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As the field of internet of things and wireless sensor networks is expanding swiftly,
the energy constraints of its networked embedded devices will increase significantly.
This thesis tries to address the issues of this increase in the energy consumption of
the wireless sensors. The thesis work includes an analysis of three different Medium
Access Control (MAC) protocols which are ported into the Contiki operating system.
The three protocols are the beacon-enabled mode of the IEEE 802.15.4 standard, the
TSCH mode of the IEEE 802.15.4e standard, and the ContikiMAC protocol which
is implemented by the ContikiOS developers. While the beacon-enabled mode is
evaluated theoretically, the other protocols are evaluated through simulations using
Cooja simulator. Although the results have demonstrated a more energy-efficient
performance by the TSCH mode during normal operating modes, ContikiMAC re-
sults are more energy efficient during the transmission and reception operations of
the sensor transceiver. The presented results can be utilized to pave the way for fu-
ture development of a more energy-efficient MAC protocol. Therefore, the overall
power consumption of a wireless sensor platform can be thoroughly exploited.
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Chapter 1

Introduction

The fields of sensor design, communication and information technology are con-
stantly evolving at a very high pace resulting in the manifestation of Wireless Sensor
Networks (WSNs). This type of network has special characteristics and features that
can potentially enable these networks to connect the physical world with the vir-
tual (computing) world and provide limitless numbers of practical applications in
various fields. The applications of WSNs include cattle monitoring, supply chain
management, precision agriculture, health care and military applications. However,
some of these applications have encountered a huge number of constraints and chal-
lenges. Since the WSN field comprises various technical domains, the integration of
all these technologies in a single embedded system can be a very challenging process
especially when it has limited resource constraints.

A number of protocols have been introduced to provide communication between
the nodes of a sensor network. Initially, the traditional IEEE 802.11 family of stan-
dards was used in the early versions of WSNs [1]. This type of WSN can be found in
the networks that have high bandwidth requirements such as multimedia. The IEEE
802.11 standards were introduced in 1997 [2] providing wireless network technology
for the majority of mobile systems. The IEEE 802.11 standards have two frequency
bands: 2.4 GHz and 5 GHz which cover different protocols and usages.

Nevertheless, the low-power WSNs do not require the high data rates of the
IEEE 802.11 standards due to the high-energy overhead imposed by these high data
rates. As the bandwidth requirements in the low-power WSNs are typically low, a
number of protocols have been developed to meet the low-power consumption and
low data rate requirements. The IEEE 802.15.4 standard [3] was first published in
2003 to satisfy the low-power WSN requirements mentioned earlier. It defines the
Medium Access Control (MAC) and Physical (PHY) layers of the wireless sensor
network stack. These two bottom layers are very crucial for a wireless sensor opti-
mization, as they can potentially enhance the performance and power consumption
of the sensors in a WSN.
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1.1 Contribution of the Thesis

The major aim of this thesis is to analyze the energy consumption of different Radio
Duty Cycling (RDC) and Medium Access Control (MAC) protocols within the net-
work stack of the Contiki operating system. A number of RDC/MAC protocols have
been introduced to improve the power consumption of a wireless sensor, and thus
we can achieve a longer lifetime for the network as a whole. These protocols provide
different algorithms that optimize the activation of the sensor’s radio transceiver, as
it is the most power-consuming device of a sensor.
The thesis provides energy consumption evaluation of three different MAC behaviour
modes which are beacon-enabled mode, TSCH mode and ContikiMAC. The beacon-
enabled mode is analyzed theoretically, while the TSCH mode and ContikiMAC
are analyzed through simulations using the Cooja simulation program based on the
ContikiOS architecture. Furthermore, the power consumption for the nodes of the
network is extensively analyzed to determine the energy efficiency of both protocols.

1.2 Structure of the Thesis

The structure of the thesis is explained in this section. Chapter 2 starts by intro-
ducing the main concepts behind wireless sensor networks. Then, it continues by
discussing the different communication protocols of WSNs, the IEEE 802.15.4 and
IEEE 802.15.4e standards. Moreover, chapter 2 presents the structure of the Con-
tiki network stack and the current supported network stacks. Additionally, the
IEEE 802.15.4 beacon-enabled mode and the IEEE 802.15.4e TSCH mode are both
explained. Finally, an overview of the software and toolchain used to implement the
required tasks is presented.

The literature review is discussed in chapter 3 mentioning the previous work
that has been done on the beacon-enabled mode and the TSCH mode. Furthermore,
a motivation of the thesis topic is discussed at the end of the chapter.

Chapter 4 explains the hardware and software implementations of the beacon-
enabled mode and TSCH behaviour modes. Additionally, the configurations of the
simulation work are discussed in detail in order to evaluate the software implemen-
tations of the protocols. Finally, the results of the simulation are shown and the main
findings of this evaluation are presented.

The final conclusions of the thesis work are mentioned in chapter 5, along with
the different directions for future work.
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Chapter 2

Background

This chapter discusses the main concepts behind wireless sensor networks, their
main communication protocols, and the IEEE 802.15.4 standard along with its be-
haviour modes: beacon and non-beacon enabled modes. The 2012 IEEE 802.15.4e
standard and its new MAC behaviour modes such as TSCH are explained. Further-
more, an overview of the tools and software used is briefly presented.

2.1 Wireless Sensor Networks

The main objective of a Wireless Sensor Network (WSN) resides in transmitting
the collected data from the sensors to a centralized processing station wirelessly.
A sensor node may have more than the sensing component. It can also have an
on-board processing to minimize the communication bandwidth, a communication
transceiver for sending the data, and a storage component that can store the data
until they are safely transmitted to a base station. As a result, the sensor nodes can
provide functions other than data collection such as in-network analysis, correlation,
and management of their own data and the data from other sensor nodes.

An example of a WSN network topology is described in Figure 2.1. The network
has a tree-like topology where a base station (BS) acts as the root of the tree, relay
nodes act as branches of the tree and sensor nodes are the children of each tree’s
branch. The base station (BS) gathers all the data from the relays typically to be sent
to the cloud via internet. Furthermore, based on the application type, a number of
relays can be deployed to receive the data from the sensor nodes within its trans-
mission range which might be analyzed and processed to be sent to the base station
depending on the routing protocol used.

Base Station

Nodes

Relays

FIGURE 2.1: An example of a WSN network topology
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Applications of WSNs with the aforementioned requirements might seem very lim-
ited to only high-end applications like radiation, land mine, and nuclear-threat de-
tection systems. However, the number of applications and fields are quite huge and
continue to increase along with the new advancements in technology. An overview
of the current and potential applications is mentioned below [4].

• Environmental applications:

– Precision agriculture

– Natural disaster detection in remote areas

• Home-related applications:

– Home Automation and monitoring

– Automated meter reading

• Health-related applications:

– Supporting and assisting the elderly

– Drug administration

– Remote monitoring patients’ health and movement inside a hospital

• Other applications:

– Cattle monitoring

– Traffic flow surveillance

– Inventory management

– Battlefield and military applications

2.2 Challenges and Constraints

A number of factors and constraints affect the design of a WSN depending on its ap-
plication area. This, in turn, lead to having more specific protocols and algorithms
to satisfy the needs and requirements of each application domain. This section dis-
cusses the key challenges and design constraints of wireless sensor networks.

2.2.1 Energy Efficiency

One of the main constraints when designing any embedded system is the energy
consumption along with its area and price. In general, most WSNs are powered
by batteries [1], which have to be either replaced or recharged when their charge is
empty. However, some sensor nodes can be simply discarded once their battery is
drained, as their reactivation might affect the total energy consumption scheme of
the whole network. Nevertheless, the most important factor is that a sensor node
must be able to operate until either its mission time is over or the battery can be
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replaced or recharged. The duration of a node’s mission time depends on the applica-
tion’s nature. For instance, natural disaster applications may use sensors that need
to operate for at least a couple of years while mission critical applications might only
use sensors that can operate for a few hours.

It is clear from the points mentioned earlier that energy efficiency is one of the
core design constraints for a WSN. As a result, the energy constraint design can po-
tentially affect every aspect of a sensor node’s design which is why it is discussed
and analyzed thoroughly in the following chapters and throughout this work. It can
be noticed from equation 2.1 below that the energy consumption of CMOS-based
processors mainly depends on two factors, namely the switching energy (Eswitch)
and the leakage energy (Eleakage) [5].

ECPU = Eswitch + Eleakage = CtotalV
2
dd + VddIleak∆t , (2.1)

Where Ctotal is the total capacitance, Vdd is the supply voltage, Ileak is the leakage
current, and ∆t is the duration of operation. While the major factor that used to
affect the total energy consumption is the switching energy, the latest developments
resulted in making the leakage energy the dominant part of the equation taking
up more than half of the total energy consumption [1]. Consequently, a number of
techniques have been introduced to reduce the leakage energy such as dynamically
switching off idle components and software-based techniques such as Dynamic Volt-
age Frequency Scaling (DVFS). As the energy efficiency is one of the cornerstones of
this work, it is thoroughly discussed in the next chapters.

2.2.2 Design Constraints

Typically, WSNs deal with space and time where locality, coverage, data reliability
and synchronization are of extreme importance, as they constitute the core purpose
of wireless sensors. While the advancement in hardware and software develop-
ment is rapidly evolving which suggests adding more processing power and com-
plex features, it is extremely challenging to integrate such features in a simple board
with constrained energy consumption. Consequently, creating simpler, cheaper, and
more optimized and efficient devices forms the main design goal of wireless sensors
of this type, in which they share limited processing power and storage capacity.

