128 research outputs found

    Protocols to capture the functional plasticity of protein domain superfamilies

    Get PDF
    Most proteins comprise several domains, segments that are clearly discernable in protein structure and sequence. Over the last two decades, it has become increasingly clear that domains are often also functional modules that can be duplicated and recombined in the course of evolution. This gives rise to novel protein functions. Traditionally, protein domains are grouped into homologous domain superfamilies in resources such as SCOP and CATH. This is done primarily on the basis of similarities in their three-dimensional structures. A biologically sound subdivision of the domain superfamilies into families of sequences with conserved function has so far been missing. Such families form the ideal framework to study the evolutionary and functional plasticity of individual superfamilies. In the few existing resources that aim to classify domain families, a considerable amount of manual curation is involved. Whilst immensely valuable, the latter is inherently slow and expensive. It can thus impede large-scale application. This work describes the development and application of a fully-automatic pipeline for identifying functional families within superfamilies of protein domains. This pipeline is built around a method for clustering large-scale sequence datasets in distributed computing environments. In addition, it implements two different protocols for identifying families on the basis of the clustering results: a supervised and an unsupervised protocol. These are used depending on whether or not high-quality protein function annotation data are associated with a given superfamily. The results attained for more than 1,500 domain superfamilies are discussed in both a qualitative and quantitative manner. The use of domain sequence data in conjunction with Gene Ontology protein function annotations and a set of rules and concepts to derive families is a novel approach to large-scale domain sequence classification. Importantly, the focus lies on domain, not whole-protein function

    Unsupervised protein family classification by Density Peak clustering

    Get PDF
    As the UniProt database approaches the 200 million entries\u2019 mark, the vast majority of proteins it contains lack any experimental validation of their functions. In this context, the identification of homologous relationships between proteins remains the single most widely applicable tool for generating functional and structural hypotheses in silico. Although many databases exist that classify proteins and protein domains into homologous families, large sections of the sequence space remain unassigned. In this thesis we introduce DPCfam, a new unsupervised procedure that uses sequence alignments and Density Peak Clustering to automatically classify homologous protein regions. After a proof-of-principle experiment of the method based on the analysis of two clans from the Pfam protein family database and, we present an all-to-all clustering of the UniRef50 database, containing ~23,000,000 proteins. In both cases we present the DPCfam implementations: in particular present the strategies adopted to write a parallel and optimized implementation of the algorithm, needed to cluster the massive number of sequences in UniRef50. We develop specific measures to assess the quality of DPCfam's clusters, both in terms of boundaries and homology, using the Pfam database as a reference. Our tests indicate that DPCfam automatically-generated clusters are generally evolutionary accurate corresponding to one or more Pfam families and that they cover a significant fraction of known homologs. Moreover, find possible candidates for new family (around 14,000 when clustering UniRef50). Overall, DPCfam shows potential both for assisting manual annotation efforts (domain discovery, detection of classification inconsistencies, improvement of family coverage and boosting of clan membership) and as a stand-alone tool for unsupervised classification of sparsely annotated protein datasets such as those from environmental metagenomics studies (domain discovery, analysis of domain diversity)

    Classifying distinct data types: textual streams protein sequences and genomic variants

