
Saving Energy in QoS Networked Data
Centers

by

Mohammad Shojafar

A thesis submitted
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Information and Communication Engineering
at

Sapienza University of Rome

Certified by:
Enzo Baccarelli

Scientist
Thesis Supervisor

May 2016
XXVIII

I would like to dedicate this thesis to my loving parents and my lovely wife Nasim . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done
in collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 150,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 250 figures.

Mohammad Shojafar
May 2016

XXVIII

Acknowledgements

I owe my deepest gratitude to my adviser - a very humble and kind person - Professor
Enzo Baccarelli. Without his advice, this work would have not shaped up the way it
has. Throughout my stay in Sapienza University, he has been the most supportive and
understanding person, and has helped me achieve whatever I have craved for. It is only
through his views, that I have learned mostly about a researcher, a professor and most
importantly - an adviser. I cannot forget the support given by my parents (the gods of my life)
for always being there beside me and also my lovely wife - Nasim, from whom I have a lot
to learn in the area of life, philosophy and about myself. Life without friends is incomplete,
like music to a song. I would like to thank my close friends - Hamid and Hossein, who have
made me realize their importance. I will never forget my endless discussions with Professors
Mukesh Singhal and Jemal Abawajy who have taught me how to question everything.

Abstract

One of the major challenges that cloud providers face is minimizing power consumption
of their data centers. To this point, majority of current research focuses on energy efficient
management of resources in the Infrastructure as a Service model using virtualization and
through virtual machine consolidation. However, current virtualized data centers are not
designed for supporting communication–computing intensive real-time applications, such
as, info-mobility applications, real-time video co-decoding. In fact, imposing hard-limits
on the overall per-job delay forces the overall networked computing infrastructure to adapt
quickly its resource utilization to the (possibly, unpredictable and abrupt) time fluctuations
of the offered workload. Jointly, a promising approach for making networked data centers
more energy-efficient is the use of traffic engineering-based method to dynamically adapt the
number of active servers to match the current workload. Therefore, it is desirable to develop
a flexible and robust resource allocation algorithm that automatically adapts to time-varying
workload and pays close attention to the consumed energy in computing and communication
in virtualized networked data centers (VNetDCs).

In this thesis, we propose three new dynamic and adaptive energy-aware algorithms
scheduling policies that model and manage VNetDCs. Our focuses are to propose i) ad-
mission control of the offered input traffic; ii) balanced control and dispatching of the
admitted workload; iii) dynamic reconfiguration and consolidation of the Dynamic Volt-
age and Frequency Scaling (DVFS)-enabled Virtual Machines (VMs) instantiated onto the
parallel computing platform; and, iv) rate control of the traffic injected into the TCP/IP
mobile connection. Necessary and sufficient conditions for the feasibility and optimality of
the proposed schedulers are also provided in closed-form. Specifically, the first approach,
called VNetDC, the optimal minimum-energy scheduler for the joint adaptive load balancing
and provisioning of the computing-plus-communication resources. VNetDC platforms have
been considered which operate under hard real-time constraints. VNetDC has capability
to adapt to the time-varying statistical features of the offered workload without requiring
any a priori assumption and/or knowledge about the statistics of the processed data. Green-
NetDC is the second scheduling policy that is a flexible and robust resource allocation
algorithm that automatically adapts to time-varying workload and pays close attention to

x

the consumed energy in computing and communication in VNetDCs. GreenNetDC not only
ensures users the Quality of Service (through Service Level Agreements) but also achieves
maximum energy saving and attains green cloud computing goals in a fully distributed
fashion by utilizing the DVFS-based CPU frequencies. Finally, the last algorithm tested an
efficient dynamic resource provisioning scheduler which applied in Networked Data Centers
(NetDCs). This method is connected to (possibly, mobile) clients through TCP/IP-based
vehicular backbones The salient features of this algorithm is that: i) It is adaptive and admits
distributed scalable implementation; ii) It is capable to provide hard QoS guarantees, in terms
of minimum/maximum instantaneous rate of the traffic delivered to the client, instantaneous
goodput and total processing delay; and, iii) It explicitly accounts for the dynamic interaction
between computing and networking resources, in order to maximize the resulting energy
efficiency. Actual performance of the proposed scheduler in the presence of :i) client mo-
bility; ii)wireless fading; iii)reconfiguration and two-thresholds consolidation costs of the
underlying networked computing platform; and, iv)abrupt changes of the transport quality
of the available TCP/IP mobile connection, is numerically tested and compared against
the corresponding ones of some state-of-the-art static schedulers, under both synthetically
generated and measured real-world workload traces.

Table of Contents

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Data Center Structure . 2
1.2 Data Center Issues and Objectives . 5
1.3 Contributions . 6
1.4 Thesis Structure . 9

2 Related Works 13
2.1 Data Center Energy Consumption: A System Perspective 13
2.2 Related Works . 15

3 QoS-aware Green Energy-efficient Schedulers 23
3.1 VNetDC Scheduler . 23

3.1.1 An Adaptive Energy-efficient VNetDC 23
3.1.2 The considered VNetDC model 24

3.1.2.1 Input jobs and offered workload 26
3.1.2.2 Power-limited virtualized communication infrastructure . 27
3.1.2.3 Reconfiguration costs 30
3.1.2.4 On the Virtual-to-Physical QoS resource mapping in VNet-

DCs . 31
3.1.3 Optimal allocation of the virtual resources 34

3.1.3.1 Solving approach and optimal provisioning of the virtual
resources . 37

3.1.4 Adaptive online implementation of the optimal scheduler 41
3.1.4.1 Hibernation effects . 41
3.1.4.2 Adaptive implementation of the optimal scheduler 42

xii Table of Contents

3.1.5 Performance comparison and sensitivity 45

3.1.5.1 Simulated stochastic setting 45

3.1.5.2 Impact of the hibernation phenomena and reconfiguration
cost . 46

3.1.5.3 Impact of the VLAN setup and tracking capability 46

3.1.5.4 Computing-vs.-communication tradeoff 50

3.1.5.5 Performance impact of discrete computing rates 51

3.1.5.6 Performance comparison under synthetic workload traces 52

3.1.5.7 Performance comparison under real-world workload traces 55

3.2 GreenNetDC Scheduler . 56

3.2.1 System Model and Considered GreenNetDC Architecture 58

3.2.1.1 The GreenNetDC architecture 58

3.2.1.2 Offered workload . 59

3.2.1.3 Workload instances . 60

3.2.1.4 VM characterization . 61

3.2.2 Energy consumptions in GreenNetDC 62

3.2.2.1 ComPutational Cost in GreenNetDC 62

3.2.2.2 REconfiguration cost in GreenNetDC 64

3.2.2.3 CoMmunication cost (CMc) in GreenNetDC 65

3.2.3 The GreenNetDC Optimization Problem and Solution 66

3.2.4 Simulation Results and Performance Comparisons 75

3.2.4.1 Experimental Setup . 76

3.2.4.1.1 TEST-DVFS implementation 77

3.2.4.1.2 Test Workload 78

3.2.4.1.3 Setting of benchmark schedulers 80

3.2.4.2 Experimental Results 81

3.2.4.2.1 Performance effects of VMs hibernation and
dynamic reconfiguration 81

3.2.4.2.2 Performance effects of the communication costs 82

3.2.4.2.3 Performance effects of dynamic computation costs 83

3.2.4.2.4 Performance effects of discrete computation rates 83

3.2.4.2.5 Computing-vs.-communication energy tradeoff 85

3.2.4.2.6 Performance comparisons under synthetic work-
load traces . 86

Table of Contents xiii

4 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Ser-
vices 95
4.1 The Considered VCC Infrastructure . 98

4.1.1 Input traffic and queue model in virtualized Clouds 99
4.1.2 The TCP/IP vehicular cloud architecture 101

4.1.2.1 Offered workload and VMM 102
4.1.3 Computing energy and reconfiguration cost in virtualized Clouds . 103

4.1.3.1 Computational cost . 103
4.1.3.2 Reconfiguration cost . 103

4.1.4 Intra-data center communication 104
4.1.5 Goodput-vs.-energy in TCP/IP mobile connections 105

4.2 The Afforded Resource Management Optimization Problem 109
4.3 The Resulting Adaptive Resource Scheduler 112
4.4 Dynamic Turning ON/OFF VMs . 123
4.5 Test Results and Performance Comparisons 126

4.5.1 Simulated Cloud setup . 126
4.5.2 Simulated vehicular setup . 128
4.5.3 Performance results . 130

4.5.3.1 Fraction of declined requests versus experienced delay . . 130
4.5.4 Mobility effects . 132
4.5.5 Performance tests and comparisons under real-world time-correlated

input traffic . 134
4.5.5.1 Adaptive consolidation and convergence to the optimum . 137

4.5.6 Performance Comparison . 138

5 Conclusion and Hint for the Future Research 145
5.1 Conclusions . 145
5.2 Future Directions of the Research . 149

6 Accomplishment 153

References 157

Appendix A Derivations of Equations (3.23.1)-(3.25) 165

Appendix B Proof of Proposition 5 169

Appendix C Derivations of the GreenNetDC OP solution 171

xiv Table of Contents

Appendix D Derivations of STAS solution over GreenNetDC 173

Appendix E Derivations of modified NetDC and HybridNetDC solutions 175

Appendix F Derivations of the Applied Functions in Algorithm 5 177

List of Figures

1.1 A systematic view of the DC energy consumption modeling and solution.
The data center system optimization cycle consists of four main steps: feature
extraction, model construction, model validation/solution, and application. . 3

2.1 A holistic view of the context for energy consumption modeling and predic-
tion in data centers . 14

3.1 The Proposed VNetDC architecture. 28

3.2 Hibernation phenomena for the application scenario of Sec.3.1.5.3. 47

3.3 E tot for the application scenario of Sec.3.1.5.3 with ke = 0.005, 0.05 and 0.5
(Joule/(MHz)2). 47

3.4 Effects of the link quality on the energy consumptions of the proposed
scheduler (dashed plots) and the benchmark hybrid scheduler (continue
plots) for the application scenario of Sec.3.1.5.3. 48

3.5 Time evolution (in the n-index) of µ(n) in (3.27) for the application scenario
of section 3.1.5.3. 50

3.6 Impact on E tot of the computing-vs.-communication delay tradeoff. 51

3.7 Effects of the computing-rates on the energy performance of the platform of
Fig.3.1. The frequency-switching energy penalty in (3.9) is considered. . . 52

3.8 Measured trace of the arrivals of HTTP sessions at the Web servers of the
1998 Soccer World Cup site [90]. The corresponding PMR and covariance
coefficient ρ equate 1.526 and 0.966, respectively. The flat peaks reflect
buffering delays. 56

3.9 Sampled trace of an I/O workload from an enterprise cluster in Microsoft
[106, Fig.2]. The corresponding PMR and time-correlation coefficient are
2.49 and 0.85, respectively. 57

3.10 The considered GreenNetDC architecture. 60

3.11 Sample traces of I/O workload. 79

xvi List of Figures

3.12 3.12a: E tot and 3.12b:E REc for the application simulation Table 3.4 at Ωi =

5(mW), i = 1, . . . ,M, T = 0.1 (s) and F = F1 in GreenNetDC and the I/O
workload in [106] is considered. 81

3.13 Effects of the link quality on the energy consumptions of the GreenNetDC in the

homogeneous cases (continue plots) and the heterogeneous cases (dashed plots);

The application scenario of Table 3.4 at ke = 0.005 (Joule/(Mbit/s)2), and F = F1

with the workload in Fig.3.11a is considered. 82

3.14 E tot for the second/third test scenarios for the proposed method in 3.14a for
various ke (second scenario) and in 3.14b for various Rt in fixed T and ζi

(third scenario). 83

3.15 E tot and E CPc for the application simulation Table 3.4 with Ωi = 5(mW),
Pidle

i = 50 (mW), i = 1, . . . ,M, ke = 0.005 (Joule/(Mbit/s)2), and F = F1
in GreenNetDC. 84

3.16 3.16a: T ’s Percentage for VMs’ idle mode frequency (Fi1 = 150 (Mbit/s),
i = 1, . . . ,M); and, 3.16b: T ’s Percentage for VMs’ 2nd discrete ranges for
frequency (Fi2 = 1867 (Mbit/s), i = 1, . . . ,M) for the application simulation
Table 3.4 with Ωi = 5 (mW), ke = 0.005(Joule/(Mbit/s)2), F = F1 and
various T = {0.1,1,4} in GreenNetDC, (i.e., we omit 2 remaining largest
ranges, because, there is no time assigned for these ranges in 1000 incoming
workloads). 85

3.17 3.17a: E tot (Joule) for various PMR = {1.25,1.5,1.75,2} vs. T/Tt with
fixed Ltot = 8 (Mbit) and 2 VMs; and, 3.17b: E tot (Joule) for fixed PMR =

1.25 vs. T/Tt with various Ltot = {4,8,12} (Mbit) and various VMs M =

{2,10}, for the application scenarios of Table 3.4 at Ωi = 5(mW),ke =

0.005(Joule/(Mbit/s)2),F = F1 and various T in GreenNetDC. 86

3.18 E tot for the second/third test scenario for the proposed method in 3.18a and 3.18b

for various T and ζ , respectively. 87

3.19 E tot (Joule) for GreenNetDC, NetDC[23], Lyapunov[91] and HybridNetDC[17]
for the application scenario of Table 3.4 at ke = 0.005(Joule/(Mbit/s)2),
Pidle

i = 50 (mW). 88

3.20 Average energy terms of eq. (3.41.1) with PMR=1.25 for the second scenario for

the proposed method-vs.- IDEAL in [68]-vs.- Standard [54]-vs.- NetDC in [23]-vs.-

Lyapunov in [91]. 89

3.21 System time for 1000 workload in the second scenario 90

List of Figures xvii

3.22 Average energy terms of eq. (3.41.1) with PMR=1.25 for the third scenario for the

proposed method-vs.- IDEAL in [68]-vs.- Standard [54]-vs.- NetDC in [23]-vs.-

Lyapunov in [91]. 91

4.1 The considered TCP/IP connection vehicular Cloud architecture. RSU:=Road
Side Unit; CL:=CloudLet; IG:=Internet Gateway; SaaS:=Software as a Service. 97

4.2 Time chart . 105
4.3 Ltot(t) is calculated by time-slot, the x-axis is time-slot and y-axis is the

Ltot(t) which is based on two hard-limits (rmin and s(t)) : the dotted lines (−)
is not exist and just the dark-lines is the result for the input/output workload
of output /input queue. 120

4.4 The adopted Markovian random walk for the simulated client mobility. . . . 128
4.5 Position of VC(j) over Cluster i. 129
4.6 Etot-vs.-r under synthetic input traffic. 131
4.7 Etot-vs.-EW for the synthetic input traffic and various M at Eave = {0.0625,0.005}

(Joule) with various θ . 132
4.8 Admission control: q0 denotes output buffer length in initial slot, with rmin=3.4323,

max(CRT T)= 8.448 and ∆max
IP = 10. 133

4.9 F∗D and T ∗tot(slot) versus the capacity NI = NO (Mbyte) of the input/output
queues of Fig.4.1 for the application scenario of Section 4.5.3.1. 134

4.10 F∗D and T ∗tot(slot) (in multiple of the slot period) versus Eave (Joule) for the
application scenario of Section 4.5.3.1. 135

4.11 Sampled trace of an I/O workload from an enterprise cluster in Microsoft
[106]. The measured arrival rate is in multiple of the slot period and the
reported trace covers more than 120 slot-periods. 136

4.12 Time-behavior of the numerical tested number W (t) of the active VMs under
the application scenario of Table 4.2 at M = 10 for the Cases 2 and 3 of Table
4.3. By design, all the available VMs are turned ON at t = 0. 139

4.13 Ec(i) (Joule) for the proposed DVFS-equipped method-vs.-NetDC method
in [23]-vs.- Lyapunov method in [91] and vs.- gradient-based iterative method
in [83]. 141

4.14 Edyn(i) (Joule) for the proposed method (i.e., using DVFS)-vs.- NetDC
method in [23]-vs.- Lyapunov method in [91] and vs.- gradient-based iterative
scheduler [83]. 142

List of Tables

3.1 VNetDC taxonomy . 36
3.2 Average energy reductions attained by proposed (V NetDC) and the sequen-

tial schedulers over the static one at ke = 0.005 and f max
i = 80. 54

3.3 GreenNetDC notation. 66
3.4 Default values for the first test scenario. 78
3.5 Default values for the second test scenario. 78
3.6 Default values for the third test scenario. 78
3.7 Average energy reductions attained by GreenNetDC, Lyapunov and HybridNetDC

schedulers over the STAS [9]. 92
3.8 Average SLA violation percentage in the GreenNetDC, NetDC, and Hybrid

NetDC. 93

4.1 Main taxonomy of the chapter. 108
4.2 Simulation setup. 128
4.3 Buffers’ size v.s.-delay tradeoff at target r∗ and Etot for various values of the

mobility-depending correlation coefficient h in (4.13) for the synthetic and
real-world input traffic traces [7]. The application scenario of Table 4.2 is
considered. The reported values of h corresponded to client speeds v of 126,
30, and 2.8 (km/h), respectively. 136

4.4 Average performance loss (in percent) of the proposed consolidation algo-
rithm against the exhaustive optimal one. The application scenario of Table
4.2 is considered. 138

Chapter 1

Introduction

The purpose of this chapter is to introduce some basic concepts concerning the world of

Data Centers (DCs) in order to know in what context we are working and so that they can

then better understand the purpose of our work and justify its value and its applications.

It will make first a short description of DC structures as technological paradigm and then

describe some challenges and the proposed objectives to respond them. Cloud computing is

an innovative distributed computing paradigm that is widely accepted by public and private

organizations. The main objective of providers is to obtain maximum profits and guarantee

QoS requirements of customers. One of the main concerns is energy expenditure in this

environment. Therefore, Energy consumption has become a significant concern for cloud

service providers due to financial as well as environmental factors. As a result, cloud service

providers are seeking innovative ways that allow them to reduce the amount of energy that

their data centers consume. This chapter will be shifted attention to the concept of green

Cloud and the problem of current interest in energy conservation with the aim of presenting

the technological environment in the DCs.

2 Introduction

1.1 Data Center Structure

Data Centers (DCs) are large scale, mission-critical computing infrastructures that are operat-

ing around the clock [13, 12, 75] to propel the fast growth of IT industry and transform the

economy at large. The criticality of data centers has been fueled mainly by two phenomenon.

First, the ever increasing growth in the demand for data computing, processing and storage by

a variety of large scale cloud services, such as Google and Facebook, by telecommunication

operators such as British Telecom [57], by banks and others, resulted in the proliferation

of large DCs with thousands of servers (sometimes with millions of servers). Second, the

requirement for supporting a vast variety of applications ranging from those that run for a

few seconds to those that run persistently on shared hardware platforms [13] has promoted

building large scale computing infrastructures. As a result, DCs have been touted as one of

the key enabling technologies for the fast growing IT industry and at the same time, resulting

in a global market size of 152 billion US dollars by 2016 [101]. Data centers being large

scale computing infrastructures have huge energy budgets, which have given rise to various

energy efficiency issues.

A general approach to manage data center energy consumption consists of four main

steps (see Fig. 1.1): feature extraction, model construction, model validation or finding the

solution, and apply the result in the practice as an application of the model to a task such as

prediction. In Fig. 1.1 phases:
i) Feature extraction: In order to reduce the energy consumption of a data center, we

first need to measure the energy consumption of its components [11, 7] and identify where

most of the energy is spent. This is the task of the feature extraction phase.

ii) Model construction: The selected input features are used to build an energy consump-

tion model using analysis techniques such as multi-gradient iteration methods, regression,

machine learning etc. One of the key problems we face in this step is that certain important

system parameters such as the power consumption of a particular component in a data center

1.1 Data Center Structure 3

Fig. 1.1 A systematic view of the DC energy consumption modeling and solution. The
data center system optimization cycle consists of four main steps: feature extraction, model
construction, model validation/solution, and application.

cannot be measured directly. The outcome of this step is a power model. A model is a

formal abstraction of a real system. Models for computer systems can be represented as

equations, graphical models, rules, decision trees, sets of representative examples, neural

networks, etc. The choice of representation affects the accuracy of the models, as well as

their interoperability by people [11].

iii) Model validation and solution: The model needs to be validated for its fitness for its

intended purposes. After validating, it needs to be resolved using online/offline techniques.

iv) Application: The validated model and solution can be used as the basis for predicting

the component or system’s energy consumption. Such predictions can then be used to

improve the energy efficiency of the data center, for example by incorporating the model

4 Introduction

into techniques such as dynamic voltage frequency scaling (DVFS) [48, 46, 98], resource

virtualization [64], improving the algorithms used by the applications [9] or even completely

shutting down unused servers [68][62], etc. In detail, we can use the solution for forecasting

the trends in energy efficiency. It means, in daily operations of computer systems, users and

data center operators need to understand the power usage patterns of computer systems in

order to maximize their energy efficiency. Experimental verification using real test data is

generally expensive and inflexible. Energy models on the other hand are much cheaper and

more adaptive to changes in operating parameters [52]. Many different power consumption

optimization schemes have been developed on top of power consumption models which are

represented as mathematical functions [103]. Power modeling is an active area of research,

studying both linear and nonlinear correlations between the system utilization and power

consumption [13, 12, 57, 101, 32]. One main reason why DC energy consumption is very

high is because servers that are ON but idle do consume significant amounts of energy, even

when they are doing nothing [26]. Therefore, prediction techniques can be used to estimate

future cloud workloads so as to appropriately decide whether and when physical machines

(PMs) need to be put to sleep and when they need to be awakened to accommodate new

VM requests. However, predicting cloud workloads can be very challenging due to the

diversity as well as the sporadic arrivals of client requests, each coming at a different time

and requesting different amounts of various resources (CPU, memory, bandwidth, etc.). The

fact that there are infinite possibilities for the combinations of the requested amounts of

resources associated with these requests requires classifying requests into multiple categories,

based on their resource demands [47]. For each category, a separate predictor is then needed

to estimate the number of requests of that category, which allows to estimate the number of

PMs that are to be needed. Using these predictions, efficient power management decisions

can be made, where an idle PM is switched to sleep only if it is predicted that it will not be

1.2 Data Center Issues and Objectives 5

needed for a period long enough to compensate the overhead to be incurred due to switching

it back ON later when needed.

1.2 Data Center Issues and Objectives

This subsection tackles the most important issues related to the energy-efficient for each

DC. Energy efficiency of DCs has attained a key importance in recent years due to its (i)

high economic, (ii) environmental, and (iii) performance impact. First, data centers have

high economic impact due to multiple reasons. A typical data center (DC) may consume

as much energy as 25,000 households. Data center spaces may consume up to 100 to 200

times as much electricity as standard office space [101]. Furthermore, the energy costs of

powering a typical data center doubles every five years [13]. Therefore, with such steep

increase in electricity use and rising electricity costs, power bills have become a significant

expense for today’s DCs [101, 32]. Second, data center energy usage creates a number

of environmental problems [10, 100]. For example, in 2005, the total data center power

consumption was 1% of the total US power consumption, and created as much emissions

as a mid-sized nation like Argentina [10]. In 2010 the global electricity usage by DCs was

estimated to be between 1.1% and 1.5% of the total worldwide electricity usage [4], while in

the US the DCs consumed 1.7% to 2.2% of all US electrical usage [56]. Finally, running in

the idle mode servers consume a significant amount of energy. Large savings can be made by

turning off these servers. This and other measures such as workload consolidation need to

be taken to reduce DC electricity usage. At the same time, these power saving techniques

reduce system performance, pointing to a complex balance between energy savings and high

performance. The energy consumed by a DC can be broadly categorized into two parts [51]:

energy use by IT equipment (e.g., servers, networks, storage, etc.) and usage by infrastructure

facilities (e.g., cooling and power conditioning systems). The amount of energy consumed

by these two subcomponents depend on the design of the DC as well as the efficiency of

6 Introduction

the equipment. However, modeling the exact energy consumption behavior of a data center,

either at the whole system level or the individual component level, is not straightforward.

In summary, to deal with the challenges highlighted with the above research problems,

the following objectives have been extracted:

• Explore, analyze, and evaluate the research in the area of energy-efficient DCs techniques

to gain a clear understanding of the DC solutions.

• Propose two adaptive distributed job schedulers in order to support real/synthetic work-

loads to preserve energy over the joint of computing and communication part inside

networked data centers (NetDCs) which highlight computing, communication and

reconfiguration costs.

• Develop an offline/online algorithm for energy-efficient distributed dynamic VM consoli-

dation for IaaS environment satisfy QoS constraints.

1.3 Contributions

The main contributions of this thesis can be simplified into 4 categories: classification

and analysis of the DC energy provisioning, competitive analysis of dynamic and adaptive

energy-aware algorithms, a novel adaptive energy-aware algorithm which stresses on the

joint of the TCP/IP-aware QoS mobile connection and computing and communication cost

of the NetDCs, and implementation of problem solution of the aforementioned algorithms.

The key contributions for the competitive analysis of dynamic and adaptive energy-aware

algorithms consist of i) few modeling efforts targeted at power consumption of the entire

data center ii) many state-of-the-art power models are based on a few CPU or server metrics,

and iii) the effectiveness and accuracy of these power models remain open questions.

The second contribution is the competitive analysis of dynamic and adaptive energy-

aware algorithms. In the first type of the proposed method, in order to attain energy saving

1.3 Contributions 7

in such kind harsh computing scenario, a joint balanced provisioning and adaptive scaling

of the networking-plus-computing resources is demanded. To be summarized: first, the

contrasting objectives of low consumptions of both networking and computing energies in

delay and bandwidth-constrained Virtualized NetDCs (VNetDCs) are cast in the form of

a suitable constrained optimization problem, namely, the Computing and Communication

Optimization Problem (CCOP). Second, due to the nonlinear behavior of the rate-vs.-power-

vs.-delay relationship, the CCOP is not a convex optimization problem and neither guaranteed-

convergence adaptive algorithms nor closed-form formulate are, to date, available for its

solution. Hence, in order to solve the CCOP in exact and closed-form, we prove that it

admits a loss-free (e.g., optimality preserving) decomposition into two simpler loosely

coupled sub-problems, namely, the CoMmunication Optimization Problem (CMOP) and the

ComPuting Optimization Problem (CPOP). Third, we develop a fully adaptive version of the

proposed resource scheduler that is capable to quickly adapt to the a priori unknown time-

variations of the offered workload and converges to the optimal resource allocation without

the need to be restarted. In the second type of the proposed method, we introduce a new

approach to decrease energy consumption in computing, communication and switching cost

in online independent workloads running on virtualized cloud with parallel channels which

are assigned for each servers in data centers. We defines SLA as the minimum computing

and communication time, maximal response time in the deployed system. In other words,

each incoming service which is same as the incoming workload has to be processed within

a deadline determined by the SLA which will be defined as a hard deadline parameter for

the system. To clarify the discussion and better place individual contributions in context, we

outlined a framework for cloud resource management, which lays the basis for the core of the

paper, the state-of-the-art energy provisioning approach that particularly considers optimum

VM frequency, optimum bandwidth rate required for each VM, and proper workload quota

for each VM in each incoming workload.

8 Introduction

The third contribution is TCP/IP-aware adaptive energy-aware pursuing some directions

in this thesis which are listed below:

• The global introduction of a novel distributed architecture to energy and performance

efficient dynamic VM consolidation in the VNetDC.

• A novel model that allows a derivation of a randomized control policy that optimally solves

the problem of maximizing the TCP/IP mobile communication goodput and minimizing

the expected energy consumption for the joint computing and communication in

VNetDC under an explicitly specified QoS goal for any known stationary workload

and a given state configuration in the online setting.

• An optimal nonconvex optimization algorithm and proof of its optimality using multi-

gradient stochastic approximation with fast convergence rate.

• A heuristically adapted solution for handling unknown non-stationary workloads using the

time-correlated sliding window while providing the advantage of explicit specification

of QoS goals.

And the ultimate contribution of the thesis is implementing the problem solutions using CVX

[35] (i.e., using MOSEK sub-package), Cloudsim [38], and Matlab optimization packages.

CVX is a Matlab-based modeling system for convex optimization. CVX turns Matlab into

a modeling language, allowing constraints and objectives to be specified using standard

Matlab expression syntax. In its default mode, CVX supports a particular approach to convex

optimization that we call disciplined convex programming. Under this approach, convex

functions and sets are built up from a small set of rules from convex analysis, starting from a

base library of convex functions and sets. Constraints and objectives that are expressed using

these rules are automatically transformed to a canonical form and solved. We use Cloudsim

(i.e., CloudSim is developed in the Cloud Computing and Distributed Systems (CLOUDS)

1.4 Thesis Structure 9

Laboratory, at the Computer Science and Software Engineering Department of the University

of Melbourne) to model and simulate the solutions in a simulated based environment.

1.4 Thesis Structure

The remainder of the thesis is organized as follows:

• Chapter 2 highlights the most recent related works and discuss research issues related

to conflicting requirements of maximizing quality of services (QoSs) (availability,

reliability, etc.) delivered by the cloud services while minimizing energy consumption

of the data center resources.

• Chapter 3 proposes two novel algorithms for distributed dynamic VM consolidation which

are derived from [23], [21], [85], [86], and [22]:

⋄ Nicola Cordeschi, Mohammad Shojafar, Enzo Baccarelli, ”Energy-saving self-

configuring networked data centers”, Computer Networks, ISSN: 1389-1286,

Volume 57, Issue 17, Pages: 3479–3491, Elsevier Science, The Netherlands,

2013.

⋄ Nicola Cordeschi, Mohammad Shojafar, Danilo Amendola, Enzo Baccarelli,

”Energy-efficient adaptive networked datacenters for the QoS support of real-

time applications”, ISSN: 0920-8542, Volume 71, Issue 2, Pages: 448-478,

Springer, The Journal of Supercomputing (SUPE), 2014.

⋄ Mohammad Shojafar, Nicola Cordeschi, Enzo Baccarelli, ”Resource Scheduling

for Saving Energy in Reconfigurable Internet Data Centers”, Handbook of Re-

search on Next-Generation High Performance Computing, IGI Global, to be

appear 2016.

10 Introduction

⋄ Nicola Cordeschi, Mohammad Shojafar, Danilo Amendola, Enzo Baccarelli,

”Energy-Saving QoS Resource Management of Virtualized Networked Data Cen-

ters for Big Data Stream Computing”, Handbook in Emerging Research in Cloud

Distributed Computing Systems, IGI Global, Pages: 122-155, 2015.

• Chapter 4 proposes novel algorithm for distributed dynamic VM consolidation derived

from [83], [84] [82], [18], and [19]:

⋄ Mohammad Shojafar, Nicola Cordeschi, Danilo Amendola, Enzo Baccarelli,

”Energy-saving adaptive computing and traffic engineering for real-time-service

data centers”, Communication Workshop (ICCW), 2015 IEEE International Con-

ference on, London, UK, Page: 1800-1806, 2015.

⋄ Mohammad Shojafar, Nicola Cordeschi, Enzo Baccarelli,”Energy-efficient Adap-

tive Resource Management for Real-time Vehicular Cloud Services”, IEEE Trans-

actions on Cloud Computing (TCC), Volume PP, Issue 99, Pages:1-14, 2016.

⋄ Mohammad Shojafar, Nicola Cordeschi, Jemal H. Abawajy, Enzo Baccarelli,

”Adaptive Energy-Efficient QoS-Aware Scheduling Algorithm for TCP/IP Mobile

Cloud”, Global Communication Workshop (GLOBECOM), 2015 IEEE Interna-

tional Conference on, San Diego, USA, Pages: 1-6, 2015.

⋄ Nicola Cordeschi, Danilo Amendola, Mohammad Shojafar, Enzo Baccarelli, ”Dis-

tributed and Adaptive Resource Management in Cloud-assisted Cognitive Radio

Vehicular Networks with Hard Reliability Guarantees”, Vehicular Communica-

tions, Volume 2, Issue 1, Page: 1–12, Elsevier Science, The Netherlands, 2015.

⋄ Nicola Cordeschi, Danilo Amendola, Mohammad Shojafar, Enzo Baccarelli, ”Per-

formance evaluation of primary-secondary reliable resource-management in ve-

hicular networks”, The 25th IEEE International Symposium on Personal, Indoor

and Mobile Radio Communications(IEEE PIMRC 2014), Page: 959-964, 2014.

1.4 Thesis Structure 11

• Chapter 5 concludes the thesis with a summary of the main findings, discussion of future

research directions, and final remarks.

In the next chapter we make a description on the state of work strictly related.

Chapter 2

State-of-the-art related Works

Regarding the paradigm of Green Cloud (from a technological standpoint and also taking

into account the problem of communication) recent studies that have already taken steps to

make the point about the state of the art has been made in several researches. Large volume of

research work has been done in the area of power and energy-efficient resource management

in Cloud/DCs. As power and energy management techniques are closely connected, from

this point we will refer to them as power management. The goal is to give a appropriate

overview of the works related to the topics addressed in this thesis, underline the motivations

behind the latter and details their limitations compared to the proposed methods.

2.1 Data Center Energy Consumption: A System Perspec-

tive

Therefore, we conduct an in-depth study of the existing work in data center power models,

and to organize the models using a coherent layer-wise abstraction as shown in Figure 2.1.

In general we can categorize the constituents of a data center as belonging to one of

two layers, software and hardware. The software layer can be further divided into two

subcategories, the OS/virtualization layer, and the application layer. In this chapter we

describe the power consumption modeling work in the software layer. Throughout this

14 Related Works

Fig. 2.1 A holistic view of the context for energy consumption modeling and prediction in
data centers

process, we highlight various energy consumption modeling and prediction techniques

during this process which are applied at various different levels of the data center systems

of systems. Power models play a fundamental role in energy-efficiency research of which

the goal is to improve the components’ and systems’ design or to efficiently use the existing

hardware[25]. Some energy-provisioning models use non-linear power models [94, 103]

and some use queuing power models [42, 28, 91, 83]. For brevity, authors in certain works

[28] the server’s CPU usage and operation frequency are used for modeling a server’s power

2.2 Related Works 15

consumption. Whilst the approach is promising, but power consumption of each core must

be known beforehand which could be resolved in the proposed methods in this thesis.

2.2 Related Works

The main challenge in DCs is the minimization of the energy usage, while still meeting the

QoS requirements of the supported applications. For this purpose, adaptive and scalable

energy-aware scheduling algorithms are required that jointly perform the allocation of the

networking and computing resources on the Cloud and over the TCP/IP mobile connections

which link the DCs to the mobile clients. There have been numerous works in the area

of the Internet DCs which aim at providing various models and techniques to seamlessly

integrate the management of computing-communication virtualized platforms, in order to

provide QoS, robustness and reduced energy consumption [24]. In this respect, several works

focused on the energy-efficiency, by exploiting customized reconfigurable hardware, such

as, Dynamic Voltage and Frequency Scaling (DVFS) [69, 6], and/or the virtualization of the

networking-computing resources [5]. DVFS technique uses in DCs for energy provisioning

by dynamically adjusted processors. DVFS is applied in most of the modern computing units,

such as cluster computing and supercomputing, to reduce power consumption and achieve

high reliability and availability. Resource virtualization refers to instantiate several VMs

on a same physical server, in order to reduce the numbers of hardware, while improving

the utilization of resources. Therefore, we should take into account both virtualization and

DVFS techniques, which are energy-aware tools in cloud data-centers to manage resource

provisioning and energies.

The methods categorizes to save energy in DC are right-sizing and VMs consolidation.

Right-sizing of data centers—dynamically resizing the active servers as load varies under the

control of a market-based resource allocation algorithm. But, VM consolidation algorithms

16 Related Works

that balance the level of consolidation with the performance degradation arising from resource

contention.

Furthermore, one of the important requirements for a Cloud computing environment is

the provision of reliable Service Level Agreements (SLAs). SLAs can be managed globally

or locally by the cloud providers by adding some policies for each VM in each server or in

the data centers which include several servers. At the local level, the system leverages the

power of each VM based on the SLA management policies locally, while, at global level,

this policy can be handled by general SLA policies among servers or data centers.

Another issue of growing concern in cloud environments is to evenly distribute huge

amount of workloads over various servers, which is called load balancing. Load balancing

algorithms seek to distribute workloads across a number of servers, so that the average

executions are minimized [97]. Load balancing schemes can be classified as static or dynamic.

In static schemes, the current states of the servers are not considered when dispatching the

workloads; examples of such schemes include Random Selection of servers and Round Robin

policies. Dynamic schemes involve direct notification or indirect inference of server states

by the load balancer [97].

Updated surveys of current technologies and open communication challenges about

energy-efficient DCs have been recently presented in [45, 21]. Specifically, power manage-

ment schemes that exploit DVFS techniques for performing resource provisioning are the

focus of [6, 5, 78]. Although these contributions consider hard deadline constraints, they do

not account, indeed, for the performance penalty and energy-vs.-delay tradeoff stemming

from the finite transmission rates of the utilized network infrastructures. Energy-saving

dynamic provisioning of the computing resources in virtualized green data centers is the

topic of [104, 91]. Specifically, the authors of [104] formulate the optimization problem

as a feedback control problem that must converge to an a priori known target performance

2.2 Related Works 17

level. While this approach is suitable for tracking problems, it cannot be employed for

energy-minimization purposes, where the target values are a priori unknown.

Roughly speaking, the common approach pursued by [68] is to formulate the afforded

minimum-cost resource allocated problem as sequential optimization problem and, then,

solve it by using limited look-ahead control. Hence, the effectiveness of this approach relies

on the ability to accurately predict the future workload and the performance degrades when

the workload exhibits almost unpredictable time fluctuations. In order to avoid the prediction

of future workload, [91] resorts to a Lyapunov-based technique, that dynamically optimizes

the provisioning of the computing resources by exploiting the available queue information.

Although the pursued approach is of interest, it relies on an inherent delay-vs.-utility tradeoff,

that does not allow us to account for hard deadline constraints.

The suitable exploitation of some peculiar features of the network topology of current

Networked Data Centers (NetDCs) is at the basis of the capacity-planning approach recently

proposed in [96]. For this purpose, a novel traffic engineering-based framework is developed,

which aims at reducing the number of active switches, while simultaneously balancing the

resulting communication flows. Although the attained reductions of the energy consumed

by the networking infrastructures are, indeed, noticeable, the capacity-planning approach

in [95] does not consider, by design, the corresponding energy consumed by the computing

servers and, which is the most, it subsumes delay-tolerant application scenarios. The joint

analysis of the computing-plus-communication energy consumption in virtualized NetDCs

is, indeed, the focus of [69, 68], where delay-tolerant Internet-based applications are con-

sidered. Interestingly, the main lesson stemming from these contributions is that the energy

consumption due to data communication may represent a large part of the overall energy

demand, especially when the utilized network is bandwidth-limited. Overall, these works

numerically analyze and test the energy performance of some state-of-the-art schedulers

for NetDCs, but do not attempt to optimize it through the dynamic joint scaling of the

18 Related Works

available communication-plus-computing resources. Passing to consider the research area

on the mobile communication, a first research line focuses on the cross-layer analysis and

optimization of TCP/IP traffic control mechanisms for single-antenna and multi-antenna

mobile connections [65, 30]. These contributions support the conclusion that an optimal

control of the energy employed by the wireless transmission is an effective means to improve

the resulting TCP goodput. However, this conclusion is partially offset by the fact that

[65, 30] neglect the computing aspects. Analogous conclusion holds for the works in [70]

and [84], in which optimized schedulers are derived by exploiting nonlinear optimization

and queuing theory. Specifically, the scheduler developed in [70] does not present adaptive

capability, while, the scheduler in [84] does not account for the limitation on the energy

budget of the underlying mobile TCP/IP connection.