Moreover, these hardware constraints play a fundamental role in software de-
velopment at different levels. For instance, WSN’s operating systems must be small
and simple meaning they should have limited memory footprints and efficient re-
source/task management like the Mini Operating System (MOS) used by Li-chun
Ko et al. in [6]. In addition to software constraints, hardware constraints also im-
pact the development of applications and protocols that are executed on the sensor
nodes. For example, a number of data fusion and aggregation protocols can process
the data before they are sent to eliminate the redundant data. However, these algo-
rithms can potentially require processing power and memory footprints more than
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the capabilities of the current sensor boards of a low cost. In conclusion, the whole
software and hardware development cycle of WSNs must be designed in an efficient
way where each layer can complement one another and make efficient use of such
high resource-constrained system.

2.2.3 Security and Reliability

Data are considered the intrinsic currency of WSNs; therefore, the security and the
reliability of the data transmitted across the network are extremely crucial in most
WSNs applications. Security deals with different aspects such as data confidentiality
[4] in which encryption ensures giving the correct access privileges to the right users,
data integrity which assures the identity and digital signature of the data, and data
availability which ensures that the data are always available when needed (prevent-
ing denial of service attacks). Moreover, reliability guarantees that the transmitted
data are fully received whether there is no packet loss or resending the lost packets
if a packet loss is found.

The remote and unattended nature of WSNs makes them vulnerable to different
kind of malicious attacks and threats. For example, denial-of-service attack tries to
disrupt the flow of communication between the nodes of the network making them
unable to function properly [1]. This can be achieved by sending high-powered wire-
less signals to prevent a successful reception of packets between the nodes which is
called a jamming attack. Based on the nature of the application under attack, the
damages can be catastrophic. Therefore, a number of algorithms and techniques
have been introduced to protect the sensor networks from these attacks. At the
same time, it is really challenging formulate solutions that typically require low com-
putational power, communication and memory footprints to satisfy the resource-
constrained nature of the sensor boards in WSNs.

2.2.4 Autonomous Maintenance

Sensor networks are typically self-configuring systems. The goal of most WSN sim-
ulators is to be able to mimic unpredictable situations and states, as they gener-
ally must operate in remote areas or tough environments. Consequently, the sensor
nodes must be able to reconfigure themselves, operate and cooperate with other
nodes in the network. Additionally, the nodes should adapt to potential failures in
other nodes such as mobile ones, changes in the environment and unstable situa-
tions without human interference.

The self-management of the sensor nodes includes autonomous configuration,
maintenance, and adaptation of the nodes within the network. Therefore, these de-
sign goals are handled on different levels in software and hardware development,
in addition to the network topology of the system.
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2.3 Network Standards of WSN

During the last couple of decades, a variety of protocols and standards have been
introduced to provide communication and network functionalities to wireless sen-
sor networks. The IEEE 802.15.4 standard is a low data rate protocol for short-range
wireless networks. It was first published [4] in 2002 and is discussed in detail in the
following section. While IEEE 802.15.4 covers the physical layer and MAC layer of
the network stack, ZigBee and 6LoWPAN protocols cover the network and applica-
tion layers on top of IEEE 802.15.4 layers.

ZigBee was initially introduced in 2003 by the ZigBee Alliance group [1] with the
aim of providing low-cost communication technology to networks that require low
data rates and power consumption. Furthermore, the IEEE and ZigBee Alliances
collaborated together to build upon IEEE 802.15.4 low-level network layers in 2004
where ZigBee became the commercial name for the IEEE 802.15.4 technology.

Finally, another protocol which was developed during the inception of Internet
of Things (IoT) is IPv6 over Low-power Wireless Area Networks (6LoWPAN). It is a
set of standards developed by the Internet Engineering Task Force (IETF) in 2007 [7]
with the aim of enabling efficient use of IPV6 over IEEE 802.15.4 low-power wire-
less networks for devices with limited area, data rate, and memory footprints such as
WSN. The 6LoWPAN protocol applies IP communication capabilities to the nodes of
the network by building an adaptation layer on top of the IEEE 802.15.4 MAC layer,
and thus providing these nodes with TCP/IP communication above the adaptation
layer. The primary motivation behind the 6LowPAN project was to connect all IP-
based devices easily to other IP networks without any kind of translation gateways
or proxies and to have a fully compatible and connected IoT world.

2.4 IEEE 802.15.4 Standard

IEEE 802.15.4 [8] is a short-range wireless technology that aims to enable applica-
tions with relatively low throughput and latency requirements within wireless per-
sonal area networks (PANs). The task group 4 of the IEEE 802.15 working group
published the first version of the standard in 2003. A number of revisions were
issued later in 2006 and 2011 [3]. The main features include low cost, low complex-
ity, low data rate and most importantly, low-power consumption. Moreover, the
IEEE 802.15.4 protocol [1] has been specifically developed to address an increasing
demand for short-range communications between the nodes in low-power sensor
networks and is supported by a large number of academic and commercial sensor
nodes.

The core goal of the standard was to define the physical (PHY) and Medium Ac-
cess Control (MAC) layer of the network stack for low-power WSNs. As shown in
Figure 2.2, the IEEE 802.15.4 standard has lower data rates, lower complexity, lower
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cost and lower power consumption than most of the other standards. It has approx-
imate data rates of 250 Kb/s, 40 Kb/s and 20 Kb/s depending on the application
type and it supports multiple Radio Frequency (RF) bands and digital modulation
mechanisms, which can be seen in Table 2.1.

FIGURE 2.2: A map of wireless standards and their key features [9].

Freq. Band Region Channel num. Modulation Bit rate
(868-868.8) MHz EU, Japan 1 BPSK 20 kb/s
(902-928) MHz USA 10 BPSK 40 kb/s

(2400-2483.5) MHz Worldwide 16 O-QPSK 250 kb/s

TABLE 2.1: IEEE 802.15.4 frequency bands and data rates.

The communication range of the protocol is about 10 meters [8]. Moreover, both
star and mesh-based topologies are supported by the standard. In the star topology
networks, a central node named PAN coordinator plays the role of a PAN controller
where other devices can only communicate though it. However, mesh/peer-to-peer
topology nodes can communicate with any other node within their radio range. The
protocol uses different mechanisms to access the channel such as Carrier-Sense Mul-
tiple Access with Collision Avoidance (CSMA/CA). Moreover, the protocol has four
types of MAC frames: data frame, beacon frame, acknowledgement frame and MAC
command frame. As shown in Figure 2.3, the packet structure of IEEE 802.15.4 con-
sists of four main fields: a preamble of four octets (32 bits) used for synchronization,
a packet ID acting as a start of packet delimiter (8 bits), a PHY header which contains
the Physical layer Service Data Unit (PSDU) length (8 bits), and finally a PSDU field
which contains the actual data.
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FIGURE 2.3: A general structure of IEEE 802.15.4 packet [9].

Finally, there are two network device classes of the 802.15.4 standard: full-function
devices (FFDs) and reduced-function devices (RFDs). An FFD has the capability to
operate in three different modes: it can act as a PAN coordinator, a simple coordi-
nator, or a device. As a PAN coordinator, it can communicate with any other node
in the network, and thus it has higher processing power than other devices in the
network. However, an RFD has limited processing power enough to enable its com-
munication with a single FFD at most at any instant.

2.5 Network Stacks in Contiki

Contiki [10] is an open source, lightweight, and multi-tasking operating system built
with memory-constrained networked embedded systems and wireless sensor net-
works in mind. However, one of its main issues is the lack of proper documentation
apart from its source code comments and examples which made it challenging to
acquire sufficient information about its network stack.

Three types of network stacks [11] can be used in Contiki: µIP’s (IPv4 and IPv6)
stacks and rime stack. The uIP stack is a concise implementation of the TCP/IP
network suite which provides IPv4 networking capabilities and later on, it was
extended to provide IPv6 capabilities. The rime stack offers a set of custom net-
working primitives to enable communication for low-power wireless networks us-
ing lightweight layering and the ability to build complex abstractions.
Contiki adopts a five-layer network stack which is roughly similar to the TCP/IP
model but simpler considering the computation and memory constraints of most
networked embedded systems. At the same time, it also covers the traditional seven
layers of the Open Systems Interconnection (OSI) model as shown in Figure 2.4. The
description of each layer is briefly explained in the following subsections.

2.5.1 Radio Layer

The radio or physical layer is the first layer at the bottom of the Contiki model. This
layer defines how the input data are structured and built to be transmitted to the
upper layers of the network. When the data arrive via interrupt handlers in bytes
or as a full packet, they are copied into packet buffers. Furthermore, the data in
these packet buffers are ready to be sent to the upper layers of the network through
a polling process.
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FIGURE 2.4: Contiki network stack and its protocol examples.

2.5.2 Framer Layer

The framer layer is not shown in the provided netstack figure but it is located be-
tween the physical/radio layer and the RDC layer. The framer layer does not have a
regular layer implementation like the rest of the layers, as it consists of a set of auxil-
iary functions which are used for either creating a frame with data to be transmitted
or parsing the frame’s data upon reception. There are two types of framer layer that
can be used in Contiki: framer-nullmac.c and framer-802154.c.