    Get PDF
    Artificial Intelligence (AI) is an interdisciplinary field combining different research areas with the end goal to automate processes in the everyday life and industry. The fundamental components of AI models are an “intelligent” model and a functional component defined by the end-application. That is, an intelligent model can be a statistical model that can recognize patterns in data instances to distinguish differences in between these instances. For example, if the AI is applied in car manufacturing, based on an image of a part of a car, the model can categorize if the car part is in the front, middle or rear compartment of the car, as a human brain would do. For the same example application, the statistical model informs a mechanical arm, the functional component, for the current car compartment and the arm in turn assembles this compartment, of the car, based on predefined instructions, likely as a human hand would follow human brain neural signals. A crucial step of AI applications is the classification of input instances by the intelligent model. The classification step in the intelligent model pipeline allows the subsequent steps to act in similar fashion for instances belonging to the same category. We define as classification the module of the intelligent model, which categorizes the input instances based on predefined human-expert or data-driven produced patterns of the instances. Irrespectively of the method to find patterns in data, classification is composed of four distinct steps: (i) input representation, (ii) model building (iii) model prediction and (iv) model assessment. Based on these classification steps, we argue that applying classification on distinct data types holds different challenges. In this thesis, I focus on challenges for three distinct classification scenarios: (i) Textual Streams: how to advance the model building step, commonly used for static distribution of data, to classify textual posts with transient data distribution? (ii) Protein Prediction: which biologically meaningful information can be used in the input representation step to overcome the limited training data challenge? (iii) Human Variant Pathogenicity Prediction: how to develop a classification system for functional impact of human variants, by providing standardized and well accepted evidence for the classification outcome and thus enabling the model assessment step? To answer these research questions, I present my contributions in classifying these different types of data: temporalMNB: I adapt the sequential prediction with expert advice paradigm to optimally aggregate complementary distributions to enhance a Naive Bayes model to adapt on drifting distribution of the characteristics of the textual posts. dom2vec: our proposal to learn embedding vectors for the protein domains using self-supervision. Based on the high performance achieved by the dom2vec embeddings in quantitative intrinsic assessment on the captured biological information, I provide example evidence for an analogy between the local linguistic features in natural languages and the domain structure and function information in domain architectures. Last, I describe GenOtoScope bioinformatics software tool to automate standardized evidence-based criteria for pathogenicity impact of variants associated with hearing loss. Finally, to increase the practical use of our last contribution, I develop easy-to-use software interfaces to be used, in research settings, by clinical diagnostics personnel.Künstliche Intelligenz (KI) ist ein interdisziplinäres Gebiet, das verschiedene Forschungsbereiche mit dem Ziel verbindet, Prozesse im Alltag und in der Industrie zu automatisieren. Die grundlegenden Komponenten von KI-Modellen sind ein “intelligentes” Modell und eine durch die Endanwendung definierte funktionale Komponente. Das heißt, ein intelligentes Modell kann ein statistisches Modell sein, das Muster in Dateninstanzen erkennen kann, um Unterschiede zwischen diesen Instanzen zu unterscheiden. Wird die KI beispielsweise in der Automobilherstellung eingesetzt, kann das Modell auf der Grundlage eines Bildes eines Autoteils kategorisieren, ob sich das Autoteil im vorderen, mittleren oder hinteren Bereich des Autos befindet, wie es ein menschliches Gehirn tun würde. Bei der gleichen Beispielanwendung informiert das statistische Modell einen mechanischen Arm, die funktionale Komponente, über den aktuellen Fahrzeugbereich, und der Arm wiederum baut diesen Bereich des Fahrzeugs auf der Grundlage vordefinierter Anweisungen zusammen, so wie eine menschliche Hand den neuronalen Signalen des menschlichen Gehirns folgen würde. Ein entscheidender Schritt bei KI-Anwendungen ist die Klassifizierung von Eingabeinstanzen durch das intelligente Modell. Unabhängig von der Methode zum Auffinden von Mustern in Daten besteht die Klassifizierung aus vier verschiedenen Schritten: (i) Eingabedarstellung, (ii) Modellbildung, (iii) Modellvorhersage und (iv) Modellbewertung. Ausgehend von diesen Klassifizierungsschritten argumentiere ich, dass die Anwendung der Klassifizierung auf verschiedene Datentypen unterschiedliche Herausforderungen mit sich bringt. In dieser Arbeit konzentriere ich uns auf die Herausforderungen für drei verschiedene Klassifizierungsszenarien: (i) Textdatenströme: Wie kann der Schritt der Modellerstellung, der üblicherweise für eine statische Datenverteilung verwendet wird, weiterentwickelt werden, um die Klassifizierung von Textbeiträgen mit einer instationären Datenverteilung zu erlernen? (ii) Proteinvorhersage: Welche biologisch sinnvollen Informationen können im Schritt der Eingabedarstellung verwendet werden, um die Herausforderung der begrenzten Trainingsdaten zu überwinden? (iii) Vorhersage der Pathogenität menschlicher Varianten: Wie kann ein Klassifizierungssystem für die funktionellen Auswirkungen menschlicher Varianten entwickelt werden, indem standardisierte und anerkannte Beweise für das Klassifizierungsergebnis bereitgestellt werden und somit der Schritt der Modellbewertung ermöglicht wird? Um diese Forschungsfragen zu beantworten, stelle ich meine Beiträge zur Klassifizierung dieser verschiedenen Datentypen vor: temporalMNB: Verbesserung des Naive-Bayes-Modells zur Klassifizierung driftender Textströme durch Ensemble-Lernen. dom2vec: Lernen von Einbettungsvektoren für Proteindomänen durch Selbstüberwachung. Auf der Grundlage der berichteten Ergebnisse liefere ich Beispiele für eine Analogie zwischen den lokalen linguistischen Merkmalen in natürlichen Sprachen und den Domänenstruktur- und Funktionsinformationen in Domänenarchitekturen. Schließlich beschreibe ich ein bioinformatisches Softwaretool, GenOtoScope, zur Automatisierung standardisierter evidenzbasierter Kriterien für die orthogenitätsauswirkungen von Varianten, die mit angeborener Schwerhörigkeit in Verbindung stehen