The forecast development of adaptive ubiquitous applications (such as, for example,

iCloud) for highly parallel mobile (possibly, vehicular) processing platforms demands for a

novel design approach that integrates both computing and communication aspects, while it

is capable to effectively cope with the inherently stochastic and time-varying nature of the

mobile domain. This approach should be characterized by a tight interaction between two

still distinct engineering fields, e.g., Parallel Computing [12] and Vehicular Communication

[43]. Roughly speaking, both these paradigms cover a set of formal tools and methodologies

capable to lead to the design of technological platforms for the parallel execution and

ubiquitous delivering of QoS-demanding applications, but, up to date, this shared target

is accomplished by pursuing non-integrated approaches. Specifically, Parallel Computing

focuses on the execution of compute-intensive applications by using remote computing

resources, that may be acceded through the (possibly, wireless) Internet [12, 6]. In this

framework, tools for dealing with the dynamic behavior of the computing and communication

resources mainly focus on the achievement of target levels of computing efficiency [12].

However, Mobile Communication mainly deals with design of systems equipped with several

2.2 Related Works 19

communication and (possibly) computing resources, whose combined utilization aims at

providing seamless ubiquitous services to mobile (possibly, vehicular) clients [43].

By integrating these two (still distinct) paradigms, Vehicular Networking is in the progress

of merging with the Mobile Internet and Mobile Cloud Computing (MCC), so as to constitute

an integrated communication/computing information platform [99]. While safe navigation

has always been the prime motivation behind vehicular communications, it is believed

that vehicular networks will provide communication infrastructures for a much broader

range of large-scale high-mobile applications. Several solutions have been recently pro-

posed to address the expected mission of next-generation of vehicular networks [49], and

Vehicular Cloud Computing (VCC) is emerging as the most appealing solving paradigm.

VCC is, indeed, a composite paradigm, which combines multiple networking technologies

(such as, mobile networking, WLAN technology, wireless sensor networking) together with

MCC. Industry and academia have identified three main classes of potential applications

to be supported by networked VCC-based infrastructures, namely, safety-related services,

transport-related services and infotainment services [99]. These services are provided by

Clouds to the requiring Vehicular Clients (VCs) mainly through the Vehicle-to-Infrastructure

(V2I) communication mode. In the V2I mode, each served VC downloads information from

the serving (generally, static) Roadside Unit (RSU). Furthermore, multiple RSUs may be

also interconnected, in order to form a wireless backbone, in order to provide the connection

to remote Clouds through the mobile Internet. Each RSU may also acts as a proximate cloud

(that is, a CloudLet (CL)) [49], in order to provide local services which do not require the

access to remote Clouds. Vice versa, in order to deliver more computation-intensive info-

tainment services (such as audio/video streaming, big-data streaming, podcasting, vehicular

mapping), the RSU only acts as an access point (AP) and relay information from the remote

Cloud. Since smartphones are usually constrained by limited resources, including energy,

computation and storage, the joint optimized adaptive management of the Cloud-generated

20 Related Works

vehicular TCP/IP traffic and the computational workload to be handled by the remote Cloud

is one of the main challenges which hampers the rapid development of VCC infrastructures

[29].

In the next chapters, firstly, we propose a new adaptive virtualized networked data

center, VNetDC; a joint balanced provisioning and adaptive scaling of the networking-plus-

computing resources, in order to attain energy saving in such kind harsh computing scenario

(data center environment). This is the focus of the first part of the next chapter, whose main

contributions may be so summarized. First, the contrasting objectives of low consumptions of

both networking and computing energies in delay and bandwidth-constrained VNetDCs are

cast in the form of a suitable constrained optimization problem, namely, the Computing and

Communication Optimization Problem (CCOP). Second, due to the nonlinear behavior of the

rate-vs.-power-vs.-delay relationship, the CCOP is not a convex optimization problem and

neither guaranteed-convergence adaptive algorithms nor closed-form formulate are, to date,

available for its solution. Hence, in order to solve the CCOP in exact and closed-form, we

prove that it admits a loss-free (e.g., optimality preserving) decomposition into two simpler

loosely coupled sub-problems, namely, the CoMmunication Optimization Problem (CMOP)

and the ComPuting Optimization Problem (CPOP). Third, we develop a fully adaptive version

of the proposed resource scheduler that is capable to quickly adapt to the a priori unknown

time-variations of the offered workload and converges to the optimal resource allocation

without the need to be restarted. Secondly, we propose a new traffic engineering-based

approach, called GreenNetDC, to reduce energy consumptions in computing, communication

and reconfiguration in LAN-equipped virtualized Clouds. We introduce SLA as a hard time-

constraint on the computing and communication processing in GreenNetDC: GreenNetDC

changes the VMs status and the allocated resources on a per-job basis to maintain the SLA

and saves energy. In a nutshell, the main objective of this scheduler is to introduce a joint

computing-plus-communication framework and develop an efficient scheduler for virtualized

2.2 Related Works 21

data centers that takes into account the allowed discrete processing frequencies for VMs

hosted by DVFS-enabled CPU cores. It is important to note that this feature has an internal

effect in each CPU while facing online workload. Specifically, GreenNetDC aims to:

• define an architectural framework and principles for energy-efficient VNetDC;

• develop an efficient energy-aware resource allocation and provisioning algorithm in a way

that improves the energy efficiency of a data center under hard SLA constraints;

• develop an adaptive version of the scheduling algorithm for energy-efficient mapping of

workload quota to the available VMs.

Notable features of the resulting GreenNetDC scheduler are its ease of implementation, and

the ability to manage time-varying workload at the a minimal reconfiguration cost.

Lastly, in this thesis, we develop and test a new scheduler for minimizing the energy con-

sumption induced by computing, communication and reconfiguration costs in Internet-based

virtualized DCs which utilize end-to-end TCP/IP mobile energy-constrained connections

under hard limits on the per-job total processing time. Our scheduler performs dynamic load

balancing and uses online job decomposition for adaptive resource management. It leads to

the optimum processing speeds and bandwidth rates on a per-VM basis, as well as the proper

workload quota for each VM on a per-job basis. Furthermore, it also performs admission

control and adaptive management of the transmission rate of the Cloud-to-Vehicular TCP/IP

mobile connections of Fig.4.1, in order to meet QoS constraints at the minimum energy

wasting.

Chapter 3

QoS-aware Energy-efficient Schedulers
for the NetDC

In this chapter, we present two proposed schedulers that allows us to dynamically allocate

tasks size, rate of computing, communication rate, in a Virtualized Networked Data Center

(VNetDC) operating under tight constraints of delay per-job. The First one, we present a

jointly scheduler which is adaptively accomplish load balancing and provisioning resources

using input buffer admission control. The later, a new adaptive real-based resource provision-

ing model introduced which is focused on the exploitation of the virtualization technology to

maximize energy saving according to the considered discrete CPU frequency ranges of each

server in a VNetDC.

3.1 VNetDC Scheduler

In this section of this chapter, we develop the optimal minimum-energy scheduler for

the adaptive joint allocation of the task sizes, computing rates, communication rates and

communication powers in VNetDCs that operate under hard per-job delay-constraints.

3.1.1 An Adaptive Energy-efficient VNetDC

The considered VNetDC platform works at the Middleware layer of the underlying protocol

stack. Our objective is the minimization of the overall computing-plus-communication

24 QoS-aware Green Energy-efficient Schedulers

energy consumption. The main new contributions of the paper are the following ones: i)

the computing-plus-communication resources are jointly alloted in an adaptive fashion by

accounting in real-time for both the (possibly, unpredictable) time-fluctuations of the offered

workload and the reconfiguration costs of the considered VNetDC platform; ii) hard per-job

delay constraints on the overall allowed computing-plus-communication latencies are en-

forced; and, iii) in order to deal with the inherently nonconvex nature of the resulting resource

optimization problem, a novel solving approach is developed, that leads to the lossless

decomposition of the afforded problem into the cascade of two simpler sub-problems. The

sensitivity of the energy consumption of the proposed scheduler on the allowed processing

latency, as well as the Peak-to-Mean Ratio (PMR) and the correlation coefficient (i.e., the

smoothness) of the offered workload is numerically tested under both synthetically generated

and real-world workload traces. Finally, as an index of the attained energy-efficiency, we

compare the energy consumption of the proposed scheduler with the corresponding ones

of some benchmark static, hybrid and sequential schedulers and numerically evaluate the

resulting percent energy gaps.

3.1.2 The considered VNetDC model

The considered VNetDC platform is sketched in Fig.3.1. Our objective is to minimize the

computing-plus-communication energy which is wasted by the VNetDC for processing

the input traffic. In order to cope with the aforementioned challenges (i.e., data volume,

uncontrolled arrival rates and non stationary), we enforce three main constraints. First,

the overall per-job storage-plus-computing-plus-communication delay must be limited in a

hard way. Second, energy-saving adaptive reconfigurations of the available computing-plus-

communication resources must be performed in real-time (i.e., on a per-job basis). Third, a

priori assumptions about the time-fluctuations and/or statistical behavior of the input traffics

cannot be enforced.

3.1 VNetDC Scheduler 25

A VNetDC platform for the parallel real-time processing of data traffics is composed by

multiple reconfigurable Virtual Machines (VMs), which are interconnected by a switched

rate-adaptive Virtual LAN (VLAN) and are managed by a central controller [5, 79]. The

central controller dynamically performs the admission control of the input flows and the

allocation of the virtual resources. Hence, emerging VNetDCs are composed by four main

components, i.e., the input/output gateway routers, the working storage, the Virtual Machine

Manager (VMM) and the switched VLAN (see Fig.3.1). According to an emerging trend

[24, 58], the platform of Fig.3.1 implements the SaaS model and operates at the Middleware

layer. Inspired by recent contributions on VNetDCs [63], we assume a discrete time-slotted

system, where the time slot length Tt(s) (s means second) can range from hundreds of

milliseconds to few minutes. The m-th slot spans the (semi-open) interval [mTt ,(m+1)Tt),

where m ≥ 0 is the integer-valued slot index. According to Fig.3.1, (possibly) multiple

Internet flows are multiplexed by the input gateway router and (part of the) multiplexed data

traffic is temporarily buffered by the working storage of Fig.3.1. At the beginning of each slot

m, all the current backlog (of size Ltot(m)(bit)) 1 of the working storage is cleared (e.g., the

working storage is emptied). The backlog is passed to the VNetDC platform of the Fig.3.1

and constitutes the current input job of size Ltot(bit). The VNetDC platform processes, in

turn, the currently submitted input job within a time interval which is limited up to Tt seconds.

Finally, at the end of the current slot, the processed job (e.g., the output job) is passed to the

output gateway router of Fig.3.1.

Before proceeding, some remarks about the considered VNetDC platform of Fig.3.1 are

in order. First, the working storage of Fig.3.1 acts as a G/G/1 queue, so that assumptions

on the statistics of the input data traffic are not required. Second, since the current backlog

of the working storage is cleared at the beginning of each slot and the per-job processing

time of the VNetDC platform is limited up to Tt seconds, the overall per-job queue-plus-

computing-plus-communication delay is hard-limited up to 2Tt seconds. Third, since, in

1In the sequel, we understand the dependence on the slot index m when it is not strictly demanded.

26 QoS-aware Green Energy-efficient Schedulers

slotted systems, the queue backlog is sampled on a per-slot basis, the slot length Tt is the

minimum hard upper bound on the queue delay.

As a consequence, in order to avoid the overflow of the working storage of Fig.3.1, it

suffices that its buffering capacity equates Tt times to the maximum expected rate (in (bit/s))

of the multiplexed input data traffic.

3.1.2.1 Input jobs and offered workload

According to the described framework, at the beginning of each time-slot, a new job of size

Ltot(bit) arrives at the input of the scheduler of Fig.3.1. The input job is characterized by: i)

the size Ltot of the workload to be processed; ii) the maximum tolerated processing delay

Tt ; and, iii) the job granularity, that is, the (integer-valued) maximum number MT ≥ 1 of

independent parallel tasks embedded into the submitted job. Let MV ≥ 1 be the maximum

number of VMs that are available in Fig.3.1. In principle, each VM may be modeled as a

virtual server, that is capable to process fc bits per second [71]. Depending on the size L

(bit) of the task to be currently processed by the VM, the corresponding processing rate fc

may be adaptively scaled at run-time, and it may assume values over the interval [0, f max
c],

where f max
c (bit/s) is the maximum per-job allowed processing rate2. Furthermore, due to

the real-time nature of the considered application scenario, the time allowed the VM to fully

process each submitted task is fixed in advance at ∆ (s), regardless of the actual size L of the

task currently assigned to the VM. In addition to the currently assigned task (of size L), the

VM may also process a background workload of size Lb(bit), that accounts for the programs

of the guest Operating System [71]. Hence, by definition, the utilization factor η of the VM

equates [71]: η ≜ fc/ f max
c ∈ [0,1]. Then, as in [53, 79, 55], let Ec = Ec(fc) (Joule) be the

overall energy consumed by the VM to process a single task of duration ∆ at the processing

2Since Ltot is expressed in (bits), we express fc in (bit/s). However, all the presented developments and
formal properties still hold verbatim when Ltot is measured in Jobs and, then, fc is measured in (Jobs/cycle).
Depending on the considered application scenario, a job may be a bit, frame, datagram, segment, or an overall
file record.

3.1 VNetDC Scheduler 27

rate fc, and let E max
c = Ec(f max

c) (Joule) be the corresponding maximum energy when the

VM operates at the maximum processing rate f max
c . Hence, by definition, the (dimensionless)

ratio

Φ(η)≜
Ec(fc)

E max
c

= Φ

(
fc

f max
c

)
, (3.1)

is the so-called Normalized Energy Consumption (NEC) of the considered VM [97]. From

an analytical point of view, Φ(η) : [0,1]→ [0,1] is a function of the actual value η of the

utilization factor of the VM. Its analytical behavior depends on the specific features of

the resource provisioning policy actually implemented by the VMM of Fig.3.1 [53, 107].

Fig.3.1 operates at the Middleware layer and atop the Virtualization Layer. Black boxes

indicate Virtual Network Interface Cards (VNICs), which terminate end-to-end TCP-based

connections [5]. However, at least for CMOS-based physical CPUs, the following two

(mild) assumptions on Φ(η) are typically met [97, 55]; i) Φ(η) is not decreasing in η and

it attains its minimum (possibly, positive) value b at η = 0; and, ii) Φ(η) is convex in η .

Just as a practical example, the analytical form assumed by Φ(η) for CMOS-based CPUs is

recognized to be well described by the following c-powered one [97, 107, 55]:

Φ(η) = (1−b) η
c + b, 0≤ η ≤ 1, (3.2)

where c≥ 1, while b ∈ [0,1) represents the fraction of the full-loaded energy consumption

E max
c which is wasted by the VM in the idle state, that is, E idle

c ≜ bE max
c .

3.1.2.2 Power-limited virtualized communication infrastructure

Let M ≜ min{MV ,MT} be the degree of concurrency of the submitted job, let Ltot be the

overall size of the job currently submitted to the VNetDC, and let Li ≥ 0, i = 1, . . . ,M, be

the size of the task that the Scheduler of Fig.3.1 assigns to the i-th VM, i.e., V M(i). Hence,

the following constraint: ∑
M
i=1 Li = Ltot guarantees that the current input job of size Ltot

is partitioned into (at the most) M parallel tasks. In order to keep at the minimum the

28 QoS-aware Green Energy-efficient Schedulers

VM(1)

Computing and Communication Virtualization Layer

Physical Computing and Communication

Resources and Infrastructures

...
Dynamic Virtual

Machine Manager

and

Task Scheduler

Virtual

Switch

O
u

tp
u

t
Jo

b

Gateway Router

 and Demux

 to the

Internet

Gateway Router

and Multiplexer

from the

InternetInput Job

M-th virtual link

1-th virtual link

...

VM(M)

Input Traffic

Working

Storage

Fig. 3.1 The Proposed VNetDC architecture.

transmission delays from (to) the Scheduler to (from) the VMs of Fig.3.1, as in [6],[5], we

assume that each V M(i) communicates to the Scheduler through a dedicated reliable virtual

link, that operates at the transmission rate of Ri (bit/s), i = 1, . . . ,M and it is equipped with

suitable Virtual Network Interface Cards (VNICs) (see Fig.3.1). The one-way transmission-

plus-switching operation over the i-th virtual link drains a (variable) power of Pnet
i (Watt),

where Pnet
i is the summation: Pnet

i ≜ Pnet
T (i)+Pnet

R (i) of the power Pnet
T (i) consumed by

the transmit VNIC and the corresponding power Pnet
R (i) wasted by the receive VNIC (see

Fig.3.1).

Passing to consider the actual value of Pnet
i , we observe that, in order to limit the

implementation cost, current data centers utilize off-the-shelf rackmount physical servers,

3.1 VNetDC Scheduler 29

which are interconnected by commodity Fast/Giga Ethernet switches [5]. Furthermore, they

implement TCP suites (mainly, the TCPNewReno one) for performing congestion control

and attaining end-to-end (typically, multi-hop) reliable communication [69]. At this regard,

we note that the data center-oriented versions of the legacy TCPNewReno suite in [3, 27]

assure the same steady-state reliable throughput of the legacy TCPNewReno protocol. This

means, in turn, that the steady-state average throughput Ri(bit/s) of the i-th virtual link of

Fig.3.1 (i.e., the i-th end-to-end transport connection) is given by [59, section 3.7]:

Ri =

√
3
2v

MSS

RT Ti

√
Pi

Loss
, i = 1, . . . ,M. (3.3)

As it is known [59], MSS (bit) in (3.3) is the maximum segment size, v ∈ {1,2} is the

number of per-ACK acknowledged segments, RT Ti is the average round-trip-time of the

i-th end-to-end connection, and Pi
Loss is the average segment loss probability of the i-th

connection. At this regard, several studies point out that Pi
Loss scales down for increasing

Pnet
i as in [20]

Pi
Loss

= (gi Pnet
i)−d, i = 1, . . . ,M, (3.4)

where gi (W−1) is the coding gain-to-receive noise power ratio of the i-th connection, while

the positive exponent d measures the diversity gain of the frequency/time interleavers im-

plemented at the Physical layer of the underlying protocol stack. Explicit closed-form

expressions for gi and d may be found, for example, in [20]. Hence, after introducing (3.4)

into (3.3), we obtain
Pnet

i = Ωi
(
RT TiRi

)α
, i = 1, . . . ,M, (3.5)

with α ≜ (2/d) ≥ 1 and Ωi ≜ 1
gi

(
1

MSS

√
2v
3

)α

, i = 1, . . . ,M. Therefore, since the cor-

responding one-way transmission delay equates: Di = Li/Ri , the resulting one-way com-

munication energy E net(i) which is needed for sustaining the i-th virtual link of Fig.3.1 is:

E net(i) = Pnet
i (Li/Ri).

30 QoS-aware Green Energy-efficient Schedulers

Before proceeding, we point out that the α-powered (convex) formula in (3.5) holds

regardless of the actual (possibly, multi-hop) topology of the adopted physical network (e.g.,

Fat-tree, BCube, DCell [1]). In fact, the validity of (3.5) relies on the (minimal) assumption

that the TCP-based transport connections work in the steady-state (e.g., in the Congestion

Avoidance state).

Remark 1 Other applicable communication formulas

Other communication infrastructure is available which are listed below. The actual value

assumed by Pnet
i depends on the corresponding transmission rate Ri, noise spectral power

density N0(i) (W/Hz), bandwidth Wi (Hz) and (nonnegative) gain gi of the i-th link [50].

The Shannon-Hartley exponential formula:

Pnet
i ≡ Pnet

i (Ri) = ζi

(
2Ri/Wi−1

)
, (3.6)

with ζi ≜
N

(i)
0 Wi
gi

, i = 1, . . . ,M, and the α-powered formula:

Pnet
i ≡ Pnet

i (Ri) = Ωi

(
Ri

Wi

)1/α

, (3.7)

with α ∈]0,1[, and Ωi ≜
N

(i)
0 Wi

(ln(2))1/α gi
, i = 1, . . . ,M, are examples of power-rate functions of

practical interest [50, Chap.3]. □

3.1.2.3 Reconfiguration costs

Under the per-job hard delay constraints which are typical of streaming services [24], the

VMM of Fig.3.1 must carry out two main operations at run-time, namely, virtual machine

management and load balancing. Specifically, goal of the virtual machine management

is to adaptively control the Virtualization Layer of Fig.3.1. In particular, the set of the

3.1 VNetDC Scheduler 31

(aforementioned) VM’s attributes:

{∆, f max
c (i),Φi(ηi),E

max
c (i),Lb(i), i = 1, . . . ,M}, (3.8)

are dictated by the Virtualization Layer and, then, they are passed to the VMM of Fig.3.1. It

is in charge of the VMM to implement a suitable frequency-scaling policy, in order to allow

the VMs to scale up/down in real-time their processing rates fc’s at the minimum cost [97].

At this regard, we note that switching from the processing frequency f1 to the processing

frequency f2 entails an energy cost of ε(f1; f2) (Joule). Although the actual behavior of

the function ε(f1; f2) may depend on the adopted Dynamic Voltage and Frequency Scaling

(DVFS) technique, any practical ε(f1; f2) function typically retains the following general

properties [71]: i) it depends on the absolute frequency gap | f1− f2|; ii) it vanishes at f1 = f2

and is not decreasing in | f1− f2|; and, iii) it is jointly convex in f1, f2. A quite common

practical model which retains the aforementioned formal properties is the following one:

ε(f1; f2) = ke (f1− f2)
2 (Joule), (3.9)

where ke (Joule/(Hz)2) dictates the per-VM reconfiguration cost induced by an unit-size

frequency switching. Typical values of ke for current reconfigurable virtualized computing

platforms are limited up to few hundreds of µJ′s per (MHz)2 [71]. For sake of concreteness,

in the analytical developments of the following section 3.1.2, we directly subsume the

quadratic model in (3.9). The generalization to the case of ε(.; .) functions that meet the

aforementioned (more general) analytical properties is, indeed, direct.

3.1.2.4 On the Virtual-to-Physical QoS resource mapping in VNetDCs

Due to the hard delay-sensitive feature of the considered stream services, the Virtualization

Layer of Fig.3.1 must guarantee that the demands for the computing { fi} and communication

32 QoS-aware Green Energy-efficient Schedulers

{Ri} resources done by the VLAN are mapped onto adequate (i.e., large enough) computing

(e.g., CPU cycles) and communication (i.e., link bandwidths) physical supplies.

In our setting, efficient QoS mapping of the virtual demands { fi} for the computing

resources may be actually implemented by equipping the Virtualization Layer of Fig.3.1

with a per-VM queueing system, that implements the (recently proposed) mClock scheduling

discipline [39, section 3]. Interestingly enough, Table 1 of [39] points out that the mClock

scheduler works on a per-VM basis and provides: i) resource isolation; ii) proportionally fair

resource allocation; and, iii) hard (i.e., absolute) resource reservation by adaptively managing

the computing power of the underlying multi-rate physical CPUs (see the Algorithm 1 of

[39] for a code of the mClock scheduler).

About the TCP-based networking virtualization, several (quite recent) contributions

[7, 36, 41, 102] point out that the most appealing property of the emerging data centers for

the support of delay-sensitive services is the agility, i.e., the capability to assign arbitrary

physical server to any service without experiencing performance degradation. To this end,

it is recognized that the virtual network atop the Virtualization Layer should provide a flat

networking abstraction (see Fig.1 of [5]). The Middleware-layer architecture in Fig.3.1 of the

considered VNetDC is aligned, indeed, with this requirement and, then, it is general enough

to allow the implementation of agile data centers.

Specifically, according to [5], the VNetDC of Fig.3.1 may work in tandem with any

Network Virtualization Layer that is capable to map the rate-demands {Ri} onto bandwidth-

guaranteed end-to-end (possibly, multi-hop) connections over the actually available underly-

ing physical network. Just as examples of practical state-of-the-art Networking Virtualization

tools, Oktopous [7, Fig.5] provides a switched LAN abstraction atop tree-shaped physical net-

work topologies, while VL2 [36, section 4] works atop physical Clos’ networks. Furthermore,

SecondNet [41, section 3] and VNET/P [102, section 4.2] provide bandwidth-guaranteed

virtualized Ethernet-type LAN environments atop TCP-based end-to-end connections. For

3.1 VNetDC Scheduler 33

this purpose, SeconNet implements Port-Switching based Source Routing (PSSR) [41, sec-

tion 4], while VNET/P relies on suitable Layer 2 Tunneling Protocols (L2TPs) [102, section

4.3]. An updated survey and comparison of emerging virtual networking technologies is

provided by Table 2 of [5]. Overall, several recent studies support the conclusion that these

virtual networking technologies allow the (aforementioned) data center-oriented versions

of TCP-like transport protocols to operate in the Congestion Avoidance state (i.e., in the

steady-state) during about 99.9% of the overall working time [3, 27]. As a consequence, since

the current data centers utilize physical network topologies with high bisection bandwidths

and limited over-subscription ratios [1], the corresponding average round-trip-times in (3.3)

are very low and less than 1(ms) [3, 27]. The net effect is that the resulting virtual links of

Fig.3.1 typically work under contention-free conditions [69, 5].

Before proceeding, we anticipate that the solving approach developed in sub-section 3.1.5

still holds when the summation: ∑
M
i=1 E net(i) in (3.10) is replaced by a single energy function

χ(.) which is jointly convex and not decreasing in the variables {Li} (see (3.18.1)). This

generalization could be employed for modeling flow coupling effects that may be (possibly)

induced by the imperfect isolation provided by the Networking Virtualization Layer.

Remark 2 Discrete computing rates

Actual VMs are instantiated atop physical CPUs that offer, only a finite set: A ≜{
f̂ (0) ≜ 0, f̂ (1), . . . , f̂ (Q−1) ≜ f max

c

}
of Q discrete computing rates. Hence, in order to

deal with both continue and discrete reconfigurable computing units, we borrow the ap-

proach formerly developed, for example, in [72, 96]. Specifically, after indicating by B ≜{
η̂(0) ≜ 0, η̂(1), . . . , η̂(Q−1) ≜ 1

}
the discrete values of η that correspond to the frequency

set A , we build up a Virtual Energy Consumption curve Φ̃(η) by resorting to a piecewise lin-

ear interpolation of the allowed Q operating points:
{(

η̂(j),Φ(η̂(j))
)
, j = 0, . . . ,(Q−1)

}
.

Obviously, such virtual curve retains the (aforementioned) formal properties and, then, we

may use it as the true energy consumption curve for virtual resource provisioning [72].

Unfortunately, being the virtual curve of continuous type, it is no longer guaranteed that

34 QoS-aware Green Energy-efficient Schedulers

the resulting optimally scheduled computing rates are still discrete valued. However, as

also explicitly noted in [72, 96], any point (η∗,Φ(η∗)), with η̂(j) < η∗ < η̂(j+1), on the

virtual curve may be actually attained by time-averaging over ∆ secs the corresponding

surrounding vertex points:
(

η̂(j),Φ(η̂(j))
)

and
(

η̂(j+1),Φ(η̂(j+1))
)

. Due to the piecewise

linear behavior of the virtual curve, as in [72, 96], it is guaranteed that the average energy

cost of the discrete-rate system equates that of the corresponding virtual one over each time

interval of duration ∆ (i.e., on a per-job basis). □

3.1.3 Optimal allocation of the virtual resources

In this sub-section, we deal with the second functionality of the VMM of Fig.3.1, namely, the

dynamic load balancing and provisioning of the virtualized communication-plus-computing

resources. Specifically, this functionality aims at properly tuning the task sizes {Li, i =

1, . . . ,M}, communication rates {Ri, i = 1, . . . ,M} and computing rates { fi, i = 1, . . . ,M}

of the networked VMs of Fig.3.1. The goal is to minimize (on a per-slot basis) the overall

resulting communication-plus-computing energy:

Etot ≜
M

∑
i=1

Ec(i)+
M

∑
i=1

E net(i) (Joule), (3.10)

under the (aforementioned) hard constraint Tt on the allowed per-job processing time. This

last depends, in turn, on the (one-way) delays {Di, i = 1 . . .M} introduced by the VLAN

and the allowed per-task processing time ∆. Specifically, since the M virtual connections

of Fig.3.1 are typically activated by the Switch Unit in a parallel fashion [45], the overall

two-way communication-plus-computing delay induced by the i-th connection of Fig.3.1

equates: 2Di +∆, so that the hard constraint on the overall per-job execution time reads as in:

max
1≤i≤M

{2Di}+∆≤ Tt . (3.11)

3.1 VNetDC Scheduler 35

Thus, the overall Computing and Communication Optimization Problem (CCOP) assumes

the following form:

min
{Ri, fi,Li}

M

∑
i=1

{
Φi

(
fi

f max
i

)
E max

i + ke
(

fi− f 0
i
)2

+2Pnet
i (Ri)

(
Li

Ri

)}
, (3.12.1)

s.t.: (Li +Lb(i))≤ fi∆, i = 1, . . . ,M, (3.12.2)

M

∑
i=1

Li = Ltot , (3.12.3)

0≤ fi ≤ f max
i , i = 1, . . . ,M, (3.12.4)

Li ≥ 0, i = 1, . . . ,M, (3.12.5)

2Li

Ri
+∆≤ Tt , i = 1, . . . ,M, (3.12.6)

M

∑
i=1

Ri ≤ Rt , (3.12.7)

Ri ≥ 0, i = 1, . . . ,M. (3.12.8)

About the stated problem, the first two terms in the summation in (3.12.1) account for the

computing-plus-reconfiguration energy Ec(i) consumed by the V M(i), while the third term in

(3.12.1) is the communication energy E net(i) requested by the corresponding point-to-point

virtual link for conveying Li bits at the transmission rate of Ri (bit/s). Furthermore, f 0
i

and fi in (3.12.1) represent the current (i.e., already computed and consolidated) computing

rate and the target one, respectively. Formally speaking, fi is the variable to be optimized,

while f 0
i describes the current state of the V M(i), and, then, it plays the role of a known

constant. Hence, ke
(

fi− f 0
i
)2 in (3.12.1) accounts for the resulting reconfiguration cost. The

constraint in (3.12.2) guarantees that V M(i) executes the assigned task within ∆ secs, while

the (global) constraint in (3.12.3) assures that the overall job is partitioned into M parallel

tasks. According to (3.11), the set of constraints in (3.12.6) forces the VNetDC to process the

overall job within the assigned hard deadline Tt . Hence, since the queue delay of the working

36 QoS-aware Green Energy-efficient Schedulers

Table 3.1 VNetDC taxonomy

Symbol Meaning/Role
Ltot (bit) Job’s size
fi (bit/s) Computing rate of V M(i)
Li (bit) Task’s size of V M(i)
Ri(bit/s) Communication rate of the i-th virtual link
Rt(bit/s) Aggregate communication rate of the VLAN
∆(s) Per-job maximum allowed computing time
Tt(s) Per-job maximum allowed computing-plus-communication time
E max

i (Joule) Per-job maximum energy consumed by V M(i)
f max
i (bit/s) Maximum computing rate of V M(i)

Ec(i)(Joule) Per-job maximum energy consumed by V M(i)
E net(i)(Joule) Per-job communication energy consumed by the i-th virtual link
Etot(Joule) Per-job total consumed energy

storage of Fig.3.1 is also limited up to Tt , the overall per-job queue-plus-communication-

plus-computing delay is limited up to 2Tt . Finally, the global constraint in (3.12.7) limits up

to Rt (bit/s) the aggregate transmission rate sustainable by the underlying VLAN of Fig.3.1,

so that Rt is directly dictated by the actually considered VLAN standard [5, 45]. Table 3.1

summarizes the main taxonomy used in this sub-chapter.

Remark 3 On the setup cost of turning OFF the idle servers.

Due to the noticeable power drained by idle servers, turning the idle servers OFF is

commonly considered an energy-effective policy. However, nothing comes for free, so that,

although the above conclusion holds under delay-tolerant application scenarios, it must be

carefully re-considered when hard limits on the allowed per-job service time Tt are present

[53, 79], [55, 92]. In fact, the setup time I for transitioning a server from the OFF state to

the ON one is currently larger than 200 seconds and, during the overall setup time, the server

typically wastes power on the maximum state [92]. Hence, under real-time constrains, there

are (at least) two main reasons to refrain to turn the idle servers OFF. First, the analysis

recently reported in [92] points out that turning the idle servers OFF increases. Second, in

3.1 VNetDC Scheduler 37

order to avoid outage-events, the setup time I must be limited up to a (negligible) fraction of

the per-job service time Tt (see the hard constraint in (3.12.6)). Hence, since the tolerated

per-job service times of communication-oriented real-time applications are typically limited

up to few seconds (see, for example, Tables 1,2 of [104]), the results of the aforementioned

performance analysis induce to refrain to turn the idle servers OFF, at least when the setup

time I is two orders of magnitude larger than the corresponding service times. However, as a

counterbalancing aspect, the performance results reported in the (quite recent) contributions

[53, section 3.4], [79, section 3.1], [55] unveil that, under real-time constraints, there is

still large room for attaining energy savings by adaptively scaling up/down the set of the

utilization factors in (3.2). This is, indeed, the energy-management approach we pursue

in the following sub-sections, where we focus on the topic of the energy-efficient adaptive

configuration of the VNetDC of Fig.3.1. □

The rest of this sub-chapter is organized as follows. First, we prove that the stated CCOP

admits a loss-free (i.e., optimality preserving) decomposition into two simpler coupled sub-

problems, namely, the CoMunication Optimization Problem (CMOP) and the ComPuting

Optimization Problem (CPOP) (see the Proposition 1 in the sequel). Afterwards, in Proposi-

tion 2 and Proposition 3, we give the necessary and sufficient conditions for the feasibility of

the CCOP. Finally, in Proposition 4, we present the solution of the CCOP.

3.1.3.1 Solving approach and optimal provisioning of the virtual resources

The CCOP in (3.12) is not a convex optimization problem. This due to the fact that, in

general, each function: Pnet
i (Ri)(Li/Ri) in (3.12.1) is not jointly convex in Li, Ri, even in

the simplest case when the power function Pnet
i (Ri) reduces to an assigned constant Pnet

i .

Therefore, neither guaranteed-convergence iterative algorithms nor closed-form expressions

are, to date, available to compute the optimal solution
{

L̂i, R̂i, f̂i, i = 1, . . . ,M
}

of the CCOP.

However, we observe that the computing energy in (3.12.1) (i.e., the first two terms

of (3.12.1)) depends on the variables { fi}, while the corresponding network energy (i.e.,

38 QoS-aware Green Energy-efficient Schedulers

the last term (3.12.1)) depends on {Ri}. Furthermore, the constraints in (3.12.2)-(3.12.5)

depend on { fi} and {Li}, while the constraints in (3.12.6)-(3.12.8) depend on {Ri} and {Li}.

Hence, in the sequel, we proceed to the closed-form calculation of the optimal set {R∗i } of the

communication rates which minimizes the network energy in (3.12.1) under the constraints

(3.12.6)-(3.12.8). Therefore, after expressing {R∗i }· as functions of {Li}, we introduce

the obtained expressions for {R∗i } into (3.12.1). Finally, we perform the minimization of

the resulting (3.12.1) over the remaining sets of variables { fi}, {Li} under the constraints

(3.12.2)-(3.12.5). The feasibility of this approach proves, in turn, that the (aforementioned)

CMOP and CCOP are two loosely coupled sub-problems (in the sense of [14, section III]) and

that the equations (3.12.2),(3.12.6) are the corresponding coupling constraints. Specifically,

for any assigned nonnegative vector
−→
L of the task’s sizes, the CMOP is the (generally

nonconvex) optimization problem in the communication rate variables {Ri, i = 1, . . . ,M}, so

formulated:

min
{Ri}

M

∑
i=1

2Pnet
i (Ri)

Ri
Li, (3.13.1)

s.t.: CCOP’s constraints in (3.12.6)-(3.12.8). (3.13.2)

Let {R∗i (
−→
L), i = 1, . . . ,M} be the optimal solution of the CMOP in (3.13), and let

S ≜

{
−→
L ∈

(
R+

0
)M :

(
Li

R∗i (
−→
L)

)
≤ (Tt−∆)

2
, i = 1, . . . ,M;

M

∑
i=1

R∗i (
−→
L)≤ Rt

}
, (3.14)

be the region of the nonnegative M-dimensional Euclidean space which is constituted by all
−→
L vectors that meet the constraints in (3.12.6)-(3.12.8). Thus, after introducing the dummy

function: X (L1, . . . ,LM)≜ ∑
M
i=1

2Pnet
i (R∗i)
R∗i

Li, the CPOP is formally stated as in:

min
{Li, fi}

M

∑
i=1

(
Φi

(
fi

f max
i

)
E max

i + ke
(

fi− f 0
i
)2
)
+X (

−→
L), (3.15.1)

s.t.: CCOP’s constraints in (3.12.2)-(3.12.5) and
−→
L ∈S . (3.15.2)

3.1 VNetDC Scheduler 39

Let {L∗i ,R∗i , f ∗i , i = 1, . . . ,M} indicate the (possibly, empty) set of the solutions of the cascade

of the CMOP and CPOP. The following Proposition 1 proves that the cascade of these sub-

problems is equivalent to the CCOP.

Proposition 1 The CCOP in (3.12.1)-(3.12.8) admits the same feasibility region and the

same solution of the cascade of the CMOP and CPOP, that is, {L̂i, R̂i, f̂i, i = 1, . . . ,M} =

{L∗i ,R∗i , f ∗i , i = 1, . . . ,M}.

proof: By definition, the region S in (3.14) fully accounts for the set of the CCOP constraints

in (3.12.6)-(3.12.8), so that the constraint
−→
L ∈S is equivalent to the set of constraints in

(3.12.6)-(3.12.8). Since these constraints are also accounted for by the CMOP, this implies

that S fully characterizes the coupling induced by the variables {Li, i = 1, . . . ,M} between

the two sets of constraints in (3.12.2)-(3.12.5) and (3.12.6)-(3.12.8). Therefore, the claim

of Proposition 1 directly arises by noting that, by definition, X (L1, . . . ,LM) is the result

of the constrained optimization of the objective function in (3.12.1) over the variables

{Ri, i = 1, . . . ,M}, and X (L1, . . . ,LM) is part of the objective function of the resulting

CPOP in (3.15.1).

Before proceeding, we point out that (3.14) depends on both {Li} and {R∗i } and, then, it

formally captures the effects of the CMOP on the resulting CPOP. This confirms that the

CMOP and CPOP are, indeed, two coupled (i.e., not separated) sub-problems. About the

feasibility of the CMOP, the following result holds (see [23, section III] for the proof).

Proposition 2 Let each function Pnet
i (Ri)/Ri in (3.13.1) be continue and not decreasing for

Ri ≥ 0. Hence, for any assigned vector
−→
L , the following two properties hold:

i) the CMOP in (3.13.1) is feasible if and only if the vector
−→
L meets the following condition:

M

∑
i=1

Li ≤ (Rt(Tt−∆))/2; (3.16)

ii) the solution of the CMOP is given by the following closed-form expression:

40 QoS-aware Green Energy-efficient Schedulers

R∗i (
−→
L) = R∗i (Li) = (2Li/(Tt−∆)), i = 1, . . . ,M. (3.17)

Being the condition in (3.16) necessary and sufficient for the feasibility of the CMOP, it

fully characterizes the feasible region S in (3.14). This last property allows us to recast the

CPOP in the following equivalent form:

min
{Li, fi}

M

∑
i=1

(
Φi

(
fi

f max
i

)
E max

i + ke
(

fi− f 0
i
)2
)
+X (

−→
L), (3.18.1)

s.t.: CCOP’s constraints in (3.12.2)-(3.12.5) and (3.16), (3.18.2)

where (see (3.17)):

X (L1, . . . ,LM) = (Tt−∆)
M

∑
i=1

Pnet
i

(
2Li

Tt−∆

)
. (3.19)

Since the constraint in (3.16) involves only the offered workload, it may be managed as a

feasibility condition and this observation leads to the following formal result (proved in the

Appendix A of [23]).

Proposition 3 The CCOP in (3.12) is feasible if and only if the CPOP in (3.18) is feasible.

Furthermore, the following set of (M+1) conditions:

Lb(i)≤ ∆ f max
i , i = 1, . . . ,M, (3.20.1)

Ltot ≤min

{
M

∑
i=1

(f max
i ∆−Lb(i)) ;

Rt

2
(Tt−∆)

}
, (3.20.2)

is necessary and sufficient for the feasibility of the CPOP.

