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Abstract: This paper introduces the design, implementation, and performance analysis of the 

scalable and mobility-aware hybrid protocol named boarder node medium access control  

(BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of 

scheduled and contention-based MAC protocols. Like contention-based MAC protocols, 

BN-MAC achieves high channel utilization, network adaptability under heavy traffic and 

mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC 

reduces idle listening time, emissions, and collision handling at low cost at one-hop 

neighbor nodes and achieves high channel utilization under heavy network loads.  

BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a 

boarder node (BN), which is of paramount importance. The BN coordinates with the 

remaining nodes within and beyond the region. Unlike other hybrid MAC protocols,  

BN-MAC incorporates three promising models that further reduce the energy consumption, 

idle listening time, overhearing, and congestion to improve the throughput and reduce the 

latency. One of the models used with BN-MAC is automatic active and sleep (AAS), 

which reduces the ideal listening time. When nodes finish their monitoring process, AAS 

lets them automatically go into the sleep state to avoid the idle listening state. Another 

model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the 

nodes sense the nature of the environment. Based on the nature of the environment, the 

nodes decide whether to use the active or passive mode. This decision power of the nodes 

further reduces energy consumption because the nodes turn off the radio of the transceiver 

in the passive mode. The third model is the least-distance smart neighboring search 

(LDSNS), which determines the shortest efficient path to the one-hop neighbor and also 
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provides cross-layering support to handle the mobility of the nodes. The BN-MAC also 

incorporates a semi-synchronous feature with a low duty cycle, which is advantageous for 

reducing the latency and energy consumption for several WSN application areas to 

improve the throughput. BN-MAC uses a unique window slot size to enhance the 

contention resolution issue for improved throughput. BN-MAC also prefers to 

communicate within a one-hop destination using Anycast, which maintains load balancing 

to maintain network reliability. BN-MAC is introduced with the goal of supporting four 

major application areas: monitoring and behavioral areas, controlling natural disasters, 

human-centric applications, and tracking mobility and static home automation devices 

from remote places. These application areas require a congestion-free mobility-supported 

MAC protocol to guarantee reliable data delivery. BN-MAC was evaluated using network 

simulator-2 (ns2) and compared with other hybrid MAC protocols, such as Zebra medium 

access control (Z-MAC), advertisement-based MAC (A-MAC), Speck-MAC, adaptive duty 

cycle SMAC (ADC-SMAC), and low-power real-time medium access control (LPR-MAC). 

The simulation results indicate that BN-MAC is a robust and energy-efficient protocol that 

outperforms other hybrid MAC protocols in the context of quality of service (QoS) 

parameters, such as energy consumption, latency, throughput, channel access time, 

successful delivery rate, coverage efficiency, and average duty cycle. 

General Terms: design; experimentation; performance; algorithms 

Keywords: sensor node; hybrid MAC protocols; BN-MAC protocol; mobility; intelligent 

decision-making (IDM) model; automatic active and sleep (AAS) model; least-distance 

smart neighboring search (LDSNS); wireless sensor network (WSN) 

 

Nomenclature 

AAS Automatic Active and Sleep  

ACK Acknowledgement 

ADC-SMAC Adaptive Duty Cycle SMAC  

A-MAC Advertisement-based MAC 

BDIF Broadcast Destinations Inter Frame  

BN-MAC Boarder Node Medium Access Control 

BNIS Boarder Node Indication Signal  

BNVSP Boarder Node Volunteer Selection Process  

BSIF Broadcast Source Inter Frame  

BT node Bluetooth- enabled Node 

Ch-S Channel Sampling  

CD Clock Drift  

CDMA  Code Division Multiple Access 

CP Check Period  
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CTS Clear-to-Send 

CSMA Carrier Sense Multiple Access 

DAPS Dynamic Adjustment of Packet Size 

EAP Energy Aware-Routing Protocol 

EFB Election Flag Bit  

G-MAC Gateway Medium Access Control 

HRPs Hierarchal Routing Protocols  

IDM Intelligence Decision Model  

IE Indoor Environment  

IOE Indoor and Outdoor Environment  

LDSNS Least Distance Smart Neighboring Search  

LEI Level of Energy Information  

LPR-MAC Low Power Real Time Medium Access Control  

MAC Medium Access Control 

MPD Maximized Probability Detection  

OE Outdoor Environment 

ns2 Network Simulator-2  

ROC Relative Operating Characteristics  

RTS Request-to-Send 

RX Receiver  

SF Synchronized Frame  

SP Short Preamble  

Speck-MAC Speck-MAC 

SPIN Sensor Protocols for Information via Negotiation 

SPIN-EC  SPIN via Negotiation Energy-Conservation 

SPIN-BC SPIN via Negotiation Broadcast Channel 

SPIN-PP SPIN via Negotiation Point-to-Point 

SPIN-RL SPIN via Negotiation Reliable Link 

TX Transmitter  

UE Unknown Environment  

Z-MAC Zebra Medium Access Control 

1. Introduction 

Wireless sensor networks (WSNs) have become an increasingly popular research topic in recent 

years. WSNs have produced promising solutions for several applications, such as intrusion detection, 

target detection, industrial automation, environmental monitoring, surveillance and military systems, 

medical diagnosing systems, and tactical systems [1]. WSNs consist of small sensor nodes 

disseminated in a targeted area to monitor the events for collecting the data of interest. WSNs also 

experience many challenging problems, including large energy consumption, network scalability, 

mobility, coverage, and uniformity [2]. These problems affect the lifetime of the network, increase the 

latency, and reduce the throughput. The limited battery life and harsh operating conditions cause 
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further complications, which can lead to node failure [3]. Although significant research has been 

conducted on WSNs to maintain high communication standards (especially coverage), the issue of 

high power consumption remains unresolved [4]. The radio is one of the major power-consuming 

sections of the sensor in WSNs that can be handled using energy-efficient medium access control 

(MAC) protocols. Several MAC protocols, introduced to reduce the energy consumption, improve the 

lifetime of WSNs [5]. Unfortunately, most of the application-dependent [6] MAC protocols for WSNs 

are not energy efficient and thus do not effectively improve the lifetime of WSNs. The protocols 

should be scalable to adjust to changes in the network, such as the insertion of new nodes and the 

deletion of existing nodes [7,8]. The reduction in energy achieved by the MAC protocols increases the 

latency, particularly in multi-hop data communication [9]. These design constraints must be considered 

when developing new MAC protocols. 

MAC protocols are classified into different categories, such as schedule-based, contention-based, 

mobility-aware, and hybrid protocols [10,11], however, many of the contention-based MAC protocols 

are based on sensor-MAC (S-MAC), which are designed for specific WSN applications [12]. 

Contention-based protocols have free access to acquire the medium [13]. The nodes, which follow 

contention-based mechanisms, are not required to follow the cluster. These protocols are network 

adaptable to allow for the insertion and removal of sensor nodes from the network. However, in 

contention-based MAC protocols, when nodes are available on channel but do not know the activities 

(schedule) of each other, nodes do not know when to turn on/off the radio, thus increasing the energy 

consumption. Schedule-based MAC protocols are more suitable for reducing idle listening [14]. 

However, in such protocols, node problems occur due to the presence of a tight schedule; once a node 

misses its schedule, then it must wait for the next turn, thus increasing the energy consumption. 

Additionally, schedule-based MAC protocols are not adaptable due to changes in network topology [15]. 

Hybrid protocols leverage the characteristics of time division multiple access (TDMA) and carrier 

sense multiple access (CSMA) [16]. Existing hybrid MAC protocols are based on the clustering 

approach [17,18], where time is divided into different time slots for each node in the cluster. Each 

node is responsible for using its own allotted time slot. Clustering reduces the idle listening and 

collisions. The transceiver also receives the sleep schedule without any additional overhead. However, 

such a mechanism experiences several drawbacks, as discussed in [16]. First, it is critical to determine 

an effective time schedule in a scalable manner. A centralized node is often needed to determine a 

collision-free schedule. It is extremely difficult to create an effective schedule with channel reuse or a 

high degree of concurrency (the ideal solution is NP-hard) [19]. Second, TDMA requires clock 

synchronization, which is an important feature of several sensor applications. However, tight 

synchronization results in energy overhead because it necessitates recurring message exchanges. Third, 

issues may arise due to frequent topology changes resulting from time-fluctuating channel conditions, 

such as battery outages, changes in the physical environment, and node failure. Controlling dynamic 

topology changes is costly and may even require a global change. Fourth, it is difficult to determine 

the intercession relation among neighboring nodes due to different communication and radio 

interference ranges from each other and other interfering nodes that may not be involved with direct 

communication (this situation is known as interference anomaly) [20]. Fifth, during low contention, 

TDMA results in lower channel utilization and increased delays. These problems with TDMA 

demonstrate that TDMA is not a reasonable choice when used individually, even if an efficient TDMA 
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schedule is used. CSMA is attractive due to its flexibility, simplicity, and robustness. CSMA does not 

need considerable setup support, such as clock synchronization and global topology information. The 

dynamic joining and leaving of nodes is handled efficiently without additional operations. However, 

these benefits may come at the cost of an increased amount of trial and error; a trial may face 

collisions when more than two nodes attempt to access the channel simultaneously, causing signal 

fidelity to decay at the destination. Collisions can occur in any two-hop neighboring nodes. Although 

collisions at a one-hop neighbor node can easily be reduced by using carrier sensing before 

transmission, carrier sensing is not controlled beyond one hop. This issue, called the hidden terminal 

problem, affects throughput, particularly in high-data-rate sensor applications. RTS/CTS is an 

additional method to deploy with virtual carrier sensing in (CSMA/CA). The RTS frame consists of 

five fields include frame control, receiver address, duration, FCS and transmitter address. The CTS 

frame consists of four fields include frame control receiver address, FCS and duration. Although 

RTS/CTS can reduce the hidden terminal problem, it creates high overhead (40%–75%) in channel 

utilization due to control packets in WSNs [21,22]. 

Scalability and mobility are major issues whenever a node changes. Hybrid MAC protocols also 

experience inter-cluster communications and require tight time synchronization. These hybrid MAC 

protocols also use long preambles (signals used to synchronize transmission timing between two or 

more nodes and systems) that consume bandwidth and increase channel utilization [23]. To address 

these issues, the BN-MAC mobility-aware hybrid protocol introduces cross-layering support to control 

mobility and uses short preamble messages to reduce bandwidth consumption. 

Combining CSMA and TDMA and including additional features, BN-MAC is a highly robust 

mobility-aware protocol for controlling timing failures, slot allocation failures, time-varying channel 

disorder, synchronization, and topological changes. In worst-case scenarios, the performance of  

BN-MAC will not be reduced because this protocol needs local synchronization at one-hop 

neighborhoods. Our analyses prove that the overall performance of BN-MAC will still be comparable 

to other hybrid MAC protocols when clocks are unsynchronized and slot allocation failure occurs.  

The remainder of this paper is organized as follows: in Section 2, we discuss the goals, challenges, 

and contributions of this research. In Section 3, we present related work on hybrid MAC protocols. In 

Section 4, the system model is discussed. In Section 5, the BN-MAC protocol design is presented. In 

Section 6, the automatic active and sleep (AAS) model is presented. Section 7 presents the intelligent 

decision-making (IDM) model to automatically place nodes into either active or passive mode.  

