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Abstract

Companies depend on information systems to control their operations. During the
last decade, Information Technology (IT) infrastructures have grown in scale and
complexity. Any large company runs many enterprise applications that serve data
to thousands of users which, in turn, consume this information in different locations
concurrently and collaboratively. The understanding by the enterprise of its own
systems is often limited. No one person in the organization has a complete picture of
the way in which applications share and move data files between data centers. In this
dissertation an IT infrastructure simulator is developed to evaluate the performance,
availability and reliability of large-scale computer systems. The goal is to provide data
center operators with a tool to understand the consequences of infrastructure updates.
These alterations can include the deployment of new network topologies, hardware
configurations or software applications. The simulator was constructed using a multi-
layered approach and was optimized for multicore scalability. The results produced by
the simulator were validated against the real system of a Fortune 500 company. This
work pioneers the simulation of large-scale IT infrastructures. It not only reproduces
the behavior of data centers at a macroscopic scale, but allows operators to navigate
down to the detail of individual elements, such as processors or network links. The
combination of queueing networks representing hardware components with message
sequences modeling enterprise software enabled reaching a scale and complexity not
available in previous research in this area.

Thesis Supervisor: John R. Williams
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation

The relevance of Information Technology (IT) infrastructures in corporations has

grown in consonance with the unstoppable phenomenon of globalization. Multina-

tional corporations have expanded their presence across multiple continents to offer

their services or products directly to every region while capturing local talent and

resources. Nevertheless, these distributed corporations still operate as integral units

thanks to the interconnectivity provided by global data infrastructures, which have

been frequently compared to human nervous systems. In 1999, Gates predicted that

future organizations would have their systems and processes united, forming a digital

nervous system that would enable them to increase efficiency, growth and profits [27].

Similarly, Kephart and Chess also envisioned computer systems to behave as nervous

systems, but they took it a step further by adding the notion of autonomy. Auto-

nomic computer systems would be designed to self-configure, self-optimize, self-heal

and self-protect their own infrastructure [50]. Mitchell also supported the vision of

autonomic systems, but on a broader context, he envisioned that the integration of

large-scale computer systems into cities would make civil infrastructures behave as

nervous systems [67]. Aligned with this vision of digital nervous systems, today, the

data centers in the IT infrastructure of an enterprise behave as body organs that

exchange signals through request-response messages so as to coordinate actions such



as data visualization and manipulation.

These globally distributed organizations never sleep, having personnel visualizing,

generating, manipulating and sharing information assets simultaneously throughout

all time zones. This modus operandi was never exclusive of telecom or internet com-

panies, in which the infrastructure itself represents the core business; but global col-

laboration also became key for a wide variety of other organizations. Today, banking,

pharmaceutical or automobile industries cannot properly function without a plat-

form and a set of tools that facilitate the creation, visualization and manipulation of

information across remote locations. For these reasons, performance, reliability and

availability these infrastructures are major concerns for these organizations, and their

optimum operation at a low cost has become a key factor for differentiation against

the competition.

Data sharing and collaboration capabilities have given global organizations the

flexibility, agility and efficiency to operate without pause. However, these advan-

tages have also lead to an unprecedented dependency on IT infrastructures. Kembel

reported that each hour of downtime can be costly, from $200,000 per hour for an

e-commerce service like Amazon.com to $6,000,000 per hour for a stock brokerage

company [48]. Almost without exception, downtime is considered unaffordable and

oftentimes the performance of the system and the availability of fresh information

are sacrificed to keep the system operating. Unfortunately, a fully operational infras-

tructure cannot be left "as is" either, and three factors require making continuous

adjustments to the system:

1. Continuous Innovation: Continuous integration of new features, state-of-the-

art technologies or improved practices are necessary in order to maintain a

competitive edge. For example, eBay deploys 300 features per quarter and adds

100,000 new lines of code biweekly [80].

2. Continuous Cost Reduction: As the infrastructure grows, continuously reducing

the complexity of the infrastructure is a key mechanism to reduce costs. Akella

et al. [2] propose out-of-the box solutions, component reuse, consolidation,



standardization and interface simplification as critical efforts to succeed in the

goal of reducing the complexity of IT systems.

3. Continuous Failure: Hardware failure is unavoidable. Typical data centers

are composed by thousands of commodity servers that will inevitably fail, and

hence, IT infrastructures needs to be designed to continuously deal with the

dynamics of failure. During a year, on a cluster of 2000 nodes, Google reported

20 rack failures, 1000 machine crashes, thousands of hard drive failures among

a variety of other network, configuration and power related incidents [21].

Under these circumstances, two driving forces, the need for "change" and the need

"not to change", collide. Consequently, decisions susceptible of affecting IT opera-

tions need to go through exhaustive reviewing processes across individuals, groups

and divisions of the corporation so as to minimize the risk of stopping the natural

flow of information. Often the implementation of non-critical features, cutting-edge

technologies and latest software updates or protocols, is delayed, in order to preserve

the stability of the system.

In this thesis, the construction of a Global Data Infrastructure Simulator, called

GDISim, is presented, in order to evaluate the impact of 'what if" scenarios on the

performance, availability and reliability of large-scale computer systems. The sim-

ulator takes as input the workload of each application, the resources allocated by

individual client requests, the network topology of the organization, the hardware

configuration deployed in each data center and details on background processes. Us-

ing this information, the queueing network models that the simulator is built upon

produce estimates of the response time for user requests, along with measurements of

the hardware allocation and network occupancy, so as to facilitate optimization goals

for data center operators.

The information generated by the simulation platform can be used towards diverse

optimization purposes as shown in Figure 1-1:

1. Performance Estimation: Enables the response time to be evaluated for a given

workload, network topology, hardware configuration and software application.



Figure 1-1: Potential applications for the Global Data Infrastructure Simulator.

2. Capacity Planning: Enables the data center operator to determine the resources

required to meet Service Level Agreements (SLA) for each distributed applica-

tion running on the infrastructure.

3. Hardware/Software Configuration: Enables both hardware and software pa-

rameters to be calibrated to achieve optimal performance and utilization of

resources.

4. Network Administration: Allows the topology of the global network to be de-

signed to cope with the expected traffic while maximizing its utilization.

5. Bottleneck Detection: Enables potential infrastructure bottlenecks to be iden-

tified and prevented.

6. Background Job Optimization: Facilitates the scheduling and effectiveness of

jobs such as synchronization, replication or indexing without degrading user

response times.

7. Internet Attack Protection: Allows the evaluation of the effects of denial-of-

service attacks and facilitates the design of counter measures to fight them.

Chapter 2 reviews previous research on computer system modeling. The variety of

mechanisms to reproduce computer system behavior are covered and the contributions

provided by GDISim and differences to previous work are emphasized.

Chapter 3 presents the principles and models that GDISim is built upon. Spe-

cial attention is given to the queueing network models utilized to represent hardware



components and the message cascade representation used to describe software appli-

cations.

Chapter 4 contains detailed information on the implementation of the simulation

platform. The asynchronous messaging mechanisms and coordination primitives uti-

lized to parallelize the calculations and boost the performance of the simulator are

covered.

Chapter 5 validates the models introduced in Chapter 3 by profiling the perfor-

mance of a downscaled version of a real data infrastructure used by a Fortune 500

company and comparing it with results obtained by simulating the same system. The

accuracy results are analyzed and compared to other simulators.

Chapter 6 contains a case study that demonstrates the applicability of GDISim

on a data center consolidation problem. The daily operation of a data center infras-

tructure of a global collaborative design company running Computer Aided Design,

Visualization and Product Data Management software applications is modeled and

simulated.

Chapter 7 takes the case study in Chapter 6 a step further by proposing a different

mechanism to run background processes that maximizes their effectiveness. The re-

sults obtained by simulating the infrastructure with this new mechanism are reported

and analyzed.

Chapter 8 summarizes the conclusions and lessons learned from this work, while

Chapter 9 presents three different research directions that could be pursued to improve

GDISim.

Chapters 2 and 3 utilize a three (A/B/C) or six (A/B/C/K/N - D) factor no-

tation known as Kendall's notation. The details of this standard system utilized to

classify queueing models are gathered in Appendix A.
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Chapter 2

Related Work

2.1 Introduction

The existence of computer systems has always been accompanied by the demand to

evaluate their performance, not only motivated by the need to control their cost, but

also by the requirement to understand their functionality, reliability, security and

availability characteristics. Furthermore, the relevance of evaluation techniques has

grown in consonance with the complexity of computer systems making performance

study a key component of the design, development, configuration and calibration of

any computer system infrastructure.

Earliest developments on the evaluation of the performance of computer systems

go back to the mid-1960s, when time sharing systems were first modeled using queu-

ing models. Since them, research initiatives addressing the development of better

evaluation techniques fall into three areas as shown in Figure 2-1: Analytic Mod-

els, System Profiling and System Simulation. Complex evaluation techniques may

combine concepts that belong to one or more of these areas.

This chapter utilizes a three (A/B/C) or six (A/B/C/K/N - D) factor notation

known as Kendall's notation. The details of this standard system utilized to classify

queueing models are gathered in Appendix A.



Figure 2-1: Computer system evaluation method techniques.

2.2 Analytic Models

Rules of Thumb have been popular tools for the estimation of performance and ca-

pacity in day-to-day operations of computer systems. Heuristics such as Moore's

Law [78] and Gilder's Law [31] were obtained by observation and have accurately

predicted the yearly growth in the number of transistors on an integrated circuit and

the increase on bandwidth availability of communication systems respectively. These

types of rules and other Linear Projection techniques based on extrapolation have

been frequently considered for the estimation of storage, processing and networking

costs [37][36]. Nevertheless, these should be carefully utilized since they apply linear

model assumptions to systems known to be inherently nonlinear. Under these cir-

cumstances, a cost-effective but yet sophisticated technique to understand computer

systems is the construction of Analytic Models, which describe the behavior of a sys-

tem through mathematical closed form solutions. The historical evolution of analytic

models is explained as follows:
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Figure 2-2: Time sharing system modeling a single CPU.

2.2.1 Pre-1975 Developments

Traditionally, complex computer systems have been analytically represented using

queueing theory. Initially, in the mid-1960s, the earliest published works analyzed

queueing models of time sharing systems [3] [51]. These models were single server

queues with Poisson arrivals, in which the only computer resource modeled was the

CPU. This is described in Figure 2-2. The purpose of these models was to study the

performance of different processor scheduling algorithms. This research lead to the

creation of the Processor Sharing (PS) queueing discipline, in which all jobs received

simultaneous service by the CPU with a rate inversely proportional to the number of

jobs [52].

Next, research in the field advanced to contemplate multiple resources as part of a

single model. This was the case for multiprogramming computer systems [29] [15], in

which multiple programs were allowed to simultaneously contend for resources. These

systems were modeled as closed queueing networks: a single server queue representing

the CPU and a single server queue for each I/O device modeled. This is illustrated

in Figure 2-3.
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Figure 2-3: Central server model of a multiprogramming system including a CPU
and multiple I/O devices.

2.2.2 1975-1990 Developments

This period focused on the representation of additional features, such as memory

management and I/O subsystems, aiming to enrich the existing models of computer

systems.

Brown et al. [14] first, and Bard [8] later, provided models to evaluate the ef-

fects of finite memory size and workload memory requirements in queueing network

models. Figure 2-4 illustrates these enhanced models, which included an additional

memory queue to represent the contention for memory access and memory partitions

to represent memory allocation and release.

During this period of time, modeling the time spent by a job waiting for and

receiving I/O service became a priority. Queueing models of I/O subsystems started

considering the mechanical nature of disk drives and became the basis for subsequent

modeling work. Wilhelm et al. [89] modeled several moving head disk units attached

to a single I/O channel and differentiated between seek, latency and transfer times.

Figure 2-5 describes this model, in which multiple seek operations can be carried out

simultaneously, while seek command request and transfer operations depend on the

availability of the channel.
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Figure 2-5: General queueing model for multiple disk drives.
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2.2.3 Post-1990 Developments

During the last two decades, computer systems have grown exponentially in com-

plexity and scale, and hence, analytical models have tried to keep up describing their

behavior. Today, queueing network models are used to represent systems with dif-

ferent granularities and scales. The granularity varies from single isolated hardware

components, to their aggregation to form servers and supercomputers. The scale

varies from a single component to arrays of them, or combinations of arrays of iden-

tical components. The most relevant initiatives are presented as follows:

Low-level hardware components are frequently represented by simple queuing con-

figurations. Multi-core CPUs have been represented by M/M/c queues [79] [64] and

disk arrays have been modeled using fork-join M/M/c queues [59] [86].

These low-level components are used as building blocks for the construction of

models for higher-level entities, such as computer servers. The goal behind the mod-

eling of servers is to facilitate the assignation of hardware resources towards the

fulfillment of predefined Service Level Agreements (SLA). Doyle et al. [25] intercon-

nect low-level models for server memory, CPU and storage I/O to create a tool that

simplifies utility resource management given a series of service quality targets.

A different but yet popular approach is to represent each server by a single queue.

This initiative has been popular when constructing analytic models for server tiers.

The application server tier for an e-commerce system is described as a collection of

M/G/1-PS queueing systems by Villela et al [87]. This queuing system is used to

construct an objective function that describes the cost of minimizing service misses

that threaten to break SLAs established with clients. Similarly, Ranjan et al. [72]

present a Java application tier formed by n servers using a GIG/n queue.

Recently, analytic models for multi-tier configurations running in data centers

have been explored. Urgaonkar et al. [85] describe a multi-tier model in which each

tier is represented by a M/M/1 queue and the queues are interconnected on a Markov

Chain. This model allows capturing effects such as session based workloads, caching

between tiers and load balancing between replicas. The Markov Chain is illustrated
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Figure 2-6: Queuing network model for multi-tier configuration in a data center using
a Markov Chain.

in Figure 2-6, where pi with i = 1 ... M represents the probability of moving from

queue i to i - 1 and (1 - pi) with i = 1 ... M the probability of moving from queue i

to i + 1. Bi et al. [11] also model a virtualized multi-tier data center, but considering

each virtual machine in each tier as a M/M/1 queue, preceded by a serving system

represented by a M/M/c queue.

Finally, it is necessary to mention approaches to analyze data transfer latency

using queuing networks. Ramachandran et al. [71] propose a queueing network

model to estimate overall file transfer time in peer-to-peer network topologies. The

model, illustrated in Figure 2-7 uses M/G/1/K- PS queues to represent peers and

G/G/1 queues for routers. Similarly, Simitci [81] explains the modeling of bulk data

transfers using a closed queuing network model.

2.3 System Profiling

Another popular technique to obtain performance insights on information infrastruc-

tures is Profiling. Profiling tools analyze the behavior of one or more programs and

use the information collected during their execution. Typically, the goal of the anal-

ysis is to optimize sections of the program by increasing their speed and reducing

resource requirements. Similar to Benchmarking techniques, Profiling is a sampling-

based method that measures a collection of indicators within machines in a data
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Figure 2-7: Queuing network model for a peer-to-peer network topology modeling
peers and routers.

center. Nevertheless, Benchmarking is as simple as comparing the execution of the

same piece of code across multiple types of hardware and configurations within an

isolated environment. Profiling, on the other hand, is an intrusive procedure that

collects fine-grained measurements such as stack traces, hardware events, lock con-

tention profiles, heap profiles, and kernel events- during the normal activity of the

data center. For these reasons, in Profiling it is critical to maintain the overhead and

distortion to acceptable levels not to hinder the normal operation of the data center.

2.3.1 Single Execution - Single Program - Single Machine

Traditionally, Profiling focused on the analysis of a single execution of a single pro-

gram on a single machine. This was the case of Intel VTune [43], a commercial

performance analyzer for Intel-manufactured x86 and x64 machines and its open-

source counterpart gprof [35]. These profilers provided mechanisms to decompose a

function into call graphs and measure the time spent in subroutines. They carry out

both, time-based sampling so as to find hotspots and event-based sampling to detect

cache misses and performance problems. Recently, Intel provided Parallel Amplifier

[44], an additional call graph analysis tool that accounts for concurrency, locks &



waits.

2.3.2 Continuous Profiling

As computer systems evolved, they were required to be "always-on" and thus, profiling

was adjusted to be carried out continuously.

The Morph system, by Zhang et al. [91], proposed a solution that combined op-

erating system and compiler. Morph collected profiles with low overheads (< 0.3%),

and provided a binary rewriting mechanism to optimize programs to their host archi-

tectures.

Similarly, Digital Continuous Profiling Infrastructure (DCPI), by Anderson et

al. [5], provides a data collection subsystem that generates more detailed execution

profiles, and as opposed to Morph, focuses on the presentation of the collected data to

data center operators. DCPI, illustrated in Figure 2-8, is composed by three modules:

1) A Kernel Driver that services the performance counter interrupts; 2) A Daemon

Process that extracts samples from the driver, associates these with an image of the

executable and writes the data to the profile database; and 3) a Loader that identifies

and loads executable images.

OProfile [60] takes these principles a step further. Its open source nature and

acceptance have made it stable over a large number of different Linux systems. Anal-

ogous to DCPI, Oprofile consists of a kernel driver and a daemon process for collecting

hardware and software interrupt handlers, kernel modules, shared libraries and ap-

plications, with a low overhead.

2.3.3 Infrastructure Profiling

Cloud computing infrastructures present additional challenges surfaced by hetero-

geneous applications, unpredictable workloads and diverse machine configurations

making infrastructure profiling a daunting task. Nevertheless, it has been proven

that profiling an IT infrastructure at scale can be successfully performed, as shown

by Google-Wide Profiling (GWP) [73]. Unfortunately, its high cost puts it out of
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Figure 2-8: Digital Continuous Profiling Infrastructure (DCPI) collection system from
Anderson et al..

reach for many corporations. GWP, illustrated in Figure 2-9, is an OProfile based

continuous profiling solution that scales to thousands of nodes across multiple data

centers. GWP provides fine-grained information - speed of routines and code sections,

performance difference across versions, lock contention, memory hogs, cycle per in-

struction (CPI) information across platforms - for internet-scale infrastructures, and

hence, requires an additional infrastructure with tens or hundreds of nodes to analyze

the collected profiles. Today, only a handful of companies can justify the cost of this

deployment, and it is out of reach for many non-Internet organizations.

Although its is out of the scope of this research, it is necessary to mention the

special attention that energy profiling has received with the advent of cloud computing

infrastructures. The latest techniques use profiling and prediction to characterize the

power needs of hosted workloads. Govidan et al. [34] use a combination of statistical

multiplexing techniques to improve the utilization of power in a data center. Ge

et al. [30] designed a tool called PowerPack that isolated and measured the power

consumption of multicore, disks, memory and I/O and correlated the data with the

application functions. Kansal et al. [45] take energy profiling a step further and

study the tools and techniques needed to design applications taking into account

energy profiling and performance scaling.
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Figure 2-9: Google-Wide Profiling (GWP) infrastructure and the infrastructure to be
profiled by it.

