129 research outputs found

    Energy-efficient MAC protocol for wireless sensor networks

    Get PDF
    A Wireless Sensor Network (WSN) is a collection of tiny devices called sensor nodes which are deployed in an area to be monitored. Each node has one or more sensors with which they can measure the characteristics of their surroundings. In a typical WSN, the data gathered by each node is sent wirelessly through the network from one node to the next towards a central base station. Each node typically has a very limited energy supply. Therefore, in order for WSNs to have acceptable lifetimes, energy efficiency is a design goal that is of utmost importance and must be kept in mind at all levels of a WSN system. The main consumer of energy on a node is the wireless transceiver and therefore, the communications that occur between nodes should be carefully controlled so as not to waste energy. The Medium Access Control (MAC) protocol is directly in charge of managing the transceiver of a node. It determines when the transceiver is on/off and synchronizes the data exchanges among neighbouring nodes so as to prevent collisions etc., enabling useful communications to occur. The MAC protocol thus has a big impact on the overall energy efficiency of a node. Many WSN MAC protocols have been proposed in the literature but it was found that most were not optimized for the group of WSNs displaying very low volumes of traffic in the network. In low traffic WSNs, a major problem faced in the communications process is clock drift, which causes nodes to become unsynchronized. The MAC protocol must overcome this and other problems while expending as little energy as possible. Many useful WSN applications show low traffic characteristics and thus a new MAC protocol was developed which is aimed at this category of WSNs. The new protocol, Dynamic Preamble Sampling MAC (DPS-MAC) builds on the family of preamble sampling protocols which were found to be most suitable for low traffic WSNs. In contrast to the most energy efficient existing preamble sampling protocols, DPS-MAC does not cater for the worst case clock drift that can occur between two nodes. Rather, it dynamically learns the actual clock drift experienced between any two nodes and then adjusts its operation accordingly. By simulation it was shown that DPS-MAC requires less protocol overhead during the communication process and thus performs more energy efficiently than its predecessors under various network operating conditions. Furthermore, DPS-MAC is less prone to become overloaded or unstable in conditions of high traffic load and high contention levels respectively. These improvements cause the use of DPS-MAC to lead to longer node and network lifetimes, thus making low traffic WSNs more feasible.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer EngineeringMEngUnrestricte

    WiseMAC protocol for wireless sensor network-an energy efficient protocol

    Get PDF
    Wireless Sensor Networks are very useful in case of distance or unreachable areas. WSN are having large number of nodes (sensors) which are randomly distributed. These sensors are primarily used to process data and connected through wireless channel. The processing, transmission and reception and sensing the channel need power. This power is given to nodes by their batteries. So the problem in front of us is to reduce power consumption by these nodes. Some areas are very far and some areas are unreachable like valley or hill areas. Thus it is not possible in some cases to replace or change the battery. Our focus is to make a protocol which makes these nodes work with lesser battery power. There are so many MAC layer protocols which work for this purpose but they too are not energy efficient. These protocols are based on CSMA. Here in this report we have proposed WiseMAC protocol which is also based on CSMA but with preamble sampling. This protocol shows very good reduction in power consumption. For this we used some more schemes with the existing WiseMAC protocol, these schemes are more bit and extended more bit. Our WiseMAC protocol is an asynchronous protocol and works very well in case of adaptive traffic conditions. To make WiseMAC energy efficient we are here focusing to reduce preamble sampling duration and this done with reducing duty cycle and contention window of our proposed protocol. As we have implemented Adaptive WiseMAC protocol so we are focusing that this will help in body are network (BAN) for medical purposes. Although a lot of works have been done but still more work has to be don

    Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    Get PDF
    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for reducing the latency and energy consumption for several WSN application areas to improve the throughput. BN-MAC uses a unique window slot size to enhance the contention resolution issue for improved throughput. BN-MAC also prefers to communicate within a one-hop destination using Anycast, which maintains load balancing to maintain network reliability. BN-MAC is introduced with the goal of supporting four major application areas: monitoring and behavioral areas, controlling natural disasters, human-centric applications, and tracking mobility and static home automation devices from remote places. These application areas require a congestion-free mobility-supported MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that outperforms other hybrid MAC protocols in the context of quality of service (QoS) parameters, such as energy consumption, latency, throughput, channel access time, successful delivery rate, coverage efficiency, and average duty cycle.https://doi.org/10.3390/s14030507

    A cross-layer approach for optimizing the efficiency of wireless sensor and actor networks