Section 8 describes the simulation setup and analysis of the results. In Section 9, we discuss the results. 

Finally, our conclusions are presented in Section 10. 

2. Research Goals, Challenges, and Contributions  

One of the key goals of introducing BN-MAC is to support the multiple application domains of 

WSNs. We focus on several characteristics and factors that affect the performance of existing hybrid 

MAC protocols and BN-MAC. Factors that affect energy consumption and scalability include idle 

listening, overhearing, congestion, and mobility. The key challenge is determining how to integrate all 

of the proposed models to work as a single unit. Mobility is also difficult to address due to limitations 

and constraints at the MAC layer for maintaining scalability. 
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BN-MAC is proposed as a hybrid protocol involving a contention part and a scheduled part. The 

contention part is semi-synchronized [24] with a low duty cycle that helps to achieve faster access to 

the medium and manages the synchronization among nodes. The semi-synchronous feature is 

preferable for several application areas to reduce latency and energy consumption and maximize 

throughput. Second, the schedule part works with a dual message mechanism. Whenever the sensor 

node requires the schedule of its neighboring nodes, the sensor node uses the Anycast message 

mechanism because the sensor node can send a control message to only the nearest node in the group 

of potential receivers or may choose several nodes, depending on the situation. When the data are sent, 

the node uses the unicast message mechanism to forward the same data to all possible destinations. In 

addition, the neighbor discovery process consists of a short preamble message that consumes less 

energy. The dual mechanism avoids network congestion and increases the lifetime of WSNs. Third, 

BN-MAC discovers the presence and level of mobility of the sensor nodes within its neighbors using 

the received signal strength indicator (RSSI) and link quality indicator (LQI), both of which are 

obtained from the neighbor nodes at the time of synchronization. 

BN-MAC performs localized reuse time slot allocation without changing the slots of the nodes that 

already exist if the node intends to perform further communication. This feature reduces latency and 

control messages and increases throughput. Fourth, new energy level information (ELI) algorithm is 

used for the dynamic selection of the coordinator, known as the boarder node (BN). BN dynamically 

works as a coordinator (head or leader) on a specific position. BN stays at the position as long as it 

uses its sources ―energy‖ for performing some specific task for a definite period inside the network 

region then it vacates the position when the energy is reduced for the next node to become BN. In  

BN-MAC, the node with the highest energy level in its region will have a large probability of 

becoming the BN. BN-MAC approach can handle diverse situations more effectively. Additionally, 

three models are included in BN-MAC: AAS, LDSNS, and IDM. AAS is a simple yet efficient model 

for solving an idle listening problem. With the AAS model, sensor nodes are forced to go into the sleep 

state after performing the events that can prolong the lifetime of the network. This model significantly 

outperforms the previous sleep-wake up approaches designed for controlling the idle listening time. 

LDSNS is used to determine the shortest distance of the sensor node to one-hop neighbor nodes. The 

sensor node does not have the ability to send data over long distances; thus, LDSNS finds a close  

one-hop neighbor node to reduce energy consumption and improve the network lifetime.  

The IDM model is used to sense the nature of the environment. This ability is critical because the 

sensor node is capable of obtaining energy from the Sun, which allows the sensor node to preserve its 

battery energy when automating the passive mode in an outdoor environment. The mode of the sensor 

node is typically set manually at the time of installation according to the nature of the environment; 

however, the IDM model automates the sensor node to reduce the energy consumption and expand the 

network lifetime. 

3. Related Work 

Although the deployment of WSNs has highly fascinated academia and industry, WSN platform has 

been experiencing several kinds of challenges due to many limitations and constraints. The WSN 

performance depends on an efficiency of the MAC protocol. The necessity of multi-featured MAC 
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protocol is of paramount importance to handle mobility based scenarios for several real time WSN 

applications. The salient features of most related work are discussed. We emphasize some of the 

known hybrid MAC protocols. The hybrid protocol named Z-MAC is introduced that integrates the 

features of both TDMA and CSMA techniques [25]. In Z-MAC, CSMA is used as a baseline and 

TDMA resolves conflicts by scheduling the channel access. The protocol is based on the owner slot 

concept. Z-MAC uses novel flexible local time-frame synchronization without global synchronization. 

But, it requires the global clock synchronization. Z-MAC also introduces node highest priority scheme. 

If any node competes for accessing the channel, then the highest priority based node first gets the 

access to the channel. In a highly competitive environment, the node priority scheme decreases the 

network congestion. However, Z-MAC experiences latency issues due to the use of long preambles. 

Further, Z-MAC has another network adaptability problem because the nodes are tightly scheduled 

with each. As a result, Z-MAC decreases the throughput and increases excess energy consumption 

during the mobility. 

Advertisement-based MAC (A-MAC) hybrid protocol is introduced in [26] for controlling collision, 

overhearing and marginally idle-listening issue. In A-MAC, TDMA is used as baseline while CSMA 

improves the channel access. Each node is assigned certain number of time slots within the two-hop 

destination. The assigned time slots are used to transmit the data without disturbing the other nodes.  

A-MAC also uses an advertisement message that helps the sender to inform the neighboring nodes 

regarding its transmission schedule. The major advantage of A-MAC protocol is to inform the nodes in 

advance in order to make receiver and sender ready for data transmission. This inclusion avoids the 

idle listening and overhearing. However, the overhead of control packets increases the latency and 

consumes extra energy. Further, A-MAC is only designed for monitoring the surveillance applications, 

but it does not have enough support for mobility and real time communication. 

Speck MAC is a deviation of B-MAC protocol [27]. The Speck MAC aimed to reduce energy 

consumption and overhearing problem during heavy traffic. However, it consumes extra energy by 

sending wake-up frames [28] and also experiences excess latency. Speck MAC does not support for 

the real time and mobility based applications. ADC-SMAC [29] is an improved version of S-MAC that 

adds two new features to S-MAC. First, the node is capable to calculate its energy consumption and an 

average sleep time before sending synchronized packets. Second, the node adjusts the duty cycle based 

on network conditions then announces its schedule by sending broadcast messages to neighbor nodes. 

These two features reduce the energy consumption, but increase latency. Additionally, ADC-SMAC 

behaves poorly in mobile environments.  

Low-power real-time medium access control (LPRT) protocol is proposed for actuation and 

wireless systems using star topology [30]. The LPRT-MAC introduces the super frame concept that 

uses mini slots for transmission to the base station. LPRT-MAC reduces the energy consumption when 

coordinating with the channel. Star topology avoids the network overhead. However, the LPRT-MAC 

performance is limited and not suitable for long multi-hop WSNs. Additionally, it is also not 

compatible with other communication topologies. Based on the literature survey of hybrid MAC 

protocols, we conclude that the reported hybrid MAC protocols are not good candidates for mobility 

and real time applications under congested and heavy traffic network load. To support several mobility 

and real time applications, we have introduced BN-MAC protocol that reduces energy consumption and 
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improves scalability. BN-MAC also controls the congestion based on LDSNS and energy aware-routing 

protocol (EAP) [31] to maximize the throughput, reduce the latency and prolongs the network lifetime. 

4. System Model for BN-MAC 

We adopt an ad hoc-based network architecture that comprises sensor nodes with limited power 

resources and a BN with more dispensing capability and higher energy. The nodes are scattered to 

monitor the different events and activities. The WSN is divided into different regions, with each region 

controlled by a BN that coordinates within the given region and adjacent regions. Numerous 

economical BT node rev3 sensors are deployed over the battlefield area to provide a high level of 

coverage. The BT node rev3 is a self-directed prototyping platform based on a microcontroller, a 

Bluetooth radio, and ZigBee. The Bluetooth-enabled sensors cover short-distance communication 

among the troops deployed at the nearest positions, whereas ZigBee covers the long distances among 

troops. A small number of fixed coordinators obtain accurate positions of their troops as well as the 

enemy and their weapons. Each end sensor node is logically connected with a digital addressable 

lighting interface controller (DALIC). A DALIC consists of a controller and supports single or 

multiple lighting devices. The controller monitors and controls each light by using bi-directional data 

exchange. The DALI protocol broadcasts messages simultaneously to the address multiple devices to 

find their locations. The DALIC helps to monitor and locate the exact position of the enemy. To 

determine the exact location, the DALIC requires an active bat location (ABL) system that 

automatically determines the location of the objects. 

We also assume that all of the sensor nodes use seismic modality, and each sensor senses different 

events during every sampling period using a seismic frequency spectrum. We have considered multiple 

issues when designing region-based WSNs for a military scenario. The first consideration is that we 

have identified the area of the war and a possible solution. The second consideration is focused on the 

deployment issues of the network, such as the location of the sensor nodes determined before 

deployment. In this manner, the degree of coverage and connectivity is secured. The nodes are 

randomly scattered in the disaster area. To save energy, the nodes typically use short-range and  

one-hop communication rather than long-range communication. We use a one-hop destination search 

to schedule and deliver data. 

We have focused on a combined mobility and static scenario using the ns2 network simulator in the 

scenario depicted in Figure 1. Each static and moving object is connected with a command node. The 

command node is a heterogeneous node that obtains event information through homogenous nodes 

fixed in the field. Similarly, the command node forwards the collected information using the 

(homogenous) sensor nodes to the BN. In this scenario, the battlefield is dispersed into different 

regions. Each region covers several command nodes that gather information from the events. The 

message-forwarding process consists of intra- and intercommunication. Intra communication is used 

within the region, whereas intercommunication is used outside of the region. The mode of 

communication within the region is based on Anycast communication. Anycast is used to exploit the 

knowledge of immediate channel condition in choosing the appropriate downstream neighbor on 

smaller time scales. Additionally, the main notion behind MAC layer anycasting is to accomplish the 

objectives of network layer, while invoking short-term improvement at the MAC layer, based on the 
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local channel settings. Anycast also provides the option of specifying multiple downstream 

destinations to the MAC protocol. Anycast allows for increased load balancing to minimize the work 

load and complexity of the network for reliable data transfer. Unlike Anycast, multicast increases 

latency. Thus, each node stores and forwards the packets to several nodes, resulting in increased 

energy consumption. This battlefield scenario requires mobility and scalability. The cross-layering 

support of BN-MAC successfully resolves this issue using the pheromone termite (PT) mobility 

model. The PT model provides robust and faster routing over WSNs. This model is specially designed 

to control the scalability of WSNs and the mobility of nodes. The PT analytical model monitors the 

behavior of the WSN using the packet generation rate and the pheromone sensitivity over single and 

multiple links [32]. The PT routing model monitors the different activities of the troops and maintains a 

faster recovery process using the packet generation rate and pheromone sensitivity. BN-MAC uses the 

AAS model to address idle listening in nodes, as discussed in Section 6. The AAS model lets the nodes 

go into the sleep state after monitoring and processing the collected information. This approach allows 

the nodes to reduce the amount of energy consumed in idle listening. In this scenario, some of the 

sensor nodes are deployed in the open battlefield area, whereas some are grounded or fixed to 

buildings to monitor different processes, as such situations demand the sensor nodes to act differently. 