2.4 System Simulation

Simulation has become a popular technique for representing complex computer sys-

tems. The level of detail and complexity that can be achieved by combining simpler

models exceeds the capabilities that analytic models in queueing theory can reach

in practice. For smaller infrastructures, there might not be sharp cost distinction

between constructing a simulator and profiling methods. Nevertheless, as the infras-

tructure to model grows in complexity, the simulator results in a more cost-effective

solution. In this section, queueing network based and non-queueing network based

simulation platforms are introduced.

2.4.1 Queueing Network-based Simulators

Traditionally, analytic models using queueing networks to represent computer systems

abstract entire servers or data center tiers into a single queue. In practice, analytic



models are not capable of representing data center tiers as arrays of servers composed

by interconnected queues that correspond to every hardware component. In contrast,

simulation platforms enable implementing arbitrarily complex networks of queues

that reproduce data center behavior with the greatest level of detail and on a flexible

manner.

Kounev et al. [55] present the implementation of a closed queueing network model

for a multi-tier data center. They model CPUs in application and database servers

as Processor Sharing (PS) queues and the access to the disk subsystem is represented

by a First Come First Served (FCFS) queue. The workload loaded in the simulator

corresponds to a distributed supply chain management software application. The

processing cost and resource allocation of each user action in the application was

profiled and used as input of the simulator.

Steward et al. [83] follow a similar approach, but combine queueing network

models with linear models, so as to represent multi-tier data centers and predict their

response times and resource utilization.

Multi-tier Data Center Simulator (MDCSim), by Lim et al. [61], takes these

approaches a step further. In addition to model all the components in a server -CPU,

I/O and NIC- as M/M/1 queues, the simulator focuses on capturing the particular

idiosyncrasy of each different type of tier -web, application or database-. A diagram

showing the MDCSim model used for the simulation of a data center is shown in Figure

2-10. This effort pays particular attention to the modeling of the interconnections

between servers, facilitating the comparison between technologies such as Infiniband

or 10 Gigabit Ethernet.

2.4.2 Non-Queueing Network-based Simulators

Not all computer system simulation platforms have been designed upon the intercon-

nection of queueing models. In this section, alternative approaches not using queueing

network theory are presented.

Rosenblum et al. [76] [75] present SimOS a computer system simulator capable

of modeling computer hardware and analyzing the impact that OS processes have in
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Figure 2-10: The structure of the Multi-tier Data Center Simulator (MDCSim) illus-
trating web, application and database server tiers.

conjunction with multiple concurrent application workloads. SimOS is decomposed

into hardware components - e.g. processors, memory management units, disks, ether-

net and cache-, and is constructed to accept various specifications and levels of detail

for each hardware component. Therefore, this simulator allows operators navigating

into two dimensions: 1) Workload: They can focus on specific workload parts of in-

terest. 2) Detail: Once the workload segment of interest has been selected, detailed

models can be used to understand the system behavior exhaustively. SimOS does not

use mathematical models to represent the behavior of each component, it reproduces

in software the functional behavior of the hardware component instead.

Similarly, Austin et al. [6] provide an open source infrastructure for computer

architecture modeling called SimpleScalar. Like SimOS, the models utilized to con-

struct the simulator are not based in mathematical solutions but on the reproduction

in software of functional behavior of the hardware. As opposed to SimOS in which the

primary goal was to facilitate capacity planning given specific application workloads,

the authors of SimpleScalar offer this tool to facilitate the work of the computer

architecture research community.

2.5 Contributions & Differences

GDISim is designed to reproduce the behavior of globally distributed data centers in

which clients in different time zones visualize, manipulate and transfer data concur-

rently using a variety of software applications. At the core, it is a simulation platform,
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Figure 2-11: Quadrant system illustrating the location of GDISim with respect to
similar work in the field of computer system evaluation. * In this work, Project
Triforce [56] is classified as profiling system instead of a simulator.

but is constructed by implementing and combining analytical models described in Sec-

tion 2.2, and feeding them with the data measured by profiling mechanisms explained

in Section 2.3. GDISim can reproduce the behavior of systems with the scale and

detail that profiling techniques deliver, while keeping the cost orders of magnitude

lower. Figure 2-11 illustrates the location of GDISim in a quadrant system with re-

spect to similar work in the field of computer system evaluation. In this section, the

contributions that this work has made to computer system evaluation techniques are

emphasized along with its differences with previous research.



2.5.1 Contributions

* Global Data Center Infrastructure: The scale of the information managed by

globalized businesses and the flexibility provided by virtualization technologies,

have enabled grouping all the IT systems across an enterprise into a single con-

cept of IT infrastructure. As opposed to other analytic models and simulations

preceding this work which only considered a single piece of hardware, a single

computer or a single datacenter, this work presents the first platform for the

simulation of an entire global infrastructure composed by multiple multi-tier

data centers connected through networks, and serving clients across continents.

MDCSim [61] is the computer system simulator that shares the largest number

of characteristics with GDISim. Both efforts focus on the simulation of multi-

tier data centers using queueing network models as a foundation and seek to

provide estimates that facilitate the efficient and cost-effective design of these

systems. However, GDISim differentiates from MDCSim in the following as-

pects: 1) Queueing Models: MDCSim models all the components of a server

as M/M/1 - FCFS queues. Even though it can produce satisfactory estima-

tions of the overall latency and throughput of a data center, MDCSim does

not include models to predict CPU or bandwidth utilization. The models that

GDISim is built upon produce computational and network utilization estimates

that can be used towards capacity planning of the infrastructure. 2) Multi-

Data center: MDCSim was constructed to simulate a single data center loaded

with the RUBiS benchmark [17]. While the same work could be taken further

to simulate the operation of an infrastructure composed by multiple data cen-

ters, the authors did not consider this direction and did not provide a software

application model to represent distributed enterprise software nor background

processes. On the contrary, GDISim is conceived as an infrastructure simulator

and utilizes a messaging cascade structure that reproduces arbitrarily complex

interactions between data centers and tiers.

* Application Diversity: GDISim takes the modeling of software operations a step



further and presents a message passing mechanism capable of reproducing arbi-

trarily complex interactions between data centers components with high levels

of detail. The consolidation of different IT systems into a single IT infrastruc-

ture has pushed multiple distributed software applications to run concurrently

on the same resources using standard interfaces and platforms. As opposed to

previous research [55] [83] [61] which only considered one or few independent

applications, this work proposes a general software model designed to represent

any distributed application and provides the capability of intertwining multiple

workloads. Each application is modeled as a series of client operations, which

in turn are decomposed into sequences of messages that convey encoded re-

source allocation information. These messages flow concurrently through the

infrastructure altering the state of the components they pass through.

The messaging approach utilized by GDISim to simulate distributed software

programs has similarities with previous research initiatives for the simulation of

parallel computation. Dickens et al. [23] implemented a simulator tool called

LAPSE for the performance prediction of massively parallel code. LAPSE sup-

ports parallelized direct execution and simulation of parallel message passing

applications. The tool was validated against four scientific and engineering ap-

plications. Similarly, MAYA [1] is a simulation platform for evaluating the per-

formance of parallel programs on parallel architectures that is also build upon

message passing mechanisms on shared memory systems. However, none of this

approaches designed a message passing mechanism that represents arbitrarily

complex interactions in multi-data center infrastructures.

* Background Jobs: Background jobs are complex data manipulation and trans-

fer tasks periodically scheduled by daemon processes. As opposed to other

simulation initiatives, GDISim contemplates the execution of client workloads

simultaneously with background processes. Popular background jobs are Syn-

chronization, Replication and Indering. Distributed data infrastructures need

synchronization processes to guarantee that the latest versions of the data are



locally available to remote clients, and hence, avoid costly on-demand synchro-

nization between data centers. Replication guarantees that each file has replicas

in different locations (different server and/or data center) and it can be inte-

grated into the synchronization process or executed independently. Similarly,

as data volumes grow, search functionality is desired, which involves the execu-

tion of indexing processes that analyze each file and its relationships. Typically,

background processes need more resources than individual user actions requir-

ing copy and movement of large volumes of files and utilizing computational

resources to process the information and generate metadata. If the execution

of these and any other background jobs is not scheduled properly, overly fre-

quent jobs can degrade client experience in the form of increased response times,

whereas infrequent jobs lead to serving stale files or searching through outdated

indexes.

The optimization of background file movement looking to guarantee the im-

mediate availability of data files in the location of interest has been the focus

of attention a variety of research initiatives in grid computing. Ko et al. [53]

explore worker-centric scheduling strategies to distribute tasks among a group

of worker nodes exploiting the locality of files and looking to minimize trans-

fers in data-intensive jobs. The authors of this work simulate different task

distribution strategies to compare their effects in network utilization and com-

putation time. Similarly, Meyer et al. [65] utilize Spatial Clustering to derive

a task workflow based on spatial relationships of files. This strategy increases

data reuse and reduces file transfers by grouping together tasks with significant

overlaps in input data.

While GDISim also focuses on the simulation of worker-centric strategies that

take advantage of data locality, it differentiates from previous research in three

aspects: 1) Background Jobs & Client Workloads: Previous research focused

on the simulation of scheduling mechanisms to optimize file movement of stan-

dalone data-intensive jobs in computer grids. However, GDISim can simulate



jobs that aim to optimize transfers of files in the background, running concur-

rently with a population of thousands of users visualizing and manipulating the

same files. 2) Data Locality: Previous efforts focused on exploiting data locality

explicitly given by the spatial characteristics of the problem, while GDISim sim-

ulates infrastructures in which data locality is determined by non-deterministic

user access patterns. 3) Change Propagation: Research in grid computing fo-

cused on the consumption of read-only data, while GDISim simulates the prop-

agation of changes in one data center to the others.

9 Simulator Validation: GDISim pioneers the simulation of an interconnected

data center infrastructure using queueing networks and validated with data

collected from a real infrastructure. The accuracy of the models utilized to

construct the simulator was validated against the global IT infrastructure of

a Fortune 500 company running three distributed software applications: Com-

puter Aided Design (CAD), Visualization (VIS) and Product Data Manage-

ment (PDM). This infrastructure was comprised by multiple data centers, with

thousands of clients visualizing and manipulating files, while synchronization,

replication and indexing jobs were carried out simultaneously in the background.

Facebook reported the use of a simulator, called Project Triforce [56], to evaluate

the impact of the partitioning of the social networking site from two to three

geographically distributed data centers. The company describes the isolation

and reconfiguration of thousands of servers in the active production cluster in

one of the two original data centers to make it look as the future third data

center. While this efforts seeks to provide the same functionality as GDISim,

Facebook relies on reproducing the behavior of the future configuration using

real hardware and real software. This effort is closer to an emulation than to a

simulation, and even though it may produce satisfactory estimations, its overall

cost will be closer to profiling techniques than the simulators explained in this

chapter.

Calheiros et al. [16] describe the construction of a simulation framework, called



CloudSim, for the evaluation of virtualized cloud computing infrastructures.

This work focuses on reproducing the effects of scheduling policies on virtual

machines executing tasks in multicore hardware. The contributions provided

by CloudSim and GDISim are complementary.

* Platform Scalability: GDISim is the first data center simulation platform that

pays special attention to multicore scalability so as to reduce execution time.

Reproducing the daily activity on tens of interconnected data centers with thou-

sands of clients, numerous applications and multiple background jobs, can lead

to the elapsed simulation time being greater than the simulated time. As im-

portant as getting accurate predictions from the simulator is getting them in a

timely manner. Under these circumstances, GDISim was designed and imple-

mented to run multithreaded using highly efficient coordination of asynchronous

messages.

Early work on simulation of parallel computer systems were constructed to be

executed sequentially on the host machine. Examples of this research include

SimpleScalar [6] and Parallel SimOS [58]. However, over the last decade, a

number of parallel simulators that target parallel architectures have been devel-

oped. Examples of multithreaded simulators of multicore systems are provided

by Miller et al. [66] and Almer et al. [4]. Both approaches utilize Dynamic

Binary Translation (DBT) and report significant speedups against their serial

counterparts.

While most multithreaded simulators for the evaluation of computer systems

focus on predicting the behavior of multiprocessor chips, GDISim targets the

parallel simulation of entire data center infrastructures, which may or may not

include servers with shared-memory multiprocessors.



2.5.2 Differences

Simulation vs Analytic Models

In the past, the principal weakness of simulation of computer systems was its relative

expense compared to analytical models. Nevertheless, as the complexity of computer

systems increased, their representation through analytical modeling soared too and

oftentimes became intractable. In the meantime, simulation costs remained steady

and modern technologies facilitated the implementation and debugging of complex

computer programs.

The principal strength of simulation is its flexibility, as opposed to analytic models

which are rigid. Simulators can reproduce the behavior of an arbitrary complex

queueing network, and integrate specific behaviors with arbitrary level of detail. A

modular design of the simulation framework should allow computer systems modules

to be added, removed or reutilized easily, broadening the applicability of the simulator

and allowing it to adjust following the evolution of the real system itself.

Finally, it is necessary to point out that simulators can have a large number of

input parameters. Often these parameters are expensive to evaluate. In this work, we

propose to obtain the majority of the input parameters through small-scale profiling

of the infrastructure in a laboratory.

Simulation vs Profiling

Profiling data center behavior requires running processes that measure vast amounts

of highly detailed information. As the infrastructure size increases, the profiling

overhead can degrade system performance and leave collected data unexploited, unless

additional resources are allocated, which increases the overall profiling cost. The

simulation platform is a simpler yet powerful non-intrusive tool capable not only of

reproducing system behavior on a high level, but also predicting the impact of "what

if" scenarios for a lower cost.

While data center operators can focus on profiling and evaluating different parts of

an infrastructure independently, the complexity of the infrastructure makes it com-



plicated for a single data center operator to collect the dynamics of the workload,

hardware, software and network required for simulation experiments of the entire

system. In fact, typically individual operators do not have detailed knowledge about

the system beyond their area of responsibility. Even though this can be a limiting fac-

tor, our experience indicates that joint collaboration of multiple data center operators

to produce the collection of inputs for the simulation platform can be beneficial. This

collaborative effort gives operators a common view of the infrastructure, which upon

reception of the predicted results by the simulator can be positively used towards

finding consensus on system modifications.

2.6 Summary

In this chapter previous research on evaluating complex computer systems has been

compiled. For the last four decades, the models and mechanisms to evaluate the

computer systems have grown in complexity in consonance with the creation and

evolution of internet-scale infrastructures. Previous work aimed to model or profile

individual hardware components of the system, and oftentimes simplifications were

made to represent servers or multi-tier data centers. Today, internet corporations

can carry out company-wide infrastructure profiling, but unfortunately, this approach

remains unreachable for the majority of organizations.

The work presented in this research defines a cost-effective simulation tool for the

evaluation of global infrastructures. The simulator makes use of previous research on

analytic models and utilizes profiling techniques to generate inputs for the simulator.

No other simulation or analytical model represents a global information infrastructure

with the level of detail of GDISim.
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Chapter 3

Global Data Infrastructure

Simulator

3.1 Introduction

In this chapter the foundations on which the Global Data Infrastructure Simulator

(GDISim) is built upon are explained. This chapter aims to provide a conceptual

vision of the simulator without any implementation details. First, the methodology

followed to reproduce the impact that thousands of concurrent clients have on a

distributed computer system is explained. Second, the Multi-Agent System (MAS)

principles followed by the simulator are described and previous work on simulation

of computer systems using MAS is succinctly reviewed. Third, the models utilized

to reproduce the behavior and status of the hardware components that compose the

infrastructure are analyzed in detail. Finally, the messaging model constructed to

represent distributed software applications running across multiple data centers is

presented.

3.2 Methodology

Each software application running on the infrastructure is decomposed into a list

of client initiated actions denoted as Operations. Classical operations in software



applications running at internet-scale are login, file search or file open and classical

background jobs are file synchronization, replication or file indexing. Background jobs

running in the infrastructure are also represented by operations, but these are initiated

by daemon processes instead. The complexity of each operation can range from a

simple round trip from the client to an application server, to large sequences round

trips between the client and multiple tiers transmitting large quantities of information.

The execution of a single isolated operation of each type in the infrastructure yields

the canonical cost for that type of operation.

As introduced in Chapter 2, queueing networks are a popular technique to model

computer system hardware. In this research, a global IT infrastructure is decomposed

into a large scale network of lower-level hardware elements denoted as Components.

Each of these components is modeled as a queue or network of queues. Their inter-

connection reproduces the behavior of higher level entities such as servers or clients,

and consequently, the infrastructure.

The simulator launches thousands of operations of different types and uses their

canonical costs to estimate the cumulative effect caused by client workloads and

background jobs running concurrently and competing for the global infrastructure

resources. The predictions are obtained through the study of the interactions between

these operations and the queueing network models representing the components that

form the IT infrastructure.

3.2.1 Simulator Inputs & Outputs

The simulator takes a collection of parameters corresponding to the software and

the hardware specifications as input, and reproduces the performance of software

applications along with the utilization of hardware components as output. Alterations

of the input parameter space enable discovering the outcome of hypothetical scenarios

or approaching optimization goals. Next, the input parameters as well as output

results are enumerated and explained, these are also illustrated in Figure 3-1.



Input Parameters of the Simulator

" Software Applications: For each different software application hosted by the

infrastructure, the hourly client workload in each data center along with the

messaging structure and canonical cost of the operations composing the appli-

cation must be provided.

" Background Jobs: Background jobs are either scheduled periodically or trig-

gered by events. The simulator requires this information along with the messag-

ing structure and canonical cost of the operations representing the background

job.

" Data Centers: The input for each data center definition is comprised of three

elements: specifications, configuration and connectivity. The specification con-

templates the number of tiers, servers per tier and hardware available in each

server. The configuration considers load balancing policies and effects such as

caching between tiers. The connectivity takes into account the bandwidth and

latency of the links interconnecting the tiers inside the data center.

" Global Topology: The global topology represents the connectivity links between

data centers distributed across continents including latency and bandwidth in-

formation, along with secondary links in case of failure.

Output Results of the Simulator

" Software Applications: The simulator produces estimates of the response time

for each operation type and software application at each location of the infras-

tructure. Saturation of resources leads to degradation of the user experience

which is manifested by increased response times.

" Background Jobs: Analogous to the software applications, the simulator returns

estimates of each background job duration. Additionally, the performance of

the background job can be evaluated based on a metric specific to the job itself.
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Figure 3-1: Input parameters taken by GDISim and Output estimations produced by
the models in the simulator.

For example, file synchronization performance can be evaluated by measuring

the longest time interval in which a data center can keep a stale copy. Similarly,

indexing performance can be evaluated by measuring the longest time interval

in which a file is unsearchable.

* Data Centers: The simulator returns computational, memory and bandwidth

utilization measurements taken from every machine and tier in the data center.

" Global Topology: The bandwidth utilization estimate of the links connecting

data centers in different continents is reproduced by the simulator.

