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ABSTRACT 

Khan, Ishita K. Ph.D., Purdue University, December 2016. Protein Function, Diversity, 

and Functional Interplay. Major Professor: Daisuke Kihara. 

 

Functional annotations of novel or unknown proteins is one of the central prob-

lems in post-genomics bioinformatics research. With the vast expansion of genomic and 

proteomic data and technologies over the last decade, development of automated function 

prediction (AFP) methods for large-scale identification of protein function has become 

imperative in many aspects. In this research, we address two important divergences from 

the “one protein – one function” concept on which all existing AFP methods are devel-

oped: 

 1. One protein with multiple independent functions – Moonlighting Proteins: 

Moonlighting proteins perform more than one independent cellular function within one 

polypeptide chain. Recent biological experiments have been discovering such multi-

functional proteins at a steady pace. Our work on moonlighting proteins can be divided 

into two logical parts: 1a. Development of a computational framework for comprehensive 

genome-scale characterization of moonlighting proteins based on functional and context-

based information. Our work identifies characteristic features of moonlighting proteins in 

both cases where current databases have functional annotations of the diverse functions 

of such proteins and cases where functional annotations do not exist. 1b. Development of 
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automated prediction models of moonlighting proteins. We take two different approaches 

for our model development: using functional and context based features in a machine 

learning framework, and using text-based features, learned through text-mining algo-

rithms.  

 2. Group of proteins sharing a common function: On a regular basis, biological 

experiments reveal sets of proteins involved in disease/disorder/cellular phenomena 

without sufficient explanation of the functional mechanisms of these group activities. In-

tuitively, proteins interact in a cell physically, through gene expression or genetic interac-

tion to perform a common function that so often ends up causing a disease/disorder. To 

understand the functional nature of a set of proteins, it is often important to understand 

the functionalities in which they are involved in as a group, rather than understanding the 

detailed functional characteristics of the individual proteins. In this research, we develop 

a conditional random field (CRF)-based framework that predicts the function of the “pro-

tein groups”, based on group neighborhood of their interaction network, and iteratively 

updates the function annotation of the unknown group members such that it reflects the 

protein’s group activity.  

For the protein function prediction research domain, it is vital to keep pace with 

existing AFP methods by improving the prediction accuracy, updating the models and 

making the methods available to the bioinformatics community. The final part of this re-

search copes with the AFP problem in three aspects: improvement, database update and 

web-server development of two existing methods: PFP and ESG, and participation in a 

community-wide challenge for the AFP methods called CAFA (Critical Assessment of 

Function Annotation) and benchmarking the performances.  
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CHAPTER 1. INTRODUCTION 

1.1 Background 

 Elucidating the biological function of proteins is vital to understanding the 

molecular mechanism of life, hence stands as a fundamental problem in diverse branches 

of biology and bioinformatics. As the amount of protein sequence and interaction data 

grows at an exponential rate, performing biological experiments to find functions of all 

the genes becomes an insurmountable task. At one end, large-scale experimental 

approaches give only non-specific information about the function of the protein, whereas 

in the other end small-scale experiments provide more direct evidence but are costly and 

labor intensive. Figure 1.1 shows the growth of sequence and structure databases well-

known in bioinformatics research domain. Striking growth of databases such as GenBank 

[1] and KEGG [2] is evident from the plot, as number of DNA sequences rise from ~103 

to ~108 in GenBank between years 1983-2014, and number of gene entries rise from 

105~107 within years 1998-2016 in the KEGG database. 

 Consequently, bioinformatics approaches have been long sought as solutions that 

bridge the gap between the pace of whole-genome sequencing and revealing functional 

insights for the newly sequenced genes. Computational function prediction methods are 

also useful for analyzing protein function on a proteomic scale, such as interpreting high-

throughput experiments including gene expression and protein-protein interaction 
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data, since these methods can be applied to a large number of proteins in a short time. As 

sequencing the whole genome of organisms becomes routine in experimental laboratories 

due to the rapid advancement of sequencing technologies, computational gene function 

prediction methods have become increasingly important.  