    Get PDF
    Recent development has lead to the emergence of distributed Wireless Sensor and Actor Networks (WSAN), which are capable of observing the physical environment, processing the data, making decisions based on the observations and performing appropriate actions. WSANs represent an important extension of Wireless Sensor Networks (WSNs) and may comprise a large number of sensor nodes and a smaller number of actor nodes. The sensor nodes are low-cost, low energy, battery powered devices with restricted sensing, computational and wireless communication capabilities. Actor nodes are resource richer with superior processing capabilities, higher transmission powers and a longer battery life. A basic operational scenario of a typical WSAN application follows the following sequence of events. The physical environment is periodically sensed and evaluated by the sensor nodes. The sensed data is then routed towards an actor node. Upon receiving sensed data, an actor node performs an action upon the physical environment if necessary, i.e. if the occurrence of a disturbance or critical event has been detected. The specific characteristics of sensor and actor nodes combined with some stringent application constraints impose unique requirements for WSANs. The fundamental challenges for WSANs are to achieve low latency, high energy efficiency and high reliability. The latency and energy efficiency requirements are in a trade-off relationship. The communication and coordination inside WSANs is managed via a Communication Protocol Stack (CPS) situated on every node. The requirements of low latency and energy efficiency have to be addressed at every layer of the CPS to ensure overall feasibility of the WSAN. Therefore, careful design of protocol layers in the CPS is crucial in attempting to meet the unique requirements and handle the abovementioned trade-off relationship in WSANs. The traditional CPS, comprising the application, network, medium access control and physical layer, is a layered protocol stack with every layer, a predefined functional entity. However, it has been found that for similar types of networks with similar stringent network requirements, the strictly layered protocol stack approach performs at a sub-optimal level with regards to network efficiency. A modern cross-layer paradigm, which proposes the employment of interactions between layers in the CPS, has recently attracted a lot of attention. The cross-layer approach promotes network efficiency optimization and promises considerable performance gains. It is found that in literature, the adoption of this cross-layer paradigm has not yet been considered for WSANs. In this dissertation, a complete cross-layer enabled WSAN CPS is developed that features the adoption of the cross-layer paradigm towards promoting optimization of the network efficiency. The newly proposed cross-layer enabled CPS entails protocols that incorporate information from other layers into their local decisions. Every protocol layer provides information identified as beneficial to another layer(s) in the CPS via a newly proposed Simple Cross-Layer Framework (SCLF) for WSANs. The proposed complete cross-layer enabled WSAN CPS comprises a Cross-Layer enabled Network-Centric Actuation Control with Data Prioritization (CL-NCAC-DP) application layer (APPL) protocol, a Cross-Layer enabled Cluster-based Hierarchical Energy/Latency-Aware Geographic Routing (CL-CHELAGR) network layer (NETL) protocol and a Cross-Layer enabled Carrier Sense Multiple Access with Minimum Preamble Sampling and Duty Cycle Doubling (CL-CSMA-MPS-DCD) medium access control layer (MACL) protocol. Each of these protocols builds on an existing simple layered protocol that was chosen as a basis for development of the cross-layer enabled protocols. It was found that existing protocols focus primarily on energy efficiency to ensure maximum network lifetime. However, most WSAN applications require latency minimization to be considered with the same importance. The cross-layer paradigm provides means of facilitating the optimization of both latency and energy efficiency. Specifically, a solution to the latency versus energy trade-off is given in this dissertation. The data generated by sensor nodes is prioritised by the APPL and depending on the delay-sensitivity, handled in a specialised manor by every layer of the CPS. Delay-sensitive data packets are handled in order to achieve minimum latency. On the other hand, delay-insensitive non critical data packets are handled in such a way as to achieve the highest energy efficiency. In effect, either latency minimization or energy efficiency receives an elevated precedence according to the type of data that is to be handled. Specifically, the cross-layer enabled APPL protocol provides information pertaining to the delay-sensitivity of sensed data packets to the other layers. Consequently, when a data packet is detected as highly delay-sensitive, the cross-layer enabled NETL protocol changes its approach from energy efficient routing along the maximum residual energy path to routing along the fastest path towards the cluster-head actor node for latency minimizing of the specific packet. This is done by considering information (contained in the SCLF neighbourhood table) from the MACL that entails wakeup schedules and channel utilization at neighbour nodes. Among the added criteria, the next-hop node is primarily chosen based on the shortest time to wakeup. The cross-layer enabled MACL in turn employs a priority queue and a temporary duty cycle doubling feature to enable rapid relaying of delay-sensitive data. Duty cycle doubling is employed whenever a sensor node’s APPL state indicates that it is part of a critical event reporting route. When the APPL protocol state (found in the SCLF information pool) indicates that the node is not part of the critical event reporting route anymore, the MACL reverts back to promoting energy efficiency by disengaging duty cycle doubling and re-employing a combination of a very low duty cycle and preamble sampling. The APPL protocol conversely considers the current queue size of the MACL and temporarily halts the creation of data packets (only if the sensed value is non critical) to prevent a queue overflow and ease congestion at the MACL By simulation it was shown that the cross-layer enabled WSAN CPS consistently outperforms the layered CPS for various network conditions. The average end-to-end latency of delay-sensitive critical data packets is decreased substantially. Furthermore, the average end-to-end latency of delay-insensitive data packets is also decreased. Finally, the energy efficiency performance is decreased by a tolerable insignificant minor margin as expected. The trivial increase in energy consumption is overshadowed by the high margin of increase in latency performance for delay-sensitive critical data packets. The newly proposed cross-layer CPS achieves an immense latency performance increase for WSANs, while maintaining excellent energy efficiency. It has hence been shown that the adoption of the cross-layer paradigm by the WSAN CPS proves hugely beneficial with regards to the network efficiency performance. This increases the feasibility of WSANs and promotes its application in more areas.Dissertation (MEng)--University of Pretoria, 2009.Electrical, Electronic and Computer Engineeringunrestricte