2.5.3 RDC Layer

The Radio Duty Cycling (RDC) layer plays a crucial role in the Contiki netstack as it
significantly determines the energy consumption of the nodes by allowing the nodes
to turn their radio transceiver off as long as they are not in use and making sure their
radio transceivers are awake during packet reception.

Currently, Contiki offers three defined RDC protocols [11]: LPP, X-MAC and
ContikiMAC. The LPP protocol was developed based on the original Low-Power
Probing protocol while improving the power consumption at the same time. Con-
tiki’s X-MAC is similarly based on the X-MAC protocol while improving certain
networking and power usage aspects. Finally, ContikiMAC was developed to en-
hance the low-power listening mechanisms used by the subsequent RDC protocols
while improving the energy efficiency at the same time.

While the aforementioned protocols are already defined to be instantly used,
Contiki offers the ability to implement a new RDC mechanism and evaluate its per-
formance, power consumption and network capabilities. Therefore, the goal of this
study is to show the analysis of using a protocol which is compliant with the IEEE
standards such as the beacon-enabled mode of IEEE 802.15.4 and prove that it has
similar or lower power consumption than the already implemented duty cycling
protocols such as ContikiMAC and X-MAC which are not standard-compliant.
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2.5.4 MAC Layer

The Medium Access Control (MAC) layer resides on top of the RDC layer. It also
plays a vital part of the Contiki netstack as it defines how the nodes can communi-
cate when the network is congested. The MAC layer is responsible for avoiding
collisions and retransmitting packets in case of collisions. Contiki provides two
MAC protocols to use: Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) and nullmac. CSMA provides various functionalities such as sens-
ing the channel/radio medium before transmitting to back-off if another node is
transmitting, waiting for a specific time depending on the RDC protocol used, and
retransmitting the dropped packets during collisions. Alternatively, nullmac does
not offer any MAC-level processing, as it only forwards the packets from the radio
driver to the upper layer and vice versa, and thus it has potentially more packet loss
ratio than CSMA.

2.5.5 Network Layer

The network layer is the topmost layer in Contiki where it covers various sub-layer
tasks as shown in Figure 2.4. It is mainly responsible for preparing the packets before
they are sent. In other words, it provides different networking functionalities and
routing the received packets while adapting these packet frames to match the upper
sub-layers format such as IPv6 before they are sent to other nodes. The routing pro-
tocol used in Contiki is RPL (Routing Protocol for Low-power and lossy networks).
It is responsible for finding the optimal route, in which the transmitted packets can
take by forming a routing acyclic graph starting from the root node which is called
Destination Oriented Directed Acyclic Graph (DODAG). Finally, the last two up-
permost sub-layers are transport and application sub-layers. A transport sub-layer
protocol such as User Datagram Protocol (UDP) defines the way of communication
between source and destination nodes. At the top, the application sub-layer acts
as an interface between host applications and lower layers and vice versa. One of
the current protocols in the application sub-layer is the IETF Constrained Applica-
tion Protocol (CoAP) which is a low-power program implementation that tries to
leverage any generic duty cycling protocol and to achieve low-energy consumption.

2.5.6 A note on the Contiki layerization scheme

While most of the current MAC protocols cover both of Contiki’s RDC and MAC lay-
ers, they aim to dynamically adapt the network’s efficiency and energy consumption
according to the current traffic [12]. ContikiOS developers have decided to separate
the MAC layer into two layers for simplicity. However, this separation adds more
unnecessary complexity to the MAC protocol development [13]. For example, Con-
tikiMAC protocol acts only as an RDC protocol which have to be used with a MAC
protocol such as CSMA or nullmac protocol which adds more testing scenarios to an-
alyze which MAC driver can be utilized with it to achieve an optimal performance.
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Furthermore, the lack of sufficient documentation about the system as a whole plays
a key role in making it difficult to understand the design decisions behind various
implementations within its network stack.

2.6 802.15.4 Beacon- and Non Beacon-Enabled Modes

The IEEE 802.15.4 MAC protocol provides two operating mechanisms: non beacon-
enabled and beacon-enabled modes which are explained in Figure 2.5. In the non
beacon-enabled mode, the nodes use the unslotted Carrier-Sense Multiple Access
with Collision Avoidance (CSMA/CA) mechanism to access the channel and a Clear
Channel Assessment (CCA) is executed before using the channel. In a beacon-
enabled network, the basic medium access is the slotted CSMA/CA mechanism
where a superframe structure is managed by the PAN coordinator for synchroniza-
tion and network management functionalities. While devices that use the beacon-
enabled mode are more complex than non beacon-enabled devices [6], the beacon-
enabled networks’ support of synchronization and duty cycling to preserve the nodes’
energy consumption make them more favourable to use considering their design
complexity trade-off at the same time.

FIGURE 2.5: IEEE 802.15.4 operation modes [3].

2.6.1 IEEE 802.15.4 Non Beacon-Enabled Mode

As mentioned earlier, the non beacon-enabled (unsynchronized) mode uses the clas-
sical (unslottted) CSMA/CA mechanism where each time a node wants to access the
channel, it waits for a random backoff duration and senses the channel to transmit
the data only if the channel is free; otherwise, the node waits for another random
period before trying to sense the channel again.
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2.6.2 IEEE 802.15.4 Beacon-Enabled Mode

In the beacon-enabled mode or synchronized mode, the PAN coordinator periodi-
cally broadcasts a train of beacon signals (superframes) with information that man-
ages and synchronizes the nodes’ communications within the network. The main
purpose of the synchronization is to enable organized channel access of the slotted
CSMA/CA mechanism adapted. Therefore, whenever a device wants to transmit,
it performs a random backoff before sensing the channel. If there is no channel ac-
tivity, the node waits until the next slot before sensing the channel again where no
activity has been detected for two successive slots after the initial random backoff
period. If there is an activity within the channel, the backoff procedure is repeated
as mentioned earlier. The core difference in the non beacon-enabled mode lies in
nodes’ ability to access the channel instantly if there is no channel activity detected
after the first backoff duration which clearly shows the unsynchronized nature of
this mechanism.

Algorithm Description

According to the IEEE 802.15.4 MAC standards for the beacon-enable mode [3], a
superframe is used in order to access the channel where it is initiated by the PAN
coordinator. The superframe structure, which is shown in Figure 2.6, is divided into
the following three parts: 1) an inactive part; 2) a Contention Access Period (CAP),
where nodes can utilize the slotted CSMA/CA mechanism; and 3) a Contention Free
Period (CFP), which contains a number of time slots called Guaranteed Time Slots
(GTSs) which are allocated by the PAN coordinator to access the channel without
any contention. Each GTS contains one or more slots within the CFP part in a super-
frame. CFP and CAP together constitute the active part of the superframe which is
divided into 16 time slots. The PAN coordinator can allocate up to seven GTSs out
of the 16 time slots while the rest of GTSes are reserved for contention-based access.
However, there is no communication activity during the inactive part, so the nodes
are able to switch off their radio transceivers and activate the power saving mode to
save the network’s energy consumption.

FIGURE 2.6: IEEE 802.15.4 superframe structure [6].
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As shown in Figure 2.6, a superframe period is the duration between two consecu-
tive beacons. The timing of the superframe is determined by these two parameters:

• MAC Superframe Order (SO), which determines the active part duration of the
superframe called superframe duration (SD) as shown in equation 2.2.

• MAC Beacon Order (BO), which defines the whole superframe duration called
Beacon Interval (BI) as shown in equation 2.3.

The values of SO and BO for the beacon-enabled mode are defined in the standards
as follows: 0 ≤ SO ≤ BO ≤ 14. However, in the non-beacon enabled mode, the
macBeaconOrder BO = 15, meaning that the timeout value is just a simple backoff.
Moreover, the parameter aBaseSuperframeDuration is a standards-defined con-
stant which is equal to 960 symbols, with a symbol time of 16 microseconds.

SD = aBaseSuperframeDuration ∗ 2SO (2.2)

BI = aBaseSuperframeDuration ∗ 2BO (2.3)

The inactive part is very essential in saving energy as the nodes sleep during this
period of the superframe, the Duty Cycle (DC) of nodes depends only on the super-
frame structure as shown in equation 2.4, where Inactivity Order (IO) is equal to the
difference between the superframe order and the beacon order IO = SO −BO.

DC =
SD

BI
= 2IO (2.4)

Data transfer mechanisms in the beacon-enabled mode

Two different data transfer modes can be used within the beacon-enabled mode to
achieve the communication between a PAN coordinator and its nodes using low-
power capabilities. The direct transfer mode is used in the case a device wants to
send a packet to the coordinator. In direct mode, the device initially waits for the
synchronization beacon frame from the coordinator. Moreover, it starts transmitting
the data using one of the superframe slots and the coordinator sends an optional
acknowledgement upon receiving the packet and end this communication process.
The indirect transfer mode is used when the PAN coordinator tries to send a packet
to one of its associated devices. Initially, the coordinator sends a beacon frame to the
destination node. Furthermore, after the node receives the beacon frame, it sends a
data request frame and upon receiving the data request, the coordinator sends the
data packet and an acknowledgement of the data request sent by the device. At the
end, an acknowledgement is sent to the coordinator to end the transmission process.