    Graph-based methods for large-scale protein classification and orthology inference

    Get PDF
    The quest for understanding how proteins evolve and function has been a prominent and costly human endeavor. With advances in genomics and use of bioinformatics tools, the diversity of proteins in present day genomes can now be studied more efficiently than ever before. This thesis describes computational methods suitable for large-scale protein classification of many proteomes of diverse species. Specifically, we focus on methods that combine unsupervised learning (clustering) techniques with the knowledge of molecular phylogenetics, particularly that of orthology. In chapter 1 we introduce the biological context of protein structure, function and evolution, review the state-of-the-art sequence-based protein classification methods, and then describe methods used to validate the predictions. Finally, we present the outline and objectives of this thesis. Evolutionary (phylogenetic) concepts are instrumental in studying subjects as diverse as the diversity of genomes, cellular networks, protein structures and functions, and functional genome annotation. In particular, the detection of orthologous proteins (genes) across genomes provides reliable means to infer biological functions and processes from one organism to another. Chapter 2 evaluates the available computational tools, such as algorithms and databases, used to infer orthologous relationships between genes from fully sequenced genomes. We discuss the main caveats of large-scale orthology detection in general as well as the merits and pitfalls of each method in particular. We argue that establishing true orthologous relationships requires a phylogenetic approach which combines both trees and graphs (networks), reliable species phylogeny, genomic data for more than two species, and an insight into the processes of molecular evolution. Also proposed is a set of guidelines to aid researchers in selecting the correct tool. Moreover, this review motivates further research in developing reliable and scalable methods for functional and phylogenetic classification of large protein collections. Chapter 3 proposes a framework in which various protein knowledge-bases are combined into unique network of mappings (links), and hence allows comparisons to be made between expert curated and fully-automated protein classifications from a single entry point. We developed an integrated annotation resource for protein orthology, ProGMap (Protein Group Mappings, http://www.bioinformatics.nl/progmap), to help researchers and database annotators who often need to assess the coherence of proposed annotations and/or group assignments, as well as users of high throughput methodologies (e.g., microarrays or proteomics) who deal with partially annotated genomic data. ProGMap is based on a non-redundant dataset of over 6.6 million protein sequences which is mapped to 240,000 protein group descriptions collected from UniProt, RefSeq, Ensembl, COG, KOG, OrthoMCL-DB, HomoloGene, TRIBES and PIRSF using a fast and fully automated sequence-based mapping approach. The ProGMap database is equipped with a web interface that enables queries to be made using synonymous sequence identifiers, gene symbols, protein functions, and amino acid or nucleotide sequences. It incorporates also services, namely BLAST similarity search and QuickMatch identity search, for finding sequences similar (or identical) to a query sequence, and tools for presenting the results in graphic form. Graphs (networks) have gained an increasing attention in contemporary biology because they have enabled complex biological systems and processes to be modeled and better understood. For example, protein similarity networks constructed of all-versus-all sequence comparisons are frequently used to delineate similarity groups, such as protein families or orthologous groups in comparative genomics studies. Chapter 4.1 presents a benchmark study of freely available graph software used for this purpose. Specifically, the computational complexity of the programs is investigated using both simulated and biological networks. We show that most available software is not suitable for large networks, such as those encountered in large-scale proteome analyzes, because of the high demands on computational resources. To address this, we developed a fast and memory-efficient graph software, netclust (http://www.bioinformatics.nl/netclust/), which can scale to large protein networks, such as those constructed of millions of proteins and sequence similarities, on a standard computer. An extended version of this program called Multi-netclust is presented in chapter 4.2. This tool that can find connected clusters of data presented by different network data sets. It uses user-defined threshold values to combine the data sets in such a way that clusters connected in all or in either of the networks can be retrieved efficiently. Automated protein sequence clustering is an important task in genome annotation projects and phylogenomic studies. During the past years, several protein clustering programs have been developed for delineating protein families or orthologous groups from large sequence collections. However, most of these programs have not been benchmarked systematically, in particular with respect to the trade-off between computational complexity and biological soundness. In chapter 5 we evaluate three best known algorithms on different protein similarity networks and validation (or 'gold' standard) data sets to find out which one can scale to hundreds of proteomes and still delineate high quality similarity groups at the minimum computational cost. For this, a reliable partition-based approach was used to assess the biological soundness of predicted groups using known protein functions, manually curated protein/domain families and orthologous groups available in expert-curated databases. Our benchmark results support the view that a simple and computationally cheap method such as netclust can perform similar to and in cases even better than more sophisticated, yet much more costly methods. Moreover, we introduce an efficient graph-based method that can delineate protein orthologs of hundreds of proteomes into hierarchical similarity groups de novo. The validity of this method is demonstrated on data obtained from 347 prokaryotic proteomes. The resulting hierarchical protein classification is not only in agreement with manually curated classifications but also provides an enriched framework in which the functional and evolutionary relationships between proteins can be studied at various levels of specificity. Finally, in chapter 6 we summarize the main findings and discuss the merits and shortcomings of the methods developed herein. We also propose directions for future research. The ever increasing flood of new sequence data makes it clear that we need improved tools to be able to handle and extract relevant (orthological) information from these protein data. This thesis summarizes these needs and how they can be addressed by the available tools, or be improved by the new tools that were developed in the course of this research. <br/

