355 research outputs found

    Saving Energy in QoS Networked Data Centers

    Get PDF
    One of the major challenges that cloud providers face is minimizing power consumption of their data centers. To this point, majority of current research focuses on energy efficient management of resources in the Infrastructure as a Service model using virtualization and through virtual machine consolidation. However, current virtualized data centers are not designed for supporting communication–computing intensive real-time applications, such as, info-mobility applications, real-time video co-decoding. In fact, imposing hard-limits on the overall per-job delay forces the overall networked computing infrastructure to adapt quickly its resource utilization to the (possibly, unpredictable and abrupt) time fluctuations of the offered workload. Jointly, a promising approach for making networked data centers more energy-efficient is the use of traffic engineering-based method to dynamically adapt the number of active servers to match the current workload. Therefore, it is desirable to develop a flexible and robust resource allocation algorithm that automatically adapts to time-varying workload and pays close attention to the consumed energy in computing and communication in virtualized networked data centers (VNetDCs). In this thesis, we propose three new dynamic and adaptive energy-aware algorithms scheduling policies that model and manage VNetDCs. Our focuses are to propose i) admission control of the offered input traffic; ii) balanced control and dispatching of the admitted workload; iii) dynamic reconfiguration and consolidation of the Dynamic Voltage and Frequency Scaling (DVFS)-enabled Virtual Machines (VMs) instantiated onto the parallel computing platform; and, iv) rate control of the traffic injected into the TCP/IP mobile connection. Necessary and sufficient conditions for the feasibility and optimality of the proposed schedulers are also provided in closed-form. Specifically, the first approach, called VNetDC, the optimal minimum-energy scheduler for the joint adaptive load balancing and provisioning of the computing-plus-communication resources. VNetDC platforms have been considered which operate under hard real-time constraints. VNetDC has capability to adapt to the time-varying statistical features of the offered workload without requiring any a priori assumption and/or knowledge about the statistics of the processed data. Green- NetDC is the second scheduling policy that is a flexible and robust resource allocation algorithm that automatically adapts to time-varying workload and pays close attention to the consumed energy in computing and communication in VNetDCs. GreenNetDC not only ensures users the Quality of Service (through Service Level Agreements) but also achieves maximum energy saving and attains green cloud computing goals in a fully distributed fashion by utilizing the DVFS-based CPU frequencies. Finally, the last algorithm tested an efficient dynamic resource provisioning scheduler which applied in Networked Data Centers (NetDCs). This method is connected to (possibly, mobile) clients through TCP/IP-based vehicular backbones The salient features of this algorithm is that: i) It is adaptive and admits distributed scalable implementation; ii) It is capable to provide hard QoS guarantees, in terms of minimum/maximum instantaneous rate of the traffic delivered to the client, instantaneous goodput and total processing delay; and, iii) It explicitly accounts for the dynamic interaction between computing and networking resources, in order to maximize the resulting energy efficiency. Actual performance of the proposed scheduler in the presence of :i) client mobility; ii)wireless fading; iii)reconfiguration and two-thresholds consolidation costs of the underlying networked computing platform; and, iv)abrupt changes of the transport quality of the available TCP/IP mobile connection, is numerically tested and compared against the corresponding ones of some state-of-the-art static schedulers, under both synthetically generated and measured real-world workload traces

    Interpreting Deep Learning-Based Networking Systems

    Full text link
    While many deep learning (DL)-based networking systems have demonstrated superior performance, the underlying Deep Neural Networks (DNNs) remain blackboxes and stay uninterpretable for network operators. The lack of interpretability makes DL-based networking systems prohibitive to deploy in practice. In this paper, we propose Metis, a framework that provides interpretability for two general categories of networking problems spanning local and global control. Accordingly, Metis introduces two different interpretation methods based on decision tree and hypergraph, where it converts DNN policies to interpretable rule-based controllers and highlight critical components based on analysis over hypergraph. We evaluate Metis over several state-of-the-art DL-based networking systems and show that Metis provides human-readable interpretations while preserving nearly no degradation in performance. We further present four concrete use cases of Metis, showcasing how Metis helps network operators to design, debug, deploy, and ad-hoc adjust DL-based networking systems.Comment: To appear at ACM SIGCOMM 202

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Effective and Economical Content Delivery and Storage Strategies for Cloud Systems

    Get PDF
    Cloud computing has proved to be an effective infrastructure to host various applications and provide reliable and stable services. Content delivery and storage are two main services provided by the cloud. A high-performance cloud can reduce the cost of both cloud providers and customers, while providing high application performance to cloud clients. Thus, the performance of such cloud-based services is closely related to three issues. First, when delivering contents from the cloud to users or transferring contents between cloud datacenters, it is important to reduce the payment costs and transmission time. Second, when transferring contents between cloud datacenters, it is important to reduce the payment costs to the internet service providers (ISPs). Third, when storing contents in the datacenters, it is crucial to reduce the file read latency and power consumption of the datacenters. In this dissertation, we study how to effectively deliver and store contents on the cloud, with a focus on cloud gaming and video streaming services. In particular, we aim to address three problems. i) Cost-efficient cloud computing system to support thin-client Massively Multiplayer Online Game (MMOG): how to achieve high Quality of Service (QoS) in cloud gaming and reduce the cloud bandwidth consumption; ii) Cost-efficient inter-datacenter video scheduling: how to reduce the bandwidth payment cost by fully utilizing link bandwidth when cloud providers transfer videos between datacenters; iii) Energy-efficient adaptive file replication: how to adapt to time-varying file popularities to achieve a good tradeoff between data availability and efficiency, as well as reduce the power consumption of the datacenters. In this dissertation, we propose methods to solve each of aforementioned challenges on the cloud. As a result, we build a cloud system that has a cost-efficient system to support cloud clients, an inter-datacenter video scheduling algorithm for video transmission on the cloud and an adaptive file replication algorithm for cloud storage system. As a result, the cloud system not only benefits the cloud providers in reducing the cloud cost, but also benefits the cloud customers in reducing their payment cost and improving high cloud application performance (i.e., user experience). Finally, we conducted extensive experiments on many testbeds, including PeerSim, PlanetLab, EC2 and a real-world cluster, which demonstrate the efficiency and effectiveness of our proposed methods. In our future work, we will further study how to further improve user experience in receiving contents and reduce the cost due to content transfer

