROCESS-BASED MODEL IN THE MIDWEST OF THE UNITED STATES 
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Comparing cropland net primary production estimates from inventory, a satellite-based 
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2.0 ABSTRACT 

Accurately quantifying the spatial and temporal variability of net primary production 

(NPP) for croplands is essential to understanding regional cropland carbon dynamics. We 

compared three NPP estimates for croplands in the Midwestern United States: inventory-

based estimates using crop yield data from the U.S. Department of Agriculture (USDA) 

National Agricultural Statistics Service (NASS); estimates from the satellite-based  

Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates 

from the General Ensemble biogeochemical Modeling System (GEMS) process-based 

model. The three methods estimated mean NPP in the range of 469 – 687 g C m
-2

 yr
-1

 and 

total NPP in the range of 318 – 490 Tg C yr
-1

 for croplands in the Midwest in 2007 and 

2008. The NPP estimates from crop yield data and the GEMS model showed the mean 

NPP for croplands was over 650 g C m
-2

 yr
-1

 while the MODIS NPP product estimated 

the mean NPP was less than 500 g C m
-2

 yr
-1

. MODIS NPP also showed very different 

spatial variability of the cropland NPP from the other two methods. We found these 

differences were mainly caused by the difference in the land cover data and the crop 

specific information used in the methods. Our study demonstrated that the detailed 

mapping of the temporal and spatial change of crop species is critical for estimating the 

spatial and temporal variability of cropland NPP. We suggest that high resolution land 

cover data with species-specific crop information should be used in satellite-based and 

process-based models to improve carbon estimates for croplands.  
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2.1 INTRODUCTION 

    The cropland net primary production (NPP) is an important component in the 

cropland carbon cycle because it represents the ability of the cropland to fix atmospheric 

carbon as biomass. Accurately quantifying the changes of cropland NPP is necessary for 

understanding the carbon dynamics for croplands, securing food and energy needs, and 

mitigating the effects of climate change. However, the global and regional NPP estimates 

still have large uncertainties among different methods (Ciais et al., 2010; Cramer et al., 

1999; Ito, 2011). A comparison of the global NPP estimates found that simulated NPP 

from multiple models ranges between 39.9 and 80.5 Pg C yr
-1

 for the terrestrial biosphere 

(Cramer et al., 1999). A recent study showed that the global NPP estimates from different 

methods are converging because more observational data are being used, especially 

spatial datasets generated from satellite remote sensing data (Ito, 2011). Differences 

among the global NPP estimates, however, are still about 8–9 Pg C yr
-1

 between 2000 

and 2010 (Ito, 2011). The carbon balance study of European croplands found that 

cropland NPP estimates range from 490 to 846 gC m
-2

 yr
-1

 using different methods (Ciais 

et al., 2010). Such differences in NPP estimates are likely to bring more uncertainties in 

the regional carbon budget. In a recent study of North America carbon balance, the mean 

carbon sink for croplands estimated from multiple terrestrial biosphere models is much 

lower (-94.6 Tg C yr
-1

) than with inventory-based estimates (-264.3 Tg C yr
-1

) and 

atmospheric inversion models (-136.8 Tg C yr
-1

) (Hayes et al., 2012). These large 

differences between the estimates of cropland carbon sink may be reduced by more 

accurate NPP estimates for croplands.  
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Ito (2011) classified the global NPP estimation methods into five major categories: 

inventory, empirical model simulation, biogeochemical model simulation, dynamic 

global vegetation model simulation, and remote sensing estimation. At the regional level, 

three methods are commonly used to estimate the cropland NPP: crop inventory, 

biogeochemical model simulation, and remote sensing estimation using a satellite-based 

model. 

    NPP equals the amount of biomass that vegetation assimilates over a certain time 

period (Jenkins et al., 2001; Prince et al., 2001; Scurlock et al., 2002). For crops, the 

growing season NPP can be estimated from the crop yield data in the crop inventory with 

allometric and biomass conversion factors such as harvest index, root /shoot ratio, and 

biomass-to-carbon ratio (Hicke et al., 2004; Prince et al., 2001; West et al., 2010). 

Because government agencies usually maintained crop inventory and regularly updated 

the crop yield data, the magnitudes and interannual changes of NPP for croplands can be 

estimated from these inventory data. Prince et al. (2001) estimated cropland NPP using 

the crop yield data from the U.S. Department of Agriculture (USDA) National 

Agricultural Statistics Service (NASS) and found that county-level NPP varies from 200 

gC m
-2

 yr
-1

 to over 850 gC m
-2

 yr
-1

 in the U.S. Midwest. Hicke et al. (2004) analyzed the 

national crop yield data from NASS and found that the NPP of U.S. cropland increased 

from 350 gC m
-2

 yr
-1

 in 1972 to 490 gC m
-2

 yr
-1

 in 2001.  This approach is limited 

because the agricultural inventory data are usually reported based on political boundaries 

and lack spatial detail within the boundaries.  
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Remote sensing information of the vegetation can be used in satellite-based models to 

estimate NPP. Field experiments have shown that the carbon assimilation rates of crops 

are proportional to the intercepted solar radiation (Monteith and Moss, 1977; Monteith, 

1972). The intercepted solar radiation by vegetation can be estimated from the 

Normalized Difference Vegetation Index (NDVI) from satellite remote sensing data 

(Goetz et al., 1999; Prince and Goward, 1995; Prince, 1991). Gross Primary Production 

(GPP) can be estimated from NDVI and the Photosynthetically Active Radiation (PAR) 

with a conversion efficiency factor ε (Running et al., 2004):     

                          , (1) 

FPAR is the fraction of PAR that is absorbed by vegetation. The conversion factor ε is 

the light use efficiency (LUE) factor and its value is affected by biological and 

environmental factors (Prince and Goward, 1995). Many terrestrial biosphere models 

used this approach to estimate the GPP and study the carbon balance in large regions and 

at the global scale (Hayes et al., 2012; Prince and Goward, 1995; Running et al., 2004; 

Tian et al., 2010). NPP can be calculated as the difference between GPP and the 

Autotrophic Respiration (AR) (Chapin et al., 2006). The Moderate Resolution Imaging 

Spectroradiometer (MODIS) project used this approach to generate the global GPP and 

NPP datasets with the Biome-BGC model (Running et al., 2004; White et al., 2000; Zhao 

et al., 2005). The Carnegie-Ames-Stanford-Approach (CASA) model uses a similar 

approach to calculate NPP directly from photosynthesis without the calculation of GPP 

and AR (Potter et al., 2003).  
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    Process-based models can simulate NPP based on the crop-specific characteristics and 

the environmental variables that constrain crop growth (Cramer et al., 1999). For 

example, crop-specific characteristics are represented in models by multiple crop 

parameters such as maximum growth rate, the shoot/root ratio and the carbon/nitrogen 

ratios in the crop components. These model parameters are derived from field 

observations and calibrated with site level biometric measurements. Environmental 

variables influencing growth, such as temperature, precipitation, and nutrient limits, are 

usually estimated from climate, soil, and management data. Multiple models are based on 

this approach: the CENTURY model developed by Parton et al. (1993); the 

Denitrification-Decomposition model developed by Li et al. (1997); the Environment 

Policy Integrated Climate model developed by Izaurralde et al. (2006); and the Erosion-

Deposition-Carbon-Model (EDCM) developed by Liu et al. (2003).  

    In this study, we estimated NPP for croplands in the Midwest of the United States with 

three methods: crop inventory, a satellite-based model, and a process-based model. We 

assessed the estimates of cropland NPP per unit area and the total cropland NPP from 

these methods to answer three questions:  

i) What is the NPP for croplands in the Midwest estimated from different 

methods in 2007 and 2008?  

ii) What is the spatial and temporal variability of the NPP for croplands, and 

what are the major driving factors of this variability?  

iii) What are the differences between the NPP estimated by each method and what 

are the causes of these differences? 
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2.2 MATERIALS AND METHODS 

2.2.1 Study area  

The study area is the Mid-Continent Intensive Campaign (MCI) region of the National 

America Carbon Program (NACP) (Ogle et al., 2006). The MCI region encompasses 678 

counties from 11 states in the Midwestern United States (Figure 2.1). The MCI region 

covers multiple major land resource areas (MLRA) and has large variety in climate, soil 

and cropping system. A MLRA is a region that has similar climate, soil, and land use 

system as defined by the USDA (USDA, 2006).  

The northwestern part of the MCI region including North Dakota and South Dakota is 

in the Northern Great Plains Spring Wheat Region (USDA, 2006). The mean annual 

precipitation varies from 355 to 535 mm and the mean annual air temperature from 5 to 7 

C. The dominant soil type is Mollisols and the major cropping system is dry-farmed 

spring wheat. The northeastern part of the MCI region including northern Minnesota, 

northern Illinois and most of Wisconsin is in the Northern Lake States Forest and Forage 

Region (USDA, 2006). This region has the mean annual precipitation from 660 to 865 

mm and the mean annual air temperature from 4 to 7 C. Histosols is the dominant soil 

type. Other major soil types include Alfisols, Spodosols, Entisols and Mollisols. There is 

large forest area in this region and the major cropping systems are corn and wheat. 
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Figure 2.1. Mid-Continent Intensive Campaign (MCI) region boundary and spatial 

distribution of land covers extracted from University of Maryland global land cover 

product. 

 

     Most of the central part and large fraction of southwestern part of the MCI region is in 

the Central Feed Grains and Livestock Region. This includes south part of Minnesota, 

Iowa, Illinois and north part of Missouri (USDA, 2006). This area has the most favorable 

climate and soil for agriculture. The mean annual precipitation ranges from 815 to 990 

mm and the mean annual air temperature ranges from 8 to 12 C. Major soil types include 

Mollisols, Entisols, Alfisols, Entisols and Inceptisols. The major cropping systems are 

continuous corn and corn soybean rotation. This area provides most of the corn and 

soybeans in the U.S.  
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    The western part of the MCI region including part of South Dakota, Nebraska is in the 

Western Great Plains Range and Irrigated Region (USDA, 2006). This region has the mean 

annual precipitation from 330 to 560 mm and the mean annual air temperature from 7 to 

11 C. The dominant soil types are Entisols  and Mollisols.  Pastureland grazing by cattle is 

a major land use in this region. The major cropping systems are irrigated corn and 

soybean, as well as some dry-farmed winter wheat. The irrigated croplands locate mainly 

along the streams and large amount of the water withdrawn is used for irrigation. The 

southwestern part of the MCI region including part of Nebraska and north Kansas is in 

the Central Great Plains Winter Wheat and Range Region (USDA, 2006). This region has the 

mean annual precipitation from 815 to 990 mm and the mean annual air temperature from 

12 to 16 C. The dominant soil type is Mollisols. The major land uses in this region include 

pastureland grazing by cattle, irrigated cropland planted with corn and soybean, and dry-

farmed cropland planted with winter wheat.  

        Overall, the MCI region has a land area of about 124 million hectare (Mha), and 

over 40% of the land area is used for agriculture. Corn, soybean, spring wheat, and winter 

wheat are the four major crops planted in the MCI region and together they occupy more 

than 90% of the agricultural area. Over 30 Mha cropland area is used to plant corn and 

soybean and about 10 Mha cropland area is planted with small grains and other crops 

from 1990 to 2000 (West et al., 2008). Though conventional tillage and reduced tillage 

are the dominant tillage practices used in the MCI region, no-till practice has increased 

from 7% in 1990 to 19% in 2000 (West et al., 2008).  



28 

 

 

2.2.2 Methods for estimating NPP 

2.2.2.1 Crop inventory  

The USDA crop inventory database contains the crop yields data derived from farm 

census records (USDA, 2009). USDA state and county-scale crop yields data both are 

available from 2000 to 2008 through the NASS quick stats website (NASS, 2011). 

We downloaded the county-level crop yield data for all the crops in 2007 and 2008 to 

estimate the NPP for croplands. The crop yields data were converted to NPP using the 

method published by Prince et al. (2001). The crop NPP (g C m
-2

 yr
-1

) is calculated from 

the crop yield data by first converting the yield to the harvested carbon and then to the 

crop NPP as follows: 



Ch a rvest Yield u n it fma ss fd ry  fca rb o n,
 (2) 

)1( RS
HI

C
NPP harves t   , (3) 

where Charvest is the harvested carbon of the crop (g C m
-2

 yr
-1

), Yield is the estimated 

crop yield in report unit (bushel, ton, pound, etc.) per acre per year, fmass is a factor to 

convert the yield report unit to a standard unit of biomass (kg per bushel, kg per ton, etc.), 

fdry is a factor to convert the mass to dry biomass, fcarbon is a carbon content factor to 

convert the dry biomass to carbon (450 gC per kg) (Hicke et al., 2004; Prince et al., 

2001) , HI is defined as the ratio of yield to the harvestable biomass, and RS is a factor to 

estimate the total biomass of the crop. For crops harvested with aboveground biomass, 

such as corn and soybean, RS is the root/shoot ratio. For crops harvested with 

belowground biomass, such as potato and sugar beets, RS is the shoot/root ratio. The 
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conversion factors used in this study are taken from West et al. (2010) and provided in 

Table 2.1. 

Table 2.1. Factors used to estimate cropland Net Primary Production (NPP) from USDA 

National Agricultural Statistics Service (NASS) county yield data. 

Crop Reporting Units mass per 

Unit (kg) 

Conversion 

to Dry 

Matter 

Harvest 

Index 

Root:Shoot 

Ratio 

barley bushel 21.8 0.9 0.5 0.5 

beans hundredweight 50.8 0.76 0.46 0.08 

corn grain bushel 25.4 0.87 0.53 0.18 

corn silage ton 907.2 0.26 1 0.18 

oats bushel 14.5 0.92 0.52 0.4 

peanuts pounds 0.45 0.91 0.4 0.07 

potatoes hundredweight 50.8 0.2 0.5 0.07 

rye bushel 25.4 0.9 0.5 1.02 

sorghum grain bushel 25.4 0.87 0.44 0.08 

sorghum silage ton 907.2 0.26 1 0.18 

soybean bushel 27.2 0.92 0.42 0.15 

sugarbeets ton 907.2 0.15 0.4 0.43 

sunflower pound 0.453 0.93 0.27 0.06 

wheat bushel 27.2 0.89 0.39 0.2 

 

The county-level cropland NPP on a unit per area is calculated as the area weighted 

mean of all the crop NPP in the county with the following equation: 
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where m is the number of crop species in the county, NPP (i) is the NPP calculated from 

crop yield data for crop species (i), and Area (i) is the harvested area of the crop species 

(i). These county-level NPP are presented in Figure 5 and Figure 6 to compare with the 

NPP estimates from the satellite-based model and the process-based model.  

The mean and the standard deviation (SD) of the NPP for croplands are calculated for 

the MCI region with the following equations: 
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, (6) 

where n is the number of counties in the MCI region,  m is the number of crop species in 

the county, NPP (i, j) is the crop NPP calculated from crop yield data of crop (i) in county 

(j), and Area (i, j) is the harvested area of crop (i) in county (j). The total cropland NPP in 

the MCI region is calculated by adding the crop NPP for all the crop species in every 

county. This NPP estimate excluded the NPP of grass crops such as hay, alfalfa, and 

forage. The NPP estimated using this method is referred to as NPPUSDA. 

   For the four major crops (corn, soybean, spring wheat, and winter wheat), the mean and 

the SD of crop NPP are calculated for the MCI region with the following equations: 

         
∑                 

   

∑         
   

 , (7) 
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where n is the number of counties in the MCI region, NPP (j) is the crop NPP in county 

(j), and Area (j) is the harvested area of the crop in county (j). These crop NPP estimates 

are compared with crop NPP estimates from the process-based model. The cropland area 

is the sum of all the harvested area. 

2.2.2.2 Satellite based model 

    We used the global MODIS NPP (MOD17A3) product published by Numerical 

Terradynamic Simulation Group (NTSG) for this study. The MODIS NPP product was 

generated at 1 km
2
 spatial resolution from 2000 to 2010 with the most recent algorithm 

(Zhao and Running, 2012; Zhao et al., 2005). The MODIS NPP algorithm provides an 

operational and near-real-time calculation of global GPP and NPP products from the 

MODIS sensor (Heinsch et al., 2003; Zhao et al., 2005). It uses three input sources: 

MODIS land cover product, daily meteorological data, and the Fraction of 

Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI) data from 

MODIS FPAR/LAI product. The uncertainties in these input data will influence the NPP 

estimates.  