 

Figure 1.1 Growth of sequence and 3D structure databases  

Yearly release information of KEGG data was obtained from GenomeNet 

(http://www.kanehisa.jp/en/db_growth.html) 

 

 

1.2 Protein function prediction methods 

The history of computational protein function prediction goes back to a very early 

stage of bioinformatics, when algorithms of sequence alignments and sequence database 

searches covered the major research problems in this area. From an evolutionary point of 

view, genes evolved from the same ancestor commonly retain sequence and functional 

similarity. Since protein sequence determines the tertiary structure of the protein, conven-

tionally researchers have used protein sequence or structural similarity to transfer func-

http://www.kanehisa.jp/en/db_growth.html
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tion information between proteins. Since structure-based methods rely on the availability 

of known structures of proteins, data that is quite scarce in the enormous genomic land-

scape, more often than not, the only available information on a functionally un-annotated 

protein is its sequence. Conventional homology-based function prediction methods can 

be summarized into three main categories: sequence-to-sequence comparison methods 

such as SSSEARCH [3], FASTA[4] and BLAST [5] extract functional annotations from 

top hit sequences which have a significant similarity score with the query. The second 

category of homology-based methods are profile-to-sequence comparison method such as 

PSI-BLAST[6], that iteratively construct a profile (multiple sequence alignment, MSA) 

with a target and retrieved sequences and uses it for the search in next iteration. Profiles 

can also be pre-computed for sequences in a database, and a target sequence is matched 

against them. This approach formulates the third category of sequence-based function 

annotation methods – sequence-to-profile comparison methods such as and BLOCKS [7], 

ProDom [8], PRINTS [9], Pfam [10] and  InterPro [11].  

Aside from the conventional homology-based function prediction methods, several 

advanced methods were developed that extract function information thoroughly from se-

quence database search results by making use of sequence-based features. Some of these 

methods have used machine learning tools such as Support Vector Machine (SVM) or 

Artificial Neural Network (ANN) as the backbone of their function prediction scheme. 

These methods include PFP [12,13], ESG [14], GOtcha [15], GOPET [16], OntoBlast 

[17], GOFigure [18], and ConFunc [19].  

The homology driven function annotation methods have some shortcomings. There 

are cases where sequence similarity does not directly imply functional similarity (e.g. 
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gene duplication/paralogous genes). Also, homology driven annotation transfer leads to 

the percolation of miss-annotations in databases. Moreover, sequence data do not provide 

information on the biological context of protein functions. Such context driven function 

prediction can be performed using large-scale data on interactions (e.g. physical, genetic, 

co-expression) which are commonly represented as networks, with nodes representing 

proteins and edges representing the detected interactions.  

Network based approaches were classified into two categories in a review by Sharan 

et. al. [41]: direct methods predict the functions of a protein from the known functions of 

its neighbors/interacting protein in the network. Module-based/indirect methods first 

identify function modules in the network and subsequently assign enriched function in 

the module to their un-annotated components. On the other hand, SIFTER [20], Flower-

Power [21], and Orthostrapper [22] employ phylogenetic trees to transfer functions to 

target genes in the evolutionary context. There are other function prediction methods 

considering co-expression patterns of genes [23-27], 3D structures of proteins [28-36] as 

well as interacting proteins in large-scale protein-protein interaction networks [37-42].    

 

1.3 Vocabulary for function prediction 

For managing computational protein function prediction there is a need to trans-

form the descriptive biological knowledge into a controlled and well-defined vocabulary. 

The Gene Ontology (GO) Consortium [43] of collaborating databases has developed a 

structured controlled vocabulary to describe gene function and currently serves as the 

dominant approach for machine-legible functional annotation. GO describes three aspects 

of gene product function: molecular function, biological process and cellular location. 
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Biological process (BP) terms indicate pathways and larger processes made up of the ac-

tivities of multiple gene products. Examples of biological processes are carbohydrate me-

tabolism (GO:0003677), regulation of transcription (GO:0045449). Molecular functions 

(MF) represent activities carried out at molecular level by proteins or complexes, for ex-

ample, catalytic activity (GO:0003824) or DNA binding (GO:0003677). Cellular compo-

nent (CC) indicates to which anatomical part of the cell the protein belongs to, for exam-

ple, ribosome (GO:0005840) or nucleus (GO:0005634). Thus each GO term has a cate-

gory and an identifier in the format GO:xxxxxxx associated with it, along with a term 

definition to explain the meaning of the term. Each of the BP, MF and CC ontology is 

represented as a directed acyclic graph (DAG) where terms are represented as nodes in 

the graph and are arranged from general to specific. By standardizing an annotation and 

defining the relationships between terms using a graph, annotations may be computation-

ally processed.  