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Exploring nervous system transcriptomes during embryogenesis and metamorphosis in Xenopus tropicalis using EST analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The western African clawed frog <it>Xenopus tropicalis </it>is an anuran amphibian species now used as model in vertebrate comparative genomics. It provides the same advantages as <it>Xenopus laevis </it>but is diploid and has a smaller genome of 1.7 Gbp. Therefore <it>X. tropicalis </it>is more amenable to systematic transcriptome surveys. We initiated a large-scale partial cDNA sequencing project to provide a functional genomics resource on genes expressed in the nervous system during early embryogenesis and metamorphosis in <it>X. tropicalis</it>.</p> <p>Results</p> <p>A gene index was defined and analysed after the collection of over 48,785 high quality sequences. These partial cDNA sequences were obtained from an embryonic head and retina library (30,272 sequences) and from a metamorphic brain and spinal cord library (27,602 sequences). These ESTs are estimated to represent 9,693 transcripts derived from an estimated 6,000 genes. Comparison of these cDNA sequences with protein databases indicates that 46% contain their start codon. Further annotation included Gene Ontology functional classification, InterPro domain analysis, alternative splicing and non-coding RNA identification. Gene expression profiles were derived from EST counts and used to define transcripts specific to metamorphic stages of development. Moreover, these ESTs allowed identification of a set of 225 polymorphic microsatellites that can be used as genetic markers.</p> <p>Conclusion</p> <p>These cDNA sequences permit <it>in silico </it>cloning of numerous genes and will facilitate studies aimed at deciphering the roles of cognate genes expressed in the nervous system during neural development and metamorphosis. The genomic resources developed to study <it>X. tropicalis </it>biology will accelerate exploration of amphibian physiology and genetics. In particular, the model will facilitate analysis of key questions related to anuran embryogenesis and metamorphosis and its associated regulatory processes.</p

    Global analysis of SNPs, proteins and protein-protein interactions: approaches for the prioritisation of candidate disease genes.