3.3 Multi-Agent Systems

The Global Data Infrastructure Simulator is constructed following the principles of

a Multi-Agent System (MAS). A MAS is a system comprised of multiple intelligent

agents that have interactions with each other. Traditionally these systems are used

to solve or simulate complex problems out of reach for monolithic systems.

In the context of computer systems, MAS are also referred as Software Agents,

INPUTS

SOFTWARE

APPLICATiONS

OUTPUTS



in which a piece of software acts for a user, program or device in a relationship of

agency [13]. This relationship is understood as the agreement to act on one's behalf.

The main characteristics of agents were captured by Woolridge and Woolridge [90]:

" Autonomy: Agents are located in some environment and are capable of au-

tonomous actions within the environment in order to meet their design objec-

tives.

" Partial Control: Agents do not have complete control over the environment. At

best, they can exercise partial control by influencing the environment through

actions. Nevertheless, from the point of view of an agent, the same action per-

formed twice in apparently identical circumstances can lead to different effects.

" Failure: Agent actions may not achieve the desired effect, therefore, the envi-

ronment must be prepared to deal with failure.

MAS based simulations have the following advantages: 1) Flexibility: By defini-

tion MAS are modular. Hence, agents can be added, removed or reused and their

behavior modified without critical changes on the simulation platform. 2) Scalability:

The autonomous nature of the agents enables different degrees of parallelization that

can be exploited using multithreaded platforms.

Additionally, MAS can also include recursive agents, also known as Holons. A

Holon (Greek: holos "whole") is something that is simultaneously a whole and a

part [54]. In the MAS context, Holons are agents built from other agents in which

their behavior at a given level is a partial consequence of the behavior of the agents

composing them. A hierarchy of nested holons is called a holarchy and an agent based

system based on holons is called a Holonic Multi-Agent System (HMAS) [74]. The

Global Data Infrastructure Simulator follows HMAS principles.



3.3.1 Related Work on MAS for Computer System Simula-

tion

In the context of computer system simulation, MAS have been used for a variety of

purposes. In this section some of these application areas are briefly described.

Niazi and Hussain [68] propose the utilization of agent-based tools for modeling

and simulation of peer-to-peer, ad hoc and other complex networks. They evaluate

how agent-based tools can help the understanding of networks involving the interac-

tion between humans and the environment.

Karnouskos and Tariq [46] explore the simulation of heterogeneous web-service

enabled (SOA-ready) devices using a MAS. Their simulator facilitates the test of

aspects such as communication overheads and performance.

Gorodetski and Kotenko [33] utilize MAS for the simulation of attacks against

computer networks and facilitate the design and testing of intrusion detection and

learning systems. The authors of this work emphasize the advantages provided by

MAS to simulate coordinated distributed attacks of different types.

Huang et al. [42] utilize an agent system for the parallel simulation of a High

Performance Computer (HPC). Their goal is to provide a scalable tool that facilitates

the architecture design of high performance systems.

Gaud et al. [28] implemented a multi-agent platform called JANUS designed to

support to holonic multi-agent systems. This tool is part of a larger effort aiming

to facilitate the simulation of complex systems and increase their modularity and

reusability.

3.3.2 Holons, Agents and Messages

GDISim is composed by two building blocks: Hardware Components and Software

Operations. In the context of an HMAS based simulator, hardware components are

represented by holons (or agents) and software operations define the communication

between them through messages. Figure 3-2 illustrates the holons and agents com-

posing the HMAS simulator.
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Figure 3-2: Holons and agents composing the Global Data Infrastructure Simulator.

Lowest level Hardware Components such as memory, CPU, disk arrays,network

cards, switches and links are represented by agents of different types. Each agent

has an internal state and a predefined behavior. The internal state of an agent is

influenced by incoming messages from other agents, and based on this state it pro-

duces messages addressed to other agents. Agents of the same type, can be assigned

different parameters, which determine their specific behavior. These parameters are

established during the creation of the instance of an agent. For example, two agents

of the CPU type can have different behaviors, since one may have been specified as a

dual-core processor and the other as a quad-core processor each with different clock

frequencies.

Agents representing low-level hardware components are encapsulated into a server

or client holon. The state of the server or client holons is the composition of the inter-

nal states of the agents they encapsulate and their behavior follows the combination

of their individual behaviors. The tier holon is an array of identical server holons

di
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interconnected by network switch and network link agents. Tier holons can be of dif-

ferent types and cover different responsibilities, e. g. application tier, database tier or

file server tier, based on the specifications of the holons and agents that form them.

Similarly, the data center holon interconnects multiple tiers using network switch and

network link agents. The interconnection of data centers defines the global infras-

tructure to be simulated.

Software applications are modeled as collections of sequences of messages called

Software Operations. Each message within an operation, specifies the details of a

relationship between two holons. The message is characterized by an array of hard-

ware agnostic parameters, R, that encapsulates information on the computational

(Rp), network (Re), memory (Rm) and disk cost (Rd) of the relationship. Each of

these relationships between holons is decomposed into a series of interactions with

the agents composing them at both ends. An interaction with an agent utilizes one

or more parameters of R to alter its internal state. Changes in the state may trigger

interactions addressed to other agents in the holon. The duration of each agent in-

teraction is registered and the cumulative time for all the interactions yields the time

elapsed to process the message. Similarly, the cumulative time for all the messages

in the sequence produces the total elapsed time for the operation.

Messages follow the mi-y notation, where A -+ B specifies the holons involved

in the transaction, A for the origin and B for the destination holon. X -+ Y indicate

the data centers in which these holons are located, A E X and B E Y. Figure 3-3

illustrates the sequence of messages of a standard Login operation. This operation

is decomposed into only two messages, an outbound message from a client located

in Europe, CEU, to an application server in North America, SN, and the inbound

message, from SNA to CEU. Each message contains a different parameter array R.

3.4 Data Center Hardware Modeling

This section presents the models utilized to represent data center hardware. Lowest

level hardware components (agents) are modeled using queues or networks of queues.
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Figure 3-3: Messages and parameters composing the Login operation.

The interconnection of multiple low level components yields higher level entities such

as servers (holon). Similarly, interconnected servers create tiers (holon) and intercon-

nected tiers create data centers (holon).

3.4.1 Queueing Networks

Networks of queues are systems containing an arbitrary, but finite, number m of

queues. Customers travel through the network and are served at the nodes. The

state of a network can be described by a vector, where ki is the number of customers

at queue i.

The complexity of the majority of real-world systems cannot be handled by the

mathematical models in classical queueing theory. An alternative means of analysis is

the use of simulation of these queueing networks. Next, the queueing network models

for computer hardware components used in the simulator are explained.

3.4.2 Queuing Network Models for Hardware Components

In this section, the queueing network model for each low-level hardware component

is presented and explained. These queueing networks models are the basic building
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Figure 3-4: Queueing network model for a multi-socket multi-core CPU (p- socket,
q-core).

blocks of the data center hardware model, and their implementation is the pillar of

the simulation platform.

Central Processing Unit (CPU)

Multi-socket multi-core CPUs are modeled using p x M/M/q FCFS queues, Qc,,i

with i = 1... p [79]. This is illustrated in Figure 3-4. Each task enqueued in the

CPU model contains the number of cycles to be consumed in the queue-server. Upon

consumption the task is released.

The technical specifications of the CPU are utilized to specify the parameters of

the CPU model. p is determined by the number of sockets, q is established by the

number of cores and the service rate of the queue-servers (number of cycles consumed

per second) is given by the frequency of each core in GHz. Hyper-threading effects

can be included by increasing the number of cores by a factor based on the speedup

measured empirically.



Memory

Cache Hit

M1 02

Qulo,3

Figure 3-5: Queueing network model including the memory caching and occupancy
effects.

Memory

The memory is the only component not modeled as a queue, and addresses two

different effects (Figure 3-5): Memory Caching and Memory Occupancy [14]. A cache

hit is modeled by bypassing the subsequent queues without requiring any processing

in them. The occupancy is represented by the allocation of an established amount of

memory for the duration of the processing in the CPU and I/O queues.

The specifications of the memory component are the size in GB and the cache hit

rate, which should be obtained based on empirical results.

Network Interface Card (NIC) and Network Switch

Network Interface Cards and Network Switches are modeled using M/M/1 - FCFS

queues, denominated Quic and Q, respectively [71]. Both are illustrated in Figure

3-6 (left and center). Tasks are enqueued in the network card or network switch

models and convey the number of bits to be processed by the queue-server.

The service rate (number of bits processed per second) is determined by the speed
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Figure 3-6: Queueing network models for the Network Inteface Card (Left), Network
Switch (Center) and Network Link (Right).

in Mbps of the NIC or Network Switch, typically the NIC is an order of magnitude

slower than the network switch.

Network Links

Network links are modeled using M/M/1 - PSk queues, denominated QA-B [71].

This is illustrated in Figure 3-6 (right). Each task enqueued in the network link

model contains the number of bits to be processed by the queue-server. As opposed

to FCFS queues, PSk queues can process up to a maximum of k tasks simultaneously.

k is given by the number of simultaneous connections allowed for the link.

The service rate (number of bits processed per second) is determined by the band-

width in Mbps of the link and is distributed uniformly among the number of tasks

simultaneously being processed. The latency in milliseconds is a constant value that

depends on the link characteristics added to the processing time of each task.

Redundant Array of Identical Disks (RAID)

Each disk is modeled as a sequence of two queues: Qdcc representing the disk controller

cache and Qhas representing the disk drive. A cache hit in Qce can be modeled by

bypassing QhMi. A RAID with n disks is modeled using an n fork-join structure of

Qacc-Qhd queues preceded by a disk array controller cache Q&c [86]. A cache hit in

Q&c is modeled by bypassing the fork-join structure. This is illustrated in Figure

3-7

The service rate of Qdce is given by the speed of the disk array controller in Gbps
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Figure 3-7: Queueing network model for a Redundant Array of Identical Disks
(RAID).

and the cache hit rate is a tunable parameter that must be set based on empirical

measurements. Similarly, the service rate of Qaci with i = 1 ... n is given by the

speed of the disk controller in Gbps and a tuneable cache hit rate. The service rate

of Qw is given by the disk drive speed in MB/s.

Storage Area Network (SAN)

Analogous to RAIDs, Storage Area Networks (SAN) are also modeled using an n fork-

join structure of Qacc-Qh queues. As opposed to RAID models in which the fork-join

queue was preceded only by a Q&,ce, in SANs the fork-join structure is preceded by

three queues: a fiber channel switch Qfc-,, a disk array controller cache Q&c and a

fiber channel arbitrated loop Qfc-.i. A cache hit in Qacc can be modeled by bypassing

Qfc-. and the fork-join structure. This is illustrated in Figure 3-8

The parameters of the fork-join structure and Qdc are set analogous to the RAID

model. The service rate of Qge_. is given by the fiber channel switch speed in Gbps.

Similarly, the service rate of Qfe_.a is given by the speed of the fiber channel arbitrated

loop in Gbps.
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Figure 3-8: Queueing network models for a Storage Area Network (SAN).

3.4.3 Data Center Model using Queuing Networks

The interconnection of the low-level hardware components introduced in the previous

sections produces the Data Center Model. The data center can be formed by an

arbitrary number of tiers, with each tier containing an arbitrary number of servers.

Typically, servers have different hardware specifications. Figure 3-9 illustrates an

example of a small data center for explanation purposes. The derivation of systems

of higher complexity is trivial following this example.

This data center is located in North America and contains two tiers, application

tier Tapp and database tier Tsa, connected through a switch Q,,. The data center

is accessed by local clients in North America C;N A with i = 1... 10 through link

LNA-NA and Europe CfU with j = 1... 10 through link LEU-+NA

Qdccn Qhccn
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Figure 3-9: Data center model constructed by interconnecting component models.



" Tapp is composed by four servers Sapp,i with i = 1 ... 4. Each S,,pp,i contains a

network card, Qaic, a dual socket quad-core CPU, (Qc,,,1, Qcya,2), and a RAID,

Qdacc, (Qdcc,i, Qhdi) with i = 1 ... 2. The servers are connected to the network

switch through local network links L 41NA

" Tdb is composed by a single server Sdb and a san. Sdb has a network card,

Qnic, a quad-core CPU, Qcy,, and an identical RAID. san is formed by a fiber

channel switch, Qf-,,, a disk array controller and cache, Qaac, a fiber channel

arbitrated loop, Qfe-al and an array of disks, (Qace,i,Qhda,i) with i = 1 ... 10.

The database servers and SAN are connected to the network switch through

LNA-SA and LNA NA respectively.

3.5 Software Application Modeling

As introduced in Section 3.3.2, software applications are modeled as collections of

client-initiated operations. Typical operations are Login, Search, Open or Save. These

operations are represented as sequences of messages, in which each message encodes

an array of parameters R that conveys the impact of each message as it flows through

computer resources.

In order to fully characterize a software application, two data types will have to

be provided to the simulator: 1) The application workload. 2) The message tree that

defines each operation of the application.

3.5.1 Application Workload

The application workload registers the number of clients that launch an operation by

location and time of the day. It also provides information about the distribution of

the operation types and their fluctuation throughout the day.

An example of the hourly workload for Application X is shown in Figure 3-10

(left) and the hourly operation distribution in Figure 3-10 (right). The population

of clients in NA using Application X ramps up from 8 am to 10 am Eastern Time
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Figure 3-10: Application X workload (left) and operation distribution (right).

(12:00 to 14:00 GMT) growing from 600 users to approximately 1200. The operation

distribution indicates that the largest fraction of users are logging in or searching for

files at this time of the day, while a marginal fraction is saving data.

Conversely, the population of clients in NA using Application X is reduced from 3

pm to 5 pm Eastern Time (19:00 to 21:00 GMT). The operation distribution indicates

that in this period of time the largest fraction of users are saving, opening and filtering

files, while a reduced fraction is logging into the system or doing search.

3.5.2 Operation Modeling using a Message Cascade

In this research, each operation is modeled as a collection of sequences of messages

that is generated when a client request is served by the infrastructure. Since sequences

are initiated by clients in a sequential order, we refer to the collection as a Message

Cascade. As explained in Section 3.3.2, each message in the sequences represents a

relationship between components in the system and encapsulates information about

the associated resource allocation and processing cost through the parameter array

R. The message cascade dictates the types of holons involved in each transaction,

however, the exact data center, server and hardware instances are decided at run-

time by the simulator, based on the input workload and predefined load-balancing

strategies.
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Figure 3-11: Decomposition of the file open operation into messages.

Figure 3-11 illustrates the decomposition of a file open (OPEN) operation into

a message cascade. First, the client CEU in Europe makes a request to a server

Sapp E Tpp in the data center in North America, DNA for the token needed to

download the latest version of a file from a server Sf, E T, in DEU. The Sapp checks

for metadata about this file in a server Sd E Td to make sure the Tf, E DEU has

indeed the latest version, if not, a synchronization request between the Tf, E DNA

and the Tf, E DEU would have been triggered through the network link connecting

DEU and DNA. Upon token reception by CEU, the token is used to download the file

directly from a server Sf, E Tf, in DEU

Figure 3-12 illustrates the message cascade for an OPEN operation. A Segment is

defined as the sequence of messages m that is originated and finalized in the client C.

Each message points to the next message to be processed. This message cascade is

composed of two segments. Segment (1) represents the client query to Sd E Td via

Sapp E Tapp to obtain a token to download the latest version of the desired file. Using

this token, Segment (2) represents the download of the desired file from Sf, E Tf,.

Next, in order to facilitate the explanation of the response time decomposition,
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Figure 3-12: Message cascade representation of the file open operation.

the following notation is introduced:

* At'. A specifies the holon or agent measured and X indicates the data center

that the holon or agent belongs to.

* At"-. A -+ B specifies the holons involved in the transaction, A for the

origin and B for the destination holon. X -+ Y indicates the data center in

which these holons are located, A E X and B E Y.

The total response time of the OPEN operation is calculated by adding the time

measured at each step, as shown in Equation 3.1.

Topen = AtEU-NA-AtNANA AtA NA ±AtNA-+EUAtEU EU AtEU-EU
Ten C4 Spp Sapp4+Sdb Sdb-4Sapp Sapp4+C C4+Sf. a f- 31

Equation 3.2 shows an example on how the timings for the first message of the

OPEN operation are calculated. The overall duration for a AtfjNA message is

decomposed into the time elapsed in each step: the time elapsed in the origin holon



At5U, the transfer time AtEUNA and the time elapsed at the destination holon

AtNA
Sapp

AtU-+NA (iT AtEU( N
At? A) At 0 A + AtEU-NA ± NA (3.2)/-Sp L app

Similarly, the duration of each step can be further decomposed into the time

elapsed in each agent. For example, AtSU and AtNA are decomposed into the timingsC Sapp

measured at the network card, CPU and disk array agents as shown in Equations 3.3

and 3.4.

AtEU (R) AtE {Re) + AtEU + AtrE C

ni~ R) cpuEc (Rm, Rp) (Rd (3.3)

At NA ( = AE , (R) + NA ES (Rm, Rp) + AtNA (Rd) (3.4)
Sapp fl2cEap eP pp raidE Sapp

Equation 3.5 makes an analogous decomposition for the data transfer across the

network link L UINA, network switch sw and local network link LNA NA agents.

AtEU-NA (U) = AtE-NA e) ± AtNA (Rt) LNA- NA(Re) (3.5)

R Parameter Array Profiling

Every message in a cascade conveys a different R parameter array. The agents that

compose the destination holon of the message utilize one or more parameters of this

array to reproduce the desired interaction by performing work in their internal queues.

The parameter array R for each message is obtained by profiling the canonical cost

of each operation. As introduced in Section 3.2, the execution of a single isolated op-

eration of each type in the infrastructure yields the canonical cost. The canonical cost

is defined as the computational, network, disk and memory cost incurred by a single

user running the real software on the infrastructure. The fine-grained measurement

of these costs in each element of the system delivers the values that populate the



parameter array R for each message that composes the operation.

As opposed to continuous profiling mechanisms which can be out of reach for

many organizations due to their high cost, the calculation of the R parameter array

through profiling of each operation and software application in the infrastructure is

an inexpensive one-time task that is affordable for any company with a global IT

infrastructure.

3.6 Summary

In this chapter, the concepts on top of which the foundation of GDISim is constructed

have been introduced. Using hardware specifications, application workloads and pro-

filing measurements, the simulator uses a Holonic Multi-Agent System (HMAS) to

reproduce the behavior of the infrastructure and return estimates on hardware uti-

lization, user experience and overall effectiveness. The HMAS is composed of holons

and agents that represent the different layers of hardware in the infrastructure, from

low-level components such as CPU or disk drives, to entire data centers, connected

through agents representing network switches and links. Additionally, the queueing

network models utilized to simulate the behavior of each agent type, along with their

structured interconnection to produce servers, tiers and data centers is explained.

Finally, the message cascade model utilized to represent the execution of client op-

erations as part of a distributed software applications is covered. These message

cascades govern the nature of the interactions between the agents and holons popu-

lating GDISim.



