11 research outputs found

    Aspects of capacity enhancement techniques in cellular networks

    Get PDF
    Frequency spectrum is the scarce resource. From mobile operator’s point of view, efficient utilization of the radio resources is needed while providing maximum coverage, and ensuring good quality of service with minimal infrastructure. In high capacity demanding areas, multilayer networks with multiband and multi radio access technologies are deployed, in order to meet the capacity requirements. In his doctoral thesis, Usman Sheikh has proposed a “Smart Traffic Handling” strategy, which is based on user’s required service type and location. Smart traffic handling scheme efficiently utilizes the different layers of the network, balances the load among them, and improves the system capacity. Power resources at base station are also limited. Usman Sheikh’s proposed “Power Control Scheme for High Speed Downlink Packet Access (HSDPA) network” improves the cell edge user experience, while maintaining the fairness among the other users in a cell. With the help of a proposed power control scheme, a user far from the base station can also enjoy the better quality of service. Generally, mobile operators use macro cells with wide beam antennas for wider coverage in the cell, but future capacity demands cannot be achieved by using only them. “Higher Order Sectorization” is one possible way to increase the system capacity. Usman Sheikh proposed new network layouts called “Snowflake” and “Flower” tessellations, for 6-sector and 12-sector sites, respectively. These tessellations can be used as a basis for making a nominal network plan for sites with higher order sectorization. These tessellations would be helpful for simulation purposes. Through his work, he has also tried to highlight the importance of deploying “Adaptive MIMO Switching” in Long Term Evolution (LTE) system, the fourth generation of wireless networks. In future, the fifth generation of wireless networks is expected to offer thousand times more capacity compared to LTE. The novel concept of “Single Path Multiple Access (SPMA)” given by Usman Sheikh is a revolutionary idea, and gives a possibility to increase the system capacity by a giant margin. SPMA can be considered as a right step towards 5G technology. Usman Sheikh’s work is of high importance not only from mobile operator’s point of view; rather his contributions to the scientific community will also lead to better user (customer) experience. His work will definitely benefit the mankind in utilizing the limited resources in an optimum and efficient way

    Adaptive Network Densification with Small Cell Mobile Base Stations Carried by Vehicles

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen676. INGEGNERIA ELETTRICAnopartially_openembargoed_20211014Mohammadnia, Foroog

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Radio Resource Management Optimization For Next Generation Wireless Networks

    Get PDF
    The prominent versatility of today’s mobile broadband services and the rapid advancements in the cellular phones industry have led to a tremendous expansion in the wireless market volume. Despite the continuous progress in the radio-access technologies to cope with that expansion, many challenges still remain that need to be addressed by both the research and industrial sectors. One of the many remaining challenges is the efficient allocation and management of wireless network resources when using the latest cellular radio technologies (e.g., 4G). The importance of the problem stems from the scarcity of the wireless spectral resources, the large number of users sharing these resources, the dynamic behavior of generated traffic, and the stochastic nature of wireless channels. These limitations are further tightened as the provider’s commitment to high quality-of-service (QoS) levels especially data rate, delay and delay jitter besides the system’s spectral and energy efficiencies. In this dissertation, we strive to solve this problem by presenting novel cross-layer resource allocation schemes to address the efficient utilization of available resources versus QoS challenges using various optimization techniques. The main objective of this dissertation is to propose a new predictive resource allocation methodology using an agile ray tracing (RT) channel prediction approach. It is divided into two parts. The first part deals with the theoretical and implementational aspects of the ray tracing prediction model, and its validation. In the second part, a novel RT-based scheduling system within the evolving cloud radio access network (C-RAN) architecture is proposed. The impact of the proposed model on addressing the long term evolution (LTE) network limitations is then rigorously investigated in the form of optimization problems. The main contributions of this dissertation encompass the design of several heuristic solutions based on our novel RT-based scheduling model, developed to meet the aforementioned objectives while considering the co-existing limitations in the context of LTE networks. Both analytical and numerical methods are used within this thesis framework. Theoretical results are validated with numerical simulations. The obtained results demonstrate the effectiveness of our proposed solutions to meet the objectives subject to limitations and constraints compared to other published works