    Designs for the Quality of Service Support in Low-Energy Wireless Sensor Network Protocols

    Get PDF
    A Wireless Sensor Network (WSN) consists of small, low cost, and low energy sensor nodes that cooperatively monitor physical quantities, control actuators, and perform data processing tasks. A network may consist of thousands of randomly deployed self-configurable nodes that operate autonomously to form a multihop topology. This Thesis focuses on Quality of Service (QoS) in low-energy WSNs that aim at several years operation time with small batteries. As a WSN may include both critical and non-critical control and monitoring applications, QoS is needed to make intelligent, content specific trade-offs between energy and network performance. The main research problem is defining and implementing QoS with constrained energy budget, processing power, communication bandwidth, and data and program memories. The problem is approached via protocol designs and algorithms. These are verified with simulations and with measurements in practical deployments. This Thesis defines QoS for WSNs with quantifiable metrics to allow measuring and managing the network performance. The definition is used as a basis for QoS routing protocol and Medium Access Control (MAC) schemes, comprising dynamic capacity allocation algorithm and QoS support layer. Dynamic capacity allocation is targeted at reservation based MACs, whereas the QoS support layer operates on contention based MACs. Instead of optimizing the protocols for a certain use case, the protocols allow configurable QoS based on application specific requirements. Finally, this Thesis designs sensor self-diagnostics and diagnostics analysis tool for verifying network performance. Compared to the related proposals on in-network sensor diagnostics, the diagnostics also detects performance problems and identifies reasons for the issues thus allowing the correction of problems. The results show that the developed protocols allow a clear trade-off between energy, latency, throughput, and reliability aspects of QoS while incurring a minimal overhead. The feasibility of results for extremely resource constrained WSNs is verified with the practical implementation with a prototype hardware platform having only few Million Instructions Per Second (MIPS) of processing power and less than a hundred kBs data and program memories. The results of this Thesis can be used in the WSN research, development, and implementation in general. The developed QoS definition, protocols, and diagnostics tools can be used separately or adapted to other applications and protocols

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Performance measurements of Bluetooth 5 technique under interference

    Get PDF
    Abstract. This thesis focuses on experimental performance of the Bluetooth 5 technology and compares results with the previous version. Bluetooth technology, institute of electrical and electronics engineers (IEEE) Std. 802.15.4, and other techniques share the same unlicensed 2.4 GHz industrial, scientific, and medical (ISM) spectrum. Various technologies are operating in the same frequency band, and if the channel utilized by these technologies overlap, end in cross-technology interference (CTI). Measurements have been performed in indoor scenario and ZigBee nodes were used as an interference. Performance output of the Bluetooth 5 is compared to a previous release Bluetooth low energy (BLE) 4 which is currently one of the popular technologies in commercial wireless devices and expected to be even more widespread in the future. This new Bluetooth technology has featured increased data rate, low power consumption, longer range, higher broadcasting capacity, and improved coexistence with other wireless technologies operating in the same frequency band. The main goal of this work was to evaluate the experimental communication range and throughput of the BLE 5 coded version under interference. Nordic Semiconductor nRF52840 chipset has been used for measurements and result shows the practical communication range and throughput of BLE 5 coded version under interference. In this work, with error correction coding, one-third BLE link gain was achieved when considering packet error rate (PER) less than 10%. In addition, ZigBee interference was found to be very harmful for the Bluetooth communication when operating in the same frequency band

    Performance Evaluation of an Energy-Efficient MAC Scheduler by using a Test Bed Approach

    Get PDF
    A Wireless Sensor Network consists of a large number of sensor nodes that are usually battery powered and deployed in large areas in which changing or recharging batteries may be impractical or completely unfeasible. Therefore, energy efficiency represents one of the main design objectives for these networks. Since most of the energy is consumed by the radio communication, the development of Medium Access Control protocols able to minimize the radio energy consumption is a very attractive research area. This paper presents an energy efficient communication protocol and its implementation in the Contiki Operating System. The performances and the portability of the proposed solution are thoroughly evaluated by means of both simulations, carried out using the Contiki simulation tools (i.e., Cooja and MPSim), and test beds based on two different platforms. Obtained results show that the proposed scheme significantly reduces the sensor nodes power consumption compared to the IEEE 802.15.4 standard solution already implemented in Contiki
    corecore