BN-MAC uses the IDM model to sense the nature of the environment, which allows the mode of the 

sensor node to be automatically switched either into the active or passive mode. The IDM model also 

reduces WSNs’ energy consumption. 

Figure 1. Proposed simulated WSN. 
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5. BN-MAC Protocol Design 

BN-MAC is proposed with the aim of supporting multiple applications, particularly military 

applications, which require mobility-aware and static devices to be controlled from remote places. 

MAC design in WSNs is ant involved process because WSNs are based on mechanisms that are 

entirely different from the traditional networks. WSNs have limitations due to storage, computational 

capability, and energy resources. Therefore, the MAC protocols should be well organized to distribute 

the bandwidth fairly and be energy efficient, with appealing features that may stimulate the robust 

design of the communication media. One of the key factors for introducing BN-MAC is to reduce 

energy consumption while addressing idle listening, overhearing, mobility, and congestion concerns. 

BN-MAC also shortens the latency while guaranteeing the reliability of the WSN.  

BN-MAC improves the existing Z-MAC, A-MAC, Speck-MAC, ADC-SMAC, and LPRT-MAC 

protocols by adding new features. The mechanism of BN-MAC supports the hybrid topology that 

combines the features of TDMA and CSMA. The network is constructed as a flat single-hop topology. 

The features of TDMA are used to improve the contention, whereas CSMA works as a baseline.  

BN-MAC follows the concept of the owner slot. The node has complete access to its owner slot, 

similar to TDMA-based approaches. The remaining slots are accessed through the CSMA approach. 

The CSMA approach preserves energy and controls collisions. In addition, BN-MAC eliminates idle 

listening in each region to achieve a considerable energy saving. Bi-directional traffic inside each 

region of the WSN promotes smooth data exchange and efficient use of the bandwidth. Additionally, 

BN-MAC uses dynamic contention free slot exchange, which increases network scalability under even 

a heavy traffic load. 

BN-MAC consists of the following phases: finding the list of one-hop neighbors, intra-semi-

synchronous transmission scheduling, inter-synchronous transmission scheduling, and selection of a 

BN. These operations are performed once during the setup process and are not performed again until 

the network topology is physically changed. In this approach, the initial costs for running these 

operations are balanced while achieving a better throughput and reduced energy consumption during 

intra- and inter-transmission. 

5.1. Finding the List of One Hop-Neighbors 

When a node intends to start communication with its neighbor node after accessing the channel,  

the node sends an Anycast message to its one-hop neighbor nodes to obtain the details of neighboring 

nodes. This process helps to reduce overhead and manage network load balancing. The process of 

sending the Anycast ensures that the intended neighboring nodes are able to talk with each other,  

even if they possess different sleeping and communication schedules. The neighbor discovery process 

consists of short messages (short preambles), which consume less network bandwidth and improve  

the throughput. 

Each node randomly sends a short preamble for finding the list of intended neighbor nodes using 

Anycast after two seconds for 15 s. This timing is used obtain maximum throughput; packet sending 

intervals from 1 to 10 s were considered, but the time interval of 2 s provides the maximum 

throughput. We have also set the packet sending time at 15 s to facilitate the successful completion of 
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the packet sending process. If we set the time less than or higher than 15 s, then the node energy is 

wasted. The node is unable to complete the packet sending cycle when the time is less than 15 s, and 

when the time is greater than 15 s, the node comes into the idle situation because after finishing the 

packet sending task and thus waits on the channel until the level of set time is reached. We present the 

performance of the BN-MAC at different time intervals and packet sending durations in Figures 2 and 3. 

A comparison of BN-MAC and Z-MAC, the nodes of which use 30 s for the neighbor discovery 

process, indicates that Z-MAC has higher energy consumption. 

Figure 2. Throughput at different time intervals. 

 

Figure 3. Packet sending duration versus energy consumption. 
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mobility because the node retains the information even when the two-hop node is moving. BN-MAC is 

scalable because the one-hop topological change is easy to handle; each node knows the schedule of 

the one-hop neighbor node. BN-MAC uses a promising time scheduler because the assigned slot does 

not exceed the one-hop neighborhood. BN-MAC also performs the without changing the time slots of 

existing nodes. The localized time slot allocation which is used with channels to synchronize for the 

whole network. Otherwise, conflict between different traffic flows can occur. It also helps the node to 

gather allocation information for all 1-hop and 2-hop neighbor nodes. This feature of slot allocation  

re-use improves throughput and reduces node latency. 

5.2. Intra-Semi-Synchronized Transmission Schedule 

This mode is based on a semi-synchronized low duty cycle (the ratio between active time and the 

complete active/sleeping time; a low duty-cycle MAC protocols obviously has a much extended 

lifetime for operation, but pauses for the all-node-active assumption). The intra-semi-synchronized 

process starts with channel sampling. The node wakes up for a short period of time to sample the 

medium. Channel sampling is performed once during the channel allocation time. After channel 

sampling, each node initially sends a short preamble message asynchronously using the Anycast 

approach within the one-hop neighbor node to obtain the list of one-hop neighbor nodes. When the 

sender receives a reply from the one-hop neighbor nodes, the sender attempts to fix the schedule with 

the intended one-hop neighbor nodes (nodes that are chosen for future communication) before sending 

the data. Each node knows the wake-up and sleep schedule of its intended neighbors. These dual 

features of sending a short preamble asynchronously to obtain the list of neighbor nodes and fixing the 

schedule synchronously reduce the network overhead. When the sender completes the scheduling 

process with the intended nodes, the sender chooses the shortest efficient path for sending the data 

using the LDSNS model, as explained in [33]. This model helps to reduce energy consumption and the 

links with the network layer. The use of a short preamble message allows for reductions in overhead 

and latency at each hop. The short-preamble-enabled MAC protocols have an advantage over the  

long-preamble-enabled MAC protocols due to their low-power duty cycle mechanism. The existing 

lower power listening (LPL) technique uses a long preamble and suffers from the overhearing 

problem, which increases energy consumption in non-targeted receivers, such as Z-MAC. LPL also 

increases latency at each hop [34]. In the long-preamble techniques, the node must wait until the long 

preamble is received before it starts receiving data and acknowledgments. This approach increases 

energy consumption on both the sender and receiver sides. Targeted receivers are also affected  

because the targeted receivers have to wait until the long preamble is received, causing increased  

energy consumption. 

X-MAC uses a short preamble message to reduce the energy consumption and latency, but one 

disadvantage of X-MAC is that the destination address of the node is inserted into each short preamble 

message. X-MAC forces all nodes to check the preamble to determine whether they are targeted nodes, 

which increases energy consumption and the duty cycle (wake-up process). X-MAC is based on an 

asynchronous mechanism, and no schedule of neighbor nodes is maintained, making it more difficult 

for each node to send data without prior scheduling information. Unlike X-MAC, BN-MAC deploys 
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both asynchronous features for sending short preamble messages to obtain the list of one-hop neighbor 

nodes and synchronous features for fixing the schedule with the intended neighbors. 

The MAC protocol should be capable of handling spatial correlation while also adjusting to changes 

in the number of competing nodes [35]. When multiple nodes want to communicate with the same 

neighbor node within the region, BN-MAC uses a slotted contention window. Then, the nodes 

randomly select a slot in the contention window.  

The winner of the slot obtains access to the medium for communication. Thus, there is small 

probability of collision at the medium. BN-MAC has more contention slots to compete, which reduces 

congestion in the WSNs. BN-MAC has another feature the helps to reduce packet loss. If multiple 

nodes attempt to select the same slot, BN-MAC uses sampling and randomization such that each node 

has an equal probability of accessing the channel. Furthermore, BN-MAC uses 256 congestion 

window slots, whereas the other MAC protocols use 1–32 contention windows for randomized 

listening before sending the preamble messages. This increased number of slots reduces congestion 

and latency and allows higher throughput to be obtained. We have used different numbers of 

congestion window slots, with 30% of the active sensor node contenders allocated to each window 

slot. These experiments indicated that BN-MAC produces the maximum throughput when 256 slots 

are used, as shown in Figure 4. Similarly, we have checked the performance of hybrid MAC protocols 

on their existing window size slots and compared the hybrid MAC protocols with BN-MAC.  

Figure 4. Throughput at different congestion window slots. 

 

The simulation results demonstrated that BN-MAC successfully delivers 99.8% of packets, whereas 

other MAC protocols only successfully deliver 46%–72.7% of packets, as shown in Figure 5. Hence, 

the use of 256 window slots increases the throughput considerably. 

Sensor nodes also perform automatic buffering within the region during intra-communication to 

reduce the drop rate and prolong the network lifetime. We demonstrate the process of long permeable 

(LPL), short permeable (X-MAC), and BN-MAC in Figure 6. 
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Figure 5. Successful delivery of packets versus event monitoring time. 

 

Figure 6. Comparison of the timelines of duty-cycle MAC protocols. 

 

X-MAC uses a short preamble with a target address to access the channel to communicate with 

another node. However, all of the nodes en route will remain awake until the short preambles are 

received by the destination node, which results in increased energy consumption. X-MAC also has a 

delay of transmission for sending the packets until the receiver wakes up [36]. The BN-MAC protocol 
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nodes do not continue to wait; instead, only the intended node wakes up to receive the short preamble. 

Thus, each node is in sleep mode for a longer period of time. In addition, BN-MAC uses an automatic 

packet buffering process similar to that used in [37]; this process reduces the wake-up time and 

increases the network lifetime. In the automatic buffering process, the node uses a promiscuous mode 

that enables the node to listen to all ongoing data traffic and coordinates, if requested. Furthermore, the 

node saves a copy of the received packet regardless of the intended destination of the data packet until 

receipt of the packet is acknowledged by the destination node. Such buffering requires a relay that is 

used by the saturated conditions because each node is able to cooperate in sending data packets to 

other buffers. As mentioned above, a short preamble consumes less energy and prolongs the network 

lifetime. Let us find the energy consumed for channel sampling and short preamble messages.  

The consumed energy for channel sampling is ―Ψ‖, the check period is É, and the average energy 

consumed for channel sampling is ―γ‖: 

   
 

 
 (1) 

The energy consumed for a short preamble     consists of the average energy consumed for channel 

sampling, ― ‖, and the energy consumed in sending and receiving synchronization, “ω‖: 

           
  (2) 

We use clock drift, ―  
 ‖, which is the time consumed sending and receiving the synchronization, 

and ―2ω‖ is the energy consumed by the sender and receiver for synchronization. 

During intra-communication, the node that transmits its clock to the one-hop neighbor is called the 

parent, and the receiving node at the one-hop neighborhood is called the child. The nodes that are 

synchronized with the clock often use a short preamble without the target address of the node that 

reduces the energy consumption.  