    Large-scale simulator for global data infrastructure optimization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, February 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 165-172).Companies depend on information systems to control their operations. During the last decade, Information Technology (IT) infrastructures have grown in scale and complexity. Any large company runs many enterprise applications that serve data to thousands of users which, in turn, consume this information in different locations concurrently and collaboratively. The understanding by the enterprise of its own systems is often limited. No one person in the organization has a complete picture of the way in which applications share and move data files between data centers. In this dissertation an IT infrastructure simulator is developed to evaluate the performance, availability and reliability of large-scale computer systems. The goal is to provide data center operators with a tool to understand the consequences of infrastructure updates. These alterations can include the deployment of new network topologies, hardware configurations or software applications. The simulator was constructed using a multilayered approach and was optimized for multicore scalability. The results produced by the simulator were validated against the real system of a Fortune 500 company. This work pioneers the simulation of large-scale IT infrastructures. It not only reproduces the behavior of data centers at a macroscopic scale, but allows operators to navigate down to the detail of individual elements, such as processors or network links. The combination of queueing networks representing hardware components with message sequences modeling enterprise software enabled reaching a scale and complexity not available in previous research in this area.by Sergio Herrero-López.Ph.D

    Intelligent middleware for HPC systems to improve performance and energy cost efficiency

    Full text link
    High-performance computing (HPC) systems play an essential role in large-scale scientific computations. As the number of nodes in HPC systems continues to increase, their power consumption leads to larger energy costs. The energy costs pose a financial burden on maintaining HPC systems, which will be more challenging on future extreme-scale systems where the number of nodes and power consumption are expected to further grow. To support this growth, higher degrees of network and memory resource sharing are implemented, causing a substantial increase in performance variation and degradation. These challenges call for innovations in HPC system middleware that reduce energy cost without trading off performance. By taking the performance of an HPC system as a first-order constraint, this thesis establishes that HPC systems can participate in demand response programs while providing performance guarantees through a novel design of the middleware. Well-designed middleware also enables enhanced performance by mitigating resource contention induced by energy or cost restrictions. This thesis aims to realize these goals through two complementary approaches. First, this thesis proposes novel policies for HPC systems to enable their participation in emerging power markets, where participants reduce their energy costs by following market requirements. Our policies guarantee that the Quality-of-Service (QoS) of jobs does not drop below given constraints and systematically optimize cost reduction based on large deviation analysis in queueing theory. Through experiments on a real-world cluster whose power consumption is regulated to follow a dynamically changing power target, this thesis claims that HPC systems can participate in emerging power programs without violating the QoS constraints of jobs. Second, this thesis proposes novel resource management strategies to improve the performance of HPC systems. Better resource management can mitigate contention that causes performance degradation and poor system utilization. To resolve network contention, we design an intelligent job allocation policy for HPC systems that incorporate the state-of-the-art dragonfly network topology. Our allocation policy mitigates network contention, reduces network communication latency, and consequently improves the performance of the systems. As some latest HPC systems support the collection of high-granularity network performance metrics at runtime, we also propose a method to quantify the impact of network congestion and demonstrate that a network-data-driven job allocation policy improves HPC performance by avoiding network traffic hot spots.2022-01-18T00:00:00

    CORPORATE SOCIAL RESPONSIBILITY IN ROMANIA

    Get PDF
    The purpose of this paper is to identify the main opportunities and limitations of corporate social responsibility (CSR). The survey was defined with the aim to involve the highest possible number of relevant CSR topics and give the issue a more wholesome perspective. It provides a basis for further comprehension and deeper analyses of specific CSR areas. The conditions determining the success of CSR in Romania have been defined in the paper on the basis of the previously cumulative knowledge as well as the results of various researches. This paper provides knowledge which may be useful in the programs promoting CSR.Corporate social responsibility, Supportive policies, Romania

    Big Data for Traffic Monitoring and Management

    Get PDF
    The last two decades witnessed tremendous advances in the Information and Communications Technologies. Beside improvements in computational power and storage capacity, communication networks carry nowadays an amount of data which was not envisaged only few years ago. Together with their pervasiveness, network complexity increased at the same pace, leaving operators and researchers with few instruments to understand what happens in the networks, and, on the global scale, on the Internet. Fortunately, recent advances in data science and machine learning come to the rescue of network analysts, and allow analyses with a level of complexity and spatial/temporal scope not possible only 10 years ago. In my thesis, I take the perspective of an Internet Service Provider (ISP), and illustrate challenges and possibilities of analyzing the traffic coming from modern operational networks. I make use of big data and machine learning algorithms, and apply them to datasets coming from passive measurements of ISP and University Campus networks. The marriage between data science and network measurements is complicated by the complexity of machine learning algorithms, and by the intrinsic multi-dimensionality and variability of this kind of data. As such, my work proposes and evaluates novel techniques, inspired from popular machine learning approaches, but carefully tailored to operate with network traffic
    corecore