Implementation Challenges

The beacon-enabled networks have more complex design and time-constrained re-
quirements compared to non beacon-enabled networks. However, the low-power
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consumption advantages account for this level of complexity in contrast to the in-
efficient contentious listening of non beacon-enabled devices. Moreover, the imple-
mentation of a standard-compliant protocol that should support a wide range of
platforms has a number of challenges. Initially, the implementation should be plat-
form independent and portable to most of the IEEE 802.15.4-supported platforms
which is hard considering the different hardware dependencies of each platform.
Therefore, the implementation should be implemented in a real-time operating sys-
tem (RTOS) to satisfy the time-critical operations of the beacon-enabled mode which
is still challenging to implement. The other solution is to shift these time-critical
operations to the physical (PHY) drivers layer in order to accurately meet these tim-
ing requirements. At the same time, the different hardware dependencies of each
platform add another layer of complexity and put more restrictions and challenges
during the implementation development.

2.7 IEEE 802.15.4e Standard

While the IEEE 802.15.4 standard was initially published in 2003, other revisions
and improvements for different aspects of the standard were introduced in 2006
and 2011 [3]. The first version of the standard defined the bottom two layers of
the network stack, namely PHY and MAC layers for low-power, low-rate and low-
cost WPANs and introduced two operating modes: non beacon-enabled mode and
beacon enabled mode. Furthermore, a new amendment to the 802.15.4-2006/2011
revisions was published in 2012 titled IEEE 802.15.4e [14] in order to enhance the
previous MAC protocols and communication modes while addressing the emerging
needs of time-critical embedded applications in industrial environments at the same
time. It introduced a number of general functional improvements and the following
new MAC behaviour modes:

• AMCA (Asynchronous Multi-Channel Adaptation) for infrastructure monitor-
ing networks.

• DSME (Deterministic and Synchronous Multi-channel Extension) for deter-
ministic latency and scalability requirements.

• LLDN (Low Latency Deterministic Network) for high reliability and low la-
tency.

• TSCH (Time-Slotted Channel Hopping) for high throughput requirements, bo-
unded latency, and high reliability.

Furthermore, the standard provided a number of general functional improvements
[15] in various aspects such as low energy, enhanced beacons, multipurpose frame,
fast association and multiple MAC performance metrics. Out of the new MAC
behaviour modes mentioned earlier, the related ones to beacon and non beacon-
enabled modes are DSME and TSCH behaviour modes.
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DSME enhances the performance of beacon-enabled networks where all the de-
vices are synchronized with the DSME coordinator through enhanced beacons us-
ing a multi-superframe structure (improvement to 802.15.4 superframe). The multi-
superframe consists of a number of repeated superframes which contain the nor-
mal CAP and CFP periods used in the beacon-enabled mode. Moreover, the multi-
superframe enhances the 802.15.4 GTS mechanism to support more channels by
grouping a number of superframes and extending their single channel operation
to multi-channel ones through adaptive switching channels or hopping channels
according to certain parameters such as the link quality. Nevertheless, the TSCH
protocol is the MAC behaviour mode of interest to this study which is explained
thoroughly in the next subsection.

2.7.1 TSCH MAC Behaviour Mode

The Time Slotted Channel Hopping (TSCH) MAC protocol [15] is one of the promi-
nent IEEE 802.15.4e MAC behaviour modes which was developed to satisfy indus-
trial and vehicular sectors. The TSCH behaviour mode combines time slotted ac-
cess (that was previously defined in the beacon-enabled mode), multichannel com-
munication and channel hopping which suits multi-hop networks in particular. In
addition, TSCH supports star, tree and partial/full mesh network topologies. Dedi-
cated and shared links are supported by TSCH in which the latter represents special
communication slots that can be assigned to more than one transmitter, and thus
enabling concurrent access by multiple nodes at the same time. The protocol’s core
goals are to support larger network capacity, predictable latency and most impor-
tantly to achieve high reliability and low-power consumption through time slotted
access mechanism. TSCH supports multichannel based on channel hopping through
16 different channels which are defined by channelOffset which is an integer value
that ranges from 0 to 15. Multichannel communication allows more nodes to com-
municate at the same time (timeslot) using different channels which are identified
by their channel offset.

Slotframe structure

The traditional 802.15.4 superframe structure is replaced by a slotframe structure
which consists of a number of timeslots of 10ms duration typically. The nodes use
the periodic slotframe for synchronization through their timeslots. Each timeslot
enables a pair of devices to exchange either a maximum-size data frame or acknowl-
edgement for this frame through the duration of the timeslot. If the acknowledge-
ment is not received, a retransmission of that frame is deferred until the next as-
signed transmit timeslot for the same (sender-receiver) devices. The Absolute Slot
Number (ASN) is the total number of slots elapsed since the network was deployed.
A TSCH link is defined as a pairwise assignment of a directed communication be-
tween devices in a specific timeslot on a specific channel offset. Therefore, a link
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between two nodes is denoted by [n, channelOffset] and the frequency f that is used
for communication in timeslot n of the slotframe is derived in the following equa-
tion.

f = F [(ASN + channelOffset%Nch)] , (2.5)

Where Nch is the number of channels in use and F is the lookup table function
containing the sets of available channels.

Channel hopping

Equation 2.5 represents the channel hopping mechanism in TSCH, where multiple
frequencies can be returned for the same link at different timeslots. Hence, chan-
nel hopping enables mitigating the effects of interference and multipath fading by
ensuring that all the available channels are used for a specific link during their spec-
ified timeslot, and thus improving the network reliability.

TSCH scheduling

Regarding network scheduling, the IEEE 802.15.4e standard [14] does not specify
how the communication schedule is built, optimized and maintained. It only ex-
plains the mechanism of how the MAC layer can execute the schedule. Initially,
a number of scheduling techniques were proposed such as centralized scheduling
and distributed scheduling. Centralized scheduling assigns a manager node that
is responsible for building and optimizing the network schedule while the nodes
regularly updates the manager node with their neighbours list and the data size
transmitted/received. However, the nodes which use distributed scheduling have
no central entity and take decisions locally based on which links to schedule with
their list of neighbours. Alternatively, a number of studies in the literature proposed
new scheduling mechanisms to enhance the network performance and its energy
efficiency.

Compliance with the IEEE 802.15.4 standard

The TSCH MAC behaviour mode does not completely amend the physical layer
structure. In other words, it can operate on any hardware that is compliant with
the previous IEEE 802.15.4 standard which is really crucial for a sustainable devel-
opment of the standard without spending too much resources during the research
cycle.
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2.8 Software Overview

A lot of software and operating systems have been introduced to address different
requirements in the WSN field. This section describes the software and toolchain
used to accomplish the practical work and evaluate the required implementations.

2.8.1 Contiki Operating System

The operating system (OS) in a wireless sensor network differs from the traditional
operating systems used in personal computers. It is a relatively smaller piece of
software that enables basic programming abstractions on embedded systems such
as sensor nodes to be utilized by application developers. A wide range of WSN op-
erating systems are available for usage and testing such as RIOT, OpenWSN, TinyOS
and Contiki.

ContikiOS [10] is a lightweight WSN operating system designed for resource
constrained platforms. Contiki does not fully support Real-Time OS (RTOS) func-
tionalities, as it uses a hybrid model to combine the advantages of event-driven pro-
cesses and preemptive threads. Contiki introduced protothreads [16] which provide
event-driven services while enabling optional preemptive multithreading through
an application library that can be linked only with the applications that require this
preemptive feature explicitly in a specific process.

2.8.2 COOJA Simulator

Cooja [17] is a Java-based simulator designed for simulating the sensors of a WSN
that run ContikiOS. It provides a set of functionalities to track the performance of
the sensor nodes. A number of applications are provided along with the simulator
such as MSPsim device emulator, mobility plug-ins and powertrace tool. MSPsim
emulator can be used through Cooja to provide emulation of the sensor nodes such
as Tmote Sky and Zolertia Z1 based on the MSP430 microcontroller. The simulated
motes in Cooja have three essential properties: data memory containing the program
code required to test, mote type which can be shared between multiple motes while
using the same source code, and hardware peripherals.

2.8.3 Powertrace Profiling tool

Powertrace [18] is a run-time and network-level power profiling tool for low-power
wireless sensors. It utilizes power state tracking mechanism in order to roughly
estimate the mote’s power usage and store their energy consumption in duty cycling
entities called energy capsules. The powertrace tool is included within ContikiOS set
of applications and requires no additonal hardware for profiling. The tool showed
through multiple experimentations to have a 94% accuracy in estimating the power
consumption compared to hardware-based power measurements [18]. The tool was
used to empirically evaluate the power consumption of the MAC behaviour mode
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implementations that run on a number of emulated motes in Cooja and estimate the
expected network’s lifetime.

2.8.4 MSP430-GCC toolchain

MSP430-GCC is an open-source C/C++ compiler toolchain designed to help flash-
ing and debugging the embedded source code on MSP430-based microcontrollers.
The toolchain normally is periodically updated in order to provide better optimiza-
tions such as modifying the platform’s memory footprints whether ROM, RAM or
other peripherals in order to accommodate larger bin files (generated code) in the
platform’s memory.
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Chapter 3

Literature Review

In this chapter, the latest contributions and developments achieved on different parts
and modes of the IEEE 802.15.4 protocol are discussed along with the core challenges
and constraints as well as an analysis of the protocol. Although the main focus of
the literature review is on the beacon-enabled mode of IEEE 802.15.4 MAC layer, a
number of different IEEE 802.15.4 studies are presented due to two main reasons: the
shortage of studies done on the beacon-enabled mode specifically, and the indirect
relation of these studies on the beacon-enabled networks as a whole.
Finally, a motivation of this study is discussed mentioning the reasoning behind
choosing this topic.