The global MODIS NPP data and the global MODIS land cover data were downloaded 

from the NTSG ftp site (NTSG, 2012) for 2007 and 2008. Both the NPP and the land 

cover data were extracted to the MCI region using ArcGIS software. The MODIS land 

cover data are generated with the University of Maryland (UMD) classification scheme 

and contain 14 land cover classes, with one land cover class for cropland. The cropland 

class was used to mask out the NPP for croplands in 2007 and 2008 in the MCI region.  
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The mean and the SD of MODIS cropland NPP are calculated from all the NPP values 

for cropland pixels in each year. The total cropland area is calculated by multiplying the 

total number of cropland pixels and the area represented by each pixel (1 km
2
). The total 

NPP is calculated by adding all the NPP at cropland pixels together. The NPP estimated 

using this method is referred to as NPPMODIS. 

2.2.2.3 Process based model 

We used the General Ensemble biogeochemical Modeling System (GEMS) (Liu, 

2009; Liu et al., 2003) to estimate the cropland NPP in the MCI region. GEMS is a 

modeling system developed to integrate well-established biogeochemical models with 

various spatial databases for simulating biogeochemical cycles over large areas (Figure 

2.2).  
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Figure 2.2. A simplified schematic diagram of the General Ensemble biogeochemical 

Modeling System (GEMS) and major component to calculate the Net Primary Production 

(NPP) in the Erosion-Deposition-Carbon-Model (EDCM). 

 (1) Biogeochemical model 

We used the biogeochemical model Erosion-Deposition-Carbon-Model (EDCM) to 

simulate the cropland NPP in GEMS. EDCM is a process-based model that was 

developed to characterize the ecosystem carbon dynamics and to be capable of evaluating 

the impacts of soil erosion and deposition (Liu et al., 2011, 2003). It simulates the NPP 

based on the crop potential production, temperature, water balance, soil carbon, and 

nitrogen dynamics at monthly time steps (Liu et al., 2003; Parton et al., 1993). The NPP 

calculation in EDCM can be expressed in the following equation: 

                                            , (9) 

where Pmax is the potential production of the crop (gC m
-2

 yr
-1

), ftemp is a temperature 

factor to estimate the effect of temperature on NPP, fwater is a water factor to estimate the 

effect of soil water content on NPP, fnutrient is a nutrient factor to estimate the effect of soil 

nutrient on NPP, fother is the other impact factor impacting NPP including factors for 

enriched CO2 effect, shading effect, etc., and f(t) is an empirical factor representing the 

historical change in NPP through time (Liu et al., 2003).  

(2) Input data sets 

The soil organic carbon content and soil texture information were extracted from the 

State Soil Geographic Data Base (STATSGO). STATSGO contains 132 survey units in 

the MCI region. Each survey unit contains multiple soil components. GEMS uses a 
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Monte-Carlo method with multiple model runs to quantify the uncertainty caused by 

different soil components. In each model run, GEMS randomly chooses the soil 

component and uses the soil data (soil texture, soil organic carbon content, soil layer 

depth, soil field capacity, and soil wilting point) in this component for the simulation. 

The soil component that has more area fraction in the survey unit will be used for more 

model runs during the simulation. 

For this study, we used nine years (2000 – 2008) of climate data produced by the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) from Oregon 

State University (PRISM Climate Group, http://www.prismclimate.org, accessed Feb 

2010). The climate variables used in the model are monthly minimum temperature, 

maximum temperature, and precipitation.  

    We generated cropland cover data from 2000 to 2008 using the Cropland Data Layer 

(CDL) product downloaded from the Natural Resources Conservation Service (NRCS) 

geospatial data gateway (USDA, 2011). The CDL product is a raster land cover map with 

geo-referenced and crop-specific information produced by NASS (Boryan et al., 2011). 

In this study, the original 22 crop species in the CDL were combined into 6 representative 

crop groups (corn, soybean, spring wheat, winter wheat, other grains crops, and other 

crops). The CDL data do not have full-time coverage from 2000 to 2008 in all states 

(Table 2.2). In the states that do not have the data, missing data were filled in with the 

closest year. 

We used the tillage data processed by West et al. (2008) in this study. It was generated 

from the tillage census data from the Conservation Technology Information Center 
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(CTIC) between 1989 and 2004. Irrigation, manure addition, and soil erosion dynamics 

were excluded due to data limitations. 

 

Table 2.2. USDA Cropland Data Layer (CDL) temporal coverage between 2000 and 

2008 in the states of the Mid-Continent Intensive Campaign (MCI) region. 

(3) Model calibration 

We downloaded the state level crop yield data from 2000 to 2008 for the four major 

crops (corn, soybean, spring wheat, and winter wheat) from the USDA NASS website 

(NASS, 2011). The crop yield was converted to harvested carbon using the method in 

2.2.1 to compare with model simulated crop yield at the state level. We used the averaged 

crop yield in three years (2000, 2001, and 2003) for the calibration of the parameters. We 

excluded the crop yield data in 2002 because we found the reported crop yield data in 

2002 were much lower than other years in some states due to a major drought in the 

Midwest.  

The maximum growth rate of the vegetation, also referred to as the potential 

production, represents optimal plant growth when there are no environmental stresses. 

The potential production parameters of corn, soybean, spring wheat, and winter wheat 
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were calibrated at state level with crop yield data (Figure 2.3). The calibration procedure 

included multiple calibration runs. All the calibration runs used the same input data and 

assumptions as the simulation run. In each calibration run, GEMS randomly selected a 

subset of cropland points inside each state to run the simulation and output the harvested 

carbon for all the crops. The harvested carbon was calculated for each crop and compared 

with harvested carbon estimated from the reported crop yield data in the state. For each 

crop, if the simulated crop yield was larger than 105% or smaller than 95% of the 

reported crop yield, then the model parameter representing the crop potential production 

was adjusted (Figure 2.3). The new crop parameter was saved for this crop and used in 

the next calibration run. GEMS repeated the calibration process until all the simulated 

crop yields were within ±5% of the reported crop yields in each state. The calibrated 

parameters were then saved for the simulation run.  
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Figure 2.3. Flowchart of the General Ensemble biogeochemical Modeling System 

(GEMS) calibration process. 

(4) Model simulation and comparison 

The regional simulation was performed with an equal distance (5 km) sampling 

approach to reduce the model run time. The model ran from 2000 to 2008 with a pre-run 

time of 30 years to stabilize the soil pools. We assumed that the cropland in the region 

has enough nitrogen input from fertilization and all the planted crops are harvested. 

Effects of carbon dioxide (CO2) fertilization were not included in the simulation because 

of the short simulation time period.  

The model output NPP in 2007 and 2008 was used for comparison and analysis in this 

paper. The NPP at each pixel is treated as the mean NPP on the 25 km
2
 pixel area. The 

county-level cropland NPP is calculated by averaging all the cropland NPP inside each 

county to compare with the county-level NPPUSDA. The mean and the SD of the cropland 

NPP are calculated from all the cropland NPP regardless of crop type. The total cropland 

NPP is the sum of all the cropland NPP (gC m
-2

 yr
-1

) multiplied by the pixel area (25 

km
2
). The NPP estimated using this method is referred to as NPPGEMS. 

For the four major crops (corn, soybean, spring, and winter wheat), the mean and the 

SD of the NPP are calculated from all the NPP values for each crop in the MCI region. 

The results are compared with the crop NPPUSDA. The cropland area for each crop is 

calculated by multiplying the number of crop pixels in the CDL data by the pixel area (25 

km
2
).  
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2.3 RESULTS 

2.3.1 Evaluation of GEMS simulated results 

We first compared the model simulated crop yields in 2007 and 2008 against the 

reported USDA crop yields for the four major crops (corn, soybean, spring, and winter 

wheat) at the state level (Figure 2.4). As presented in Figure 2.4, the simulated crop 

yields by GEMS agreed well with the USDA crop yield data (R
2
 = 0.95). We also 

compared the model-simulated NPP with the NPP estimates from USDA crop inventory 

at the county-level in 2007 and 2008 (Figure 2.5). The county-level comparisons between 

the NPPGEMS and NPPUSDA also showed high correlation coefficients (R
2
 > 0.86) in both 

years. The calibration procedure used is responsible for this good agreement. 
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Figure 2.4. Validation of the General Ensemble biogeochemical Modeling System 

(GEMS) simulated crop yields compare with crop yields estimated from USDA yield 

data for the major crops in the 11 states: corn, soybean, spring wheat and winter wheat. 
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Figure 2.5. Validation of GEMS simulated cropland NPP with cropland NPP estimated 

from USDA yield data at county level in 2007(a) and 2008 (b). 



41 

 

 

 



42 

 

 

Figure 2.6. Spatial distribution of cropland covers in 2007 (A) and 2008 (B); cropland 

mean NPP estimated from USDA yield data in 2007 (C) and 2008 (D); cropland mean 

NPP estimated from MODIS NPP product in 2007 (E) and 2008 (F); cropland mean NPP 

estimated from GEMS model in 2007 (G) and 2008 (H) in the Mid-Continent Intensive 

Campaign (MCI) region. 

2.3.2 NPP estimates for croplands 

The mean and the SD of cropland NPP, the cropland area, and the total cropland NPP 

estimates from different methods are presented in Table 2.3. The crop-specific NPP 

estimates for the four major crops from USDA yield data and GEMS are both presented 

in Table 2.4. The CDL land cover information and the detail on the three estimates that 

produce the patterns of NPP in the cropland are illustrated in Figure 2.6.   

Table 2.3. Net Primary Production (NPP) estimates of cropland in the Mid-Continent 

Intensive Campaign (MCI) region from different methods. 

 2007 2008 

Cropland 

NPP 

Mean NPP 

(gC m-2 yr-1) 

Cropland 

area (Mha) 

Total NPP 

(Tg C yr-1) 

Mean NPP 

(gC m-2 yr-1) 

Cropland 

area (Mha) 

Total NPP 

(Tg C yr-1) 

USDA 672 ± 238 49.6 

(50.6*) 

333 668 ± 256 48.2 

(49.5*) 

322 

MODIS 469 ± 79 100 469 490 ± 96 100 490 

GEMS 683 ± 302 51.5 351 687 ± 349 52.5 359 

*Note: the number in the parenthesis is the plant area, outside is the harvest area 

a. The values are the mean ± the standard deviation of the estimated NPP values for the 

cropland. The calculation methods are listed in section 2.2.2.1, 2.2.2.2 and 2.2.2.3. 
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b. The number in the parenthesis is the planted cropland area, outside is the harvested 

cropland area in the USDA yield data.  

 

Table 2.4. Mean and standard deviation of Net Primary Production (NPP) of corn, 

soybean, spring wheat and winter wheat in the Mid-Continent Intensive Campaign (MCI) 

region. 

  2007 2008 

Estimate 

method 
Crop type 

Mean NPP 

(gC m
-2

 yr
-1

) 

Harvested 

cropland 

area (Mha) 

Total NPP 

 (Tg C yr
-1

) 

Mean NPP 

(gC m
-2

 yr
-1

) 

Harvested 

cropland 

area (Mha) 

Total NPP 

(Tg C yr
-1

) 

USDA 

Corn 876 ± 191 24.3 226.4 928 ± 162 21.3 213.1 

Soybean 364 ± 80 16.6 63.2 346 ±71 18.7 66.7 

Spring 

Wheat 
399 ± 127 2.6 10.2 464 ± 81 2.4 11.1 

Winter 

Wheat 
456 ± 123 2.9 11.0 486 ± 123 2.6 12.2 

GEMS 

Corn 954 ± 153 25.8 247.0 1047 ± 137 24.0 247.7 

Soybean 367 ± 50 16.1 58.9 334 ± 45 19.1 64.0 

Spring 

Wheat 
366 ± 55 3.0 10.8 398 ± 65 3.1 12.5 

Winter 

Wheat 
571 ± 107 2.7 13.9 579 ± 89 2.8 16.6 
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a. The values are the mean ± the standard deviation of the estimated NPP values for each 

crop. The calculation methods are listed in section 2.2.2.1 and 2.2.2.3. 

 

2.3.2.1 Crop inventory 

The mean NPPUSDA was 660± 320 g C m
-2

 yr
-1

 in 2007 and 656 ± 330 g C m
-2

 yr
-1

 in 

2008. The large variability of NPP is driven by large differences between crop-specific 

NPP. Corn NPP is the highest of the four major crops and its value is 30% higher than the 

mean cropland NPP, while soybean NPP is only about 50% of the mean cropland NPP 

(Table 4). In 2008, the NPP of corn and wheat were increased but the NPP of soybean 

was decreased compared to 2007 (Table 4). The increase of NPP in 2008 was possibly 

driven by the weather condition. Substantial rainfall events during the 2008 growing 

season in the Midwest caused flooding (Holmes et al., 2010). But the flood-related loss of 

cropland was offset by a large increase in crop yield due to the nearly ideal growing 

conditions from late June in this region (Schnepf, 2008). Thus, the cropland NPP 

increased in many counties in the center of the MCI region regardless of the flooding in 

2008. 

The total NPPUSDA decreased from 329 TgC yr
-1

 in 2007 to 318 TgC yr
-1

 in 2008. In 

2007, the total harvested cropland area (49.6 Mha) was about 98% of the planted area 

(50.6 Mha). In 2008, both the planted cropland area (49.5 Mha) and the harvested 

cropland area (48.2 Mha) decreased about 3%. In 2008, the harvested corn area decreased 

2.2 Mha from the harvested corn area in 2007, causing a subsequent decrease of 13.3 Tg 

C in total corn NPP.  On the other hand, the corn/soybean rotation increased the 
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harvested soybean area by 2.1 Mha and the total soybean NPP by 3.5 TgC in 2008. The 

net effect was that the total NPP for croplands was lower in 2008 than in 2007. 

2.3.2.2 Satellite based model 

The mean NPPMODIS was about 30% lower than the mean NPPUSDA, 469 ± 79 gC m
-2

 

yr
-1

 in 2007 and 490 ± 96 gC m
-2

 yr
-1

 in 2008. Without incorporating crop-specific 

information in the calculation, NPPMODIS showed less spatial variability than NPPUSDA. In 

2007, 95% of the NPP values were between 400 and 600 gC m
-2

 yr
-1

, and only 3% of the 

values were higher than 600 gC m
-2

 yr
-1

. In 2008, 83% of the NPP values were between 

400 and 600 gC m
-2

 yr
-1

 and 15% of the values were higher than 600 gC m
-2

 yr
-1

. The 

MODIS cropland area (100 Mha) remained the same for 2007 and 2008, and it was 100% 

higher than the USDA harvested area. This overestimate of cropland area caused the total 

NPPMODIS to be over 40% higher than the total NPPUSDA.  

2.3.2.3 Process based model 

The mean NPPGEMS showed similar values to the mean NPPUSDA, 683 ± 302 gC m
-2 

yr
-1 

in 2007 and 687 ± 349 gC m
-2 

yr
-1 

in 2008, within 5% of the NPPUSDA. NPPGEMS also 

showed a large difference between the crop-specific NPP. The corn NPP is about two 

times higher than the NPP of soybean and spring wheat (Table 2.4).  

The cropland area from CDL data was 51.5 Mha in 2007 and 52.5 Mha in 2008. Both 

areas were higher than the NASS harvested cropland area by 4% in 2007 and by 9% in 

2008. The total NPPGEMS was 351 TgC yr
-1 

in 2007 and 359 TgC yr
-1 

in 2008, about 5–10% 

higher than the total NPPUSDA. Though the corn area was less than 50% of the total 

cropland area, the corn NPP accounted for over 66% of the total cropland NPP. 

Meanwhile, the soybean area was over 30% of the total cropland area but the soybean 
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NPP was less than 20% of the total cropland NPP. The sum of corn and soybean NPP 

was more than 87% of the total cropland NPP in the MCI region.  