70



Chapter 4

Simulation Platform Design &

Implementation

4.1 Introduction

In this chapter the details of the implementation of the Global Data Infrastructure

Simulator (GDISim) are presented. This chapter focuses on the design and imple-

mentation concepts that enable the Holonic Multi-Agent System simulator to accom-

modate an arbitrary number of infrastructure components, and consequently, large

numbers of agents and a greater number of queues. The high degree of parallelism

inherent to Multi-Agent Systems was considered in the early stages of the design of

the simulator, which allowed exploiting multithreading on a shared memory multi-

processor architectures.

The simulator was constructed using the C# programming language under the

.NET environment. Nevertheless, the design and implementation concepts detailed

in this chapter are programming language agnostic and the simulator could be repro-

duced on any other language and runtime environment.



4.2 Asynchronous Messaging

The simulation platform is designed to exploit parallelism by using asynchronous

messaging for the processing of agents in the system and their interactions. As

opposed to synchronous message passing systems, in which the sender and the receiver

wait for each other to transfer the message and the sender waits until the message

is received by the receiver, asynchronous message passing delivers the message from

sender to receiver without waiting for the receiver to be ready. The advantage of

asynchronous messaging is that enables sender and receiver to overlap computation

and not block each other.

In addition to asynchronous messaging, the simulator is built upon the Active

Message mechanism that is introduced in Section 4.2.1. This mechanism intends

to expose the full hardware flexibility and performance of modern interconnection

networks. On top of this mechanism, the simulator uses an abstraction called Port-

based Programming to hide the low level concepts of active messaging and presents

port objects as inputs for the manipulations of agent states. The port object is covered

in Section 4.2.2. Finally, the combination of multiple forms of port objects allows

constructing Coordination Primitives that orchestrate high volumes of asynchronous

messages efficiently as described in Section 4.2.3.

4.2.1 Active Messages

Active messages are asynchronous messaging objects capable of performing processing

on their own. As opposed to traditional messaging systems in which messages are

passive, active messages convey the necessary information to carry out operations

with the data they transport. Following this idea, each message contains the address

of the handler to be executed on arrival using the message payload as argument [88].

Active message handlers do not have their own execution context, and are executed

on the stack of the thread that pulled the active message from the dispatcher queue of

the message receiver. Therefore, no stack is allocated and no thread switch is needed

to run the handler [57]. With these characteristics active messages deliver increased



performance. Unfortunately, the main caveat is that if an active message handler

blocks, the thread cannot be resumed because the handler occupies part of its stack.

For this reason, active messages prohibit blocking, and locks or condition variables

are not allowed, and thus, alternative mechanisms must be used.

4.2.2 Port-Based Programming

The Port concept was first utilized as an automaton to model concurrent processes.

Steenstrup et al. [82] utilized ports as the only points of entry to stateful processes.

These ports received messages that invoked handler functions to manipulate the in-

ternal state of the process using the data transmitted within the message. Upon

termination, these processes could post the outcome of the operation to ports corre-

sponding to other processes. Stewart et al. [84] take this concept a step further and

define Port-Based Objects. Port-based objects have the same properties as standard

objects, including internal state, code and data encapsulation, and characterization

by its method. The difference is that they communicate exclusively using ports, and

their integration into the subsystem is carried out by connecting the output port of a

module to the corresponding input of the next module. The construction of systems

based on port-based objects is denoted as Port-Based Programming. Dixon et al. [24]

explore the utilization port-based objects to construct large-scale architectures and

show the adaptability and flexibility of this programming model.

In the context of a MAS, processes are replaced by agents. Figure 4-1 illustrates

the elements and the utilization of port-based abstraction in the simulator. Agents

have an internal state and can have multiple input ports. Ports are strongly typed

and have handlers associated to them. Upon receipt of a message on a port, the

message payload along with the handler associated with the port are paired into a

work item by the arbiter. Work items represent the concept of the active message

mechanism presented in Section 4.2.1. These work items are submitted by the arbiter

to a dispatcher, which is in charge of effectively executing work items using available

resources. The dispatcher runs a thread pool that continuously pulls work items from

the dispatcher queue. These threads invoke the handler using the accompanying
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Figure 4-1: Elements composing the port abstraction in the simulator.

payload data, and possibly manipulate the internal state of the agent. A single

dispatcher can be responsible of processing the handlers of one or multiple agents.

Optionally, upon termination the result can be posted back to a port belonging to

the originator of the message.

4.2.3 Coordination Primitives

Chrysanthakopoulos and Singh [18] describe the implementation of high-level coor-

dination primitives using Port-based programming. They present a library called

Concurrency and Coordination Runtime (CCR) that implements join patterns [26]

and interleaved calculations from basic building blocks and that is designed to sup-

port large amounts of fine-grained concurrency. Coordination primitives not only

facilitate the orchestration and synchronization of multiple concurrent tasks, but also

enable dealing with failure. Additionally, they provide performance measurements to

support the utilization of these coordination primitives at the application level.



As follows, the coordination primitives constructed using the elements introduced

in Section 4.2.2 are presented:

" Single Item Receiver: Registers handler X to be launched when a single message

of type M is received in Port A.

" Multiple Item Receiver: Registers handler X to be launched when n messages

are received in Port A. p messages can be of type M (success) and q messages

of exception type E (failures), so that p + q = n. The handler X is passed the

payload of both types of messages M and E.

" Join Receiver: Registers handler X to be launched when one message of type

M is received in Port A and another of the same type in Port B. The handler

X is passed the payload of both messages.

" Choice: Registers handler X to be launched when one message of type M is

received in Port A and registers handler Y to be launched when one message of

type N is received in Port A. If invoked, handler X will receive the payload of

message of type M, and handler Y the payload of message of type N.

" Interleave: Registers how handlers associated to port X execute in relation

to each other and to their own parallel executions. Handlers belong to three

groups: 1) Teardown: These handlers are executed one time and atomically.

2) Exclusive: These handlers only run when no other handler is running. 3)

Concurrent: These handlers run in parallel with other invocations of themselves.

Using these primitives a Scatter-Gather mechanism was constructed in order to

orchestrate thousands of agents running in the MAS. This is illustrated in figure 4-2

and is separated into two phases:

* Scatter: A message of type M is posted to each port in an array of ports of type

A from a master thread. Each port of type A is registered with a Single-Item

Receiver that invokes handler X. Handler X is part of a concurrent execution

group. Included in the payload of each message of type M is a reference to a

unique instance of a port of type B.
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Figure 4-2: Diagram illustrating the construction of the Scatter-Gather mechanism

using port-based programming.

* Gather: Each port of type A invokes handler X using the data included inside

each instance of message M. Multiple handlers X execute concurrently and

upon termination they post the results back inside messages of type N using

the reference to port B. Port B is registered with a Multiple-Item Receiver that

invokes hander Y in the master thread with an array of messages of type N or

type E for the case of multiple failures.

4.3 Platform Implementation

Using the asynchronous messaging and coordination principles introduced in Section

4.2 as a foundation, next the details of the implementation of GDISim are presented.

The complexity of the distributed computer systems being modeled and the potential



large number of agents involved requires paying particular attention to the scalability

of the platform.

This section presents the process followed to optimize the performance on a shared

memory multiprocessor architecture and the impact these decisions had on the elapsed

simulation time.

4.3.1 Discrete Time Loop

In the core of the platform, a centralized Timer Component controls the simulation

time. This component has the critical responsibility of ensuring that all agents are

synchronized in time. At every time step, the timer behaves as a "heartbeat", it

signals all the agents in the simulation and waits for their responses before proceeding

to the next time step. The granularity of the time step is configurable by the simulator

user. It is recommended to be at least one order of magnitude smaller than the time

values measured in the canonical operation set.

Periodically, the state of all the agents in the simulation platform is measured and

registered by the Collector Component. Once a representative number of samples have

been gathered, the simulation averages the samples across this measurement set and

generates a snapshot of the status of the infrastructure. In addition to agent state,

the platform registers the duration of the operations finalized during measurement

interval, and similarly, it averages the samples to provide a snapshot of the response

times by operation and data center.

For example, using a time step granularity of one millisecond, the state of all the

agents can be measured every 100 milliseconds and a snapshot containing the average

value in one minute (600 samples) can be generated and reported to the data center

operators. The number of operations finalized during this one minute interval is also

reported to operators by type and location.



4.3.2 Agent Control Signals

Agents interact with each other using the information encoded within the messages

exchanged by the holons. In addition to these interactions, agents also receive two

types of control signals: 1) Time Increment control signal, and 2) Measurement Col-

lection control signal.

Time Increment Control Signal

The time increment control signal is received from the Timer Component at every time

step. Upon receipt of the signal, each agent reproduces the effect of time consumption

by executing a Time Increment Handler. After the corresponding time is consumed,

the agent acknowledges the completion back to the Timer Component. The next

iteration of time increment control signals is initiated as soon as the acknowledgement

signal from all the agents is received. Each agent contains a local timer that is

incremented at each time step.

For example, in the case of the CPU component, based on the clock speed speci-

fications, the corresponding number of cycles are consumed from the messages being

processed by the queues. For the case of a network link, based on the bandwidth spec-

ification and number of concurrent connections, the corresponding number of KB are

transmitted through the network.

Measurement Collection Control Signal

A measurement collection control signal is periodically interleaved after a predefined

number of time increment control signals. The signal is sent by the Collector Com-

ponent and returns a collection of samples with the state of each agent. The time

increment loop is not resumed until all the samples of all the agents have been col-

lected.

After a predefined number of collections have been carried out, the average sample

is calculated to generate a snapshot of the infrastructure. This snapshot is reported

to data center operators and is registered permanently, while intermediate samples



are dismissed.

4.3.3 Agent Interaction Signals

As described in Section 3.3.2, software operations are decomposed into messages

exchanged by holons, that in turn, trigger interactions between agents. An agent

interaction represents the execution of a communication or computation task that

affects the state of an agent based on the values of the parameter array R and the

agent type itself. A fraction of the processing is carried out at each time step and,

upon termination, the agent interaction is pulled from the current agent and possibly

a new interaction is forwarded to the next agent with the corresponding parameter

set R.

The asynchronous messaging nature of the HMAS can potentially lead to incon-

sistent states. For example, say agent ao receives a time increment control signal and

moves from to to ti. During the transition from to to ti an agent interaction, ro, is

finalized and the subsequent one, ri, is forwarded to agent a1. Nevertheless, agent a1

has not received the time increment control signal yet and awaits in time to. Under

these circumstances, if the queue at agent a1 at time to is empty, ai could process r1

during its transition from to to ti. This situation would lead to an inconsistent state,

since r 1 should not have been processed until t > t1.

The simulator enforces a mechanism to check the timestamps of the interactions

against the local time of each agent, so as to guarantee that an interaction r scheduled

to be initiated at t > ti is not processed during to < t < ti.

4.3.4 Scatter-Gather Parallelization

The natural method to parallelize the execution of time steps and measurements in

the HMAS is to use the Scatter-Gather coordination mechanism presented in Section

4.2.3. Each agent has three ports: 1) Time Increment port, 2) Measurement Collection

port and 3) Interaction port.

During each time step, a time increment control signal message is posted to the



Time Increment port in each agent as part of the Scatter phase. The time control

message is paired with the time increment handler into a task and enqueued to the

dispatcher queue. Then any available thread from the thread pool invokes the handler

using the time control message. A single dispatcher containing a dispatcher queue and

a thread pool is shared across all the agents in the HMAS. The time increment control

signal message conveys a reference to the timer component synchronization port. At

termination, each agent posts an acknowledgement message to the synchronization

port as part of the Gather step.

The execution of the measurement collection scatter-gather mechanism is analo-

gous to the time increment, but using the corresponding messages, ports and handlers

associated to the measurement collection process. By design, the measurement col-

lection process is launched after a predefined number of time steps. Therefore there

is no execution overlap between time increment handlers or measurement collection

handlers in each agent, and consequently there is no need to set an exclusive interleave

policy between them.

Conversely, the HMAS allows agent interaction messages to be posted concur-

rently with the execution of time increment handlers as part of the time increment

loop. Since both the time increment handler and the interaction handler of an agent

manipulate its state, an exclusive interleave policy must be established between them,

in order to guarantee the protection against race conditions over the state of the agent.

Parallelization of the HMAS through the scatter-gather mechanism is illustrated in

Figure 4-3.

In order to measure the performance and scalability of the implementation of this

platform, a series of simulation experiments were executed on a global infrastructure

using different sizes of the thread pool in the dispatcher. The global infrastructure

simulated is composed of six datacenters containing a total of 14 servers, 432 cores and

168 disks distributed across 14 RAIDs and seven SANs. Data centers are connected

through 155 Mbps and 45 Mbps network links and seven network switches. Three

software applications run on top of this infrastructure imposing a combined load of

6000 clients at the peak time of the day. Additionally, synchronization and indexing
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# of Threads I Simulation Time (min) Speedup (x)
1 9888 1.00
2 9192 1.08
4 10440 0.95
8 10248 0.96
16 10056 0.98

Table 4.1: Simulation time (min) and speedup (x) vs. the # of
pool for the classic Scatter-Gather mechanism.
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processes are executed concurrently with these software applications. A detailed

description of this global infrastructure is presented in Chapter 6 as part of the data

center consolidation case study.

It can be observed in Table 4.1 and Figure 4-4 that using the scatter-gather

mechanism to coordinate the execution of one thread per handler invocation does not

provide any benefit on the performance of the simulation platform. The addition of

worker threads (cores) to the dispatcher did not reduce the total simulation time. This

effect illustrates that the work to be carried out within each thread as a consequence

of a handler invocation is too small to justify the overhead of pairing the message

and the handler and passing these asynchronously to the thread pool for execution.



4.3.5 H-Dispatch Model

Even though a priori the use of the scatter-gather mechanism to coordinate the

execution of one thread per handler invocation is the natural method to parallelize

the MAS, and consequently speedup the simulation time, the overhead cancelled this

effect. In this section, a series of modifications of the scatter-gather mechanism are

carried out, so as to push additional work to each thread in the thread pool and not to

allow the computation to be hidden by the overhead. For this purpose, an adaptation

of the H-Dispatch by Holmes et al. was used [41].

Holmes et al. point out that an important drawback of the scatter-gather model

implemented with a managed memory language such as C#, is the poor memory

efficiency and its implications on the CPU utilization. At each time step, a sepa-

rate virtual thread is spawned to execute the handler associated to each agent, and

during this process a significant amount of memory allocation is carried out. In man-

aged memory languages, these allocations are collected and released by the Garbage

Collection (GC) mechanism [63]. Unfortunately, the GC mechanism can prevent con-

current execution by blocking threads while the heap is being reordered and pointers

updated.

The H-Dispatch model is presented as a solution to reduce memory utilization

and maximize the efficiency of multithreaded execution. Holmes et al. propose to

select as many worker threads as cores are available. These threads are always active

and process items (in this case agents) sequentially, reusing local variable memory

allocations and thus, eliminating the need for garbage collection. Additionally, load

balancing is guaranteed by changing the Push nature of the classic scatter-gather to

a Pull mechanism that makes worker threads to request work from a global queue

called H-Dispatch queue. H-Dispatch ensures that worker threads are always busy

until the global queue is empty.

Figure 4-5 illustrates the adaptation of the H-Dispatch model by Holmes et al.

to GDISim. At every time step, a time increment message is posted to the port of

each of the worker threads. As opposed to the classic scatter-gather model presented
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in Section 4.3.4 which used a virtual thread for every handler, the adaptation of H-

Dispatch encapsulates multiple agents into an Agent Set that is passed to the worker

thread for sequential execution. The type of handler executed in each agent of the

Agent Set is based on the original message received by the worker thread, in this

case, the time increment handler. Worker threads iteratively pull Agent Sets from

the H-Dispatch queue until the queue is empty, then a time synchronization message

is sent to the time synchronization port. Measurement collection follows an analogous

procedure.

In the classic scatter-gather, agent interaction handlers were executed concurrently

with time increment handlers. Nevertheless, the requirement to group multiple execu-

tions of agent interaction handlers for sequential execution in the H-Dispatch model,

required to decouple the time increment and the agent interaction phases. In the

H-Dispatch model, an Agent Interaction step will be triggered right after every time

increment step. At the finalization of a time increment, potential agent interactions

are registered for later execution during the agent interaction step.

It can be observed in Table 4.2 and Figure 4-6 that using the H-Dispatch model

to coordinate the execution one thread for multiple handlers improved the multicore



# of Threads [Simulation Time (min) Speedup (x)
1 10728 1.00
2 6278 1.71
4 3353 3.20
8 2074 5.17
16 1331 8.06

Table 4.2: Simulation time (min) and speedup (x) vs. the # of threads in the thread
pool for the H-Dispatch mechanism (Agent Set=64).

scalability of the simulation platform. The increase in the number of worker threads

utilized increased consistently the speedup to the simulator. An Agent Set of size 64

delivered the best results. Using 16 worker threads the simulation time was reduced

from approximately 7.5 days to approximately 1 day. Even though these results

present a considerable improvement from the classic scatter-gather approach, it can

be observed that as the number of threads increases the efficiency of the multicore

scalability drops from ~ 80% with four worker threads to ~ 50% with sixteen worker

threads. The speedup evolution shown in Figure 4-6 it is expected to reach saturation.

These efficiency results diverge from the efficiency measures provided by Holmes et al.,

since they demonstrated a 85% of efficiency with 24 threads on a Finite Difference

(FD) simulation problem. Nevertheless, there are two critical factors that prevent

GDISim from achieving these figures:

1. Sequential Steps: As opposed to the FD problem solved by Holmes et al. which

only contained a single parallelizable computational step within the time loop,

the infrastructure simulation problem intertwines three sequential steps (time

update, measure collection and agent interaction).

2. Locality: As opposed to FD simulations the problem exposed by the infrastruc-

ture simulator does not contain a notion of spatial locality that can be cache

optimized.
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4.4 Summary

This section presented the design and implementation details of GDISim. First, the

details and advantages of asynchronous messaging and active messages were intro-

duced, along with the Port-based programming abstraction, which provides an elegant

yet computationally efficient programming model for Holonic Multi-Agent Systems.

Using Port-based programming as a foundation, a scatter-gather mechanism was con-

structed using coordination primitives as building blocks.

Next, details on the simulation platform implementation were provided. The plat-

form is driven by three types of signals: Time control signals, Measurement collection

signals and Agent interaction signals. These signals are distributed/collected to/from

the agents and dictate the behavior of the HMAS. As a first approach, the simulation

platform utilized the classic scatter-gather mechanism to orchestrate all the agents in

the HMAS by using a single thread to execute each handler. Nevertheless, this ap-

proach showed that the mechanism overhead blurs the parallelization targets. Under

these circumstances, an event-based algorithm for concurrent task distribution, H-

Dispatch, was introduced. The adaptation of the H-Dispatch mechanism, by Holmes



et al., fixed the number of worker threads to the number of cores dedicated to the

simulator, reused local variables preventing the garbage collector from blocking the

threads and guaranteed load balancing of the computational work. The benefits were

reflected in a considerable speedup for the simulator reducing the execution time by

almost an order of magnitude.
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Chapter 5

Simulation Platform Validation

5.1 Introduction

This chapter presents the methodology utilized to validate the data center infrastruc-

ture model described in Chapter 3. The goal is to compare side by side the behavior

of a real IT infrastructure in a Fortune 500 company (or a downscaled version of

it) running real software applications with its simulated counterpart using GDISim.