Passing to consider the solution of the CPOP, after denoting by πi(.) the following dummy

function:

πi(fi)≜

(
E max

i
f max
i

)
dΦi

dη

(
fi

f max
i

)
+2ke fi, i = 1, . . . ,M, (3.21)

and by π
−1
i (.) its inverse, let T H(i) be the nonnegative threshold so defined:

T H(i)≜ 2(∂Pnet
i (Ri)/∂Ri)|Ri=0, i = 1, . . . ,M. (3.22)

3.1 VNetDC Scheduler 41

Hence, after indicating by (∂Pnet
i (Ri)/∂Ri)

−1 (y) the inverse function of ∂Pnet
i (Ri)/∂Ri, the

following Proposition 4 analytically characterizes the optimal scheduler (see the Appendix A

for the proof).

Proposition 4 Let the feasibility conditions in (3.20) be met. Let the X (.) function in (3.19)

be strictly jointly convex and let each function: Pnet
i (Ri)/Ri, i = 1, . . . ,M, be increasing for

Ri ≥ 0. Hence, the global optimal solution of the CPOP is unique and it is given by:

f ∗i =
[
π
−1
i
(
2ke f 0

i +ν
∗
i ∆
)] f max

i
f min
i

, (3.23.1)

L∗i = 1[ν∗i >0] (f ∗i ∆−Lb(i))+1[ν∗i =0]

[
(Tt−∆)

2

(
∂Pnet

i (Ri)

∂Ri

)−1(
µ∗

2

)]
+

, (3.23.2)

where f min
i ≜ Lb(i)/∆, and the nonnegative scalar ν∗i is defined as in

ν
∗
i ≜

[
µ
∗−

2∂Pnet
i

∂Ri

(
Ri =

2L∗i
(Tt−∆)

)]
+

. (3.24)

Finally, µ∗ ∈ R+
0 in (3.23.2) is the unique nonnegative root of the following algebraic

equation:
M

∑
i=1

L∗i (µ) = Ltot , (3.25)

where L∗i (.) is given by the r.h.s. of (3.23.2), with µ∗ replaced by the dummy variable µ .

3.1.4 Adaptive online implementation of the optimal scheduler

About the main structural properties and implementation aspects of the optimal scheduler,

the following considerations may be of interest.

3.1.4.1 Hibernation effects

The i-th VM is hibernated when L∗i = 0 (i.e., no exogenous workload is assigned to the

V M(i)) and the corresponding processing rate f ∗i is strictly larger than the minimum one:

42 QoS-aware Green Energy-efficient Schedulers

f min
i ≜ Lb(i)/∆ which is requested for processing the background workload Lb(i) (see

(3.12.2)). In principle, we expect that the hibernation of V M(i) may lead to energy savings

when ke , f 0
i ’s and the ratios {Pnet

i /Ri}’s are large, while the offered workload Ltot is small. As

proved in the Appendix B, this is, indeed, the behavior exhibited by the optimal scheduler, that

hibernates V M(i) at the processing frequency f ∗i in (3.23.1) when the following hibernation

condition is met:

µ
∗ ≤ T H(i). (3.26)

Interestingly, the i-th hibernation threshold in (3.22) is fully dictated by the power-rate

behavior of the i-th virtual link of Fig.3.1, while the corresponding hibernated frequency in

(3.23.1) depends on the computing system parameters (see (3.21)). This provides additional

evidence that the (aforementioned) CMOP and CPOP are coupled sub-problems, that is, the

optimal allocations of the computing and communication resources interact.

3.1.4.2 Adaptive implementation of the optimal scheduler

From an application point of view, remarkable features of the optimal scheduler of Propo-

sition 4 are that: i) it leads to the parallel computation (with respect to the i-index) of

the 3M variables { f ∗i ,L
∗
i ,R
∗
i , i = 1, . . . ,M}; and, ii) its implementation complexity is fully

independent from the (possibly, very large) size Ltot of the offered workload. Therefore, the

Task scheduler of Fig.3.1: i) computes the optimal value µ∗ of the Lagrange multiplier, that

is, it solves on a per-slot basis the equation in (3.25) by implementing the iterates in (3.27);

ii) passes the computed µ∗ to the VMs; iii) gathers the resulting optimal task sizes {L∗i }; iv)

dispatches the corresponding tasks for the processing; and, v) gathers the processed tasks

and builds up the processed job.

Moreover, in time-varying environments characterized by abrupt and unpredictable time-

fluctuations of the input workload Ltot , the per-job evaluation of the solution of the nonlinear

equations’ system in (3.23.1)-(3.25) may be accomplished by running the iterates in (3.27)-

3.1 VNetDC Scheduler 43

(3.28.3). They are a primal-dual version3 of the gradient projection algorithm with adaptive

step-size (see (3.29),(3.30)). These iterates aim at computing the global minimum of the

(convex) Lagrangian function in (A.1). For this purpose, at the beginning of each slot, the

iterates receive in input the size Ltot of the current job to be processed and, then, they begin

to run by starting from the optimal resource allocation already computed at the previous slot.

Afterwards, at the convergence, they return the optimal resource allocation in (3.17), (3.23.1),

(3.23.2) for the current slot, together with the corresponding current optimal values in (3.24),

(3.25) of the Lagrange multipliers. Since the gradient of the corresponding Lagrangian

function in (A.1) with respect µ is:
(
Ltot−∑

M
i=1 Li

)
and the closed-form relationships in

(3.23.1), (3.23.2), (3.24) hold, the gradient algorithm reduces to the following quasi-Newton

iterates (see the Appendix A for the proof):

µ
(n) =

[
µ
(n−1)−α

(n−1)

(
M

∑
i=1

L(n−1)
i −Lt

)]
+

, (3.27)

with µ(0) ≥ 0, L(0)
i ≥ 0. In (3.27), n≥ 1 is an integer-valued iteration index, {α(n−1)} is a

(suitable) positive step-size sequence, and the following dummy iterates in the n-index also

hold (see (3.23.1),(3.23.2) and (3.24)):

ν
(n)
i =

[
µ
(n)−

2∂Pnet
i

∂Ri

(
2L(n−1)

i
(Tt−∆)

)]
+

, (3.28.1)

f (n)i =
[
π
−1
i

(
2ke f 0

i +ν
(n)
i ∆

)] f max
i

f min
i

, (3.28.2)

L(n)
i = 1

[ν
(n)
i >0]

(
f (n)i ∆−Lb(i)

)
+1

[ν
(n)
i =0]

[
(Tt−∆)

2

(
∂Pnet

i (Ri)

∂Ri

)−1
(

µ(n)

2

)]
+

.

(3.28.3)

3Formally speaking, the primal-dual algorithm is an iterative procedure for solving convex optimization
problems, which applies quasi-Newton methods for updating the primal-dual variables [8, pp.407-408]. See the
Appendix A for the analytic details.

44 QoS-aware Green Energy-efficient Schedulers

Regarding the asymptotic global convergence to the optimum of the iterations in (3.27),

(3.28), the following result holds (see the Appendix B for the proof).

Proposition 5 Let the feasibility condition in (3.20) be met and let
{

α(n−1)
}

in (3.27)

be positive and vanishing for n→ ∞, i.e., limn→∞ α(n−1) = 0+. Hence, the iterations in

(3.27), (3.28) converge to the global optimum for n→ ∞, regardless of the initial conditions{
L(0)

i ≥ 0
}

, µ(0) ≥ 0.

Proposition 5 points out that the adaptive version in (3.27), (3.28) of the proposed scheduler

attains the global convergence to the solving point of Proposition 4. The numerical plots of

section 3.1.5.3 confirm the actual global convergence of the iterations in (3.27),(3.28). In

principle, the actual choice of
{

α(n−1)
}

in (3.27) also impacts on the rate of convergence

and tracking capability of the iterations. At this regard, we note that an effective choice for

coping with the unpredictable time-variations of the offered workload is provided by the

gradient-descendant algorithm of [60] for the adaptive updating of the step-size in (3.27). In

our framework, this updating reads as in [60, equation (2.4)]:

α
(n) = max

{
0;min

{
β ;α

(n−1)− γV (n−1)

(
M

∑
i=1

L(n−1)
i −Ltot

)}}
, (3.29)

where β and γ are positive constants, while V (n−1) is updated as in [60, equation (2.5)]:

V (n) =
(

1−α
(n−1)

)
V (n−1)−

(
M

∑
i=1

L(n−1)
i −Ltot

)
, (3.30)

with V (0) = 0. In practice, the iteration index n must run faster than the slot-time Tt . Although

the actual duration of each n-indexed iteration may depend on the considered application,

it should be small enough to allow the iterates in (3.27), (3.28) to converge to the global

optimum within a limited fraction of the slot-time Tt . In fact, at the beginning of each slot,

the iterates in (3.27),(3.28) are performed by starting from the optimal resource allocation

computed at the previous slot. Then, after attaining the convergence, the iterates halt and the

3.1 VNetDC Scheduler 45

corresponding resource reconfiguration takes place. Just as an example, we anticipate that,

in Fig.3.4, the iterates in (3.27),(3.28) run during the time intervals n ∈ [0,15] , n ∈ [30,45]

and n ∈ [60,75], in order to compute the corresponding new optimal resource allocation.

However, during these intervals, reconfiguration of computing-plus-communication resources

is not performed and, then, no reconfiguration costs are incurred. At the end of these transient

phases (e.g., at n = 15, n = 75 and n = 75 in Fig.3.4), a new resource configuration takes

place and, then, reconfiguration costs are incurred. Afterwards, the processing of the input

jobs by the VMs is performed during the remaining parts of the corresponding time-slots

(e.g., during the intervals n ∈ [16,30] , n ∈ [46,60] and n ∈ [61,75] in Fig.3.4). Overall, a

single reconfiguration action is performed during each slot time Tt , regardless of the actual

behaviors of the plots of Fig.3.4 during the transient phases. At this regard, we anticipate

that, on the average, about 10-15 iterations (in the n-index) are needed, in order to converge

to the steady-state values with an accuracy within 1%.

3.1.5 Performance comparison and sensitivity

We evaluate and compare the per-job average communication-plus-computing energy E
∗
tot

consumed by the proposed optimal scheduler under both synthetically generated and real-

world workload traces.

3.1.5.1 Simulated stochastic setting

Specifically, in order to stress the effect of the reconfiguration costs, we begin to model

the workload size as an independent and identically distributed (i.i.d.) random sequence

{Ltot(mTt),m = 0,1, . . .}, whose samples are r.v.’s evenly distributed over the interval [Ltot−

a,Ltot +a], with Ltot = 8 (Mbit). By setting the spread parameter a to 0 (Mbit), 2 (Mbit), 4

(Mbit), 6 (Mbit) and 8 (Mbit), we obtain PMRs of 1 (i.e., the offered workload is of constant

size), 1.25, 1.5, 1.75 and 2.0, respectively. About the dynamic setting of
{

f 0
i
}

in (3.12.1),

at the first round of each batch of the carried out simulations, all the frequencies f 0
i ’s are

46 QoS-aware Green Energy-efficient Schedulers

reset. Afterwards, at the m-th round, each f 0
i is set to the corresponding optimal value f ∗i

computed at the previous (m− 1)-th round. Since each round spans an overall slot-time

Tt , all the reported numerical results properly account for the reconfiguration cost in (3.9).

Furthermore, these results have been evaluated by implementing the adaptive version in

(3.27)-(3.30) of the optimal scheduler, with the duration of each n-indexed iteration set to

(Tt/30) secs. Finally, the reported numerical results subsume the power-rate function (3.5) at

α = 1.2, together with the computing energy function in (3.2) at c = 2.0 and b = 0.5.

3.1.5.2 Impact of the hibernation phenomena and reconfiguration cost

An instance of hibernation of the instantiated VMs is exemplified by the plots of Fig.3.2.

They refer to the already described application scenario with ζi = [0.5+0.5(i−1)] (mW),

f 0
i = 0.2 f max

i , i = 1, . . . ,M. Specifically, the upper bars of Fig.3.2 report the (numerically

evaluated) optimal average processing rates f ∗i ’s, while the lower bars refer to the corre-

sponding optimal average workloads L∗i ’s. An examination of the lower bars of Fig.3.2

points out that only the first nine VMs are permanently loaded, while the corresponding

upper bars confirm, indeed, that all the available VMs constantly run at positive process-

ing rates. This means that, in the considered application scenario, the last three VMs are

hibernated by the optimal scheduler. About this last aspect, Fig.3.3 reports the effects of the

reconfiguration costs on E
∗
tot at ke = 0.005 (Joule/(MHz)2), ke = 0.05(Joule/(MHz)2) and

ke = 0.5(Joule/(MHz)2). Interestingly, these plots show that E
∗
tot increases for growing ke’s

only for small values of M, while the optimal number M∗ of VMs to be instantiated (e.g., the

right size of the NetDC) decreases for increasing ke’s.

3.1.5.3 Impact of the VLAN setup and tracking capability

Goal of a first set of numerical tests is to evaluate the effects on the per-job average energy E
∗
tot

consumed by the optimal scheduler of the size M of the VNetDC and the setting of the TCP-

based VLAN. For this purpose, we pose: Tt = 5 (s), Rt = 100 (Mb/s), PMR= 1.25, ke = 0.05

(J/(MHz)2), f max
i = 105 (Mbit/s), E max

i = 60 (Joule), ∆ = 0.1 (s), RT T i = 700(µs) and

3.1 VNetDC Scheduler 47

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

M

f
∗ i
(M

bi
t/
s)

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

M

L
∗ i
(M

bi
t/
s)

Fig. 3.2 Hibernation phenomena for the application scenario of Sec.3.1.5.3.

1 2 3 4 5 6 7 8 9 10

20

30

40

50

60

70

M

E
to
t
(J

ou
le
)

ke=0.005 (Joule/MHz2)
ke=0.05 (Joule/MHz2)
ke=0.5 (Joule/MHz2)

Fig. 3.3 E tot for the application scenario of Sec.3.1.5.3 with ke = 0.005, 0.05 and 0.5
(Joule/(MHz)2).

Lb(i) = 0. Since the quality of the virtual links of Fig.3.1 is captured by the corresponding

coefficients {Ωi} in (3.5), we have numerically evaluated the average consumed energy

E
∗
tot under the following settings: i) Ωi = 0.5 (mW); ii) Ωi = [0.5+0.25(i−1)] (mW); and,

48 QoS-aware Green Energy-efficient Schedulers

1 2 3 4 5 6 7 8 9 10 11
10

20

30

40

50

60

70

80

90

M

A
v
e
ra

g
e
 p

e
r−

jo
b
 c

o
n
s
u
m

e
d
 e

n
e
rg

y
 (

J
o
u
le

)

heterogeneous Ω
i
=0.5+0.25(i−1)

homogeneous Ω
i
=0.5

heterogeneous Ω
i
=0.5+0.5(i−1)

heterogeneous Ω
i
=0.5+0.5(i−1); HS

heterogeneous Ω
i
=0.5+0.25(i−1); HS

homogeneous Ω
i
=0.5; HS

Fig. 3.4 Effects of the link quality on the energy consumptions of the proposed scheduler
(dashed plots) and the benchmark hybrid scheduler (continue plots) for the application
scenario of Sec.3.1.5.3.

iii) Ωi = [0.5+ 0.5(i− 1)] (mW), i = 1, . . . ,M. The obtained numerical plots are drawn

in Fig.3.4. As it could be expected, larger Ωi’s penalize the overall energy performance

of the emulated VNetDC. Interestingly, since E
∗
tot is, by definition, the minimum energy

when up to M VMs may be turned ON, at fixed Pnet
i ’s, E

∗
tot decreases for increasing M and,

then, it approaches a minimum value that does not vary when M is further increased (see

the flat segments of the four uppermost plots of Fig.3.4). In order to evaluate the energy

reduction due to the scaling up/down of the communication rates, we have also implemented

a benchmark scheduler, namely, the Hybrid Scheduler (HS). It performs, by design, the

adaptive minimum-energy allocation of the task sizes {Li} and computing rates { fi}, while

it holds the communication rates {Ri} fixed at the peak values {Rmax
i } which are required for

transporting the peak workload with a communication latency limited up to (Tt−∆) seconds

(see (3.12.6)). From a formal point of view, HS implements the solution of the constrained

minimization problem in (3.12.1)-(3.12.5) over the variables {Li, fi} at Ri = Rmax
i . We point

out that such a kind of scheduler has been considered in the recent contributions [78, 58]

3.1 VNetDC Scheduler 49

for copying with the abrupt time-fluctuations of big data streams. The continue plots of

Fig.3.3 report the energy consumptions of the HS. A comparison of these plots with the

corresponding ones of the proposed scheduler shows energy reductions which range from

22% (case of Ωi = 0.5) to 27% (case of Ωi = 0.5+ 0.5(i− 1)). These results confirm the

expectation [96] that noticeable energy savings may be attained by jointly scaling up/down

the available computing-plus-communication resources.

Finally, in order to appreciate the sensitivity to the parameters β , γ of the adaptive

version in (3.29), (3.30) of the proposed scheduler, Fig.3.5 reports the numerically measured

time-behavior of µ(n) in (3.27) when the offered workload abruptly passes from Ltot = 8

(Mbit/s) to Ltot = 10 (Mbit/s) at n = 30 and, then, it falls out to Ltot = 6 (Mbit/s) at

n = 60. The application scenario already described at the beginning of this sub-section has

been emulated at M = 10 and Ωi = 0.5 (mW). The solid piece-wise linear plot of Fig.3.5

marks the steady-state optimal values of µ . These optimal values have been calculated by

solving the nonlinear equations’ system in (3.23.1),(3.23.2),(3.24) and (3.25) through offline

centralized Matlab-based numerical methods. The main shortcomings of this centralized

approach are that: i) it does not scale with the number of the involved variables, so that its

computation complexity grows with the number 3M of the involved variables (approximately,

as O((3M)4) in our tests); and, ii) it is not adaptive, so that the computation of the solution

of the considered equations’ system must be re-started from scratch at the beginning of each

time-slot. Overall, an examination of the plots of Fig.3.5 supports two main conclusions.

First, the adaptive version of the optimal scheduler quickly reacts to abrupt time-variations of

the workload and it is capable to converge to the corresponding steady-state optimum within

about 10-15 iterations. Second, virtually indistinguishable trajectories for µ(n) are obtained

for γ ranging over the interval [0.1,0.6], so that in Fig.3.5 we report the time-evolutions of

µ(n) at β = 0.008,0.01,0.04, and γ = 0.4. As already noted in [60], also in our framework,

the sensitivity of the adaptive version of the optimal scheduler on β , γ is negligible, at

50 QoS-aware Green Energy-efficient Schedulers

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n index

T
im

e
 e

v
o
lu

ti
o
n
 o

f
µ

β=0.008

β=0.01

β=0.04

Fig. 3.5 Time evolution (in the n-index) of µ(n) in (3.27) for the application scenario of
section 3.1.5.3.

least for values of β and γ in (3.29) ranging over the intervals [10−3,10−1] and [0.1,0.6],

respectively.

3.1.5.4 Computing-vs.-communication tradeoff

Intuitively, we expect that small ∆’s values give rise to high per-VM computing frequencies

(see (3.12.2)), while too large ∆’s induce high end-to-end communication rates (see (3.12.6)).

However, we also expect that, due to the adaptive power-rate control provided by the

optimal scheduler (see (3.23.2),(3.24)), there exists a broad range of ∆’s values that attains an

optimized tradeoff. The plots of Fig.3.6 confirm, indeed, these expectations. They refer to the

application scenario of section 3.1.5.3 at M = 2,10, Ltot = 4,12 (Mbit), a = 1,3 (Mbit) and

Ωi = [0.5+0.25(i−1)], i= 1, . . . ,M (mW). An examination of these plots supports two main

conclusions. First, the energy consumption of the optimal scheduler attains the minimum

for values of the ratio (∆/Tt) falling into the (quite broad) interval [0.1,0.8]. Second, the

effects of the ratio (∆/Tt) on the energy performance of the scheduler are negligible when

the considered VNetDC operates far from the boundary of the feasibility region dictated

3.1 VNetDC Scheduler 51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140

160

180

200

∆ /T
t

A
v
e
ra

g
e
 p

e
r−

jo
b
 c

o
n
s
u
m

e
d
 e

n
e
rg

y
 (

J
o
u
le

)

L
t
=4 ± 1, M=2

L
t
=12 ± 3, M=2

L
t
=12 ± 3, M=10

L
t
=4 ± 1, M=10

Fig. 3.6 Impact on E tot of the computing-vs.-communication delay tradeoff.

by (3.20.1)-(3.20.2) (see the two lowermost curves of Fig.3.6). Interestingly enough, the

increasing behavior of the curves of Fig.3.6 gives practical evidence that the computing

energy dominates the overall energy consumption at vanishing (∆/Tt) (see (3.12.2)), while

the network energy becomes substantial for (∆/Tt)→ 1− (see (3.12.6)).

3.1.5.5 Performance impact of discrete computing rates

Main goal of this set of numerical tests is to acquire insight into: i) the average energy

reduction stemming from the exploitation of multi-rate computing techniques; and, ii) the

energy penalty induced by the frequency-switching over a finite number Q of allowed per-VM

processing rates (see (3.9)). For this purpose, the same operating scenario of the above section

3.1.5.3 has been considered at ke = 5×10−4 (Joule/(MHz)2) and Ωi = [0.5+0.25(i−1)],

(mW) i = 1, . . . ,M. The energy curves obtained at: i) Q = +∞; ii) Q = 6 (i.e., discrete

computing rates with six computing rates evenly spaced over [0, f max
i]); and, iii) Q = 2 (i.e.,

each VM may operate at fi = 0 or fi = f max
i), are drawn in Fig.3.7. Interestingly, we have

ascertained that the not monotonic behavior of the uppermost curve of Fig.3.7 is the result

of two effects that are dominating at Q = 2. First, at Q = 2, each active VM is forced to

52 QoS-aware Green Energy-efficient Schedulers

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

M

A
v
e
ra

g
e
 p

e
r−

jo
b
 c

o
n
s
u
m

e
d
 e

n
e
rg

y
 (

J
o
u
le

)

Q=∞ (continue DVFS)

Q=2 (no DVFS)

Q=6 (discrete DVFS)

Fig. 3.7 Effects of the computing-rates on the energy performance of the platform of Fig.3.1.
The frequency-switching energy penalty in (3.9) is considered.

operate at f max
i , so that the increment in the computing energy induced by the activation of

an additional VM scales up as E max
i . Second, at Q = 2, the energy overhead in (3.9) required

for switching from fi = 0 to fi = f max
i (or vice versa) is maximum.

As a consequence, the plots of Fig.3.7 support the following three main conclusions. First,

at Q = 2, the activation of only two VMs (if feasible) stems out as the most energy-saving

solution. Second, the relative gap in Fig.3.7 between the uppermost curve (at M = 2) and the

lowermost one (at M = 9) is very large. Third, the relative gap between the two lowermost

curves of Fig.3.7 is limited up to 15%.

3.1.5.6 Performance comparison under synthetic workload traces

Testing the sensitivity of the performance of the proposed scheduler on the PMR of the

offered workload is the goal of the numerical results of this sub-section. Specifically, they

aim at unveiling the impact of the PMR on the average energy consumption of the proposed

scheduler and comparing it against the corresponding ones of two state-of-the-art schedulers,

namely, the STAtic Scheduler (STAS) and the SEquential Scheduler (SES). Intuitively, we

3.1 VNetDC Scheduler 53

expect that the energy savings attained by dynamic schedulers increase when multi-rate

reconfigurable VMs are used, especially at large PMR values. However, we also expect

that not negligible reconfiguration costs may reduce the attained energy savings and that

the experienced reductions tend to increase for large PMRs. In order to validate these

expectations, we have simulated the communication-computing platform of Section 3.1.5.3

at Ωi = 0.9 (mW), and ke = 0.005(Joule/(MHz)2).

About the simulated STAS, we note that current virtualized data centers usually rely

on static resource provisioning, where, by design, a fixed number Ms of VMs constantly

runs at the maximum processing rate f max[6]. The goal is to constantly provide the exact

computing capacity needed for satisfying the peak workload Lmax
tot ≜ (Ltot +a) (Mb). About

the simulated SES, it exploits (by design) perfect future workload information over a time-

window of size I ≥ 2 (measured in multiple of the slot period Tt), in order to perform off-line

resource provisioning at the minimum reconfiguration cost. By design, the SES simulates the

solution of the following sequential minimization problem:

min
{Ri(m), fi(m),Li(m)}

I

∑
m=1

M

∑
i=1

{
Φi

(
fi(m)

f max
i

)
E max

i + ke [fi(m)− fi(m−1)]2 +2
Pnet

i (Ri(m))

Ri(m)
Li(m)

}
,

(3.31)

under the constraints in (3.12.2)-(3.12.8). We have numerically evaluated the solution of the

above sequential problem by implementing in Matlab the dynamic programming tools of

[89]. In order to put under the right perspective the following performance comparisons,

three main explicative remarks are in order. First, although the STAS does not experience

reconfiguration costs, it induces resource overbooking. Hence, the resulting per-job average

communication-plus-computing energy consumption Ē
(STAS)

tot (Joule) gives a worst-case

benchmark for numerically evaluating the energy efficiency (i.e., the percent energy gaps)

of dynamic schedulers. Second, the capacity planning studies in [6] refer, indeed, to static

schedulers and this provides, indeed, an additional motivation for considering the energy

54 QoS-aware Green Energy-efficient Schedulers

Table 3.2 Average energy reductions attained by proposed (V NetDC) and the sequential
schedulers over the static one at ke = 0.005 and f max

i = 80.

PMR VNetDC SES VNetDC SES
at ∆ = 0.05 (s) at ∆ = 0.05 (s) at ∆ = 0.1 (s) at ∆ = 0.1 (s)

1 0% 0% 0% 0%
1.25 51% 54% 65% 68%
1.5 45% 48% 62% 65%
1.75 63% 67% 57% 62%
2 57% 62% 50% 56%

performance of the STAS as a benchmark. Third, since the SES ideally assumes perfect

knowledge of future workload, it cannot be implemented in practice. However, its energy

performance fixes, by design, a best-case benchmark, which gives insight about the room

for further performance improvements. Table 3.2 reports the average energy savings (in

percent) provided by the proposed scheduler and the sequential scheduler over the static

one. Furthermore, in order to test the performance sensitivity of these schedulers on the

allowed computing delay, the cases of ∆ = 0.05 (s) and 0.1 (s) have been considered. In

order to guarantee that the static, sequential and proposed schedulers retain the same energy

performance at PMR = 1 (i.e., under constant offered workload), the numerical results of

Table 3.2 have been evaluated by forcing the sequential and the proposed schedulers to

utilize the same number of VMs which are activated by the static scheduler. Although

this operating condition strongly penalizes the resulting performance of the sequential and

proposed schedulers, nevertheless, an examination of the numerical results reported in Table

3.2 leads to three main conclusions. First, the average energy saving of the proposed scheduler

over the static one approaches 65%, even when the VMs are equipped with a limited number

Q = 4 of discrete processing rates and the reconfiguration energy overhead is accounted for.

Second, the performance loss suffered by the proposed adaptive scheduler with respect to the

sequential one tends to increase for growing PMRs, but it remains limited up to 3%−7%.

3.1 VNetDC Scheduler 55

Third, the performance sensitivity of the proposed and sequential schedulers on the allowed

computing delay ∆ is generally not critical, at least for values of ∆ corresponding to the flat

segments of the curves of Fig.3.6. Finally, we have experienced that, when the proposed

scheduler is also free to optimize the number of utilized VMs, the resulting average energy

saving over the static scheduler approaches 90%−95% [23, section V].

3.1.5.7 Performance comparison under real-world workload traces

These conclusions are confirmed by the numerical results of this sub-section, that refer to the

real-world workload trace of Figs. 3.8,3.9. Specifically, Fig.3.8 reports the real-word traces

of Fig.14.a of[90], which represents an 1-hour HTTP-type arrival process really measured

at the front-end Web servers of the 1998 Soccer World Cup site. Fig.3.9 draws the recent

real-world trace of Fig.2 of [106]. It refers to the I/O workload taken from four RAID

volumes of an enterprise storage cluster in Microsoft [106, section IV.A]. The numerical

tests carried out in this sub-section refer to the communication-computing infrastructure

of section 3.1.5.6 at ke = 0.5 (Joule/(MHz)2) and ∆ = 1.2 (s). Furthermore, in order to

maintain the peak workload still fixed at 16 (Mbit/slot), we assume that each arrival of

Figs.3.8,3.9 carries out a workload of 0.533 (Mbit).

Since the (numerically evaluated) PMR of the workload trace of Fig.3.8 is limited up to

1.526 and the corresponding time-covariance coefficient ρ is large and approaches 0.966,

the workload trace of Fig.3.8 is smoother than those previously considered in section 3.1.5.6.

Hence, we expect that the corresponding performance gaps of the proposed and sequential

schedulers over the static one are somewhat less than those reported in section 3.1.5.6 for the

case of i.i.d. workload. However, we have tested that, even under the (strongly) correlated

workload trace of Fig.3.8, the average energy reductions of the proposed scheduler over the

static and hybrid ones still approaches 40% and 19%, respectively. The corresponding energy

saving of the sequential scheduler over the proposed one remains limited up to 5%−5.5%.

56 QoS-aware Green Energy-efficient Schedulers

0 10 20 30 40 50 60
2

4

6

8

10

12

14

16

Slot Index

N
u

m
b

e
r

o
f

a
rr

iv
a

ls
 p

e
r

m
in

Fig. 3.8 Measured trace of the arrivals of HTTP sessions at the Web servers of the 1998
Soccer World Cup site [90]. The corresponding PMR and covariance coefficient ρ equate
1.526 and 0.966, respectively. The flat peaks reflect buffering delays.

Quite different performance gaps are expected under the workload trace of Fig.3.9. In

fact, in this case, the (numerically evaluated) PMR is larger than those of the i.i.d. synthetic

traces of section 3.1.5.1 and equates PMR = 2.49, while the corresponding time-covariance

coefficient is low and approaches ρ = 0.85. In agreement with the quasi-random behavior of

the trace of Fig.3.9, we have tested that the corresponding energy reduction of the proposed

scheduler over the static and hybrid ones approach 68% and 28% respectively, while the

corresponding average energy saving of the sequential scheduler over the proposed one is

around 5.5%−6%.

3.2 GreenNetDC Scheduler

In this section, we present a joint-computation-and-communication data center resource

provisioning model, called GreenNetDC. Special attention is given to the power management

techniques that exploit the virtualization technology to save energy. The model not only

ensures users the Quality of Service (through Service Level Agreements) but also achieves

3.2 GreenNetDC Scheduler 57

0 20 40 60 80 100 120
2

4

6

8

10

12

14

16

Slot index

N
u

m
b

e
r

o
f

a
rr

iv
a

ls
 p

e
r

s
lo

t

Fig. 3.9 Sampled trace of an I/O workload from an enterprise cluster in Microsoft [106, Fig.2].
The corresponding PMR and time-correlation coefficient are 2.49 and 0.85, respectively.

maximum energy saving and attains green cloud computing goals in a fully distributed

fashion by utilizing the DVFS-based CPU frequencies.

In a nutshell, the main objective of this section is to introduce a joint computing-plus-

communication framework and develop an efficient scheduler for virtualized data centers

that takes into account the allowed discrete processing frequencies for VMs hosted by

DVFS-enabled CPU cores. It is important to note that this feature has an internal effect in

each CPU while facing online workload. The CPU manages its frequency (i.e., called old)

according to its current workload and its performance constraints and the new frequency

is called optimum frequency. The difference between old and optimum frequency is called

reconfiguration frequency and the reconfiguration frequency incurs energy cost which is

called reconfiguration cost. Specifically, our work aims to:

• define an architectural framework and principles for energy-efficient VNetDC;

58 QoS-aware Green Energy-efficient Schedulers

• develop an efficient energy-aware resource allocation and provisioning algorithm in a way

that improves the energy efficiency of a data center under hard SLA constraints;

• develop an adaptive version of the scheduling algorithm for energy-efficient mapping of

workload quota to the available VMs.

3.2.1 System Model and Considered GreenNetDC Architecture

This sub-section introduces a model which concentrates on the discrete frequencies for each

DVFS-based CPU of VMs (the primary version of the work is published in [81]). Specifically,

we describe the components of the proposed architecture that is shown in Fig.3.10. In sub-

section 3.2.1.1, we describe a general platform of the proposed architecture that minimizes

the total energy of the joint-computing-plus-communication operations; sub-section 3.2.1.2

explains the fundamental parts of the proposed model; and, finally, sub-section 3.2.1.3

presents the energy-aware part of the architecture.

3.2.1.1 The GreenNetDC architecture

Motivated by the model considerations, the GreenNetDC architecture is composed of two

components. The first one, which is shown in the orange box in Fig.3.10, consists of the

LAN switch and load balancer. The second one which is shown in bottom of the Fig.3.10

comprises of physical machines or servers which is connected to the switch by a network.

Each server consists of a virtualization layer and a physical layer. Virtualization layer enables

accessing appropriate resources and deploy virtual machines (VMs) on a server hardware.

The physical layer of the GreenNetDC provides an elevated view of the underlying physical

machine to the virtualization layer. Each server connects to the switch component via an

end-to-end communicating link as shown in the Fig.3.10. The intra-cluster communication

is supported through message passing. Communication is bounded by the bandwidth and

3.2 GreenNetDC Scheduler 59

the power which is related to the transmit rate of each end-to-end link (each bidirectional

arrowed line drawn from the switch to the VM in the Fig.3.10).

After the gateway, we have a manager module which carries out two main operations,

namely, Virtual Machine Management/Monitor (VMM) and task switching, which aims to

perform job decomposition in M VMs with their channels (or end-to-end links). The goal

of the VMM is to dynamically manage the VM Layer (i.e., resource dispatching central

controller of Fig.3.10), so as to attain an optimal mapping of the available resources onto

multiple (possibly heterogeneous) VMs (resource allocation). Computing resources are a

collection of large number of servers, (e.g., physical machines (PMs)), each composing of

one or more cores, memory, network interface and local I/O. The computing cost is calculated

based on the energy consumed during the processing of tasks of the dispatched workload for

each VM.

A new job is initiated by an event, that is constituted by the arrival of a file of size Ltot

(bit) (see the upper part of the Fig.3.10). Due to the real-time nature of the considered

applications, full processing of the input file must be carried out within a given (e.g., a priori

assigned) deterministic time Tt (s) (s means seconds). Finally, at the end of job’s processing,

the results are passed to the gateway router of Fig.3.10 and sent back to the cloud applications.

3.2.1.2 Offered workload

Several components play crucial role in the proposed architecture such as compute nodes or

VMs, communication channels and offered workload. We assume GreenNetDC is composed

by M VMs with individual memories (i.e., it means each VM has an autonomous memory;

also there is no migration policy considered for jobs/VMs). A server has three general modes:

OFF, active and inactive. In OFF mode, the server power is turned OFF. In active mode, it

executes tasks and in inactive mode it is ON but does not execute any task. Since the toggle

duration for a VM into and out of a power-saving mode (OFF/ON) is relatively high (e.g.,

60 QoS-aware Green Energy-efficient Schedulers

Fig. 3.10 The considered GreenNetDC architecture.

20ms in [9]), we use idle state (inactive mode) for each VM, which indicates that VM is

done its task and now is in the hibernating mode, consuming less energy. In the model, we

use this state for each VM which will be explained later.

3.2.1.3 Workload instances

The workload is the received amount of requests from the Internet which should be processed

according to their hard deadlines Tt . We tested our approach with synthetic and real-world

trace workloads which are explained in sub-section 3.2.4. We model the workload as

independently identically distributed (i.i.d.). The incoming workload (i.e., Ltot) is split into

3.2 GreenNetDC Scheduler 61

M quotas (fractions) that must be assigned to the active VMs and passed over contention-free

parallel end-to-end links to reach each VM for processing/computing.

3.2.1.4 VM characterization

A VM needs to satisfy the QoS requirements, such as, required virtual processor speed,

memory size, storage size, operating system and other hardware/software environmental

parameters. In the context of energy-aware scheduling and resource management, we model

a VM in terms of required processor frequency and required execution time. Thus, V M(i)’s

attributes are defined as{
T (i),F idle

i , f max
i ,Pidle

i ,A(i),Ce f f (i),ω(i)
}
, i = 1,2, . . . ,M, (3.32)

where T (i) is the maximum duration considered for execution time of V M(i). For simplicity,

we assume the homogeneous case with T (i)≡ T for all VMs, although our model can work

under heterogeneous computational time for each VM; Pidle
i and F idle

i are the idle power and

idle frequency for i-th VM, respectively. We consider homogeneous idle powers Pidle
i = Pidle

and homogeneous idle frequencies F idle
i = F idle; f max

i is the maximum processing speed of

the i-th VM in (bit/s); A(i) and Ce f f (i) represent the active percentage of gates and effective

capacitance load of i-th VM CPU, which we assume to be constant in our model, e.g.,

A(i) = A and Ce f f (i) =Ce f f ; and, ω(i) is relative energy cost incurred by the instantiation of

the considered VM for the execution of the planned task which is dimensionless (to simplify

the model, we consider ω(i) = 1.). From a more practical perspective in ω(i), larger values

for ω make more energy-expensive the execution of the planned task on the considered VM,

and ω = ∞ forbids at all the execution of the planned task. Therefore, a suitable setting of the

attributes ω(i), i = 1, . . . ,M may capture task preferences, heterogeneity in the functionalities

of the available VMs, as well as underlying task-placement constrains [87]. More explanation

on VM frequency is given in next subsection on computing energy model.

62 QoS-aware Green Energy-efficient Schedulers

3.2.2 Energy consumptions in GreenNetDC

In this sub-section, we detail the energy model, which is categorized into three types of

energies: ComPutational cost (denoted CPc), REconfiguration cost (denoted REc), and

CoMmunication cost (denoted CMc) which is borrowed from the channel cost of the section

3.1.4.

3.2.2.1 ComPutational Cost in GreenNetDC

The proposed computational energy model is based on the VMs’ CPUs characteristics and

VM states which was described in sub-section 3.2.1. DVFS technique is applied in VMs

processors to reduce the energy consumption by decreasing the VMs’ frequencies. It is

assumed that each VM can operate at multiple processing frequencies and each (discrete)

frequency is active for a specific time [93]. From a more practical perspective in DVFS-based

VMs’ CPU, V M(i) is able to work with frequency fi duration ti. Hence, fiti is the resulting

processed workload in bits.

In general, DVFS technology allows to work at various frequencies in its active mode. Q

is the number of frequency segmentations between the (real) minimum/ maximum frequency

for each VM processor that is able to work with DVFS technology. For instance, AMD

Turion MT-34 can operate at six frequencies ranging which are from 800 to 1800 (Mbit/s)

[108] while Crusoe RTM-5800 makes available 5 discrete-frequencies falling into the interval

300 to 933 (Mbit/s) [54]. Hence, we can write:

{ f0 ≜ F idle < f1 < f2 < .. . < fQ ≜ fmax}. (3.33)

Other components of a system such as memory, bus, etc, operate at a single frequency and

consume the same power in both task’s active and idle state [108]. According to [80, 33], the

dynamic power consumption, Pdyn of each VM working at f is given by:

3.2 GreenNetDC Scheduler 63

Pdyn = ACe f f f v2, (3.34)

where, A, Ce f f , f , and v represent the active percentage of gates, effective capacitance load,

the VM frequency, and supply voltage, respectively [80, 33]. On the other hand, Estat is

normally proportional to Edyn and is related to the VM voltages, power for short Circuits of

CMOS gates, and leakage power (Pleakage) which is described in eq. (3.35):

Pstat = Pleakage +PShort−Circuit ,

where

Pleakage = vIleakage and PShort−Circuit = AvIshort ,

(3.35)

where in PShort−Circuit the power expended by the ’short-circuit’ current which momentarily

flows between the supply voltage and ground when the CMOS gates switch. Estimates the

duration of the flow, and Ishort the amount of current and Pleakage estimates the power due to

current leakage, Ileakage estimates this current. The Pstat power consumption is usually less

than the dynamic power-consumption for high supply voltages and low cycles of tasks for the

processor. Nowadays, in practice, the first term dominates so, we negligible compare with

dynamic power. On the other hand, the frequency and voltage are correlated to each-other as

eq. (3.36) [80, 33]:
f ∝

(v− vth)
2

v
, (3.36)

where, vth is threshold voltage which is much less than v [80, 33]. Since voltage enters

quadratically in eq. (3.34), it would seem that reducing voltage would be the most attractive

means of reducing power consumption. As mentioned before, each VM goes into the idle

mode with Pidle power consumption which is a nonnegative, not decreasing, continuous and

(strictly) convex function of Pidle ≥ 0. If we consider that total computation time allocated

for V M(i) is T , the total computational cost equates

ECPc(i)≜
Q

∑
j=0

ACe f f F3
i jti j, i = 1, . . . ,M, (3.37)

64 QoS-aware Green Energy-efficient Schedulers

where ti j is the time duration of the j-th active discrete range of frequency in V M(i) and

Fi j,∀i = 1, . . . ,M, j = 0, . . . ,Q denotes the discrete frequencies for each VM in their Q+1

discrete ranges. We assume that the T for the VM can be split and assigned to the discrete

frequencies considered for each VM. Therefore, the fraction of the workload can be executed

over various active discrete frequencies in time quota. Also, the duration that VM is in idle

mode won’t receive any workload to process but this time is included in T .