The corn-soybean rotation is a prevalent cropping system in the MCI region and the 

CDL data provided spatial explicitly information of the rotation (Figure 2.6A, 6B). Given 

the large difference between the soybean NPP and the corn NPP (Table 2.4), we can 

expect that NPP varies between the years under corn/soybean rotation. This temporal 

variability of NPP has been observed and shows a large impact on carbon flux at the site 

level (Baker and Griffis, 2005; Verma et al., 2005). The crop inventory data do not have 

enough spatial detail to recognize this type of temporal variability. The MODIS NPP 

product does not have crop-specific information to estimate this variability either. Using 

the CDL data, GEMS was able to identify the temporal variability of NPP for croplands 

driven by crop rotation in the Midwest (Figure 2.6G, 6H). 

2.3.3 Crop species impacts in cropland NPP  

The CDL data showed that the crop species were not evenly distributed throughout the 

MCI region (Figure 2.6A, 6B). Spring wheat was mainly planted in the northwestern part 

of the MCI region, whereas winter wheat was mainly planted in the southwestern part. 

Both corn and soybean were dominant in the central states of the MCI region, such as 

Iowa, Illinois, and Nebraska. The crop plant patterns, which represent the location of crop 

species, are important to estimate the spatial variability of NPP for croplands. This can be 

seen from the NPP estimates from the three methods (Figures 2.6C–6H).  

All three NPP estimates for croplands showed the NPP increased from north to south 

(Figures 2.6C–6H). Both the NPPUSDA (Figure 2.6C, 6D) and NPPGEMS (Figure 2.6G, 6H) 
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showed higher values (> 600 g C m
-2

 yr
-1

) in Iowa, northern Illinois, and eastern 

Nebraska. The location of high cropland NPP in these two methods agreed with an earlier 

study using crop yield data (Prince et al., 2001). The states that had much larger corn 

planted area had the highest cropland NPP. But NPPMODIS had different spatial patterns 

than the other two NPP estimates. NPPMODIS showed higher values (> 600 g C m
-2

 yr
-1

) in 

Kansas and Missouri, where corn planted area is much smaller than Iowa (Figure 2.6E, 

6F).  Additionally, NPPMODIS was larger in southern Illinois and Iowa than the northern 

parts of those states, while the opposite is found in the NPPUSDA estimates.  A similar 

reverse pattern in NPP estimates was documented by Bandaru et al. (2013). 

2.4 DISCUSSIONS 

2.4.1 Differences in cropland area  

The cropland in this study only includes the cropland planted for harvesting. This is 

different than the total cropland defined by NRCS. According to the definition by NRCS, 

the total cropland is ―a category that includes cropland harvested, cropland used only for 

pasture or grazing, cropland on which all crops failed or were abandoned, cropland in 

cultivated summer fallow, and cropland idle or used for cover crops or soil improvement 

but not harvested and not pastured or grazed‖ (USDA, 2009). We found that different 

methods may only include part of the total cropland in their data sources.  

    USDA crop yield data only include harvested biomass so they only represent the NPP 

on the cropland harvested. The cropland planted for harvesting usually is larger than the 

cropland harvested. USDA inventory data include both the planted cropland area and the 

harvested cropland area in the survey. The harvested cropland area is smaller than the 



48 

 

 

planted cropland area in two aspects. First, farmers may not harvest the cropland when 

the land cannot make enough economic returns. This includes the croplands with low 

crop yields or damaged crops due to unfavorable weather conditions or extreme events 

such as flooding or drought. The overall fraction of harvest/plant cropland area was 98% 

in 2007 and 97% in 2008 in this study. But this fraction can be much lower for some 

crops at the county-level in certain years. For example, the census data of Saunders 

County, Nebraska, showed only 92% of the cropland area planted with corn was 

harvested in 2008. A more extreme event is in Kewaunee County, Wisconsin, where 

USDA reported only 46% of the planted corn area was harvested in 2008 (USDA, 2011). 

Second, there are croplands that are planted with cover crops not intended for harvest. 

These croplands include winter cover and summer cover crops such as sorghum-sudan-

grass, rye, and wheat (Snapp et al., 2005). USDA inventory data include these croplands 

in the cropland planted for harvest but do not have crop yield reported for them.   

    The GEMS model used the land cover inputs from the CDL image products. The CDL 

program used remote sensing data from multiple satellite sensors and ancillary data to 

classify the crop types in these image products (Boryan et al., 2011). The major two 

satellite sensors are the Advanced Wide Field Sensor (AWiFS) and Landsat Thematic 

Mapper (TM)have higher spatial resolution (56 m for AWiFS and 30 m for TM) 

compared with MODIS (250 m). According to Boryan et al. (2011), the accuracy of the 

CDL products on major crop types is generally 85% to 95% at state level.  The crop area 

derived from the CDL product is closer to the planted area but larger than the harvested 

area from NASS statistics. Thus, the cropland NPP estimated from a process-based model 

should cover more cropland area than the crop inventory. In this study, the non-harvested 
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cropland caused a 5–10% difference for croplands between the total NPP estimates from 

crop inventory and the process-based model in the MCI region.  

Neither crop inventory nor the process-based model estimates the NPP of the cropland 

types that are not planted for harvesting. These cropland types include pasture or forage, 

fallow, and the cropland in the Conservation Reserve Program (CRP) land. The total area 

of these croplands is 13 Mha in 2000, with 5 Mha in pasture or forage, 0.8 Mha in 

summer fallow, and 4.2 Mha in CRP land (West et al., 2008). These lands occupied about 

19% of the total cropland area in 2000 but the NPP information for these lands was 

limited. The satellite-based model may include these cropland types in the NPP estimate.  

The cropland cover data used by MODIS include about 100 Mha cropland in the MCI 

region. This is over 100% higher than the USDA inventory data (48–50 Mha) and the 

CDL data (51–52 Mha). This overestimation caused the total NPPMODIS to be 40% higher 

than the other two methods. In the algorithm, the MODIS NPP product used the global 

UMD land cover dataset as an input to calculate the cropland NPP (Zhao and Running, 

2012). The UMD land cover dataset was generated using a regression tree algorithm and 

only contained one land cover class for all the crops (Hansen et al., 2000). The 

classification approach used with the regression tree algorithm may have limited ability 

to depict grassland/pasture within areas of intensive cropping. It is possible that the 

cropland cover data in the dataset include not only cropland planted with cereal crops but 

also cropland planted with grass (forage or pasture) or even natural grassland. Another 

major issue is that the MODIS NPP product has coarse spatial resolution (1×1 km
2
). The 

assumption that the one MODIS pixel (1×1 km
2
) only contains one single land cover 

class usually fails to reflect the spatial heterogeneity in cropland cover. Crops generally 
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are not planted in 1×1 km
2
 plots and may consist of crops and bare ground (Reeves et al., 

2005). Including non-cropped area in the cropland pixel artificially increases the cropland 

area and brings more uncertainty in the NPP estimates. 

2.4.2 Differences in crop species 

We found the detailed mapping of crop species change in time and space is critical for 

estimating the spatial and temporal variability of the NPP for croplands. In this study, the 

mean NPPMODIS was about 30% lower than the mean NPPUSDA and the mean NPPGEMS in 

the MCI region. The lower NPP estimates from MODIS were also found in other studies 

(Bandaru et al. 2013; Turner et al., 2005; West et al., 2010). The European carbon 

assessment found that satellite-based models estimated lower cropland NPP (419–494 gC 

m
-2

 yr
-1

) than process-based models (585 gC m
-2

 yr
-1

) and yield statistics (646 gC m
-2

 yr
-1

) 

(Ciais et al., 2010). The bias of the NPP estimates may come from the bias in the LUE 

parameters in these models. The algorithm of the MODIS NPP product only used a single 

LUE parameter to calculate the photosynthesis for croplands (Heinsch et al., 2003; Zhao 

et al., 2011). Reeves et al. (2005) compared the MODIS NPP product with wheat yield in 

the United States and found the LUE value used in the MODIS algorithm is less than the 

LUE value used in wheat yield models developed at field level. Our study found the 

mean NPPMODIS is about 50% lower than the mean NPP of corn, but 30% higher than the 

mean NPP of soybean. These differences suggested that there may be large differences in 

the LUE between crops. Turner et al. (2002) studied the LUE in a corn soybean mixed 

land cover and found that the LUE for corn was 47% higher than the LUE for soybean in 

a central Illinois crop field.  His study also shows that using an LUE model with high 

resolution land cover data can reduce the uncertainty in NPP estimates by considering the 
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difference in LUE parameter. Lobell et al. (2002) used USDA yield data to estimate the 

cropland LUE parameter in the CASA model and found the LUE parameter varied from 

0.41 to 0.94 gC MJ PAR
-1

 for corn in the United States. Bandaru et al. (2013) similarly 

estimated LUE per crop and per county using USDA yield data, ranging from 0.77 to 

1.73 gC MJ PAR
-1

 for soybean and corn, in order to capture the spatial patterns of 

MODIS while also maintaining inventory-based county-level NPP estimates.  Other 

studies also found that LUE has more variance across crop species at a finer scale (Ahl et 

al., 2005a; Kalfas et al., 2011). Lobell (2013) reviewed different satellite remote sensing 

methods to measure crop yield and concluded that the misclassification of crop type is the 

most problematic issue to estimate crop yield in croplands growing with multiple crops. 

Thus, satellite-based models using a single LUE to estimate the cropland NPP may not 

correctly reflect the spatial and temporal variability of cropland NPP, especially when 

multiple crop species are present in the same region and crop rotation is applied between 

the years.  

Regional or global land cover datasets developed earlier, such as the National Land 

Cover Dataset (NLCD), the International Geosphere-Biosphere Programme (IGBP) 

global land cover dataset, and MODIS land cover product, only provide a single cropland 

classification without crop-specific information. Using moderate to high resolution 

satellite-based land cover data can improve the estimates of cropland carbon dynamics 

(West et al., 2010, 2008). But the uncertainties in these satellite-based land cover datasets 

can also influence the NPP estimates. Land cover datasets that contain multiple crop 

species have been developed and have become available in recent years, such as the CDL 

product (Boryan et al., 2011). At global scale, Ramankutty et al. (2008) developed a 
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global cropland dataset with 175 crops by combining agricultural inventory data from 

FAO and satellite-derived land cover data. This dataset was used later with crop census 

data in the development of the Monthly Irrigated and Rainfed Crop Areas (MIRCA) 

dataset, which contains crop-specific information on irrigation (Portmann et al., 2010). 

Pittman et al. (2010) used multiple years of MODIS data to map the global croplands and 

validated them at the country level with four dominant crop types (corn, soybean, rice, 

and wheat). These regional and global datasets have provided more details for croplands 

and are available for the biosphere models to use.  

However, many regional and global biosphere models still treat cropland as one single 

vegetation class. In the 17 biosphere models used in the North American Carbon Program 

Regional Synthesis, only two models used land cover data containing crop-specific 

information (Hayes et al., 2012). The use of cropland as a single vegetation class in the 

model generally assumes that the model parameter’s variability is greater between 

different vegetation classes than within the single vegetation class. While this assumption 

is generally true for natural vegetation, it can be violated for crops. Studies have shown 

that crops have very different LUE values. Our study also showed that using the same 

model parameter for all crops in a remote sensing model brought large bias in the NPP 

estimates. We suggested that future model applications should consider using multiple 

crop information and model parameters to improve the studies on the carbon dynamics in 

croplands.  

2.4.3 Comparing three NPP estimate methods 

Crop inventory is originally used for monitoring the crop yields and understanding the 

agricultural product supply. It focuses on the carbon accumulated during the growing 



53 

 

 

season but does not account carbon loss during the growing season. The cropland NPP 

estimated from crop inventory data is more likely as part of NPP that can be consumed by 

people. Some studies were conducted to calculate the human appropriation of NPP in 

cropland using this method (e.g., Imhoff et al., 2004; Haberl et al., 2007). However, the 

carbon loss during the growing season, such as the tissue turnover and production of root 

executes, should be also included in the ecosystem NPP (Chapin et al., 2006).  But the 

measurement of carbon loss during the growing season is still a challenge (Johnson et al., 

2006). Haberl et al. (2007) generated a set of empirical factors to estimate the cropland 

NPP by considering the losses of biomass carbon during the growing season such as the 

biomass loss through diseases and the biomass produced by weeds. Using this set of 

factors could lead to a 30% discrepancy in mean NPP estimates compared with the other 

set of factors, which gives the largest bias in cropland NPP estimates using crop 

inventory data (Ciais et al., 2010).  More field studies may be needed to better quantify 

the part of NPP lost during the growing season in the inventory approach. Another issue 

is the uncertainties in the conversion factors such as the root/shoot ratio and harvest index. 

These factors showed variations in different field studies and changed over time (Egli, 

2008; Johnson et al., 2006; Prince et al., 2001).  Field measurements in different regions 

of the world are still needed to develop region specific conversion factors for more 

accurate estimates of NPP for croplands.  

The MODIS NPP product is a continuous satellite-derived dataset for studying the 

global vegetation productivity (Running et al., 2004). This approach uses remote sensing 

information of the vegetation to directly estimate the carbon fixation through 

photosynthesis from the solar radiation. It measures the ecosystem level GPP through the 
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year and estimates the annual NPP by subtracting the ecosystem AR from the GPP. The 

MODIS NPP product provides spatially continuous and temporally consistent estimates 

across large regions. However, there are still many uncertainties in the MODIS NPP 

product. These uncertainties come from both the input datasets and the algorithm. Zhao et 

al. (2006) compared the MODIS NPP estimates by using three different meteorological 

datasets and found the global NPP varies from 47 to 74 PgC yr
-1

 between 2000 and 2003. 

Land cover accuracy is another input source that brought in uncertainties (Reeves et al., 

2005; Zhao et al., 2011). Based on our study, the misclassification of cropland and lack 

of crop-specific information in the land cover data are the two major causes of bias in 

NPP estimates in the MCI region. Both could be corrected with more accurate and 

detailed cropland cover data. Further developments in satellite-based models, especially 

in land cover inputs and parameterization, can be valuable in ecosystem carbon studies. 

The process-based model was originally developed at site scale to study carbon 

dynamics of the ecosystem. It uses the soil, climate, and other information to estimate the 

NPP from vegetation potential production. The model parameters usually need to be 

calibrated with observations to reduce uncertainties in large region applications. Current 

studies still show large uncertainties in ecosystem carbon dynamics. A model-data 

intercomparison of the Net Ecosystem Exchange indicated poor model performance with 

a large difference between observations and model results (Schwalm et al., 2010). In a 

recent study of the North American carbon balance, estimates from the terrestrial 

biosphere models suggested a much smaller sink over croplands, less than half of the sink 

strength compared to inventory-based estimates (Hayes et al., 2012). Since NPP is the 

major component in the carbon cycle, it is important to quantify NPP accurately to lower 
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the uncertainty of carbon-related estimates. In this study, the NPP estimates from the 

process-based model agreed well with NPP estimates from the inventory method. With 

the high resolution cropland cover generated from satellite data, it is possible to apply the 

process-based model at fine spatial scales and generate the carbon accounting at farm and 

project level. Such information is needed for developing effective management plans for 

croplands to fulfill human needs and mitigate the effects of future climate change 

(Michalak et al., 2011; Smith et al., 2012).   

Each method has its own strength and weakness in estimating regional NPP. The 

inventory method is based on the statistical aggregation of limited observation data and 

represents the average NPP over a large region without spatial details of the NPP. The 

satellite-based model uses satellite remote sensing observations on vegetation and 

provides spatially consistent NPP estimates across large regions. However, this method 

may result in large uncertainties due to misclassified land cover pixels and inaccuracy in 

the model parameterization. The process-based model can be used with high resolution 

land cover data to provide detailed NPP estimates, even though the model parameters 

need to be calibrated with available observations to reduce uncertainty. Further research 

based on this method will be conducted to estimate the carbon dynamics in croplands in 

the Midwest.  