Both experiments collect measurements on hardware utilization, network occupancy

and operation response times, so as to study the divergence between them and provide

an assessment of the accuracy of the queueing network model utilized to construct

GDISim.

This chapter has three main sections. The first presents the approach utilized

to validate the infrastructure model, including detailed information about the data

center, details on the application workload and a list of assumptions that must to

be considered. Next the outputs of both the real system and the simulator are pre-

sented, focusing on computational, memory and network utilization measurements,

in addition to operation response times. Finally, the results are gathered side by side

and the accuracy of the estimations provided by the simulator are evaluated.

Throughout this chapter, Physical infrastructure refers to the real (downscaled)

IT infrastructure of the Fortune 500 company, and Simulated infrastructure to the

simulated version executed by GDISim.



5.2 Validation Approach

This section presents the methodology utilized to validate the data center infrastruc-

ture model and the software application model presented in Chapter 3. First, the

specifications of the physical infrastructure used for validation are described along

with details of the software application and the synthetic workload generated to feed

the real system. Next, the canonical operations measured from the physical system

and the same synthetic workload are passed as inputs to the simulator modeling the

behavior of the infrastructure. Finally, the experimental setup and critical assump-

tions that put the validation process in context are covered.

5.2.1 Downscaled Infrastructure

For validation purposes, a downscaled version of the physical IT infrastructure in a

Fortune 500 company was utilized. This infrastructure is illustrated in Figure 5-1

and consists of a single data center in North America, DNA serving a population of

local clients, CNA:

" Tiers: The data center is comprised of four server tiers: the application server

tier T(2 ,,o 2), the database server tier T(1''' 64 ) the file server tier T(1'''12 ) and

the index server tier T ''64 ). The superscript in T'(a,b,) indicates the number of

servers a, the number of cores per server b and the memory per server c in GB.

" SANs: T 8 and Tdb are connected to two identical SANs, san(, 20,15 K). The

superscript in san(abc) indicates the number of SAN servers s, the number of

disks b and the speed of each disk c in rpm.

" Network Links: There are two types of network links, one interconnecting server

tiers, L(1,4 5), and another one connecting tiers with SANs, L(4,0.5). The super-

script in L(a,b) indicates the bandwidth a of the link in Gbps and the latency b

in ms.
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Figure 5-1: Physical (Downscaled) IT infrastructure in a Fortune 500 company uti-
lized for validation of the hardware and software models.

5.2.2 Synthetic Workload

The software that the Fortune 500 company executed for validation purposes on this

IT infrastructure is a Computer-Aided Design (CAD) application. CAD software is

used in the process of design and documentation of products, and allows multiple

designers and engineers to work on different parts of a product concurrently and

collaboratively. Popular examples of collaborative CAD software are CATIA [20],

AutoCAD [7] and Creo Elements/Pro [70].

The CAD software utilized for the validation experiments is decomposed into eight

client, CNA, initiated operations:

1. LOGIN: Clients present their credentials to Tpp and this grants access allowing

them to launch other operations.

2. TEXT-SEARCH: Clients search for design parts using the text-based search

feature. This is done by querying an index file previously created by T& and

that is hosted by Tap.

3. FILTER: Clients filter search results by introducing additional parameters to

the text-search terms submitted to T,,.



4. EXPLORE: Clients analyze the relationships of a design part by navigating a

tree structure. This operation involves metadata queries between T,, and Tdb.

5. SPATIAL-SEARCH: Clients can analyze the relationships of a design part

by navigating a 3D snapshot of this part and its neighbors using Ti2-

6. SELECT: Clients can select a specific 3D area in a 3D snapshot and retrieve

the list of the parts included within that space by querying Tdb through Tapp.

7. OPEN: Clients can open a part (selected either via text or spatial search) and

get the full detail of the model. This requires querying Tdb to make sure that

the part is available in T,. Then the file is downloaded directly from Tf8 .

8. SAVE: Clients can save changes carried out in the model. Analogous to the

OPEN operation, before the file upload a Tdb update is required.

A Series is defined, as a sequential concatenation of these operations preserving

the order in which they have been introduced above. Three different types of series

were used for validation: Light, Average and Heavy. The name of these series cor-

responds to the volume of information manipulated by the operations that compose

them. Light series manipulates small file sizes, while Heavy series manipulates large

file sizes. Table 5.1 presents the timings for series type and operation type. It can

be observed that the timings for the first six operations (LOGIN, TEXT-SEARCH,

FILTER, EXPLORE, SPATIAL-SEARCH and SELECT) are very similar across dif-

ferent series types. On the contrary, the last two operations (OPEN and SAVE) have

substantial differences across series types. The manipulation of larger file sizes does

not affect the duration of the first six operations, primarily because these operate on

metadata, and metadata is not affected by the size of the file. Nevertheless, the last

two operations directly operate on (i.e. read and write) the files and therefore their

duration is proportional to their size.



Light Series Average Series Heavy Series
Operation Name Duration (s) Duration (s) Duration (s)

LOGIN 1.94 2.2 2.35
TEXT-SEARCH 4.9 5.11 4.99

FILTER 2.89 2.6 3
EXPLORE 6.6 6.43 5.92

SPATIAL-SEARCH 12.18 12.15 12.38
SELECT 5.7 6.2 5.34

OPEN 30.67 64.68 96.48
SAVE 36.8 78.21 113.01

TOTAL 101.68 177.58 243.47

Table 5.1: Duration of the operations by type and series.

5.2.3 Message Cascades for CAD Operations

Figures 5-2 through 5-5 illustrate the message sequences for the eight CAD opera-

tions utilized in the validation experiments. Different operations can share the same

sequences or the entire message cascade, but they differ on the parameter array R

associated to each message. For example, OPEN and SAVE operations in Figure 5-5

illustrate identical message cascades, but the variations in the parameter array R of

each message make SAVE approximately 20% more expensive.

The parameter array R for each message m in each operation is obtained from

a detailed decomposition of the canonical cost of the operation. The canonical cost

is obtained by launching CAD operations individually using the real software on the

infrastructure presented in Section 5.2.1 and measuring the computational, memory,

disk and network cost in every component at every step of the operation.

5.2.4 Experiments & Assumptions

The validation was carried out running three separate experiments. These exper-

iments utilize the three series types (light, average and heavy) defined in Section

5.2.2. Each experiment indicates the frequency of launch of each series type. For ex-

ample, during Experiment-1 (15-36-60), one light series is launched every 15 seconds,

one average series every 36 seconds and one heavy series every minute.
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1. Experiment-1 (15-36-60): 15s (Light) - 36s (Average) - 60s (Heavy)

2. Experiment-2 (12-29-48): 12s (Light) - 29s (Average) - 48s (Heavy)

3. Experiment-3 (10-24-40): 10s (Light) - 24s (Average) - 40s (Heavy)

All the frequencies chosen for the experiments are shorter than the duration of

the shortest series, therefore, overlap between series is expected. When more than

one series overlap, multiple messages compete for resources in the infrastructure and

this is reflected in the utilization of the hardware simulated. Experiment-i specifies

the largest periods of time between series and imposes the least pressure on the

infrastructure. On the contrary, Experiment-3 sets the shortest periods between

series, and hence, puts the highest pressure on the system.

For each experiment, a "cold" start of the infrastructure is assumed. Each series

is considered to be initiated by a different client. Clients do not have local copies of

the files requested (local cache empty), and hence, a file download is always required.

No caching between tiers of the data center is allowed. No background jobs were

executed concurrently with the experiments in neither the physical infrastructure nor

the simulated infrastructure.

Each experiment has three phases, namely, Initial Transient State, Steady State,

and Final Transient State. The duration of each experiment is established by setting

the duration of the Steady State to 31 minutes. In the three cases the duration of the

entire experiment resulted to be approximately 38 minutes. Data collection for the

comparison between the physical and the simulated infrastructures was performed by

sampling all the component states in both systems every six seconds.

The goal of the validation experiments was to compare both systems within the

linear operation zone, without reaching the saturation of any of the resources. Sat-

uration of resources leads to nonlinear behaviors, which is beyond the scope of this

research.



5.3 Simulation Result Evaluation

In this section the results of the three experiments defined in Section 5.2.4 in the

physical and simulated infrastructure are directly compared. First, the number of

concurrent clients running in both systems is compared. Next, the CPU utilization in

application (Ta,,pp), database (Tdb), file (T 8 ) and index (Ta) server tiers is compared,

along with the corresponding memory measurements. Finally, the accuracy results

are summarized and compared against the results presented by previous work on

evaluation of computer systems.

5.3.1 Concurrent Client Validation

The number of concurrent clients in DNA is equivalent to the number of series under

execution that overlap in each experiment. Since both systems are fed with the same

workload and both are operating within the linear operation zone, it is expected

that the number of concurrent clients predicted using GDISim will follow closely the

numbers measured in the physical infrastructure.

Figure 5-6 illustrates the evolution of the number of concurrent clients in the

physical and simulated infrastructures for each of the three experiments (1-2-3). It

can be observed that Experiment-1 results in approximately 22 concurrent clients

in steady state, while Experiment-3 imposes the most pressure on the system with

approximately 35 clients in steady state.
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Figure 5-6: Comparison between the number of concurrent clients by experiment in the physical and simulated infrastructures.



5.3.2 CPU

Figures 5-7 to 5-10 illustrate the CPU utilization measurements for the Tapp, Tdb, T,

and Tid, tiers in the three experiments (1-2-3) for both the physical infrastructure and

the simulated infrastructure. The three phases (Initial Transient, Steady State and

Final Transient) mentioned in Section 5.2.4 are noticeable in the three experiments

for the four tiers measured.

The CPU utilization of a tier x at time sample t, during experiment y is obtained

by averaging the utilization of all the cores across the servers that compose that tier.

The value measured from the physical infrastructure is represented by PT, (ta), and its

simulated counterpart by P4, (t,). The average utilization and standard deviation in

the steady state phase for tier x and experiment y are represented by ppg (Equation

5.1) and o-p (Equation 5.2) for the physical infrastructure, and jp (Equation 5.3)
T" T,

and op, (Equation 5.4) for the simulated infrastructure, respectively.
Tz

These results are summarized in Table 5.2. N, is the number of samples taken

during the steady state phase starting at to and ending at tN.-1-

1 tiZtNS-l

ye = - ( Pt (ti) (5.1)
S ti=to

1 N -1

o-P, =__-_____P_,___t____-_p _ (5.2)\ NP

pp= (- Z , (ti) (5.3)

Ns ti~to 
j

1 ti"--t 2

o-p = - t)-p (5.4)

As expected, measurements consistently show that Experiment-3 imposes the

highest pressure on the infrastructure during the steady state, while Experiment-

1 the least. This effect is present in all the tiers of the infrastructure. In general,

the average CPU utilization predicted for the steady state phase follows the average



measured in the physical infrastructure, with a maximum error of approximately 6%

for the database tier Tdb. The standard deviation of the predicted CPU utilization

in steady state follows closely, with a maximum value of approximately 15% for the

file server tier T 8 . In general, predicted values result in a slightly higher standard

deviation than the values measured during physical experiments.
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Experiment-1 Experiment-2 Experiment-3F____~~ I kl g ___ ___

____ T___ ___ T T ''T IIT1~IL
Tapp 55.84 58.59 4.27 5.71 71.60 72.80 5.64 6.68 81.81 79.80 4.79 7.18
Ta_ 39.04 43.07 4.54 5.76 49.20 54.98 4.61 5.48 57.20 62.83 6.30 7.82
Tf. 40.60 42.93 10.87 11.26 49.87 48.63 10.66 10.98 56.68 52.55 12.06 14.70
TIf 19.04 19.91 4.34 5.06 29.20 28.87 4.61 5.22 36.99 33.03 6.43 7.92

Table 5.2: Ipg pp, , urp and op by experiment and measurement.
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5.3.3 Memory Validation

The simulator takes as input the memory cost of each message in each operation. The

memory cost is obtained by profiling the execution of an operation launched by a single

client in the physical infrastructure. GDISim computes the memory utilization of a

server by accumulating the total memory usage of concurrent clients simultaneously

allocating memory in that machine. Unfortunately the model does not take into

account alternative components such as memory pools in the kernel or memory pools

in the runtime environment.

Measurements of memory utilization of the physical infrastructure showed the

following behavior for each tier:

1. Tapp: A flat utilization of 32 GB was measured in the application servers for the

duration of the entire experiment for the three experiments executed.

2. Tdb: A flat utilization of 28 GB was measured in the database server for the

duration of the entire experiment for the three experiments executed.

3. T.,: A flat utilization of 12 GB was measured in the file server for the duration

of the entire experiment for the three experiments executed.

4. Td: A flat utilization of 12 GB was measured in the index server for the

duration of the entire experiment for the three experiments executed.

For the three experiments and all the tiers of the physical infrastructure the ab-

sence or existence of workload did not augment or shrink the memory utilization.

The memory utilization remained flat, as set to the size of the memory pools. The

kernel maintains a flat memory profile by swapping intermediate data to disk, while

the memory utilization caused by the clients in the simulated experiments is orders

of magnitude smaller than the memory pool size of the runtime environment.

Under these circumstances, it is concluded that the current method to estimate

memory allocation is not sophisticated enough and requires the addition of models

considering the effects of the Operating System and the runtime environments.
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Experiment CPU Tapp CPU Tdb CPU Tf, J CPU Tid #C R
1: 15-36-60 9.07% 11.41% 7.51% 6.12% 5.98% 5.01%
2: 12-29-48 9.94% 12.56% 7.05% 5.40% 5.12% 6.92%
3: 10-24-40 10.11% 11.29% 7.42% 5.83% 6.52% 6.62%

Table 5.3: Root Mean Square Error (RMSE) by experiment and measurement.

5.3.4 Accuracy Assessment

In Section 5.3.2 the average and standard deviation CPU utilization of the physical

and simulated steady state phases were compared for each tier (Tpp, Tdb, T 8 and

Tix) and in each of the three experiments. However, the goal of this section is

not only to compare average and standard deviation values in steady state, but to

calculate the error between measured and predicted values for the entire duration

of each experiment and provide a measure of accuracy. Table 5.3 presents the Root

Mean Square Error (RMSE) for each experiment and tier. Additionally, the number

of concurrent clients and response times are compared using this metric as well. The

RMSE is calculated as in Equation 5.5.

RMSE 1 ti tN-1(5 )

RMSE = 3 (PT, (ti) - 14, (ti)) (5.5)
Nt =to

PT, (ti) is the average CPU utilization value measured in the physical infrastructure at

time step tj at tier x during experiment y, while PT, (ti) is its simulated counterpart.

N is the number of samples taken during the experiment starting at to and ending at

tN-1-

Table 5.3 shows that the RMSE of the CPU utilization between the physical and

simulated infrastructures ranged between approximately 5% to 13%, with Tdb and T,

consistently producing the largest disparity across the three experiments. The RMSE

of the number of concurrent clients between the physical and simulated infrastructures

was 5.1-6.5%, while the response time error ranged between 5.0-6.9%

The response time estimates of this work are comparable to the results provided

by previous work on evaluation of computer systems. Urgaonkar et al. reported
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estimates of response time in their analytic model for multi-tier data centers with

confidence intervals of 95% [85]. Similarly, MDCSim reported an average deviation

of 10% in the latency of the operations simulated.

5.4 Summary

In this chapter the process to validate the hardware and software models presented

in Chapter 3 has been presented. The procedure utilized is based on the comparison

between a physical infrastructure running a CAD software application and a simulated

infrastructure modeling both the hardware and the CAD software application.

First, details on the physical infrastructure used for validation and operations

composing the CAD software were provided. Next, the three experiments executed

in both infrastructures, physical and simulated, were explained, along with the under-

lying assumptions. The measurements collected in both systems were gathered and

reported, in order to facilitate the assessment of the feasibility and accuracy of the

data center and software models constructed in Chapter 3. Results show that not only

are response times comparable to previous work in this field, but also that data center

operators can benefit from CPU utilization estimates as they provide insight into the

capacity planning of a system. Finally, the results of the analysis indicate that mem-

ory allocation models require more granularity on the OS and runtime environment

in order to be valuable.
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Chapter 6

Data Serving Platform

Consolidation

6.1 Introduction

In this chapter, the potential of GDISim is demonstrated through a data center

consolidation case study carried out for a Fortune 500 company. This company is

currently running eleven data centers spread across different continents. These data

centers are responsible for providing the employees the capability to create and ma-

nipulate information assets throughout the organization, particularly by establishing

the foundation to run collaborative Computer-Aided Design software, which is key

for the creation of products in this company.

The continuous improvement of hardware, software and networks, along with the

constant process of cost reduction and simplification of IT infrastructures, have pri-

oritized the target to cut costs in the Data-Serving Platform of this Fortune 500

company. The approach is to reduce costs by consolidating data centers, while 1)

maintaining the same user experience for clients consuming the data, 2) utilizing in a

cost-effective manner the hardware allocated for each data center, and 3) optimizing

the background processes that enable having productivity and availability enhancing

features such as search or replication.

The chapter is organized as follows. First, the characteristics of a Data-Serving
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Platform are introduced, along with the custom requirements established by the For-

tune 500 company. Next, the simulation inputs and the corresponding predicted

outputs are presented. Finally, the results of this case study are summarized.

6.2 Data Serving Platform

Data-Serving Platforms are hosted, centrally-managed, but geographically distributed

systems that serve data to one or multiple internet-scale web or native applications

running in mobile or desktop environments. Figure 6-1 illustrates a traditional data-

serving platform for a global organization. Data centers in different locations are

responsible for giving service to the subset of clients in their geographic proximity.

This distributed nature has two inherent advantages:

" Low-Latency: Reduced distances between clients and the data result in lower

latency impact for access to information. Greenberg et al. [38] corroborate the

importance of geographical distribution in the pursuit of lowering latency.

" High-Availability: Multiple redundant copies of data files increase the avail-

ability of the information, and the existence of multiple replicas reinforces the

fault-tolerance of the system.

Unfortunately, the positive characteristics provided by geographical distribution

carry inherent negative side effects. Problems that do not exist in geographically

centralized systems suddenly become challenging in distributed infrastructures. Typ-

ically two problems surface: Stale Data and Unsearchable Data.

" Stale Data: Propagation of file changes in one location is not carried out in-

stantaneously to the others, and clients in remote locations may access "stale"

versions of the recently modified file.

" Unsearchable Data: "Fresh" data files need to be searchable by clients in any

data center, but their registration into the index may require not only the

analysis of these new data files but also all their relationships.
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Figure 6-1: Illustration of a generic Data Serving Platform.