3.2.2.2 REconfiguration cost in GreenNetDC

The basic task of the VMM is to manage suitable frequency-scaling mechanisms, to allow

the VMs to adjust in real-time their processing frequency fi [9]. We note that switching from

frequency f1 to frequency f2 incurs an energy cost EREc(f1; f2) (Joule) [93, 9]. Although

the actual behavior of the switching energy-function EREc(f1; f2) depends on the adopted

DVFS technique and the underlying physical CPUs [77]. A common practical model that

retains the aforementioned formal properties is borrowed from the (3.9).

Each VM according to the fraction of workload allocated to it, is able to work with some

ranges of discrete frequencies that we called active discrete frequencies. The switching cost in

GreenNetDC is split into internal and external costs. In internal cost, the reconfiguration cost

of changing the internal-switching among active discrete frequencies of V M(i) is calculated

while external cost is the different frequencies of the first active discrete frequency for the

next incoming workload and the ultimate active discrete frequency for the previous workload.

For example, if we consider a VM that has 5 discrete frequencies and this VM is able to

work with 3 lowest of its frequencies based on assigned fraction of workload, we consider

these three frequencies as a list of active discrete frequencies for this workload fraction and

calculate internal and external frequency differences and compute the reconfiguration energy

according to eq. (3.9).

3.2 GreenNetDC Scheduler 65

3.2.2.3 CoMmunication cost (CMc) in GreenNetDC

In GreenNetDC model, we assume that each VM communicates to the scheduler via a

dedicated (i.e., contention free) reliable link that works at the transmission rate of Ri (bit/s),

i = 1, . . . ,M operates in the i-th bidirectional, symmetric, link drains a (fixed) power of

PCMc(i) (Watt).

About the actual value of PCMc
i , we note that in order to limit the implementation cost,

current data centers utilize off-the-shelf rackmount physical servers which are interconnected

by commodity Fast/Giga Ethernet switches. Furthermore, they implement legacy TCP

protocols (mainly, the TCP New Reno one) for attaining end-to-end (typically, multi-hop)

reliable communication []. In this regard, we note that the data center-oriented versions of the

legacy TCP New Reno protocol proposed in [3, 27] allow the managed end-to-end transport

connections to operate in the Congestion Avoidance state during 99.9% of the working time,

while assuring the same end-to-end reliable throughput of legacy TCP New Reno protocol.

Therefore, the communication power cost of the proposed model can be simplified respect to

(3.5) to
PCMc

i (Ri) = Ωi
(
RT TiRi

)2
+PIdle, i = 1, . . . ,M, (3.38)

where Ωi ≜ 1
gi

(
1

MSS

√
2v
3

)2

i = 1, . . . ,M; MSS (bit) is the maximum segment size; v ∈

{1,2} is the number of per-ACK acknowledged segments; gi (Watt−1) is the coding gain-

to-receive noise power ratio of the i-th end-to-end connection; RT Ti is the average round-

trip-time of the i-th end-to-end connection (e.g., RT Ti less than 1 (ms) in typical data centers

[27]); and PIdle is the idle power cost for each end-to-end link. Hence, the corresponding

one-way transmission delay equates: D(i) =
Q
∑
j=1

Fi jti j/Ri, so that the corresponding one-way

communication energy E CMc(i) is:

E CMc(i)≜ PCMc
i (Ri)

(Q

∑
j=1

Fi jti j

Ri

)
(Joule). (3.39)

66 QoS-aware Green Energy-efficient Schedulers

Table 3.3 GreenNetDC notation.

Symbol Meaning/Role
F idle

i (bit/s) Idle fixed frequency for V M(i)
Fi j (bit/s) Fixed computing rates of V M(i)
F0

i j(bit/s) Consolidated computing rate of the VM(i)
Ri (bit/s) Communication rate of the i-th virtual link
Rt(bit/s) Aggregate communication rate of the Virtual LAN
T (s) Per-job maximum allowed computing time
ti(s) The optimum computing time for calculation of V M(i)
ti j(s) The optimum computing time for V M(i) with Fi j
Tt(s) Per-job maximum allowed total time
ECPc(i)(Joule) Computing/CPU consumed energy for V M(i)
EREc(i)(Joule) Reconfiguration cost for V M(i)
E CMc(i)(Joule) Network energy consumed for i-th end-to-end link

Specifically, the energy consumption of end-to-end link does not effect the policy of com-

putation, and is completely independent. Table 3.3 summarizes the notations used in the

sub-section.

3.2.3 The GreenNetDC Optimization Problem and Solution

In this section, we introduce our dynamic load balancing and resource provisioning joint

computing-plus-communication approach, respecting the DVFS-based active discrete fre-

quencies and their time fractions for each VM. Specifically, this problem aims at properly

tuning the workload fractions { fiti, i = 1, . . . ,M}, the end-to-end link data transferring rates

{Ri, i = 1, . . . ,M} and the computing rates { fi, i = 1, . . . ,M} of the networked VMs. The

goal is to minimize the overall resulting communication-plus-computing energy, formally

defined as

Etot ≜
M

∑
i=1

ECPc(i)+
M

∑
i=1

EREc(i)+
M

∑
i=1

E CMc(i) (Joule), (3.40)

3.2 GreenNetDC Scheduler 67

where EREc(i) is the reconfiguration cost of V M(i) under the hard constraint Tt on the allowed

per-job execution time. The last term of (3.40) depends, in turn, on the (one-way) delays

{D(i), i = 1 . . .M} introduced by the Virtual LAN (Fig.3.10’s end-to-end virtual links) and

the allowed per-task processing time T . Specifically, since the M virtual connections of

Fig.3.10 are typically activated by the Switch in a parallel fashion [40], the overall two-way

communication-plus-computing delay induced by the i-th connection equates to 2D(i)+T

and the hard constraint on the per-job execution time reads as in: max1≤i≤M{2D(i)}+T ≤ Tt .

In our approach, we propose a (simple) model which accounts for the discrete frequencies for

each VM. We know that in real VM processors which are based on DVFS technologies, there

are limited ranges for discrete frequencies (i.e., the processors normally have 4-5 frequencies

[80]). Therefore, fi may define Q different discrete values. Generally, the working frequency

of each VM is greater than zero or equal to zero (in other words, VM can be in hibernate

mode when a request to serve is received). Moreover, the product of optimum frequency

and its correlated time for achieving this optimum frequency can be divided into Q+1 fixed

discrete CPU frequencies and the time can be split into Q+1 sub-durations for each discrete

frequency.

The goal is to minimize Etot under SLA induced constraints. Formally speaking, we

consider a DVFS-based VM which has a specific range of available frequencies and resolve

the nonconvexity problem in the following manner: each VM moves from one of its discrete

frequencies to another for computing the assigned workload in its split time. The time breaks

into Q discrete unknown time variables for VMs. Therefore, we can use the known vector of

frequency for each VM. Also, we have a vector of inter-times related to each VM’s frequency

(i.e., ti j for j-th time of V M(i)) . Each cell of this vector retains the duration VM work with

its corresponded frequency for current incoming workload. After computation, each VM

sends-back its processed information over the end-to-end link to the VMM which sends it to

the cloud over the Internet. The system keeps the list of the active servers to decide for the

68 QoS-aware Green Energy-efficient Schedulers

next incoming workload from the gateway. It helps to distribute workloads across a number

of available servers, to minimize the average energy and execution time. From a more precise

and practical perspective, the Objective Problem (OP) assumes the following form:

min
{Ri, ti j}

M

∑
i=1

Q

∑
j=0

[
ACe f f F3

i jti j
]
+

M

∑
i=1

EREc(i) (3.41.1)

+
M

∑
i=1

Q

∑
j=1

2PCMc
i (Ri)

(
Fi jti j

Ri

)
,

subject to:

M

∑
i=1

Q

∑
j=1

Fi jti j = Ltot , (3.41.2)

Q

∑
j=0

ti j = T, i = 1, . . . ,M, (3.41.3)

Q

∑
j=1

2Fi jti j

Ri
+T ≤ Tt , i = 1, . . . ,M, (3.41.4)

M

∑
i=1

Ri ≤ Rt . (3.41.5)

The above optimization problem can be understood as follows. Eq. (3.41.1) represents the

joint computing-plus-communication cost which accounts for the VMs’ frequency switching

cost for each incoming workload. The equality in (3.41.2) states that the summation of

product of discrete frequency by duration for responses for all VMs should be equal to

incoming workload Ltot . The total time T allowed for the computation is calculated according

to the equation (3.41.3). From this equation, the summation of total time-quotas for each

active VM is equal to the considered computation time for each incoming workload. The

(global) constraint in (3.41.4) forces the Cloud to process the overall jobs within the assigned

hard deadline Tt , and thus, it guarantees that the overall communication-computing platform

operates in hard real-time. The inequality in (3.41.5) assures the bandwidth consistency and

feasibility of the system. It means, VM’s Ri must be less than the maximum considered

3.2 GreenNetDC Scheduler 69

bandwidth. This equation works like a water-filling problem in order to control aggregate end-

to-end link bandwidth load balancing and adjusts the bandwidth for each server according to

their workload quotas. The duration of the computing interval for each discrete frequency

range (ti j for Fi j) is bounded by T .

The reported version of the problem is non-convex due to the non-convexity of the com-

munication terms of the objective function in (3.41.1). Note that the rest of the constraints are

affine or can be easily written in convex form in their considered range. It would be likelihood

to split these three different activities (e.g., computation, managing the reconfiguration of

frequencies and communication) and schedule them separately for an efficient execution. Put

it simply, there are three tasks to be considered: Computation-aware, Communication-aware,

and Reconfiguration-aware tasks.

From a Computation-aware point of view, we can simply write the computation optimizing

problem as follows:
min

ti j
ACe f f

M

∑
i=1

Q

∑
j=0

F3
i jti j, (3.42)

subject to (3.41.2), (3.41.3). (3.43)

where ti j is the computational time of V M(i) working at Fi j. On the basis of this observation,

eq. (3.42) is linear in the control variable ti j and can be easily solved based on two constraints

(3.41.2), (3.41.3). We can solve this linear problem by the equation system reported in the

Appendix C.

From a Communication-aware point of view, the third term in (3.41.1) in nonconvex in

the variables Ri and Fi jti j. Formally speaking, for any assigned nonnegative vector
−−→
Fi jti j of

the workload fractions (job sizes), CMc is generally nonconvex in the communication rate

variables {Ri, i = 1, . . . ,M}, and the resulting optimization problem reads as in:

min
Ri

M

∑
i=1

Q

∑
j=1

2PCMc
i (Ri)

(
Fi jti j

Ri

)
, (3.44)

70 QoS-aware Green Energy-efficient Schedulers

subject to (3.41.4) and (3.41.5). (3.45)

It is proved in Proposition 6 that this problem can be put in convex as below reported.

Proposition 6 The expression of E CMc can be put in the following form (see the following

proof):
M

∑
i=1

Q

∑
j=1

2PCMc
i (Ri)

(
Fi jti j

Ri

)
= (Tt−T)

M

∑
i=1

Q

∑
j=1

PCMc
i

(
2Fi jti j

Tt−T

)
. (3.46)

Proof: Let {R∗i (F⃗i j⃗ti j), i = 1, . . . ,M} be the optimal solution of the eq. (3.44), and let

(3.47)

C ≜

{(−−→
Fi jti j

)
∈ (R+

0)
M :

(
Q

∑
j=1

Fi jti j/R∗i
(−−→

Fi jti j

))
≤

(Tt − T)/2, i = {1,2, . . . ,M}, j = {1,2, . . . ,Q};
M

∑
i=1

Q

∑
j=1

R∗i
(−−→

Fi jti j

)
≤ Rt

}
,

be the region of nonnegative M-dimensional Euclidean space constituted by all
−−→
Fi jti j vectors

meeting the constraints in (3.41.4) and (3.41.5). For feasibility and solution of (3.44) we

have

i) The CMc in (3.44) is feasible if and only if the vector
−−→
Fi jti j meets the following condition:

M

∑
i=1

Q

∑
j=1

Fi jti j ≤ (Rt(Tt−T))/2 (3.48)

ii) The solution of the CMc is given by the following closed-form expression:

R∗i
(−−→

Fi jti j

)
≡ R∗i

(
Q

∑
j=1

Fi jti j

)
≡(

Q

∑
j=1

2Fi jti j/(Tt−T)

)
, i = 1, . . . ,M.

(3.49)

For any assigned
−−→
Fi jti j, the objective function in (3.44) is the summation of M(Q + 1)

nonnegative terms, where the i j-th term depends only on Ri for all j. Thus, being the

3.2 GreenNetDC Scheduler 71

objective function in (3.44) separable and its minimization may be carried out component-

wise. Since the i j-th term in (3.44) is increasing in Ri and the constraints in (3.41.4) and

(3.41.5) must be met, the i j-th minimum is attained when the constraints in (3.41.4) and

(3.41.5) are binding, and this proves the validity of (3.48). Finally, the set of rates in (3.49)

is feasible for the CMc if and only if the constraint in (3.41.5) is met, and this proves the

validity of the feasibility condition in (3.49).

Moreover, the end-to-end links’ power cost
Q
∑
j=1

2PCMc
i (Ri)

(
Fi jti j/Ri

)
is the product of

the end-to-end link formula which is based on TCP New Reno (i.e., a specific type of TCP

congestion-avoidance algorithm which is applied for congestion control in the Internet that

we modeled our one-way transmission-plus-switching operation over each end-to-end link or

link in the proposed model) in (3.38) and is continuous, nonnegative and nondecreasing for

Ri > 0, ∀i ∈ {1, . . . ,M}, with the multi-variable coefficient which can be feasible if only the

following equation holds (i.e., we use "→" which means implies):

Q

∑
j=1

2Fi jti j

Ri
+T ≤ Tt →

(
Q

∑
j=1

Fi jti j

Ri

)
≤ (Tt−T)

2
. (3.50)

Equation (3.50) is obtained by manipulating equation (3.41.4). To make the optimization

problem easier to solve, we recast the second control variable by rewriting Ri based on

another control variable (ti j) as follows:

Q

∑
j=1

2Fi jti j

Ri
+T ≤ Tt → Ri ≥

Q

∑
j=1

(
2Fi jti j

Tt−T

)
. (3.51)

So, we can apply the result of equations (3.50) and (3.51) in the third term of the objective

function, to achieve the following

M

∑
i=1

2PCMc
i (Ri)

(
Q

∑
j=1

Fi jti j

Ri

)
= (Tt−T)

M

∑
i=1

PCMc
i

(
Q

∑
j=1

2Fi jti j

Tt−T

)
, (3.52)

72 QoS-aware Green Energy-efficient Schedulers

To recap, the end-to-end link function E CMc(.) which is based on two control variables

(G (Ri; ti j)) can be written at the following result for changing the second control variable Ri

to a function of other control variable in eq. (3.53):

E CMc(i) = G (Ri; ti j)≜ H (ti j). (3.53)

The new formula for energy-aware communication end-to-end link just depends on the

summation of time variables for each VM and the main function (H (.)) can be written

according to the equation (3.38). Thus, this proves the third term in (3.41.1) is convex. □

The following Proposition 7 describes the feasibility conditions for the optimization

problem in (3.40).

Proposition 7 The following set of conditions is necessary and sufficient for the feasibility

of the optimization problem in (3.41.1)-(3.41.5) (see the proof):

Ltot ≤ Rt
(Tt−T)

2
, (3.54.1)

Ltot ≤
M

∑
i=1

T f max
i . (3.54.2)

Proof: The proof of eq. (3.54.1) stems from the constraint in equation (3.41.4):

Q

∑
j=1

2Fi jti j

Ri
+T ≤ Tt

(a)→
Q

∑
j=1

Fi jti j ≤
(Tt−T)

2
Ri

(b)→

M

∑
i=1

Q

∑
j=1

Fi jti j ≤
(Tt−T)

2

M

∑
i=1

Ri
(c)→ Ltot ≤ Rt

(Tt−T)
2

(3.55)

where: (a) in (3.55) we swap the equation positions and calculate ∑
Q
j=1 Fi jti j based on Ri

(i.e., we know that (3.41.4) represents a constraint that exists and is true); (b) the left term

(which is positive) is less than the right term (which is positive too, because we respect the

hard deadline Tt and T never accomplishes Tt and won’t be larger than it), therefore, we

derive summation for all discrete defined times fraction of VMs, and this equation can be

3.2 GreenNetDC Scheduler 73

derived and expanded; finally, in (c) the left hand of the inequality:
M
∑

i=1

Q
∑
j=1

Fi jti j according

to the second constraint of OP (i.e., (3.41.2)) is equal to Ltot and the right hand inequality,
M
∑

i=1
Ri, stems from the equation (3.41.5) which is less than Rt and it is obvious that left hand

of the equation is less than Rt(Tt−T)/2. We next prove the second part of (3.54).

To prove the equation (3.54.2), we start from the modified equation (3.41.3) in OP, in

which Fi j and ti j are positive, simultaneously. Thus, we have:

Q

∑
j=0

ti j = T
(d)→

Q

∑
j=1

ti j ≤ T
(e)→ f max

i

Q

∑
j=1

ti j ≤ T f max
i

(f)→
M

∑
i=1

(
f max
i

Q

∑
j=1

ti j

)
≤

M

∑
i=1

(T f max
i)

(g)→

M

∑
i=1

Q

∑
j=1

(
Fi jti j

)
≤

M

∑
i=1

(
f max
i

Q

∑
j=1

ti j

)
≤

M

∑
i=1

(T f max
i)

(h)→
M

∑
i=1

Q

∑
j=1

(
Fi jti j

)
≤

M

∑
i=1

T f max
i

(i)→ Ltot ≤
M

∑
i=1

T f max
i .

(3.56)

where: (d) in (3.56) holds because the summation of the VM’s time fractions without the

considering the duration for the idle mode should be equal or less than total hard-limit

assigned for each server; (e) and (f) in (3.56) represent the product of positive values f max
i

and summation over M VMs for the calculated inequality, simultaneously; (g) shows that the

left hand side of the inequality achieved after (f) is higher than the constraint in (3.41.2) (i.e.,

it is clear Fi j ≤ f max
i and as a result

M
∑

i=1
Fi j ≤

M
∑

i=1
f max
i) and (h) indicates that this inequality

can be simplified as the result of (i) and this proves the validity of the second feasibility

condition of OP. □

From a Reconfiguration-aware point of view, the second term in (3.41.1) (i.e., EREc(i))

can be split into two reconfiguration costs. The first one is the cost of changing discrete

frequencies of V M(i) from Fi j to Fi(j+k) (i.e., k steps movement to reach to the next active

discrete frequency) and span ti(j+k) seconds. The second cost is the reconfiguration cost

for the switching from the current final active discrete frequency (F0
i j) of V M(i) to the first

74 QoS-aware Green Energy-efficient Schedulers

active discrete frequency of V M(i) in the next slot time. Note that active discrete frequencies

are found based on the their related times-quota variables. In other words, we track each

active discrete frequency (Fi j) while the constraint (ti j > 0) is met. Now, we have a list

of active discrete frequencies for each VM and per-slot basis. Passing from current active

discrete frequency to another active discrete frequency affects the reconfiguration cost. We

use the FCFS (First Come, First Serve) technique for visiting each frequency in the active

discrete frequency list of each V M(i). It means that in V M(i)’s active discrete frequencies

list, we start from the first active discrete frequency: Fik and move to the second active

discrete frequency in the list: Fi(k+1). Therefore, we calculate the difference as follows:

∆Fik ≜ Fi(k+1)−Fik, and the reconfiguration cost is resulting ke∆F2
ik. We continue until end

of V M(i)’ list. If we consider homogeneous VMs, the total cost of internal-switching for all

VMs is: ke ∑
M
i=1 ∑

K
k=0(∆F2

ik), where k ∈ {0,1, . . . ,Q}, K ≤ Q is the number of active discrete

frequencies for V M(i) (the first type of reconfiguration cost).

On the other hand, the external-switching cost is calculated as multiplication of ke with

the quadratic differences between the last active discrete frequency of V M(i) for the current

workload and the primary active discrete frequency of V M(i) in the next incoming workload,

which is denotes as Ext_Cost. In a nutshell, the total reconfiguration energy can be written as:

∑
M
i=1 EREc(i) ≡ ke ∑

M
i=1 ∑

K
k=0(∆Fik)

2 + ke ∑
M
i=1 Ext_Cost. In the worst case, K = Q and for

external-switching, we need to move Q steps to F0. Formally speaking, we need to visit all the

possible active discrete frequencies of each V M(i)(internal-switching cost: ke M ∑
Q
k=0(∆Fk)

2),

and external-switching cost is: ke M(F t
Q−F t−1

0)2, where t is the current time and (t−1) is

the previous time (refers to the previous incoming workload) and F t
Q and F t−1

0 express the

maximum discrete frequency of each VM (i.e., we assume VMs are homogeneous) and idle

discrete frequency (the first frequency range of each VM) while it received the t-th workload

and the (t−1)-th workload, simultaneously. Overall, the Algorithm 1 summarizes the steps

of the proposed method for each incoming workload Ltot .

3.2 GreenNetDC Scheduler 75

Algorithm 1 GreenNetDC algorithm
1: Set (M, T , Tt) ▷ General SLA parameters
2: Set (Q, F0, f max, A, Ce f f) ▷ Comp. parameters of the M VMs
3: Set (ke, Rt , Wi, Pidle, ζ or Ω) ▷ Chanl. parameters of the M VMs
4: Recieve Ltot
5: Test the feasibility conditions in (3.54.1), (3.54.2)
6: b1 ≜

(
Ltot ≤ Rt

Q(Tt−T)
2

)
7: b2 ≜

(
Ltot ≤ ∑

M
i=1 f max(i)T

)
8: if ∼ (b1&b2) then
9: error(’Program is not feasible’)

10: else
11: Specific optimization problem:
12: Minimize (Etot , ECPU , ERecon f , E net)
13: Subject to:
14: Constraints (eqs. (3.41.2)- (3.41.5))
15: end if
16: return Etot , ECPU , ERecon f , E net

Remark 4 Implementing Complexity analysis of OP

Let W be the size of the incoming workload, M be the number of engaged VMs in

the problem, and Q be the number of discrete CPUs’ frequencies. Time complexity of

GreenNetDC algorithm for each server is O(W ×Q). In addition, since all servers are

working in parallel, the overall time complexity of the proposed algorithm for processing the

offered workload W is O(MQW). □

3.2.4 Simulation Results and Performance Comparisons

This section presents the tested performance of the GreenNetDC for a set of offered workloads

and compares the simulation results with the IDEAL no-DVFS techniques our benchmark

presented in [68], the Standard (or Real) available DVFS-enabled technique (currently, one

of the methods that being used in the DVFS-enabled data centers) [54], the Networked

data centers approach or NetDC [23], the Lyapunov method in [91] and the HybridNetDC

[17] which take into account reconfiguration and communication costs. Note that we add

the idle mode to processors and end-to-end links in these methods (see Appendix C for

76 QoS-aware Green Energy-efficient Schedulers

details). Besides, HybridNetDC compared to NetDC has higher energy consumption in

terms of energy provisioning due to fixed end-to-end link power for each VMs. We also

tested GreenNetDC with a state-of-the-art scheduler (or load balancer): the STAtic Scheduler

(STAS) (i.e., See Appendices B and D for details) [9]. Therefore, the proposed approach is

able to apply in real data centers unless NetDC that works based on calculated proportional of

real frequency, which cannot deploy in real environment. We should emphasize that NetDC

[23] and IDEAL no-DVFS technique [68] are presented in order to work with the continues

ranges of frequencies which is not feasible, unrealistic and impossible in reality, and also

while the proposed scheduler could be one of the best practical solutions in networked data

centers.

3.2.4.1 Experimental Setup

In order to evaluate the per-job average communication-plus-computing energy Ētot consumed

by the proposed scheduler, we implemented a prototype of the adaptive scheduler under

paravirtualized Xen 3.3 as VMM and Linux 2.6.18 as guest OS kernel (see Fig.3.10). The

adaptive scheduler is implemented in SW at the driver domain (i.e., Dom0) of the legacy Xen

3.3. Out of approximately 1100 lines of SW code needed for implementing the proposed

scheduler, 45% is directly reused from existing Xen/Linux code. The reused code includes

part of the Linux’s TCP New Reno congestion control suite and Xen’s I/O buffer management.

The implemented experimental setup comprises of four quad-core Dell PowerEdge

servers equipped with 3.06 GHz Intel Xeon CPU and 4GB of RAM. All servers are connected

through commodity Fast Ethernet NICs. In all carried out tests, we configure the VMs with

512MB of memory and utilize the TCP New Reno protocol for implementing the needed VM-

to-VM transport connections. The simulation is done using a simulator we developed, named

TEST-DVFS, which works by using CVX solver, the state-of-the-art Stanford optimizing

solver over Matlab [35]. TEST-DVFS simulates the algorithm in DVFS-enabled data centers

3.2 GreenNetDC Scheduler 77

by enabling DVFS functionalities not only for the components performance model but also

for the offered workloads and energy models.

3.2.4.1.1 TEST-DVFS implementation The goal of the implemented testbed (e.g., the

TEST-DVFS one) is to illustrate the efficiency of our model and the proposed algorithm

(GreenNetDC) compared to the aforementioned techniques.

The TEST-DVFS testbed consistes of the following modules:

• Workload module: This module is developed to simulate various types of offered

workloads to the system, which is related to the workload distributions and their

(in)dependency (from) to each-other and the various peak-to-mean ratio (PMR) of the

workload (i.e., synthetic and real traces).

• Component module: All the considered components of the system, VMs, channels,

DVFS, are implemented in this module for each VM in a PM (see Fig.3.10). Therefore,

each VM is able to work at a specific discrete frequency over a given interval.

• Working module: The working module focuses on the energy model, scheduling types

and network topology.

Table 3.4 summarizes the test parameters for the first scenario and their default values in

TEST-DVFS simulator, where F1={0.15,1.867, 2.133, 2.533, 2.668} (Mbit/s), F2={0.3,

0.533, 0.667, 0.8, 0.933} (Mbit/s) and F3={5, 10, 20, 30, 100} (Mbit/s). The discrete

frequency for the F1 is taken from Intel Nehalem Quad-core Processor [93], and for F2

is taken from power-scalable real cluster Crusoe with CPU type TM-5800 in [54] and F3

represents synthetic simulated discrete frequency. Scenario two and scenario three focus

on multiple VMs, as detailed in Table 3.5 and Table 3.6, respectively. The main difference

between the considered scenarios is the corresponding communication parameters. The

second one uses eq. (3.4) and third scenario uses eq. (3.7) for the network cost, respectively.

78 QoS-aware Green Energy-efficient Schedulers

Table 3.4 Default values for the first test scenario.

Parameter Parameter
V Ms = M = {1, . . . ,12} Tt = 5 (s), T = 0.1 (s)
Rt = 100 (Mbit/s) Ce f f = {1,10,100}
ke = {0.005,0.05,0.5} (Joule/(Mbit/s)2)
F={F1, F2, F3} A = 1, Q = 4
Pidle

i = {5,50} (mW) RT T i = 700(µs)
Ωi = {5,50} (mW) PIdle = 5 (W)

Table 3.5 Default values for the second test scenario.

Parameter Parameter
V Ms=M=[1, . . . ,10] Tt = 7, T = 5 (s)
Rt = 100 (Mbit/s) Ce f f = 1
ke = 0.05 (Joule/(MHz)2) w = 1, Wi = 1
F=F2 (MHz) Q = 4, A = 1
PIdle = 0.5 (W) ζi = 0.5 (mW)

Table 3.6 Default values for the third test scenario.

Parameter Parameter
ke = 0.005 (Joule/(MHz)2) Q = 4
F=F1[MHz] Ltot = 70(Mbit)
M={20,30,40} Ωi = 0.5 (mW)

3.2.4.1.2 Test Workload In order to account for the effects of the reconfiguration costs

and the time-fluctuations of the offered workload on the energy performance of the tested

schedulers, as in [91], we model the offered workload as an independent identically dis-

tributed (i.i.d.) random sequence {Ltot(m),m = 0,1, . . .}, (where m is the index of input

workload), whose samples are uniformly distributed over the interval [Ltot−a,Ltot +a], with

Ltot ≡ 8 (Mbit). By setting the spread parameter a to 0 (Mbit), 2 (Mbit), 4 (Mbit), 6 (Mbit)

and 8 (Mbit), we obtain Peak-to-Mean Ratios (PMRs) of 1 (i.e., the offered workload is of

constant size), 1.25, 1.5, 1.75 and 2.0, respectively. Each tested point has been evaluated

3.2 GreenNetDC Scheduler 79

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

slot

L
t
o
t
(M

b
it
)

Ltot

Ltot

(a) Synthetic workload.

0 20 40 60 80 100 120
2

4

6

8

10

12

14

16

Slot index

N
u

m
b

e
r

o
f

a
rr

iv
a

ls
 p

e
r

s
lo

t

(b) An enterprise cluster in Microsoft [106].

Fig. 3.11 Sample traces of I/O workload.

by averaging over 1000 independent runs. Moreover, in order to test the capability of the

proposed scheduler when the arrival process exhibits time-correlation, we also considered the

aforementioned synthetic traces of workload and the real-world arrival trace of Figs. 3.11a

80 QoS-aware Green Energy-efficient Schedulers

and 3.11b, respectively. Fig.3.11a reports the synthetic workload of 100 slot-periods for

the corresponding PMR and the Ltot are 2 and 8 (Mbit), respectively. Fig.3.11b reports the

real-world trace of I/O workload from an enterprise cluster in Microsoft [106] and refers to

the I/O workload taken from four RAID volumes of an enterprise storage cluster in Microsoft

(see Section IV.A of [106]). In Fig.3.11b, the corresponding PMR and time-correlation

coefficient are 2.49 and 0.85, respectively. The measured arrival rate is in multiple of the slot

period and the reported trace covers more than 120 slot-periods. The numerical tests carried

out in this paper refer to the communication-plus-computing infrastructure of Table 3.4.

3.2.4.1.3 Setting of benchmark schedulers Testing the sensitivity of the performance

of the proposed scheduler to the PMR of the offered workload is the goal of the numerical

results of these simulations. Specifically, they aim at unveiling the impact of the PMR

on the average energy consumption of the proposed scheduler and comparing it against

the state-of-the-art scheduler, namely, the STAS [9]. Intuitively, we expect that the energy

savings attained by dynamic scheduler increase when multi-rate reconfigurable VMs are used,

especially at large PMR values. However, we also expect that non negligible reconfiguration

costs may reduce the attained energy savings and that the experienced reductions tend to

increase for large PMRs.

About the simulated STAS, we note that current virtualized data centers usually rely on

static resource provisioning, where, by design, a fixed number of VMs constantly run at the

maximum processing rate f max
i [6]. The goal is to constantly provide the exact computing

capacity needed for satisfying the peak workload Lmax
tot ≜ (Ltot +a) (Mbit).

In order to put under the right perspective the following performance comparisons,

two main explicative remarks are in order. First, although the STAS does not experience

reconfiguration costs, it induces resource overbooking. Hence, the resulting per-job average

communication-plus-computing energy consumption gives a benchmark for numerically

evaluating the energy efficiency (i.e., the percent energy gaps) of dynamic schedulers. Second,

3.2 GreenNetDC Scheduler 81

2 4 6 8 10 12
0

500

1000

1500

2000

VMs

E
to
t
(J

ou
le
)

ke = 0.005 (Joule/(MHz)2)
ke = 0.05 (Joule/(MHz)2)
ke = 0.5 (Joule/(MHz)2)

(a) Per-VM E tot

2 4 6 8 10 12
0

20

40

60

80

VMs

E
R
E
c
(J

ou
le
)

ke = 0.005 (Joule/(MHz)2)
ke = 0.05 (Joule/(MHz)2)
ke = 0.5 (Joule/(MHz)2)

(b) Per-VM E Rec

Fig. 3.12 3.12a: E tot and 3.12b:E REc for the application simulation Table 3.4 at Ωi = 5(mW),
i = 1, . . . ,M, T = 0.1 (s) and F = F1 in GreenNetDC and the I/O workload in [106] is
considered.

the capacity planning studies in [6] refer to static schedulers and this provides an additional

motivation for considering the energy performance of the STAS as a benchmark. Explanation

of the modified STAS respected to the GreenNetDC model which is applied as a benchmark

is presented in Appendix D.

3.2.4.2 Experimental Results

In order to measure the performance of GreenNetDC, we evaluated GreenNetDC under

operating scenarios detailed in the following subsections.

3.2.4.2.1 Performance effects of VMs hibernation and dynamic reconfiguration The

first experiment focuses on the real discrete value for the DVFS-based CPU which are taken

from Table 3.4. Fig.3.12 presents the average total energy consumption of the GreenNetDC at

various switching costs ke for I/O workload of Fig.3.11b. Fig.3.12a shows the effects of the

reconfiguration cost on the average total energy for various values of ke. This plot indicates

that the average total energy increases by an increases in ke value, while it strongly decreases

by increasing the number of VMs. Also, the response time for each workload is about 5-10

ms. Fig.3.12b shows that the average energy of switching (i.e., E REc) smoothly increases for

increasing the number of VMs, especially for higher ke’s. In the second scenario which uses

Table 3.5 parameters, we evaluated the average (per-job) energy consumed by the system to

82 QoS-aware Green Energy-efficient Schedulers

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2
x 10

4

V MS

E
to
t
(J

o
u
le
)

[Ωi = 50 + 0.5(i), P idle
i

= 5](mW)

[Ωi = 5 + 0.5(i), P idle
i

= 5](mW)

[Ωi = 5, P idle
i

= 5](mW)

[Ωi = 5, P idle
i

= 50](mW)

[Ωi = 50, P idle
i

= 5](mW)

(a) Per-VM E tot .

2 4 6 8 10 12
0

0.5

1

1.5

2
x 10

4

VMs

E
C
M

c
(J

o
u
le
)

[Ωi = 5, P idle
i

= 5](mW)

[Ωi = 50, P idle
i

= 5](mW)

[Ωi = 5 + 0.5(i− 1), P idle
i

= 5](mW)

[Ωi = 50 + 0.5(i− 1), P idle
i

= 5](mW)

[Ωi = 5, P idle
i

= 50](mW)

(b) Per-VM E
CMc

.

Fig. 3.13 Effects of the link quality on the energy consumptions of the GreenNetDC in the homoge-
neous cases (continue plots) and the heterogeneous cases (dashed plots); The application scenario of
Table 3.4 at ke = 0.005 (Joule/(Mbit/s)2), and F = F1 with the workload in Fig.3.11a is considered.

vary the number of available VMs, and the variation of ke with the frequency speeds F1 which

is shown in Fig.3.14a. Based on the synthetic traces of workload in Fig.3.14a, comparisons of

VMs with the CPU range F2 confirms that by increasing the VMs the energy reduces which

ranges from 80% (case of ke = 0.005 with the lower plot) to 85% (case of ke = 0.05 with the

upper plot). These results proceed the expectations [6] that noticeable energy savings may be

attained by jointly changing the available computing-plus-communication resources.

In the third scenario, we evaluate the energy consumption for the huge amount of work-

loads and VMs. Figs. 3.14 presents the total average consumed energy among aforementioned

techniques for 20, 30, and 40 VMs and high incoming workload. In Fig.3.14b, we use the

third scenario with various SLA parameters T , Rt and the communication coefficient ζ in

order to energy reduction rate of the proposed method while facing various SLA ranges.

Fig.3.14b shows that, by fixing the T and ζ , while we smooth the Rt data center communi-

cation boundary 10 times higher, the proposed scheduler saves more energy approximately

15% in high VMs. It confirms that the scheduler could save energy depends on the various

boundary assigned to it.

3.2.4.2.2 Performance effects of the communication costs The second experiment

tests GreenNetDC under various Ωi and evaluates E
∗
tot under the following settings: i) Ωi = 5

3.2 GreenNetDC Scheduler 83

2 4 6 8 10
45

50

55

60

65

70

75

M

E
to
t
[J
o
u
le
]

F1, ke = 0.005
F1, ke = 0.05

(a) Impact of E tot by reconfiguration parameter

20 30 40
100

200

300

400

M

E
to
t
[J
o
u
le
]

T = 5

Rt = 100, ζi = 0.5
Rt = 10, ζi = 0.5

(b) E tot-vs.-M-vs.-Rt

Fig. 3.14 E tot for the second/third test scenarios for the proposed method in 3.14a for various
ke (second scenario) and in 3.14b for various Rt in fixed T and ζi (third scenario).

(mW); ii) Ωi = 50 (mW); iii) Ωi = [5+ 0.5(i− 1)] (mW); and, iv) Ωi = [50+ 0.5(i− 1)]

(mW), i = 1, . . . ,M with Pidle
i = 5 (mW) and; v) homogeneous Ωi = 5 (mW) with high idle

end-to-end link power Pidle
i = 50 (mW). As expected, larger Ωi’s penalize the overall energy

performance of the GreenNetDC. Interestingly, since E tot is the minimum energy when up

to M VMs may be turned ON, at fixed Pidle
i ’s, E

∗
tot decreases for increasing M and, then it

approaches a minimum value that does not vary when M is further increased (see the flat

segments of the first uppermost plots of Fig.3.13a and Fig.3.13b).

3.2.4.2.3 Performance effects of dynamic computation costs In Fig.3.15, we pro-

cessed GreenNetDC with different Ce f f as a input coefficient for each computing part

and evaluated the total energy and its corresponding energy terms (the first term in (3.41.1)).

In detail, while the capacitance load (Ce f f) increases 10 times, the average total energy or

E tot which is depicted in Fig.3.15 (the upper lined plot) decreases with increasing M, while

the average computing energy (E CPc) increases for the capacitance load 10 and 100 but the

ratio is so low (see the dashed lines of Fig.3.15).

3.2.4.2.4 Performance effects of discrete computation rates In this subsection, we

investigated GreenNetDC’ ti j with different T and the results are shown in Fig.3.16. The

84 QoS-aware Green Energy-efficient Schedulers

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

VMs

E
to
t,
E
C
P
c
(J

ou
le
)

E tot (Joule), Ceff = 100(µ Joule/(Mbit/s)2)

ECPc (Joule), Ceff = 100(µ Joule/(Mbit/s)2)

E tot (Joule), Ceff = 10(µ Joule/(Mbit/s)2)

ECPc (Joule), Ceff = 10(µ Joule/(Mbit/s)2)

Fig. 3.15 E tot and E CPc for the application simulation Table 3.4 with Ωi = 5(mW), Pidle
i = 50

(mW), i = 1, . . . ,M, ke = 0.005 (Joule/(Mbit/s)2), and F = F1 in GreenNetDC.

results are the normalized percentages of the optimum time assigned to available frequencies.