2.5 SUMMARY AND CONCLUSIONS 

    We compared the NPP estimates for croplands with three different methods: crop 

inventory, a satellite-based model, and a process-based model in the Midwestern United 

States. Mean NPP for croplands was in the range of 469–687 gC m
-2

 yr
-1

 and the total 
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NPP for croplands was between 318 and 490 TgC yr
-1

. We found the differences in the 

cropland area and the changes of the crop species planted in the cropland are the two 

major causes of variation in the cropland NPP estimates. We concluded that in this study, 

the satellite-based model produced the most biased NPP estimate due to deficiencies in 

the land cover input, but that bias could be potentially corrected with crop-specific land 

cover data. Our study suggested that the change of crops in time and space is critical for 

estimating the spatial and temporal variability of the NPP when multiple crops are 

growing in the croplands. We suggest that future models should consider using high 

resolution and crop-specific land cover data to improve NPP estimates and carbon 

dynamic studies for croplands.  
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3.0 ABSTRACT 

Quantifying spatial and temporal patterns of carbon sources and sinks and their 

uncertainties across agriculture-dominated areas remains challenging for understanding 

regional carbon cycles. Land-use land-cover (LULC) change could impact the estimates 

of regional carbon fluxes but the effect has not been fully evaluated in the past. Within 

the North American Carbon Program Mid-Continent Intensive (MCI) Campaign, three 

models were developed to estimate carbon fluxes on croplands: an inventory-based 

model, the Environmental Policy Integrated Climate (EPIC) model, and the General 

Ensemble biogeochemical Modeling System (GEMS) model. They all provided estimates 

of three major carbon fluxes: cropland net primary production (NPP), net ecosystem 

production (NEP), and soil organic carbon (SOC) change. Using data mining and spatial 

statistics, we studied the relationships between the uncertainties of these carbon fluxes 

estimates and the input land cover characteristics. Results indicated that uncertainties for 

all three carbon fluxes were not randomly distributed, but instead formed multiple 

clusters within the MCI region. We investigated the impacts of cropland percentage, 

cropland richness and cropland diversity on these uncertainties. The results indicated that 

cropland percentage significantly influenced the uncertainties of NPP and NEP, but not 

on the uncertainties of SOC changes. Greater uncertainties of NPP and NEP were found 

in the counties with small cropland percentage than the counties with large cropland 

percentage. Cropland species richness and diversity also showed negative correlations 

with the model uncertainties. Our study demonstrated that the LULC can contribute to 

regional carbon fluxes uncertainties. The approaches we used in this study can be applied 
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to other ecosystem models to identify the areas with high uncertainties and where models 

can be improved to reduce overall uncertainties for regional carbon flux estimates.  

 

3.1 INTRODUCTION 

Understanding carbon sources and sinks is important for carbon management (USCCS, 

2012). However, estimates of carbon dynamics in large regions still have large 

uncertainties among different methods (Ciais et al., 2010; Huntzinger et al., 2012; Ito, 

2011). Intercomparisons between model estimates can help to identify the limitations of 

the models and suggest future research priorities. The North American Carbon Program 

(NACP) conducted a series of comparisons between model estimates and observations 

from local to continental scales (Huntzinger et al., 2012). For example, a comparison of 

21 terrestrial biosphere models at multiple NACP tower sites showed that net ecosystem 

exchange (NEE) simulation results were better in forest sites than in non-forest sites 

(Schwalm et al., 2010). Another study compared gross primary production (GPP) 

between 26 terrestrial biosphere models and observations at flux tower sites (Schaefer et 

al., 2012).The study found that overall the model performance was poor in GPP 

estimates and was possibly caused by inadequate representation of observed light use 

efficiency. It also suggested that model improvement should focus on improving leaf-to-

canopy scaling and obtaining better estimates of the model parameters that control light 

use efficiency.   At the continental scale, a comparison of 19 terrestrial biosphere models 

found that ecosystem net ecosystem productivity (NEP) for North America varied from -

0.7 to +2.2 PgC yr
-1

, which was much narrower than estimates of GPP and respiration 
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(Huntzinger et al., 2012). Another study on the North America carbon balance compared 

the NEE estimates between inventory-based estimates, atmospheric inversion models and 

terrestrial biosphere models (Hayes et al., 2012). The inventory based estimate (-327 TgC 

yr
-1

) was significantly different from the mean values of the atmospheric inversion 

models (-931 TgC yr
-1

) and the terrestrial biosphere models (-511 TgC yr
-1

). For the 

terrestrial biosphere models, the estimated NEE values ranged from +29 to -3210 TgC yr
-

1
. Such large uncertainties in the model estimates could be driven by poorly simulated 

processes and input data (Hayes et al., 2012).  

For regional simulations, land cover information usually is required as an important 

input to the process-based models (Ahl et al., 2005b). Different land cover types could 

bring different physical parameters to the biosphere model and create large differences in 

simulated outputs, such as carbon fluxes (Sellers et al., 1996). The comparison between 

multiple terrestrial biosphere models at flux tower sites found the biome classification 

was the most important factor controlling the model-data mismatch (Schwalm et al., 

2010). Another comparison of global NPP estimates from multiple biosphere models also 

found that differences in the vegetation maps and associated parameters were as 

important as the differences in model assumptions in influencing seasonal NPP (Cramer 

et al., 1999). However, the assessment of how land cover impacts the model uncertainties 

was informal, and there is still a need for more research to better quality the effects of 

land cover inputs on model uncertainty.  

    The Mid-Continent Intensive Campaign (MCI) was a project that focused on reducing 

the uncertainties in estimating carbon fluxes between the terrestrial surface and 

atmosphere (Ogle, 2006). Multiple methods have been applied in the MCI region to 
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quantify ecosystem carbon fluxes (Li et al., 2014; Ogle et al., 2003; Schuh et al., 2013; 

West et al., 2010; Zhang et al., 2015). For croplands in the MCI region, multiple crop 

species are planted in different areas inside the region and annual changes in planted 

crops (crop rotations) are common. Variations in the spatial and temporal patterns of 

cropland area and crop species are major components of land use and land cover (LULC) 

change in the region. These LULC changes were found to impact the carbon fluxes, such 

as NPP and soil organic carbon changes (Li et al., 2014; Zhang et al., 2015).  

In this study, we investigated whether the observed pattern of the uncertainties was 

related to the distribution of land cover. Our null hypothesis was that the spatial 

distribution of model uncertainties is random in the MCI region. This null hypothesis was 

tested on the uncertainties of three major carbon fluxes: net primary production (NPP), 

net ecosystem production (NEP) and change in soil organic carbon (SOC). The 

uncertainties of these carbon fluxes were calculated based on the estimates from three 

models: a crop inventory model; the Environmental Policy Integrated Climate (EPIC) 

model through the geospatial agricultural modeling system (GCAM) framework; and the 

General Ensemble biogeochemical Modeling System (GEMS). In situations where the 

null hypothesis was proved to be false, we further investigated the influences of three 

land cover characteristics with the uncertainties: cropland percentage, cropland richness 

and diversity.  
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3.2 MATERIALS AND METHODS 

3.2.1 Study area 

The research area is the Mid-Continent Intensive Campaign (MCI) region (Ogle, 2006). 

It encompasses 678 counties from 11 states in the northern Great Plains and Western 

Corn Belt (Figure 3.1). The land area in the MCI is about 124 million hectare (Mha) and 

over 40% of the land area is used for agriculture. Corn, soybean, spring wheat, and winter 

wheat are the four major planted crops in the MCI region and occupy more than 90% of 

the planted area. The crop inventory data showed over 30 Mha of cropland area was used 

to plant corn and soybean, and about 10 Mha was planted with small grains and other 

crops in this region (West et al., 2008). The mean annual precipitation varies from 355 to 

535 mm and the mean annual air temperature varies from 5 to 7 C. 
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Figure 3.1 The Mid-Continent Intensive Campaign region boundary and land cover 

classes from the Cropland Data Layer in 2008. 

The spatial details of crop species in the MCI region are provided by the USDA crop 

land data layer (CDL) product (Boryan et al., 2011). The CDL program used remote 

sensing data from multiple satellite sensors and ancillary data to classify the crop types 

since 1990s  (Boryan et al., 2011). The major two satellite sensors are the Advanced 

Wide Field Sensor (AWiFS) and Landsat Thematic Mapper (TM) that have high spatial 

resolution (56 m for AWiFS and 30 m for TM). The CDL map provided a wall-to-wall 

mapping across the states with the spatial resolution at 30 m before 2005, and at 56 m 

between 2006 and 2010. The accuracies of the CDL products for major crop types are 

generally from 85% to 95% at state level (Boryan et al., 2011). These high resolution 
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crop maps have been widely used in biogeochemical models and with inventory data to 

estimate the carbon dynamics at region and national scale (Li et al., 2014; West et al., 

2010; West et al., 2008; Zhang et al., 2015). In the MCI region, CDL maps are available 

for all the states in 2007 and 2008.  

3.2.2 Inventory 

    The inventory method estimates the carbon fluxes of crops based on county-scale crop 

yield data (NASS, 2013). The county-scale crop yield data include the reported crop 

planted and harvested area, crop production and crop yield estimates on an annual basis 

from 2001 to 2008. Yield data are reported for harvested crop commodities, therefore 

cover crops are not included.  Generally the crop harvested area is about 1-3% smaller 

than crop planted area at the state level, due to crop failures.  

The inventory method calculated NPP for each crop from crop yield data with crop 

specific parameters such as harvest indices, root:shoot ratio and estimated dry weight 

values (West et al., 2011; West et al., 2010). The SOC change is estimated by using 

empirical relationships between land management and soil carbon change based on crop 

species, land management, soil attributes and regional mean climate regimes (West et al., 

2008). The annual estimates of NEE include the sum of net soil carbon change, uptake of 

crop carbon, and decomposition of above- and below-crop carbon. The spatial 

distribution of the NEE was calculated using weighted distribution and remote sensing 

land cover data(West et al., 2010). For this comparison, the NEP is estimated as the 

negative of NEE and the estimates are aggregated to county level.  
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3.2.3 EPIC 

    The Environmental Policy Integrated Climate (EPIC) model was originally developed 

based on site-level observations and has been extensively tested for many agricultural 

cropping systems landscapes (Causarano et al., 2008; Zhang et al., 2015; Zhang et al., 

2014). Recent development of the EPIC model used a geospatial agricultural modeling 

system (GAMS) to integrate the EPIC model with the spatially-explicit climate, land use, 

soil and management data for assessing regional carbon fluxes (Zhang et al., 2015; Zhang 

et al., 2014).  

    Multi-year CDL maps (2007-2011) were processed by GAMS to provide crop rotation 

information for the regional simulation (Zhang, 2015). For each state, major crop 

rotations were extracted from CDL maps and used to simulate land cover change in 

cropland areas. The SSURGO soil data was used for initializing soil carbon contents, and 

the climate inputs to the model were from the North- American Land Data Assimilation 

System 2 (NASA, 2014). Crop management information such as tillage, conservation 

type, and fertilizer application rate were also used as inputs to the model. GAMS 

processed all the information into homogeneous spatial modeling units (HSMUs) and 

performed EPIC simulations from 1991 to 2008 (Zhang et al., 2015).  

In the EPIC model, NPP is computed a part of the plant canopy’s interception of daily 

photosynthetically-active solar radiation. The NPP is affected by vapor pressure deficits, 

atmospheric CO2 concentrations, nutrient availability, and other environmental controls 

and stresses. SOC dynamics is computed by considering many factors and processes, 

such as soil texture, crop yields, atmospheric nitrogen input, fertilizer and manure, and 

tillage for the decomposition and transformation of soil carbon and nitrogen from the 



72 

 

 

model inputs.  NEE was calculated as heterotrophic soil respiration minus the net carbon 

sequestration from the atmosphere into plant biomass (i.e. NPP) and is opposite in sign to 

NEP (Zhang et al., 2015). NEP is computed as the negative of NEE for the comparison.  

3.2.4 GEMS  

    GEMS is a modeling framework developed to quantify the regional ecosystem carbon 

sequestration and its uncertainties (Liu, 2009; Liu et al., 2004). GEMS used an ensemble 

approach to apply land-cover/use data, along with information on soils, terrain, and 

management factors, to provide geospatially explicit inputs data to the ecosystem level 

biogeochemical model. The uncertainty of model simulations can be quantified by a 

Monte-Carlo based ensemble approach and multiple modeling runs in the region.  

    Spatial information about crop types was obtained from the CDL. The original crop 

types were regrouped into 6 representative crops (corn, soybean, spring wheat, winter 

wheat, other grains crops, other crops) for this study. The GEMS model was run for the 

MCI region using an equal distance (5km) sampling approach and results were 

aggregated to the county level for comparison. 

Meteorological inputs to the model were monthly minimum temperature, maximum 

temperature and precipitation from Oregon State University’s Parameter-elevation 

Regressions on Independent Slopes Model (PRISM, 2004).  The soil data were extracted 

from State Soil Geographic Data Base (STATSGO) (NRCS, 1994). The major crop 

growth parameters were calibrated using state level crop yield data by GEMS internal 

subroutines (Li et al., 2014). 
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    The biogeochemical model EDCM was used in GEMS to simulate carbon dynamics on 

agricultural land (Liu et al., 2003). EDCM is an ecosystem level model that simulates soil 

carbon and nitrogen dynamics, vegetation primary productivity and water balance at 

monthly time steps. EDCM computes NPP based on vegetation potential production and 

environmental factors such as temperature, water and nitrogen. SOC dynamics are 

modeled as a combination of soil movement (including the addition of manure) and 

decomposition. Decomposition of carbon is a function of soil carbon pool size and soil 

carbon decomposition rates, which are calculated based on the availability of temperature, 

water and nitrogen in each soil pool. The NEP on the cropland is calculated as the change 

of total ecosystem carbon plus the harvested carbon (grain and residue removal). 

3.2.5 Data mining and spatial analysis 

   To analyze the spatial distribution of the model uncertainties, we combined both 

spatial and non-spatial methods. First, we processed three major carbon fluxes (NPP, 

NEP and SOC change) into the county level. For each method, the mean value of each 

flux in the county was calculated by adding all the estimated fluxes for the crops and 

dividing by the total cropland area in the county. We then applied data mining method (k-

means clustering) to identify similar patterns of model estimates. For each county, all the 

estimates from the three models are treated as one vector, then all the counties are 

clustered into groups of the vectors. The cluster size of each group is determined with the 

elbow method (Thorndike, 1953) and the mean vector of each group is computed. We 

found the distribution of the clusters show strong spatial pattern that lead to the following 

research. 
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Based on the spatial distribution of the clusters produced from the above step, the 

hypothesis is tested: the spatial distribution of the uncertainty is random. We evaluated 

model uncertainties by using the Coefficient of Variation (CV) which is computed as: 
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where N is the total number of estimated variables in each county and N = 3 in this study 

(inventory, EPIC and GEMS). For SOC changes, which have a large portion of negative 

values, we used standard deviation (STDEV) instead of CV. 

We computed the spatial autocorrelation index, Moran’s I, measures the degree of 

association of uncertainty (e.g., the CVs of the three method results) between neighboring 

observations (Getis and Ord, 1992; Getis and Ord, 2010). Therefore, Moran’s I can detect 

whether there exists one or more spatial clusters of similar CV values in the whole study 

area. With a range of values between -1 and 1, Moran’s I is positive when neighboring 

counties have more similar CVs, and Moran’s I is 0 if the spatial distribution of CVs is 

random.  
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where, n is the number of counties, z
i
 is the CV value in county i, z

j
 is the CV value in 

county j. Z  is the mean CV of all the counties, and w
i,j

 is the spatial weight. The spatial 

weight wi,j is computed as the inverse distance between county i and j. 

We also used the hot spot and cold spot statistics (Getis-Ord Gi* statistic) to analysis 

the spatial patterns of the uncertainties. For each feature i (county in this study), Gi* will 

calculate the weighted sum of the variable (e.g., CV or cropland percentage) for the 

feature’s local neighbors then compare the local sum with the global sum for the variable 

(Getis and Ord, 1992).  
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where, n is the number of counties, z
j
 is the CV value of county j. Z   is the mean of the 

CV values of all counties, and wi,j is the spatial weight calculated as the inverse distance 

between county i and j without row standardization. We used this analysis to investigate 

if the CVs of the estimates are impacted by the cropland percentage. For cropland 

percentage (with each county the total area of cropland divided by the total area), if a 

county is spatially surrounded by counties with high cropland percentage, the county is a 
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hot spot of cropland percentage. Similarly, for the CVs of the three models, if a county is 

surrounded by counties with low CV values, the county is a cold spot of CVs. By 

comparing the hot and cold spots of the cropland percentage and the CVs, the spatial 

correlation between cropland percentage and the model CVs can be visually discovered. 