    Wide-band channel sounding in the bands above 2GHz

    Get PDF
    Modem telecommunication services require increasing data rates for both mobile and fixed applications. At frequencies in the range 2.5 GHz to 6 GHz physical constraints on the size of equipment result in antenna with moderate directivity typically with an antenna beam width of 20 degrees or greater. Thus building and ground clutter is present within the first Fresnel zones of the antenna system which gives rise to multi-path propagation. This multi-path propagation (average delay and RMS delay spread) has been investigated using a wideband FMCW channel sounder that is capable of operation at a number of frequencies. The channel sounder has been based upon a parallel architecture sounder operating within the 2 GHz band with a number of frequency conversion modules to translate operation to the new frequency bands under study. Two primary configurations have been explored. In the first of these, propagation has been measured simultaneously within the 2.5 GHz, 3.4 GHz and 5.7 GHz bands. This is believed to be novel and original. In the second configuration four parallel channels operating within the 5.7 GHz band may be operated simultaneously. This configuration supports multiple antennas at the receiver. To support the work in the bands from 2.5 GHz to 6 GHz wideband discone antenna have been designed and fabricated. A system to provide relative gain and phase calibration for up to four antennas has been developed and demonstrated. This is also believed to represent a novel method of performing antenna and array calibration. Finally, the frequency converters have been used in conjunction with additional components to provide an FMCพ sounder operating within the 60 GHz Oxygen absorption band. This work is novel in that up to 1 GHz of spectrum can be swept. To support this work a significant number of microwave components have been designed and developed. In particular a novel wide band balanced X3 multiplier and a novel impedance-matched amplitude-equaliser (to provide amplifier gain-slope equalisation) has been developed. Channel soundings have been performed at three frequencies simultaneously using band specific and common antenna. The average delay and RMS delay spread have been demonstrated to be essentially frequency independent for the environments evaluated

    Active Fault-Tolerance in Wireless Networked Control Systems

    Get PDF
    In a Wireless Networked Control System (WNCS), several nodes or components of the system may communicate over the common network that connects them together. Thus, there may be communication taking place between the sensors and the controller nodes, among the controllers themselves, among the sensors themselves, among the actuator themselves, and between the controller and the actuator nodes. The purpose of this communication is to improve the performance of the control system. The performance may be a measurable quantity defined in terms of a performance criterion, as in the case of optimal control or estimation, or it may be a qualitative measure described as a desired behaviour. Each node of the WNCS may act as a decision maker, making control as well as communication decisions. The presence of a network brings in constraints in the design of the control system, as information between the various decision makers must be exchanged according to the rules and dynamics of the network. Our goal is to quantify some of these constraints, and design the control system together with the communication system so as both do their best given the constraints. This work in no way attempts to suggest the best way to design a communication network that suits the needs of a particular control system, but some of the results obtained here may be used in conjunction with other results in forming an understanding as to how to proceed in the design of such systems in the future. The work proposes a novel real-time communication protocol based on the Time Division Multiple Access (TDMA) strategy, which has built-in tolerance against the network-induced effects like lost packets, assuring a highly deterministic and reliable behaviour of the overall networked control system, thus allowing the use of classical control design methods with WNCS. Determinism in the transmission times, for sending and for receiving, is assured by a communication schedule that is dynamically updated based on the conditions of the network and the propagation environment. An advanced experimentation platform has been developed, called WiNC, which demonstrates the efficiency of the protocol with two well-known laboratory benchmarks that have very different dynamics, namely the three-tank system and the inverted pendulum system. Wireless nodes belonging to both systems are coordinated and synchronized by a master node, namely the controller node. The WiNC platform uses only open source software and general-purpose (commercial, off-the shelf) hardware, thus making it with a minimal investment (low cost) a flexible and easily extendable research platform for WNCS. And considering the general trend towards the adoption of Linux as a real-time operating system for embedded system in automation, the developed concepts and algorithms can be ported with minimum effort to the industrial embedded devices which already run Linux

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Human exposure to electromagnetic fields from WLANs and WBANs in the 2.4 GHz band

    Get PDF
    226 p.En los últimos años, el masivo crecimiento de las comunicaciones inalámbricas ha incrementado la preocupación acerca de la exposición humana a los campos electromagnéticos debido a los posibles efectos sobre la salud. Esta tesis surge de la necesidad de proporcionar información acerca de este tipo de exposición desde un punto de vista técnico. Por una parte, se han estudiado los niveles de exposición causados por señales WiFi, para lo cual ha sido necesario establecer un procedimiento de medida adecuado para tomar muestras de estas emisiones. Además, se han llevado a cabo campañas de medida para evaluar la exposición a señales WiFi y su variabilidad en el interior de un entorno público. Por otra parte, se ha analizado la potencia absorbida por el cuerpo humano a causa de los novedosos dispositivos wearables. Se han implementado dos antenas de este tipo, apropiadas para dispositivos wearables, se ha analizado detalladamente la exposición debida a estos aparatos y finalmente se han comparado los niveles de exposición producidos por estas antenas y por las señales WiFi
    corecore