3.1 Previous work on IEEE 802.15.4 MAC protocols analysis

Previous studies in the literature have covered different aspects of IEEE 802.15.4 net-
works. The studies vary from performance evaluations and analysis of the protocol
to comparative assessments with other protocols using practical measurements, sim-
ulations and/or analytical models.

On the one hand, a performance evaluation of the IEEE 802.15.4 MAC protocol
- partial aspects of the protocol or as a whole - in which simulations and/or practical
experimentations were used is discussed in [19–25]. On the other hand, analytical
and/or mathematical models were used to theoretically analyze and evaluate certain
aspects of the protocol’s performance in [26–29]. However, a number of the afore-
mentioned studies provided simulation results along with mathematical models to
validate its accuracy.

3.1.1 Practical-based studies on the IEEE 802.15.4 beacon-enabled mode

A new adaptive duty cycle algorithm for beacon-enabled networks is presented in
[19]. The algorithm tries to efficiently exploit the network traffic to adjust the duty
cycle dynamically for minimum energy consumption. The simulation was done us-
ing OMNeT++ (an extensible and component-based C++ network simulator) cus-
tomized for IEEE 802.15.4 networks. The authors optimized their energy-efficient
algorithm for star topology beacon-enabled networks where an extensive reduction
in energy consumption can be seen when compared with other recently proposed
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algorithms and studies such as AAOD, DSAA, DCA and IEEE 802.15.4.
The measurements and simulations done in [24] aim to pave the way for integration
of future applications with the IEEE 802.15.4 technology and analyze any potential
interference by other wireless technologies operating in the same band such as IEEE
802.11 and Bluetooth. The simulation was done using ns-2 simulator where it was
calibrated using the measurements done earlier for providing a more realistic simu-
lation and a reliable way to evaluate the IEEE 802.15.4 MAC protocol.

The authors in [20] proved through comparative experiments of the IEEE 802.15.4
/ZigBee and 6LoWPAN protocols that the IEEE 802.15.4/ZigBee protocol can sup-
port smaller duty cycles and minimize the maximum end-to-end delay compared
to 6LowPAN. Nonetheless, the results also showed that the 6LoWPAN protocol can
provide smaller mean end-to-end delays and lower packet loss rates, hence enhanc-
ing the network reliability. The experimentation was done after a theoretical analysis
of the low-power characteristics of both protocols had been done in order to tune the
low-power related parameters and configurations of both protocols.

While most of the preceding studies explored the protocol through measure-
ments and simulations, the study by Li-chun et al. [6] focuses on the design and im-
plementation of 802.15.4 beacon-enabled devices. The authors introduced a priority-
based scheduling kernel to handle time-critical beacon events for beacon-enabled
devices. However, the evaluation of their implementation was very abstract and
lacked sufficient simulation results to support their implementation.

3.1.2 Analytical-based studies on the IEEE 802.15.4 beacon-enabled mode

A detailed analytical evaluation of IEEE 802.15.4 with (CSMA/CA) MAC scheme in
a star topology is presented in [28] where they investigated whether the low-power
design constraints of WSN are met by using this MAC scheme or not. The model is
used to estimate the energy consumption and data rate of 802.15.4 networks where
both saturated and unsaturated periodic traffic scenarios are considered.

A more in-depth study provided a mathematical model for the beacon-enabled
mode of the IEEE 802.15.4 MAC protocol [26], where both star and tree-based topolo-
gies are inspected. Moreover, a validation of the model is provided through simula-
tion using a dedicated C simulation tool. Finally, a suitable comparison between the
simulation results is provided in which tree-based topologies performed better in
terms of packet success probability but with larger delay than their respective star-
based topologies.

The analytical model provided in [27] accommodates a general traffic distribu-
tion to capture the behaviour of the IEEE 802.15.4 low-power mode. Furthermore,
a simulation of the model was done using ns-2 simulator where it shows a num-
ber of performance evaluation insights that could be utilized for the deployment of
low-power IEEE 802.15.4/ZigBee networks.
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3.2 Previous work on the IEEE 802.15.4e TSCH mode

The TSCH MAC behaviour mode has received strong consideration and interest
among the WSN research community after the IEEE 802.15.4e standard [14] had been
released in 2012. The new standard introduced various MAC behaviour modes in
order to meet the emerging needs of different fields and markets. After the TSCH
protocol was introduced, a number of studies in [30–34] were done on the protocol
to evaluate and analyze its performance and/or provide different mechanisms to
enhance different aspects of it or build on top of its MAC layer.

Domenico et al. in [30] evaluated the performance of TSCH nodes which use
TSCH shared links by providing an analytical model of the new TSCH CSMA-CA al-
gorithm using discrete time markov chains. The performance metrics include packet
delivery ratio, latency and network power consumption. Furthermore, their model
was validated through simulations and experimentations using cc2420 radio-based
Tmote-sky nodes. Their evaluation showed that the CSMA-CA parameter values
strongly determine the algorithm’s performance. Moreover, it was noticed that the
network performance can be improved in some cases using channel hopping.

The TSCH CSMA-CA mode was evaluated and compared with the non beacon-
enabled mode with unslotted CSMA-CA of IEEE802.15.4 in [32]. The comparison
was based on an analytical markov chain model for the TSCH mode in terms of
packet loss rate, throughput and energy consumption. The analytical results proved
that the TSCH mode can provide a better deterministic access, lower energy con-
sumption and more network capacity compared to the IEEE 802.15.4 non-beacon
enabled mode.

The authors in [33] compared the performance of the IEEE 802.15.4e behaviour modes
TSCH and DSME in terms of their energy consumption, throughput and delay. The
comparison model used was based on an energy consumption model which was
previously developed for another low-power design platform. The results acquired
from the analytical model showed that TSCH performs better than DSME when low
duty cycles are used in terms of network delay and throughput. However, DSME is
slightly more energy efficient during data transmission due to the more complicated
synchronization mechanism used by TSCH.

Since the IEEE 802.15.4e standard did not define how a TSCH schedule is built
and optimized, the authors in [34] proposed two new schedulers which focuses
on energy efficiency using a centralized node (gateway) to allocate frequency and
timeslots. An energy consumption model was derived from a TSCH node initially
to determine the expected network lifetime. The first scheduler which is called low-
complexity energy-efficient scheduler has low computational complexity for node
management and optimization. Nevertheless, the second scheduler which is called
Vogel’s Approximation Method Heuristic Scheduling Algorithm is more compli-
cated computationally to address the pitfalls of the nodes’ greedy allocation. The
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two schedulers were compared with the Round Robin Scheduler (RRS) in terms of
packet delivery ratio and power consumption. Their results proved that both sched-
ules were more energy efficient than RRS while providing a better throughput at the
same time.

3.3 Motivation of the topic

One of the core goals of most WSN applications, especially the ones with resource
constrained requirements is to save their power consumption as much as possible.
There are various techniques to exploit the power consumption of the wireless sen-
sors either at the hardware level or the software level. The main objective of this im-
plementation is to exploit the power consumption at the software level of a wireless
sensor by trying to demonstrate the effects of changing the MAC and RDC proto-
cols used in Contiki network stack. To the best of our knowledge, the most energy-
efficient MAC protocol used in Contiki currently is ContikiMAC [35]. However, the
ContikiMAC protocol is not compliant with the current IEEE standards, so it has
low portability to various standard compliant platforms. Therefore, this explains
the need for another MAC protocol which is complaint with the standards and has at
least the same energy efficiency of ContikiMAC or better. The beacon-enabled mode
of IEEE 802.15.4 is one good candidate MAC protocol mode to be utilized within the
Contiki network stack. The reasoning behind choosing the beacon-enabled mode
is that it is standard-compliant which would potentially ease the development of a
platform independent implementation. Moreover, it has low-power mechanisms us-
ing its low duty cycling techniques during the inactive part of its superframe struc-
ture which is explained in Chapter 2.

According to the previous work discussed earlier, there is no study that intro-
duced an implementation for the beacon-enabled mode of the IEEE 802.15.4 stan-
dard on ContikiOS or a comparative assessment between the beacon-enabled mode
and the current MAC and RDC protocols in the Contiki network stack.

After months of work on porting the beacon-enabled mode into Contiki netstack,
a number of blocking issues and limitations (discussed in chapter 4) hindered the de-
velopment process of the protocol. As a result, the evaluation direction was changed
to the TSCH MAC behaviour mode which was introduced in the IEEE 802.15.4e-2012
standard. The TSCH protocol mitigates the core issues faced when using the MAC
behaviour modes of the previous IEEE 802.15.4-2006 standard such as the beacon-
enabled mode. The limitations of the beacon-enabled mode include reliability prob-
lems mainly due to the CSMA/CA algorithm to avoid collisions. Furthermore, the
periodic beacons which are sent to synchronize the channel access increase the con-
tention, and thus increase the collision probability and the overall network latency.
All the previous limitations are mitigated in the TSCH mode in addition to intro-
ducing new features such as multichannel communication and channel hopping in
order to alleviate interference and multi-path fading of the network.
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Chapter 4

Implementation

This chapter discusses the hardware and software implementations and configura-
tions in order to elaborate and accomplish the objectives of the thesis work. The
initial goal of the implementation was to test an existing implementation of the
beacon-enabled mode of the IEEE 802.15.4 standards and try porting it to the Con-
tiki network stack along with the configurations needed for the testbed architecture.
However, due to some limitations and blocking issues, the research work is shifted
to the new IEEE 802.15.4e TSCH MAC protocol. Finally, a number of simulations
are done to assess and evaluate the RDC and MAC protocols under investigation
within ContikiOS. Additionally, the results of the simulation are shown along with
the major concluding remarks based on this analysis.