We also investigated whether the spatial configuration of different land cover type is 

related to the uncertainties. The spatial configuration is measured with two indices: land 

cover richness and Shannon equitability index. The land cover richness is defined as the 

number of unique land cover types inside each county. The Shannon equitability index is 

an index that is widely used in ecology, landscape ecology to describe the biodiversity. It 

is the Shannon diversity index divided by the maximum diversity and calculated as: 
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Where, i is the land cover type in a county, p(i) is the proportion of the value i to the total 

of the values, and M is the total number of values. For a well-sampled region, we can 

estimate this proportion as p(i) = area(i)/total_area, where area(i) is the area for each land 

cover within a county and total area is the area of all the land covers in the county. The 

Shannon equitability index takes values between 0 and 1, which lower values indicate 

more diversity while higher values indicate less diversity.  

Both 2007 and 2008 data were used in the uncertainty analysis. The statistics and data 

mining method were implemented with R software and the spatial patterns were 

displayed using ArcGIS software. 
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3.3 RESULTS 

3.3.1 Influence of model estimates on carbon dynamics 

Figure 3.2 show the estimates of cropland area, NPP, NEP and SOC change in 2007 

and 2008 at the county level. The total cropland area estimated from the three methods 

was 53.0 ± 3.0 Mha in 2007 and 54.3 ± 3.1 Mha in 2008. The cropland area showed very 

similar spatial distributions in both years (Figure 3.2A, 2B). About 15% of the counties 

have cropland area smaller than 25,000 ha and about 30% of the counties have cropland 

area larger than 100,000 ha in the MCI region. Large cropland areas mainly exist in 

Illinois, Iowa, Nebraska, North Dakota, and South Dakota.  Northern Minnesota, 

Missouri and Wisconsin have less cropland area. 

   The total NPP estimated from the three methods was 344.5 ± 5.8 in 2007 and 366.4± 

38.4 TgC yr
-1

 in 2008.  About 90% of the counties had NPP values between 250 and 850 

gC m
-2

 yr
-1

 and 7% had NPP values above 850 gC m
-2

 yr
-1

 in 2007. In 2008, cropland 

NPP increased in most counties and about 19% of the counties have NPP values higher 

than 850 gC m
-2

 yr
-2

. These highest NPP values were mainly in Iowa and Illinois. Lower 

NPPs were in northern Minnesota, northern Wisconsin, and central Missouri (Figure 3.2C, 

2D).   
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Figure 3.2. Cropland area in 2007 (A) and 2008 (B); cropland mean Net Primary 

Production (NPP) in 2007 (C) and 2008 (D); cropland mean Net Ecosystem Production 

NEP in 2007 (E) and 2008 (F); cropland mean soil organic carbon (SOC) change in 2007 

(G) and 2008 (H) in the Mid-Continent Intensive Campaign (MCI) region. 
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    The total NEP on croplands was 159.7 ± 7.7 in 2007 and 183.3± 47.8 TgC yr
-1

 in 2008 

based on the three methods. The county level NEP had a smaller range than NPP. About 

92% of the counties had NEP values between 250 and 450 gC m
-2

 yr
-1

 and 2% had NEP 

values above 450 gC m
-2

 yr
-1

 in 2007. In 2008, 78% of the counties had NEP between 

250 and 450 gC m
-2

 yr
-1

, and about 16% of the counties have NEP values higher than 450 

gC m
-2

 yr
-2

. The spatial distributions of NEP showed similar patterns as NPP, with high 

values in Iowa and Illinois, and low values in northern Minnesota, northern Wisconsin, 

and central Missouri (Figure 3.2E, 2F).  

 The total SOC change was 4.0 ± 4.9 TgC yr
-1

 in 2007 and 8.0 ± 10.5 TgC yr
-1

 in 2008. 

About 43% of the counties showed relatively small SOC changes ( -4.9 – 5.0 gC m
-2

 yr
-1

) 

in 2007. About 10% of the counties showed SOC change less than -5.0 gC m
-2

 yr
-1

 and 

these counties locate mainly in south Minnesota and north Iowa. In 2008, only 4% of the 

counties showed SOC change less than -5.0 gC m
-2

 yr
-1

 and about 60% of the counties 

showed SOC change higher than 5.0 gC m
-2

 yr
-1

. The spatial distribution of SOC changes 

was quite different from the spatial distribution of NPP and NEP (Figure 3.2G, 2H).  

3.3.2 Model uncertainties in the MCI region 

Figure 3.3 show the uncertainty of the estimates in cropland area, NPP, NEP and SOC 

change in 2007 and 2008. For cropland area, most counties had small CVs but some high 

CVs were found in northern Minnesota, northern Wisconsin, and central Missouri (Figure 

3.3A, 3B).  The CVs of cropland area showed similar results in 2007 and 2008. 
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Figure 3.3. Cropland area CVs in 2007 (A) and 2008 (B); cropland NPP CVs in 2007 

(C) and 2008 (D); cropland NEP CVs in 2007 (E) and 2008 (F); cropland SOC change 

standard deviation in 2007 (G) and 2008 (H) in the Mid-Continent Intensive Campaign 

(MCI) region. 
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The three models agreed well on the NPP estimates in the MCI region. The CVs of 

NPP estimates showed that more counties had smaller CVs in 2007 than in 2008 (Figure 

3.3C, 3D). About 64% of the counties had CVs less than 0.2 in 2007 and only about 45% 

of the counties had CVs less than 0.2 in 2008. Higher CVs in 2008 were mainly located 

in Iowa and Illinois. It also seems that NPP CVs showed similar spatial patterns as the 

cropland area CVs. The highest NPP CVs tended to occur at counties with high cropland 

area CVs such as the Northern Minnesota, Northern Wisconsin and Central Missouri. The 

CVs of NEP showed similar spatial patterns as those for NPP but with higher values 

(Figure 3.3E, 3F). Only 45% of the counties had NEP CVs less than 0.2 in 2007 and 15% 

of the counties had CVs less than 0.2 in 2008. This result indicates that NEP estimates 

from the three models had higher uncertainties than NPP. One noticeable difference 

between 2007 and 2008 was that NEP CVs were higher in Iowa and Illinois in 2008, 

similar as the CV changes in NPP. 

The STDEVs of SOC changes showed quite different spatial pattern from the CV maps 

of NEP and NPP. The largest uncertainties were in Iowa, Minnesota, and North Dakota. 

Low uncertainties were in Nebraska and Illinois (Figure 3.3G, 3H). Based on these 

uncertainties, we are more confident that the cropland was a weak soil carbon sink in 

Nebraska and Illinois but less confident about the soil carbon loss in Iowa and south 

Minnesota where larger STDEVs were found. 

We computed the correlation coefficients and p-values between the model 

uncertainties and the input land cover characteristics for all the counties (Table 3.1). For 
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both 2007 and 2008, the CVs of cropland area showed significant positive correlations 

with the CVs of NPP and NEP. Meanwhile, there were significant negative correlations 

between the cropland percentage and the CVs of NPP and NEP.  This indicated that in 

the counties with large cropland percentage, the cropland area CVs were small, as well as 

the CVs of the NPP and NEP. But in the counties with small cropland percentage, the 

CVs of cropland area, as well as the CVs of NPP and NEP, were large. In contrast, the 

STDEVs of SOC change did not show significant correlation with the CVs of cropland 

area, and less significant correlations with the cropland percentages than the CVs of NPP 

and NEP (Table 3.1).  

Table 3.1. Correlation coefficient and p-value between the cropland area CVs, 

cropland percentage, richness and Shannon equitability index and model uncertainties in 

2007 (A) and 2008 (B).   

A. 

2007 

NPP CV NEP CV SOC STDEV 

Correlation 

coefficient 

p-value 

Correlation 

coefficient 

p-value 

Correlation 

coefficient 

p-value 

Cropland area CVs 0.780 < 2.2 e-16 0.700 < 2.2 e-16 -0.087 0.0258 

Cropland percentage -0.589 < 2.2 e-16 -0.607 < 2.2 e-16 -0.098 0.0107 
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Cropland richness -0.122 0.00145 -0.022 0.562 0.132 0.00059 

Shannon equitability  -0.241 2.14 e-10 -0.182 1.88 e-6 -0.029 0.445 

B. 

2008 

NPP CV NEP CV SOC STDEV 

Correlation 

coefficient 

p-value 

Correlation 

coefficient 

p-value 

Correlation 

coefficient 

p-value 

Cropland area CVs 0.812 < 2.2 e-16 0.668 < 2.2 e-16 -0.038 0.324 

Cropland percentage -0.534 < 2.2 e-16 -0.404 < 2.2 e-16 -0.175 2.55 e-10 

Cropland richness -0.255 1.86 e-15 -0.312 < 2.2 e-16 0.146 0.00134 

Shannon equitability  -0.216  5.87 e-13 -0.171 1.03 e-5 -0.069 0.105 

 

Both cropland richness and Shannon equitability index showed negative correlations 

with the CVs of NPP and NEP (Table 3.1). That is, the uncertainties of the NPP and NEP 
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were smaller in the county with higher richness or lower diversity. However, the p-values 

showed their correlations were less significant than cropland percentage. The STDEVs of 

the SOC changes did not showed significant correlations with cropland richness and the 

Shannon equitability. These results indicated that the distribution of crop types had less 

impact on the uncertainties of SOC changes than the uncertainties of NPP and NEP.  

3.3.3 Spatial patterns of clustered model uncertainties  

 The data mining method, k-means cluster analysis, identified multiple clusters for the 

model uncertainties in both 2007 and 2008 (Figure 3.4), and Table 3.2 also gave the 

number of clusters for each method. The clusters were not the same but showed some 

similarities between the two years. For example, a cluster with small NPP CVs was in 

Nebraska, Iowa and Illinois in 2007 and this cluster extended its range with larger CV 

value in 2008. This agrees with the NPP CV map that in 2008, larger CVs were shown in 

Iowa and Illinois. The cluster of NEP CVs also showed the counties in Iowa were in one 

cluster in both 2007 and 2008. Generally for NPP and NEP, the clusters with small 

uncertainties are in cropland dominated areas, such as Iowa and Illinois, and clusters with 

large uncertainties are in the counties with small cropland areas, such as northern 

Minnesota and northern Wisconsin. The clusters of SOC changes showed different spatial 

patterns than NPP and NEP. Cluster with high STDEV value were in Iowa, Minnesota, 

and North Dakota. Low uncertainties were in Nebraska and Illinois (Figure 3.4E, 4F).  
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Figure 3.4. k-means clustering analysis for NPP in 2007 (A) and 2008(B);  NEP  in 

2007 (C) and 2008 (D); SOC change in 2007 (E) and 2008 (F). 
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Table 3.2. Moran I’s analysis on the uncertainties.  

Variable CVs Moran’s I index z-score p-value  Number of 

clusters 

NPP in 2007 0.457 26.420 0.000 6 

NPP in 2008 0.475 30.142 0.000 6 

NEP in 2007 0.374 26.118 0.000 7 

NEP in 2008 0.373 24.887 0.000 7 

SOC change in 

2007* 

0.193 13.224 0.000 6 

SOC change in 

2008* 

0.198 12.914 0.000 6 

*The uncertainty of SOC change is calculated as standard deviation (STDEV) instead 

of CV. 

We performed the Moran’s I analysis on the uncertainties and the results are listed in 

Table 3.2. Distributions of the model uncertainties exhibited statistically significant 

spatial patterns instead of being randomly distributed. With high Z-scores and low p-

values all the results indicate that the model uncertainties (CVs and STDEVs) are 

positively spatially autocorrelated (i.e., similar CVs are clustered near one another). The 

uncertainties of NPP and NEP showed stronger spatial autocorrelation than the 

uncertainties of SOC in both years. Interestingly, the Moran’s I values are very similar 
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for each type of uncertainty (NPP, NEP, SOC) between 2007 and 2008, indicating the 

spatial patterns of the model uncertainties are temporally stable. 

3.3.4 Hot spots and cold spots analysis 

A hot/ cold spots analysis for cropland percentage, cropland cover richness and 

cropland Shannon equitability index (equitability) within counties was conducted (Figure 

3.5). The hot spots of cropland percentage were located in corn and soybean dominated 

area, such as central Iowa, southern Minnesota, eastern South Dakota, eastern Nebraska, 

and Illinois (Figure 3.5A, 5B). The cold spots were mainly located in the northwestern 

MCI region (northern Minnesota, Wisconsin and Michigan) and northern Missouri, 

where cropland is not the major land cover type. The hot and cold spots of cropland 

richness showed different spatial pattern from the cropland percentage (Figure 3.5C, 5D). 

The hot spots with a high number of crops planted in the county were in North Dakota, 

Minnesota and Wisconsin. The cold spots with low number of crop types were mainly 

located in Iowa, eastern Nebraska and northern Missouri. The cropland richness hot/cold 

spots showed slightly different spatial patterns in 2007 and 2008 (Figure 3.5C, 5D). Cold 

spots showed less coverage in 2008 than in 2007, while hot spots showed more coverage. 

The hot/cold spots of Shannon equitability index showed more scattered results than 

cropland percentage and cropland richness (Figure 3.5E, 5F). The hot spots were in North 

Dakota, central Minnesota, Wisconsin and southern Illinois in both 2007 and 2008. More 

hot spots were shown in southeast Iowa and fewer hot spots were in North Dakota and 

Minnesota in 2008. The cold spots were in central Nebraska, northwestern Iowa, central 

Missouri and parts of Kansas.  
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The hot/cold spots of NPP CVs, NEP CVs and SOC change STDEVs are shown in 

Figure 3.6. The NPP CVs showed similar patterns in both 2007 and 2008 (Figure 3.6A, 

6B). The hot spots were in northern Wisconsin, northern Minnesota and Missouri. The 

cold spots were in Iowa, parts of Nebraska and northern Illinois. The NEP CVs had 

similar hot/cold spots pattern as the NPP CVs, except there were fewer cold spots in 

Nebraska and Kansas (Figure 3.6C, 6D). The SOC change STDEVs showed more 

scattered results than NPP and NEP (Figure 3.6E, 6F). The hot spots were in North 

Dakota, Kansas and along the border between Iowa and Missouri. The cold spots were in 

parts of Nebraska and Illinois.  
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Figure 3.5. Hot and cold spots analysis on cropland percentage in 2007 (A) and 

2008(B);  cropland cover richness in 2007 (C) and 2008 (D); and Shannon diversity in 

2007 (E) and in 2008 (F). Note: the percentages (99%, 95%, 90%) represent the areas 

with statistically significant clusters at alpha-levels of 0.01, 0.05, and 0.1. 



90 

 

 

 

Figure 3.6. Hot and cold spots analysis on model uncertainty using NPP CVs in 2007 

(A) and 2008(B);  NEP  CVs in 2007 (C) and 2008 (D); SOC change STDEVs in 2007 (E) 

and in 2008 (F).  
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    The comparison between the cropland percentage hot/cold spots and the uncertainties 

hot/cold spots showed that in northern Wisconsin, western Michigan and Missouri, the 

cold spots of cropland percentages corresponded to the hot spots of NPP and NEP CVs, 

while the hot spots of cropland percentages corresponded to cold spots of CVs in 

Nebraska and south Minnesota (Figure 3.5A, 5B; Figure 3.6A, 6B, 6C, 6D). Such 

correlations between cold and hot spots indicated that higher cropland percentages may 

lead to smaller difference in uncertainties for NPP and NEP. One interesting observations 

was that the counties in Iowa and Illinois had large cropland percentages but not low CVs.  

The cropland richness and Shannon equitability index hot/cold spots showed quite 

different patterns from the hot/cold spots of the three carbon fluxes uncertainties. These 

differences may explain the weak relationships between both characteristics and the 

uncertainties in the correlation analysis (Table 3.1).  

3.4 DISCUSSIONS 

The evaluation of process-based models at the regional scale is necessary to assess the 

credibility of these models for large-scale carbon budget estimates (Zhang et al., 2015). 