 

1.4 One protein multiple functions ─ Moonlighting protein  

Automated protein function prediction methods are based on the concept of one pro-

tein involved in one function; hence conventionally AFP methods are based on sequence 

or structure homology. As the major focus of my research, I address two possible diver-

gences from the “one protein – one function” concept for the first time that has inevitable 

impact on cellular processes: the first is the aspect of one protein having multiple func-

tions, or moonlighting proteins, and the next is the aspect of group of proteins performing 

one function, described in the next subsection.  
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As the number of functionally characterized proteins increases, it has been ob-

served that there are proteins involved in more than one function [44-46]. These proteins 

were described as “moonlighting” proteins [44]. Moonlighting proteins (MP) perform 

more than one independent cellular function within one polypeptide chain. Recent biolog-

ical experiments have been discovering such multi-functional proteins at a steady pace. 

However, existing computational methods for automated function prediction (AFP) prob-

lem are aimed at identifying one, not multiple function of proteins; hence development of 

bioinformatics approaches for automatic identification of MPs has inevitable impact and 

novelty. Our work on moonlighting proteins can be divided into three logical parts:    

1a. [47-49]: Development of a computational framework for comprehensive ge-

nome-scale characterization of moonlighting proteins based on functional and context-

based information. Based on current knowledge of experimentally identified MPs, our 

work identifies characteristic features of MPs in both cases where current databases have 

functional annotations of the diverse functions of such proteins and cases when functional 

annotations do not exist. Different context-based protein association are explored for 

characterizing MPs apart from direct GO based results, such as protein-protein interaction 

(PPI), phylogenetic profile association, gene expression profile correlation, genetic inter-

action, protein’s structural features etc.  

 1b. [50]: Development of an automated prediction model of moonlighting pro-

teins based on functional and context based features established in 1a. Our model applies 

machine learning classifiers to perform MP prediction on the diverse feature space. The 

model also addresses the missing feature problem commonly found in interaction net-

works, and imputes the features missing in protein databases through a iterative learning 
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algorithm. We show that we can identify MPs with very high accuracy when the func-

tional annotations of the protein exist in the databases. More importantly, we show that 

our model can identify such proteins with high to moderate accuracy when functional an-

notations are absent in the database using network-based features and with incorporating 

missing feature prediction.  

1c. As computational approaches for studying MPs are starting to emerge in the bi-

oinformatics community, different facets of proteins: from sequence based properties, 

gene ontology (GO) to protein-protein interaction (PPI) have been considered. However, 

textual information associated to proteins have never been applied before to the automat-

ed identification of MPs. In the last part of my MP based work, we propose a novel 

method that extracts text information of proteins from scientific literature and applies 

text-mining techniques to provide automated MP prediction based on protein’s textual 

features. Our developed model achieves high accuracy of MP prediction using different 

text-based features and shows that significant fraction of different genomes are predicted 

as MPs with sufficient high specificity over known MPs.  

 

1.5 Function prediction of protein groups 

The second part of this research addresses yet another divergence from the one-

protein-one function paradigm. Proteins work together to achieve a common function in a 

cell. More often than not, biological experiments reveal sets of proteins involved in a dis-

ease/disorder, co-expressed together, or phylogenetically correlated together without suf-

ficient explanation of the functional mechanisms of these group activities. Consequently, 

the computational challenge of correctly annotating protein’s function and explaining the 
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mechanisms through which multiple proteins interact in a cell toward a common phe-

nomenon becomes ever more important. Intuitively, proteins interact in a cell physically, 

through gene expression or genetic interaction to commemorate a common function that 

so often ends up causing a disease/disorder. To understand the functional nature of a set 

of proteins, it is often important to understand the biological process/molecular func-

tion/cellular location the proteins are involved in as a group, rather than understanding 

the detailed functional characteristics of the individual proteins in the group. My research 

aims to develop a computational model that predicts functions of protein groups based on 

protein’s interaction networks.  