Interestingly, Fig.3.16 shows that the mast part of the testes durations is assigned to the

idle mode and less time is consumed for VM processing. Moreover, the summation of

the durations that each VM can work with three-higher discrete ranges of the frequency

(i.e., ti j | i = 1, . . . ,M, j = 3,4,5) is approximately zero. It means, each VM is able to

respond to its workload fraction within its first two ranges of active discrete frequencies (i.e.,

ti j | i = 1, . . . ,M, j = 1,2) and no need to work with its high discrete ranges of frequencies for

processing. In detail, Figs. 3.16a and 3.16b indicate that by increasing the processing time

(i.e., less computing hard-deadline considered), VMs manage their processing time precisely

and can be in idle mode for longer durations and are able to handle the requests even with

the second active discrete frequency (e.g., ti1 | i = 1, . . . ,M) about 6 times lower than the first

active discrete frequency (e.g., ti0 | i = 1, . . . ,M)(see the two lower bars of Fig.3.16b).

3.2 GreenNetDC Scheduler 85

150
90

92

94

96

98

100

F1 (Mbit/s)

P
er
ce
n
ta
g
e
T

u
sa
g
e

T = 4 (s)
T = 1 (s)
T = 0.1 (s)

%

(a) Percentage of T usage in idle mode for each
VM.

1867
0

0.5

1

1.5

F1 (Mbit/s)

P
er
ce
n
ta
g
e
T

u
sa
g
e

T = 4 (s)
T = 1 (s)
T = 0.1 (s)

% Percentage

(b) Percentage of T usage in 2nd discrete range of
frequency.

Fig. 3.16 3.16a: T ’s Percentage for VMs’ idle mode frequency (Fi1 = 150 (Mbit/s), i =
1, . . . ,M); and, 3.16b: T ’s Percentage for VMs’ 2nd discrete ranges for frequency (Fi2 =
1867 (Mbit/s), i = 1, . . . ,M) for the application simulation Table 3.4 with Ωi = 5 (mW),
ke = 0.005(Joule/(Mbit/s)2), F = F1 and various T = {0.1,1,4} in GreenNetDC, (i.e., we
omit 2 remaining largest ranges, because, there is no time assigned for these ranges in 1000
incoming workloads).

3.2.4.2.5 Computing-vs.-communication energy tradeoff We expect that small T ’s

values give rise to a higher per-VM computing frequencies, while extremely large T values

induce high end-to-end communication rates (see eq. (3.41.5)). However, we also expect that

due to the adaptive power-rate control provided by the optimal scheduler, there exists a broad

range of T values that attain an optimized tradeoff. Fig.3.17 confirms the aforementioned

expectations. Specifically, the plots of Fig.3.17a confirm that by increasing the PMR, the

energy is affected with higher slop (see the plots in Fig.3.17a). The plots of Fig.3.17b refer

to the application simulation in Table 3.4 at M = 2,10, Ltot = {4,8,12} (Mbit), Ce f f =

1, Pidle
i = 50, Ωi = 5, i = 1, . . . ,M, Tt = 5 and F = F1. An examination of these plots

supports three main conclusions. First, the proposed scheduler attains the minimum energy

consumption for values of the ratio (T/Tt) falling into the (quite broad) interval [0.02,0.6],

especially for M = 10. Second, the effects of the ratio (T/Tt) on the energy performance of

the scheduler are negligible when the GreenNetDC operates far from the boundary of the

feasibility region dictated by (3.54.1)-(3.54.2) (see the two lowermost curves of Fig.3.17b

with Ltot = 4 Mbit). Interestingly, the increasing behavior of the curves of Fig.3.17b gives

86 QoS-aware Green Energy-efficient Schedulers

0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

300

350

T/Tt

E
to
t
(J

ou
le
)

Ltot = 8, M = 2, PMR = 1.25

Ltot = 8, M = 2, PMR = 1.5

Ltot = 8, M = 2, PMR = 1.75

Ltot = 8, M = 2, PMR = 2

(a) E tot (Joule) for various PMR-vs.-T/Tt at fixed
Ltot .

0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

T/Tt

E
to
t
(J

ou
le
)

Ltot = 8, M = 2, PMR = 1.25
Ltot = 8, M = 10, PMR = 1.25
Ltot = 4, M = 2, PMR = 1.25
Ltot = 4, M = 10, PMR = 1.25
Ltot = 12, M = 2, PMR = 1.25
Ltot = 12, M = 10, PMR = 1.25

(b) E tot (Joule) at fixed PMR = 1.25 vs. T/Tt at
various Ltot .

Fig. 3.17 3.17a: E tot (Joule) for various PMR = {1.25,1.5,1.75,2} vs. T/Tt with fixed
Ltot = 8 (Mbit) and 2 VMs; and, 3.17b: E tot (Joule) for fixed PMR = 1.25 vs. T/Tt
with various Ltot = {4,8,12} (Mbit) and various VMs M = {2,10}, for the application
scenarios of Table 3.4 at Ωi = 5(mW),ke = 0.005(Joule/(Mbit/s)2),F = F1 and various T
in GreenNetDC.

practical evidence that the computation energy dominates the overall energy consumption at

decreasing (T/Tt), while the network energy becomes substantial for (T/Tt)→ 1, implying

that the range of (T/Tt) is less than 1 (see eq. (3.41.5)). Third, if we keep M = 10 fixed

and increase the Ltot , we will understand the E tot increasing ratio is not dominant compared

with the same workload increasing for low VMs. It means, while workload increases, CPUs

should work with maximum speed to serve workload and this leads to increasing the energy

consumption of the data center. Fig.3.18a tests the computing-vs-communication energy

trade-off for the second scenario of Table 3.5 for different ranges of T . It confirms that small

T ’s values give rise to a higher per-VM computing frequencies which leads to increasing the

Etot . While T increases, the proposed scheduler uses processing time in order to decrease

Etot about 20% (see the two upper plots of Fig.3.18a). While extremely large T values

induce high end-to-end communication rates which it leads to increasing the Etot (see eq.

(3.41.5)). Fig.3.18b shows that, by fixing the Rt and grouping the ζ , while we increase the T

(computing time for the processing of each server) average total energy per-VM saves 200 to

500 Joule even with huge amount of T and ζi.

3.2.4.2.6 Performance comparisons under synthetic workload traces In this subsec-

tion, we compare the performance of GreenNetDC with the NetDC [23], Lyapunov method

3.2 GreenNetDC Scheduler 87

2 3 4 5 6

20

30

40

50

60

T (s)

E
to
t
(J

o
u
le
)

M = 10

ECPc, ζi = 0.2

(a) Computing-vs.-Communication tradeoff.

20 30 40

500

1000

1500

2000

VMs

E
to
t
(J

o
u
le
)

Rt = 100

T = 3, ζi = 0.2
T = 5, ζi = 0.2
T = 4, ζi = 0.2
T = 3, ζi = 0.5
T = 4, ζi = 0.5
T = 5, ζi = 0.5

(b) E tot-vs.-M-vs.-T -vs.-ζ (the 3rd scenario).

Fig. 3.18 E tot for the second/third test scenario for the proposed method in 3.18a and 3.18b for
various T and ζ , respectively.

in [91] and the HybridNetDC [17] ones in terms of the synthetic workload traces, energy-

savings, and SLA attainments.

3.2.4.2.6.1 Synthetic workload traces comparisons: From a formal point of view,

HybridNetDC implements the solution of OP, e.g., the constrained minimization problem

in (3.41.1)-(3.41.5) over the variable {ti j} at Ri = Rt , i = 1, . . . ,M. The plots of Fig.3.19a

refer to the application scenario of Table 3.4 at Ce f f = 10, Pidle
i = 50,Ωi = 5, i = 1, . . . ,M,

Tt = 5, T = 1 (s), and F = F3. We observe that at low processing frequencies, our ap-

proach is approximately 1%-2% worse than NetDC, about 50% better than Lyapunov and

approximately 90% better than HybridNetDC approach. In the low frequency range, the only

difference among GreenNetDC and NetDC is the computing and reconfiguration parts in

(3.41.1): GreenNetDC(E CPc)≃ NetDC(E CPc) but GreenNetDC(E REc)> NetDC(E REc), and

the communication energy cost for both of them are the same. Fig.3.19b presents the E tot

(Joule) for aforementioned approaches at high frequencies and fixed Q = 4. Our approach

is still better than Lyapunov[91], HybridNetDC[17] and the difference between NetDC[23]

and GreenNetDC decreases as M increases and/or increasing Ω’s (i.e., heterogeneous Ω).

The difference is approximately 6-8%, because, NetDC[23] exploits continuous range of

frequencies that allows higher degree of freedom. As a result, the gap between the proposed

88 QoS-aware Green Energy-efficient Schedulers

1 2 3 4 5 6 7 8 9 10 11 12
10

0

10
1

10
2

10
3

10
4

VMs

E
to
t
(J

o
u
le
)

[GreenNetDC]
[NetDC]
[Lyapunov]
[Hybrid NetDC]

(a) E tot for F = F3 and Ωi = 5 (mW).

1 2 3 4 5 6 7 8 9 10 11 12
10

2

10
3

10
4

10
5

VMs

E
to
t
(J

o
u
le
)

[GreenNetDC]
[NetDC]
[Lyapunov]
[Hybrid NetDC]

(b) E tot for F = F2, Ωi = 50+0.5(i−1) (mW).

Fig. 3.19 E tot (Joule) for GreenNetDC, NetDC[23], Lyapunov[91] and HybridNetDC[17]
for the application scenario of Table 3.4 at ke = 0.005(Joule/(Mbit/s)2), Pidle

i = 50 (mW).

scheduler and NetDC increases with an increase in frequency and end-to-end link coefficient.

Therefore, GreenNetDC is better performing under homogeneous end-to-end link and at

high processing frequencies. We should emphasize that NetDC is presented in order to work

with the continues ranges of frequencies which is not feasible, unrealistic and impossible

in reality while GreenNetDC could be one of the best practical solutions in networked

data centers. Also, in the second simulation comparisons, in order to evaluate the energy

reduction due to scaling up/down of the computing, reconfiguration and communication

rates by increasing the VMs (i.e., we process the results for the one time implementation

over 10 VMs). In detail, Fig.3.20 presents the average of 1000 offered workloads (i.e.,

m = 1000) for the total energy Etot , Computation energy ECPc, reconfiguration energy EREc,

and communication energy E CMc for our approach, IDEAL, Standard, Lyapunov-based

method in [91] and recent work done in this area in [23], in sub-figures 3.20a, 3.20b, 3.20c,

3.20d, respectively. Specifically, Fig.3.20a points out that, by increasing the VM number,

the average total cost for all approaches decreases because while the number of VMs is

increased, the abilities to respond to the offered workloads will be higher, so, less quota

of Ltot will be assigned to each VM (i.e., Fi jti j), and the needed frequency and time for

computation decreases enormously and also their correlated cost declines. In Fig.3.20a, the

average energy-saving of the proposed method is approximately 50%, 60% compared to

Lyapunov-based and Standard schedulers, respectively. Furthermore, in Fig.3.20b, while

3.2 GreenNetDC Scheduler 89

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

VMs

E
to
t
(J

o
u
le
)

IDEAL Standard NetDC Lyapunov GreenNetDC

(a) E tot

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

VMs

E
C
P
c
(J

o
u
le
)

IDEAL Standard NetDC Lyapunov GreenNetDC

(b) E CPc

1 2 3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
R
E
c
(J

o
u
le
)

VMs

IDEAL Standard NetDC Lyapunov GreenNetDC

(c) E REc

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

VMs

E
C
M

c
(J

o
u
le
)

IDEAL Standard NetDC Lyapunov GreenNetDC

(d) E
CMc

Fig. 3.20 Average energy terms of eq. (3.41.1) with PMR=1.25 for the second scenario for the
proposed method-vs.- IDEAL in [68]-vs.- Standard [54]-vs.- NetDC in [23]-vs.- Lyapunov in [91].

M > 2 increases, it does effect the cost of the computing too-much, because the system is

able to manage the running time for each active discrete frequency even while M is low

(M < 4) or (high, M > 20), and most of the time system for each offered workload goes to

the Idle mode or F0 and most times are in that state and less time will be assigned for the

Q of remains discrete time, system can easily response its quota Fi jti j with less effects of

M. In Fig.3.20c, it is obvious that our approach considers two costs (internal-switching and

external-switching) for each V M(i) in each incoming workload. So it results in increased

reconfiguration cost compared to NetDC [23] and Lyapunov-based scheduler in [91], which

consider just probabilities of previous and next active discrete frequencies for each V M(i)

(i.e., external-cost of our approach). Lastly, Fig.3.20d points out that the communication

cost of the proposed techniques is less than others and near to IDEAL, because according to

90 QoS-aware Green Energy-efficient Schedulers

100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Workload

R
u

n
−

ti
m

e
 (

s
e

c
o

n
d

s
)

VM=2

VM=10

Fig. 3.21 System time for 1000 workload in the second scenario

the third term of the (3.41.1), the optimization problem tries to find the optimum objective

variables while more resources are available. Fig.3.20d shows that the proposed scheduler is

about 10%, 50%, 65% better than NetDC[23], Lyapunov[91], and Standard [54] schedulers,

respectively. Indeed, the proposed scheduler is able to find proper times of the active discrete

frequencies for each offered workload (it means that, the summation ∑Fi jti j are the same for

all approaches and equal to Ltot). Figure 3.21 reports the execution-time for each of 1000

offered workload (i.e., Ltot) for M = 2 and M = 10 in the second scenario. Specifically, while

M increases the matrices capacities in programming increased and the time will be risen.

And, in Fig.3.22, it is obvious that our approach considers two costs (internal-switching and

external-switching) for each V M(i) in each incoming workload. So it results in increased

reconfiguration cost compared to NetDC [23] and Lyapunov-based scheduler in [91], which

consider just probabilities of previous and next active discrete frequencies for each V M(i)

(i.e., external-cost of our approach).

3.2 GreenNetDC Scheduler 91

20 30 40
0

50

100

150

200

250

300

350

400

M

E
t
o
t
[J
o
u
le
]

IDEAL

NetDC

Standard

Lyapunov

Proposed Method

Fig. 3.22 Average energy terms of eq. (3.41.1) with PMR=1.25 for the third scenario for the proposed
method-vs.- IDEAL in [68]-vs.- Standard [54]-vs.- NetDC in [23]-vs.- Lyapunov in [91].

3.2.4.2.6.2 Energy-saving at various PMRs: We tested our proposed method with

a related state-of-the-art scheduler: STAS [9]. This is motivated by the fact that current data

centers usually rely on static resource provisioning, where, by design, a fixed number of

VMs constantly run at the maximum processing rate f max
i , in order to constantly provide

the computing capacity needed to satisfy the peak input workload. Table 3.7 reports the

average energy savings (in percent) provided by the the GreenNetDC, Lyapunov[91]and

HybridNetDC[17] schedulers over the static one (STAS)[9]. In STAS, it is enough to consider

f max
i instead of each discrete frequency Fi j, T instead of ti j for i-th VM and switch cost is

calculated just for each incoming workload. So, just changing from the idle mode to the

f max
i for each VM at first stage is considered. These results refer to Ωi = 0.5, ke = 0.05,

T = 1, Tt = 5, f max
i = 933 (Mbit/s), Ltot = 8, M = 12, Q = 4, and F = F2. In order to

guarantee that the STAS [9], HybridNetDC[17], Lyapunov[91] and GreenNetDC schedulers

retain the same energy performance under constant offered 1000 incoming workloads, the

numerical results of Table 3.7 have been evaluated by forcing the aforementioned schedulers

to utilize the same number of VMs which are activated by the STAS. An examination of

92 QoS-aware Green Energy-efficient Schedulers

Table 3.7 Average energy reductions attained by GreenNetDC, Lyapunov and HybridNetDC
schedulers over the STAS [9].

PMR GreenNetDC Lyapunov[91] HybridNetDC[17]
1.25 73% 62% 54%
1.5 72% 58% 52%
1.75 70% 56% 49%
2 66% 53% 45%

the numerical results reported in Table 3.7 leads to three conclusions. First, the average

energy saving of the proposed scheduler over the STAS approaches 73%, even when the

VMs are equipped with a limited number Q = 4 of discrete processing frequencies and the

reconfiguration energy overhead is accounted for. This result confirms that GreenNetDC

produces an effective means for leveraging the sudden time-variations exhibited by the

workload. Second, the performance loss suffered by the GreenNetDC scheduler with respect

to the Lyapunov, and HybridNetDC tends to increase about 6% for growing PMRs due to

rising workload fluctuations and this increment is even lower than other schedulers. Third,

the average energy reductions attained by GreenNetDC for various PMRs compared to

Lyapunov and HybridNetDC are limited up to 11%−14% and 19%−21%, respectively.

3.2.4.2.6.3 Keep SLA comparisons: Lastly, we consider our approach in the case

where the SLA is defined as a fraction of difference between the requested frequencies for

all VMs f max
i (m) and the actually alloted frequency fi(m) for each VMs relative to the total

requested frequency over the life-time of the VMs (e.g., see [9, 74])

SLA(m) =
∑

M
i=1 f max

i (m)− fi(m)

∑
M
i=1 f max

i (m)
, (3.57)

where m is the slot index. Table 3.8 shows the SLA violation rates for the GreenNetDC,

NetDC, and Hybrid NetDC under the workload of Fig.3.12b. GreenNetDC is able to

decrease the percentage of SLA violation rate substantially than other techniques. The

3.2 GreenNetDC Scheduler 93

Table 3.8 Average SLA violation percentage in the GreenNetDC, NetDC, and Hybrid
NetDC.

GreenNetDC NetDC[23] Lyapunov[91] HybridNetDC[17]
15% 20% 25% 28%

GreenNetDC minimizes the amount of SLA violations by using discrete ranges of VM

frequencies and it is able to adapt by tracking the previous optimum frequency achieved in

each VM. In a nutshell, a VM learns to decide when it becomes overloaded according to the

dynamic workload.

Chapter 4

TCP/IP-based QoS-aware
Energy-efficient Scheduler to Support
Vehicular Cloud Services

In this chapter, we propose and test an efficient dynamic resource provisioning scheduler

which applied in Networked Data Centers (NetDCs) which are connected to (possibly, mobile)

clients through TCP/IP-based vehicular backbones. The goal is to maximize the energy-

efficiency, while meeting hard QoS requirements on the delivered transmission rate and

processing delay. The resulting optimal cross-layer resource scheduler is adaptive, and jointly

performs: i) admission control of the offered input traffic; ii) balanced control and dispatching

of the admitted workload; iii) dynamic reconfiguration and consolidation of the Dynamic

Voltage and Frequency Scaling (DVFS)-enabled Virtual Machines (VMs) instantiated onto

the parallel computing platform; and, iv) rate control of the traffic injected into the vehicular

backbone. Necessary and sufficient conditions for the feasibility and optimality of the

proposed scheduler are also provided in closed-form. The salient features of the proposed

scheduler are that: i) it is adaptive and admits distributed scalable implementation; ii) it is

capable to provide hard QoS guarantees, in terms of minimum/maximum instantaneous rate

of the traffic delivered to the client, instantaneous rate-jitter and total processing delay; and,

iii) it explicitly accounts for the dynamic interaction between computing and networking

resources, in order to maximize the resulting energy efficiency and the TCP/IP mobile

96 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

connection throughput. Actual performance of the proposed scheduler in the presence of

:i) client mobility; ii) wireless fading; iii)reconfiguration and consolidation costs of the

underlying networked computing platform; and, iv)abrupt changes of the transport quality of

the available TCP/IP mobile connection, are numerically tested and compared against the

corresponding ones of some state-of-the-art schedulers, under both synthetically generated

and measured real-world workload traces.

Motivated by these considerations, in this section, we develop and test a new sched-

uler for minimizing the energy consumption induced by computing, communication and

reconfiguration costs in Internet-based virtualized DCs which utilize end-to-end TCP/IP

mobile energy-constrained connections under hard limits on the per-job total processing

time. Our scheduler performs dynamic load balancing and uses online job decomposition for

adaptive resource management. It leads to the optimum processing speeds and bandwidth

rates on a per-VM basis, as well as the proper workload quota for each VM on a per-job

basis. Furthermore, it also performs admission control and adaptive management of the

transmission rate of the Cloud-to-Vehicular TCP/IP mobile connections of Fig.4.1, in order

to meet QoS constraints at the minimum energy wasting. Consider that our energy model is

non-convex, hence, we develop a mathematical approach to turn nonconvexity into convexity.

A remarkable feature of the resulting scheduler is its adaptive nature and scalability. The

model in 4.1 operates at the Middleware layer and Software as a service (SaaS) is the pro-

vided service mode. The data center includes M servers. Each physical server is equipped

with a Virtual Machine Manager (i.e., a hypervisor) and hosts multiple VMs. Input/output

limited-capacity buffers control the load dispatcher before/after Cloud processing.

97

Fi
g.

4.
1

T
he

co
ns

id
er

ed
T

C
P/

IP
co

nn
ec

tio
n

ve
hi

cu
la

r
C

lo
ud

ar
ch

ite
ct

ur
e.

R
SU

:=
R

oa
d

Si
de

U
ni

t;
C

L
:=

C
lo

ud
L

et
;

IG
:=

In
te

rn
et

G
at

ew
ay

;S
aa

S:
=S

of
tw

ar
e

as
a

Se
rv

ic
e.

98 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

4.1 The Considered VCC Infrastructure

Several recent research efforts target V2I networked infrastructures. Among these, the

FleetNet and Network on Whells (NoW) European projects investigated the overall communi-

cation architecture for the integration of Cloud infrastructures and Internet-assisted vehicular

networks [31]. Specifically, about the main building blocks of this architecture, a number of

static RSUs are deployed along the road and are evenly spaced apart of D (m). Each RSU

serves a spatial cluster of radius R (m), with D ⋛ 2R, and i) acts as AP for the VCs currently

traveling on the served cluster; ii) relay node of the wireless backbone to the Internet and the

remote Cloud; and iii) it may be equipped with computing capability, so as to (occasionally)

play the role of a CloudLet [99]. As pointed out in [31], this basic architecture is capable to

support the Internet connection of resource-limited vehicular devices to the remote cloud.

The i-th RSU (i.e., RSU(i)), is equipped with two bidirectional communication ports (namely,

port-1 and port-2) and each port operates in a half-duplex way. Moreover, depending on the

deployed networked infrastructure, each port may be equipped with a single or even multiple

Network Interface Cards (NICs), which work over a same frequency band.

According to the emerging Communication Access for Land Mobiles (CALM) standard,

the set of the available carrier frequencies falls into the 5.9 GHz band. Moreover, the overall

current allotted spectrum is of 25 (MHz) and it is forecast that, in the next years, will be

limited up to 75 (MHz) [49]. Hence, vehicular networking will continue to represent, indeed,

a spectrally crowded scenario for the support of infotainment applications [99].

In the vehicular framework of Fig.4.1, time is slotted, Ts (s) is the slot duration, t is the

discrete-time slot index and the t-th slot spans the semi-open time interval [tTs,(t +1)Ts), t ≥

0. According to this assumption, the VCs of Fig.4.1 may change their spatial positions and

the network nodes (that is, RSUs and VCs) may start to transmit only at the beginning of each

slot t. In order to cope with the (aforementioned) bandwidth limitation, the communication

traffic over the vehicular backbone of Fig.4.1 is Time Division Duplexed (TDD) and it is

4.1 The Considered VCC Infrastructure 99

organized into super-frames of duration TSF (s). Each super-frame comprises an uplink phase

and a downlink phase, whose (possibly, unequal) relative time-durations are tuned at the

network setup.

At this regard, we note that, in order to avoid (or, at least) mitigate inter-flow co-channel

interference, during the uplink phase of each super-frame, RSU(i) may perform adaptive

spatial transmit beam-forming or use multiple highly directive transmit antennas for imple-

menting suitable antenna steering (see [2] and references therein for some recent results on

this topic). This is no longer feasible during the downlink phase, in which RSU(i) plays a

"passive" role and limits up to detect the already occurred packets collisions. Hence, since

the broadcast bandwidth from the serving RSU to the served VCs is typically larger than the

access bandwidth from the served VCs to the serving RSU [67],

In the following, we focus on the Cloud-to-Vehicular (e.g., downlink phase), most deeply

involved into the integrated computing-plus-communication problem, in order to jointly

perform on a per-slot basis: i) the admission control of the input (e.g., exogenous) workload

at the Cloud input; ii) the balanced dispatching of the admitted workload over the available

Cloud computing nodes; iii) the consolidation and resource configuration of the VMs hosted

by the Cloud; iv) the control of the transmission rates of the LAN hosted by the Cloud; and,

finally, v) the control of the rate of the traffic injected into the TCP/IP mobile connection of

Fig.4.1.

4.1.1 Input traffic and queue model in virtualized Clouds

In Internet virtualized DCs, each processing unit executes the currently assigned task by

self-managing own local virtualized storage/computing resources. When a request for a

new job is submitted from the Cloud providers to the virtualized cloud which contains

virtualized networked data center (VNetDC), the resource controller dynamically performs

both admission control and allocation of the available virtual resources [66]. Hence, according

to the typical architecture recently presented in [83], Fig.4.1 reports the main blocks which

100 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

compose the Middle-ware layer of the considered VNetDC. Roughly speaking, it is composed

by: i) an Admission Control Server (ACS or Adaptive load dispatcher); ii) an input buffer of

size NI; iii) a reconfigurable computing Cloud managed by the Virtual Machine Manager

(VMM) and the related switched Virtual LAN; iv) an output queue of size NO; v) the mobile

end-to-end TCP/IP connection; vi) an adaptive controller that dynamically manages all the

available computing-communication resources and also performs the admission control of

the input/output traffic flows.

Specifically, at the end of slot t, new input requests arrive at the input of the ACS of

Fig.4.1. This happens according to a random real-valued arrival process {Job(t)∈ R+
0 , t ≥ 0},

that is limited up to Jobmax ∈ R+
0 Information Units (IUs) per slot (e.g., Job(t) ≤ Jobmax

, t ≥ 0)1. The arrival process is assumed to be independent from the current backlogs of

the input/output queues of Fig.4.1. However, we do not assume any a priori knowledge

about the statistics of arrival request {Job(t) ∈ R+
o , t ≥ 0}. For example, {Job(t)} could be

a Constant Bit Rate (CBR) input traffic, or it could be a Markov-modulated process with

time-varying instantaneous rate. This models a general scenario with unpredictable and

(possibly) time-varying input workloads. Let λ (t) ∈ R+
o (IU/slot) be the number of IUs out

of Job(t) that are admitted into the input queue of Fig.4.1 at the end of slot t. We assume

that any new request that is not admitted by the ACS of Fig.4.1 is declined. Thus, we have:

0 ≤ λ (t) ≤ Job(t), so that: 1− (λ (t)/Job(t)) is the fraction of the input workload that is

rejected at slot t. Furthermore, we consider a (time-slotted) G/G/1/NI fluid system and a

G/G/1/NO fluid one for modeling the input and output queues of Fig.4.1, respectively. Due

to the admission control, both queues are loss-free and they implement the FIFO service

discipline. Let s(t) ∈ R+
0 and q(t) ∈ R+

0 be the numbers of workloads stored by the input and

output queues of Fig.4.1 at the beginning of slot t. Furthermore, let Ltot (bit/slot) be the size

of the incoming job that: i) is drained from the input queue at the beginning of slot t; and, ii)

1The meaning of an IU is application dependent. It may represent a bit, byte, segment or even an overall
large-size application task (for example, a large image). We anticipate that, in the carried out tests of Section
4.5, IUs are understood as Mbytes.

4.1 The Considered VCC Infrastructure 101

is injected into the output queue at the end of slot t. Finally, let r(t)(bit/slot) be the workload

that is drained from the output queue and transmitted over the mobile TCP/IP connection

of Fig.4.1 during slot t. Hence, the time evolutions of the backlogs {s(t) ∈ (R)+0 , t ≥ 0},

{q(t) ∈ (R)+0 , t ≥ 0} of the input and output queues are dictated by the following Lindley’s

equations [70]:
s(t +1) = [s(t)−Ltot(t)]++λ (t), t ≥ 0, (4.1)

q(t +1) = [q(t)− r(t)]++Ltot(t), t ≥ 0. (4.2)

Since data arrive at the input and output queues at the end of slot t, we must have: Ltot(t)≤

s(t), and: r(t)≤ q(t). Goal of the output queue is to effectively cope with the congestion and

mobility-induced fluctuations of the bandwidth offered by the mobile TCP/IP connection

(e.g., end-to-end vehicular backbone of Fig.4.1), in order to save transmit energy.

Due to the real-time nature of the considered application scenario, full processing of

the input file must be carried out within an assigned deterministic working time Tt (s) (s

means second). Hence, in our framework, a real-time job is characterized by: i) the size Ltot

of the file to be processed; ii) the maximum tolerated processing delay Tt ; and, iii) the job

granularity, that is, the (integer-valued) maximum number MT ≥ 1 of independent parallel

tasks embedded into the submitted job.

4.1.2 The TCP/IP vehicular cloud architecture

Let M ≥ 1 be the maximum number of VMs that are available at the Middleware layer of

Fig.4.1. In principle, each VM may be modeled as a virtual server, that is capable to process

fi bits per second (i is the VM identifier and its maximum value is M). Depending on the

size L(i) (bit) of the task to be currently processed by V M(i), the corresponding processing

rate fi may be adaptively scaled at run-time through DVFS. It may assume values over the

interval [0, f max
i], where f max

i (bit/s) is the maximum allowed processing rate of V M(i).

102 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

The TCP-based architecture partitions the overall scheduling problem into two smaller

sub-problems. These sub-problems are addressed by two controllers, e.g., the global con-

troller and the local controller. A local controller manages each PM or physical server,

in order to optimize its working state by observing its current utilization. Moreover, the

architecture has a global controller (e.g., a supervisor), in order to optimize the VM place-

ment sub-problem. The local controller resides on a PM. It monitors the CPU and VM

utilization and classifies the PM into one of the Q+ 1 sets of discrete frequency ranges:

{F0, . . . ,FQ = f max} which is elicited from the DVFS technology. Q is the number of allowed

processing frequencies between the minimum and maximum for each VM. The global con-

troller collects the states of the PMs from the local controllers and builds a global best-plan by

using the TCP-based scheduling algorithm, which is described in the next section. The global

controller sends commands to the VMMs for the optimization of the VM placement. The

commands fix which VMs on a source PM should be activated and send back the processed

job to the global controller (e.g., the load balancer). The VMM performs actual dispatching

of VMs tasks, on the basis of the commands from the local controllers. Due to the real-time

nature of the considered application scenario, the time allowed each VM to fully process

each submitted task is fixed in advance at T (s), regardless of the actual size L(i) of the task

currently assigned to the V M(i).

4.1.2.1 Offered workload and VMM

Being Ltot the overall size of the current input job, let L(i)≥ 0, i = 1, . . . ,M, be the size of the

task that Load Dispatcher of Fig.4.1 assigns to the V M(i). Hence, the following constraint:

∑
M
i=1 L(i) = Ltot(t), guarantees that the overall job is partitioned into (at the most) M parallel

tasks at time slot t. The set of the attributes which characterize each VM is:

{Φ(ηi),∆,Emax
c (i),E idle

c (i), f max
i }, i = 1,2, . . . ,M, (4.3)

4.1 The Considered VCC Infrastructure 103

where ∆ is the maximum allowed execution time (in seconds); E idle
c (i) is the static energy

consumed by V M(i) in the idle state (Joule); Emax
c (i) is the maximum energy consumed

by V M(i); f max
i is the maximum processing speed of V M(i) (bit/s). Φ(ηi) is the uti-

lization function with utilization factor ηi of V M(i), which is typically defined as in [5]:

Φ(ηi)≜(fi/ f max
i)2.

4.1.3 Computing energy and reconfiguration cost in virtualized Clouds

In the following sub-section, we detail the adopted energy model, which accounts for the

computational and reconfiguration costs.

4.1.3.1 Computational cost

The adopted computing energy model is based on the VMs’ states. In [77], it is shown that

there is a linear relationship between the CPU utilization of V M(i) and the corresponding

computing energy consumption, so that we can write:

Ec(i, t) = E idle
c (i)+(fi/ f max

i)2(Emax
c (i)−E idle

c (i)). (4.4)

Interestingly, when fi = 0, V M(i) wastes E idle
c energy.

4.1.3.2 Reconfiguration cost

We note that switching from the processing frequency fi(t− 1) (the working processing

speed of V M(i) at (t−1)-th slot) to fi(t) (the working processing speed of V M(i) in t-th slot)

entails an energy overhead of Edyn(i, t) [5]. Although, the actual behavior of the function

Edyn(i, t) depends on the adopted DVFS technique [91, 83], a quite common practical model

is the following one [91, 83]:

Edyn(i, t) = ke (fi(t)− fi(t−1))2 , (Joule) (4.5)

104 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

where ke (Joule/(Hz)2) denote the reconfiguration cost induced by an unit-size frequency

switching, which is typically limited up to few hundreds of µJ′s per [MHz]2 [83].

4.1.4 Intra-data center communication

We assume that the i-th virtual end-to-end connection (e.g., the i-th virtual link) in Fig.4.1

is bidirectional, symmetric and operates in a half-duplex way [6]. A joint analysis of the

computing-plus-networking energy consumption in delay-tolerant data centers is performed

in [77], where the effects of inter and intra-cloud networking infrastructures are evaluated.

Two main conclusions arise from [77]. First, the energy consumption due to data transport

may represent a large part of the total energy consumption, especially at medium/high

usage rates. Second, the energy consumption of cloud systems needs to be analyzed by

simultaneously accounting for data computing and data transport. Motivated by these

considerations, we consider the TCP New Reno protocol [88] to model the managed end-

to-end intra-DC transport connections. Under the Congestion Avoidance state, the power

drained by each connection may be evaluated as in [21]:

Pnet
i (t) = Ωi

(
RT Ti Ri(t)

)2
, i = 1, . . . ,M, (Watt), (4.6)

where RT Ti is the average round-trip-time of the i-th intra-data center end-to-end connection,

Ri(t) is the communication rate of the i-th virtual link at the t-th slot and Ωi is the i-th

virtual link power coefficient. The latter is dictated by the maximum segment size of the

transmitted packets and the number of per-ACK acknowledged segments [65, 83]. Hence,

the corresponding one-way transmission delay is: Di(t) = Li(t)/Ri(t), where Li(t) is the

workload assigned to V M(i) at the t-th slot. The overall two-way communication-plus-

computing delay induced by the i-th end-to-end connection of Fig.4.1 equates: 2D(i), so that

the hard constraint on the overall per-job execution time reads as in: max1≤i≤M{2D(i)} ≤ Tt .

Thus, the corresponding one-way communication energy ELAN(i, t) wasted by the i-th virtual

4.1 The Considered VCC Infrastructure 105

Fig. 4.2 Time chart

link at slot t is:

ELAN(i, t) = Pnet
i (t)(Li(t)/Ri(t)) (Joule). (4.7)

4.1.5 Goodput-vs.-energy in TCP/IP mobile connections

In the following, we explore the TCP/IP mobile connection. The TCP/IP mobile connection

of Fig.4.1 models the combined effects of the overall stack of protocols implemented at the

Transport, Network, MAC and PHY layers. The underlying (possibly, multi-hop) physical

wireless channel may be affected by multiple access interference, noise and fading phenomena

that are assumed constant over each slot (i.e. we assume a block-faded physical channel

that operates in the steady-state [34]). The resulting state σ(t) ∈R+
0 at the t-th slot for the

overall end-to-end connection of Fig.4.1 is modeled as a real-valued nonnegative r.v., with a

priory unknown steady-state pdf pσ (σ) 2. The state value σ(t) is assumed to be known at

2An example of σ(t) that models the steady-state behavior of the TCP/IP wireless connection working
in the Congestion-Avoidance state is reported in section 4.1. We stress that, in this framework, the r.v. σ(t)
reflects the fading and congestion-induced fluctuations suffered by the goodput (i.e., the net throughput) of the
overall end-to-end mobile TCP/IP connection of Fig.4.1.

106 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

the controller of Fig.4.1 at the beginning of slot t (see Fig.4.2), so that, the connection state

information is available at the controller for performing resource allocation on a per-slot basis.

In agreement with the behavior of legacy TCP/IP connection working in the Congestion

Avoidance state [59], we also assume that, at each slot t, σ(t) is strictly positive, e.g.,

σ(t)≥ σmin ≥ 0, ∀t ≥ 0, (4.8)

where σmin > 0 reflects the minimum non-vanishing bandwidth guaranteed by the mobile

TCP/IP connection of Fig.4.1 when it operates in the steady-state3. Finally, the (possibly,

time-correlated) random sequence {σ(t) ∈ [σmin,∞), t ≥ 0} and, then, the overall queuing

system of Fig.4.1 are considered to operate under stationary, and argotic conditions (i.e.

they work in the steady-state)4. According to the seminal results of Wolf and Loyes [59],

under the aforementioned steady-state operating conditions, there exists a unique stationary

solution to the recursions in (4.1),(4.2), as detailed by the following Loyes’ Lemma [59]:

Lemma 1 : For any given service policies LT (t) and r(t), connection state statistics, admis-

sion control policy λ (t), and exogenous arrival rate Job(t), under queue stability conditions,

there exist unique r.v.s s(∞) and q(∞) such that, for any choice of the initial conditions s(0),

q(0), the backlog sequences {s(t), t ≥ 0} and {q(t), t ≥ 0} in (4.1), (4.2) converge in finite

time to the joint probability distribution of the r.v.’s s(∞) and q(∞). □

Regarding the goodput offered by the vehicular connection of Fig. 4.1, we observe that the

transmission rate r(t) over the TCP/IP mobile connection of Fig.4.1 depends on both of the

transmit energy EW (t) and the state σ(t) of the connection as in [83]:

r(t) = σ(t)(EW (t))1/2,(byte/slot), (4.9)

3The explicit expression assumed by σmin for a TCP/IP wireless connection working in the congestion-
avoidance state is reported in section 4.5.

4We anticipate that this assumption will be relaxed in section 4.1, where we deal with the on-the-fly adaptive
implementation of the optimal controller of Fig.4.1.

4.1 The Considered VCC Infrastructure 107

where the state of the connection at slot t is defined as [83]:

σ(t)≜ (K0(z(t))1/2)/CRT T (t), t ≥ 1, (4.10)

so that:

EW (t)≡ EW

(
r(t),σ(t)

)
= (r(t)/σ(t))2. (4.11)

In eq. (4.9), z(t) is the mobility function of the vehicular client linked to the mobile TCP/IP

connection of Fig.4.1. It may be modeled as a time-correlated log-distributed sequence

[37]: z(t) ≜ a0100.1x(t),∀t ≥ 1, where a0 ≈ 0.9738 and {x(t), t ≥ 1} is a time-correlated,

stationary, zero-mean, unit-variance Markov random sequence, whose probability density

function is evenly distributed over the interval [−
√

3,
√

3] [37]. The positive constant K0 in

(4.9) captures the performance of the FEC-based error-recovery system implemented at the

Physical layer of Fig. 4.1 [83], and CRT T (t) is the corresponding overall round-trip-time in

the mobile TCP/IP connection of Fig.4.1. It is calculated iteratively by using the Jacobson’s

formula as in [83]:

CRT T (t) = (1− jP)CRT T (t−1)+(jP)∆IP(t), t ≥ 1,CRT T (0) = 0, (4.12)

where jp = 0.25[83] and ∆IP(t) is the measured instantaneous packet-delays (in multiple of

slot period).

Furthermore, in micro-cellular land-mobile applications, the corresponding correlation

coefficient h ≜ E {z(t)z(t−1)} that describes the time correlation of the fluctuations of the

vehicular connection of Fig.4.1 that can be evaluated as in [37]:

h = (0.82)vTs/100, (4.13)

108 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Table 4.1 Main taxonomy of the chapter.