In our study, we focused on analyzing the influence of land cover inputs on the 

uncertainties of estimated cropland carbon fluxes.  

The land cover inputs are different in the three methods and resulting uncertainty can 

be propagated into the model results. The inventory method used the reported harvested 

cropland area to estimate the carbon fluxes but the harvest area usually smaller than the 

planted cropland area as represented by the CDL data. The EPIC model used the 

representative crop rotations instead of the observed CDL data (Sahajpal et al., 2014; 
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Zhang et al., 2015). This approach reduced the redundancy and computation time but 

may introduce some inaccuracies from year to year. For example, corn area in EPIC 

increased from 26.3 Mha in 2007 to 31.1 Mha in 2008, while in NASS reported corn area 

decreased from 30.1 Mha in 2007 to 26.9 Mha in 2008. GEMS used a sampling method 

based on CDL data to simulate the annual crop rotations. This approach could result in 

large inaccuracies if the input data are not consistent between years at the pixel level. 

Though this paper was not trying to evaluate the accuracy of CDL map, we did find some 

disagreement between years of CDL products, which may be caused by inconsistent 

classification algorithms applied among years. For example, the annual CDL map 

showed large amount of grassland in 2006 transferred to forest land in 2007, and a large 

amount of forest land transferred back to grassland in 2008. In reality, this magnitude of 

change is unlikely within a single year. We did not find any support for this kind of 

transition in the literature so it is likely that the change is caused by classification error. 

Similar conditions may occur in crop rotations. The approaches based on CDL data may 

have large annual differences when the cropland area is small due to misclassification 

and representation of cropland. When cropland area is large, such differences will have 

smaller impacts on the model uncertainties.  

    The three methods have different classification schemes for the crop types. The 

inventory method listed 19 crop types in the factor table to compute the NPP (West, 

2011). EPIC used over 10 crop types and calibrated the model parameters for each crop 

using fluxnet data (Zhang, 2015). GEMS use a more simplified approach and only 

classified the crops into 6 categories (Li, 2014). These differences in representing the 

crop types may lead to greater uncertainties when there are more crop types in a single 
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county. Both cropland richness and Shannon equitability index showed less significant 

correlations with the uncertainties of NPP and NEP in this study. Such differences may 

be caused by other cropland management practices in addition to crop types, such as 

cropland irrigation. Irrigation generally changes the water availability and plant growth in 

the cropland as well as the cropland carbon fluxes. Zhang et al. (2015) found that lack of 

spatial representation of irrigated cropland in CDL data could explain the discrepancies 

between the EPIC simulation and inventory estimates. Adding such information into the 

model inputs may reduce the uncertainties between the models. 

Another possible source of uncertainty related to crop types is from the model 

parameters. In the site level intercomparison of the NACP models, Schwalm (2010) 

pointed out that model parameter sets showed clear impact on model skills. The EPIC 

model used flux tower based measurements to calibrate the model parameters and then 

applied the same parameters in the MCI region. The GEMS model used the state level 

crop inventory data to calibrate the crop growth parameters and used a different set of 

parameters in each state. When there are more cropland types in a county, the differences 

in the model parameters may propagate higher uncertainties to the model results.  

The NACP multi-scale synthesis and terrestrial model intercomparison project pointed 

to the need for evaluating model performances and better addressing the model 

differences (Huntzinger et al., 2013). Though our study only compared three model 

estimates, the data mining and spatial analysis techniques we used in this study could be 

easily applied to other model ensemble and their driving variables for different regions. 

Both Moran’s I analysis and hot/cold spot statistics can help to find the areas with high 

uncertainties, which leads to identify the sources of the uncertainties in both model inputs 
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and structures.  More research can be done to reduce the uncertainties and improve the 

model performance. Based on our study, we suggested using high quality land cover 

inputs with crop species information is critical to reduce the uncertainties between the 

models. Integrating other cropland management information such as irrigation may also 

bring more accurate estimates for cropland fluxes estimates.  

3.5 CONCLUSIONS 

We used data mining and spatial statistical methods to study the relationships between 

land cover inputs and the uncertainty of carbon flux estimates in the MCI region. Our null 

hypothesis is proved to be false since the k-mean clustering analysis showed that the 

uncertainties in flux estimates are not distributed randomly but are instead spatially 

correlated. The Moran’s I’s analysis also showed the uncertainties have significant 

positive autocorrelation in neighboring counties in the MCI region. For both NPP and 

NEP, the uncertainty of the estimates showed significant negative correlations with the 

cropland percentage in the county. But the uncertainty of the SOC change estimates 

showed no significant correlation with the cropland percentage. The cropland richness 

and Shannon equitability indices showed significant negative relationship with the 

uncertainties of NPP and NEP but not the uncertainties of SOC changes. Our results 

demonstrated that land cover inputs clearly affected the spatial patterns of the 

uncertainties of NPP and NEP estimates, but not that of the SOC changes. Spatial 

analysis techniques are powerful tools for revealing the patterns and drivers of 

uncertainties in regional scale carbon estimates.  
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4.0 ABSTRACT 

Understanding the effects of management practices on soil organic carbon (SOC) is 

important for designing effective policies to mitigate greenhouse gas emissions in 

agriculture. In the Midwest United States, management practices in the croplands have 

been improved to increase crop production and reduce SOC loss since the 1980s. Many 

studies of SOC dynamics in croplands have been performed to understand the effects of 

management, but the results are still not conclusive. This study quantified SOC dynamics 

in the Midwest croplands from 1980 to 2012 with the General Ensemble Biogeochemical 

Modeling System (GEMS) and available management data. Our results showed that the 

total SOC in the croplands decreased from 1190 Tg C in 1980 to 1107 TgC in 1995, and 

then increased to 1176 TgC in 2012. The continuous cropping and intensive tillage may 

drive the SOC loss in the early period. The increase of crop production and adoption of 

conservation tillage increased the total SOC so there was only 1% decrease in the total 

SOC stock after 32 years. The SOC changes also have large spatial variations. Major 

SOC losses occurred in the north and south of the region, where SOC baseline values 

were high and cropland production were low. The SOC gains took place in the central of 

the region where SOC baseline values were moderate and cropland production were 

higher than the other areas. We simulated multiple land-use land-cover (LULC) change 

scenarios and analyzed the results. The analysis showed that among all the LULC 

changes, agricultural technology that increased cropland production had the greatest 

impact on the SOC changes, followed by the tillage practices, changes in crop species, 

and the conversions of cropland to other land use. The information of management 

practice-induced spatial variation in SOC can be useful for policy makers and farm 
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managers to develop long-term management strategies for increasing SOC sequestration 

in different areas.  

 

4.1 INTRODUCTION 

    Identifying the key processes and drivers controlling carbon fluxes is critical to make 

carbon management decisions (Michalak et al., 2011). Soil organic carbon (SOC) is an 

important storage component of ecosystem carbon that is influenced largely by human 

activities. Many early studies showed that SOC declined after land use change from 

natural grassland to cropland (Follett R.F., 2001; Guo and Gifford, 2002; Rattan Lal et al., 

1998). But studies have also showed that improved agricultural management practices 

have increased SOC in cropland (Ogle et al., 2003; US-EPA, 2012). There are also 

studies suggesting that cropland has a large potential to sequestrate carbon and mitigate 

greenhouse gas (GHG) emissions (Lal, 2004; Pacala et al., 2001). However, there are still 

substantial discrepancies among studies of carbon sequestration in croplands. For 

example, a study in Iowa found that the carbon sequestrated in cropland soils by 

reduction in tillage intensity was about 1.9 TgC based on 1998 data (Brenner et al., 2001). 

A later study showed that the increase in SOC may be much lower (0.6 TgC) by 

accounting for SOC loss due to the periodic alternating of low- and high-intensity tillage 

practices (West et al., 2008). But a study using process model indicate that SOC in Iowa 

is a carbon source if the whole soil profile was considered instead of only the top 20cm 

soil (Causarano et al., 2008). Another study using a process model also found that SOC in 
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the whole soil profile decreased in Iowa due to the improvement of cropland soil drainage 

conditions (Liu et al., 2010).  

    In the Midwest temperate prairies, most of the native grasslands were converted to 

cropland after the European settlement beginning in the 1860s (Parton et al., 2007). The 

grassland SOC declines by up to 50% after cultivation, but such losses could be 

overcome by improved cropland management. Past research suggested that increases in 

conservation tillage in cropland have sequestrated more SOC in the cropland than other 

practices (Eve et al., 2002; Lal et al., 2007; West et al., 2008). Several studies have 

showed that SOC increased on cropland in the USA due to conservation tillage and 

cropland restoration programs (Eve et al., 2002; Ogle et al., 2009; Ogle et al., 2003; West 

et al., 2008). However, about 37% of the cropland in the USA is still using intensive 

tillage (CTIC, 2008). These croplands may not sequester much SOC, or may even lose 

SOC since they have higher SOC decomposition rates and surface erosion. A study in the 

Midwest cropland found the change to less intensive tillage increased SOC of 45 TgC 

from 1990 to 2000 but the tillage intensification caused a SOC loss of 11.2 TgC during 

the same time period (West et al., 2008).  Thus, when considering the effects of tillage 

management on cropland SOC dynamics, it’s necessary to include all the changes in 

tillage practices. 

Research has also showed that increasing carbon input through cropping practices is as 

important as reducing tillage intensity (Ogle et al., 2005). Increases in crop NPP not only 

produced more crop residues but also increased root biomass amount, both of which 

increased carbon inputs into the SOC (Follett, 2001; Lal et al., 2007). Given the large 

increase in crop production from 1980 to 2000, increased carbon inputs may become an 
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important factor in the SOC dynamics in the Midwest region. A study on European 

cropland carbon dynamics using model simulation found that increasing crop residue 

return to the soil can build up the SOC, but this effect is compensated by other 

management practices, such as intensification of tillage and replacement of manure by 

mineral fertilizers (Gervois et al., 2008). A later study using multiple models and 

inventory data concluded that the agricultural management practices impacting litter 

inputs were as important as the decomposition of soil organic matter in European 

croplands (Ciais et al., 2010).  

The goal of this research is to study the SOC dynamics for croplands in the Midwest 

temperate prairies from 1980 to 2012 and understand the mechanisms of the SOC 

changes under the land use and land cover change (LULC) and management practices. 

We used spatially explicit LULC data and available cropland management statistics to 

investigate two key science questions: Is the cropland in the region a carbon sink or 

source, and what is the major driver of the carbon dynamics in cropland? It will be 

necessary to find out the major driving factors of SOC dynamics in this region and the 

mechanisms behind them. These findings will help to develop more effective carbon 

management plans for vulnerable carbon pools in this region. 

4.2 METHODS 

4.2.1 Study area 

The research area is the Temperate Prairies of the Northern Great Plains (Figure 4.1). 

The U.S. Environmental Protection Agency (EPA) defines this area as level III Ecoregion 

9.2 and stretches across eastern North Dakota, Minnesota, eastern South Dakota, most of 
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Iowa, Nebraska, Missouri, Kansas and northern Oklahoma (US EPA, 1999). This 

ecoregion covers multiple major land resource areas (MLRA) and has large variation in 

climate, soil, and cropping systems (USDA, 2006). Eastern North Dakota and eastern 

South Dakota are in the Northern Great Plains Spring Wheat Region (USDA, 2006). The 

dominant soil type is Mollisols and the major cropping system is dry-farmed spring 

wheat. Iowa and western part of South Dakota, Nebraska and Kansas falls in the Central 

Feed Grains and Livestock Region (USDA, 2006). This region has the most favorable 

climate and soil for agriculture. The major cropping systems are continuous corn and a 

corn-soybean rotation. Southern Nebraska and Kansas belong to the Central Great Plains 

Winter Wheat and Range Region (USDA, 2006). The dominant soil type is Mollisols 

with large acreages of Alfisols, Entisols, and Inceptisols.  Grazing and dry-farmed winter 

wheat are the major land uses in this region. 
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Figure 4.1 Land use and land cover types in the Temperate Prairies. 

4.2.2 GEMS modeling framework 

The General Ensemble Biogeochemical Modeling System (GEMS) is a regional 

modeling framework that uses spatially explicit LULC data and biogeochemical models 

to study the carbon dynamics in large regions (Liu, 2009; Liu et al., 2004). GEMS applies 

LULC data from remotely sensed products along with information on soils, terrain, and 
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other environmental factors, to provide spatially explicit inputs of vegetation biomass, 

soil nutrient status, and management impacts to the biogeochemical models. GEMS 

model has been extensively tested for crop management to enable automated processes 

for calibrating the biogeochemical model parameters with crop inventory data and the 

explicit inclusion of the major types of management and disturbances on ecosystems (Li 

et al., 2014; Liu, 2012; Wu et al., 2014).  

This study used the biogeochemical model Erosion-Deposition-Carbon-Model 

(EDCM) in GEMS to simulate the LULC and management impacts on soil organic 

carbon. EDCM is an ecosystem model that simulates the dynamics of carbon and 

nitrogen in vegetation biomass and soil (Liu et al., 2003). It simulates crop land soil 

carbon dynamics based on multiple processes such as crop production, residue inputs and 

soil decomposition at monthly time steps.  

4.2.3 Input datasets 

4.2.3.1 Land-use and land-cover (LULC) data 

    Two LULC spatial data sets published by USGS were used to construct the LULC 

impact on the SOC dynamics from 1980 to 2012 in this study.  Both datasets were 

simulation results of the FORE-SCE framework developed by the USGS (Sohl et al., 

2010; Sohl et al., 2007). The first LULC data were developed to study the ecological 

processes driving landscape changes in the Great Plains and contains 250 meter 

resolution LULC data from 1938 to 1992.  The second dataset was generated for USGS 

land carbon project and used for assessing LULC impacts on ecosystem carbon dynamics 

and carbon sequestration potential (Zhu et al., 2010). This LULC dataset was also 
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simulated using FORE-SCE and provided historical data from 1992 to 2005 and future 

scenario data from 2005 to 2050 (Zhu et al., 2011).  

    Both datasets have the same spatial resolution and land cover classifications. To save 

computation time and match with climate data, we used the 4km instead of 250m as the 

spatial resolution. We downloaded the original datasets from USGS land cover modeling 

website (http://landcover-modeling.cr.usgs.gov ). The two datasets were combined with 

python programs using nearest neighbor method to generate a land cover time series from 

1980 to 2012 in the study area with 4km spatial resolution. For the years from 2006 to 

2012, we used the A2 scenario outputs from the FORE-SCE model. A2 scenario showed 

dramatic increases in anthropogenic land covers and corresponding declines in natural 

land covers (Sohl et al., 2012). In A2 scenario outputs, the cropland area increase from 

2006 to 2012, which matched the observations from USDA surveys in this region.  

4.2.3.2 Climate data 

    For this study, we used climate data produced by the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) from the Oregon State University 

(PRISM Climate Group, http://www.prismclimate.org, accessed Feb 2014). The PRISM 

data were downloaded from Oregon State University ftp site and processed for the study 

area. The meteorological inputs to the GEMS model were monthly minimum temperature, 

maximum temperature and precipitation from 1980 to 2012 with 4 km spatial resolution.  

4.2.3.3 Soil data 

   We used the spatial soil dataset generated for Land Carbon project as the initial soil 

input for this study. The soil attributes were generated with data from the SSURGO 

database (USDA Natural Resources Conservation Service, 2009) and processed to 

http://landcover-modeling.cr.usgs.gov/projects.php
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generate multiple maps at a 250 meter resolution. The soil attributes included soil organic 

carbon content, bulk density, available water content and soil texture (sand, silt and clay).  

4.2.3.4 Crop management data 

We used county level USDA census data and the spatial LULC change dataset to create 

the crop rotations in the cropland. The census data included the county FIPS, year, total 

acres planted for major crops, total acres harvested and yields for major crops within each 

county from 1980 to 2012. We grouped all the harvested crops into five major categories: 

corn, soybean, spring wheat, winter wheat and other crops. The planted area for each crop 

was converted to percentage of the total cropland area in the county. For each simulated 

cropland pixel, a Monte-Carlo method was used to decide the crop type for each year 

(Schmidt et al., 2011). The reported yields for the major crops were converted to carbon 

using the conversion factors from earlier studies and compared with GEMS simulated 

yields (Li et al., 2014; West et al., 2010). 