Existing computational AFP methods aims at identifying individual functions of 

proteins, and there is no existing model that can identify protein’s group function. Here 

we propose a model that takes groups of proteins found to work together in certain bio-

logical experiment, disease, or pathway, maps them to several functional linkage net-

works and integrates them, and then uses an iterative clustering and graphical modeling 

based schema to find group functions of the input proteins. As a backbone to the function 

prediction model of protein group, we use an integration of a number of major protein 

interaction networks. We propose a conditional random field (CRF)-based framework 

that predicts function of the “protein groups” in the network based on group neighbor-

hood, and iteratively updates the function annotation of the unknown group members 

such that it reflects the protein’s group activity. The perspective of “group” function an-

notation to a set of proteins opens up novel possibilities in understanding the functional 

nature of complex cellular interactions of protein groups.  
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1.6 Update on AFP methods and CAFA challenge   

[51-53]: An essential task in bioinformatics is to propose and develop new tools and 

new ideas. However, to support the biology community, it is equally important to main-

tain and update previously-developed software tools so that users can continue using 

them. For a prediction method, it is important that the prediction accuracy be improved 

over time so that it can keep pace with other existing methods of the same type. The last 

part of my research copes with the AFP problem in three aspects: A. database update and 

improvement of methods previously developed in our group- PFP[12,13] and ESG [14], 

B. development of a web-server for the methods, and C. participation in a community-

wide challenge for the AFP methods called CAFA (critical assessment of function anno-

tation. We also develop two ensemble methods that combine GO predictions from multi-

ple AFP models. We report benchmark performances of our updated methods and also 

performances of our component and ensemble methods in CAFA [54]. 
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CHAPTER 2.  MOONLIGHTING PROTEINS 

2.1 Background 

The first divergence from the “one protein – one function” concept that I address in 

my research are moonlighting proteins. With the overwhelming growth of genome se-

quence data produced by rapidly advancing sequencing technologies, the challenge of 

correctly determining functions of encoded proteins becomes ever more evident. As the 

number of functionally characterized proteins increases, it has been observed that there 

are proteins involved in more than one function [44-46]. These proteins were described as 

“moonlighting” proteins first by Jeffery [44]. A moonlighting protein demonstrates mul-

tiple autonomous and usually unrelated functions. Diversity of dual functions of these 

proteins is in principle not a consequence of gene fusions, splice variants, multiple prote-

olytic fragments, homologous but non-identical proteins, or varying post-transcriptional 

modification. 

The first and the most widely known example of moonlighting proteins was identi-

fied by Piatigorsky and Wistow [55] who showed that crystallins, structural proteins in 

the eye lens, also have enzymatic activity. Crystallins in several mammals, geckos, birds, 

and some other species, are eye lens proteins that retain their metabolic functions, includ-

ing lactate dehydrogenase, arginosuccinate lyase, and α-enolase [56-59]. Many known 

moonlighting proteins were originally recognized as enzymes, but there are also others 
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that were known as receptors, channel proteins, chaperone proteins, ribosomal proteins, 

and scaffold proteins [44,60,61]. The secondary/moonlighting functions of these proteins 

include transcriptional regulation, receptor binding, apoptosis-related, and other regulato-

ry functions. A variety of causes have been found for the moonlighting activities of these 

proteins [44], including locations inside and outside of cell (e.g. thymidine phosphorylase 

[62]), different locations within a cell (putA proline dehydrogenase [63]), ligand binding 

sites (E. coli aspartate receptor [64]), oligomerization states (glyceraldehyde-3-phosphate 

dehydrogenase [65]), differential expressions (neuropilin [66]), and ligand concentration 

(aconitase [67]).  