Typically, these effects can be alleviated by the introduction of automated back-

ground processes that, while running simultaneously with other software applications,

perform the data movement and processing tasks necessary to minimize the inter-

vals in which stale versions are exposed or data is unsearchable. In order to support

these background processes some (but not all) data centers will require enhanced data

management capabilities. Furthermore, background processes must be carefully mon-

itored and the underlying infrastructure of the platform appropriately dimensioned,

taking into account the impact of these processes in conjunction with application

workloads. It is critical to guarantee that background processes have no interference

with software applications and that they do not degrade client experience.

Summarizing, the design of Data Serving Platforms seeks the compromise of the

following five characteristics:

* Scalability: It is desirable to have the ability to scale up on data volume gener-

ated and client population served by adding resources with minimal operational
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effort and minimal impact on system performance.

" Response Time and Geographic Scope: Fast application response times to geo-

graphically distributed clients under dynamic load conditions is required.

" High Availability and Fault Tolerance: High degree of availability, with application-

specific tradeoffs in the degree of fault-tolerance, is required in conjunction with

a degree of consistency that is deemed acceptable in the presence of faults.

" Consistency: Specific applications may require serializability of transactions.

Nevertheless, serializability can be inefficient and often unnecessary; hence many

distributed replicated systems go to the extreme of providing only eventual

consistency. The platform is required to provide different consistency levels,

strict and eventual, on an application basis.

" Cost: The cost of a globally distributed system under dynamic workloads can

be easily underestimated or overestimated. In order to run a successful platform

platform it is necessary to fulfill the requirements established by the other four

characteristics while building a cost-effective infrastructure.

6.3 Platform Requirements

In this section, the requirements established by the proposal to reduce IT infras-

tructure costs are presented. These requirements are divided into three groups: 1)

Infrastructure and Network requirements, 2) Software and Workload requirements,

and 3) Performance and Service level requirements.

6.3.1 Infrastructure and Network Requirements

The cost reduction initiative proposes downsizing the IT infrastructure from eleven

data centers to six, one per continent (except Antarctica). Each data center will

be responsible for serving data to geographically proximal clients (i.e. in its same

continent). Data centers will be connected through high-speed networks. Background
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processes will guarantee that the latest version of data files is accessible and searchable

by clients associated to any data center.

Data centers will have different capabilities and responsibilities. In the consoli-

dated infrastructure, one data center, DNA will be denoted as the Master Data Center

(MDC), while the rest (DEU, DAS, DSA, DAFR and DAUS) will be Slave Data Cen-

ters (SDC). In addition to the data-serving capability provided by file server tiers

(T.,) in the SDCs, the MDC contains additional resources (application servers Tapp,

database servers Tam and index servers Ti2) for file management operations. The con-

solidated infrastructure is illustrated in Figure 6-2. The infrastructure must provide

the following file management capabilities:

" Authentication & Authorization: Tapp is responsible for checking the credentials

of the clients demanding access to the data served by the infrastructure. Addi-

tionally, Tapp checks whether the client has permission to launch the operation

requested. For example, some clients will be granted read-only access to the

data and will not be authorized to save files.

" Versioning: Tdb entries store meta-data associated with each data file. The

database server is responsible for registering the history of modifications of

each file, along with pointers to the current and older versions. It also keeps

information about the status of the versions stored in the SDCs.

" Synchronization & Replication: In order to guarantee that file changes are

propagated to data centers with stale versions, the MDC runs a continuous

synchronization process that copies files across data centers. Additionally, file

replication policies will keep multiple copies of one file in the same data center

and across data centers, so as to guarantee fault tolerance.

" Indexing: In order to make newly created or modified data searchable by clients,

it is necessary to update search indices. For the case of text files, the words

present and their relevance are considered towards the index build process.

For the case of 3D model files, a navigable snapshot representing the spatial
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Figure 6-2: Proposed consolidated Data Serving Platform for the Fortune 500 com-
pany.

relationships between files is constructed. Index build processes are carried out

in T

6.3.2 Software and Workload Requirements

The Fortune 500 company is required to run three software applications that ma-

nipulate the files provided by the Data-Serving Platform: Computer-Aided Design

(CAD), Visualization (VIS) and Product Data Management (PDM). Simultaneously,

the Data-Serving Platform executes two background processes to enable enhanced

data management capabilities, these processes are: Synchronization &1 Replication

(SR) and Index Build (IB).

* Computer-Aided Design (CAD): CAD software is created to facilitate the pro-

cess of design and design-documentation. Typically, CAD environments not

114



only produce drafts of technical and engineering drawings, but also convey rele-

vant information such as materials, processes, dimensions, and tolerances. CAD

operations are the same as in Section 5.2.2: LOGIN, TEXT-SEARCH, FILTER,

EXPLORE, SPATIAL-SEARCH, SELECT, OPEN and SAVE.

" Visualization (VIS): VIS software is created to provide quick access to 2D and

3D models, their relationships and supporting information, in order to facilitate

decision-making. VIS operations are analogous to CAD operations, but the

volume of the data manipulated during file opening and saving is considerably

smaller. VIS operations are: LOGIN, TEXT-SEARCH, FILTER, EXPLORE,

SPATIAL-SEARCH, SELECT, OPEN and SAVE.

" Product Data Management (PDM): PDM software is a tool to track and con-

trol data related to a particular product. Typically, the data associated to

this product involves technical specifications, specifications for manufacture

and development and the list of materials required to produce it. PDM oper-

ations are: BILL-OF-MATERIALS, EXPAND, PROMOTE, UPDATE, EDIT,

DOWNLOAD AND EXPORT.

" Synchronization & Replication (SR): SR is a background process running in

the MDC that periodically schedules a sequence of file movements between data

centers to ensure that multiple copies of the latest files exist and are available in

all geographic locations. This process has two phases: Pull and Push. During

the Pull phase, the subset of files that were modified since the last execution

of the SR process are collected and transmitted from SDCs to the MDC. Upon

reception of these files the Push phase is started, the MDC keeps a copy of each

new file and scatters another to all the SDCs except from the file creator. SR

has a single operation called SYNCHREP.

" Index Build (IB): IB is a background process running in the MDC that period-

ically analyzes newly created or modified files and updates both the text-search

index and the 3D snapshots for spatial-search. The subset of files brought to
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Figure 6-3: Background processes running on the IT Infrastructure of the Fortune
500 company.

MDC as part of the Pull phase of the SR process is flagged to be indexed. Peri-

odically, the IB process collects and processes the files flagged. IB has a single

operation called INDEXBUILD.

SR and IB processes are illustrated in Figure 6-3. The consolidated infrastructure

must serve data to the same client population that the original infrastructure sup-

ported. In some geographic locations multiple data centers will be merged into one.

In these cases the resulting data center must be resized to be able to accommodate

the sum of the application workloads of the original merged data centers.

SR is launched every ATSR. If the duration of ATSR is less than the duration

of SYNCHREP, then multiple independent SYNCHREP operations will overlap. On

the contrary, IB is launched ATIB after the last INDEXBUILD operation concluded.

Therefore, only one INDEXBUILD operation can run at a time.
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6.3.3 Performance and Service Level Requirements

The primary performance requirement for the consolidated infrastructure is to have

the capacity to accommodate the worldwide workload of the original infrastructure

during the peak periods of the day, and during the busiest days of the week, without

jeopardizing the client experience and keeping operation response times aligned to

their baseline values. Saturation of resources in any of the servers comprising the

infrastructure produces nonlinear behavior that results in the degradation of client

experience. Therefore, the consolidated infrastructure must guarantee capacity to

absorb peak workloads while keeping a sensible distance from saturation and utilizing

infrastructure resources in a cost effective manner.

The secondary performance requirement for the consolidated infrastructure is to

be able to run CAD, VIS and PDM operations along with SR and IB background

processes without exceeding 20% of the capacity of the network. In the future, the

organization running the system may need to increase the number of applications

running on top of this data center infrastructure or may need to deploy a parallel

data center infrastructure that is interconnected through the same network infras-

tructure. Under these circumstances, the company allocates 20% of the network for

these specific applications and requires that this limit is not exceeded.

The primary service level requirement for the consolidated infrastructure is to

serve data files to geographically distributed clients with the lowest latency possible.

Ideally, for this to happen, clients should be able to receive the latest versions of

the files they need from their local (closest) data center. Unfortunately, propagation

of file changes does not happen instantaneously and the probability of the latest

version of a file being locally available depends on the frequency of execution of

the synchronization and replication process. The effectiveness of the SYNCHREP

operation is indicated by the maximum time that a stale file can reside in a data

center without being replaced by its latest version, this is denoted as R"'. On

the contrary, overly frequent execution of the synchronization operations imposes an

additional load on the system that could lead to saturation of the servers. For these
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reasons, it is necessary to find a synchronization operation frequency that yields a

compromise, keeping R" at acceptable levels whilst not exposing the infrastructure

to the risk of saturation.

The secondary service requirement for the consolidated infrastructure is to mini-

mize the time interval between the creation or manipulation of data files and the in-

stant that this new information is searchable within geographically distributed clients.

Analogous to the synchronization operation, the performance of the index build pro-

cess depends on the launch frequency of the operation as well as the resources utilized

for the process. Nevertheless, unlike synchronization which can be carried out in par-

allel, indexing requires the analysis of relationships between multiple interrelated files

and this step might not be parallelizable. The effectiveness of the INDEX BUILD

operation is indicated by the maximum time that new data remains unsearchable by

other clients. This is denoted as Rj". Hence, it is necessary to configure an index

build operation that yields a compromise of keeping Ry" at acceptable levels whilst

not placing the infrastructure at risk of saturation.

6.4 Consolidation: Simulation Inputs

In this section the inputs passed to GDISim to evaluate the effects of the cost re-

duction proposal are presented. The simulator accepts information about the data

centers forming the consolidated infrastructure and the network topology that in-

terconnects them. Next, the definitions of the operations representing the software

that will be launched on this infrastructure along with their corresponding workloads

are presented. Finally, the definitions and schedules of the operations representing

background processes are covered.

6.4.1 Infrastructure Hardware & Topology

Figure 6-4 illustrates the global network of data centers that comprise the consolidated

infrastructure. The hardware specifications for each tier in each data center and the

connectivity characteristics between them are indicated using the same notation as
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Figure 6-4: Proposed consolidated infrastructure hardware and network topology
specifications.
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Figure 6-5: CAD software application workload in different data centers.

in Section 5.2.1.

6.4.2 Software Applications & Workload

This section includes information about the message cascades used to represent soft-

ware operations and the corresponding workloads to be launched in the consolidated

simulated infrastructure.

Computer Aided Design (CAD)

Figure 6-5 shows the weekly (workdays) CAD workload to be imposed on the consol-

idated infrastructure by each data center. CAD workloads follow repetitive patterns,

but it is noticeable that Wednesdays receive the highest population of CAD clients.

The simulator will focus on the worst case scenario taking this day as a reference

workload. The peak time of the day occurs when DNA and DSA overlap with DEU

with a peak population of over 2000 CAD clients.

The distribution of operation types is assumed to be uniform throughout the day
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Figure 6-6: VIS software application workload in different data centers.

for these simulation experiments. The CAD operation definitions are identical to the

ones presented in Section 5.2.3.

Visualization (VIS)

Figure 6-6 shows the weekly (workdays) VIS workload to be imposed on the consoli-

dated infrastructure by each data center. Thursdays show the highest population of

VIS clients and the simulator will take this day as reference. The peak time of the

day occurs when DNA and Ds^ overlap with DEU, with a population of over 2500

VIS clients.

The distribution of operation types is assumed to be uniform throughout the day

for these simulation experiments. The VIS operation definitions are identical to the

CAD operations. They only differ on the R parameter arrays that encode the cost of

each message.

121



1,600

1,400

1,200

-AUS

-AS
-EU

600 -AFR
j - NA

Global

400

0
7/13 7/14 7/15 7/16 7/17 7/18

Time (GMT)

Figure 6-7: PDM software application workload in different data centers.

Product Data Management (PDM)

Figure 6-7 shows the weekly (workdays) PDM workload to be passed to the consoli-

dated infrastructure by each data center. PDM workloads follow repetitive patterns,

but it is noticeable that Wednesdays receive the highest population of PDM clients.

The simulator will focus on the worst case scenario taking this day as a reference

workload. The peak time of the day occurs when DNA and DSA overlap with DEU,

with a population of almost 1400 PDM clients.

The distribution of operation types is assumed to be uniform throughout the

day for these simulation experiments. Primarily, PDM operations represent database

transactions of different types. These involve long sequences of interactions between

clients C and Tdb via T,,pp. No other tiers are involved. The operation definition for

PDM operations is omitted for simplicity.
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Figure 6-8: Message cascade for the SYNCHREP operation

6.4.3 Background Processes

While CAD, VIS and PDM applications are launched by clients, SR and LB are

triggered by lightweight daemon processes running within DNA

Synchronization & Replication

Figure 6-8 describes the sequences of messages that occur as part of the SYNCHREP

operation. R represents the daemon process responsible for scheduling and managing

the synchronization & replication process. As explained in Section 6.3.2, SYNCHREP

can be divided into two phases, Pull and Push.

During the Pull step, R queries the database for a list of files that have been

modified in a specific data center and that need to be propagated to the rest. Then,

these files are copied from that SDC to the MDC. Pull steps corresponding to different

data centers are executed simultaneously.

The Push step carries out the opposite action. R queries the database for a list
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Figure 6-9: Message cascade for the INDEXBUILD operation

of files whose latest version is missing in a specific SDC and need to be copied from

the MDC to that SDC. Similarly, Push steps corresponding to different SDCs are

executed simultaneously.

SYNCHREP operations are launched every ATSR = 15 min, regardless of whether

there are other SYNCHREP operation instances running at the same time. Each

SYNCHREP operation takes care of the subset of files modified during that ATSR =

15 min interval.

Index Build

Figure 6-9 describes the sequences of messages that occur as part of the INDEXBUILD

operation. I represents the daemon process responsible for scheduling and managing

the index build process. The index build process is launched every ATIB = 5 min

after the completion of the previous INDEXBUILD operation execution. Therefore,

only one INDEXBUILD can be running at a time.
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Figure 6-10: Data growth (MB) by hour by data center

Data Growth

The impact and effectiveness of the SR and IB processes is directly related to the

volume of new data generated in different data centers at different times of the day.

GDISim takes information about the data growth in each data center and uses the

average file size to estimate the number of files to be transferred during the Pull and

Push steps of the SYNCHREP operation. The average file size for this simulation is

50 MB. Figure 6-10 shows the data growth measurements provided by the Fortune

500 company to be utilized in the simulation.

Using the data growth information, it is possible to derive the volume of infor-

mation that will be moved during the Pull and Push phases at different times of the

day. This is illustrated in Figure 6-11. As it could be expected, during the peak

workload hours (DNA and DSA overlap with DEU) the largest volume of information

is generated and must be propagated to the rest of data centers.
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Figure 6-11: Data volume (MB) to be transferred during Pull/Push phases to/from
DNA

6.5 Consolidation: Simulation Outputs

This section presents the results produced by GDISim after running it with the in-

formation about the consolidated infrastructure gathered in Section 6.4. The results

are classified into four sections: First, the CPU utilization measurements for different

tiers and data centers are presented. Second, observations about the network utiliza-

tion of the infrastructure are explained. Third, the effectiveness of the SR and IB

operations is analyzed by estimating Rs', and RjfX. Finally, the client experience

in different data centers is evaluated.

6.5.1 Computation Performance Results

Figures 6-12 and 6-13 illustrate the CPU utilization predictions delivered by GDISim

for the server tiers in DNA and in DAUS respectively. The CPU utilization values

shown represent the average utilization across servers in the same tier. The remaining

data centers yield comparable conclusions to DAUS and are omitted for simplicity.

DNA is the master data center and all the operations launched worldwide are
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Figure 6-12: CPU Utilization (Tpp, Td, Tf, and Ta&) in DNA

authorized through this data center. For these reasons, DNA is expected to be the

busiest data center and it is critical to keep it under saturation limits. Figure 6-12

shows an estimation of approximately 73% utilization in Ta, at 15:00 (GMT), which

is the busiest time of the day with ~6000 clients logged into the system and ~2000

concurrently manipulating data. Tdj (32%), Ti4, (30%) and Tf, (31%) also have their

peaks near 15:00 (GMT) but their utilization is below Tap.

DAUS is a slave data center that serves files exclusively to the clients that are

geographically close to it. As shown in Figure 6-13, the utilization of Tf, follows

closely the local workload and the estimation is approximately 3.5% which presents

a very low saturation risk.

6.5.2 Network Performance Results

In this section, a sleeping data center is defined as a data center location outside its

9-hour local business hour window, while an active data center is defined as a data

center location within its local business hour window. The period with the largest

load on the network, 12:00-16:00 (GMT) is caused by two phenomena that are directly
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Figure 6-13: CPU Utilization (Tf,) in DAUS

related to each other.

* Peak Workload: 12:00-16:00 (GMT) is the peak workload time, when the largest

population of users are using the global network to initiate operations that

require communication between the SDCs and the MDC. In particular, this

affects the network links of the data centers that overlap during this period of

time, LNAMEU and LNAMSA

e Peak Data Growth: The largest population of concurrent clients coincides with

the largest volume of data creation during 12:00-16:00 (GMT). DNA and DEU

are the data centers reporting the largest volumes of new files. During this

overlap period, the MDC pushes the files created by DNA and DEU to the rest

of the data centers simultaneously. In particular, this affects all the links con-

necting DNA with all the sleeping SDCs. It is important to note that although

DEU is an active SDC, the LNAMEU link is loaded not only with the requests

generated by its active client CEU population, but also with the data transfers

to (Pull) and from (Push) DNA
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LNA-+SA 48
LNA-+EU 43
LNA-+AS1 59
LEU-+AFR 0
LEU-AS1 0
LAS1-+AFR 53
LAS14AS2 47
LAS1-+AUS 54

Table 6.1: Average utilization of the allocated capacity during 12:00-16:00 (GMT)
for each network link.

Table 6.1 presents the estimations produced by GDISim for the average utilization,

pu of the allocated capacity (20%), for the 12:00-16:00 (GMT) interval by network

link. LEU-+AFR and L EUAS1 are redundant network links that are used only in case of

failure. Even if these backup links could be used for load balancing the traffic to ASI

across network links, this is out of the scope of this experiment. The results illustrate

that pushing the new data to sleeping data centers takes almost 60% of the allocated

capacity (12% from total) in the LNA-AS1 link. LNA-EU is a critical network link

that must be monitored, not only because it is receiving new data from DNA but

because it is also serving a population of approximately 1700 clients simultaneously.

The utilization of this link is 43% (8.6% from total).

6.5.3 Background Process Performance Results

Figure 6-14 illustrates the response time estimation of the Synchronization & Repli-

cation and Index Build background processes predicted by GDISim. The response

time represents the duration of the operation, from the time it was launched until its

conclusion. In both cases, the duration of these processes is directly dependent to the

volume of new information generated.