Let us assume that the average energy consumed by the parent and child nodes for one work cycle 

is ― ‖ and ― ‖, respectively. The average short preamble reception time could be reduced because the 

receiving node wakes up based on the stored schedule of the neighbor nodes. The average energy 

consumed by the parent and child nodes can be obtained as follows: 

     

 

   

                      
  

  
 (3) 

     

 

   

                      
             

  
 (4) 

where ―k‖ is the starting point of the short preamble, ―n‖ is the ending point of the short preamble, 

―  ‖ is the short preamble, ―  ‖ is the size of the preamble, ― ‖ is the nature of the environment, 

―   ‖ is the speed of the short preamble, and ―  ‖ is the total time spent sending the short preamble. 

From Equations (3) and (4), we can obtain the total energy consumed sending the short preamble 

during the event monitoring time. Equation (3) represents the energy consumed by the parent node in 

sending the short preamble within the one-hop neighbor nodes, whereas Equation (4) represents the 

energy consumed by the child node in receiving and sending by the short preamble to the two-hop 

neighbor nodes and also acknowledges the parent node. 
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BN-MAC can clearly identify the consumed energy of the short preamble prior to sending the data. 

BN-MAC has an advantage over low-duty-cycle long-preamble-enabled MAC protocols and X-MAC. 

The reduced energy consumption and time requirements of BN-MAC compared to the other protocols 

is shown in Figure 7. Figure 8 presents the superiority of BN-MAC compared with other low-duty-cycle 

MAC protocols in terms of time consumed in sending the short preamble to confirm the synchronization 

process for forwarding the data. 

Figure 7. Energy consumption for BN-MAC and low-duty-cycle MAC protocols. 

 

Figure 8. Channel accessing and data delivery time for BN-MAC and other low-duty-cycle 

MAC protocols. 

 

All of the nodes in BN-MAC maintain the same time frame during synchronization and maintain a 

time slot of 0. Each node maintains its own local frame, which matches the frame size of the 

neighborhood to avoid potential conflicts while contending with neighbors.  

The nodes compete for CSMA equally during the contention phase because the random exponential 
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channel dynamically in order to find the acceptable node to access the channel, as the part of network 

congestion avoidance) preserves the right of each node to compete fairly for scheduled slots.  

Intra-semi-synchronous communication is performed inside the region because BN-MAC is designed 

purely for the region-based network, as many WSN application areas require a region-based network. 

The intra-semi-synchronized transmission schedule is compatible with all types of radios, such as 

CC2420 and CC2500. 

5.3. Inter-Synchronized Transmission Schedule 

BN-MAC is used with WSNs that consist of different regions. The previous section highlights how 

to access the channel and forward the data inside regions. This section explains how to set the 

schedules within and outside regions. Each region of the WSN includes a BN. Inter-synchronized 

transmission is performed from one region to other regions. The BN receives intraregional data 

packets within the region, and the BN forwards the inter data packets outside of the region. 

When communicating within the region, the BN first broadcasts three ―hello‖ messages to warn the 

nearest region nodes to prepare for receiving the BN indication signal (BNIS). The BN does not wait 

to receive an acknowledgment from all of the region nodes. If the BN receives a single 

acknowledgment from one of the nearest nodes, it assumes that the ―hello‖ message has been delivered 

successfully. Thus, if any node is unable to obtain the ―hello‖ message, the neighbor node informs 

other nodes of the schedule exchange time. In this manner, each node knows the BNIS. The BNIS 

consists of the current time, the next distribution time, the next collection time, and the schedule for 

obtaining intraregional data packets from the nodes of the region, as shown in Figure 9. 

Figure 9. Inter synchronized transmission schedule with the region node and BNs. 
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The BNIS also has the responsibility of exchanging traffic slots between the source and the 

destination and describing the related offset time. Once the BN announces its schedule for the nodes of 

the region, all of the nodes are responsible for following the given schedule. At the end of the 

scheduled time of the region nodes, the BN synchronizes with another BN of a region to exchange an 

interregional synchronous schedule to send and receive data communication. After the contention 

period starts, the node responsible for the data exchange requests the schedule-slot for the next 

scheduled distribution time.  

The nodes only remain active during the BNIS. When the BN intends to communicate with another 

BN of a region, the BN begins the interregional synchronized transmission schedule by using carrier 

sensing. The BN forwards the message of request-to-send (RTS). In response, the BN receives a  

clear-to-send (CTS) message from the BN of the other region. There is no hidden terminal problem in 

BN-MAC because the BNs of all regions broadcast the messages to provide each BN with the schedule 

of every region. Through this process, all of the BNs know the other BNISs. After receiving the CTS, 

the transmitter of the BN forwards the broadcast source inter frame (BSIF) to another region. (BSIF is 

the frame used by BN to synchronize for sending the data to another BN of adjacent region). The 

receiver BN receives the broadcast destination inter frame (BDIF) during the interval with the CTS 

and RTS and acknowledges the received packets (BDIF is the frame received by BN after sending 

BSIF frame, it means BN is allowed to send the data to another BN of adjacent region).  

We tested the intercommunication performance of BN-MAC and other hybrid protocols in terms of 

throughput and average energy consumption. We use varying numbers of transmitting nodes at a low 

duty cycle. Figure 10 presents the average energy consumption for each transmitter node, illustrating 

that BN-MAC is superior to the other hybrid MAC protocols at a low duty cycle. 

Figure 10. Energy consumption during heavy traffic using a low duty cycle. 

 

As mentioned above, BN-MAC has an intra-semi-synchronous transmission schedule that follows 
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less energy over a heavy traffic load using the low duty cycle. Figure 11 presents the potential increase 

in throughput obtained via BN-MAC during heavy traffic at a low duty cycle. 

As the number of transmitting nodes increases, the energy spent for each node increases in 

competing hybrid MAC protocols compared with BN-MAC. Other protocols consume 18%–45% more 

energy than BN-MAC during heavy traffic, mainly because these protocols use many continuous 

preamble messages, whereas BN-MAC uses a short preamble to guarantee the efficient delivery of 

data. Another reason for BN-MAC’s superior throughput performance is the use of BNs, which have 

automatic buffering capacity to store packets instead of discarding them. 

Figure 11. Throughput under heavy traffic using a low duty cycle. 
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each node, and the BNVSP is used to select the BN. We categorize the energy of sensors into six 

levels is given in Table 1. Algorithm 1 determines energy level for each sensor node. 

Table 1. Showing distribution of energy level of sensor node. 

Level of Energy Voltage Level of Sensors 

Very High 3.3 to 3.7 V 

High 3.0 to 3.3 V 

High Moderate 2.7 to 3.0 V 

Moderate 2.4 to 2.7 V 

Low 2.1 to 2.4 V 

Lowest <2.0 V 

Algorithm 1: Detection process of energy level for selection of boarder node. 

1. Set N nodes = Number of nodes 

2. Computer VL= Voltage level 

3. If (VL >= 3.3 && VL <= 3.7) then 

Set VL = EL 

Declare EL = Very high 

4. if (VL >= 3.0 && VL <= 3.3 then 

Set VL = EL 

Declare EL = High 

5. if (VL >= 2.7 && VL <= 3.0) then 

Set VL = EL 

Declare EL = High moderate 

6. if (VL >= 2.4 && VL <= 2.7) then 

Set VL = EL 

Declare EL = Moderate 

7. if (VL >= 2.1 && VL <= 2.4) then 

Set VL = EL 

Declare EL = Low 

8. else (VL <= 2.0) 

Set VL = EL 

Declare EL = Lowest 

9. end if 

 

When the energy level of the BN that is already working decreases, the responsibility is shifted 

from one BN to another BN using the election flag bit (EFB), a signal alert sent by BN in the network 

for the election of new BN when decreasing its energy level. The EFB specifies the process of the 

immediate BN election. The proactive method is used to select the next BN to reduce the overhead 

associated with this process. The base station broadcasts a short preamble message to each WSN node. 

Each node calculates its distance from the base station based on the signal strength. The node that 
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receives a short preamble becomes a candidate for the BN. Other factors are also considered when 

selecting the final BN, including the energy of the BN consumed during the contention time for 

election (comparison time of the energy level), the energy consumption of the sensor node in each 

state, and the time spent in each state and the transmitted data at each step. All candidate BNs check 

their radio range and residual energy. The radio range is selected by the short preamble sent by the 

base station, and the residual energy is selected using the BNVSP, as shown in Table 1. The residual 

energy level for choosing the BNs is determined as follows: 

       

 

   

   (5) 

where    is the energy consumed by each sensor node in each state and    is the time spent in each 

state. Thus, 1 is ―radio on‖ for receiving traffic, 2 is ―radio off‖, and 3 is transmitting the data packets. 

Let us determine the residual energy level of each sensor node. ―  ‖ is the residual energy level of 

each sensor node after performing the event, so we apply the following derivation: 

     
 

 
   

  

  
 (6) 

where    is the current energy level of the sensor, V is the voltage level of the sensor node before the 

event,    is the number of contention window slots, which is equal to   , and    is the number of hops 

required to travel the data, and         , where    is the distance between each hop of the WSN. 

If the sensor node completes the event, then the sensor node decreases its energy level. Therefore,  

the energy used in the event is equal to the difference between the sensor node’s final and initial 

energy levels: 

             
 

 
   

  

  
   

 

  
 
  

 

  
 
   (7) 

where    is the remaining sensor energy after the event,     is the initial energy of the sensor,     is 

the final energy of the sensor, and    and    are the initial and final energy levels, respectively. 

If part or all of the consumed energy in the sensor node is renewable    , then the new energy of 

the sensor node 
 

   
 can be found as follows: 
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where: 

  
 

  
 
  

 

  
 
        (9) 

We obtain the energy of the sensor node by substituting for 
 

 
   

  

   
 as follows: 

 

   
    

 

 
   

  

   
   (10) 

Therefore, the level of energy can be expressed as: 

    
   

    
   (11) 
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The current BN also sends a signal for a new election when the battery is running down.  

After the election process, the new BN resumes its duty and the current BN terminates its function.  

In case of BN failure, the remaining nodes wait for four consecutive BNISs, and the BN is 

subsequently considered a malfunction. The new BN is automatically selected, allowing network 

disturbances to be avoided. We illustrate the complete mechanism of BN-MAC in Figure 12. 

Figure 12. Message mechanism of the hybrid BN-MAC protocol. 
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transceiver of the sensor node is active ―ON‖ without performing any events, time delay and wasted 

energy result [40]. The unnecessary waste of energy can be reduced if the transceiver of the sensor 

nodes is controlled using the ―OFF‖ state. We use the AAS model by setting the threshold value for 

the ―idle‖ and ―OFF‖ states to save energy. 

Let us assume that the energy consumed in the idle time of the sensor nodes should always be less 

than or equal to the ―OFF time‖. Then               , where        is the consumption of the energy 

during the idle time and        is the energy consumed during the OFF time. 

Let us assume that           is the minimum energy required for the sensor nodes to remain in the 

idle state,          is the energy consumed by switching from the idle state to the ―ON‖ state, and 

           is the energy consumed by switching from the idle state to the ―OFF‖ state. Thus, the energy 

consumed in idle time can be computed using Equation (12): 

                                         (12) 

Let us assume that          is the minimum amount of time required for the sensor nodes to 

consume energy by going from the ―ON‖ state to the ―OFF‖ state,          is the time required for the 

sensor nodes to consume energy by going from the ―OFF‖ state to the ―ON‖ state, and      is the 

energy saved by the nodes when they are in the sleep state. Thus, the total ―OFF‖ time energy can be 

calculated using Equation (13): 

                                 (13) 

Let us assume that       , the total energy consumed during the ―OFF‖ state, is larger than the 

energy consumed in the idle state, which was already proven and is given in Equation (14): 

                                    (14) 

Our goal is to transition the sensor nodes into the sleep state if no event is underway. Equations (12) 

and (13) indicate that the states of operations in the sensor nodes can be established automatically. 