    The tillage practice data was obtained from the National Crop Residue Management 

Survey collected by the Conservation Technology Information Center (CTIC) (CTIC, 

2008). CTIC collected the area information for intensive tillage, reduced tillage, and 

conservational tillage from 1989 to 2004 for corn, soybean and small grains for all the 

counties. We converted the tillage area to the probability of the tillage using the crop 

planted area in the county. A Monte-Carlo method was then used to decide the tillage 

type for each crop pixel in a given year. Any years before 1989 used the tillage 

probability in 1989 and the years after 2004 used the information in 2004.  
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4.2.4 Model calibration and verification 

   The major crop growth parameters were calibrated using state-level crop yield data (Li 

et al., 2014). A subset of points within the state were randomly selected and simulated to 

predict crop yields between 1980 and 2012. The simulated crop yields were compared 

with USDA reported yield data in the state. GEMS then adjusted the parameters by the 

difference and repeated this procedure until the overall prediction error was less than 5% 

(Li et al., 2014; Wu et al., 2014). The parameters for the major crops (corn, soybean, 

spring wheat and winter wheat) were adjusted using this method for all the states in the 

study area and the calibrated parameter values were stored in an external file to be used in 

the simulation.  

The simulated crop yields of the four major crops were compared with the USDA 

reported yield data (Figure 4.2). Generally, the simulated grain yields achieved a good 

match with the observed crop yields for the four major crops. GEMS simulated corn 

yields better than other crops with R-square value at 0.70. Compared with corn and 

soybeans, the simulated wheat yields showed poor performance for capturing annual 

variations. We encountered some difficulties in matching the planting date with winter 

wheat in the spring. For winter wheat, the typical planting date is usually in the fall and 

harvest date is in the late spring. GEMS simulates crop growth at monthly time step and 

this simplification may bring more bias in the spring than in the summer when 

temperatures are high. We also noticed some over estimation of crop yields for all the 

crops in certain years. GEMS simulations may overestimate the crop yields under 

extreme climate conditions, such as drought and flooding. For example, in 2012, severe 
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drought happened in the Midwest and lowered the yields of major crops (Boyer et al., 

2013) but all the simulated crop yields were 5-20% higher than reported yields in 2012. 

 

Figure 4.2. Simulated annual crop yields comparing with USDA reported yields for corn 

(A), soybean (B), spring wheat(C), winter wheat(D). 

4.2.5 Model simulation scenarios 

        To assess the LULC and management practice impacts on SOC dynamics, we built 

five model scenarios based on the data availability: 

1. Historical scenario (HIST): This scenario used historical LULC, crop growth 

information and CTIC data sources. The simulation was done by combining all 

the historical management data from 1980 to 2012. This scenario also considered 

cropland production increases under improved technology. 
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2. Tillage scenario (TILL1980): This scenario assumed that all the tillage practices 

remained the same since 1980. Other modeling data were the same as HIST.  

3. Land cover scenario (LC1980): This scenario assumed that cropland area 

remained the same since 1980, with cropland change to other land covers between 

1980 and 2012. Other modeling data were the same as HIST.  

4. Crop composition scenario (COMP1980): This scenario assumes that the 

distribution of crop species planted in the cropland remained the same since 1980. 

Other modeling data were the same as HIST. 

5. Technology scenario (TECH1980): This scenario assumes that technological 

improvements that increased the cropland production did not occur after 1980. All 

other modeling data were the same as HIST.  

For each simulation, GEMS first run for 10 years to stabilize the carbon pools and 

other state variables. The preliminary run used the PRISM climate data in 1980 and 

applied the same land cover and management practices in 1980. After the preliminary run, 

GEMS was run with the climate and LULC data from 1980 to 2012 to simulate the SOC 

dynamics under each scenario. The simulation results from these scenarios were 

compared to estimate the effects of management practices on SOC dynamics.   

The spatial distribution of SOC changes was analyzed at the pixel level in the HIST 

scenario. The change of SOC in the HIST scenario was calculated for each pixel as:  

ΔSOC = ( SOC[2012] – SOC[1980]) 

In order to demonstrate the consequences of the different land management practices 

on ecosystem SOC, we examined the simulated impact of these practices on SOC for all 
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the counties. To make the results comparable, we used the relative change instead of 

actual change values. For the HIST scenario, we calculated the SOC ratio in each county 

between1980 and 2012 by: 

RatioHIST  =  SOC[2012]  / SOC[1980] 

For all the other scenarios, we computed the ratio of the 2012 SOC values between 

each scenario and the HIST scenario in each county.  

Ratio  = SOCsce[2012]/ SOC HIST[2012] 

The ratio value is lower than 1.0 when less SOC was accumulated than the HIST 

scenario, or more SOC was lost than in the HIST scenario. This indicated that the 

changes of the management practice after 1980 had positive impacts on the SOC in the 

county. If the value was higher than 1.0, it meant that keeping the management practice 

as in 1980 would had higher SOC values instead of changing. This indicated the 

mananegative impacts on the SOC in this county. 

4.3 RESULTS 

4.3.1 Changes in LULC and management practices 

Cropland occupied about 60% of the total land area and 74% of the agricultural area in 

Ecoregion 9.2. The cropland area showed small changes in FORE-SCE model results and 

the amount of change varied in different time periods. The total cropland area decreased 

about 1.8% between 1980 and 2001, from 32.03 Mha in 1980 to 31.46 Mha in 2001. 

After 2001, the total cropland area increased slightly to 31.52 Mha in 2012. In all the 

modeled cropland pixels, 77% of them had no land use change for the 33 year period. 
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About 23% of the cropland pixels experienced some type of land use change between 

1980 and 2012, with most of the changes happening between 1989 and 2000. Of the 

cropland pixels that changed to other land cover types, about 84% of the pixels changed 

to grassland/pasture, 10% changed to wetlands, 5% changed to developed land, and only 

1% changed to forest land. 

 

Figure 4.3. The change of conservation tillage area fraction (A) and intensive tillage 

area fraction (B) for the three crop categories between 1989 and 2004 in the study region. 
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Fractions of conservation tillage and intensive tillage were shown in Figure 4.3. All 

three crop categories showed clear increases in conservation tillage fractions from 1989 

to 1994. For corn, the fraction of conservation tillage increased from 28% in 1989 to 42% 

in 1993. After 1993, the fraction of conservation tillage remained stable at around 40% 

for about 5 years and dropped to 38% in early 2000s. The tillage practices on soybean 

fields showed highest growth in conservation tillage. The fraction of conservation tillage 

increased from 28% in 1989 to 52% in 1993. Between 1993 and 2002, the fraction of 

conservation tillage changed varied 52% and 56%. For small grains, the fraction of 

conservation tillage practices increased from 24% in 1989 to 35% in 1993 and remained 

around that level until 1998. The fraction of conservation tillage decreased to 23% in 

2000 and 2002 but retuned to 36% in 2004. The changes in intensive tillage showed 

decreasing trends for the three crop categories. For corn, the fraction of intensive tillage 

decreased from 43% in 1989 to about 30% between 1993 and 2004. The intensive tillage 

on soybean fields decreased from 39% in 1989 to 21 - 23% between 1993 and 2004. For 

small grains, intensive tillage decreased from 45% in 1989 to 27% in 1993, but increased 

thereafter to 47% in 2002 and 37% in 2004.  

In addition to changes in the tillage practices, the planted area for the major crops also 

changed from 1980 to 2012 in the region. The USDA data showed that the planted area 

of the two major crops: corn and soybean, steadily increased from 1980 to 2012 (Figure 

4.4). The fraction of corn planted area increased from 30% in 1980s to 34% in 2000s. 

The fraction of soybean planted area also increased from 24% in 1980s to 35% in 2000s. 

Meanwhile, the total fraction of planted wheat (spring and winter) and other crops 

decreased from 45% in 1980s to 30% in 2000s.  
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Figure 4.4. USDA reported major crop harvested areas between 1980 and 2015. 

The USDA yield data for the four major crops are shown in Figure 4.5. The four major 

crops showed slightly different trends. Corn yields had the highest values and also 

showed the largest increase between 1980 and 2012. The yields of corn increased about 

48%, from 223 gC m
-2

 yr
-1

 in the 1980s to 331 gC m
-2

 yr
-1

 after 2000. For the same time, 

the yields of soybean increased 30%, from 83 gC m
-2

 yr
-1

 in the 1980s to 107 gC m
-2

 yr
-1

 

after 2000. The spring wheat increased 41% from 87 gC m
-2

 yr
-1

 (1980-1990) to 123 gC 

m
-2

 yr
-1

 (2000-2012). The winter wheat yields increased 32%, from 95 gC m
-2

 yr
-1

 (1980-

1990) to 125 gC m
-2

 yr
-1

 (2000-2012).  
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Figure 4.5. USDA reported yields for corn, soybean, spring wheat, winter wheat from 

1980 to 2012. 

 

Figure 4.6. Simulated cropland total NPP change from 1980 to 2012 in the 5 scenarios. 
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4.3.2 Simulated cropland carbon dynamics under the scenarios 

The simulated cropland NPP of all the five scenarios is shown in Figure 4.6. The 

simulated cropland total NPP increased from 1980 to 2012 for all the scenarios except 

TECH1980. The total NPP for cropland increased about 43% over time in the HIST 

scenario, from 128.1 ± 9.5 TgC yr
-1

 (1980 – 1990) to 183.3 ± 15.8 TgC yr
-1

 (2000 – 

2012). This increase agreed with previous studies that the cropland production in the 

Midwest has increased since 1980 (Hicke et al., 2004; Parton et al., 2007; Prince et al., 

2001). The simulated NPP showed slightly lower NPP between the TILL1980 and HIST 

scenarios. The higher NPP in the HIST scenario was mainly caused by better SOC levels. 

Out of all the scenarios, the highest NPP was in the LC1980 scenario, mainly caused by 

the largest cropland area it had. Other studies also in the Great Plains have also showed 

that restoring grassland/pasture on previous cropland caused a large decrease in plant 

production (Hartman et al., 2011). The COMP1980 scenario showed lower total NPP 

than HIST scenario after 1995. This is because in COMP1980 scenario, less corn was 

planted than in the HIST scenario. Since corn has much higher production than all the 

other field crops, less corn planted area produced lower values of total NPP than the 

HIST scenario. The TECH1980 scenario has the lowest NPP since it excluded the 

technology improvement effects on crop production.  

The simulated total cropland SOC changes in the five scenarios are shown in Figure 

4.7. The SOC changes generally followed the same trend, with an exception of the 

TECH1980 scenario. The total SOC under the HIST scenario decreased about 6% 

between 1980 and 1996, from 1190 TgC to 1107 TgC, and then increased about 5% to 

1176 TgC in 2012 (Figure 4.7). The change of the total SOC is -1.2% after 32 years. This 
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indicated the whole region is a weak carbon source. The annual decrease rate of SOC 

under the HIST scenario was 5.1 TgC yr
-1

 from 1980 to 1996 and the mean rate of 

increase was 4.3 TgC yr
-1 

from 1996 to 2012. The other three scenarios: TILL1980, 

LC1980 and COMP1980 all showed similar trends but with different turning points and 

SOC levels in 2012. In the TILL1980 scenario, the total SOC kept decreasing until 2000 

and increased to 1133 TgC in 2012. The total SOC under the LC1980 scenario decreased 

from 1980 to 1992 and increased to 1212 TgC in 2012. The total SOC under the 

COMP1980 scenario decreased from 1980 to 1996 and increased to 1144 TgC in 2012. 

Among all the scenarios, the LC1980 scenario led to the highest SOC after 32 years, 

about 2% higher than the SOC in 1980.  The HIST scenario showed about 1% loss in 

SOC, followed by the COMP1980 (4%) and TILL1980 (5%). The largest SOC loss 

(14%) between 1980 and 2012 came under the TECH1980 scenario. These results 

indicated that technology improvements and the effects of increased cropland production 

were the largest factors on the total SOC changes in the region. 
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Figure 4.7. Simulated cropland total soil organic carbon change from 1980 to 2012 in the 

5 scenarios. 

4.3.3 Spatial distributions of soil organic carbon changes 

The initial SOC level in 1980 and the simulated annual SOC change in the HIST 

scenario are shown in Figure 4.8. The SOC gains occurred in North Dakota, Minnesota 

and Iowa (Figure 4.8A). The SOC losses were mainly in the north part of the region and 

the SOC gains were in the central of the region (Figure 4.8B). In all the cropland pixels 

simulated, 47.8% showed SOC loss higher than 5% after 32 years, 37.5% showed SOC 

gain by more than 5% and 14.7% had smaller change in SOC after 32 years (< 5%). SOC 

gains were mainly in the regions with low initial SOC and SOC losses occurred in the 

region with high initial SOC. Generally, carbon sources were in the north and south, 

while carbon sinks presented in the center of the region. 
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Figure 4.8. Top 20 cm soil organic carbon in the croplands in 1980 (A) and the SOC 

change rate in the HIST scenario (B).  

The SOC changes at county levels are shown in Figure 4.9. At the county level, 31% of 

all the counties showed SOC loss by more than 5% after 32 years and 45% of the 

counties showed SOC gain by more than 5%. SOC losses tended to occur in the north and 

south parts of the region, included North Dakota, Minnesota, and Oklahoma. SOC gains 

were in Nebraska, Iowa, and north Missouri (Figure 4.9A).  

As illustrated in Figure 4.9B, SOC showed large spatial variations between HIST 

scenario and the TILL1980 scenario. In all the counties, 43% showed lower SOC stocks 

in 2012 under the TILL1980 scenario than under the HIST scenario, and 13% showed 

higher SOC stocks than. Such difference may be driven by the different change trends of 
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tillage practices in the county. Though the CTIC data showed that the total conservation 

tillage area increased in the region (Figure 4.3), the conservation tillage area decreased in 

some counties. For example, in McHenry county, North Dakota. The conservation tillage 

area for small grains decreased about 25% between 1989 and 2004, from 28800 ha to 

21596 ha in this county. The simulation result in this county showed keeping the 

conservation tillage the same as 1989 caused 9% higher SOC than decreased the 

conservation tillage to 2004 level.  Thus, the counties showed higher SOC stocks under 

TILL1980 scenario than under HIST scenario mainly because the conservation tillage 

area were higher in these counties. 
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Figure 4.9. Relative change of soil organic carbon between1980 and 2012 in the HIST 

scenario (A); Relative change of the soil organic carbon in 2012 between HIST and 

TILL1980 scenario (B); between HIST and LC1980 scenario (C); between HIST and 

COMP1980 scenario (D); between HIST and TECH1980 scenario (E). 

Figure 4.9C indicated that the conversion to other land cover types, such as grassland, 

did not necessarily increase the SOC as much as the improved management practices 

could do on the croplands, especially in the counties located in Iowa, Nebraska and 

Missouri, where croplands were mainly managed with conservation tillage and had 
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higher crop production and. In the LC1980 scenario, less than 2% of the counties showed 

lower SOC than the HIST scenario and 42% of the counties showed higher SOC in the 

cropland in 2012. About 56% of the counties only showed small changes (<5%) 

comparing with the HIST scenario after 32 years. Generally, both the increase in cropland 

production and the increase in conservation tillage could bring more carbon inputs, such 

as surface residue and root biomass into the soil than the natural grassland/shrubland. The 

simulation results also showed the conversion from cropland to other LULC had more 

effect in the counties with lower cropland production and higher percentage of intensive 

tillage, such as in North Dakota. In these counties, converting cropland to other LULC 

sequestered more SOC than keeping the cropland as cropland.   

In the COMP1980 scenario, about 76% of the counties showed small SOC changes 

(<5%) comparing with the HIST scenario. 23% of the counties showed lower SOC than 

the HIST scenario and only 3 counties showed higher SOC after 32 years. The results 

indicated the changes in crop composition did not have large impacts on the SOC 

changes compared with other management practices. Figure 4.9D showed the counties 

with lower SOC were located in north part of the region, includes South Dakota, North 

Dakota and Minnesota. In these counties, the corn planted area increased more than other 

counties. In Nebraska and Iowa, the counties with soybean planted area increased after 

1980 did not show as much increase in SOC as the counties with corn planted area 

increased. For example, in Antelope county, Nebraska, the soybean planted area 

increased more than 300%, from 14000 ha in the 1980s to over 48000 ha after 2000. 