4.1 Hardware Implementation

The hardware setup and experiments are explained in this section along with the
configuration and toolchain required to test the software implementation on the
testbed. In the beginning, a number of simulation experiments were done to em-
ulate the hardware provided in order to analyze its characteristics and behaviour in
contrast with other platforms.

4.1.1 Hardware and toolchain setup

The hardware setup which was planned to be used for testing and evaluating the
software’s implementations and the toolchain required to test the hardware are de-
scribed in the following subsections.

CC2650STK SensorTag

The provided testbed for the experiment is a Systems-on-Chip(SoC) developed by
Texas Instruments based on the low-power CC2650 wireless MicroController Unit
(MCU). The sensorTag provides support to multiple wireless standards such as Blue-
tooth Low Energy (BLE), 6LowPAN and ZigBee. The CC2650 wireless MCU [36] is
equipped with a 2.4 GHz RF transceiver, which can be easily configured to operate
either BLE 4.2 or IEEE 802.15.4 PHY and MAC layers. Moreover, ten low-power



26 Chapter 4. Implementation

sensors are provided within the sensorTag collecting distinct analog and digital in-
formation. The main processor used is a 32-bit ARM Cortex-M3 with processing
power of 48 MHz that operates the low-power sensor controller and has 20 kB RAM
and 128 kB of flash memory. However, a separate ARM Cortex-M0 processor powers
both the BLE controller and the IEEE 802.15.4 MAC protocol which are embedded
into a Read-Only Memory (ROM) chip. For debugging and burning new code im-
ages, a 2-pin cJTAG and JTAG (Joint Test Action Group) debugging standards are
provided.

SensorTag Debugger DevPack

The debugger development package is a debugging hardware that enables debug-
ging the applications executed on the CC2650 sensortag. It consists of a small XDS110
JTAG debugger with a Universal Serial Bus (USB) connection to make sure the sen-
sortag does not power off during the debugging process.

SmartRF06EB

The SmartRF06EB is a full development kit which contains all the hardware required
to evaluate and debug the CC2650 sensortag. It consists of a motherboard designed
for testing radio performance and software development, a 128x64 LCD screen, an
XDS100vs debugger and a set of peripherals and sensors that enable testing various
functionalities of the sensortag.

SmartRF Flash Programmer 2

SmartRF Flash Programmer 2 is a windows-based software which can be used with
the aforementioned debuggers XDS110 and XDS100Vs to program the flash mem-
ory of the CC2650 wireless MCU of the sensortag board. The software includes a
graphical interface and a command-line interface in order to analyze the process of
flashing the target and track its success.

InstantContiki

InstantContiki is a linux-based ubuntu virtual machine equipped with the required
compiler and toolchain configurations to develop and test Contiki applications. The
current version (V 3.0) contains all the updated toolchain packages needed to build
multiple targets such as the CC2650 MCU provided. Moreover, it also has the Cooja
simulation software installed which is used to simulate a specific Contiki application
in small or large networks by emulating different types of sensor nodes.

4.1.2 Blocking Issues

In the beginning, we tried simulating the sensortag nodes using the Cooja WSN
simulator by running a simple Contiki example to analyze the network activity and
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nodes/motes performance. However, the simulation motes for the CC2650 sen-
sortag are not supported yet in Cooja. There was another suggestion to use emul8
framework [37] which is an open-source embedded systems emulator for different
processor architectures such as ARM Cortex-M that is used in the CC2650 sensortag.
Unfortunately, the emulator supports older Cortex-M platforms and running the
current Contiki binaries for the CC2650 sensortag did not work successfully.
The next solution was to start testing using hardware directly by burning specific
Contiki example binaries into the CC2650 sensortag MCU and debug the applica-
tion to analyze and evaluate its performance.

Flashing the CC2650 MCU can be done in two ways, using either the SensorTag
Debugger DevPack or the SmartRF06EB development kit. The cc26xx drivers are
provided in the Contiki platform drivers’ folder to create the bin file related to each
platform. Furthermore, the SmartRF Flash programmer 2 software is used to flash
the generated bin file to the CC2650 MCU using any of the aforementioned debug-
gers connected to its JTAG pins. However, the main problem is that the required
hardware for debugging the SensorTag board was not available during the experi-
ment. Therefore, the remaining solution was to try the simulation using native or
AVR architecture platforms which are supported in Contiki and to do a number of
microbenchmark comparisons between the architecture used and the CC2650 archi-
tecture in order to obtain simulation results which are relative to the sensortag node.
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4.2 Software Implementation

This section discusses the core challenges and constraints of the software implemen-
tation especially for resources constrained systems like sensor nodes in WSN. More-
over, it explains different software implementations for the IEEE 802.15.4 MAC layer
and then summarises the discussion with an analysis of the mentioned implementa-
tions and the reasoning behind moving to the IEEE 802.15.4e TSCH MAC protocol.

4.2.1 Software Design Constraints

The software development process usually starts with setting a set of design con-
straints that need to be met at the end of the project. In order to implement an IEEE
802.15.4 MAC protocol stack, a number of challenges and design constraints have
to be resolved to achieve an implementation which is complaint with the standards
and an architecture that can be ported to different platforms.
Modularity is one key design constraint that should to be met, considering the huge
amount of features provided by 802.15.4 MAC protocol. In other words, the imple-
mentation should be modular by allowing the selection of only specific subset of
functionalities and customize it according to the platform resource constraints and
application requirements.

Another constraint that should be checked for the MAC protocol implementa-
tion is portability or platform independence. Considering the platform meets the
IEEE 802.15.4 standards [3] precision and accuracy requirements (62.5 kHz and ±40

ppm for the 2.4 GHz frequency band) and contains a compliant radio chip, the im-
plementation should be portable to any platform with these characteristics. Finally,
the MAC implementation should provide extensibility to enable integrating new fea-
tures, extensions and/or modifications to the standard as it is continuously evolving
to match the new requirements and challenges that could emerge.

4.2.2 Porting current 802.15.4 MAC implementations to Contiki

A number of software implementations for the IEEE 802.15.4 MAC layer are cur-
rently available. However, none of the implementations are currently supported in
Contiki. As a result, to ensure not wasting time and effort in reinventing the wheel,
it was easier to try porting one of the existing implementations to Contiki. Then, we
can assess the performance of at least the beacon-enabled mode individually and
compare it with current Contiki RDC and MAC protocols. Initially, these implemen-
tations were evaluated to define the trade-offs and which version is the most suitable
version to be ported to Contiki network stack.

The following four software implementations are investigated: open-ZB, TKN15.4,
OpenMAC and TIMAC which are explained concisely in the next part.
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Open-ZB

Open-ZB [38] is an open-source implementation of the IEEE 802.15.4/ZigBee net-
work stack for TinyOS [39] WSN operating system version 1.1.15. It has been de-
veloped by a research unit from CISTER (Research Centre in Real-Time and Embed-
ded Computing Systems), in collaboration with the TinyOS 15.4 and ZigBee work-
ing groups. The implementation is currently supporting two hardware platforms:
the MICAZ and the Tmote sky motes. Open-ZB’s architecture is monolithic, which
means the entire MAC implementation is done within a single component.

There has been a number of revisions published later on to add support to the
missing features such as security mechanisms and the GTS mode. However, PAN
coordinator management is not implemented yet, so the implementation scope is
only limited to RFD devices or clients. The Open-ZB implementation comprises
three main components: the PHY layer which contains the required auxiliary func-
tions and drivers to control the hardware, the MAC layer which provides the main
functionalities of the protocol, and network (NWL) layer where high level functions
such as ZigBee addressing schemes and routing of the nodes occur.

TKN15.4

TKN15.4 [40] is a platform independent and open-source implementation of the
IEEE 802.15.4-2006 MAC layer. It has been developed at the Technical University
of Berlin. The implementation is written in nesC programming language for the 2.1
version of TinyOS. One of nesC main features is producing component-based and
event-driven software, which enables modularity and reusability in other architec-
tures. Although the development is tested only on the TelosB/Tmote Sky sensor
node, the implementation is platform independent which enables the protocol to be
used on any platform that has a compatible execution environment.