The interval of the day with the largest generation of new data, 12:00-15:00

(GMT), results in the period of time with the largest response time for the SYN-

CHREP operation. From Figure 6-14 it can be estimated that R" = 31 min. Stale
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Figure 6-14: Response time of the background processes (SR and IB)

versions of data files will be exposed for a maximum time of approximately 31 minutes

during the peak workload period of the day.

The INDEXBUILD operation behaves slightly differently. This operation is also

directly affected by the period of time with the largest data generation. Nevertheless,

the fact that each operation is launched a constant amount of time after the previous

iteration concluded, allows new files to be accumulated while the operation is run-

ning. This execution policy results in a cumulative effect in which INDEX BUILD

operations take longer, even after the peak workload has been left behind. For this

reason, the largest response time for INDEXBUILD is produced at 17:00 GMT and

it is estimated that RI7 = 63 min.

6.5.4 Client Experience Results

Figures 6-15 through 6-20 illustrate the evolution of the operation response time

through the day for the CAD, VIS and PDM software applications at the DNA and

DAUs data centers as predicted by GDISim. The estimations for the remaining data

centers are analogous to DAUs and axe omitted for simplicity.
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Figure 6-15: Response times for CAD operations in DNA
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Figure 6-16: Response times for VIS operations in DNA
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Figure 6-17: Response times for PDM operations in DNA
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Figure 6-18: Response times for CAD operations in DAUS
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Figure 6-19: Response times for VIS operations in DAUS
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Figure 6-20: Response times for PDM operations in DAUS
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Operation op RNA UsJg ROPP/RQA (%)
CAD LOGIN 2.2 3.62 4 64.54

CAD TEXT-SEARCH 5.11 6.51 2 27.39
CAD FILTER 2.6 4.00 2 53.84

CAD EXPLORE 6.43 15.53 13 141.52
CAD SPATIAL-SEARCH 12.15 21.95 14 80.65

CAD SELECT 6.2 11.1 7 79.03
CAD OPEN 64.68 65.38 1 1.08
CAD SAVE 78.21 78.91 1 0.89

Table 6.2: Response time variation for CAD operations caused by the latency in
DAUS.

It was a requirement of the consolidated infrastructure that operation response

times for all the applications remain unperturbed in spite of the peak application

workloads. Below hardware saturation limits, response times are expected not to

show any degradation, and this was confirmed by GDISim in both data centers DNA

and DAUS for all the applications.

It is necessary to point out the impact of latency in operation response times.

While there is no degradation of response times caused by workload variations, there

are some differences in these timings for geographically distant data centers. This di-

vergence is caused by network latency and becomes significant for operations involving

multiple MDC-SDC interactions.

Table 6.2 illustrates the impact of latency for clients launching operations from

the DAUs data center compared to operations initiated locally by DNA clients. RNA

and RA~us represent response times for operation op in DNA and DAUS respectively. S

represents the number of round-trips between DNA and DAUS as part of operation op.

AR, is the difference between R US and R ARoRA represents the difference

relative to the response time in DNA. It is noticeable that lightweight operations

involving multiple round trips (EXPLORE, SPATIAL-SEARCH or SELECT) suffer

a significant degradation due to latency, while the impact of latency is negligible for

heavy operations involving few trips (OPEN and SAVE).
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6.6 Result Evaluation

This chapter presented the evaluation of a proposal to cut costs in the IT infras-

tructure of a Fortune 500 company. The proposal suggested to reduce the number

of data centers from eleven to six, one in each continent (except Antarctica), while

maintaining the service levels to the same client population and using resources in a

cost effective manner. For this purpose, GDISim was utilized to assess the feasibility

of the changes proposed in the consolidated infrastructure.

First, the nature and purpose of a Data-Serving Platform is introduced in Section

6.2. Geographical distribution of data centers is presented as a double-edged sword.

The high availability and low-latency benefits are emphasized, while explaining the

challenges arising as a consequence of manipulating data files concurrently in different

geographical locations. Next, the performance and service requirements imposed by

the Fortune 500 company on its Data-Serving Platform are introduced in Section 6.3.

In Section 6.4, the inputs passed to GDISim to reproduce the behavior of the

consolidated infrastructure are gathered. This section covers details on the hardware

and network specifications of the proposed system along with information on the

software application workload and background processes scheduled.

The execution of the simulator using these inputs produced a report containing

estimations that are explained in detail in Section 6.5. The hardware and network

specifications of the consolidated infrastructure established by the Fortune 500 com-

pany resulted in a peak CPU utilization of 73% in Tpp E DNA and a peak occupation

of 60% in the LNA-+AS1 network link. Client experience was not degraded and oper-

ation response times were kept workload-agnostic in all data centers.

In addition to evaluating the resources necessary to serve a worldwide client pop-

ulation working with CAD, VIS and PDM software, GDISim provided valuable feed-

back on the impact and effectiveness of the background processes utilized for global

synchronization and indexing. The maximum time a file version could remain stale

before receiving an update is approximately 31 minutes. Similarly, the maximum time

a new file could remain unsearchable by some data centers without being registered
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in the index is approximately 63 minutes. The Fortune 500 company found these

values acceptable.

Additionally, GDISim facilitated the understanding of the impact of latency in

remote data centers, along with workload and data growth dynamics allowing data

center operators to identify critical parts of the infrastructure and inefficiencies of the

software.
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Chapter 7

Background Process Optimization

7.1 Introduction

In this chapter the potential of GDISim is demonstrated again by estimating the

impact of alternative synchronization, replication and indexing mechanisms for Data

Serving Platforms based on recent research on very-large data repositories.

First, the concepts of Data Ownership and Relaxed Consistency and their impli-

cations are introduced. Next, the set of new parameters required by the simulator

to reproduce the behavior of an infrastructure composed of multiple master data

centers is presented. GDISim takes these parameters along with parameters intro-

duced in Chapter 6 with minor alterations. Upon execution of GDISim with the new

configuration, the computational utilization, network occupancy and response times

are presented, focusing particularly on unveiling the effects of Data Ownership and

Relaxed Consistency. Finally, the conclusions of these experiments and the potential

benefits for the Fortune 500 company are summarized.

Throughout this chapter, the infrastructure simulated in Chapter 6 is referred as

the Consolidated Infrastructure, while the new system is called the Multiple master

infrastructure.
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7.2 Data Ownership & Relaxed Consistency

In this section the Data Ownership and Relaxed Consistency ideas and their impli-

cations are explained.

7.2.1 Data Ownership

Chapter 6 did not explicitly introduce the concept of ownership of files by data centers,

nevertheless the ownership idea was utilized in an implicit manner. Data Ownership

by a data center in a Data Serving Platform can be defined as "the exclusive right for

a data center to control and be responsible of the management operations associated

to a file hosted by the Data Serving Platform". Therefore, when a data center owns

a file it is responsible for coordinating the metadata operations that control version-

ing, synchronization with other data centers, fault tolerance through replication and

indexing for text and spatial search.

In Chapter 6 the master data center, DNA, was responsible for the metadata

management operations of all the files served by the Data Serving Platform. Conse-

quently, DNA was the owner of all the files in the system and slave data centers only

provided fast local access to information.

On the contrary, it is proposed in Chapter 7 that this responsibility is shared by

upgrading all six locations to master data centers. In this scenario, files are assigned

to the data center that is geographically closest to the largest volume of requests.

This is illustrated in Figure 7-1.

With this new configuration, all data centers have file management capabilities

and are responsible for smaller subsets of files. This requires the upgrade of five data

centers form slaves to masters and results in a smaller number of managed files per

data center when compared to the original DNA in the consolidated infrastructure.

Therefore, the resources required by the multiple master data center are expected to

be less than in the original DNA

Access patterns for a file can change over time and this trend can lead to the

majority of requests for a file to shift to an area closer to a data center that is not
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Figure 7-1: Example illustrating that file fa is owned by DEU because the largest
volume of requests is originated from this data center.

the owner data center. These dynamics can be accommodated by transferring all the

metadata associated to a file from the old owner data center to the new owner.

7.2.2 Relaxed Consistency

Due to the nature of the applications executed on top of the Data-Serving Platform,

no inconsistent states are allowed. Nevertheless, in the pursuit of guaranteeing con-

sistency, traditionally two extreme consistency models are contemplated:

1. Serializable Transactions: A set of transactions is serializable if its outcome

is equal to the outcome of the transactions executed serially [10]. Supporting

serializable transactions over a geographically replicated distributed system can

be very expensive, and often inefficient [39]. Due to the performance and avail-

ability requirements imposed by the Fortune 500 company, serializability for

transactions is considered impractical.

2. Eventual Consistency: Many geographically distributed systems go to the op-

posite extreme by providing only eventual consistency. In eventual consistency,

clients update any replica of a file and eventually all the updates across different

replicas are applied, but in different orders in different replicas [69]. This mech-

anism is too weak for the requirements imposed by the applications running in
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the Fortune 500 company.

The Fortune 500 company demanded consistency guarantees that fall between

these two extremes. It required Timeline Consistency per file, which means that all

replicas of a data file apply the updates in the same order. The consolidated infras-

tructure evaluated in Chapter 6 provided timeline consistency per file by applying

changes during the pull and push phases in order.

Nevertheless, in the context of this Data-Serving Platform comprised of multiple

MDCs, it is necessary to distinguish between two different consistencies, Data Con-

sistency and Index Consistency. Data consistency refers to the consistency of the

data files served by the Data Serving Platform, while index consistency refers to con-

sistency of the index files generated by running the index build process in multiple

master data centers.

1. Data Consistency: The synchronization and replication of one data file is inde-

pendent from the rest of the files served by the Data Serving Platform. Conse-

quently, having six master data centers launching six independent SYNCHREP

operations that apply pull/push phases in order, delivers the same timeline con-

sistency guarantees that the single master data center did, for the consolidated

infrastructure. However, since each master data center pulls/pushes only the

modified file subset that is responsible for, it is expected that the duration of

the SYNCHREP operation will be shorter. In turn, six concurrent SYNCHREP

operations are expected to increase the network occupancy.

2. Index Consistency: As opposed to the synchronization and replication process,

in which each file can be treated independently, the index build process not only

requires the fresh file to be indexed, but also depends on multiple files through

spatial or textual relationships. In the case of the single master data center, the

index process is straightforward. All the required relationships and the file that

is going to be indexed are locally available, and more importantly, these are the

latest versions of each file. Consequently, the spatial or text index generated

is completely up to date. The case of multiple master data centers is different.
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The indexing process in a data center is guaranteed to have the latest version of

the file to be indexed because it is owned by this data center. But may not have

the latest of one or more of its relationships, particularly if these are owned by

different data centers. Consequently, the spatial or text index generated is not

inconsistent, but is only "partially consistent". Upon arrival of the latest version

of the relationship files via the push phase of other SYNCHREP operations, the

index is updated and will become "eventually consistent". It is expected that

the durations of the INDEXBUILD operations in the multiple master case will

be shorter than the INDEXBUILD for the single master case.

While a Data Serving Platform comprised of multiple masters delivers the same

timeline consistency guarantees for data files that the single master platform did, the

process of generating the spatial and text indices in different master data centers

can only guarantee eventual consistency. The feasibility of a Data Serving Platform

comprised of multiple masters relies on the capacity to accept the relaxation of the

consistency guarantee of the indexing process, from timeline consistency to eventual

consistency. At this point, it is the responsibility of the data center operators to

analyze the impact of eventual consistency of the indexing process on current and

future software applications exploiting data served by the infrastructure.

7.2.3 Related Work

In this Section two pieces of recent work are presented which focused on the op-

timization of synchronization, replication and indexing. In both cases, the system

pursues high availability and low latency access for a large population of clients and

is designed around the concepts of ownership and consistency.

PNUTS is a massively parallel and geographically distributed database system

constructed by Yahoo for serving data to web applications [19]. PNUTS is designed

to provide access to database records in ordered tables for large numbers of client

requests (read and write) with low latency and per-record consistency guarantees. In

order to be able to support a larger number of applications, PNUTS allows relaxed
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Figure 7-2: The proposed new infrastructure is comprised by six master data centers.

consistency guarantees. The platform does not require serializable transactions, but

imposes stronger requirements than only eventual consistency. PNUTS provides per-

record timeline consistency by requiring replica updates to be applied in order.

Amazon's Dynamo is a key-value storage system than prioritizes high-availability

to guarantee that clients receive an "always-on" experience [22]. As opposed to

PNUTS which provided a relaxed consistency guarantee, Dynamo only guarantees

eventual consistency. Eventual consistency is achieved through a quorum-like tech-

nique and a decentralized replica synchronization protocol.
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7.3 Multiple Master: Simulation Inputs

7.3.1 Infrastructure Hardware & Topology

Figure 7-2 illustrates the global network of master data centers that compose the new

infrastructure. The hardware specifications for each tier in each data center and the

connectivity characteristics between them are indicated using the same notation as

in Section 5.2.1.

As opposed to the infrastructure in Section 6.4, this new configuration required

to upgrade five data centers from SDCs to MDCs, but in return, the specifications

of DNA were scaled down. Tpp E DN was reduced from eight servers to four

and Tdb E DNA decreased its number of cores from 64 to 32. The rest of the data

centers, except from DEU, utilized a single machine for each tier with the same

machine specifications for S,,pp, but a smaller database in Sdb (eight cores as opposed

to 32). DEU is the second largest population and file owner in the infrastructure, and

therefore, it requires three servers in Tapp and 16 cores in Sdb.

Memory, network and SAN storage specifications remained unaltered for the sim-

ulation of the multiple master infrastructure.

7.3.2 Software Applications, Workloads & Access Patterns

The message cascades modeling software operations and their corresponding work-

loads remain unchanged and are the same as in the consolidated infrastructure simu-

lated in Chapter 6. Nevertheless, in this Section a new input parameter that reflects

access patterns in different data centers is introduced. This is denoted as the Access

Pattern Matrix (APM). The APM indicates the percentages of ownership of the files

requested by each data center. The APM matrix for the consolidated infrastructure in

Chapter 6 is shown in Table 7.1. In the simulation of the consolidated infrastructure

all the files accessed from any of the six data centers were owned by DNA.

For the simulation of the multiple master infrastructure the Fortune 500 company

measured the APM, and the results are presented in Table 7.2. It is noted from
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Data Owner
Data Access (%) D I DIV^ D AUvs D, ^ D^AP D^AS Total

DEU 0 100 0 0 0 0 100
DNA 0 100 0 0 0 0 100
DAUS 0 100 0 0 0 0 100
DSA 0 100 0 0 0 0 100
DAFR 0 100 0 0 0 0 100
DAS 0 100 0 0 0 0 100

Table 7.1: Access pattern matrix for the consolidated infrastructure.

Data Owner
Data Access (%) D D DA^ D AJvs D A F D Total

DEU 83.65 12.71 1.67 1.04 0.13 0.81 100
DNA 15.47 81.87 1.56 0.91 0.01 0.18 100
DAUS 31.24 13.72 50.28 0.18 4.35 0.23 100
DSA 38.99 17.55 3.42 39.87 0.08 0.09 100

DAFR 36.49 31.38 13.45 0.26 17.66 0.78 100
DAS 61.00 30.45 2.39 0.85 0.04 5.27 100

Table 7.2: Access pattern matrix for the multiple master infrastructure.

this table that DEU and DNA own the subsets of files with the largest demand from

the rest of data centers. Most of their local requests are addressed to themselves or

between them. DAUS and DSA direct most of their requests to themselves, but with

significant fractions to DEU or DNA and with negligible percentages between them.

DAFR and DAS manipulate files primarily owned by the largest data centers.

7.3.3 Background Processes

The message cascades of the SR and IB operations along with the data growth in-

formation utilized in Chapter 6 remain unaltered. The main difference for the in-

frastructure with multiple masters is that each data center will run its own SR and

IB processes exclusively for the data files they own. This is illustrated in figure 7-3.

Consequently, each data center has a pair of parameters (ATSR, ATIB) parameters for

scheduling these processes and another pair (R", R"") for evaluating the response

time of them in each data center.
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operations can run simultaneously. The data volume transferred by SYNCHREP in

DNA is illustrated in figure 7-4. It is noted that during the period 12:00-15:00 (GMT)

the peak data volume transfers have been reduced from approximately 14.25 GB in

the consolidated infrastructure to 8 GB. This is a reduction of 43%.

DEU is the second largest data producer of the Data Serving Platform. In the

new infrastructure, DEU runs its own SYNCHREP operation. The data volume

transferred is illustrated in Figure 7-5, and during the peak period the volume is

approximately 5.5 GB.
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7.4 Multiple Master: Simulation Outputs

This section presents the results produced by GDISim after launching it with the

information provided about the multiple master infrastructure. Analogous to Chapter

6, the computational, network, background process and client experience estimations

are analyzed. Special attention is given to the impact caused by the alterations

explained throughout this chapter.

7.4.1 Computational Performance Results

The benefits of running multiple master data centers are primarily observed in DNA

In Chapter 6, all of the workload originating in the slave data centers directly affected

DNA, since all the operations were routed through this data center. Additionally, DNA

was responsible for the execution of background processes over the entire volume of

files served by the platform. The circumstances for DNA in this new infrastructure is

significantly different. Two effects must be taken into account:

1. Global Workload Offload: The APM shown in Table 7.2 indicates that while

most of the population in DNA(~ 82%) manipulates local data, the rest of

the data centers address their requests only a fraction of what they used to

(13-31%). More importantly, the second largest population of the platform,

CEU, which also overlaps with CNA, only sends 12.71% of the load to DNA.

Consequently, it is concluded that not only does DNA enjoy a significant offload

of requests, but it also depends primarily on the dynamics of its own population

of clients CNA.

2. Synchronization & Indexing Offload: As it was reported in Section 7.3.3, the

peak data volume to transfer by DNA was reduced approximately 43%. Section

6.4.3 showed that SR and IB processes also require interactions with Tapp and

Tdb. In this new infrastructure, the volume of transactions directed to the

application servers and database servers is also significantly reduced.
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For brevity, this section focuses on the impact that these two offload effects have

in Tapp E DNA, Tdb E DNA. These two servers tiers are the cornerstone of the

consolidated infrastructure in Chapter 6. In the multiple master infrastructure, during

the 12:00-16:00 (GMT) interval, GDISim reported a maximum utilization of 78%

in Tapp E DNA and 39% in Tdb E DNA. These values are slightly superior to the

measurements reported in Section 6.5 for the consolidated infrastructure, but it must

be noted that Tapp E DNA is formed by half of the servers simulated in this new

infrastructure and Tdb E DNA reduced the number of cores by a factor of two as well.

On the contrary, the second largest data center in the infrastructure, DE, required

additional computational resources. GDISim reported a CPU utilization of 57% in

Tapp E DEU for a tier comprised of three servers with 32 cores each and 48% for a

Tdb E DEU for a server with 16 cores.