    Get PDF
    PhDUnderstanding the etiology of complex disease remains a challenge in biology. In recent years there has been an explosion in biological data, this study investigates machine learning and network analysis methods as tools to aid candidate disease gene prioritisation, specifically relating to hypertension and cardiovascular disease. This thesis comprises four sets of analyses: Firstly, non synonymous single nucleotide polymorphisms (nsSNPs) were analysed in terms of sequence and structure based properties using a classifier to provide a model for predicting deleterious nsSNPs. The degree of sequence conservation at the nsSNP position was found to be the single best attribute but other sequence and structural attributes in combination were also useful. Predictions for nsSNPs within Ensembl have been made publicly available. Secondly, predicting protein function for proteins with an absence of experimental data or lack of clear similarity to a sequence of known function was addressed. Protein domain attributes based on physicochemical and predicted structural characteristics of the sequence were used as input to classifiers for predicting membership of large and diverse protein superfamiles from the SCOP database. An enrichment method was investigated that involved adding domains to the training dataset that are currently absent from SCOP. This analysis resulted in improved classifier accuracy, optimised classifiers achieved 66.3% for single domain proteins and 55.6% when including domains from multi domain proteins. The domains from superfamilies with low sequence similarity, share global sequence properties enabling applications to be developed which compliment profile methods for detecting distant sequence relationships. Thirdly, a topological analysis of the human protein interactome was performed. The results were combined with functional annotation and sequence based properties to build models for predicting hypertension associated proteins. The study found that predicted hypertension related proteins are not generally associated with network hubs and do not exhibit high clustering coefficients. Despite this, they tend to be closer and better connected to other hypertension proteins on the interaction network than would be expected by chance. Classifiers that combined PPI network, amino acid sequence and functional properties produced a range of precision and recall scores according to the applied 3 weights. Finally, interactome properties of proteins implicated in cardiovascular disease and cancer were studied. The analysis quantified the influential (central) nature of each protein and defined characteristics of functional modules and pathways in which the disease proteins reside. Such proteins were found to be enriched 2 fold within proteins that are influential (p<0.05) in the interactome. Additionally, they cluster in large, complex, highly connected communities, acting as interfaces between multiple processes more often than expected. An approach to prioritising disease candidates based on this analysis was proposed. Each analyses can provide some new insights into the effort to identify novel disease related proteins for cardiovascular disease

    Analysing functional genomics data using novel ensemble, consensus and data fusion techniques

    Get PDF
    Motivation: A rapid technological development in the biosciences and in computer science in the last decade has enabled the analysis of high-dimensional biological datasets on standard desktop computers. However, in spite of these technical advances, common properties of the new high-throughput experimental data, like small sample sizes in relation to the number of features, high noise levels and outliers, also pose novel challenges. Ensemble and consensus machine learning techniques and data integration methods can alleviate these issues, but often provide overly complex models which lack generalization capability and interpretability. The goal of this thesis was therefore to develop new approaches to combine algorithms and large-scale biological datasets, including novel approaches to integrate analysis types from different domains (e.g. statistics, topological network analysis, machine learning and text mining), to exploit their synergies in a manner that provides compact and interpretable models for inferring new biological knowledge. Main results: The main contributions of the doctoral project are new ensemble, consensus and cross-domain bioinformatics algorithms, and new analysis pipelines combining these techniques within a general framework. This framework is designed to enable the integrative analysis of both large- scale gene and protein expression data (including the tools ArrayMining, Top-scoring pathway pairs and RNAnalyze) and general gene and protein sets (including the tools TopoGSA , EnrichNet and PathExpand), by combining algorithms for different statistical learning tasks (feature selection, classification and clustering) in a modular fashion. Ensemble and consensus analysis techniques employed within the modules are redesigned such that the compactness and interpretability of the resulting models is optimized in addition to the predictive accuracy and robustness. The framework was applied to real-word biomedical problems, with a focus on cancer biology, providing the following main results: (1) The identification of a novel tumour marker gene in collaboration with the Nottingham Queens Medical Centre, facilitating the distinction between two clinically important breast cancer subtypes (framework tool: ArrayMining) (2) The prediction of novel candidate disease genes for Alzheimer’s disease and pancreatic cancer using an integrative analysis of cellular pathway definitions and protein interaction data (framework tool: PathExpand, collaboration with the Spanish National Cancer Centre) (3) The prioritization of associations between disease-related processes and other cellular pathways using a new rule-based classification method integrating gene expression data and pathway definitions (framework tool: Top-scoring pathway pairs) (4) The discovery of topological similarities between differentially expressed genes in cancers and cellular pathway definitions mapped to a molecular interaction network (framework tool: TopoGSA, collaboration with the Spanish National Cancer Centre) In summary, the framework combines the synergies of multiple cross-domain analysis techniques within a single easy-to-use software and has provided new biological insights in a wide variety of practical settings

    PROTEIN FUNCTION, DIVERISTY AND FUNCTIONAL INTERPLAY

    Get PDF
    Functional annotations of novel or unknown proteins is one of the central problems in post-genomics bioinformatics research. With the vast expansion of genomic and proteomic data and technologies over the last decade, development of automated function prediction (AFP) methods for large-scale identification of protein function has be-come imperative in many aspects. In this research, we address two important divergences from the “one protein – one function” concept on which all existing AFP methods are developed
    corecore