As long as the additional functions do not interfere with the primary function, 

moonlighting functions can benefit a cell in several ways. Especially in prokaryotes, ex-

istence of multifunctional proteins aids in saving energy in cell growth and reproduction 

and makes their genomes more compact. Moonlighting proteins can also help in coordi-

nating cellular activities in signaling pathways, transport, biosynthesis, and other func-

tions [68]. It has been suggested that the presence of moonlighting proteins is under posi-

tive selection [44,61,69]. 

Recent papers [61,70] indicate that a number of moonlighting proteins in mammals 

play important roles in cellular activities and biochemical pathways that are involved in 

cancer and other diseases. Sriram et al. discussed how moonlighting functions may con-

tribute to the complexity of metabolic disorders [71]. The positive selective pressure for 

developing moonlighting functions and the cell-level benefits given by moonlighting pro-

teins suggest that the existence of moonlighting proteins in diverse genomes might be a 

common phenomenon. 



12 

 

1
2
 

2.2 Current computational analysis on MP 

The functional diversity of moonlighting proteins pose a significant challenge to 

computational protein function annotation as current methods do not explicitly consider 

the possibility of dual functions for a protein. Conventional sequence-based functional 

annotation methods that are based on the concept of homology [6] or conserved mo-

tifs/domains [72-74] will have problems for identifying secondary functions because 

there are cases that a homolog of a moonlighting protein does not possess the secondary 

function [75] or has a different secondary function [67,76,77]. There are two studies that 

have investigated whether existing sequence-based function prediction methods can iden-

tify distinct dual functions of moonlighting proteins [49,78]. Gomez et al. compared 

eleven methods and reported that PSI-BLAST [6] performed relatively well in identifying 

moonlighting functions [78]. We have compared our function prediction tools, PFP  and 

ESG [14], with PSI-BLAST and showed that PFP, which mines function information 

from weakly similar sequences, had the best performance in predicting two distinct func-

tions of moonlighting proteins [49]. These two studies suggest that secondary functions 

may be found in distantly related sequences if not in close homologs; however, further 

investigation is needed because the studies are based on a limited dataset. Gomez et al. 

have also analysed protein-protein interactions (PPIs) of moonlighting proteins and 

showed that GO terms of secondary function are enriched in interacting proteins, alt-

hough they concluded that predicting correct secondary function from a PPI network is 

not an easy task [79]. Becker et al. [80] analysed Human PPI network and developed a 

novel clustering method that can decompose a network into multiple overlapping clusters. 

They reported that proteins that belong to the overlapping clusters are more central in the 
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network compared to mono-clustered proteins and contain multiple domains; hence they 

are candidates for multitasking proteins. Studies also explore different aspects of moon-

lighting proteins using intrinsically disordered region, functional motif/domains and cor-

related mutations [81,82]. Currently, there are two publicly available online databases for 

multifunctional/moonlighting proteins[83,84]. Computational works on moonlighting 

proteins were recently summarized in a review article [47]. 

 

2.3 Performance evaluation of AFP methods on MP prediction 

In this work, we have analyzed the ability of existing function prediction methods 

to correctly identify diverse functions of experimentally identified moonlighting proteins 

[69]. We have collected Gene Ontology (GO) term annotations of these proteins from the 

Uniprot database and manually classified these annotations into two distinct functions. 

Based on the GO annotations, we have examined the prediction performance of PSI-

BLAST and two other major sequence based function prediction methods, the Protein 

Function Prediction (PFP) and the Extended Similarity Group (ESG) method.  

 Overall, PFP showed higher average recall than PSI-BLAST and ESG. ESG 

showed lower recall as compared with PFP and PSI-BLAST, although it has a higher 

precision. The results suggest that the functional diversity of the moonlighting proteins 

can be captured if weakly similar sequences are considered among a broad range of simi-

lar sequence sets. 
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2.3.1 Methods 

In this section we briefly describe the three AFP methods we examined, PFP, 

ESG, and PSI-BLAST, for computational prediction of moonlighting proteins. 