Let us set the transition states           and β (beta) for sleep (OFF) and active (ON), respectively. 

An automatic change of transitions can be justified if Equation (15) is satisfied: 

                                            (15) 

where        is the energy consumed during the active time and       is the negligible amount of 

energy consumed by going from the active (OFF) state to the sleep (ON) state. Thus,     is greater 

than or equal to the amount of energy consumed in the active and idle states minus the energy 

consumed during the total ―OFF‖ time. 

The above model indicates that the energy consumption due to idle listening can be avoided.  

In BN-MAC, each node remains in the sleep state until the next data-sending schedule begins. The BN 

also announces its schedule; therefore, there is no probability of consuming energy. There is also no 

hidden terminal in BN-MAC. BN-MAC requires 832 µs to send a 14-byte BNIS message that 

produces a 0.3% duty cycle; other hybrid MAC protocols require an average of 1,209–1,532 µs to send 

each BNIS message that produces an average of 0.52–0.78 duty cycles, as shown in Figure 13. Thus, 

BN-MAC reduces the overhead by using fewer BNIS control messages and a synchronization message. 
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Figure 13. Time consumption for sending a BNIS message with BN-MAC and other  

MAC protocols. 

 

7. Intelligent Decision-Making (IDM) Model 

We use the IDM model to increase the efficiency of BN-MAC. This model decides the nature of the 

environment, i.e., whether the environment is indoor or outdoor. The IDM model forces the sensor 
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detect the presence or absence of the indoor and outdoor environment (IOE). K sensor nodes collect 

information regarding the IOE and then determine the nature of the environment. We have set values 

for the IOEs. 

If Di ≥ 1 indicates the presence of an indoor environment (IE), then Di < 1 indicates the presence of 

an outdoor environment (OE). To prove ―IE‖ and ―OE‖, we also use a third environment, i.e., an 

unknown environment (UE). The detection process is based on the maximized probability of detection 

(MPD) method used by the Neyman-Pearson Lemma [42]. 

The K sensor nodes start the detection process from the UE because they are initially unaware of 

the nature of the environment. We set the probability of ―UE‖ and pick a random variable that denotes 

the constraint of the optimized problem in the form of UE = α (alpha), as shown in Equation (16): 

        (16) 

One of the requirements for statistical optimization is establishing an expected value of UE. Hence, 

we maximize the expected value of the probability to detect UE with respect to the constraints of the 

expected value of the probability: 

                   

 

   

 (17) 
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Substitute the value of           in Equation (16) to find the UE that will be easier for the sensor 

node to sense out of IE and OE. 

                       

 

   

 (18) 

    and      are linked by the relative operating characteristics (ROCs) that are required to 

determine UE (ROCs are a strong method to validate probability estimates and particularly to compare 

its performance with deterministic estimate. it is two-dimensional process). We use the following 

probabilities to detect UEs and IEs: 

UEi = P (Di < 1|IOE outdoor), βi = P (Di < 1|IOE outdoor), and PDi = P (Di > 1|IOE indoor), γi = P 

(Di > 1|IOE indoor). 

Let us assume that the sensor nodes detect the environment independently. Thus, K sensor nodes 

detect UE based on the set probability values: 

                            

 

   

 (19) 

Di =1 indicates that the passive mode is initiated and the K sensor nodes reduce energy 

consumption. If Di ≥ 1 or Di ≤ 2, then the environment is known, and the sensor nodes stop using the 

energy of the battery and activate the passive mode to obtain energy from the environment. This 

condition indicates the presence of an OE.  

The reduction in energy consumed can be calculated as follows: 

                 

  

   

 (20) 

                

  

   

 (21) 

Let us assume that EN(X) and EN(Y) are the total energy saved by two different regions of the 

WSN. E(i) and E(j) indicate the energy saved by nodes i and j during transmission, respectively. Thus, 

we can define the total saved energy of the WSN using Equation (7): 

                         

  

   

                  

  

   

                      

  

   

 (22) 

where Tsaved is the total amount of saved energy. 

If Di < 1, the active mode is activated. If Di ≥ 0 or Di < 1, then the IE is active, and the sensor 

nodes use the battery and external energy. The amount of energy consumed is calculated using 

Equation (23): 

                         

 

   

 (23) 
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Therefore, we measure the total saved and consumed energy of the WSNs using passive and active 

modes based on the OE and IE. We also prove the energy saved using the WSNs using Lemma 1. 

Lemma 1. Bluetooth-enabled sensor nodes follow the energy preservation process during the passive 

mode using the integration method. 

Here, we present the numerical time integrators that allow energy P(e) to be preserved. We begin by 

assuming an x-point quadrature formula with nodes Ni. The required weight of ai is obtained through 

Lagrange basis polynomials in interruption as follows: 

        
    

     

 

       

               
 

 

 (24) 

Let a1, a2, a3,…, ax be different real numbers (0 ≤ Ni ≤1) for which ai ≠ for all i. Note that all  

the values for different real numbers cannot be equal to ai. We use the polynomial p(d0) for satisfying 

the degree: 

          (25) 

                    
  

  
               

 

 

 (26) 

The quadrature formula with nodes Ni and weights ai decreases the integrator to a specific 

collection of methods. We use polynomial degree 2x − 1; thus, Gauss points Ni are equal to 0 and 

shifted with the Lagrange polynomial specific collection for A(x). 

This formula treats arguments in A(x) and        differently than a partitioned numerical method. 

The solution obtained with these methods depends on the specific factorization of the vector field. 

If A(x) = A is a constant matrix, let (1, 1) be a Hamiltonian system (a dynamic system used for the 

mathematical formalism to define the evolution equations. It also provides the significant understanding 

about the dynamics, even if the preliminary problem’s value cannot be solved systematically). Thus, 

the Hamiltonian system becomes an energy-saving integrator. This result demonstrates that the sensor 

nodes also consume a minimum amount of energy during the passive mood. 

8. Simulation Setup and Analysis of Results 

Real WSN environments use low-power radios because of their high asymmetrical communication 

range and stochastic link characteristics. Simulation results could be slightly different from realistic 

experimental results [43]. If we make simple assumptions regarding wireless radio propagation, then 

the simulation results could be significantly different from realistic wireless radio features and diverse 

transmission power. It is critical to select a simulator that produces results that are reasonably close to 

the real environment. Thus, for our experimental simulation setup, we use ns-2.35-RC7 because it 

produces results that are highly similar to real environments.  

In our experiments, the WSN is disseminated into N regions to collect information more quickly. 

We have simulated different realistic mobility- and static-based scenarios. The main goal of the 
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simulation is to evaluate BN-MAC and compare it with other hybrid protocols, including Z-MAC,  

A-MAC, Speck-MAC, ADC-SMAC, and LPRT-MAC. 

The simulation scenarios consist of 105 nodes with a 30-m transmission range. The sensor nodes 

are uniformly and randomly placed in a geographical area of 300 × 300 m
2
. The area is divided into N 

number of 75 × 75 m
2
 regions. The initial energy of each sensor node is set to 40 J. The bandwidth of 

the nodes is 50 kb/s, and the maximum power consumption for each sensor node is set at 16 mW. The 

sensing mode is 12 mW. Each sensor is capable of broadcasting the data at a power intensity ranging 

from −20 to 12 dBm. 

The total simulation time is 35 min, and the pause time is set to 30 s during phase initialization at 

the start of the simulation. During this phase, the BN is in the warm up phase, and the remaining 

sensor nodes are automatically in power-saving mode. The presented results are an average of  

10 simulation runs. The simulation parameters are illustrated in Table 2. 

Table 2. Parameter values used in the simulation WSN. 

Parameters Description 

Transmission Range 30 m 

sensor types BT node sensors 

Sensing Range of node 10 m 

Initial energy of node 40 Joules 

Bandwidth of node  50 Kb/S 

Number of sensors 105 BT node rev-3 

Size of network 300 × 300 square meters 

Size of each region 75 × 75 square meters 

Packet transmission rate 30 Packets/Sec 

Data Packet size 4, 8, 16, 32, 64, 128, 256 bytes 

Mobility model Pheromone termite mobility model 

Simulation time 35 min 

Initial pause time 30 s 

Tx energy 16 mW, 

Rx energy 12 mW 

Energy dissipation: actuation 0.022 mJ 

Power intensity  −20 to 12 dBm 

Minimum Cycle time, T 340 ms 

Start time of BN-MAC (0, 30) s 

Sink location in each region (60, 40) 

MAC protocol BN-MAC 

Other MAC protocols Z-MAC, A-MAC, Speck-MAC, ADC-SMAC, LPRT-MAC 

Type of protocols Hybrid protocols 

Deployed models IDM, LDSNS and AAS models 

Mobility  0.5 to 3.5 m/s 

Delivery of data at varying sensing range 100, 200, 300, 400, 500, 600 and 700 m 

Routing Protocol EAP 
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8.1. Network Coverage Efficiency 

We conducted several simulation tests from different perspectives but with a particular focus on the 

network coverage efficiency after deploying 1 to 105 sensor nodes. 

Network coverage can be regarded as how efficiently WSNs monitor the targeted area of interest. 

Network coverage can be considered a measure of the quality of service (QoS). Network coverage 

efficiency is measured in different ways depending on the nature of the applications and what is being 

monitored. The coverage is also crucial for maintaining the connectivity, which is defined as the 

capability of the sensor nodes to reach the base station. To measure the network coverage, we have 

created 15 sessions simultaneously to determine the actual behavior of the network using highly 

congested network scenarios. The simulations indicated that BN-MAC achieved a network coverage of 

99.8%, whereas Z-MAC, A-MAC, Speck-MAC, ADC-SMAC, and LPRT-MAC achieve network 

coverage of 50%–87%, as shown in Figures 14 and 15. 

Figure 14. Coverage efficiency of the WSN using a different number of sensor nodes. 

 

Figure 15. Coverage efficiency of the network at different intervals. 
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BN-MAC achieves higher network coverage due to its compatibility with homogeneous sensor 

nodes (region nodes and BNs). The homogeneous set of nodes with a deterministic positioning 

attempts to guarantee the network coverage and connectivity with a minimum number of sensor nodes. 

The nodes are distributed in the targeted area of interest into regions to determine where to deploy the 

sensor nodes. 