During the same time, the corn planted area decreased about 15%, from over 80000 ha in 

the 1980s to 70000 ha after 2000. The simulated result in this county showed the 
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cropland could have 8% higher SOC stocks if the planted area for crops kept the same as 

in 1980. Thus, switching to high production crops instead of low production crops would 

more likely to increase the SOC carbon stocks.   

Figure 4.9E indicated the TECH1980 scenario showed largest SOC changes. 

Comparing with other scenarios, 91% of the counties under TECH1980 scenario showed 

more SOC loss than the HIST scenario and the rest of the counties showed small 

differences (<5%). The counties showed the large SOC losses were mainly in Nebraska 

and Iowa. In these counties, the corn planted area was usually large and the production 

increase also large, with both showing higher impacts on the SOC than other counties in 

the region. The counties with smaller changes in SOC were mainly planted with low 

yield crops, such as Spring Wheat and Winter Wheat. The production increase in these 

crops also increased the carbon input into the cropland but the impacts are less than the 

crops with high yields, such as corn.  

4.4 DISCUSSIONS 

To our knowledge, our study is the first that comprehensively incorporated various 

land management practices into regional carbon cycle simulations. As can be seen from 

our study that the land use change activities can be major factors affecting the carbon 

cycle, and the characterization of these land use activities in space and time are usually 

not available. Therefore developing relevant geospatial data layers characterizing LULC 

changes is a major challenge in advancing carbon cycle research at regional and global 

scales, corroborating with the findings by the NACP interim synthesis (Liu et al., 2011).  
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Our study indicated a large increase in cropland production in this region, which 

agrees well with previous observations (e.g., Parton et al., 2007), and the increased 

productivity had the largest impact on SOC among all factors we have investigated. 

Enhancement of long-term crop production in the Great Plains can be attributed to 

increased irrigation, pest management, fertilizer applications, improved tillage practices, 

and improved plant varieties (Parton et al., 2007). The increase of crop NPP can in turn 

produce more aboveground residue and root biomass inputs into the soil, resulting in 

higher levels of SOC (Johnson et al., 2006; Lokupitiya et al., 2012; Wilts et al., 2004). 

An assessment of European SOC also found that enhanced NPP slowed the loss of SOC 

and may further increase SOC (Smith et al., 2005). However, some field studies showed 

NPP increase only had limited impacts on SOC as other factors (e.g., crop rotation) might 

be changing as well. For example, after reviewing the effects of enhancing crop rotations 

on the SOC dynamics, West and Post (2008) found changing wheat-fallow rotation to 

continuous wheat did not increase SOC even though the cropland production increased. 

In addition, SOC dynamics is confounded by other important factors such as initial SOC 

level. NPP increase might lead to SOC increase in less fertile regions, as shown in this 

study and others (Tan and Liu, 2013). 

We found the change of tillage practices had the second largest impact on the 

cropland SOC in this region. Past studies have found that increased use of conservation 

tillage in cropland has sequestrated more SOC in the cropland than other management 

practices (Lal et al., 2007; Smith et al., 2008; West and Post, 2002). Several studies also 

found that SOC has increased on cropland in the USA due to conservation tillage (Ogle et 

al., 2003; West et al., 2008; Ogle et al., 2009). In this study, we found that while overall 
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conservation tillage increased in the region, intensive tillage increased in some areas as 

well. These local increases in intensive tillage may reduce the impact of conservation 

tillage effect at the regional level, as suggested by earlier study (West et al., 2008). The 

usage of conservation tillage may also cause lower crop productivity under certain 

conditions. A review of no-till management impacts on crop productivity found that corn 

yield could be reduced considerably with no-till under low nitrogen fertilization rates 

(Ogle et al., 2012).  

The pathways of SOC under various scenarios showed two general temporal 

patterns of SOC change in our study (Figure 4.7). The first was the continuous decrease 

of SOC under TECH1980, which might be caused by the instability in the simulated soil 

carbon pools. In our study, we used 10 years as the initialization time, which is a 

common pre-run time in the regional studies (Potter et al., 2009 ; Zhang et al., 2015). 

Some studies used long initial time from 2000 to 7000 years when long-term land use 

data are available (Ogle et al., 2007; Ogle et al., 2009; Hartman et al., 2011). The second 

was the decrease-increase pattern under the other scenarios. The decrease of SOC before 

1995 were shown in some studies might be possible but with high uncertainty. For 

example, a study of carbon balances in US croplands found the total carbon stock was 

slightly decreasing prior to 1990 (Lokupitiya et al., 2012). But another study with 

process-based model reported the SOC increased in US croplands from 1990 to 2000 

(Ogle et al., 2009). US-EPA also reported that the cropland remaining cropland 

sequestrated 14.2 TgC in 1990 (US-EPA, 2012). The differences of the results may be 

driven by the differences in initial conditions, model inputs, and spatial coverage. Studies 

with long-term land use data showed that the increase of SOC started could be earlier in 
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the dryland, roughly in the 1950s. A simulation of 120 years dryland cropping in Great 

Plains  suggested that the cropland SOC declined since 1890 but increased after 1950 

(Hartman et al., 2011). One major discrepancy is that our study showed large SOC loss in 

poorly drained soils in the northern part of the region. These poorly drain soils contained 

much higher SOC than dryland, which might result in large SOC decrease when drained 

for cropping. Combining the decreased SOC in these poorly drained soils with the SOC 

gains in dryland might have resulted in loss of SOC in this region before 1995. This 

finding agreed with an earlier study which found the land use and management practice 

changes on the cropland increased SOC in mineral soils by about 6.5 – 15.3 TgC yr
-1

 but 

decreased SOC in organic or poorly-drained soils by 6.4 - 13.3 TgC yr
-1

 from 1982 to 

1997 (Ogle et al., 2003).   

In our simulations, we found that different management practices showed 

geographically variable effects across the region. For example, SOC loss was obvious in 

the northern part of the study area and SOC gain can be seen in most of the south-central 

region (Figure 4.8). This spatial pattern of SOC change agrees well with previous studies 

(Liu et al., 2011; Zhu et al., 2011). The reasons that define the spatial pattern are multi-

folds including initial SOC storage, change of site drainage conditions, and crop species 

distributions that are dictated more by climate regimes. The north part of the study area 

was dotted by numerous prairie potholes with poorly-drained conditions that promoted 

high SOC storage (Figure 4.8A). The installation of tile drainage in the region for 

agricultural purposes along with relatively low ecosystem productivity due to climate 

conditions has led the loss of SOC (Liu et al., 2011). Therefore the loss of SOC in the 

north was resulted from land use legacy, and it is unlikely that current agricultural land 
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use change activities can reverse this trend. In contrast, the high productivity of crops in 

the south-central, particularly in Iowa, can maintain or increase of SOC.  

The area of crop land conversion to other land covers in the region was small during 

the study period. Consequently, its impact on SOC dynamics was minimal. Our study 

highlights the importance of considering land use change activities in carbon cycle 

research in agricultural regions. It is apparent that one cannot assume carbon sinks or 

sources are neutral in areas experiencing little change in land covers. The carbon 

conditions (i.e., stocks and fluxes) of the ecosystems under the same or similar land 

covers might be altered by a suite of other agents.   

We noticed there are some limitations of this study. One major limitation is this 

study did not include the estimates of all GHG emissions from croplands. Past studies 

showed that when cropland production increased, the net GHG emissions also increased 

(Hartman et al., 2011). Such increase will reduce the effect of increase in SOC stock to 

mitigate the GHG emissions. Another limitation is the changes of soil drainage 

conditions in the region. Earlier studies showed installation of drainage system could lead 

to large carbon loss in deep soils (Liu et al., 2011). These limitations could be addressed 

in future studies by integrating more data sets, such as the historical change in nitrogen 

fertilizer, cropland drainage map. 

Using spatial explicit LULC data inputs and county level survey data, we were able 

to simulate the SOC changes at a relatively high spatial resolution. Land managers can 

use such information, as well as other observations, such as the long-term field studies 



134 

 

 

and carbon fluxes measurements from flux towers, to choose the best management 

practices in the region for cropland SOC sequestration.  

4.5 CONCLUSIONS 

   The GEMS modeling framework with a coupled biogeochemical EDCM was utilized 

to investigate management impacts on cropland SOC in Midwest temperate prairies from 

1980 to 2012.  Our simulation results showed the total SOC declined in the temperate 

grassland region from 1980 to 1995 and then rose again to 2012. Overall the cropland in 

the region is a weak carbon source over the 32 years and the results also showed clear 

spatial differences in the SOC changes. Large SOC losses occurred in northern North 

Dakota and Minnesota and large SOC gains were in Iowa, Nebraska and Northern 

Missouri. The simulation of multiple management scenarios showed that technology that 

increased the cropland production had the largest impacts on the cropland SOC changes, 

followed by the tillage practices, changes in planted species and cropland change to other 

land cover. The impacts of these practices also showed large differences spatially. 

Understanding the spatial patterns of management impacts is important to study SOC 

dynamics and provide useful information for better SOC management.  
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CHAPTER 5. SUMMARIES AND CONCLUSIONS 

Cropland plays an important role in global carbon cycle and quantifying cropland 

carbon dynamics is important to ensuring food security and mitigating greenhouse gas 

emissions. Cropland carbon dynamic estimates remain highly uncertain over large 

regions. In recent years, high resolution cropland cover data sets were generated from 

remotely sensed satellite images. It is possible to use these spatially explicit data to 

advance the carbon cycle studies.  

In this study, we developed the General Ensemble biogeochemical Modeling System 

(GEMS) that integrated spatially explicit land cover products with biogeochemical 

models for simulating regional carbon dynamics. I have simulated multiple carbon fluxes 

on cropland in the Midwest and tested the four research hypothesis in Chapter 1. The 

efforts are presented in three chapters (chapter 2 to 4) in journal article formats. The 

major findings are summarized as follows.  

Hypothesis 1: Changes in the spatial patterns of planted crop types will not change the 

spatial patterns of cropland carbon fluxes. 

This hypothesis was proved to be false. I used the Cropland Data Layer (CDL) from 

the U.S. Department of Agriculture (USDA) as the land cover input in GEMS to simulate 

multiple carbon fluxes in the Mid-Continent Intensive Campaign (MCI) region. The 

carbon fluxes simulated included net primary production (NPP), net ecosystem 

production (NEP), and soil organic carbon (SOC) change of the cropland. I compared the 

simulated results with the NPP estimates from USDA crop yield data and MODerate 

resolution Imaging Spectroradiometer (MODIS) NPP product. I found the three methods 
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showed large difference in cropland NPP estimates because they have different cropland 

areas and crop species inputs. I found the change in crop species could change the spatial 

patterns of the cropland NPP. Thus, the detailed mapping of crop species change in time 

and space is critical for estimating the spatial and temporal variability of cropland NPP.  

Hypothesis 2: The uncertainties of the carbon fluxes estimated from multiple models 

are randomly distributed across croplands.  

This hypothesis was proved to be false. I computed the model uncertainties of three 

cropland carbon fluxes from three methods (GEMS, crop inventory and the 

Environmental Policy Integrated Climate (EPIC) model). Using data mining and spatial 

statistics, I studied the spatial distributions of the uncertainties in relation to the land 

cover inputs. Results indicated that uncertainties for all three carbon fluxes were not 

randomly distributed, but instead formed multiple clusters within the MCI region. I 

further investigated the impacts of cropland percentage, cropland richness, and cropland 

diversity on these uncertainties at the county level. The results indicated that cropland 

percentage significantly influenced the uncertainties of NPP and NEP, but not on the 

uncertainties of SOC change. Greater uncertainties of NPP and NEP were found in 

counties with small cropland percentage. Cropland richness and diversity showed weaker 

impacts on the model uncertainties than cropland percentage. Our study demonstrated 

that the model uncertainties are not distributed randomly and land cover characteristics 

can contribute to form the spatial patterns of regional carbon fluxes uncertainties.  

Hypothesis 3: cropland is a major carbon sink from 1980 to 2012. 
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This hypothesis was proved to be false. We used spatially explicit land cover datasets 

and management practice data as inputs to GEMS and simulated the cropland SOC 

dynamics from 1980 to 2012. According to the simulation results, the total cropland SOC 

decreased about 1% after 32 years. This indicated that the cropland was not a major 

carbon sink from 1980 to 2012. The spatial pattern of the cropland SOC changes also 

showed that cropland in the northern and southern part of the region lost carbon, while 

the cropland in the central of the region gained carbon. 

Hypothesis 4: The increase of conservation tillage is the most important driving factor of 

the SOC changes from 1980 to 2012. 

This hypothesis was proved to be false. We simulated multiple scenarios in the 

Midwest temperate prairie using GEMS and available land use and management data. 

The analysis of the results showed that technology that increased the cropland production 

had the largest impact on the cropland SOC change, followed by the tillage practices, 

planted species changes, and cropland change to other land cover.  

In summary, our studies have the following findings: 

1. The crop species information in the land cover inputs was important to provide 

accurate estimates on cropland NPP. 

2. The cropland characteristics, such as cropland percentage, richness, and diversity 

can contribute uncertainties in cropland fluxes estimates of NPP and NEP, but not 

SOC changes.  
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3. Although the total SOC changes suggested the cropland was a weak carbon source 

in the Midwest, carbon sinks and sources showed large spatial differences across 

the region. 

4. In all the management practices that impact the cropland SOC changes, 

technologies that increased cropland production had the largest impact, followed 

by tillage practices in the Midwest cropland. 

Our study demonstrated the usage of spatially explicit land-use land-cover (LULC) 

in the carbon model is critical to estimate cropland carbon fluxes at the regional scale. 

Satellite remote sensing data can provide timely information on LULC across large 

region. Many earlier modeling works either use the prescribed LULC information 

generated from dynamic vegetation model or static land cover. These approaches ignored 

the spatial heterogeneity and temporal change of LULC and underestimated the spatial 

and temporal variations of carbon fluxes, particularly in agriculture-dominated regions. 

Future model development should consider using the LULC data sets derived from 

satellite remote sensing data instead of prescribed or static LULC data, along with other 

ancillary information on land use which can rarely be observed using remote sensing 

technology. Only through integrating the details of land cover change with ancillary land 

use change information, the complete picture of LULC can be characterized. 

Our studies showed whether the cropland in the Midwest USA was a carbon sink or 

source depending on the management practices applied on the cropland. Such changes 

were impacted by the changes in management practices as well as other factors, such as 

climate and soil baselines. It is reasonable to expect the same management practices may 
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have different effects on SOC changes across the region. The GEMS modeling 

framework used in this study is capable of producing the distribution of carbon sources 

and sinks under certain management scenarios. It can be a powerful tool to investigate the 

outcomes and risks of the future potential carbon management plans on cropland.   

The modeling framework could be further developed to evaluate more LULC 

impacts on carbon cycles. For example, if annual maps of irrigation are available for the 

region, we can effectively estimate the changes of carbon uptakes and SOC stocks under 

different irrigation scenarios in response to future climate change. If a drought severity 

map is available, we can use GEMS to give an estimate on the drought impacts on the 

carbon fluxes. These estimates can be compared with other observations, such as flux 

tower measurements for better understanding of the consequences of extreme events. 

This study advanced the scientific knowledge of the cropland carbon cycle by using the 

LULC changes data produced from satellite observations. Using the geospatial 

information of LULC changes could produce more detailed carbon fluxes estimates and 

identified the mechanisms driving the spatial and temporal variations of the carbon fluxes 

in croplands. Our findings could help future studies to provide more accurate estimates 

on carbon fluxes and reduce the uncertainties from land cover inputs. The outcome of the 

study also provided the scientific basis for understanding of the carbon cycle in croplands.  

 


	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	2016

	Simulating the Impacts of Land-Use Land-Cover Changes on Cropland Carbon Fluxes in the Midwest of the United States
	Zhengpeng Li
	Recommended Citation


	tmp.1463689610.pdf.8Oqz7