Since TinyOS does not fully support real-time system functionalities, a number
of functions and time-critical tasks have been moved from the MAC layer down to
the PHY/radio layer of the hardware platform to meet the tight timing constraints in
beacon-enabled networks. However, these modifications increases hardware depen-
dencies at the same time. Moreover, the Guaranteed Time Slots (GTS) services were
not supported at first, but this feature was implemented later in 2011. One of the
main features of TKN15.4 implementation is being able to assign device roles (FFD
or RFD) at runtime on software level. Thus, it improves the application’s flexibility
to adapt the network nodes according to any potential changes, but it also add more
complexity on the software level which may not satisfy certain type of very resource
constrained platforms.
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MeshNetics OpenMAC

OpenMAC [41] is another TinyOS-based and open-source implementation of the
IEEE 802.15.4 MAC protocol by MeshNetics. The project was developed to comple-
ment their ZigBee stack implementation providing basic wireless networking in star
and peer-to-peer network topologies. The implementation supports various AVR-
based platforms such as Atmel’s RF development kit (RZ502) and their own ZigBit
and MeshBean2 development board. One of the main features of the project resides
in providing an easy to use C Application Programming Interface (API) to devel-
opers who are not familiar with nesC programming language of TinyOS. However,
the project’s documentation and source code page are no longer supported by the
MeshNetics group as they were acquired by Atmel Corporation. Moreover, the im-
plementation comprises only the non beacon-enabled mode and provides limited
security functionalities.

TIMAC

The TIMAC implementation [42] is a software stack developed by Texas Instru-
ments to support their IEEE 802.15.4-compliant transceivers and System-on-Chips
(SoS) such as the CC2630 wireless MCU. The implementation is standard-compliant
with the IEEE 802.15.4-2006 standard. It supports beacon-enabled and non beacon-
enabled modes of IEEE 802.15.4 and provides network security features. Since TIMAC
is a commercial implementation, it is only available for download as object code.
Therefore, it is not possible to port this implementation to Contiki or even analyze
the internal software layer structure. Another implementation is provided by NXP
[43] for the IEEE 802.15.4 MAC protocol stack, but the source code is not available
for download as well due to the copyrighting nature of these implementations.

4.2.3 Analysis of the implementations

Out of the four implementations discussed earlier, the TKN15.4 software architec-
ture is chosen to be ported to Contiki. The main reasoning behind choosing it is
based on an analytical study made by Basmer et al. [44] which is explained in the
following points:

• The static code analysis done by Basmer et al. showed that TKN15.4 is the most
runtime efficient implementation. The profiling analysis tools measured the
runtime of a set of MAC operations where TKN15.4 had the shortest runtime
excluding association request response operation which is faster in the Open-
ZB implementation.

• The Open-ZB implementation only covers network clients with partial support
to network coordinators which limits its functionalities and range of applica-
tions. Their RFD implementation is missing the activation and deactivation
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of the radio module while their FFD implementation does not support active
scanning for beacon requests.

• TKN15.4 provides an elegant solution to mitigate the time-critical operations
of the beacon-enabled mode by shifting these operation from the MAC layer
down to the radio drivers layer as they operate in a timing constrained context
through interrupt service routines.

• Although the TKN15.4 implementation is not certified yet according to the in-
vestigation conducted on this regard, the research work done by Basmer et al.
shows that TKN15.4 meets all the mandatory and optional functionalities re-
quired by FFD and RFD devices in the standard. In other words, this means
that TKN15.4 is theoretically standard-compliant but requires a set of inter-
operability practical tests with certified MAC implementations to practically
prove its standard compliance.

4.2.4 Porting TKN15.4 to Contiki

The process of porting the TKN15.4 implementation to ContikiOS is a challenging
and time consuming task as the language used by TinyOS in their TKN15.4 imple-
mentation is nesC which requires a lot of changes to be translated to C programming
language used by Contiki. The only possible solution was to manually translate the
nesC application source code to Contiki compatible C code which requires huge
amount of time and effort for just reinventing the wheel of translating the source
code. Nevertheless, Lahiru [45] provided a translator project that can automate the
porting process from nesC to C which that can be compiled successfully in Contiki.
The translation process entails different procedures such as lexical analysis of the
input source code to a stream of tokens, then parsing these tokens to generate a tree
parser that can be finally used for code generation.

Unfortunately, this project covered only a small subset of the whole nesC gram-
mar since it was done as a thesis project with the aim of achieving higher translation
accuracy rather than examining the efficiency of the translation. Therefore, it is not
possible to use this tool for the porting process.

A number of manual experiments were done to port the existing implementa-
tion to Contiki, though it did not produce any fruitful results which have lead the
research direction to test different and newer IEEE 802.15.4e MAC protocols for a
number of reasons that are explained briefly in the next subsection.

4.2.5 Transitioning to the IEEE 802.15.4e TSCH mode

There are a number of challenges encountered while porting the beacon-enabled
mode. However, the most critical issue is that even after successfully porting the
implementation on ContikiOS. A set of hardware dependencies have to be resolved
only through hardware, since the beacon-enabled mode entails some operations that
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have to be accurately timed. This problem can not be solved in software by Con-
tikiOS, as it does not fully support real time operating system functionalities.
During the research work done on the beacon-enabled mode, it is noticed the major-
ity of the recent studies have shifted their focus to evaluate and analyze the novel
MAC behaviour modes introduced in the new amendment to 802.15.4-2006/2011
standards named IEEE 802.15.4e-2012. The standard [14] introduced a number of
behaviour modes to alleviate the performance and reliability problems encountered
throughout using the older beacon-enabled and non beacon-enabled modes.

The Time-Slotted Channel Hopping (TSCH) protocol was introduced to provide
high reliability and low-power consumption to a diverse number of industrial appli-
cations and to ensure predictable network performance. It combines the old mech-
anism time slotted access used in the late 802.15.4 modes with multi-channel and
channel hopping functionalities. Therefore, it provides predictable latency, commu-
nication reliability and energy-efficient performance.
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4.3 Simulations

This section discusses the main configuration and setup required to conduct the sim-
ulations using ContikiOS in order to evaluate the implementations under investiga-
tion and to test them using the emulated motes.

4.3.1 Simulation Setup

In the simulation, Zolertia Z1 mote [46] is considered as the emulated testbed of
the experiment. A total of 11 nodes are emulated in cooja where node 1 acts as
the PAN coordinator and the remaining 10 nodes (Z1- 2:11) act as clients or devices
in a star topology. Each simulation is run for only ten minutes due to time and
resource constraints, in addition to testing several simulation scenarios. The appli-
cation example that was tested on the motes is a modified TSCH implementation
[47] for ContikiOS based on the IPv6 network stack and the RPL routing protocol for
transmitting UDP packets. Nevertheless, another application is provided to assess
the TSCH evaluation process. The other example is a similar IPv6 and RPL imple-
mentation which uses ContikiMAC as its RDC protocol. The simulation motes are
randomly distributed with a Unit Disk Graph Medium (UDGM) radio medium in
an area of 100m by 100m as shown in Figure 4.1.

FIGURE 4.1: Network structure of the simulation experiment in Cooja

4.3.2 TSCH implementation in Contiki

The TSCH Contiki implementation was originally tested on multiple testbeds such
as Tmote Sky, CC2650 and Zolertia zoul while some of the testbeds are successfully
emulated in Cooja. Initially, there has been a number of issues when trying to flash
the bin file to the emulated motes such as Tmote Sky and Zolteria z1. The main
problem was caused by an insufficient ROM size which is required for flashing the
software implementation. However, it turned out that the MSP430-GCC toolchain
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needed to be updated to at least V.4.7.0 in addition to modifying certain dependen-
cies. Finally, after making the changes discussed earlier, the implementation was
flashed to the emulated Z1 motes successfully.

The rpl-tsch example was initially tested using cooja motes to analyze its work-
ing scenarios. Furthermore, after fixing the dependencies problems and updating
the toolchain, it was tested using Z1 motes as shown in Figure 4.1. There are two im-
plementation examples which are tested: rpl-tsch implementation which uses IPV6
and RPL upper layers and a simple rime-tsch implementation that uses Contiki’s de-
fault network stack RIME.

4.3.3 Configuration of Contiki network stack

Contiki netstack (network stack) can be configured in two ways, either through mod-
ifying the project’s Makefile to use the desired protocols, or by creating project-conf.h
within the project directory with all the required configuration and referencing it in
the Makefile. Otherwise, the default network stack Rime will be used.

One of the advantages of the TSCH implementation is that it is fully indepen-
dent from the upper layers that exist above the MAC layer, meaning that it can
be tested using different network topologies with the least amount of changes. In
the MAC layer of the implementation, an enhanced TSCH CSMA-CA mechanism
is used along with the remaining features of the TSCH behaviour mode. Moreover,
The lower layers of the configured netstack which is shown in Table 4.1 show that
the nordc_driver RDC protocol is used, because the radio duty cycling mechanisms
is handled in the tschmac_driver protocol, specifically in the tsch-slot-opertion files.
Thus, there is no need to use Contiki’s RDC protocols such as ContikiMAC or X-
MAC which will only add unnecessary overhead.