The limited energy resources must be used efficiently when choosing the BN because the BN is one 

of the major nodes in each region selected based on the presence of a high energy level using the LEI 

algorithm, which improves the connectivity of the WSN for a longer period of time. Furthermore, 

sensor nodes must be transitioned into the sleep mode using the AAS model while conserving energy 

to adjust the transmission range properly so that the sensor nodes may use the minimum amount of 

energy needed to communicate with the BN and neighbor nodes. The performance of BN-MAC is also 

improved because the one-hop neighbor node searches are optimized using LDSNS so that the data 

can be forwarded to the base station using the shortest and most efficient path. Energy is preserved by 

alleviating the routing load on some sensor nodes. By reducing the energy consumed via data routing, 

the network coverage is improved by prolonging the lifetimes of the sensor nodes. The minimum 

number of sensor nodes that are required to cover the entire network can be calculated as follows: 

        
    

    
   

where Nmin(s) is the minimum number of sensor nodes required to cover the entire area to maintain 

connectivity and coverage and ―r‖ is the sensing range of the sensor. 

Let us assume that the sensing range is smaller than the dimensions of the monitoring area. 
       

       
 

is the maximum number of sensor nodes, and ―R‖ is distance of the entire network.  

Lemma 2. 
       

       
 is the upper bound on ―R‖, and Nmin(s) is the lower bound on Si,  

where Nmin(s) =
    

    . 

Proof: Let the upper bound on ―R‖ be linear, with the maximum number of sensor nodes (total 

number of sensor nodes) equal to Nmax(s). The lower bound on ―Si‖ is invariant with Nmax(s). In addition, 

these bounds are not considered tight as long as they do not consider the transmission radius ―Tr‖ of 

the sensor nodes. However, a more accurate heuristic solution is required to follow these bounds 

closely regardless of changes that occur in the network parameters. Hence, the lifetime of the network 

is linearly asymptotic with Nmax(s), and thus, ―Si‖ will be constant with Nmax(s). 

Figure 16 demonstrates the network lifetime using BN-MAC and the other hybrid MAC protocols. 

BN-MAC outperforms the other hybrid protocols because the other hybrid protocols are not capable of 

achieving the same network lifetime with an increased number of nodes. The network lifetime depends 

largely on the battery lifetime of the sensor node. The major concern is to extend the lifetime with 

respect to energy limitations. One way of extending the lifetime of the sensor nodes is to turn off redundant 

nodes and let the redundant nodes go into the sleep state to conserve energy. Our coverage-preserving 

BN idea reduces the energy consumption and therefore increases the system lifetime. BN-MAC has 

the ability to manage traffic and reduce the idle listening time. The BN-MAC mechanism consists of a 

semi-synchronous approach that helps to reduce the channel accessing time. BN-MAC also uses a 
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short preamble message for accessing the channel without an integrated destination address in each 

preamble that reduces energy consumption and prolongs the network lifetime. 

Figure 16. Lifetime of MAC protocols using a different number of sensors. 

 

We illustrate the WSN lifetime using BN-MAC and competing hybrid MAC protocols as shown in 

Table 3. 

Table 3. Lifetime of hybrid MAC protocols over WSN.  

Name of MAC 

Protocol 
No Traffic 

Unicast Traffic 

(Intra Traffic) 

Broadcast Traffic 

(Inter Traffic) 

ADC-SMAC 308 356 167 

A-MAC 233 302 139 

BN-MAC 387 493 268 

LPRT-MAC 331 401 187 

Speck-MAC 335 412 192 

Z-MAC 344 437 197 

Figure 17 presents the average packet delay at different packet generation rates using a fixed 

mobility of 1 m/s. The average delays of BN-MAC and Z-MAC are considerably less than those  

of A-MAC, ADC-SMAC, LPRT-MAC, and Speck-MAC. BN-MAC and Z-MAC have a low level of 

latency due to the use of a short preamble. The sensor nodes in BN-MAC use three directions (down, 

up, and local) to transmit data to neighbors according to whether the nodes are 1-hop closer, 1-hop 

farther, or at the same hop distance, respectively. When a sensor node has data to send, the sensor node 

first senses the channel to confirm whether the channel is free. If the channel is free, the sensor node 

transmits a short preamble message without a destination address because the destination address 

consumes the excess network bandwidth and reduces the network connectivity. We include 

transmission, propagation, and processing delays that help the preamble message to arrive at the 

required node during the channel polling time that also guarantees delivery of the data packets to the 

sensor node. The preamble transmission also overcomes the problem associated with small drifts in the 
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clocks. Packet transmission starts when the transmission of the preamble ends. BN-MAC has 

automatic buffering because each node waits for the first packet to arrive, after which the remaining 

packets are buffered automatically to shorten the average packet delivery delay. The semi-synchronous 

mechanism is one of the most significant characteristics of BN-MAC because the semi-synchronous 

mechanism reduces the average packet delay. 

Figure 17. Average packet delay at different intervals. 

 

Figure 18 presents the average packet delay of BN-MAC and other participating protocols at 

different mobility rates. BN-MAC can manage its timeframe, number of random access frames, and 

rate of transfer frames while maintaining a nearly constant average delay. In contrast, Z-MAC (and 

other competing hybrid MAC protocols) does not have the mobility support, and thus, the average 

delay is increased. BN-MAC receives routing support from the EAP protocol at the network layer, 

which also helps to minimize the time needed for path discovery and route maintenance. 

Figure 18. Average packet delay at different mobility levels (speed in m/s). 
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Figure 19 presents the number of packets delivered by BN-MAC and other protocols using variable 

packet sizes. BN-MAC delivers more packets than the other protocols. BN-MAC uses a balanced 

semi-synchronous schedule between the neighbor nodes. A semi-synchronous schedule helps to reduce 

energy consumption. Thus, the node energy exhibits a sharp decrease as the packet size exceeds an 

optimal length. This trend can be attributed to the maximum overhead, which increases the average  

re-transmission and thus decreases throughput. As the packet size increases, the exposed interval and 

probability of an interfering node increase. When BN-MAC uses 256 contention windows to avoid 

interfering nodes, there is a marginal likelihood that the packets will be dropped. In this manner, the 

size of the packets does not decrease the performance. 

Figure 19. Number of packets delivered with variable packet sizes. 

 

BN-MAC also uses the dynamic adjustment of packet size (DAPS) function, which handles the 

variable size of the packets. Thus, there is a marginal likelihood of packet re-transmission. BN-MAC is 

also advantageous in terms of sampling and randomization, thus avoiding the packet loss. The other 

MAC protocols use 1–16 contention windows for randomized listening before sending their preamble 

message. BN-MAC configures the contention window to 256 slots. Thus, there is small probability of 

dropping the data packet because only 5% of the nodes may choose the same slots at the same time. 

Figure 20 presents the energy consumption for 20,000 variable-length packets delivered and 

acknowledged using BN-MAC and other hybrid MAC protocols. BN-MAC consumes less energy than 

A-MAC, ADC-SMAC, LPRT-MAC, Speck-MAC, and Z-MAC. The variable size of the packets does 

not significantly affect BN-MAC due to the use of the DAPS function to handle the variable packet 
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model brings the sensor node into the sleep state after the event processes are no longer being monitored. 

Thus, the AAS model helps to maintain the fairness of the energy in the network during events. 

In Figure 21, we present the duty cycle for BN-MAC and other hybrid MAC protocols at different 
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energy dissipation in the network. In BN-MAC, energy is saved to bring the sensor node into the sleep 

state using the AAS model and a semi-synchronous technique. The packet adjustment-based duty cycle 

feature of BN-MAC also effectively reduces energy consumption without significantly reducing 

throughput and increasing latency. Other participating MAC protocols take an even longer period of 

time to access the channel and deliver the packets, thus increasing the energy consumption. As a result, 

the sensor node consumes additional energy when sending larger control messages, which consume 

40%–70% of the network bandwidth. Thus, there is not a sufficient amount of power remaining in the 

other MAC protocols to send data for longer distances. For example, when the sensing range is 700 m, 

the duty cycle of BN-MAC is approximately 11%–12%, whereas A-MAC, ADC-SMAC, LPRT-MAC, 

Speck-MAC, and Z-MAC have duty cycles of 20%–29% because it takes a longer period of time to 

access the channel and forward the data packets.  

Figure 20. Energy consumption with variable packet sizes. 

 

Figure 21. Average duty cycles at variable sensing ranges. 
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8.2. Broadcast Traffic 

We evaluated the performance of BN-MAC and other hybrid MAC protocols under broadcast flood 

traffic. In this experiment, we measure the strength of the BN when floods are first sent to other regions. 

Figure 22 presents the packet delivery rate for BN-MAC and the other competing MAC protocols 

under broadcast flood traffic. The packet delivery ratio of the BN is calculated as the total number of 

flood messages received from all nodes and delivered to other regions, which is divided by the total 

number of distinctive messages generated by all nodes. Each message of the node consists of a 

sequential number to find the uniqueness of the message. The simulation demonstrated that BN-MAC 

outperforms all of the other hybrid MAC protocols. 

Figure 22. Delivery ratio under broadcast flood traffic.  

 

The BN-MAC curve is considerably higher than those for the other curves because the delivery 

ratio remains stable with the different network traffic floods. The high delivery rate is maintained 
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latency is increased, and the throughput decreases. Overall, BN-MAC has a low latency and 

outperforms the other hybrid MAC protocols. 

Figure 23. Latency of BN-MAC and the other hybrid protocols using different hops and 

traffic flows.  
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information using less energy resources efficiently. Four types of SPIN protocols are available:  

SPIN-EC and SPIN-PP are used for point-to-point network, and another SPIN-RL and SPIN-BC are 

appropriate for broadcast network traffic and also providing 1-hop destination search. SPIN-RL does 

not provide optimal route at 1-hop destination, but helps to improve the search capability. 

Additionally, the mechanism of data advertisement of SPIN-RL is not highly guaranteed for reliable 

delivery of data. Energy aware routing protocol (EAP) is the energy efficient that uses sub-optimal 

routes to enhance the network lifetime. In EAP, single efficient path is chosen from many multiple 

paths to preserve energy. EAP has also priority over directed diffusion routing protocol family because 

EAP improves network performance and saves energy 21.5% to 44% [48]. 

We choose EAP protocol based on its compatible features with BN-MAC. EAP works in 

combination with the LDSNS model to find optimized 1-hop shortest paths (the LDSNS model is used 

to choose the best efficient one-hop neighbor node to establish the path to the destination node. 

LDSNS reduces energy consumption while choosing an efficient route to path). 

EAP helps to maintain resource awareness, and improves the network lifetime. EAP also possesses 

some hierarchal features, which can support to BN to coordinate with intra and inter data transmission 

efficiently. BN-MAC with EAP maintains data aggregation that helps BN to coordinate and 

communicate without any reservation over WSN.  

Figure 24. Path detection time for different number of hops.  
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energy to use low duty cycle semi synchronous mechanism and AAS model, which also control the 

idle listening issue at the MAC level. From other side, EAP chooses single efficient path from group of 

multiple paths to save energy. 

Figure 25. Broken paths% at different intervals.  