Symbol Meaning/Role
MSS (bit) Maximum size for each TCP segment
NI(NO) (IU) Size of the input (output) buffer
rmin(Rmax) (IU/slot) Minimum (maximum) instantaneous value for the TCP/IP mobile connection state of Fig.4.1
Jobmax (IU) Maximum instantaneous value of the incoming traffic to the data center
s(t)(q(t)) (IU) Length of the input (output) buffer or queue at the beginning of slot t
∆IP(t) (s) Instantaneous packet delay of the TCP/IP mobile connection of Fig.4.1 in the t-th slot
v Speed of the vehicular client of Fig.4.1
CRT T (t) (s) Overall round-trip-time of the i-th TCP/IP mobile connection of Fig.4.1 in the t-th slot
RT Ti (s) Average round-trip-time of the i-th end-to-end connection
f max
i (bit/s) Maximum allowed computing frequency for the i-th CPU

fi(bit/s) Computing frequency for the i-th CPU
Ltot(t) (bit) Job size (workload size) in the t-th slot
Ri(bit/s) Communication rate of the i-th end-to-end connection
Rt(bit/s) Aggregate communication rate of the Virtual LAN of Fig.4.1
∆(s) Per-job maximum allowed computing time
Tt(s) Per-job maximum allowed computing-plus-communication time
Ts(s) Maximum allowed transmit time throw TCP/IP mobile connection
PIdle(Watt) Idle power
Pnet

i (Watt) Power consumed by the i-th end-to-end connection
E idle

c (i)(Watt) Energy consumed by the i-th CPU in the idle mode
Etot(t)(Joule) Total consumed energy in t-th slot
EW (t)(Joule) Total transmit energy in TCP/IP mobile connection for the t-th slot
EC(i, t)(Joule) Total computing energy in t-th slot for i-th VM
Edyn(i, t)(Joule) Total reconfiguration energy in t-th slot for i-th VM
ELAN(i, t)(Joule) Total network energy in t-th slot for i-th VM
M Maximum number of available VMs

where Ts(s) is the slot duration and v (m/s) is the speed of the vehicular client of Fig.4.1.

Overall, the goal we go to pursue is the minimization (on a per-slot basis) of the resulting

total communication-plus-computing energy, formally defined as in:

Etot(t)≜
(M

∑
i=1

Ec(i, t)+Edyn(i, t)+ELAN(i, t)
)
+EW (t). (4.14)

Table 4.1 summarizes the main notations used in this chapter.

4.2 The Afforded Resource Management Optimization Problem 109

4.2 The Afforded Resource Management Optimization Prob-

lem

The proposed scheduler aims at minimizing the per-job total energy consumption in (4.14) by

selecting the best resource allocation based on the current state σ(t) of the TCP/IP vehicular

connection. In detail, we build a solution which is capable to obtain the optimum values for

the processing speeds of the VMs, the transmission rates of the intra-DC of Fig.4.1 and the

transmission rate of the mobile TCP/IP connection of Fig.4.1.

Thus, the overall considered optimization problem assumes the following form:

min
A

θEtot(t)− (1−θ)r(t), (4.15.1)

subjected to:

M

∑
i=1

Li(t) = Ltot(t), (4.15.2)

E
{

EW (σ ,r)
}
≤ Eave, (4.15.3)

0≤ Li(t)≤ ∆ f max
i , i = 1, . . . ,M, (4.15.4)

Di(t)≤
(Tt−∆)

2
, i = 1, . . . ,M, (4.15.5)

0≤ fi(t)≤ f max
i , i = 1, . . . ,M, (4.15.6)

0≤ Ri(t)≤ Rmax
i , i = 1, . . . ,M, (4.15.7)

rmin ≤ Ltot(t)≤ s(t), (4.15.8)

s(t +1)≤ NI, (4.15.9)

0≤ λ (t)≤ λmax, (4.15.10)

rmin ≤ q(t +1)≤ NO, (4.15.11)

Ltot(t)≤ (Ts−∆)(Rmax
i /2). (4.15.12)

110 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

where A ≜ {Li(t), fi(t), i = 1, . . . ,M,r(t),λ (t)} is the set of the (2M+2) variables to be

optimized and θ ∈ [0,1] acts as normalization weight.

About the reported problem, some explicative remarks may be of interest. The objective

function in problem (4.15.1) in general weighted linear combination of the per-slot total

energy consumption and the goodput of the TCP/IP vehicular connection of Fig.4.1. Setting

of θ allows us to assign relative priorities between goodput and energy consumption.

The constraints in (4.15.2) and (4.15.4) guarantee that the overall input workload Ltot(t)

offered to the Cloud at slot t is partitioned over the available VMs in a feasible manner. The

constraint in (4.15.3) limits up to Eave (Joule) the per-slot overall energy EW (.; .) available

for transmitting over the mobile TCP/IP connection of Fig.4.1. The set of time constraints

in (4.15.5) enforces the virtualized Cloud of Fig.4.1 to fully process the offered workload

Ltot(t) within the hard deadline of Tt (s). Eqs. (4.15.6) and (4.15.7) limit the processing rate

of V M(i) and the communication rate of the i-th link of the intra-DC of Fig.4.1, respectively.

Eqs. (4.15.8), (4.15.10) and (4.15.9) account for the current and next backlog s(t) and s(t+1)

of the input queue (see Fig.4.1), the maximum allowed input rate λmax(byte/slot) and the

size of the input buffer NI , respectively. Likewise, eq. (4.15.11) accounts for the finite size

NO of the output buffer of Fig.4.1. Equation (4.15.12), limits the processing rate of the V M(i)

and account for the aggregate transmission rate of the DC’s LAN of Fig.4.1. Finally, in the

reported formulations, the instantaneous goodput r(t) conveyed by the mobile connection

of Fig.4.1 must fall into the range [rmin,rmax] where rmax is the maximum instantaneous

value allowed for goodput. Formally speaking, the (nonnegative) threshold rmin (byte/slot)

fixes (in a hard way) the minimum goodput to be guaranteed by the mobile pipe of Fig.4.1,

while the (positive) threshold rmax (byte/slot) dictates (in a hard way) the maximum allowed

instantaneous goodput.

Remark 2 - Generalization of the optimization problem formulation.

4.2 The Afforded Resource Management Optimization Problem 111

Depending on the actually considered TCP/IP mobile cloud platform and sustained

Software-as-a-services, some generalizations of the reported problem optimization formula-

tion are possible.

First, several reports point out that the energy consumption of other non-IT equipments

(e.g., cooling equipments) is roughly proportional to that in (4.14) through a constant factor

power usage effectiveness (PUE), which represents the (measured) ratio of the total energy

wasted by the data center to the energy consumed by the corresponding computing-plus-

networking equipments [3].

Second, the size L̃i
(0)
(t) of the workload output by V M(i) at the end of the computing

phase may be different from the corresponding one Li(t) received in input at the beginning of

the computing phase in the t-th slot. Therefore, after introducing the i-th inflating/deflating

constant coefficient ϑi ≜ L̃(0)
i (t)/Li(t)≶ 1, the basic problem optimization formulation may

be generalized by simply replacing the term: 2Li(t) in (4.15.1), (4.15.5) by the following

one: (1+ϑi)Li(t), i = 1, . . . ,M.

Third, the summation in (4.15.1) of the computing and reconfiguration energies may be

replaced by any two energy functions: H(f1, . . . , fM) and V (f1, . . . , fM) which are jointly

convex in { fi, i = 1, . . . ,M}. Just as an application example, as in [105], let us assume that all

the VMs are instantiated onto the same physical server and, due to imperfect isolation, they

directly compete for acquiring CPU cycles. In this (limit) case, the sum-form in (4.14) for the

computing energy falls short, and the total energy Ec(i, t) wasted by the physical host server

may be modeled as in [105]: Ec(i, t) = Emax
c

{
(1−b)

[
∑

M
i=1

(
fi

f max
i

)]C
+b
}

, where Emax
c is

the maximum energy consumed by the physical server, E idle
c ≜ b Emax

c is the corresponding

energy consumed by the physical server in the idle state, while the inner summation is the

aggregate utilization of the server by all hosted VMs. Since the above expression of Ec(.) is

jointly convex in { fi, i = 1, . . . ,M} for C ≥ 1, the solving approach of the next section still

applies verbatim. □

112 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

4.3 The Resulting Adaptive Resource Scheduler

We start presenting some structural properties of the afforded problem, described in Lemma

2, and its feasibility conditions in Proposition 8, respectively.

Lemma 2 Structural properties of the afforded problem Let the aforementioned assumptions
on the system’s model be fulfilled. Thus,

i) in the steady-state, the following chain of inequalities holds:

Jobmax ≥ E{Job(t)} ≥(a) E{λ (t)}=(b) E{Ltot(t)}=(c) E{r(t)} ≥d rmin, (4.16)

ii) the energy function E∗W (σ ,r) in (4.15.3) is strictly increasing for r ≥ 0, strictly de-

creasing for σ ≥ 0 and strictly convex in r ≥ 0;

iii) the instantaneous energy EW (t)≡ EW (r(t),σ(t)) in (4.15.3) wasted for transmitting

over the mobile TCP/IP connection of Fig.4.1 is upper bounded in a hard way as in

EW (σmin,rmax)≥ EW (t), ∀t ≥ 1, (4.17)

where σmin and rmax are the minimum connection state of the TCP/IP end-to-end back-

bone and the maximum desired goodput for the rate of the TCP/IP vehicular connection,

respectively.

Proof:

The reported proof exploits arguments based on the considered TCP/IP vehicular cloud

architecture as is shown in Fig.4.1.

i) Since the input and output queue of Fig.4.1 are in tandem, loss-free and operate in

the steady-state, the equalities in (b), (c) of (4.16) must hold. Afterwards, (d) follows

from the lower bound in (4.15.8), while (a) stems from the performed admission

control on the arrival input traffic.

4.3 The Resulting Adaptive Resource Scheduler 113

ii) Since r(t) in (4.11) is strictly increasing in σ ≥ 0 and EW ≥ 0 and strictly concave

in EW , its inverse function r−1 with respect to EW is strictly increasing and strictly

convex in r ≥ 0, and it is strictly decreasing in σ ≥ 0.

iii) From (4.11) it follows that the energy function EW (·) attains its maximum at σ =

σmin,r = rmax. This proves the validity of (4.17).

This completes the proof of Lemma 2. □

About σmin, it reflects the minimum non-vanishing bandwidth guaranteed by the TCP/IP

vehicular connection of Fig.4.1 when it operates in the steady-state. Interestingly, we can

calculate it in closed form as:

σ(t)≥ σmin ≜ K0

(
(a010−0.1(3)1/2)1/2/∆

max
IP

)
, t ≥ 1, (4.18)

where K0 accounts for the performance of the FEC-based error recovery scheme implemented

by the PHY layer of the connection of Fig. 4.1 [65], and ∆max
IP is the maximum delay actually

experienced by the connection at the slot t. Likewise, according to the eqs. (4.18) (4.8) and

(4.9): rmin ≜ σmin
√

Eave.

Since inactive VMs may be turned ON at the consolidation instants in response to

workload increments, it suffices to afford the feasibility issues of the resource allocation

problem in (4.15) under the assumption that all the available VMs are turned ON at t = 0.

So doing, we obtain the feasibility conditions for the afforded problem.

Proposition 8 Feasibility conditions

114 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Under the reported assumptions, the following four inequalities:

Eσ{EW (σ ,rmin)} ≤ Eave, (4.19.1)

M

∑
i=1

f max
i ∆≥ rmin, (4.19.2)

(Rmax
i /2)(Ts−∆)≥ NI, (4.19.3)

Job(t)≥ rmin,∀t ≥ 0, (4.19.4)

provide a set of sufficient and necessary conditions for the feasibility of the constrained

optimization problem in (4.15).

Proof: Since the optimization problem The reported proof highlight the optimization problem

(4.15.1) feasibility conditions.

a) Since Lemma 1 proves that EW (σ ,r) is strictly increasing for r ≥ 0, the condition in

(4.19.1) is both necessary and sufficient for guaranteeing that the constraint in (4.15.1)

is always met.

b) Since the l.h.s. of (4.19.2) represents the maximum workload that the Cloud of Fig.4.1

may process during a slot period (see (4.15.4)), we have:

Ltot(t)≤
M

∑
i=1

f max
i ∆, ∀t ≥ 0. (4.20)

Hence, since (see eq. (4.2)): q(t +1)≥ Ltot(t), after posing: Ltot(t)≡ ∑
M
i=1 f max

i ∆, eq.

(4.19.2) suffices to guarantee that: q(t +1)≥ rmin, so that the constraint in (4.15.11)

is met. About the necessary part of the condition in (4.19.2), let us consider an

instant t such that: r(t) = q(t). Hence, since (see eq. (4.2)): q(t+ 1) = Ltot(t), and

Ltot(t) is upper bounded as in (4.20), it follows that (4.19.2) is necessary for having:

q(t+1)≥ rmin.

c) Since the size of the input queue is fixed at NI , we have that: Ltot(t) = ∑
M
i Li(t) ≤

NI, t ≥ 0, and this inequality proves that the condition in (4.19.3) suffices for guaran-

4.3 The Resulting Adaptive Resource Scheduler 115

teeing the feasibility of the constraint in (4.15.12). About the necessary part, let us

consider an instant t such that (see eqs. (4.1),(4.15.8)): s(t) = Ltot(t) = NI . Hence, in

order to guarantee that the aggregate capacity Rmax
i of the intra-Cloud LAN of Fig.4.1

is capable to transport NI IUs within (Ts−∆) seconds, the condition in (4.19.3) must

necessarily hold.

d) Since the input and output queues of Fig.4.1 work in a pipelined fashion, the condition

in (4.19.4) suffices for having: q(t + 1) ≥ rmin,∀t ≥ 0, that, in turn, is sufficient for

guaranteeing that: r(t) ≥ rmin,∀t ≥ 0. About the necessary part of the condition in

(4.19.4), let us consider an instant t such that (see eqs. (4.1),(4.2)): s(t) = Ltot(t), and:

q(t+ 1) = r(t+ 1). Hence, since the upper bounds in (4.15.8) and (4.15.9) lead to

the following two chains of inequalities: Job(t)≥ λ (t) = s(t+1)≥ Ltot(t+1), and:

q(t+2) = Ltot(t+2)≥ r(t+2), it directly follows that the condition: Job(t)≥ rmin is

necessary for having: r(t+2)≥ rmin. □

Proposition 9 (Preserve task granulity)

Let be rmax > rmin and let rmax (IU) and rmin(IU) comprise integer numbers of tasks. Let

the feasibility conditions of Proposition 8 be met, and let rL(t), rH(t) the transmit policies so

defined:

rL(t)≜ χround(r∗(t)/χ);rH(t)≜ χ min
{

ceil(r∗(t)/χ);round(q∗(t)/χ)
}

; (4.21)

EL(t)≜ Eσ

{
EW (σ ,rL(t))

}
, and EH(t)≜ Eσ

{
EW (σ ,rH(t))

}
, (4.22)

be the conditional average transmit energies required by the policies rL(·) and rH(·), respec-

tively. Finally, let P0(t) the following probability:

P0(t)≜
EH(t)−Eave

EH(t)−EL(t)
(4.23)

116 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Thus, the randomized transmit policy so defined:

r̃(t)≜


rL(t), P0(t), t ≥ 1

rH(t), 1−P0(t), t ≥ 1
(4.24.1)

retains the following structural properties:

i) r̃(t) conveys an integer number of tasks for any t;

ii) rmin ≤ r̃(t)≤ rmax, t ≥ 1;

iii) r̃(t)≤ q∗(t), t ≥ 1;

iv) Eσ{EW (σ , r̃(t))
}
= Eave;

v) r̃(·) is the (possibly, not unique) policy with the largest conditional average value

Eσ{r̃(t)} over the set of integer-valued policies that meet the constraints in (4.15.1)-

(4.15.12).

Proof:

i) Since both rL(·) and rH(·) in eq. (4.21) convey integer numbers of tasks by design, the

same property is also inherited by r̃(·) in eq. (4.24).

ii) Since both rmin and rmax embrace integer numbers of tasks and r∗(t) ∈ [rmin,rmax],

from eq. (4.21) it follows that rL(t) and rH(t) fall into the interval [rmin,rmax] for any t.

Hence, due to eq. (4.24), the same property is inherited by r̃(·).

iii) Due to (4.2), r∗(t) and, then, rL(t) and rH(t) are limited up to q∗(t), so that the same

property is inherited by r̃(·) in eq. (4.24).

iv) Equation (4.23) may be rewritten as in: P0(t)EL(t)+(1−P0(t))EH(t) = Eave, that, in

turn, directly proves the statement.

v) Since r∗(t) is not constrained to be an integer multiple of χ , as in [72, section II],

the conditional average transmit rate of any integer-valued feasible transmit policy is

4.3 The Resulting Adaptive Resource Scheduler 117

upper bounded by: Eσ{r∗(t)}, so that Eσ{r̃(t)} ≤ Eσ{r∗(t)}. Furthermore, as in [72,

section II], rL(t) and rH(t) in eq. (4.21) are the nearest integer-valued neighboring

rates that lower and upper limit r∗(t), while simultaneously meeting the (required)

point-wise constraints: rmin ≤ rL, rH ≤ rmax and rL ≤ q∗, rH ≤ q∗. Finally, as in [72,

section II], the time-sharing factor P0(t) in eq. (4.23) is the only one that allows to

meet with the equality the constraint on the (conditional) average transmit energy (see

(4.23)), and, then, it concurs to guarantee the feasibility of the policy r̃(·). Overall, as

in [72, section II],these three properties suffice to prove the claim.

Although optimal, actual implementation of the policy eq. (4.24) may be hampered by the

fact that the closed-form evaluation of the conditional expectations in eq. (4.22) requires

the a priori knowledge of the (generally unknown) pdf p∞(σ). As detailed in the sequel,

P0(t) may be iteratively computed and updated by resorting again to the gradient-based algo-

rithm, but this somewhat increases the implementation complexity of the overall controller.

Specifically, let NH(t−1)(NL(t−1)) be the integer-valued number of times such that the

policy rH(·)(rL(·)) is actually applied over the closed time interval [0, t−1]. Furthermore,

let 1[t;H] be the binary variable that takes the unit value iff the policy rH(·) is actually applied

over the t-th slot. Hence, the Newton-type t-th iterate for updating P0(t) is carried out at the

beginning of the t-th slot. It reads as

P0(t) = P0(t−1)−β0(t)

[
P0(t−1)−

((
EH(t−1)−Eave

)
/
(

EH(t−1)−EL(t−1)
))]

,

t ≥ 1,P0(0) = 1,

(4.25)

where,

NH(t−1) = NH(t−2)+1[t−1;H], t ≥ 2,NH(0) = 0, (4.26)

118 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

EH(t−1)≜
(

1/NH(t−1)
) (t−1)

∑
i=1

EW

(
rH(i),σ(i)

)
≡

(
1/NH(t−1)

)[
NH(t−2)EH(t−2)+1[t−1;H]EW

(
rH(t−1),σ(t−1)

)]
,

t ≥ 2, EH(0)≡ EW

(
rmax,σmin

)
,

(4.27)

together with

EL(t−1) =
(

1/NL(t−1)
)[

NL(t−2)EL(t−2)+
(

1−1[t−1;H]

)
EW

(
rL(t−1),σ(t−1)

)]
,

t ≥ 2,EL(0) = 0,

(4.28)

Finally, analogously to 5 line #15, the (possibly, time-varying) step-size β0(t) ∈ R+
0 in

(4.25) may be still updated according to [60, equation (2.4)], in order to cope with the

(possible) occurrence of abrupt changes of the statistics of the r.v. σ(·). Before proceeding,

two remarks are in order. First, under the feasibility condition in (4.19.3), the constraint

in (4.15.12) is automatically met. Second, since the steady-state pdf p∞(σ) of the wireless

TCP/IP connection of Fig.4.1 may be a priori unknown, the condition in (4.19.1) could be

hard to test. However, since EW (σ ,r) is not increasing in σ , the following relationship:

EW (σmin,rmin)≤ Eave, provides a simpler to test (only) sufficient condition for the feasibility

of the average energy constraint in (4.15.1).

To solve the optimization problem in (4.15), we must find the optimum L∗tot(t) allotted

by the admission control module of Fig.4.1. It can be formally proved that L∗tot(t) may be

calculated according the following equation (4.29)

L∗tot(t)≜


0 for q(t)> NO + rmin− rmax,

W L (t) for q(t)≤ NO + rmin− rmax,

(4.29)

4.3 The Resulting Adaptive Resource Scheduler 119

with W L (t)≜ min
{

s(t);max{rmin;r(t−1)}
}

where, according to the Jacobson’s formula,

we have that:

r(t)≜ (1− JP)r(t−1)+ JP r(t), t > 1, (4.30)

is the average measured rate of the underlying mobile TCP/IP connection. Moreover, the

optimal admitted workload sent over the Cloud (i.e., the input buffer of Fig.4.1) during slot t

can be calculated according to the following formula:

λ
∗(t) = min{Job(t),NI− s(t)+L∗tot(t)}, (4.31)

which is comprises by JP threshold of the effect of the instantaneous rate of the previous

slot and (1− JP) rate of average of (t− 1) slots in the mobile TCP/IP connection in the

Fig.4.1. where r(t) is the average goodput rate from the first slot until slot t for the output

queue which is called throughput or goodput of the whole system. For example, if we are at

time-slot t = 10 we need to sum all the r values for all the time-slots from τ = 0 to τ = 10

which is calculated in previous slots. Also, when we go to the next slot (t = 11) we do

not need to calculate all the old goodput values for the previous slots just we can use the

following formula instead of the formula (4.30)

r(t)≜
r(t−1)(t−1)+ r(t)

t
(4.32)

Therefore, r(t) is correlated to the previous r(t−1) and σ(t) is related to channel connection

state at slot t. The L∗tot(t) is depicted in figure 4.3: After calculating L∗tot(t), we need as in

(4.14) to calculate the general optimal transmit rate r∗(t) over the TCP/IP mobile connection,

which, in turn, equates:

r∗(t) =

Ė−1
W

σ ,
(1−θ)

MU(t)

min

{
rmax; q

}

rmin

. (4.33)

120 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Fig. 4.3 Ltot(t) is calculated by time-slot, the x-axis is time-slot and y-axis is the Ltot(t)
which is based on two hard-limits (rmin and s(t)) : the dotted lines (−) is not exist and just
the dark-lines is the result for the input/output workload of output /input queue.

where Ė−1
W is the inverse of the derivative of EW (t) in eq. (4.11) and the projection operator

[x]ba ≜ min{b;max{a;x}} in (4.16), so that the resulting r∗(t) in (4.16) reads as in:

r∗(t)≡
[
(1−θ)σ(t)2

2MU(t)

]min

{
rmax,q(t)

}

rmin

. (4.34)

where MU(t) is a suitable positive step-size sequence adaptively updated slot-by-slot to meet

the constraint (4.15.3) (through the standard gradient based updates:

MU(t +1) = [MU(t)+(k(t)/t)(E∗W (t)−Eave)]. (4.35)

In principle, the actual choice of {MU(t)} impacts on the rate of convergence and tracking

capability of the time slots to attain (4.15.3), and the step-size parameter k(t) can be adaptively

optimized slot-by-slot to improve the speed of convergence (see [16]).

About the QoS issues, we point out that, regardless of the type of service offered by the

available wireless TCP/IP connection of Fig.4.1, the ultimate goal of the DC of Fig.4.1 is to

guarantee a minimum level of QoS (e.g., service level agreement (SLA) [24]) to the vehicular

clients. A combined exploitation if the bounds NI,NO on the buffer sizes and limits (4.15.8),

4.3 The Resulting Adaptive Resource Scheduler 121

(4.15.11) on the minimum and maximum rates delivered by the output queue of Fig.4.1 leads

to the following hard QoS guarantees.

Proposition 10 Hard QOS guarantees

Let the feasibility conditions of Proposition 8 be met. Let TQI , TSI , TQO, and TSO be the

r.v.s that measure the random queue delay of the input queue, the service time of the input

queue, the queue delay of the output queue and the service time of the output queue (in

multiple of the slot time), respectively, thus,

i) the random total delay TTOT ≜ TQI +TSI +TQO +TSO (in multiple of the slot period) is

limited in a hard way as
TTOT ≤ ((NI +NO)/rmin)+2; (4.36.1)

ii) The instantaneous jitter affecting the transmit rate is upper bounded as in:

|r(t1)− r(t2)| ≤ (rmax− rmin) , for any t1, t2 (4.36.2)

iii) Furthermore, the corresponding unconditional average jitter: σr ≜
√

E {r(t)− r}2 (IU/slot)

is limited as
σr ≤

√
(rmax)2− (rmin)2. (4.36.3)

We developed an iterative method, which calculates the optimum Li and fi for each V M(i) in

each t. After some iterations, we will reach the optimal solution of the considered problem,

which consists of a set of optimal parameters: {L∗i , f ∗i , i = 1, . . . ,M} that are expressed in

function AdLoadDispatch. Indeed, we iterate our method n-times (i.e., n is the loop counter

for searching proper optimum workload and frequency for each VM). The pseudocode for

this proposed solving method is presented in Algorithm 2. In detail, for the consolidation

state we introduce a function ConsolDispatch which is described in the next section.

The Algorithm 3 details the applied admission control. In detail, at each time slot, we need

to perform lines 3 to 9, in order to compute the optimum allowed workload which should

122 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Algorithm 2 Proposed Algorithm
1: Input Jobs
2: Output A ∗

3: for t ≥ 1 do
4: if ∼Feasibility in Proposition 8 then
5: error(’Program is not feasible’)
6: else
7: ComCopResAlloc(t)
8: Calculate W (t) using (4.37)
9: if Lth≤W (t)≤ Hth then

10: AdLoadDispatch(t)
11: end if
12: if not (Lth≤W (t)≤ Hth) then
13: ConsolDispatch(t)
14: end if
15: end if
16: Calculate DVFS in Remark 1, (4.15.1)
17: end for
18: return E∗tot , A ∗

Algorithm 3 ComCopResAlloc()
1: Input t-th Job
2: Output L∗tot(t), Admission Control parameters
3: Compute r̄(t) by using (4.30) as Jacobson formula
4: Compute L∗tot(t) by using (4.29)
5: Compute λ (t) using (4.31)
6: Compute r∗(t) using modified (4.34)
7: Compute E∗W (t) using second part (4.11)
8: Compute MU(t +1) using (4.35)
9: Compute s(t +1) and q(t +1) using (4.1) and (4.2), respectively

10: return L∗tot(t), Admission Control parameters

4.4 Dynamic Turning ON/OFF VMs 123

be dispatched to active VMs and, then, injected into the mobile TCP/IP connection. Here,

Job(t) denotes the input traffic before the admission control (i.e., at the input of the input

buffer) and MU is the step-size parameter adopted to control the attainment of the equality

constraint in (4.15.3). MU(t) is updated on the basis of its current value (it was calculated

based on the previous round/iteration) and the variation of MU can be managed with the

coefficient k/t. It means that, when the time slot increases, the step-size parameter turn to be

near to its previous values like [76].

Algorithm 4 AdLoadDispatch()
1: Input L∗tot(t), f max

i , itermax, ∆

2: Output A ∗, and optimized instantiates energy of section 4.1

3: G(Li)≜
M
∑

i=1
Li(t)−L∗tot(t)

4: N← 1, a← 0
5: itr = [log(f max

i −a)/min(PLAN)]
6: while N ≤ itr do for each i ∈ 1, . . . ,M in parallel
7: c← (a+ f max

i)/2
8: Calculate G(c∆), G(a∆)
9: if G(c∆) = 0 or f max

i −a < 0 then
10: return c,G(c∆)
11: Stop
12: end if
13: if G(a∆)G(c∆)< 0 then
14: b = c, G(b∆) = G(c∆)
15: else
16: a = c, G(a∆) = G(c∆)
17: end if
18: N ++
19: end while
20: Return c,G(c∆)

Algorithm 4 is an instance of the bisection method to solve (4.15.2) by using higher and

lower range for each VM: fi/Li and obtain a rough approximation to a solution which is A ∗.

4.4 Dynamic Turning ON/OFF VMs

Data center consolidation is a popular strategy to further reduce energy consumption by

turning OFF the under utilized VMs. The effectiveness of data center consolidation in

124 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

driving costs out of IT is shown in the popularity of this strategy. The IT organizations apply

consolidation to reduce IT assets by using more efficient technologies. Recently, some of

the consolidation technologies used in data centers comprise server virtualization, storage

virtualization, cloud computing, and using tools for process automation. In this paper, we

use server virtualization as a dynamic control to improve energy efficiency in cloud data

center. In this paper, we use VM consolidation as a dynamic control tool to improve energy

efficiency in virtualized cloud data center. We focus on consolidation policies that work

at multiple time scales and allow consolidation only at instants falling into a predefined

index set: T̂CN ≜ {t̂0, t̂1 . . .} of consolidation instants. Roughly speaking, this means that

the set S of active VMs is chosen at t̂i ∈ T̂CN , and, then, it is held fixed up to the instant:

t = (t̂i+1−1). The set of active VMs may potentially change at t̂i+1. Hence, in our framework,

while consolidation decisions are taken at slower time-scale, all the other resource allocation

decisions (e.g., admission control, workload dispatching, queue updating, and allocation of

the computing-plus-communication resources) are performed on a per-slot basis in order to

evaluate online the actual utilization of the corresponding active VMs, we introduce W as a

VM consolidation factor to monitor each slot and find the consolidation slots. W is defined

as in

W (t)≜
1

|S (t)| ∑
i∈S (t)

Li(t)
Lmax

i
, (4.37)

where Lmax
i ≜ ∆ f max

i is the maximum processed workload of V M(i) and S (t) is the set of

turn ON VMs at the t-th slot. The W factor falls in to the interval zero and 1. In detail,

for this method, two thresholds are set (I ≜ (Lth, Hth)), a lower and an upper thresholds,

respectively). If the consolidation factor W drops below the lower threshold (Lth), then some

VMs according to the consolidate multi-gradient iterative method and all the VMs residing

on that servers should be removed (i.e., workloads also removed) so that the host can be

switched off in order to save energy. If W is higher than the upper threshold, then some new

servers should be on and some of the VMs residing on the current servers should be removed

4.4 Dynamic Turning ON/OFF VMs 125

and migrate to the new servers in order to avoid SLA violations. Without loss of generality,

we assume that the V M(i) is turned ON at slot t when the corresponding processing speed

fi≥ f ON
i , where f ON

i is an assigned positive wake up frequency. Hence, at each consolidation

instant t̂ ∈ T̂CN , t̂ ≥ 1, we may model the overall energy consumption of the V M(i) as in

Ec(i, t) = E idle
c (i)u−1(fi(t̂))+(fi/ f max

i)2(Emax
c (i)−E idle

c (i)),

i ∈ {1, . . . ,M}, t̂ ∈ T̂CN ,

(4.38)

where u−1(x) is the unit-size Heaviside’ function (e.g., u−1(x) is unit for x > 0 and it

vanishes for x ≤ 0). The first term in (4.38) accounts for the saving (consumption) of the

static computing energy that arises from turning OFF (ON) the V M(i), i = 1, . . . ,M. In order

to model the corresponding time-overhead induced by the turning ON/OFF operations, let

TON(s) and TOFF(s) be the times needed to turn ON/OFF a VM, respectively. Hence, under

the assumptions: TON ≤ ∆ and TOFF ≤ Tt , the following set of constraints must hold at each

consolidation instant t̂ ∈ T̂CN , t̂ ≥ 1:

TON u−1

(
fi(t̂)

)
+
(Li(t̂)

fi(t̂)

)
≤ ∆, i ∈ S(t̂−1), (4.39.1)(Li(t̂)

fi(t̂)

)
≤ ∆, i ∈ S(t̂−1), (4.39.2)

M

∑
i=1

Li(t̂) = Ltot(t̂), i ∈ S(t̂−1). (4.39.3)

where S(t̂− 1) is the set of the VMs that are turned OFF at slot (t̂− 1) while S(t̂− 1) is

the set of the VMs that are turned ON at slot (t̂−1). Specifically, the constraint in (4.39.1)

applies only to the set of VMs that are inactive at (t̂−1) (e.g., to the VMs falling into the set

S(t̂−1)). This constraint explicitly accounts for the time-overhead requested for turning ON

the inactive V M(i). The constraint in (4.39.2) applies only to the VMs that are already active

at (t̂−1). Since it forces vanishing workload Li(t̂) at fi(t̂) = 0, (4.39.2) guarantees that no

workload is carried out by the V M(i) during each slot t at which it is turning OFF. This is also

126 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

the reason why TOFF is not explicitly present in (4.39.2). Finally, (4.39.3) still guarantees

workload conservation at each consolidation instant. Before processing some explicative

remarks about the assumed cloud architecture and its venality limits may be of interest. In

time-varying environments characterized by (possibly, abrupt and random) time-fluctuations

of the offered workload L∗tot (see Algorithm 3), the per-job evaluation and online tracking of

the consolidation state in the following may be performed by resorting to a gradient-based

updating in [83]. The details is simplified in the following Algorithm 5. In this algorithm,

l ≥ 1 is an integer value iteration index, t̂ is the t-th time slot which is in consolidation state,

γ(l−1)(t), is a (suitable) l-variant nonnegative step-size sequence, and the dummy iterates in

the Algorithm 5 hold (i.e., lines 9-16). In this Algorithm, L(l)
i (t̂), L̃(l)

i (t̂), and L(l)
i (t̂) are the

instantaneous, estimated, and average/expectation workload in each VM in the t̂-slot.

where two functions ConsolCpuDyn and ConsolLAN describe the average consumed energy

for the servers and intra-DC links in the DC in the consolidation state of the Virtualized

Cloud in Fig.4.1, respectively. For more information on the aforementioned functions follow

the Appendix F. The final point is that the complexity of the proposed joint scheduler is

linear in the number M of the utilized VMs and is lower than the schedulers in [21, 91].

4.5 Test Results and Performance Comparisons

This section presents the tested energy performance of the proposed scheduler for a set of

synthetic and real-world input traffic traces and, then, compare it with the corresponding

ones of the recent DVFS-based techniques in [83], the Lyapunov-based scheduler in [91],

the static and hybrid schedulers in [69, 6], and the NetDC scheduler in [23].

4.5.1 Simulated Cloud setup

The simulations have been carried out by exploiting the numerical software of the MATLAB

platform. They emulate 10 quad-core Dell PowerEdge servers, equipped with 3.06 GHz Intel

4.5 Test Results and Performance Comparisons 127

Algorithm 5 ConsolDispatch()
1: Input L∗tot(t), f max

i , itermax, f ON
i , TON , ∆, k, αmax, I , c, S (t), Consolthr

2: Output A ∗ for t-th slot
3: l← 1, L̃(0)

i (t̂)← L∗i (t̂−1), µ(0)(t̂)← µ∗(t̂−1)
4: t̂ ∈S (t), f̃ (0)i (t̂)← f ∗i (t̂−1), r(0)(t̂)← r∗(t̂−1)
5: γ(0)(t̂)← αmax, Ce f f ← 0
6: while l ≤ itrmax & W (t) /∈ [Lth,Hth] do
7: Ce f f ← (k/l) //An coefficient to manage updating γ and fi

8: Y (l−1)(t̂)← ∑
M
i=1 L(l−1)

i (t̂)−L∗tot(t̂)

9: µ(l)(t̂)←
[
µ(l−1)(t̂)− γ(l−1)(t̂)Y (l−1)(t̂)

]
+

10: f (l)i (t̂)← [f (l−1)
i (t̂)−Ce f f ×ConsolCpuDyn(l−1)(f (l−1)

i ,r(l−1))]
f max
i

0

11: L̃(l)
i (t̂)←

[
L̃(l−1)

i (t̂)-ConsolLAN(l−1)
(

L̃(l−1)
i ,µ(l)

)]Lmax
i

0

12: L̄(l)
i (t̂)←

[
∆ f (l)i (t̂)−{TON f (l)i (t̂)u−1(f (l)i (t̂))}

]Lmax
i

0

13: L(l)
i (t̂)←

[
L(l)

i (t̂)
]L̄(l)

i (t̂)

L̃(l)
i (t̂)

14: r(l)(t̂)←
[
µ(l)(t̂)−ConsolLAN(l)

(
L̃(l)

i ,µ(l)
)]

+

15: γ(l)(t̂)←
[
γ(l−1)(t̂)− c×Ce f f ×Y (l−1)(t̂)

]αmax

0

16: V (l)(t̂)←

(
1− γ(l−1)(t̂)

)
V (l−1)(t̂)−Y (l−1)(t̂)

17: Calculate W (t) using (4.23)
18: if Y (l)(t̂)<Consolthr & W (t) ∈ [Lth,Hth] then
19: return A (t)
20: break
21: end if
22: end while
23: return A (t)

Xeon CPU and 4GB of RAM. All the emulated servers are connected through commodity

Fast Ethernet NICs. In all carried out tests, we configure the VMs with 512MB of RAM

and emulate the TCP New Reno protocol for implementing the needed VM-to-VM transport

connections. The simulated parameters are listed in Table 4.2. In order to measure the actual
performance of the proposed joint scheduler, we introduce the per-IU average total delay

T ∗tot performance index (measured in multiple of the slot time), formally defined as in:

T ∗tot ≜
lim
t→∞

1
t (∑

t
τ=1 s∗(τ))

lim
t→∞

1
t (∑

t
τ=1 λ ∗(τ))

+
lim
t→∞

1
t (∑

t
τ=1 q∗(τ))

lim
t→∞

1
t (∑

t
τ=1 L∗tot(τ))

+2.(slot) (4.40)

128 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Table 4.2 Simulation setup.

Parameters
∆ = 1 (s) fi = {0,5,50,70,90, f max

i } (Mbit/s)
JP = {0.25,0.75} λmax = 103 α = 10−2

NI = NO = 240 (Mbyte) I = 1, Nto = 100 Tt = 5 (s)
ke = {0.05,0.005} (J/(MHz)2) Rmax

i = 1000 (Mbit/s) MSS = 120
f max
i = {10,105} (Mbit/s) Emax

c = {40,60} (Joule) E idle
c = 5 (Joule)

rmax = 16 (Mbyte/slot) Eave = {0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.75,1}(Joule)
rmin = {0.01,3.43} (Mbyte/slot) Ts = 2 (s) h = 0.95
θ = {0.01,0.1,0.25,0.5,0.75,0.9,0.99} Ωi = 0.5 (Watt) TON = 10−3(s)
f ON
i = 10−6 (Mbit/s) Job=8 (Mbyte) k = 1000

Fig. 4.4 The adopted Markovian random walk for the simulated client mobility.

In eq. (4.40), the first ratio is the average delay: T ∗QI = s∗/λ
∗
(slot) induced by the input

buffer of Fig.4.1, the second ratio is the measured average delay: T ∗QO = q∗/L∗tot(slot) of the

output buffer, and: T̄SI + T̄SO = 2 are the overall corresponding average service times.

4.5.2 Simulated vehicular setup

Each vehicular client (VC) of Fig.4.1 may be served only by the RSU of the cluster over

which is currently traveling (see Fig.4.1). The location of j-th vehicular client VC(j) during

slot t is described by the10following set of binary variables (see Fig.4.5):

m ji(t)≜


1, if VC(j) is in cluster(i) during slot t,

0, otherwise,
(4.41)

4.5 Test Results and Performance Comparisons 129

Fig. 4.5 Position of VC(j) over Cluster i.

with j = 1, . . . ,Nto, i = 1, . . . , I. In eq. (4.41), Nto and I are the total number of VCs and

the RSUs in the simulated vehicular scenario, so that the following constraint:

I

∑
i=1

m ji(t)≤ 1, j = 1, . . . ,Nto, (4.42)

accounts for the fact that, during each slot time t, VC(j) may travel, at most, over a single

cluster. In particular, the summation at the left-hand-side (l.h.s.) of (4.42) vanishes when the

inter-RSU distance D is larger than 2R and, at slot t, VC(j) is out of the RSU coverage (see

Fig.4.1). The topology of the simulated vehicular backbone is of linear-type and the vehicular

traffic flows parallel to the backbone path in an one-way direction. As in Section 3.2 of [67],

we resort to the so called Markovian random walk with random positioning for simulating

the VC mobility. According to this model, the inter-cluster mobility of each vehicular client

is described by the transition among adjacent spatial clusters. It is modelled by the spatially

homogeneous Markov chain of Fig.4.4, in which each state corresponds to a spatial cluster

of radius R (m) centered at the serving RSU (see Fig.4.5). At the beginning of slot t, each

VC autonomously either moves to the next cluster with spatial transition probability β , or

stays in the current cluster with probability (1−β). Afterwards, in order to compute the

current spatial position over the selected cluster, at first, each VC randomly picks up its

distance d ∈ [0,R] from the serving RSU. Then, if a cluster transition is not occurred, the

VC randomly selects its angular position ϕ over the (restricted) interval (0,ϕ ′], where ϕ ′ is

130 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

its angular position in the previous slot time. Otherwise, if a cluster transition is happened,

the VC randomly choices ϕ over the full interval [0,π] (see Fig.4.5). So doing, we have

that, in the steady-state, each cluster sustains the same average number N̄ (client/cluster) of

vehicular clients. Furthermore, according to eq. (6) of [67], the aforementioned parameters

β and N̄ may be numerically evaluated as in (see Figs.4.4, 4.5):

β = v̄/vmax, and, N̄ = A jam (1−β) (R2
π/2), (4.43)

where v̄ (respectively, vmax) is the average (respectively, maximum) client speed, while A jam

(vehicle/m2) is the maximum spatial density of vehicles when the vehicular traffic of Fig.4.1

begins to halt (that is, at vanishing β). The reported numerical results are averaged over all

the simulated active Cloud-to-RSU-to-VC connections.