 

 Protein Function Prediction (PFP) algorithm 

The PFP algorithm uses PSI-BLAST to obtain sequences hits for a target se-

quence and predict GO function annotations.  PFP computes the score to GO term fa as 

follows: 

   
 


N

i

iNfunc

j

jaa ffPbivalueEfs
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)(

1

)|())(log()( ,                                              (Eq. 2.1) 

where N is the number of sequence hits considered in the PSI-BLAST hits, Nfunc(i) is the 

number of GO annotations for the sequence hit i, E_value(i) is the PSI-BLAST E_value 

for the sequence hit i, fj is the j-th annotation of the sequence hit i, and constant b takes 

value 2 (= log10100) to keep the score positive when retrieved sequences up to E_value 

of 100 are used (so that –log10(100) + 2 = 0, when E_value = 100). The conditional prob-

abilities P(fa|fj) is to consider co-occurrence of GO terms in single sequence annotation, 

which is computed as the ratio of number of proteins co-annotated with GO terms fa and 

fj as compared with genes annotated with the term fj. To take into account the hierarchical 

structure of the GO, PFP transfers the raw score to the parental terms by computing the 

proportion of proteins annotated with fa relative to all proteins that belong to the parental 

GO term in the database. The score of a GO term computed as the sum of the directly 

computed score by Eqn. 2.1 and the ones from the parental propagation is called the raw 

score. 
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 Extended Similarity Group (ESG) algorithm  

ESG recursively performs PSI-BLAST searches from sequence hits obtained from 

the initial search from the target sequence, thereby performing multi-level exploration of 

the sequence similarity space around the target protein. Each sequence hit in a search is 

assigned a weight that is computed as the proportion of the -log(E_value) of the sequence 

relative to the sum of -log(E_value) from all the sequence hits considered in the search of 

the same level and this weight is assigned for GO terms annotating the sequence hit. The 

weights for GO terms found in the second level search are computed in the same fashion. 

Ultimately the score for a GO term is computed as the total weight from the two levels of 

the searches. The score for each GO term ranges from 0 to 1.0. 

 

 PSI-BLAST algorithm 

PSI-BLAST search is performed with a default setting with maximum of three it-

erations. Then the top hits with an E_value score better than 0.01 that have annotations is 

used for transferring annotation to the query sequence. The BLAST predictions were 

ranked according to –log(E_value)+2 for each of the prediction. 

 

2.3.2 Results 

We analyze the performances of PFP, ESG and PSI-BLAST in predicting the 

functional diversity of the moonlighting proteins. The 19 moonlighting proteins were tak-

en from review article [69]. These proteins have two diverse and distinct functions. Ac-

cording to the verbal description of the two diverse functions of the proteins, we classi-
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fied GO terms assigned to these proteins from Uniprot into four classes: Terms that be-

long to the major moonlighting function of the protein (Function 1); those which belong 

to the second moonlighting function (Function 2); terms which belong to both functions; 

and  terms that do not belong to either of the functions.  

 The raw score of PFP predictions has a large range of values. Up to 1000 GO 

term predictions were sorted by their raw score and plotted at an interval of 10. ESG pre-

dictions have a score range of 0 to 1.0, and 100 cutoffs are used within this range. PSI-

BLAST predictions are ranked by -log(E_value)+2, and 100 score cutoffs are used from 4 

(E_value of 0.01) to 45 (E_value of 10-43). To compare the prediction performances of 

the methods, we computed precision and recall. Precision is defined as TP/(TP+FP) and 

recall is defined as TP/(TP+FN), where TP and FP denote true and false positive, respec-

tively, and FN denote false negative. All predictions by the three methods are propagated 

to the root of the GO hierarchy, so are the true annotations for the proteins. 

 

 Average precision recall of PFP, ESG, and PSI-BLAST 

 In Figure 2.1, the performance of PFP, ESG, and PSI–BLAST in terms of the av-

erage precision and recall for all the GO terms of the 19 moonlighting proteins are shown. 