 

Figure 25 shows broken routes during entire simulation time. BN-MAC is superior to competing 

hybrid MAC protocols throughout the entire simulation time. The competing MAC protocols 

experience the problem due to use of their original routing protocols. As a result, those protocols took 

enough time for route discovery. The route discovery time could be longer in some critical 

circumstances. Further, it is also easier to discover the route in WSNs based on single hop discovery 

process. The single-hop discovery process can handle the scalability and maintain the network 

mobility efficiently [37]. Path detection time for each hop is varied because it depends on the density 

of nodes that can be calculated as follows: 

     
     

   
 (27) 

Let us assume that      is the probability density function (a function that defines the comparative 

probability for the random variable to yield desired value; it is usually associated with absolutely 

continuous univariate distributions). H [Nr] is the number of hops in network and     is the length of 

network. Thus, the value of       can be calculated as follows: 

      
  

 
          (28) 

where: ― ‖, distance from source node ― ‖ to destination node ― ‖. 

Substituting the value of       and we get as: 

     

  
          

   
 (29) 

Simplifying (29), we get: 
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Determining the discovery time for broken links at each path, we need to consider the number of 

hops, network size and velocity of each node. 

Where:      , time for maximum number of hops;    ), total network area and ―   ‖ is 

corresponding velocity of each node. 

Therefore, consumption time for maximum number of hops can be calculated as follows: 

      
         

  
 (31) 

Substitute the values of      then we can get as follows: 

      

  
 

         

        

  
 

(32) 
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Substitute the value of      in Equation (32) to get Equation (34): 

      

  
 

         

   
     

 

  
 
 

   

  
 

(34) 

9. Discussion of Results 

Energy consumption has been known to be one of the greatest challenges of WSNs and will 

continue to be an immense challenge for the deployment of WSNs because the advancement in battery 

technology has been slower than the growth of processing power and data communication rates. This 

challenge has attracted researchers to introduce several new energy-efficient protocols to address this 

problem [48]. To address this challenge, several MAC protocols have been introduced at the MAC 

level. Hybrid MAC protocols are of paramount importance because they have lower energy 

consumption and better scalability than other categories of MAC protocols. In this section, we discuss 

and compare the strengths and weaknesses of BN-MAC versus other hybrid MAC protocols.  

The Z-MAC protocol belongs to the hybrid family that supports multi-hop topology, and the nodes 

are fixed at their positions. The global time synchronization is used to synchronize the nodes, and slots 

are assigned to nodes but not fixed for each node. Z-MAC competes for the channel within any slot for 

data transmission. The assigned node is given high priority, which reduces collisions. The latency is 

increased, and the throughput is moderated. Z-MAC faces some problems because of the use of long 

preamble messages with a destination address, which increases the duty cycle and energy 

consumption. The fixed topology limits the node scalability of WSNs. The setup of the network phase 

becomes more difficult when a new node joins or leaves the network. Mobile nodes are unable to 

receive and send data packets. As a result, the network paths are broken.  
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Speck-MAC is a variant of the B-MAC protocol but exhibits redundant short-packet transmission 

and integrated destination addresses. Speck-MAC is efficient in transmitting the unicast messages, but 

the sender wastes excess energy by sending additional frames even though the receiver has already 

received the frames. The additional frames consume channel bandwidth and thus reduce the packet 

delivery rate. Speck-MAC supports mobility when the network path is broken, which increases latency.  

LPRT-MAC is based on an efficient bandwidth allocation mechanism and uses super frames fixed 

into mini-slots to communicate with the base station. LPRT-MAC reduces the power consumption and 

coordinates with the channel. LPRT-MAC exhibits significant packet loss, which is affected by bit 

errors. LPRT-MAC also suffers from the star topology. Once the central node fails, the entire network 

suffers because the node maintenance requires a longer period of time in the WSN. This situation 

reduces the throughput and increases latency. Additionally, there is no dynamic node selection in 

LPRT-MAC, which could help to replace the node prior to its failure. The star topological network 

also exhibits low mobility because the nodes are tightly linked and cannot leave or join the network. 

LPRT-MAC also cannot be used for other communication topologies because it is not suitable  

for multi-hop WSNs due to topological constraints. A-MAC is based on a collision-free and  

non-overhearing mechanism and is particularly suitable for surveillance and monitoring applications. 

The nodes are attentive and inactive for longer periods of time until an event is detected. The major 

advantage of A-MAC is that it allows nodes to be notified in advance. However, A-MAC exhibits 

rather high idle listening and packet overhead. A-MAC consumes high amount of energy due to 

advertisements. Additionally, the high level of latency reduces the throughput. Sensor nodes are 

deployed tightly in A-MAC, causing mobility issues. 

ADC-SMAC improves upon two features of S-MAC: node utilization and sleep delay. The 

advantage of ADC-SMAC is that it introduces flexible duty cycles and forwards new scheduling 

information to the neighbor sensor nodes. ADC-SMAC also supports real-time data communication. 

However, local synchronization in ADC-SMAC consumes a significant amount of energy and 

increases the latency. ADC-SMAC is not suitable for controlling idle listening and overhearing 

problems. ADC-SMAC also does not support mobility.  

Our proposed BN-MAC is an energy efficient, semi-synchronous, and low-duty-cycle hybrid 

protocol that is especially designed to support applications in which events occur in different locations. 

BN-MAC is simulated on different region-based WSNs. Each region is controlled by a BN. BN-MAC 

does not compel any node to be elected as a BN based on a probability calculation. BN-MAC selects 

the BN based on the energy level that improves the network lifetime using the one-hop neighbor node 

with a semi-synchronous mechanism for scheduling at the MAC level. The multiple hops on the path 

create nonlinearities in the system. The node must wait for the next hop node to wake up. In this 

manner, the packet is held on every link of the path for different amounts of time [49]. 

EAR and LDSNS are used to determine the shortest efficient path at the routing level. Thus, there is 

a small probability of failure for the one-hop path. If the one-hop path fails, then the second best  

one-hop path is chosen based on the information stored for each one-hop neighbor node. Furthermore, 

BN-MAC performs localized time slot allocation without changing the time slots of existing nodes. 

This procedure reduces the latency and overhead and has a small probability of broken links. AAS is 

an energy-efficient search that reduces the energy consumption because the nodes automatically sense 

the environment. IDM is another feature implemented in BN-MAC. IDM forces the sensor node to 
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work either in the passive or active mode, depending on the environment. Furthermore, the BN 

supports mobile environments because the sensor nodes exchange the schedule at the one-hop path but 

keep the information for two hops. This feature supports scalability. The characteristics of BN-MAC 

and other hybrid MAC protocols are illustrated in Table 4 that demonstrates the strengths and 

weakness based on simulation results.  

Table 4. Characteristics and affecting factors of Hybrid Medium Access Control (MAC) 

Protocols and BN-MAC protocol.  

No:# Parameter ADC-SMAC LPRT-MAC BN-MAC Speck-MAC A-MAC Z-MAC 

1 Coverage Low Medium High Medium Low Medium 

2 Network lifetime Low Medium High Low Low Medium 

3 Average Latency Medium Medium Low High Medium Low 

4 Mobility Low Low High Low Low Medium 

5 Throughput Low Medium High Low Low Medium 

6 Residual energy Low Medium High Medium Low Medium 

7 Packet size affect High Medium Low High Medium High 

8 Duty cycle % High High Low High Medium Medium 

9 
Sensing Range-effect 

on performance 
High High Low Medium Medium Medium 

10 
Various floods/flows 

affect 
Medium High Low High High Medium 

11 Delivery ratio % Medium Low High Low Low Medium 

12 Path detection time Hugh Medium Low High Medium Medium 

13 Broken paths% Medium Low Low Medium High High 

10. Conclusions 

This paper introduces a new energy-efficient BN-MAC hybrid protocol with mobility support.  

The BN-MAC is proposed and simulated for the battlefield scenario over WSNs. The protocol 

leverages the features from both CSMA and TDMA. CSMA features embedded in BN-MAC consist 

of semi-synchronization, which uses a short preamble to access the channel and maintain the schedule 

at the one-hop neighbor nodes. TDMA features are imported into BN-MAC for collision-free data 

delivery. We have introduced the IDM model, which automates the sensor nodes to work either in the 

passive or active mode with respect to the environment. The IDM model reduces the energy 

consumption when working in the passive mode. BN-MAC also has a reduced idle listening time 

based on the use of the AAS model. The AAS model forces the sensor nodes to go into the sleep state 

after collecting information on the events. Latency is reduced using the LDSNS model and EAP 

routing protocol. LDSNS provides the efficient one-hop path search. EAP is suitable for maintaining 

route discovery and path maintenance at the one-hop destination for faster data delivery. BN-MAC 

also uses two types of messaging schemes to control congestion and reduce latency: Anycast is used to 

obtain information from the one-hop neighbors, and unicast is used to forward the data. To evaluate 

the features of the proposed BN-MAC in the battlefield scenario, we used ns2.35-RC7 to demonstrate 

the performance from different perspectives. We have also simulated other hybrid protocols, such as 

Z-MAC, A-MAC, ADC-SMAC, LPRT-MAC, and Speck-MAC. The simulation results demonstrate 
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that BN-MAC reduces the energy consumption by 18%–45%, improves the throughput, and decreases 

the latency compared with other hybrid MAC protocols with the same node density and topology. Our 

findings prove that BN-MAC is a scalable and mobility-aware protocol with real-time communication 

support. The protocol can be disseminated for other WSN applications, such as monitoring, controlling 

natural disasters, human-centric applications, and tracking mobile and static home automation devices. 

In the future, we will implement its features in a realistic environment.  

Acknowledgments 

The authors wish to thank Lili Zhu, Massachusetts Institute of Technology (MIT) for discussing the 

existing hybrid MAC protocols and helping to set up simulation scenarios in ns2. The special thanks to 

Mohamed F. Younis, Department of Computer Science and Electrical Engineering, University of 

Maryland, USA for his valuable comments and suggestions for improving the quality of the paper. 

Finally, we are also thankful to anonymous reviewers for their valuable feedback. 

Author Contributions 

This research work is part of Abdul Razaque’s Ph.D. dissertation work. The work has been 

primarily conducted by Abdul Razaque under the supervision of Khaled M. Elleithy. Extensive 

discussions about the algorithms and techniques presented in this paper were carried between the two 

authors over the past year. 

Conflicts of Interest  

The authors declare no conflict of interest. 

References 

1. Meng, W.; Xie, L.; Xiao, W. Optimality analysis of sensor-source geometries in heterogeneous 

sensor networks. IEEE Trans. Wirel. Commun. 2013, 12, 1958–1967. 

2. Razaque, A.; Elleithy, M.K. Automated Energy Saving (AES) Paradigm to Support Pedagogical 

Activities over Wireless Sensor Networks. In Proceedings of the 6th Springer/ACM International 

Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI), Vitoria-Gasteiz, 

Spain, 3–5 December 2012; pp. 512–519. 

3. Joshi, Y.K.; Younis, M. Autonomous recovery from multi-node failure in Wireless Sensor 

Network. In Proceedings of the IEEE Conference on Global Communications Conference 

(GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 652–657. 

4. Handbook on Ambient Intelligence and Smart Environments; Hideyuki, N., Aghajan, H.,  

Augusto, J.C., Eds.; Springer: New York, NY, USA, 13 November 2009. 

5. Razaque, A.; Elleithy, M.K. Least Distance Smart Neighboring Search (LDSNS) over Wireless 

Sensor Network. In Proceedings of the IEEE Conference on European Modeling Symposium 

(EMS), Manchester, UK, 20–22 November 2013. 