4.5.3 Performance results

In the first test scenario, we run the proposed scheduler and evaluate Etot under a synthetic

workload with Job = 8 (Mbyte) for 2000 slots. Fig.4.6 reports the average total consumed

energy for various values of M. Specifically, Fig.4.6 points out that: i) Etot decreases for

increasing M; ii) EW and Etot increase for increasing r; and iii) r, EW , and Etot decrease for

increasing θ . The second set of simulations in Fig.4.7 presents the total average consumed

energies Etot at M = 2, 5, 10, 15, 20 for various values of EW . Fig.4.7 points out that, by

increasing the number of VMs, Etot decreases. The interesting point is that, even at very low

Eave, the admission control attempts to decrease Etot . Fig.4.8 shows that, in the steady state,

Ltot is the same as r, λ . s decreases. Furthermore, Fig.4.8 points out that changing JP has no

effect on r and Ltot , so that, the system is capable to work, even under huge input workload.

4.5.3.1 Fraction of declined requests versus experienced delay

The plots of Figs.4.9 and 4.10 report the (numerically evaluated) average fraction: F∗D =

lim
t→∞

(1/t)(∑t
τ=1(λ

∗(τ))/(Job(τ))) of the offered input traffic that is served by the proposed

4.5 Test Results and Performance Comparisons 131

5.673 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6
10

12

14

16

18

20

22

24

r (byte/slot)

E
to
t
(J
o
u
le
)

Eave = 0.75, q0 = NO = 240, s0 = rmin, Tt = 5, ∆ = 1

M = 20
M = 15
M = 10
M = 5
M = 2

θ

Fig. 4.6 Etot-vs.-r under synthetic input traffic.

scheduler and the corresponding average total delay: T ∗tot(slot) suffered by the admitted

workload. These plots refer to the case of ke = 5(mJ/(MHz)2), θ = 0.5, M = 10, and h =

0.95. These plots allow us to gain insight about the tradeoff between the admission capability

and the induced delay of the proposed scheduler. Specifically, three main conclusions

may be drawn from the plots of Figs.4.9, 4.10. First, the average fraction of the rejected

traffic decreases (i.e., served traffic increases) for increasing values of the storage capacity

NI = NO of the input/output buffers of Fig.4.1 (see Fig.4.9). Second, the fraction F∗D quickly

increases/decreases for increasing values of Eave and/or σmin (see Fig.4.10). Third, according
to the Little’ law, the corresponding average total delay suffered by the admitted traffic

increases for increasing values of NI = NO (see Fig.4.9). However, the increasing rate

(quickly) decreases for increasing values of Eave and/or σmin (see Fig.4.10), especially for

values of the buffers’ capacity limited up to 50 (Mbyte).

132 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

0 0.5 1 1.5 2 2.5 3

x 10
−3

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

EW (Joule)

E
to
t
(J
o
u
le
)

M = 20
M = 15
M = 10
M = 5
M = 2

θ

Eave = 0.005, q0 = NO = 240, s0 = rmin, Tt = 5, ∆ = 1

Fig. 4.7 Etot-vs.-EW for the synthetic input traffic and various M at Eave = {0.0625,0.005} (Joule)
with various θ .

4.5.4 Mobility effects

Goal of this set of numerical tests is to acquire insight about the effects induced by the client

mobility on the resulting average total delay T ∗tot , when the target performance is assigned in

terms of average goodput r∗ and average total consumed energy Etot . For this purpose, the

application scenario of Table 4.2 has been still considered at M = 10, rmin = 3.43, ke = 0.05

(J/(MHz)2) and θ = 0.5. The corresponding numerically evaluated performance is reported

in Table 4.3. An examination of these results leads to three main conclusions.

First, the minimum sizes NI = NO of the input/output buffers required to meet the target

r∗=8.037 and Etot= 36.09 (quickly) increases for increasing values of h (e.g., for decreasing

values of the client speed v). This is due to the fact that larger h’s increase the coherence

time of the sequence {σ(t)} of the connection state (see eqs. (4.9), (4.13)), so that {σ(t)}

tends to be "less ergodic". Thus, in order to offset this effect without penalizing energy

4.5 Test Results and Performance Comparisons 133

0 50 100 150 200 240
0.12

0.1201

0.1202

0.1203

0.1204

0.1205

0.1206

0.1207

q0

E
W

(J
o
u
le
)

JP = 0.25, Eave = 0.125
JP = 0.75, Eave = 0.125

(a) [EW

0 50 100 150 200 240
7.99

7.995

8

8.005

8.01

8.015

8.02

q0

r
(b
y
te
/
sl
o
t)

JP = 0.25, Eave = 0.125
JP = 0.75, Eave = 0.125

(b) [r

0 50 100 150 200 240
7.9926

7.9926

7.9927

7.9927

7.9928

7.9928

q0

L
to
t
(b
y
te
)

JP = 0.25, Eave = 0.125
JP = 0.75, Eave = 0.125

(c) [Ltot

Fig. 4.8 Admission control: q0 denotes output buffer length in initial slot, with rmin=3.4323,
max(CRT T)= 8.448 and ∆max

IP = 10.

performance, the scheduler requires more buffering capacity, that, in turn, tends to penalize

the resulting delay performance (see the last column of the first/second part in Table 4.3).

134 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

0 200 400 600 800 1000
0.98

0.99

1

NI = NO

F
∗ D
(s
lo
t)

M = 10, θ = 0.5, slot = 2000, Eave = 0.125, Delta = 1

F
∗

D

0 200 400 600 800 1000

6

8

10

12

NI = NO

T
∗ to
t
(s
lo
t)

T
∗

tot

Fig. 4.9 F∗D and T ∗tot(slot) versus the capacity NI = NO (Mbyte) of the input/output queues
of Fig.4.1 for the application scenario of Section 4.5.3.1.

Second, at least in the simulated scenario, the requested buffers’ size NI = NO tends to scale

as: O(−1/log(h)) for h ≥ 0.87. These considerations point out that, in practical, a right

tradeoff between goodput and delay performance should depend on the value of h.

4.5.5 Performance tests and comparisons under real-world time-correlated

input traffic

In order to test the consolidation capability of the proposed scheduler when the arrival

process exhibits time-correlation, we have considered the real-world arrival trace of Fig.4.11.

Fig.4.11 reports the real-world trace of Fig.2 of [106] and refers to the I/O workload taken

from four RAID volumes of an enterprise storage cluster in Microsoft (see Section IV.A

of [106]). The numerical tests carried out in this sub-section refer to the communication-

4.5 Test Results and Performance Comparisons 135

0 0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

Eave

F
∗ D
(s
lo
t
)

M = 10, θ = 0.5, slot = 2000, Delta = 1

F
∗

D

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

E

T
t
o
t
(s
lo
t
)

T
∗

tot

Fig. 4.10 F∗D and T ∗tot(slot) (in multiple of the slot period) versus Eave (Joule) for the
application scenario of Section 4.5.3.1.

computing infrastructure of Table 4.2 at ke = 0.5 (Joule/(MHz)2) and ∆ = 1.2 (s). Fur-

thermore, in order to maintain the peak workload fixed at 16 (Mbit/slot), we assume that

each arrival of Fig.4.11 carries out a traffic of 0.533 (Mbit). Unless otherwise stated, the

numerical results presented in the following subsections refer to the setting of Table 4.2 at

M = 10, h = 0.95, rmin = 0.01, rmax = 1600 (byte/slot) and θ = 0.5.

The workload trace of Fig.4.11 is smoother than those previously considered in as

synthesis workload in simulation results (i.e., synthesis workload) in the first scenario.

Hence, we expect that the corresponding performance gaps of the proposed and sequential

schedulers [69, 6] over the aforementioned tested related works one are somewhat less than

those reported in the second set of simulations for the case of i.i.d. workload. However, we

have tested that, even under the (strongly) real-world correlated workload trace of HTTP

136 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Table 4.3 Buffers’ size v.s.-delay tradeoff at target r∗ and Etot for various values of the
mobility-depending correlation coefficient h in (4.13) for the synthetic and real-world input
traffic traces [7]. The application scenario of Table 4.2 is considered. The reported values of
h corresponded to client speeds v of 126, 30, and 2.8 (km/h), respectively.

Workloads h r∗(byte/slot) Etot(Joule) (qmin) T ∗TOT (slot)

Job = 8, PMR=1.25
0.870 8.03 36.20 4 10.20

7.99 +18.3
8.01+2= 4.28

0.967 8.037 36.16 70 12.06
7.99 +21.67

8.01 +2= 6.21

0.997 8.037 36.09 240 10.13
7.99 +32.37

8.01 +2= 7.30

Real-workload [7]
0.870 8.9 42.36 100 240

8.9 +100
8.9 +2= 40.2

0.967 8.9 41.8 110 240
8.9 +115

8.9 +2= 41.9
0.997 8.9 40.2 150 240

8.8 +161
8.8 +2= 47.6

0 20 40 60 80 100 120
2

4

6

8

10

12

14

16

Slot index

N
u
m
be
r
o
f
J
o
b
a
r
r
iv
a
ls

p
e
r
−
s
lo
t

Fig. 4.11 Sampled trace of an I/O workload from an enterprise cluster in Microsoft [106].
The measured arrival rate is in multiple of the slot period and the reported trace covers more
than 120 slot-periods.

sessions at Web servers of the 1998 Soccer world Cup [61], the average energy reductions

of the proposed scheduler over the static and hybrid ones [69, 6] still approaches 40% and

4.5 Test Results and Performance Comparisons 137

19%, respectively. The corresponding energy saving of the sequential scheduler [6] over the

proposed one remains limited up to 5%−5.5%.

Quite different performance gaps are expected under the workload trace of Fig.4.11. In

fact, in this case, the (numerically evaluated) PMR is larger than those of the i.i.d. synthetic

traces and equates PMR = 2.49, while the corresponding time-covariance coefficient is low.

In agreement with the quasi-random behavior of the trace of Fig.4.11, we have tested that the

corresponding energy reduction of the proposed scheduler over the static and hybrid ones

[69, 6] approach 68% and 28% respectively.

4.5.5.1 Adaptive consolidation and convergence to the optimum

The numerical trial of this subsection aim at testing both the actual convergence to the

optimum and the corresponding convergence speed of the proposed iterative consolidation

algorithm. For this purpose, we have evaluated and compared the performance of the

proposed iterative consolidation algorithm of Section 4.5 against the theoretically optimal

one. By design, at each consolidation instant t̂ ∈S (t), the latter computes the optimal set

of the consolidated VMs by performing an exhaustive research over the set O of all VMs’

configurations. The performance comparisons have been carried out by implementing three

different event-driven policies, where consolidation at slot t̂ is triggered when the average

consolidation factor W (t̂−1) of the VMs that are active at (t̂−1) falls out of the intervals: i)

I (1) = [0.01,0.99] (Case 1); ii) I (2) = [0.2,0.8] (Case 2); and, iii) I (3) = [0.3,0.7] (Case

3). The corresponding measured performance loss (in percent) suffered by the proposed

iterative consolidation algorithm of Section 4.5 against the optimal one is reported in Table

4.4 for the cases of ke = 5(mJ/(MHz)2) (e.g., case of low frequency-scaling cost) and

ke = 500(mJ/(MHz)2) (e.g., case of high frequency-scaling costs). An examination of the

results of Table 4.4 leads to three main conclusions. First, the actual occurrence rate of the

consolidation events increases by passing from Case 1 to Case 3, and this induces a reduction

138 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Table 4.4 Average performance loss (in percent) of the proposed consolidation algorithm
against the exhaustive optimal one. The application scenario of Table 4.2 is considered.

Case 1 Case 2 Case 3

ke = 500 (mJ/(MHz)2) 1.2% 0.8% 0.5%
ke = 5 (mJ/(MHz)2) 0.87% 0.70% 0.3%

in the performance penalty suffered by the proposed consolidation algorithm, whose chances

of convergence to the optimal consolidated configurations increase, indeed, for increasing

rate of the occurrence of the consolidation events. Second, the performance penalty suffered

by the iterative consolidation algorithm is nearly negligible and, at least in the carried out

tests, it remains, indeed, limited up to 1%, even at high ke’s. Third, since the rate of the

occurrence of VM underutilization increases for growing ke’s and too frequent occurrence of

VM underutilization phenomena tends to increase the resource reconfiguration actions to be

carried out at the consolidation instants, the performance penalty suffered by the iterative

consolidation algorithm of Section 4.5 tends to somewhat increase for growing ke’s. At this

regard, we have numerically experienced that, at least in the carried out tests, the iterative

consolidation algorithm of Section 4.5 converges to the optimum at each consolidation instant

t̂. The plot of Fig.4.12 reports the corresponding (numerically evaluated) time-behavior of

the number W (t) of the active VMs for the Case 2 of Table 4.4 at ke = 5 (mJ/(MHz)2) and

M = 10. A comparison of the plots of Fig.4.12 with the arrival trace of Fig.4.11 confirms

that, after a delay of about 7−8 slot periods, the iterative consolidation algorithm of section

4.5 is capable to track the abrupt changes exhibited by the exogenous workload by scaling

up/down the number of active VMs.

4.5.6 Performance Comparison

This subsection compares the energy performance of the proposed adaptive scheduler against

the corresponding ones of some state-of-the-art schedulers e.g., the DVFS-based scheduler

of [83], the Lyapunov-based scheduler of [91], the static and hybrid schedulers of [69,

4.5 Test Results and Performance Comparisons 139

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

slot

W
(t
)

M = 10, EW = 0.125, θ= 0.5

W (t), no-Consol, Case 2
W (t), Consol, Case 2
W (t), no-Consol, Case 3
W (t),Consol, Case 3

Fig. 4.12 Time-behavior of the numerical tested number W (t) of the active VMs under the
application scenario of Table 4.2 at M = 10 for the Cases 2 and 3 of Table 4.3. By design, all
the available VMs are turned ON at t = 0.

6], and the NetDC scheduler of [23]. The goal of this last set of numerical tests is to

(numerically) evaluate and compare the reductions in the average energy consumption:

Ec(i, t)+ELAN(i, t) of the computing plus intra-cloud communication energy induced by the

dynamic frequency scaling and VMs’ consolidation operations performed by the proposed

adaptive scheduler. This is motivated by the fact that current data centers usually rely on

static resource provisioning, where, by design, a fixed number of VMs constantly run at the

maximum processing rate f max
i , in order to constantly provide the computing capacity needed

to satisfy the peak input workload Jobmax. Although the resulting static scheduler does not

suffer by the reconfiguration costs arising from dynamic frequency scaling and consolidation,

it induces overbooking of the computing resources [6, 69]. Hence, the average intra-cloud

communication-plus-computing energy consumption: E(ST S)
≜ E(ST S)

CPU +E(ST S)
LAN of the STatic

140 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

Scheduler (STS) provides a benchmark for numerically evaluating the actual energy savings

that the proposed scheduler of Sections 4.5 and 4.1 attains by performing dynamic frequency

scaling and VMs’ consolidation.

In the application framework which considered in Figs.4.11 and 4.12, the energy:

E(ST S)(t)≜ E(ST S)
CPU (t)+E(ST S)

LAN (t)(Joule) consumed by the STC for processing the current in-

put workload Job(t) (in (bit/slot)) is computable in closed-form. Specifically, after resorting

to the channel formula for calculating ELAN(i, t)(Joule), the overall E(ST S)(t) equates

E(ST S)(t) = MST S

(
Emax

c +
Mp

(MST S)2

)
+
(

Job3
max− Job3

min

)
+Eave,(Joule) (4.44)

where: MST S ≜ round(Jobmax/∆ f max
i) is the number of constantly running VMs that the

ST S must utilize for satisfying the peak/minimum input workload Jobmax/Jobmin and Mp ≜

(2ΩiRT T i/(Tt−∆)). Hence, the corresponding average energy E(ST S) consumed by the ST S

may be directly evaluated by performing the sample-average of (4.44) over the exogenous

workload conveyed by the arrival trace of Fig.4.11. Afterwards, In order to carry out fair

performance comparisons, in the performed tests of this subsection, we have implemented

the proposed scheduler by directly setting: Job(t) = λ (t) = r(t), t ≥ 0, together with θ =

1 and σ(t) = ∞, t ≥ 0. In so doing, the objective function in (4.15.1) to be minimized

by the proposed scheduler of sections 4.5 and 4.1 reduces to the summation: Ec(i, t) +

ELAN(i, t) of the corresponding computing-plus-communication energy consumed by the

cloud infrastructure Fig.4.1. Hence, on the basis of the carried out numerical tests, we have

experienced that: i) the average energy reduction of the proposed scheduler over the ST S is of

about 47% at ke = 500(mJ/(MHz)2), while it increases to about 56% at ke = 5(mJ/(MHz)2)

(e.g., when the energy overhead induced by the dynamic frequency-scaling is low); and, ii) at

least in the carried numerical tests, a fraction of about 25%−30% of these energy savings is

provided by VMs’ consolidation operations. These results confirm that the proposed iterative

4.5 Test Results and Performance Comparisons 141

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

∆ = 1, Tt = 5, slot=2000, V = 100

M

E
c
(i
,t
)(
J
o
u
le
)

Ec(i)
E∗

c (i)

Ec(i) [NetDC]
E∗

c (i)[NetDC]

Ec(i) [Lyapunov]
E∗

c (i) [Lyapunov]
E∗

c (i) [Gradient]

Ec(i)[Gradient]

NetDCNetDC

Lyapunov

Gradient

Fig. 4.13 Ec(i) (Joule) for the proposed DVFS-equipped method-vs.-NetDC method in
[23]-vs.- Lyapunov method in [91] and vs.- gradient-based iterative method in [83].

consolidation algorithm provides an effective means for leveraging the sudden time-variations

exhibited by the input traffic of Fig.4.1.
In the last simulations, in order to evaluate the energy reduction due to scaling up/down

of the computing and reconfiguration rates, we have also implemented three schedulers

recently proposed in [23], [91], [83]. The resulting comparisons are presented in Figs.4.13

and 4.14. According to Fig.4.13, the average energy savings of the proposed scheduler

(i.e., the green colored continue plot marked by −∇−) over the Lyapunov-based one in

[91] (i.e., the two upper most plots marked by −◦− and labeled "Lyapunov"), the NetDC

scheduler [23] (i.e., black dashed plots marked by −♢− and labeled by "NetDC") and the

gradient-based iterative scheduler [83] (i.e., dashed red and cyan continue plot marked by

−□− and labeled by "Gradient") are about 60%, 10%, and 33%, respectively. This confirms

that the proposed method is capable to adapt to the time-varying behaviors of the input traffic.

142 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

∆ = 1, Tt = 5, slot=2000, V = 100

M

E
d
y
n
(i
)(
J
o
u
le
)

Edyn(i)

Edyn(i)
Edyn(i)[Lyapunov]

Edyn(i)[Lyapunov]
Edyn(i)[NetDc]

Edyn(i)[NetDc]
Edyn(i)[Gradient]

Edyn(i)[Gradient]

proposed
method[NetDc] [Gradient]

Fig. 4.14 Edyn(i) (Joule) for the proposed method (i.e., using DVFS)-vs.- NetDC method in
[23]-vs.- Lyapunov method in [91] and vs.- gradient-based iterative scheduler [83].

Furthermore, Fig.4.14 shows that the gaps among the average reconfiguration costs of the

proposed scheduler, the NetDC one in [23] and the gradient-based scheduler in [83] are

negligible (i.e., less than 0.05). Moreover, by looking Figs.4.13 and 4.14, we can conclude

that this gap is unable to fill the corresponding gap of the computing part. As a conclusion,

[91] has much higher computing cost compared to the proposed scheduler, even under

lower reconfiguration costs. Lastly, consider that [23, 91] are able to control the processed

speed by using DVFS but does not optimize the energy wasted by the TCP/IP vehicular

connection. Furthermore, [91] manages time in a average manner and it is unable to manage

the online/instantaneous traffic fluctuations, which is handled by our scheduler.

Chapter 5

Conclusion and Hint for the Future
Research

5.1 Conclusions

The rapid growth in demand for computational power driven by modern service applications

combined with the shift to the Cloud computing model have led to the establishment of

large-scale virtualized data centers. Such data centers consume enormous amounts of

electrical energy resulting in high operating costs and carbon dioxide emissions. Dynamic

consolidation of virtual machines (VMs) using online job scheduling, intelligence resource

provisioning and switching idle nodes to the sleep mode allow Cloud providers to optimize

resource usage and reduce energy consumption. This Dissertation is focused on introducing

some state-of-the art methods to minimize the communication-plus-computing energy which

is wasted by processing streams of Big Data under hard real-time constraints on the per-job

computing-plus-communication delays. In this thesis, we studied and implemented two kinds

of scheduling techniques for the virtual machines (VMs) management to preserve energy

provisioning over networked data centers (NetDCs). The proposed schedulers operate at the

Middleware layer of the underlying protocol stack and performs the adaptive joint allocation

of the task sizes, computing rates, communication rates and powers of the underlying

Virtualized Networked data centers. The carried out performance comparisons and sensitivity

146 Conclusion and Hint for the Future Research

tests highlight that the average energy savings provided by our implemented schedulers over

the state-of-the-art static ones. Actual performance of the proposed controllers have been

numerically tested under both synthetic and measured traces of the exogenous workload, by

also considering various mobility conditions and settings of the networked computing farms.

The first contribution of this thesis is the design and implementation of the approach

which is called VNetDC that is explored in the third chapter. We developed the optimal

minimum-energy scheduler for the joint adaptive load balancing and provisioning of the

computing-plus-communication resources. VNetDC platforms have been considered which

operate under hard real-time constraints. The carried out numerical performance tests

highlight that the average energy savings of the proposed scheduler over the static and hybrid

ones may be larger than 60% and 25% respectively, even when the PMR of the offered

workload is less than two. Interestingly, the corresponding average energy loss with respect

to the corresponding sequential scheduler equipped with perfect knowledge of the future

workload is typically limited up to 4%−6% especially when the offered workload exhibits

not negligible time-correlation. A main strength of the proposed scheduler (VNetDC) is its

capability to adapt to the time-varying statistical features of the offered workload without

requiring any a priori assumption and/or knowledge about the statistics of the processed data.

A possible shortcoming is that the proposed scheduler does not perform forecast of the future

workload, in order to better copy with the reconfiguration costs. Hence, improving the energy

performance of the proposed scheduler by also performing reliable workload forecast is a

first topic for future research. At this regard, we also observe that, when the focus shifts

to non real-time Internet-assisted mobile applications, the current work may be extended

along three main directions. First, being the VNetDC considered here constrained to work in

real-time, it subsumes that a single job per slot is processed, in order to avoid random queue

delays. However, under soft (e.g., average) latency constraints, the energy consumption of

the VNetDC could be, in principle, reduced by allowing multiple jobs to be queued. Hence,

5.1 Conclusions 147

guaranteeing an optimized average delay-vs.-energy consumption tradeoff under soft latency

constraints is, indeed, a first research topic. Second, due to the hard real-time constraints, in

our framework, the size Ltot of the input job is measured at the beginning of the corresponding

slot and, then, it remains constant over the overall slot duration. However, under soft latency

constraints, intra-slot job arrivals may take place and, then, live migrations of VMs could

provide an additional means for reducing the energy consumptions. The development of

adaptive mechanisms for planning at run-time the minimum-energy live migrations of VMs

is a second research topic of potential interest. Finally, emerging mobile applications require

that jobs processed by data centers are timely delivered to the mobile clients through TCP/IP

mobile connections. In this environment, the energy-efficient adaptive management of the

delay-vs.-throughput tradeoff of the TCP/IP mobile connections becomes an additional topic

for further research which is explored in the next chapter.

The second contribution of this thesis which is shown in the third chapter is the design

and implementation of the new DVFS-based scheduler named GreenNetDC, for the joint

adaptive load balancing and provisioning of the computing rates, communication rates and

communication powers in energy-efficient networked data centers working under discrete

DVFS. Although the resulting optimization problem is inherently nonconvex, we unveiled

and exploited its loosely coupled structure for attaining the analytical characterization of the

optimal solution. The carried out performance comparisons highlight that the average energy

savings provided by our proposed scheduler over the state-of-the-art STAS may be larger

than 66%, even when the PMR of the offered workload is limited to 2 and the number Q

of different processing rates equipping each VM is limited to 4. Interestingly, the average

energy saving of our scheduler with respect to HybridNetDC and Lyapunov is 90% and

50%, respectively. GreenNetDC is able to meet the hard-deadline constraints by having

each server spend much more time in idle mode and thus, saving more energy. Finally,

148 Conclusion and Hint for the Future Research

GreenNetDC is able to meet more than 85% SLAs of the incoming workload, which is better

than NetDC, Lyapunov and Hybrid NetDC.

The third and the final contribution of this thesis which is shown in the forth chapter is

the design and implementation of a adaptive TCP/IP-based scheduler in the Networked Data

centers. As it has been already shown in the literature survey in the second chapter that the

VM consolidation problem is strictly NP-hard and it is important to propose an integrated and

adaptive scheduler which balanced usage of join computing-communication resources inside

the networked data centers. Decide fast and effective consolidation techniques are crucial for

the cloud data centers, therefore, this chapter focuses on the milt-gradient based stochastic

approximation method which is applied in the proposed scheduler for the joint adaptive

tuning of the: i) admitted traffic; ii) delivered throughput; and, iii) resource reconfiguration

and consolidation, of virtualized Cloud platforms linked to vehicular TCP/IP connections.

The overall goal is the energy-saving support of QoS demanding computing-intensive delay-

sensitive services, that utilize the vehicular TCP/IP connections for delivering remotely

processed workload to vehicular clients. Remarkable features of the developed joint scheduler

are that: i) its implementation is distributed and adaptive and the resulting complexity fully

scales with the number of the available VMs; ii) it minimizes the energy consumed by

the overall platform for computing, intra-Cloud communication and transmission over the

vehicular TCP/IP connection; and, iii) despite the unpredictable time-varying nature of the

underlying TCP/IP vehicular pipe, it is capable to provide hard QoS guarantees, in terms

of minimum delivered instantaneous throughput, maximum instantaneous rate-jitter and

maximum queuing-plus-computing delay. Actual performance of the proposed scheduler

has been numerically tested under both synthetic and real-world traces for the input traffic

under various mobility conditions and settings of the networked Cloud. The carried out

tests highlight that the average computing savings provided by the proposed scheduler over

5.2 Future Directions of the Research 149

the NetDC, Lyapunov-based, and gradient-based ones are of the order of 60%, 10%, 33%,

respectively.

5.2 Future Directions of the Research

This work can be extended in some directions of potential interest. First of all, closed

networked multi-tier computing infrastructures may be considered for the support of delay-

tolerant session-based services. Since in this application scenario, intra-slot traffic arrivals

could be allowed, live migration of VMs could be also forecast for attaining additional energy

savings. We would like to evaluate all the migration techniques on VMs with huge working

set size in order to rise the effectiveness of the existing schedulers and come up with another

effective migration technique to mitigate huge downtime as well as application performance

degradation.

Enhancing Flexibility of the TCP/IP-based adaptive scheduler by enabling priority

queues: modern applications could have complex data delivery requirement. Supporting

priority queues could help these applications with their complex requirements. We are

planning to provide support for built-in priority queues in TCP/IP-based adaptive scheduler.

The upgaraded version of this scheduler will be able to support traffics with different priorities.

That means the user can make sure that at each time on each server, the workload with the

higher priority will be delivered to the VC earlier. Priority queue support opens up new usage

directions for proposed adaptive scheduler. Many applications can benefit from this feature.

Apply New AI-based Prediction Techniques: Scientist are doing several effort in order

to establish ongoing applications of inspired techniques for development of novel data center

architecture. Support vector machines (SVMs) are one of the most popular algorithms in

machine learning. SVMs often provide significantly better classification performance than

other machine learning algorithms on reasonably sized data sets. Currently SVM is popular

among the researchers in electricity distribution systems, and they have applications such

150 Conclusion and Hint for the Future Research

as power-quality classification, power transformer fault diagnosis, etc. However, not much

work have been conducted on using SVMs for building power models. Besides, some new

state-of-the-art AI techniques such as Deep learning [44] and NSGA-II [73] prove to produce

exceptional results in classification tasks which indicates its promise in creating future high

resolution energy models for data centers[15].

Distributed Monitoring the VNetDCs: Monitoring has proven to be essential for dis-

tributed systems. It is very important to understand how the resources of a distributed system

are utilized by applications. Monitoring resources of a large scale distributed system is not

trivial with a centralized traditional monitoring solution. Distributed buffers could play an

essential part to provide a distributed solution for large scale system monitoring [101]. One

of the future directions of this work is to design and implement a distributed monitoring

system using GreenNetDC/VNetDC. Providing an efficient system, will be able to serve a

distributed monitoring solution well.

Chapter 6

Accomplishments

The papers that have been published are an important metric to measure the progress and to

highlight the accomplishments achieved so far. We then draw the conclusions achieved so

far. The papers and documents that have been published based on our working progress are

listed as follows:

Conference Papers:

(1) Mohammad Shojafar, Nicola Cordeschi, Danilo Amendola, Enzo Baccarelli, ”Energy-saving

adaptive computing and traffic engineering for real-time-service data centers”, Communication

Workshop (ICCW), 2015 IEEE International Conference on, London, UK, Page: 1800-1806,

2015.

(2) Mohammad Shojafar, Nicola Cordeschi, Jemal H. Abawajy, Enzo Baccarelli, ”Adaptive Energy-

Efficient QoS-Aware Scheduling Algorithm for TCP/IP Mobile Cloud”, Global Communication

Workshop (GLOBECOM), 2015 IEEE International Conference on, San Diego, USA, Pages:

1-6, 2015.

(3) Mohammad Shojafar, Aliasghar Rahmani Hosseinabadi, M. Kardgar, Shahab Shamshirband,

”TETS: A Genetic-based Scheduler in Cloud Computing to Decrease Energy and Makespan”,

Hybrid Intelligent Systems (HIS 2015), 15th International Conference on, Seoul, South Korea,

Pages:1-11, 2015.

154 Accomplishment

(4) Saeed Javanmardi, Mohammad Shojafar, Danilo Amendola, Nicola Cordeschi, Hue Liu, Ajith

Abraham, ”Hybrid Job scheduling Algorithm for Cloud computing Environment”, Volume 303,

Pages: 43-52, Springer, IBICA, 2014.

(5) Nicola Cordeschi, Danilo Amendola, Mohammad Shojafar, Enzo Baccarelli, ”Performance eval-

uation of primary-secondary reliable resource-management in vehicular networks”, The 25th

IEEE International Symposium on Personal, Indoor and Mobile Radio Communications(IEEE

PIMRC 2014), Page: 959-964, 2014.

Journal Papers:

(6) Mohammad Shojafar, Nicola Cordeschi, Enzo Baccarelli,”Energy-efficient Adaptive Resource

Management for Real-time Vehicular Cloud Services”, IEEE Transactions on Cloud Computing

(TCC), 2016.

(7) Mohammad Shojafar, Saeed Javanmardi, Saeid Abolfazli, Nicola Cordeschi, ”FUGE: A Joint

Meta-heuristic Approach To Cloud Job Scheduling Algorithm Using Fuzzy Theory And A

Genetic Method”, Volume 18, Issue 2, Pages: 829-844, Springer, Cluster Computing (CLUS),

June 2015.

(8) Nicola Cordeschi,Mohammad Shojafar, Enzo Baccarelli, ”Energy-saving self-configuring net-

worked data centers”, Computer Networks, ISSN: 1389-1286, Volume 57, Issue 17, Pages:

3479–3491, Elsevier Science, The Netherlands, 2013.

(9) Nicola Cordeschi, Mohammad Shojafar, Danilo Amendola, Enzo Baccarelli, ”Energy-efficient

adaptive networked datacenters for the QoS support of real-time applications”, ISSN: 0920-

8542, Volume 71, Issue 2, Pages: 448-478, Springer, The Journal of Supercomputing (SUPE),

2014.

(10) Nicola Cordeschi, Danilo Amendola, Mohammad Shojafar, Enzo Baccarelli, ”Distributed and

Adaptive Resource Management in Cloud-assisted Cognitive Radio Vehicular Networks with

Hard Reliability Guarantees”, Vehicular Communications, Volume 2, Issue 1, Page: 1–12,

Elsevier Science, The Netherlands, 2015.

155

Book Chapters:

(11) Mohammad Shojafar, Nicola Cordeschi, Enzo Baccarelli, ”Resource Scheduling for Saving

Energy in Reconfigurable Internet Data Centers”, Handbook of Research on Next-Generation

High Performance Computing, IGI Global, to be appear 2016.

(12) Nicola Cordeschi, Mohammad Shojafar, Danilo Amendola, Enzo Baccarelli, ”Energy-Saving

QoS Resource Management of Virtualized Networked Data Centers for Big Data Stream

Computing”, Handbook in Emerging Research in Cloud Distributed Computing Systems, IGI

Global, Pages: 122-155, 2015.

Magazine:

(13) Enzo Baccarelli, Nicola Cordeschi, Alessandro Mei, Massimo Panella, Mohammad Shojafar,

Julinda Stefa, ”Energy-efficient Dynamic Traffic Offloading and Reconfiguration of Networked

Datacenters for Big Data Stream Mobile Computing: Review, Challenges, and a Case Study”,

IEEE Network Magazine, Vol. 30, Iss. 2, pp. 54-61, March-April 2016.

References

[1] Al-Fares, M., Loukissas, A., and Vahdat, A. (2008). A scalable, commodity data center
network architecture. ACM SIGCOMM Computer Communication Review, 38(4):63–74.

[2] Alcaraz, J., Vales-Alonso, J., and Garcia-Haro, J. (2009). Control-based scheduling with
QoS support for vehicle to infrastructure communications. Wireless Communications,
IEEE, 16(6):32–39.

[3] Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P., Prabhakar, B., Sengupta,
S., and Sridharan, M. (2011). Data center tcp (dctcp). ACM SIGCOMM computer
communication review, 41(4):63–74.

[4] Andrae, A. and Corcoran, P. M. (2013). Emerging trends in electricity consumption for
consumer ict.

[5] Azodolmolky, S., Wieder, P., and Yahyapour, R. (2013). Cloud computing networking:
challenges and opportunities for innovations. Communications Magazine, IEEE, 51(7):54–
62.

[6] Baliga, J., Ayre, R. W., Hinton, K., and Tucker, R. S. (2011). Green cloud comput-
ing: Balancing energy in processing, storage, and transport. Proceedings of the IEEE,
99(1):149–167.

[7] Ballani, H., Costa, P., Karagiannis, T., and Rowstron, A. (2011). Towards predictable
datacenter networks. In ACM SIGCOMM Computer Communication Review, volume 41,
pages 242–253. ACM.

[8] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (2013). Nonlinear programming:
theory and algorithms. John Wiley & Sons.

[9] Beloglazov, A., Buyya, R., Lee, Y. C., Zomaya, A., et al. (2011). A taxonomy and survey
of energy-efficient data centers and cloud computing systems. Advances in computers,
82(2):47–111.

[10] Bilal, K., Malik, S. U. R., Khan, S. U., and Zomaya, A. Y. (2014). Trends and challenges
in cloud datacenters. IEEE Cloud Computing, (1):10–20.

[11] Brown, D. J. and Reams, C. (2010). Toward energy-efficient computing. Communica-
tions of the ACM, 53(3):50–58.

[12] Buyya, R., Beloglazov, A., and Abawajy, J. (2010). Energy-efficient management of
data center resources for cloud computing: a vision, architectural elements, and open
challenges. arXiv preprint arXiv:1006.0308.

[13] Buyya, R., Vecchiola, C., and Selvi, S. T. (2013). Mastering cloud computing: founda-
tions and applications programming. Newnes.

158 References

[14] Chiang, M., Low, S. H., Doyle, J. C., et al. (2007). Layering as optimization decom-
position: A mathematical theory of network architectures. Proceedings of the IEEE,
95(1):255–312.

[15] Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman, K. (2014). Project adam:
Building an efficient and scalable deep learning training system. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 14), pages 571–582.

[16] Cordeschi, N., Amendola, D., and Baccarelli, E. (2014a). Reliable adaptive resource
management for cognitive cloud vehicular networks. Vehicular Technology, IEEE Trans-
actions on, 64(6):2528 –2537.

[17] Cordeschi, N., Amendola, D., De Rango, F., and Baccarelli, E. (2014b). Networking-
computing resource allocation for hard real-time green cloud applications. In WD, 2014
IFIP, pages 1–4. IEEE.

[18] Cordeschi, N., Amendola, D., Shojafar, M., and Baccarelli, E. (2014c). Performance
evaluation of primary-secondary reliable resource-management in vehicular networks. In
Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014 IEEE 25th Annual
International Symposium on, pages 959–964. IEEE.

[19] Cordeschi, N., Amendola, D., Shojafar, M., and Baccarelli, E. (2015a). Distributed and
adaptive resource management in cloud-assisted cognitive radio vehicular networks with
hard reliability guarantees. Vehicular Communications, 2(1):1–12.

[20] Cordeschi, N., Patriarca, T., and Baccarelli, E. (2012). Stochastic traffic engineering
for real-time applications over wireless networks. Journal of Network and Computer
Applications, 35(2):681–694.

[21] Cordeschi, N., Shojafar, M., Amendola, D., and Baccarelli, E. (2014d). Energy-efficient
adaptive networked datacenters for the qos support of real-time applications. The Journal
of Supercomputing, pages 1–31.

[22] Cordeschi, N., Shojafar, M., Amendola, D., and Baccarelli, E. (2015b). Energy-saving
qos resource management of virtualized networked data centers for big data stream
computing. Emerging Research in Cloud Distributed Computing Systems, page 122.

[23] Cordeschi, N., Shojafar, M., and Baccarelli, E. (2013). Energy-saving self-configuring
networked data centers. Computer Networks, 57(17):3479–3491.

[24] Cugola, G. and Margara, A. (2012). Processing flows of information: From data stream
to complex event processing. ACM Computing Surveys (CSUR), 44(3):15.

[25] Dabbagh, M., Hamdaoui, B., Guizani, M., and Rayes, A. (2014). Energy-efficient cloud
resource management. In Computer Communications Workshops (INFOCOM WKSHPS),
2014 IEEE Conference on, pages 386–391. IEEE.

[26] Dabbagh, M., Hamdaoui, B., Guizani, M., and Rayes, A. (2015). Toward energy-
efficient cloud computing: Prediction, consolidation, and overcommitment. Network,
IEEE, 29(2):56–61.

[27] Das, T. and Sivalingam, K. M. (2013). Tcp improvements for data center networks. In
Communication Systems and Networks (COMSNETS), 2013 Fifth International Confer-
ence on, pages 1–10. IEEE.

References 159

[28] Enokido, T. and Takizawa, M. (2012). An extended power consumption model for
distributed applications. In Advanced Information Networking and Applications (AINA),
2012 IEEE 26th International Conference on, pages 912–919. IEEE.