7.4.2 Network Performance Results

Table 7.2 presents the estimates produced by GDISim for the average utilization, pU,

of the allocated capacity (20%), for the 12:00-16:00 (GMT) interval and by network

link. Even though the total volume of information to be transferred remains the same,

the execution of multiple SYNCHREP operations concurrently reduced the response

times and allowed transferring the same volume of information in shorter intervals of

time. Transfers carried out by SYNCHREP operations originated in different data

centers will share the same network links. During the 12:00-16:00 (GMT) interval,

the largest data producers, DNA and DEU will be sharing the same resources for their

respective Pull and Push phases. GDISim reported that, in general, the occupancy

of the network links raised. The busiest link, LNA-+AS1, reached 76% of occupancy

(15% from total).

Given the full connectivity of the Data Serving Platform, it was proposed to the

Fortune 500 company to utilize the L EU-AFR and LEU-+AS1 links, so as to route the

data transfers associated to DEU through these links and hence alleviate LNA-+AS1

and LAS1-+AFR
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IU (%)
LNA-+SA 53
LNA-EU 51
LNA-+AS1 76
LEU-+AFR 0
LEU-+AS1 0
LAS14AFR 67
LAs1-+As2 56
L As1-+AUs 66

Table 7.3: Average utilization of the allocated capacity during 12:00-16:00 (GMT)
interval for each network link.

7.4.3 Background Process Performance Results

Figure 7-6 illustrates the response time prediction produced by GDISim for the Syn-

chronization & Replication and Index Build background processes running in DNA.

The response time represents the duration of the operation, from launch time to its

conclusion. In both cases, the duration of these processes is directly dependent to the

volume of new information generated. This section focuses on DNA because it is the

largest data producer and hence, imposes the worst case scenario.

It was noticeable that the reduction in transferred data volumes by DNA had a

beneficial impact by reducing R"' and R"'".

The interval of the day with the largest generation of new data, 12:00-15:00

(GMT), results in the period of time with the longest response time for the SYN-

CHREP operation. In Figure 7-6 it can be estimated that R'X = 19 min. Stale

versions of data files will be exposed for a maximum time of approximately 19 min-

utes during the peak workload period of the day. Similarly, the maximum longest

response time for INDEX BUILD is estimated to be Ry" = 37 min. Therefore, the

maximum time an index file is outdated was also reduced to 37 min.

7.4.4 Client Experience Results

As was expected from operation below hardware saturation limits, response times for

CAD, VIS and PDM operations launched from different data centers did not show any
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Figure 7-6: Response time of background processes (SR and IB) in DNA

degradation. The response time values reported by GDISim for the multiple master

infrastructure were flat and are almost identical to the ones presented in Section 6.5.4.

These are omitted for simplicity.

Ideally, the possibility to carry out metadata related operations involving multiple

round trips (EXPLORE, SPATIAL-SEARCH or SELECT) locally, as opposed to the

single data center configuration in which metadata operations for remote data centers

involved long distance communication, should have a positive impact on the effect of

latency. Nevertheless, in the case of the Fortune 500 company, most of the requests

originated in remote locations such as DAUS and DAs are addressed to data owned

by DEU and DNA, and thus, in the majority of cases long distance round-trips are

unavoidable. For these reasons, the impact of latency remained unaltered for the

remote data centers in this multiple master infrastructure.
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7.5 Result Evaluation

This chapter presented the GDISim evaluation of a proposed system aimed at opti-

mizing the execution of background processes in the Data-Serving Platform presented

in Chapter 6. The proposed infrastructure added file management capabilities to all

data centers by upgrading these from SDCs to MDCs. Then, using the idea of data

ownership, every data file was associated to a data center that would be responsible

for its synchronization, replication and indexing processes.

By making every data center responsible for the execution of background processes

on a smaller subset of files, the maximum stale replica and maximum outdated index

timings were significantly reduced. Additionally, this distribution of responsibility

allowed the redistribution of hardware infrastructure from DNA to the other data

centers, while maintaining the same client experience results. An increase in the net-

work occupancy was observed, caused by the concurrent execution of synchronization

operations.

While the utilization of multiple master data centers did not require modifica-

tion of the relaxed consistency model for data files, the execution of the indexing

process in this system relies on the acceptance of eventual consistency guarantees

for the index files. Data center operators in the Fortune 500 company will be re-

quired to compromise consistency requirements in the indexing process of the Data

Serving Platform, in exchange for effectiveness and performance improvements in the

background processes executed.
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Chapter 8

Contributions and Lessons Learned

This chapter gathers the lessons learned during the design and implementation of

the Global Data Infrastructure Simulator along with conclusions derived from its

application in resolving the problems that exist in the real IT infrastructure of a

globalized organization.

8.1 Summary of Contributions

In this section, the contributions made by this work to the field of computer system

evaluation are summarized:

1. Horizontal & Vertical Global Infrastructure Evaluation: As opposed to previous

research, which focused on the evaluation of an isolated data center, computer

system or hardware component, GDISim provides a simulation platform that

enables evaluating the system not only horizontally, but also vertically at differ-

ent granularities. The simulator can provide a macroscopic view of the operation

and dynamics of the global IT infrastructure, but is designed to allow data cen-

ter operators to navigate down to individual servers or hardware components

and hence, to facilitate bottleneck detection and optimization tasks.

2. Software Application Diversity: The decomposition of software applications into

operations and the representation of these as cascades of messages, which encode
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the resource allocation inflicted on the components they flow through, provided

the capability to represent arbitrary complex interactions between client soft-

ware and interconnected server tiers across the globe. Data repositories are not

an integral part of the software application anymore. Today, infrastructures

for data collaboration separate software applications from the data itself, creat-

ing Data-Serving Platforms. These infrastructures are responsible for providing

access to information with high availability and low latency for an ecosystem

of decentralized software applications. GDISim is aligned with this model and

enables data center operators to reproduce the behavior of concurrent software

applications that manipulate the same pool of files served by a Data-Serving

Platform.

3. Background Jobs: Geographically distributed Data-Serving Platforms are re-

quired to be consistent, fault-tolerant and capable of performing large-scale

search. These characteristics are achieved by scheduling synchronization, repli-

cation and indexing processes that move, copy and analyze data files in the

background, concurrently with client generated workloads. Previous research

does not contemplate the impact that these processes have on resource utiliza-

tion and the subsequent risk of jeopardizing client experience. GDISim enables

data center operators tuning these processes to maximize their effectiveness

while remaining seamless for clients manipulating the information.

4. Simulator Validation: GDISim was validated on a downscaled version of the

real infrastructure of a Fortune 500 company running a real software applica-

tion with different workload intensities. The RMSE metric was utilized for the

comparison between the physical and simulated systems. The RMSE for op-

eration response times was comparable to previous research on analytic data

center modeling and simulation. Nevertheless, as opposed to other initiatives,

GDISim provided details on CPU utilization of the infrastructure that resulted

in a maximum deviation of 13%. Validation experiments also concluded that

memory allocation models require additional sophistication in order to take into
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account the effects of the Operating System and runtime environments.

5. Platform Scalability: Simulation time is directly related to the number of hard-

ware components and client population that form the simulated infrastructure.

During the last decade, the advent of cloud computing has made clients lighter

and IT infrastructures have grown to thousands or tens of thousands of servers.

Experiments with GDISim were carried out for a small IT infrastructure in a

Fortune 500 company, but still simulation time was found to be significant. Nev-

ertheless, the goal is to have the capacity to reproduce the behavior of larger

infrastructures. As important as getting accurate results from a simulator is

to get these results on a timely manner. For these reasons GDISim imported

parallelization techniques from MAS in other fields of research so as to provide

a degree of scalability with multicore.

8.2 Lessons Learned

1. Consensus-Seeker: The complexity of modern IT infrastructures makes it im-

possible for a single data center operator to understand and master all the

dynamics of workload, data growth, hardware, software or network. For these

reasons, the design and maintenance of an IT infrastructure is carried out by

groups of IT professionals specialized in particular components of the system.

Typically, these individuals do not have detailed knowledge beyond their area

of responsibility. GDISim not only allows IT professionals to understand the

behavior of the system in and out of their area of expertise,but also serves as

a baseline from which decision makers can align their thinking and reach con-

sensus on system alterations. The process of collecting and gathering data for

the simulation of the consolidated infrastructure and the interpretation of the

predictions produced by GDISim was not only useful in terms of quantitative

results for the Fortune 500 company, but it was also a valuable exercise that al-

lowed the IT professionals involved in the study to gain a broader understanding

of the system.
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2. Componentized Modular Simulation: This research did not construct new queue-

ing models for hardware components, but utilized models designed and validated

for the last two decades as a foundation for the construction of a large-scale net-

work of queues that represents an entire IT infrastructure. This research showed

that the implementation of these queueing models into components and their

interconnection to create higher level entities allowed construction of a mod-

ular and flexible platform that reproduces the behavior of arbitrarily complex

and different computer systems. While other approaches were purely analyti-

cal, purely profiling or purely simulation, GDISim merges the three techniques

into one by implementing analytic models, feeding these with data obtained by

profiling and reproducing the behavior of the system through simulation.

3. Data Ownership: GDISim showed that providing file management capabilities

to a Data Serving Platform through multiple smaller master data centers as

opposed to having a single data center responsible for all metadata related op-

erations can be beneficial in many different ways. If the index file consistency

can be relaxed, the responsibility to run synchronization, replication and index

build background processes can be partitioned across data centers by file own-

ership. A data center owns a file if most of the activity pertaining to that file is

originated by the clients local to this data center. Distribution of file manage-

ment responsibility among data centers has beneficial consequences, such as,

smaller footprints for master data centers, better utilization of networks and

minimization of the maximum stale replica and outdated index intervals.
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Chapter 9

Future Work

The goal of the GDISim simulation platform was to facilitate the answering of ques-

tions related to hypothetical design scenarios for a global IT infrastructure. This was

achieved for the infrastructure of a Fortune 500 company. However the design and

development of this simulator also revealed a number of unknowns and research direc-

tions that could be investigated further. The goal of this chapter is to briefly describe

these potential future research initiatives that could further develop GDISim. These

initiatives are divided into three groups, Hardware Modeling, Software Modeling and

Simulation Platform.

9.1 Hardware Modeling

9.1.1 Multithreading

The software applications modeled in this research launched operations that were

executed on a single thread in each server. Pull and Push phases transferred data

from/to different data centers in parallel, but launching a single thread in each loca-

tion. Hence, GDISim did not contemplate the possibility of using multiple threads

for the execution of a single operation. The CPU model presented in Section 3.4.2

assigned a single thread per processing task queued in the component. Future work

could consider the possibility of combining queue-servers dynamically for the execu-
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tion of multiple threads per processing task and hopefully reproduce the performance

boost provided by multithreaded platforms.

9.1.2 Cache Hierarchy

GDISim modeled caching effects by enabling data center operators to specify percent-

ages of cache hits that would allow operations bypassing computation or I/O steps.

Nevertheless, these models do not reflect the specifications of the underlying memory

hierarchy of the CPU or the NAS and SAN controllers. Additionally, caching hierar-

chy has proven to be beneficial under some circumstances, as indicated by Kazempour

et al. [47], particularly for multithreaded execution. For these reasons, in the future

computational and I/O models should reflect the particularities of caching hierarchy

in the hardware modeled.

9.2 Software Modeling

9.2.1 Client Behavior

The simulation of the infrastructure of the Fortune 500 company was carried out

assuming that clients launched operations independently and that the probability

distribution of operation types remained uniform throughout the day. Even though

for simulation purposes these assumptions might be sufficient, neither of these as-

sumptions follow real client behavior.

As explained in Section 3.5, clients may choose to launch a specific operation type

with higher probability depending on the time of the day. For example, it is likely

that most of the client population will be logging into the system in the morning to

begin their workday.

Additionally, operations are not independent of each other and the probability

to launch an operation may depend on the history of previous operations launched.

For example, after a client carries out a text search and an exploration of the tree

structure of parts, it is likely that the chosen part will be opened. Similarly, after a
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spatial-search and a 3D selection of parts, it is likely that the chosen parts will be

downloaded.

For these reasons, in future work clients should carry an identity and launch

operations based on their previous activity and time of the day. Given a sample of

real client activity throughout the day, data can be partitioned into uniform intervals

and for each partition a Markov Chain can be constructed to produce the matrix

of initial and transition probabilities for that specific interval of the day. Transition

probabilities indicate the probability of launching an operation based on the previous

activity. Markov chains are a popular tool for modeling internet user behavior [9] [62]

[32].

9.2.2 Operating System & Runtime Impact

In this research, the impact of the OS and runtime environments on the utilization

of hardware resources was assumed to be negligible. Nevertheless, depending on the

OS and runtime configuration chosen by data center operators this might not be

the case. Multiple processes with different responsibilities can be scheduled to be

executed while the system is being loaded with clients. This can have an impact

on the performance of the system and subsequently, on the experience of clients.

Examples of these processes are: software updates, scheduled security software runs,

scheduled defragmentation, etc. Typically, it is preferred to configure the OS to

execute these processes manually as it is found convenient by the operator, rather

than automatically.

Similarly, Section 5.3.3 emphasized the impact of memory pools in the memory

utilization of the servers while these are under zero or minimal load conditions. In

order to model memory utilization of different software applications accurately, it is

necessary to construct models that incorporate the details of memory allocation in

the kernel and in the runtime. Additionally, in some cases Garbage Collectors (GC)

can pause the execution of all application threads. This is also an effect that should

be taken into account when considering CPU utilization.

Future research should account for the impact of these OS and runtime effects if
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they are found to interfere with the software applications being modeled. For this

purpose, the construction of a configurable OS model with its corresponding set of

operations is proposed. Data center operators will be able to enable/disable these

effects by passing these as simulator inputs analogous to other software applications.

9.2.3 File Identity

GDISim does not assign identities to files and assumes that all files have the same

importance. However, in practice some files will have more demand than others and

multiple clients may collide when requesting the same information simultaneously. If

the volume of requests for an object produces a spike, this object is denoted as a

Hotspot or Hot Object. Bodik et al. worked on the characterization and modeling of

these objects [12].

The existence of Hotspots has positive and negative implications. It is beneficial

to have the possibility to cache the object in memory and accelerate access to the

information for clients. Similarly, the object can be replicated across machines in the

same T, so as to increase its availability. Unfortunately, the increased demand also

increases the probability of conflicts when committing file updates. The larger the

time a replica of a hot object remains stale, the higher the probability of collisions

will be. Under these circumstances, it is critical to keep the Ry" and Ry" values

for Hot Objects to a minimum.

The introduction of file identity in GDISim would open the possibility of simulat-

ing and understanding a relevant space of problems that might be of interest to data

center operators and critical for any organization.

9.3 Simulation Platform

9.3.1 Cross-Machine Scalability

GDISim was designed to obtain acceleration from multithreaded execution and scale

with the number of cores. Nevertheless, GDISim targeted organizations in which
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IT infrastructure was not the core of the business itself and its footprint was small

compared to the tens of thousands of servers running in internet-scale organizations.

In order to simulate the infrastructures in these companies, it is necessary for GDISim

to be able to run in a cluster.

The port abstraction in Port-Based programming does not impose a communi-

cation protocol between agents. An agent sending a message to the port of another

agent may choose the communication protocol based on the location of the receiver

and its own location. Agents sharing the same machine can communicate through

cross-thread exchange of pointers to locations in shared memory, while agents sitting

on different machines can communicate via MPI or web protocols. An implementa-

tion of communication between ports distributed across local networks or the internet

is given by Decentralized Software Services (DSS) [40] a runtime environment that

sits on top of the CCR library that was introduced in Section 4.2.3.

Another possibility for the execution of GDISirn in a cluster is the utilization of

a cluster technology called Virtualization for Aggregation. This technology provides

a hypervisor that combines commodity x86 servers to create a virtual symmetric

multiprocessing system. A commercial example of this technology is ScaleMP [77].

Virtualization for aggregation combines the resources of multiple servers and makes

these available as a single aggregated machine with a single Operating System sitting

on top of a hypervisor. This setup allows GDISim to run on a larger number of cores

than is available in a single machine. Nevertheless, further optimization of the task

dispatcher mechanism introduced in Section 4.3.5 would be required in order to get

performance improvements in spite of cross-machine communication.

9.3.2 Visualization, Restoration Points & Branches

Currently, GDISim does not have a visualization component that enables viewing

the state of the infrastructure as the simulation progresses. The collector component

measures the state of every component and writes the data to the disk for post-

processing. Construction of charts and tables is executed automatically offline upon

termination of the simulation.

161



In addition to the possibility of visualizing and evaluating the state of the sim-

ulated infrastructure through graphs and charts in runtime, it would be valuable to

provide the capability to create Restoration Points. Restoration points are snapshots

of the entire infrastructure at specific time steps. These snapshots do not only reg-

ister the averaged utilization and occupancy of the components but also contain the

location and contents of the messages flowing across the infrastructure. Restoration

Points provide the capability of navigating simulation time backwards and replaying

intervals of the day with alterations of the input parameter set. These modified sim-

ulation paths are called Branches. Branches enhance the capabilities of the simulator

by enabling data center operators to introduce unexpected events at any point of the

simulation and compare different paths, for example, reproducing failures in servers,

incorrect configurations or broken network links in a situation of peak workload.

9.4 Concluding Remarks

Evaluation techniques for computer systems has been an active field of study for the

last four decades and with high probability will continue to be as systems become

larger, more heterogeneous and complex. In the past, many research initiatives in this

field were created to model accurately a single component, software or situation for

a specific purpose. Even if these succeeded in their mission, in most of the cases the

initiative was finalized without leaving open paths for further application or study.

In this dissertation, GDISim is presented as a platform that interconnects many of

these older initiatives to create a large-scale yet flexible and modular simulator that

reproduces the behavior of IT infrastructures. The author of this work believes that in

the same way that the creation of civil infrastructures is supported by the utilization

of simulators, the operation of IT infrastructures will not only consider tools like

GDISim valuable but eventually necessary.
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Appendix A

Notation

A.1 Kendall's Notation

In queueing theory, Kendalls notation is the standard system used to describe and

classify the queueing model that a queueing system corresponds to [49]. Initially,

it was presented as a three factor notation system A/B/C, but later versions have

enhanced the notation to include three additional factors A/B/C/K/N - D.

" A: represents the arrival process. Most common distributions are Markovian

(M), Erlang (Ek) and General (G).

" B: represents the service time distribution. Most common distributions are

Markovian (M), Erlang (Ek), Degenerate (D) and General (G).

" C: represents the number of service channels.

" K: represents the total capacity of the system. If the number is omitted it is

assumed to be unlimited (oc).

" N: represents the size of the source. If the number is omitted it is assumed to

be unlimited (oo).

" D: represents the queueing discipline. Commonly used disciplines are First

Come First Served (FCFS), Priority (PNPN) and Processor Sharing (PSk,

where k is maximum number of simultaneous customers).
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In this dissertation A/B/C - D will be used since K and N are assumed to be
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