TSCH netstack Protocol
MAC tschmac_driver
RDC nordc_driver

Framer framer_802154e

TABLE 4.1: The lower layers of Contiki netstack used in the TSCH
example

4.3.4 Evaluation Parameters

The simulations evaluate two aspects of the TSCH behaviour mode implementa-
tions. First, profiling the network power consumption of the PAN coordinator and
the nodes of a TSCH-based network. The second aspect of the evaluation is measur-
ing the power consumed during different activities such as packet transmission/reception
of the TSCH MAC behaviour mode. Furthermore, another RDC protocol implemen-
tation is evaluated which is explained in the next subsection.
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4.3.5 Comparison with ContikiMAC

In order to evaluate the energy efficiency of the TSCH behaviour mode protocol,
ContikiMAC is used as a comparison parameter for the experiment. To the best of
our knowledge, ContikiMAC is currently the most energy-efficient RDC protocol in
Contiki combined with CSMA as a MAC protocol [35]. The ContikiMAC implemen-
tation uses the same simulation setup mentioned earlier. Moreover, The Contiki-
MAC implementation under test is similar to the TSCH implementation in the sense
that they both have the same higher layer topology. In other words, IPv6 network
topology is utilized in this implementation along with RPL protocol for routing and
UDP transport protocol on top of the RPL. It is worth mentioning again the differ-
ence between the default MAC protocols used outside contiki network stack and
within the Contiki network stack. ContikiMAC is implemented by Contiki to be uti-
lized in their RDC sub-layer along with CSMA in the MAC layer. Alternatively, the
TSCH mode is implemented as a MAC behaviour mode protocol which is respon-
sible for the tasks of both RDC and MAC layers, thus it does not use RDC protocol
within Contiki netstack. Therefore, the energy efficiency assessment can be quanti-
fied based on the radio duty cycling mechanism by both of the protocols TSCH and
ContikiMAC while the rest of the sub-layers of the Contiki netstack are the same.

ContikiMAC netstack Protocol
MAC csma_driver
RDC contikimac_driver

Framer framer_802154

TABLE 4.2: The lower layers of Contiki netstack used in the Contiki-
MAC example
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4.4 Results

This section demonstrates the results of the different simulation set-ups that were
discussed in the previous section. In addition, it also discusses the software tools
and configurations used in order to generate these results.

4.4.1 TSCH packet frame sequence

The frame sequence of the devices and the PAN coordinator of a TSCH network
along with its different message data types are described in the following part.

Frame sequence of the PAN coordinator

Cooja simulator has a number of tools that aim to help visualizing the network traffic
of the sensor nodes during a particular simulation. Cooja’s log listener is a visual-
ization tool that prints all the packets transmitted or received by the different nodes
of the network. For example, during the initiation process in the TSCH example, the
first node is assigned as the PAN coordinator of the network where it starts sending
enhanced beacon frames to the rest of the nodes in the network to manage their com-
munication. The initiation frames of the PAN coordinator can be viewed in Figure
4.2, which shows the sequence of the messages to acknowledge their role and IPv6
address in the network.

FIGURE 4.2: Packet initiation sequence of the network coordinator

Frame sequence of the nodes

In the beginning of a TSCH joining procedure, the nodes start the communication
by advertising their role and IPv6 address. Their default route is initially set to none
until they receive the association information packets such as slotframe, links and
multi-hopping data. The slotframe mechanism is fully interrupt driven, as it wakes
up the node only during its dedicated active slot and link configuration.

Figure 4.3 shows a snippet of the packets transmitted or received by node 2. For
example, after node 2 receives a packet from node 6, another packet is advertised
mentioning the current state of the node. This packet mentions a number of data
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such as the asn which shows the total number of elapsed slots from the network
initiation. In addition, the links attached to the node and the channel number used
are mentioned in this packet.

FIGURE 4.3: A set of transmit/receive communication packet se-
quence of node 2

4.4.2 Power Consumption analysis of a TSCH network

ContikiOS provides a set of applications to evaluate the performance of the nodes
used during the simulations using Cooja. The powertrace profiling tool is used to
track the node’s power consumption values by tracking its power states to estimate
its power consumption during different activities and store in energy capsules. In
other words, these values represent the energy consumption for a specific cycle by
the transceiver and MCU during different power states (e.g. transmit, receive, idle).

The power consumption data are saved using Cooja’s log-listener to a log file.
A snippet of the data printed to the log-listener can be shown in Figure A.1 of Ap-
pendix A. Then, the log file is parsed with a number of MATLAB scripts in order
to calculate and plot the power consumption values after extracting the duty cycle
values from the time capsules of the powertrace profiling tool.

The power consumption values are plotted using MATLAB in Figure 4.4 which
shows the power consumption of the PAN coordinator (node 1) during different
power states such as normal mode (CPU), transmission (Tx), reception (Rx) and
low-power mode (idling) (LPM). The power consumption values are shown for the
whole ten-minute duration of the simulation. For example, the average power con-
sumption of the PAN coordinator node during normal operations (CPU) is around
0.089 mW. Moreover, it is noticed that the power consumption is the highest during
Rx mode (around 1 mW), which is mainly due to the continuous listening nature of
the PAN coordinator to manage and synchronize the communication of the nodes.

Furthermore, another MATLAB script is used to plot the power consumption
data of the ten z1 motes (nodes 2:11) which communicate with the PAN coordinator
of the network. Figure A.2 in Appendix A shows the average power consumption
during different power states of the nodes after the ten-minute duration of the sim-
ulation.
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FIGURE 4.4: Power consumption analysis of the PAN coordinator in
the TSCH example (X axis represents time in minutes:seconds, Y axis
represents the power consumed in mW by the Z1 mote for CPU, LPM

(low power mode/idle), Tx and Rx)

4.4.3 Power Consumption analysis of a ContikiMAC network

Similarly, the exact simulation setup is used to measure the power consumption of a
network that uses ContikiMAC protocol instead of the TSCH mode. The same net-
work topology is used with the main differences (shown in Table 4.2) in the RDC,
MAC and framer sub-layers of the Contiki netstack. The main reasoning behind us-
ing the same higher network topology is to try to analyze the effect of changing the
protocol under test only, and thus provide an accurate evaluation of these protocols.

Figure 4.5 shows the power consumption values of the server node during the
same power states mentioned earlier for the same simulation period. Furthermore, it
is noticed from the analysis that the average power consumption is around 0.79 mW
during the server’s normal CPU state which is slightly less than the TSCH network
coordinator’s power consumption. However, the average power consumption of
the ContikiMAC server during reception (around 1.97 mW) is higher than the TSCH
coordinator’s power consumption during the same power state.
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FIGURE 4.5: Power consumption analysis of the server in the Con-
tikiMAC example (X axis represents time in minutes:seconds, Y axis
represents the power consumed in mW by the Z1 mote for CPU, LPM

(low power mode/idle), Tx and Rx)

4.4.4 Accuracy of the simulation results

Since the experiments done are only using simulations which take into account cer-
tain parameters and dependencies while using limited resources at the same time.
The results of the simulations are not completely accurate and no final conclusions
should be taken from these results. Moreover, since the Cooja simulation software
does not take fading effects into account [17], the energy consumption values of the
sensor nodes are not completely accurate. Therefore, real testbed experiments are
required to fully evaluate the power consumption of the protocols and to be able to
provide more concrete conclusions from this analysis.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The field of energy efficiency in wireless sensor networks is rapidly evolving. Dur-
ing the last few years, a number of hardware optimization and software algorithms
have been introduced to improve the power consumption of the wireless sensors.
Pure hardware optimizations can significantly decrease the power consumption of
a sensor platform. Nevertheless, the software implementation will run eventually
on different hardware platforms, and thus software optimizations can significantly
enhance the overall system power consumption. Furthermore, the sensor’s power
consumption is mainly dependent on the activation period of its wireless radio
transceiver. Additionally, the MAC layer of the network stack is the layer responsi-
ble for managing this activation mechanism. Therefore, the MAC protocols of wire-
less networks play a crucial role in preserving the power consumption of the hard-
ware platform of a wireless sensor.

In this thesis, three different MAC protocols were evaluated in order to analyze
their energy efficiency in a wireless sensor network. The wireless operating system
Contiki was used to test and evaluate the software implementations. The three MAC
behaviour mode protocols were the beacon-enabled mode, the TSCH mode and the
ContikiMAC protocol. The beacon-enabled mode was only theoretically analyzed
due to difficulties in porting the implementation in ContikiOS. However, the TSCH
mode and ContikiMAC were evaluated through simulations using Cooja simulator.

Finally, we used the powertrace tool in order to retrieve the power consumption
values of the emulated motes using different simulation configurations. The results
show that the TSCH mode improves the power consumption of the sensor nodes in
normal mode compared to ContikiMAC. However, ContikiMAC can still efficiently
manage the power consumption of the nodes during transmission and reception
when compared with the TSCH mode. The results imply that further real-life exper-
imentation needs to be done in order to accurately evaluate the energy efficiency of
the protocols under test.
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5.2 Future Work

The significance of the research on this topic will increase as soon as more accurate
practical results are provided. This thesis tries to pave the way for future work that
can support the development of energy-efficient MAC protocols for wireless sensor
networks. Therefore, future work includes validating the simulation results by test-
ing the software implementations on a real platform. Furthermore, other aspects of
the wireless network life cycle should be taken into account such as network discov-
ery, synchronization schemes and scheduling mechanisms. Another aspect of the
future work should analyze the network performance while the nodes are mobile
using different mobility models.
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Appendix A

Energy Measurements

FIGURE A.1: A snippet of the power consumption values printed by
powertrace tool

FIGURE A.2: Power consumption analysis of the nodes in the TSCH
example during different power activities (X axis represents the nodes
from 2 to 11, Y axis represents the power consumed in mW by the Z1

motes for CPU, LPM (Low Power Mode), Tx and Rx)
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FIGURE A.3: Power consumption analysis of the clients in the Con-
tikiMAC example during different power activities (X axis represents
the nodes from 2 to 11, Y axis represents the power consumed in mW

by the Z1 motes for CPU, LPM (Low Power Mode), Tx and Rx)
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