[29] Eriksson, J., Balakrishnan, H., and Madden, S. (2008). Cabernet: vehicular content
delivery using wifi. In Proceedings of the 14th ACM international conference on Mobile
computing and networking, pages 199–210. ACM.

[30] Faruque, S. (2008). Traffic engineering for multi rate wireless data. In Elec-
tro/Information Technology, 2008. EIT 2008. IEEE International Conference on, pages
280–283. IEEE.

[31] Festag, A., Noecker, G., Strassberger, M., Lübke, A., Bochow, B., Torrent-Moreno,
M., Schnaufer, S., Eigner, R., Catrinescu, C., and Kunisch, J. (2008). NoW–Network on
Wheels: Project objectives, technology and achievements. Proceedings of 5rd Interna-
tional Workshop on Intelligent Transportation (WIT, pages 211–216.

[32] Gao, Y., Guan, H., Qi, Z., Wang, B., and Liu, L. (2013). Quality of service aware power
management for virtualized data centers. Journal of Systems Architecture, 59(4):245–259.

[33] Ge, R., Feng, X., and Cameron, K. W. (2005). Performance-constrained distributed dvs
scheduling for scientific applications on power-aware clusters. In Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 34. IEEE Computer Society.

[34] Glisic, S. and Lorenzo, B. (2009). Advanced wireless networks: cognitive, cooperative
& opportunistic 4G technology. John Wiley & Sons.

[35] Grant, M., Boyd, S., and Ye, Y. (2008). Cvx: Matlab software for disciplined convex
programming.

[36] Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. A.,
Patel, P., and Sengupta, S. (2009). Vl2: a scalable and flexible data center network. In
ACM SIGCOMM computer communication review, volume 39, pages 51–62. ACM.

[37] Gudmundson, M. (1991). Correlation model for shadow fading in mobile radio systems.
Electronics letters, 27(23):2145–2146.

[38] Guérout, T., Monteil, T., Da Costa, G., Calheiros, R. N., Buyya, R., and Alexandru, M.
(2013). Energy-aware simulation with dvfs. Simulation Modelling Practice and Theory,
39:76–91.

[39] Gulati, A., Merchant, A., and Varman, P. J. (2010). mclock: handling throughput
variability for hypervisor io scheduling. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation, pages 1–7. USENIX Association.

[40] Gunaratne, C., Christensen, K., Nordman, B., and Suen, S. (2008). Reducing the energy
consumption of ethernet with adaptive link rate (alr). Computers, IEEE Transactions on,
57(4):448–461.

[41] Guo, C., Lu, G., Wang, H. J., Yang, S., Kong, C., Sun, P., Wu, W., and Zhang, Y. (2010).
Secondnet: a data center network virtualization architecture with bandwidth guarantees.
In Proceedings of the 6th International COnference, page 15. ACM.

[42] Gupta, V., Nathuji, R., and Schwan, K. (2011). An analysis of power reduction in
datacenters using heterogeneous chip multiprocessors. ACM SIGMETRICS Performance
Evaluation Review, 39(3):87–91.

160 References

[43] Hansmann, U. (2003). Pervasive computing: The mobile world. Springer Science &
Business Media.

[44] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554.

[45] Hirzel, M., Soulé, R., Schneider, S., Gedik, B., and Grimm, R. (2014). A catalog of
stream processing optimizations. ACM Computing Surveys (CSUR), 46(4):46.

[46] Hotta, Y., Sato, M., Kimura, H., Matsuoka, S., Boku, T., and Takahashi, D. (2006).
Profile-based optimization of power performance by using dynamic voltage scaling on a
pc cluster. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, pages 8–pp. IEEE.

[47] Javanmardi, S., Shojafar, M., Shariatmadari, S., and Ahrabi, S. S. (2014). Fr trust: a
fuzzy reputation–based model for trust management in semantic p2p grids. International
Journal of Grid and Utility Computing, 6(1):57–66.

[48] Jing, S.-Y., Ali, S., She, K., and Zhong, Y. (2013). State-of-the-art research study for
green cloud computing. The Journal of Supercomputing, 65(1):445–468.

[49] Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., and Weil, T.
(2011). Vehicular networking: A survey and tutorial on requirements, architectures, chal-
lenges, standards and solutions. Communications Surveys & Tutorials, IEEE, 13(4):584–
616.

[50] Keiser, G. (1989). Local area networks. McGraw-Hill New York.

[51] Kenway, S., Priestley, A., Cook, S., Seo, S., Inman, M., Gregory, A., and Hall, M.
(2008). Energy use in the provision and consumption of urban water in australia and new
zealand. Water Services Association of Australia (WSAA): Sydney, Australia.

[52] Kilper, D. C., Atkinson, G., Korotky, S. K., Goyal, S., Vetter, P., Suvakovic, D., and
Blume, O. (2011). Power trends in communication networks. IEEE Journal of Selected
Topics in Quantum Electronics, 2(17):275–284.

[53] Kim, K. H., Beloglazov, A., and Buyya, R. (2009). Power-aware provisioning of cloud
resources for real-time services. In Proceedings of the 7th International Workshop on
Middleware for Grids, Clouds and e-Science, page 1. ACM.

[54] Kimura, H., Sato, M., Hotta, Y., Boku, T., and Takahashi, D. (2006). Emprical study on
reducing energy of parallel programs using slack reclamation by dvfs in a power-scalable
high performance cluster. In CLUSTER’06, pages 1–10. IEEE.

[55] Koller, R., Verma, A., and Neogi, A. (2010). Wattapp: an application aware power
meter for shared data centers. In Proceedings of the 7th international conference on
Autonomic computing, pages 31–40. ACM.

[56] Koomey, J. (2011). Growth in data center electricity use 2005 to 2010. A report by
Analytical Press, completed at the request of The New York Times, page 9.

[57] Krug, L., Shackleton, M., and Saffre, F. (2014). Understanding the environmental costs
of fixed line networking. In Proceedings of the 5th international conference on Future
energy systems, pages 87–95. ACM.

References 161

[58] Kumbhare, A. G., Simmhan, Y., and Prasanna, V. K. (2014). Plasticc: Predictive
look-ahead scheduling for continuous dataflows on clouds. In Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on, pages 344–353.
IEEE.

[59] Kurose, J. F. (2005). Computer Networking: A Top-Down Approach Featuring the
Internet, 3/E. Pearson Education India.

[60] Kushner, H. J. and Yang, J. (1994). Analysis of adaptive step size sa algorithms for
parameter tracking. In Decision and Control, 1994., Proceedings of the 33rd IEEE
Conference on, volume 1, pages 730–737. IEEE.

[61] Li, K. (2008). Performance analysis of power-aware task scheduling algorithms on
multiprocessor computers with dynamic voltage and speed. Parallel and Distributed
Systems, IEEE Transactions on, 19(11):1484–1497.

[62] Lin, M., Wierman, A., Andrew, L. L., and Thereska, E. (2013a). Dynamic right-sizing
for power-proportional data centers. IEEE/ACM Transactions on Networking (TON),
21(5):1378–1391.

[63] Lin, M., Wierman, A., Andrew, L. L., and Thereska, E. (2013b). Dynamic right-sizing
for power-proportional data centers. IEEE/ACM Transactions on Networking (TON),
21(5):1378–1391.

[64] Liu, H., Jin, H., Xu, C.-Z., and Liao, X. (2013). Performance and energy modeling for
live migration of virtual machines. Cluster computing, 16(2):249–264.

[65] Liu, Q., Zhou, S., and Giannakis, G. B. (2004). Cross-layer combining of adaptive
modulation and coding with truncated arq over wireless links. Wireless Communications,
IEEE Transactions on, 3(5):1746–1755.

[66] Lu, T., Chen, M., and Andrew, L. L. (2013). Simple and effective dynamic provisioning
for power-proportional data centers. Parallel and Distributed Systems, IEEE Transactions
on, 24(6):1161–1171.

[67] Luan, T. H., Ling, X., and Shen, X. S. (2012). Provisioning QoS controlled media
access in vehicular to infrastructure communications. Ad Hoc Networks, 10(2):231–242.

[68] Mathew, V., Sitaraman, R. K., and Shenoy, P. (2012). Energy-aware load balancing in
content delivery networks. In INFOCOM, 2012 Proceedings IEEE, pages 954–962. IEEE.

[69] Mishra, A., Jain, R., and Durresi, A. (2012). Cloud computing: networking and
communication challenges. Communications Magazine, IEEE, 50(9):24–25.

[70] Mitra, D. and Wang, Q. (2005). Stochastic traffic engineering for demand uncertainty
and risk-aware network revenue management. IEEE/ACM Transactions on Networking
(TON), 13(2):221–233.

[71] Nathuji, R. and Schwan, K. (2007). Virtualpower: coordinated power management in
virtualized enterprise systems. In ACM SIGOPS Operating Systems Review, volume 41,
pages 265–278. ACM.

[72] Neely, M. J., Modiano, E., and Rohrs, C. E. (2003). Power allocation and routing in
multibeam satellites with time-varying channels. IEEE/ACM Transactions on Networking
(TON), 11(1):138–152.

162 References

[73] Nesmachnow, S., Perfumo, C., and GoirI, I. (2015). Holistic multiobjective planning of
datacenters powered by renewable energy. Cluster Computing, pages 1–19.

[74] Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor, C., and
Monje, A. (2013). On the optimal allocation of virtual resources in cloud computing
networks. Computers, IEEE Transactions on, 62(6):1060–1071.

[75] Pooranian, Z., Shojafar, M., Abawajy, J. H., and Abraham, A. (2015). An efficient
meta-heuristic algorithm for grid computing. Journal of Combinatorial Optimization,
30(3):413–434.

[76] Pooranian, Z., Shojafar, M., Abawajy, J. H., and Singhal, M. (2013). Gloa: a new job
scheduling algorithm for grid computing. IJIMAI, 2(1):59–64.

[77] Portnoy, M. (2012). Virtualization essentials, volume 19. John Wiley & Sons.

[78] Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou, L., Yu, Y., and Zhang, Z.
(2013). Timestream: Reliable stream computation in the cloud. In Proceedings of the 8th
ACM European Conference on Computer Systems, pages 1–14. ACM.

[79] Rajaraman, A., Ullman, J. D., Ullman, J. D., and Ullman, J. D. (2012). Mining of
massive datasets, volume 77. Cambridge University Press Cambridge.

[80] Rizvandi, N. B., Taheri, J., Zomaya, A. Y., and Lee, Y. C. (2010). Linear combinations
of dvfs-enabled processor frequencies to modify the energy-aware scheduling algorithms.
In CCGRID, pages 388–397. IEEE.

[81] Shojafar, M., Canali, C., Lancellotti, R., and Abolfazli, S. (March 2016a). An energy-
aware scheduling algorithm in dvfs-enabled networked data centers. In The 6th Interna-
tional Conference on Cloud Computing and Services Science (CLOSER 2016), volume 2,
pages 387–397.

[82] Shojafar, M., Cordeschi, N., Abawajy, J. H., and Baccarelli, E. (2015a). Adaptive
energy-efficient qos-aware scheduling algorithm for tcp/ip mobile cloud. In Global
Communications (GLOBECOM), 2015 IEEE International Conference on, pages 1–6.
IEEE.

[83] Shojafar, M., Cordeschi, N., Amendola, D., and Baccarelli, E. (2015b). Energy-
saving adaptive computing and traffic engineering for real-time-service data centers.
In Communication Workshop (ICCW), 2015 IEEE International Conference on, pages
1800–1806. IEEE.

[84] Shojafar, M., Cordeschi, N., and Baccarelli, E. (2016b). Energy-efficient adaptive
resource management for real-time vehicular cloud services. IEEE Transactions on Cloud
Computing (TCC), PP(99):1–14.

[85] Shojafar, M., Cordeschi, N., and Baccarelli, E. (2016c). Resource scheduling for
saving energy in reconfigurable internet data centers. Research on Next-Generation High
Performance Computing, page pp.

[86] Shojafar, M., Cordeschi, N., Singhal, M., and Baccarelli, E. (2016d). Adaptive network-
aware minimum-energyscheduling for time-constrained multimedia processing in cloud
systems. IEEE Transactions on Cloud Computing (TCC), PP(99):1–14.

[87] Sinnen, O. (2007). Task scheduling for parallel systems, volume 60. John Wiley &
Sons.

References 163

[88] Tamm, O., Hermsmeyer, C., and Rush, A. M. (2010). Eco-sustainable system and net-
work architectures for future transport networks. Bell Labs Technical Journal, 14(4):311–
327.

[89] Tsitsiklis, J. N., Bertsekas, D. P., Athans, M., et al. (1986). Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE transactions on
automatic control, 31(9):803–812.

[90] Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., and Tantawi, A. (2007). Analytic
modeling of multitier internet applications. ACM Transactions on the Web (TWEB), 1(1):2.

[91] Urgaonkar, R., Kozat, U. C., Igarashi, K., and Neely, M. J. (2010). Dynamic resource
allocation and power management in virtualized data centers. In NOMS’10, pages 479–486.
IEEE.

[92] Vasudevan, V., Phanishayee, A., Shah, H., Krevat, E., Andersen, D. G., Ganger, G. R.,
Gibson, G. A., and Mueller, B. (2009). Safe and effective fine-grained tcp retransmissions
for datacenter communication. In ACM SIGCOMM computer communication review,
volume 39, pages 303–314. ACM.

[93] Von Laszewski, G., Wang, L., Younge, A. J., and He, X. (2009). Power-aware schedul-
ing of virtual machines in dvfs-enabled clusters. In CLUSTER’09, pages 1–10. IEEE.

[94] Wang, D., Ren, C., Govindan, S., Sivasubramaniam, A., Urgaonkar, B., Kansal, A.,
and Vaid, K. (2013a). Ace: Abstracting, characterizing and exploiting datacenter power
demands. In Workload Characterization (IISWC), 2013 IEEE International Symposium
on, pages 44–55. IEEE.

[95] Wang, L., Zhang, F., Arjona Aroca, J., Vasilakos, A. V., Zheng, K., Hou, C., Li, D., and
Liu, Z. (2014). Greendcn: A general framework for achieving energy efficiency in data
center networks. Selected Areas in Communications, IEEE Journal on, 32(1):4–15.

[96] Wang, L., Zhang, F., Hou, C., Arjona Aroca, J., and Liu, Z. (2013b). Incorporating
rate adaptation into green networking for future data centers. In Network Computing and
Applications (NCA), 2013 12th IEEE International Symposium on, pages 106–109. IEEE.

[97] Warneke, D. and Kao, O. (2011). Exploiting dynamic resource allocation for efficient
parallel data processing in the cloud. Parallel and Distributed Systems, IEEE Transactions
on, 22(6):985–997.

[98] Weiser, M., Welch, B., Demers, A., and Shenker, S. (1996). Scheduling for reduced
cpu energy. In Mobile Computing, pages 449–471. Springer.

[99] Whaiduzzaman, M., Sookhak, M., Gani, A., and Buyya, R. (2014). A survey on
vehicular cloud computing. Journal of Network and Computer Applications, 40:325–344.

[100] Whitehead, B., Andrews, D., Shah, A., and Maidment, G. (2014). Assessing the
environmental impact of data centres part 1: background, energy use and metrics. Building
and Environment, 82:151–159.

[101] Wu, C. and Buyya, R. (2015). Cloud Data Centers and Cost Modeling: A Complete
Guide To Planning, Designing and Building a Cloud Data Center. Morgan Kaufmann.

[102] Xia, L., Cui, Z., Lange, J. R., Tang, Y., Dinda, P. A., and Bridges, P. G. (2012). Vnet/p:
Bridging the cloud and high performance computing through fast overlay networking.
In Proceedings of the 21st international symposium on High-Performance Parallel and
Distributed Computing, pages 259–270. ACM.

164 References

[103] Xu, H. and Li, B. (2014). Reducing electricity demand charge for data centers with
partial execution. In Proceedings of the 5th international conference on Future energy
systems, pages 51–61. ACM.

[104] Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I. (2012). Discretized streams: an
efficient and fault-tolerant model for stream processing on large clusters. In Proceedings
of the 4th USENIX conference on Hot Topics in Cloud Ccomputing, pages 10–10. USENIX
Association.

[105] Zhou, Z., Liu, F., Jin, H., Li, B., Li, B., and Jiang, H. (2013a). On arbitrating the
power-performance tradeoff in saas clouds. In INFOCOM, 2013 Proceedings IEEE, pages
872–880. IEEE.

[106] Zhou, Z., Liu, F., Xu, Y., Zou, R., Xu, H., Lui, J., and Jin, H. (2013b). Carbon-aware
load balancing for geo-distributed cloud services. In Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), 2013 IEEE 21st International
Symposium on, pages 232–241. IEEE.

[107] Zhu, D., Melhem, R., and Childers, B. R. (2003). Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in multiprocessor real-time systems. Parallel
and Distributed Systems, IEEE Transactions on, 14(7):686–700.

[108] Zhuo, J. and Chakrabarti, C. (2008). Energy-efficient dynamic task scheduling algo-
rithms for dvs systems. ACM Transactions on Embedded Computing Systems (TECS),
7(2):17.

Appendix A

Derivations of Equations (3.23.1)-(3.25)

Since the constraint in (3.12.7) is already accounted for by the feasibility condition (3.20.2),

without loss of optimality, we may directly focus on the resolution of optimization problem

in (3.18) under the constraints in (3.12.2)-(3.12.5). Since this problem is strictly convex and

all its constraints are linear, the Slater’s qualification conditions hold [8, chap.5], so that

the Karush-Khun-Tucker (KKT) conditions [8, chap.4] are both necessary and sufficient

for analytically characterizing the corresponding unique optimal global solution. Before

applying these conditions, we observe that each power-rate function in (3.19) is increasing

for Li ≥ 0, so that, without loss of optimality, we may replace the equality constraint in

(3.12.3) by the following equivalent one: ∑
M
i=1 Li ≥ Ltot . In doing so, the Lagrangian function

of the afforded problem reads as in

L ({Li, fi,νi,µ})≡Z ({Li, fi})
M

∑
i=1

νi (Li− fi∆+Lb(i))+µ

(
Lt−

M

∑
i=1

Li

)
, (A.1)

where Z ({Li, fi}) indicates the objective function in (3.18), νi’s and µ are nonnegative

Lagrange multipliers and the box constraints in (3.12.4),(3.12.5) are managed as implicit

166 Derivations of Equations (3.23.1)-(3.25)

ones. The partial derivatives of L (.; .) with respect to fi, Li are given by

∂L (.)

∂ fi
=

E max
i

f max
i

∂Φi(fi/ f max
i)

∂ηi
+2ke

(
fi− f 0

i
)
−νi∆, (A.2)

∂L (.)

∂Li
= 2

∂

∂Ri
Pnet

i

(
2Li

Tt−∆

)
+νi−µ, (A.3)

i = 1, . . . ,M, while the complementary conditions [8, chap.4] associated to the constraints

present in (A.1) read as in

νi [Li− fi∆+Lb(i)] = 0, i = 1, . . . ,M; µ

(
Ltot−

M

∑
i=1

Li

)
= 0. (A.4)

Hence, by equating (A.2) to zero we directly arrive at (3.23.1), that also accounts for the box

constraint: f min
i ≤ fi≤ f max

i through the corresponding projector operator. Moreover, a direct

exploitation of the last complementary condition in (A.4) allows us to compute the optimal

µ∗ by solving the algebraic equation in (3.25). In order to obtain the analytical expressions

for L∗i and ν∗i , we proceed to consider the two cases of ν∗i > 0 and ν∗i = 0. Specifically, when

ν∗i is positive, the i-th constraint in (3.12.2) is bound (see (A.4)), so that we have

L∗i = ∆ f ∗i −Lb(i), at ν
∗
i > 0. (A.5)

Hence, after equating (A.3) to zero, we obtain the following expression for the corresponding

optimal ν∗i :

ν
∗
i = µ

∗−2
[

∂Pnet
i

∂Ri

(
2L∗i

Tt−∆

)]
, at ν

∗
i > 0. (A.6)

Since L∗i must fall into the closed interval [0,∆ f ∗i −Lb(i)] for feasible CPOPs (see (3.12.2),(3.12.5)),

at ν∗i = 0, we must have: L∗i = 0 or 0 < L∗i < ∆ f ∗i −Lb(i). Specifically, we observe that, by

definition, vanishing L∗i is optimal when [∂L /∂Li]Li=0 ≥ 0. Therefore, by imposing that the

derivative in (A.3) is nonnegative at L∗i = ν∗i = 0, we obtain the following condition for the

167

resulting optimal µ∗:

µ
∗ ≤ 2

[
∂Pnet

i (Ri)/∂Ri
]

Ri=0 ≜ T H(i), at ν
∗
i = L∗i = 0. (A.7)

Passing to consider the case of ν∗i = 0 and L∗i ∈]0,∆ f ∗i −Lb(i)[, we observe that the cor-

responding KKT condition is unique, it is necessary and sufficient for the optimality and

requires that (A.3) vanishes [8, chap.4]. Hence, the application of this condition leads to the

following expression for the optimal L∗i (see (A.3)):

L∗i =
(Tt−∆)

2
(
∂Pnet

i (Ri)/∂Ri
)−1

(µ∗/2), at ν
∗
i = 0 and 0 < L∗i < (∆ f ∗i −Lb(i)) . (A.8)

Equation (A.8) vanishes at µ∗ = T H(i) (see (A.7)) and this proves that the function: L∗i (µ
∗)

vanishes at µ∗ = T H(i). Therefore, since (A.7) already assures that vanishing Li is optimal

at ν∗i = 0 and µ∗ ≤ T H(i), we conclude that the expression in (A.8) for the optimal L∗i must

hold when ν∗i = 0 and µ∗ ≥ T H(i). This structural property of the optimal scheduler allows

us to merge (A.7),(A.8) into the following equivalent expression:

L∗i =
(Tt−∆)

2

[(
∂Pnet

i (Ri)/∂Ri
)−1

(µ∗/2)
]
+
, for ν

∗
i = 0, (A.9)

so that Equation (3.23.2) directly arises from (A.5),(A.9). Finally, after observing that ν∗i

cannot be negative by definition, from (A.6) we obtain (3.24). This completes the proof of

Proposition 4.

Appendix B

Proof of Proposition 5

The reported proof exploits arguments based on the Lyapunov Theory which are similar,

indeed, to those already used, for example, in [8, sections 3.4, 8.2], [104, Appendix II].

Specifically, after noting that the feasibility and strict convexity of the CPOP in (3.18)

guarantees the existence and uniqueness of the equilibrium point of the iterates in (3.27)

and (3.28), we note that Proposition 4 assures that, for any assigned µ(n) and
{

L(n−1)
i

}
,

Equations (3.28.1)-(3.28.3) give the corresponding optimal values of the primal and dual

variables
{

f (n)i ,L(n)
i ,ν

(n)
i

}
. Hence, it suffices to prove the global asymptotic convergence of

the iteration in (3.27). To this end, after posing

U (n−1)
({

L(n−1)
i

})
≡U (n−1) ≜

[
M

∑
i=1

L(n−1)
i −Ltot

]2

, (B.1)

we observe that U (n−1) > 0 for
{

L(n−1)
i

}
̸= {L∗i } and U (n−1) = 0 at the optimum, i.e.,

for
{

L(n−1)
i

}
= {L∗i }1. Hence, since U (n−1)(.) in (B.1) is also radially unbounded (that

is, U (n−1)(.)→ ∞ as ||∑M
i=1 L(n−1)

i − Ltot ||→ ∞), we conclude that (B.1) is an admissible

Lyapunov’s function for the iterations in (3.27). Hence, after posing U (n)
({

L(n)
i

})
=

1Proposition 4 proves that, for any assigned µ(n), the relationship in (3.28.3) gives the corresponding optimal
L(n)

i , i = 1, . . . ,M. This implies, in turn, that U (n−1)(.) in (B.1) vanishes if and only if the global optimum is
attained, that is, at L(n−1)

i = L∗i , for any i = 1, . . . ,M.

170 Proof of Proposition 5

U (n) ≜
[
∑

M
i=1 L(n)

i −Ltot

]2
, according to the Lyapunov’s Theorem [8, section 3.10], we must

prove that the following (sufficient) condition for the asymptotic global stability of (3.27) is

met:
U (n) <U (n−1), for n→ ∞. (B.2)

To this end, after assuming U (n−1) > 0, let us consider, at first, the case of(
M

∑
i=1

L(n−1)
i −Ltot

)
> 0. (B.3)

Hence, since α(n−1) is positive, we have (see (3.27)): µ(n) < µ(n−1), that, in turn, leads to

(see (3.28.3)): L(n)
i < L(n−1)

i , for any i = 1, . . . ,M2. Therefore, in order to prove (B.2), it

suffices to prove that the following inequality holds for large n:(
M

∑
i=1

L(n)
i −Ltot

)
≥ 0. (B.4)

To this end, we observe that: i) {α(n−1)} in (3.27) vanishes for n→ ∞; and, ii) L(n)
i is

limited up to ∆ f max
i , for any i = 1, . . . ,M (see the constraints in (3.12.2), (3.12.4)). As a

consequence, the difference:
(

µ(n)−µ(n−1)
)

may be done vanishing as n→∞. Hence, after

noting that the functions in (3.27), (3.28) are continue by assumption, a direct application of

the Sign Permanence Theorem guarantees that (B.4) holds when the difference in (B.3) is

positive.

By duality, it is direct to prove that (B.2) is also met when the difference in (B.3) is

negative. This completes the proof of Proposition 5.

2About this point, the formal assumption of section 3.2.3 guarantees that: i) π
−1
i (.) in (3.28.2) is strictly

increasing in ν
(n)
i over the feasible set

[
f min
i , f max

i
]
; ii) (∂Pnet

i (Ri)/∂Ri)
−1 (.) in (3.28.3) is strictly increasing

in µ(n); and, iii) ν
(n)
i in (3.28.1) is strictly increasing in µ(n) for ν

(n)
i > 0. Hence, the condition: µ(n) < µ(n−1)

guarantees that: L(n)
i < L(n−1)

i , for any i = 1, . . . ,M.

Appendix C

Derivations of the GreenNetDC OP

solution

Since the constraint in (3.41.3) is already accounted for by the feasibility condition (3.52),

without loss of optimality, we may directly focus on the solution of the optimization problem

in (3.41.1) under the constraints in (3.41.2), (3.41.4), (3.41.5). Since this problem is strictly

convex and all its constraints are linear, the Slater’s qualification conditions hold [8, chap.5].

We observe that each power-rate function in the third term of (3.41.1) is nondecreasing

for: Fi jti j ≥ 0, so that, without loss of optimality, we may replace the equality constraint in

(3.41.2) by the following equivalent one: ∑
M
i=1 ∑

Q
j=1 Fi jti j ≥ Ltot . Moreover, the frequencies

for each VM is known so it plays the role of a coefficient. Therefore, the OP may be

simplified as in followings:

min
ti j

M

∑
i=1

Q

∑
j=0

[
ACe f f F3

i jti j
]
+

M

∑
i=1

EREc(i)+
M

∑
i=1

Q

∑
j=1

(Tt−T)PCMc
i

(
2Fi jti j

Tt−T

)
, (C.1.1)

s.t.:
Q

∑
j=0

ti j−T = 0, i = 1, . . . ,M, (C.1.2)

Ltot−
M

∑
i=1

Q

∑
j=1

Fi jti j = 0, (C.1.3)

172 Derivations of the GreenNetDC OP solution

ti j−T ≤ 0, i = 1, . . . ,M, j = 0, . . . ,Q. (C.1.4)

After denoting the objective function in (C.1.1) by Z ({ti j}), we have: Z ({ti j})≜ (C.1.1).

Z ({ti j})≜
M

∑
i=1

Q

∑
j=0

[
ACe f f F3

i jti j
]
+

M

∑
i=1

EREc(i)+
M

∑
i=1

Q

∑
j=1

(Tt−T)PCMc
i

(
2Fi jti j

Tt−T

)
, (C.2)

hence, the Lagrangian function of the problem (C.1) is constructed as in

L
({

ti j,νi j,µi
})
≡Z ({ti j})+

M

∑
i=1

µi

(
Q

∑
j=0

ti j−T

)
+

µM+1

(
Ltot−

M

∑
i=1

Q

∑
j=1

Fi jti j

)
+

M

∑
i=1

Q

∑
j=0

νi j
(
ti j−T

) (C.3)

, νi’s and µ are nonnegative Lagrange multipliers and the box constraints in (3.41.4),(3.41.5)

are managed as implicit ones. The partial derivative of L (.) with respect to ti j is given by

the partial derivative of Z (.) with respect to ti j is given by

∂Z (.)

∂ ti j
= ACe f f F3

i j +(Tt−T)
∂PCMc

i (.)

∂ ti j
,

i = 1, . . . ,M, j = 0, . . . ,Q.

(C.4)

Hence, the Z (.) is linear and by equating the partial derivatives of (C.3) to zero, we can

solve the resulting algebraic equation with respect to ti j. So doing, we calculate the M(Q+1)

variables by solving the aforementioned linear problem, which is the same as the Gauss-

Jordan system which is produced by the M equations in (C.1.2) and the equations in (C.1.3)

and (C.3).

Appendix D

Derivations of STAS solution over

GreenNetDC

In the application architecture considered in Fig. 3.10, the energy consumption for the static

scheduler (STAS) (i.e., it is enough to consider f max
i instead of each discrete frequency Fi j and

T instead of ti j for i-th VM, simultaneously; switch cost is calculated just for each incoming

workload, also, VMs are working with their maximum frequencies, so just changing from

the idle mode to the f max
i for each VM at first stage is considered.) over SOP optimization

problem in (3.41.1) named E
(STAS)
tot is computable in closed-form and equates

E
(STAS)
tot ≜ Ms

[
ACe f f f max

i T + ke(f max
i)2 +X (Fi j, ti j)

]
(D.1)

174 Derivations of STAS solution over GreenNetDC

where X (f max
i ,T) is the average static value for the aforementioned arguments which

borrows Proposition 6 and (3.41) and calculates as

X (Fi j, ti j)≜ E
{
(Tt−T)PCMc

i

(
2Fi jti j

Tt−T

)}
= E

{
(Tt−T)Ωi

(
RT T i

2Fi jti j

Tt−T

)2
}

=

MpE
{(

Fi jti j
)2
}
= MpE

{(
Ltot

Ms

)2
}

= Mp

Ltot+a∫
Ltot−a

(
Ltot

Ms

)2

p(Ltot)∂ (Ltot) =

Mp

Ltot+a∫
Ltot−a

(
Ltot

Ms

)2 1
2e

∂ (Ltot)] =
1
6e

MpM−2
s

[(
Ltot +a

)3−
(
Ltot−a

)3
]
(D.2)

where Ms ≜
[
(Ltot +a)/(T f max

i)
]

is the number of constantly running machines that STAS

uses for satisfying the peak load : T f max
i . Also, Mp ≜

[
Ωi (Tt−T)−1 (2RT T i

)2
]
, and

Fi jti j ≡ Ltot/Ms. The second equivalent describes that expected value of fraction workload

for each VM in the system can be equal to the average fraction of incoming workload of the

system. We should highlight that, average total incoming workload to the system is uniformly

distributed (i.i.d) so the integral can be simplified as 1/2e.

Appendix E

Derivations of modified NetDC and

HybridNetDC solutions

NetDC approach considers the workload fractions for each VM in each physical server.

Besides, it pays close attention to the frequencies fluctuations for each incoming workload

to the system. Also, this approach along GreenNetDC are able to works for various kinds

of incoming workload with the aforementioned PMR, and are able to adapt the system for

the online incoming workload respecting the QoSs and SLA constraints. Because of several

similarities, we were interested in comparing GreenNetDC with NetDC [23]. To make the

comparison meaningful, we modeled the NetDC respecting to the presented architecture in

Fig.3.10 and made a minor change to the NetDC. We modified CPU and end-to-end link

parts (i.e., the optimization problem is similar OP in (3.41)). Specifically, we add idle mode

frequency and correlated-idle-power (i.e., Pidle) to each CPU, add idle mode power for the

end-to-end links and use end-to-end link model equation (3.38). Moreover, HybridNetDC

which is elicited from NetDC approach is similar to the NetDC except the communication part

(Ri = Rt i = 1, . . . ,M). Specifically, Hybrid NetDC [17] considers fixed value communication

part for each parallel end-to-end link. From a formal point of view, HybridNetDC implements

176 Derivations of modified NetDC and HybridNetDC solutions

the solution of the constrained minimization problem in (3.41.1)-(3.41.5) over the variables

{ fi, ti} at Ri = Rt .

Appendix F

Derivations of the Applied Functions in

Algorithm 5

To calculate the consolidation state, we need to introduce some functions which are crucial

for finding solution A of optimization problem 4.13.

i) u−1(x,a) and H−1(x,a) is the unit-size diversion of unit-size Heaviside’ functions

which are defined as:

u−1(x,a)≜
1
2

[
1+ tanh

(
x−a

δ

)]
, δ > 0,

H−1(x,a)≜
1

δ (cosh(x−a
δ
))2 ,

δ ∼= 0.5×10−6, x≥ 0

(F.1)

It is enough to use u−1(fi, f ON
i) which express the coefficient of E idle

c (i) energy usage

for the consolidation for each VM. f ON
i is the V M(i)’s processing speed that works in

consolidations state. Besides, we can use H−1(fi, f ON
i) to demonstrate the portion of

the CPU energy uses in the consolidation state of the system.

ii) we define Γ ≜ θEtot(t)− (1−θ)r(t) as a utilization of the scheduler.

178 Derivations of the Applied Functions in Algorithm 5

iii) we define ρ function and add it with the Γ and make the equivalent optimization

problem with the same solution for the consolidation slots:

ρ({Li, fi, i = 1, . . . ,M})≜
M

∑
i=1

[
max{0;−Li}

]2
+[

max{0;− fi}
]2

+
[

max{0;(Li−Lmax
i)}

]2
+[

max{0;(fi− f max
i)}

]2
.

(F.2)

Therefore, we have

min
A

(Γ+ρ) (F.3.1)

subjected to:

eqs. (4.15.2), (4.15.3) (4.15.8), (4.19), Lemmas 1, 2 (F.3.2)

which is resolve using multi-gradient based stochastic approximation method (details are

explained in the Algorithms 4 and 5). In the following, we define some functions in order to

apply them in the Algorithm 5.

As is shown in eq. (F.4), the first function called ConsolCpuDyn which is updated

iteratively, expresses the appropriate frequency for root of the gradient-based movement

along the function of optimized Etot for each time-slot.

ConsolCpuDyn(l) ≜ π̂i

(
f (l)i (t̂);r(l)(t̂),∆

)
−
(

θ2ke f (0)i (t̂)+∆r(l)(t̂)
)

(F.4)

where

π̂i(.)≜θ

[
1
2

H−1(fi, f ON
i)+

(
Emax

c (i)−E idle
c (i)

f max
i

)(
fi

f max
i

)2

+2ke fi

]

+2g [max(0; fi− f max
i)−max(0;− fi)]+

1[i∈S(t̂−1)]

[
riTONu−1(fi, f ON

i)
]
.

(F.5)

179

Moreover, the second function named ConsolLAN explains the portion of energy consump-

tion for the consolidation state at l-th iteration respect to the other multi-gradient step-size

parameters (note that the slots which system goes to the consolidation state is belong to the S

set and t is called t̂). Therefore we have

ConsolLAN(l)≜ θ ĖLAN(L̃
(l)
i (t̂))+[

max(0;(L̃(l)
i (t̂)−Lmax

i))−max(0;−L̃i
(l)
(t̂))
]
−µ

(l)(t̂),
(F.6)

where ĖLAN is the derivation of the communication function of (4.7) as

ĖLAN(.)≜
∂ELAN

∂Li
. (F.7)

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Data Center Structure
	1.2 Data Center Issues and Objectives
	1.3 Contributions
	1.4 Thesis Structure

	2 Related Works
	2.1 Data Center Energy Consumption: A System Perspective
	2.2 Related Works

	3 QoS-aware Green Energy-efficient Schedulers
	3.1 VNetDC Scheduler
	3.1.1 An Adaptive Energy-efficient VNetDC
	3.1.2 The considered VNetDC model
	3.1.2.1 Input jobs and offered workload
	3.1.2.2 Power-limited virtualized communication infrastructure
	3.1.2.3 Reconfiguration costs
	3.1.2.4 On the Virtual-to-Physical QoS resource mapping in VNetDCs

	3.1.3 Optimal allocation of the virtual resources
	3.1.3.1 Solving approach and optimal provisioning of the virtual resources

	3.1.4 Adaptive online implementation of the optimal scheduler
	3.1.4.1 Hibernation effects
	3.1.4.2 Adaptive implementation of the optimal scheduler

	3.1.5 Performance comparison and sensitivity
	3.1.5.1 Simulated stochastic setting
	3.1.5.2 Impact of the hibernation phenomena and reconfiguration cost
	3.1.5.3 Impact of the VLAN setup and tracking capability
	3.1.5.4 Computing-vs.-communication tradeoff
	3.1.5.5 Performance impact of discrete computing rates
	3.1.5.6 Performance comparison under synthetic workload traces
	3.1.5.7 Performance comparison under real-world workload traces

	3.2 GreenNetDC Scheduler
	3.2.1 System Model and Considered GreenNetDC Architecture
	3.2.1.1 The GreenNetDC architecture
	3.2.1.2 Offered workload
	3.2.1.3 Workload instances
	3.2.1.4 VM characterization

	3.2.2 Energy consumptions in GreenNetDC
	3.2.2.1 ComPutational Cost in GreenNetDC
	3.2.2.2 REconfiguration cost in GreenNetDC
	3.2.2.3 CoMmunication cost (CMc) in GreenNetDC

	3.2.3 The GreenNetDC Optimization Problem and Solution
	3.2.4 Simulation Results and Performance Comparisons
	3.2.4.1 Experimental Setup
	3.2.4.1.1 TEST-DVFS implementation
	3.2.4.1.2 Test Workload
	3.2.4.1.3 Setting of benchmark schedulers

	3.2.4.2 Experimental Results
	3.2.4.2.1 Performance effects of VMs hibernation and dynamic reconfiguration
	3.2.4.2.2 Performance effects of the communication costs
	3.2.4.2.3 Performance effects of dynamic computation costs
	3.2.4.2.4 Performance effects of discrete computation rates
	3.2.4.2.5 Computing-vs.-communication energy tradeoff
	3.2.4.2.6 Performance comparisons under synthetic workload traces

	4 TCP/IP-based QoS-aware Energy-efficient Scheduler for Vehicular Cloud Services
	4.1 The Considered VCC Infrastructure
	4.1.1 Input traffic and queue model in virtualized Clouds
	4.1.2 The TCP/IP vehicular cloud architecture
	4.1.2.1 Offered workload and VMM

	4.1.3 Computing energy and reconfiguration cost in virtualized Clouds
	4.1.3.1 Computational cost
	4.1.3.2 Reconfiguration cost

	4.1.4 Intra-data center communication
	4.1.5 Goodput-vs.-energy in TCP/IP mobile connections

	4.2 The Afforded Resource Management Optimization Problem
	4.3 The Resulting Adaptive Resource Scheduler
	4.4 Dynamic Turning ON/OFF VMs
	4.5 Test Results and Performance Comparisons
	4.5.1 Simulated Cloud setup
	4.5.2 Simulated vehicular setup
	4.5.3 Performance results
	4.5.3.1 Fraction of declined requests versus experienced delay

	4.5.4 Mobility effects
	4.5.5 Performance tests and comparisons under real-world time-correlated input traffic
	4.5.5.1 Adaptive consolidation and convergence to the optimum

	4.5.6 Performance Comparison

	5 Conclusion and Hint for the Future Research
	5.1 Conclusions
	5.2 Future Directions of the Research

	6 Accomplishment
	References
	Appendix A Derivations of Equations (3.23.1)-(3.25)
	Appendix B Proof of Proposition 5
	Appendix C Derivations of the GreenNetDC OP solution
	Appendix D Derivations of STAS solution over GreenNetDC
	Appendix E Derivations of modified NetDC and HybridNetDC solutions
	Appendix F Derivations of the Applied Functions in Algorithm 5