  



Sensors 2014, 14 5115 

 

 

6. Reddy, S.; Samanta, V.; Burke, J.; Estrin, D.; Hansen, M.; Srivastava, B.M. MobiSense—Mobile 

Network Services for Coordinated Participatory Sensing. In Proceedings of the 9th International 

Symposium on Autonomous Decentralized Systems (ISADS), Athens, Greece, 23–25 March 2009; 

pp. 1–6. 

7. Kabara, K.; Calle, M. MAC protocols used by wireless sensor networks and a general method of 

performance Evaluation. Int. J. Distrib. Sens. Netw. 2012, 2012, 1–11. 

8. Demirkol, I.; Ersoy, C.; Alagöz, F. MAC protocols for wireless sensor networks: A survey.  

IEEE Commun. Mag. 2006, 44, 115–121. 

9. Rezaie, M.G.; Mansouri, S.V.; Mani, M. Critical Area Attention in Traffic Aware Dynamic Node 

Scheduling for Low Power Sensor Networks. In Proceedings of the IEEE Wireless 

Communications and Networking Conference, New Orleans, LA, USA, 13–17 March 2005; 

Volume 4, pp. 1933–1938. 

10. Huang, P.; Xiao, L.; Soroor, S.; Mutka, M.W.; Ning, X. The evolution of MAC protocols in 

wireless sensor networks: A survey. IEEE Commun. Surv. Tutor. 2013, 15, 101–120.  

11. Razaque, A.; Elleithy, M.K. Automatic energy saving (AES) model to boost ubiquitous wireless 

sensor networks (WSNs). Int. J. Comput. Technol. 2013, 10, 1–11. 

12. Bachir, A.; Dohler, M.; Watteyne, T.; Leung, K.K. MAC essentials for wireless sensor networks. 

IEEE Commun. Surv. Tutor. 2010, 12, 222–248.  

13. Van Hoesel, L.F.W.; Havinga, P.J.M. A Lightweight Medium Access Protocol (LMAC) for 

Wireless Sensor Networks: Reducing Preamble Transmissions and Transceiver State Switches.  

In Proceedings of the 1st International Workshop on Networked Sensing Systems (INSS), Tokyo, 

Japan, 22–23 June 2004; pp. 205–208.  

14. Liqi, S.; Fapojuwo, A. TDMA Scheduling with optimized energy efficiency and minimum delay 

in clustered wireless sensor networks. IEEE Trans. Mob. Comput. 2010, 9, 927–939. 

15. Rhee, I.; Warrier, A.; Aia, M.; Min, J. Z-MAC: A Hybrid MAC for Wireless Sensor Networks.  

In Proceedings of the International Conference on Embedded Networked Sensor Systems 

(SENSYS), San Diego, CA, USA, 2–4 November 2005. 

16. Rhee, I.; Warrier, A.; Aia, M.; Min, J.; Sichitiu, M.L. Z-MAC: A hybrid MAC for wireless sensor 

networks. IEEE/ACM Trans. Netw. 2008, 16, 511–524. 

17. Suh, C.; Ko, Y.-B. A Traffic Aware, Energy Efficient MAC Protocol for Wireless Sensor Networks. 

In Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe, Japan,  

23–26 May 2005; Volume 3; pp. 2975–2978.  

18. Liu, A.; Yu, H.; Li, L. An Energy-Efficiency and Collision-Free MAC Protocol for Wireless 

Sensor Networks. In Proceedings of the 2005 IEEE 61st Vehicular Technology Conference, 

Stockholm, Sweden, 30 May–1 June 2005; Volume 2, pp. 1317–1322.  

19. Ye, W.; Heidemann, J.; Estrin, D. Medium access control with coordinated adaptive sleeping for 

wireless sensor networks. IEEE/ACM Trans. Netw. 2004, 12, 493–506. 

20. Zhou, G.; He, T.; Krishnamurthy, S.; Stankovic, J.A. Impact of Radio Irregularity on Wireless 

Sensor Networks. In Proceedings of the 2nd International Conference on Mobile Systems, 

Applications, and Services, Boston, MA, USA, 6–9 June 2004; pp. 125–138. 



Sensors 2014, 14 5116 

 

 

21. Woo, A.; Culler, D. A Transmission Control Scheme for Media Access in Sensor Networks. In 

Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, 

Rome, Italy, 16–21 July 2001; pp. 221–235.  

22. Polastre, J.; Hill, J.; Culler, D. Versatile Low Power Media Access for Wireless Sensor Networks. 

In Proceedings of the 2nd ACM Conference on Embedded Networked Sensor Systems (SenSys), 

Baltimore, MD, USA, 3–5 November 2004. 

23. Merlin, C.J.; Heinzelman, W.B. Schedule adaptation of low-power-listening protocols for 

wireless sensor networks. IEEE Trans. Mob. Comput. 2010, 9, 672–685. 

24. Lin, J.; Ingram, A.M. SCT-MAC: A Scheduling Duty Cycle MAC Protocol for Cooperative 

Wireless Sensor Network. In Proceedings of the 2012 IEEE International Conference on 

Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 345–349. 

25. Liu, Y., Lionel, M. A New MAC Protocol Design for Long-Term Applications in Wireless Sensor 

Networks. In Proceedings of the 2007 International Conference on Parallel and Distributed 

Systems, Hsinchu, Taiwan, 5–7 December 2007; pp. 1–8. 

26. Wong, K.J.; Arvind, D. SpeckMAC: Low Power Decentralized MAC Protocols for Low Data 

Rate Transmissions in Specknets. In Proceedings of the ACM International Workshop on 

Multihop Ad-Hoc Networks: From Theory to Reality, Florence, Italy, 26 May 2006; pp. 71–78. 

27. Yan, W.W.; Xiang, Y.L.; Mo, L.; Wei, L. Energy-efficient wake-up scheduling for data collection 

and aggregation. IEEE Trans. Parallel Distrib. Syst. 2010, 2, 275–287. 

28. An, Z. Medium access control protocol with dynamic duty cycle in wireless sensor network.  

Int. J. Future Comput. Commun. 2012, 1, 36–39. 

29. Afonso, J.A.; Rocha, L.A.; Silva, H.R.; Correia, J.H. MAC Protocol for Low-Power Real-Time 

Wireless Sensing and Actuation. In Proceedings of the 11th IEEE International Conference on 

Electronics, Circuits and Systems, Nice, France, 10–13 December 2006; pp. 1248–1251. 

30. Liu, M.; Cao, J.; Chen, G.; Wang, X. An energy-aware routing protocol in wireless sensor 

networks. Sensors 2009, 9, 445–462.  

31. Ioannis, C.A.B.; Kinalisa, A.; Nikoletseasa, S.B. Fault tolerant and efficient data propagation in 

wireless sensor networks using local additional network information. J. Parallel Distrib. Comput. 

2007, 67, 456–473. 

32. Razaque, A.; Elleithy, M.K. Pheromone Termite (PT) Model to provide Robust Routing over 

WSNs. In Proceedings of the IEEE International Conference for American Society for 

Engineering Education (ASEE), Bridgeport, CT, USA, 3–5 April 2014; in press. 

33. Razaque, A.; Elleithy, M.K. Mobility-Aware Hybrid Medium Access Control Protocol for Wireless 

Sensor Network (WSN). In Proceedings of the 2014 IEEE Sensors Applications Symposium, 

Rydges Lakeland Resort, Queenstown, New Zealand, 18–20 February 2014; in press. 

34. Brownfield, M.; Yee, G.V.; Anderson, E.; Han, R. X-MAC: A Short Preamble MAC Protocol for 

Duty-Cycled Wireless Sensor Networks. In Proceedings of the ACM 4th International Conference 

on Embedded Networked Sensor Systems (SenSys), Boulder, CO, USA, 1–3 November 2006;  

pp. 307–320. 

35. Jamieson, K.; Balakrishnan, H.; Tay, Y.C. Sift: A MAC Protocol for Event-Driven Wireless 

Sensor Networks. In Proceedings of the 3rd European Workshop on Wireless Sensor Networks 

(EWSN), Zurich, Switzerland, 13–15 February 2006; pp. 260–275. 



Sensors 2014, 14 5117 

 

 

36. Yang, O.; Heinzelman, W.B. Modeling and performance analysis for duty-cycled MAC protocols 

with applications to S-MAC and X-MAC. IEEE Trans. Mob. Comput. 2012, 11, 905–921.  

37. Antonopoulos, A.; Verikoukis, C. Network coding-based cooperative ARQ medium access control 

protocol for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2012, 2012, 601321:1–601321:9. 

38. Brownfield, M.I.; Mehrjoo, K.; Fayez, A.S.; Davis, N.J., IV. Wireless Sensor Network  

Energy-Adaptive MAC Protocol. In Proceedings of the 3rd IEEE Consumer Communications and 

Networking Conference (CCNC), Las Vegas, NV, USA, 8–10 January 2006; pp. 778–782.  

39.  Ba, H.; Demirkol, I.; Heinzelman, W.B. Passive wake-up radios: From devices to applications. 

Ad Hoc Netw. 2013, 11, 2605–2621. 

40. Chiasserini. C.; Rao, R.R. Improving energy saving in wireless systems by using dynamic power 

management. IEEE Trans. Wirel. Commun. 2003, 2, 1090–1100. 

41. BTnodes—A Distributed Environment for Prototyping Ad Hoc Networks. Available online:  

http://www.btnode.ethz.ch/ (accessed on 26 August 2013). 

42. Kay, M.S. Fundamentals of Statistical Signal Processing, Volume III: Practical Algorithm 

Development, 1st ed.; Signal Processing Series; Prentice Hall: Upper Saddle River, NJ, USA,  

5 April 2013. 

43. Zhao, J.; Govindan, R. Understanding Packet Delivery Performance in Dense Wireless Sensor 

Networks. In Proceedings of the ACM on 1st International Conference on Embedded Networked 

Sensor Systems (SenSys), Los Angeles, CA, USA, 5–7 November 2003; pp. 1–13. 

44. Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges. 

Ad Hoc Netw. 2005, 3, 257–279. 

45. Tilak, S.; Abu-Ghazaleh, N.B.; Heinzelman, W. A taxonomy of wireless micro-sensor network 

models. ACM SIGMOBILE. Mob. Comput. Commun. 2002, 6, 28–36.  

46. Kulik, J.; Heinzelman, W.; Balakrishnan, H. Negotiation-based protocols for disseminating 

information in wireless sensor networks. Wirel. Netw. 2002, 8, 169–185. 

47. Kemal, A.; Mohamed, F.Y. A survey on routing protocols for wireless sensor networks.  

Ad Hoc Netw. 2005, 3, 325–349. 

48. Gupta, P.; Kumar, R.P. The capacity of wireless networks. IEEE Trans. Inf. Theory. 2000, 46, 

388–404. 

49. Merlin, C.J.; Heinzelman, W.B. Duty Cycle Control for Low-Power-Listening MAC Protocols. In 

Proceedings of the 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems, 

Atlanta, GA, USA, 29 September–2 October 2008; pp. 497–502. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