Figure 2.1 shows that ESG predictions perform significantly better than the other two 

methods in the recall range of 0.4 – 0.7. ESG has better precision than BLAST  
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Figure 2.1 Precision recall of PFP, ESG and PSI– BLAST 

 

within recall range of 0.37 – 0.66. PFP predictions ranked with raw score (Eq. 2.1 in 

Methods) reaches the highest recall. In Figure 2.2 we show the performance of the meth-

ods in terms of recall values of the methods at 100 cutoff scores (with all the GO annota-

tions of the proteins considered). It is apparent from this plot that PFP showed higher re-

call than PSI-BLAST, and ESG. ESG has lowest recall within the cutoff range of 0.09-

0.88. 

 

Figure 2.2 Recall of PFP, ESG and PSI–BLAST at each threshold  

A, Recall where all the GO annotations for proteins are considered.  

B, Recall where only the GO annotations labeled as Function 1 or Function 2  for pro-

teins are considered. 
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  In Figure 2.2B, the performance was evaluated where only the GO annotations for 

the two moonlighting functions (Function 1 and Function 2) are taken into account as the 

target annotations. The prediction performance for the moonlighting functions is essen-

tially the same as those measured for the all GO term annotations (Fig. 2.2A). 

 

 Recall at individual proteins 

Next In Figure 2.3, we plotted the recall for the three methods for each of the 19 

moonlighting proteins separately. The cutoff of the prediction scores used are 0.5 for PFP, 

0.35 for ESG, and E_value 0.01 for PSI-BLAST. The PFP cutoff of 0.5 will yield the 

maximum of 500 GO term predictions. The score cutoff value of 0.35 for ESG is an op-

timal cutoff score established in the previous work [14]. E_value 0.01 for PSI-BLAST is 

a standard cutoff used in general for homology search. We added the predictions of two 

more versions of PSI-BLAST, with BLOSUM45 and BLOSUM30 scoring matrices 

(BL+bls45 and BL+30 in Figure 2.3, respectively) to consider more divergent sequences 

in the homology search. PSI-BLAST uses BLOSUM62 as the default scoring matrix. 
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Figure 2.3 Recall of PFP, ESG, PSI–BLAST with different BLOSUM matrix   

A, Recall where all the GO annotations for proteins are considered.  

B, Recall where only the GO annotations labeled as  Function 1 or Function 2  for pro-

teins are considered. 

 

 When all the GO terms are considered (Fig. 2.3A), PFP showed higher recall than 

PSI-BLAST for almost all the cases (except for proteins 2 and 4, which are ties). ESG has 

similar recall of predictions as PSI–BLAST for proteins 14 and 17, slightly higher recall 

for proteins 6, 12 and 15 than PSI-BLAST, and a lower recall than PFP and PSI-BLAST 

for the rest of the proteins. PSI-BLAST with BLOSUM45 remains lower or equal in re-

call values than PFP for most of the cases except for 3 proteins where BL+bls45 wins 

over the others. BL+bls30 fails to predict any GO terms above E_value of 0.01 for many 

proteins. Overall, PFP shows the highest overall recall than ESG and PSI-BLAST with 

different scoring schemes. We see a similar performance pattern for the three methods 

when we consider only the GO terms belonging to moonlighting function 1 and function 

2 of the proteins (Fig. 2.3B).  
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 These results indicate that the PFP can find moonlighting GO terms that are 

missed by regular PSI-BLAST searches for quite a lot of cases. The strength of PFP is its 

coverage of a large number of sequences, by including weakly similar sequences into 

consideration for annotation transfer. On the other hand, ESG puts more weight on the 

consensus sequences that have strong similarity with the query protein among all the se-

quences that it encounters along multiple iterations. So although ESG provides a higher 

precision on the predictions among all three methods (Fig. 2.1), it fails to detect the func-

tional variations in a number of cases. These results suggest that the functional diversity 

of the moonlighting proteins could be captured by using weakly similar sequences are 

considered among a broad range of similar sequences. 

 

2.4 Genome-scale identification and characterization of MPs 

Despite the potential abundance of moonlighting proteins in various genomes and 

their important roles in pathways and disease development, systematic studies of moon-

lighting proteins are still in their early stage for obtaining a comprehensive picture of pro-

teins’ moonlighting functions and also for developing computational methods for predict-

ing moonlighting proteins. The limited number of known moonlighting proteins is mainly 

because secondary functions of proteins are usually found unexpectedly by experiments. 

To lay the foundation for studying moonlighting proteins, the current work is aimed at 

establishing a framework for systematically identifying moonlighting proteins in an or-

ganism using currently available function annotations and omics-scale data. This work 

consists of two logical parts. First, we examined Gene Ontology (GO) annotations 

[43,85] of known moonlighting proteins in the UniProt protein sequence database [86] to 
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see if functional diversity of moonlighting proteins is reflected in current GO annotations. 

Since the systematic study of moonlighting proteins is still in an early stage, most of the 

cases they are not explicitly labelled in the database as “moonlighting”, “dual function”, 

“multitasking”, or related words, which makes it difficult to collect and reuse existing 

knowledge of moonlighting proteins. We analyzed the GO terms assigned to each known 

moonlighting protein and found that the GO term semantic similarity score can clearly 

separate the GO terms of the diverse functions of these proteins. Encouraged by this re-

sult, we further analyzed the GO term annotations of protein genes in the Escherichia coli 

K-12 genome and found 33 novel moonlighting proteins by identifying genes with clear 

GO term separations. We confirmed in literature that the dual functions of the identified 

proteins had experimental evidence. Among our computationally identified moonlighting 

proteins, we later found that DegP was experimentally identified as a moonlighting pro-

tein with both protease and chaperone activity [87-89], which confirmed that our proce-

dure was valid. 

In the second part of this work, we investigated characteristics of moonlighting 

proteins in omics-scale data, namely, protein-protein interaction, gene expression, phylo-

genetic profile [90], and genetic interactions [91]. We decided to analyze these omics-

scale data because moonlighting proteins’ distinct functions may display characteristic 

features in association patterns with other proteins. In analyzing protein-protein interac-

tions, we found that moonlighting proteins interact with a higher number of distinct func-

tional classes of proteins than non-moonlighting ones, which intuitively stems from the 

functional diversity of these proteins. We found a substantial number of moonlighting 

proteins in the PPI network of moonlighting proteins, suggesting moonlighting proteins 
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tend to interact with other moonlighting proteins. It is also notable that moonlighting pro-

teins share their primary functions with the majority of interacting proteins. Similarly, a 

weak tendency was found that moonlighting proteins interact with proteins from more 

diverse functional classes in gene expression and phylogenetic profile networks. We have 

further examined structural features of proteins, i.e. ligand binding sites and disordered 

regions. We analysed disordered regions and found that a larger fraction of moonlighting 

proteins have intrinsically disordered regions than non-moonlighting proteins. Finally, 

although there are only a few moonlighting proteins whose tertiary structures were avail-

able, we found cases where the binding sites that correspond to distinct functions are lo-

cated in separate regions of the proteins’ tertiary structures. 

 

2.4.1 Methods 

 

 Dataset of known MPs 

We constructed three datasets of experimentally confirmed moonlighting proteins 

from two review articles [44,69] and papers we collected from the PubMed database. 

They are called the MPR1 [75] [69], MPR2 [92] [44], and MPR3 (16) set, respectively. 

In the parentheses is the number of moonlighting proteins in the each dataset. The MPR1 

dataset was used in our previous study [49]. The three datasets are available at 

http://kiharalab.org/MoonlightingDatasets. The list of proteins in the MPR3 set is provid-

ed in Table A.3. In MPR1 and MPR2, we found four proteins (ATF2, PutA, neuropilin-I, 

and BirA) are multi-domain proteins. Although these four proteins are also listed as 

moonlighting proteins in MultitaskProtDB and MoonProt, we excluded them from the 
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dataset in all the results except for the bar graphs in Fig. 2.5 and Fig. 2.9 where these pro-

teins are noted with asterisk (*). For each of the moonlighting proteins in the three da-

tasets, GO term annotations in UniProt were classified into four classes by referring to 

textual description of the protein’s function in literature: GO annotations that described 

the “primary” function of the protein (Function 1, F1), GO annotations that describe 

“secondary” function (Function 2, F2), GO annotations that correspond to both functions 

of the protein (usually general GO terms at a higher depth of the GO hierarchy), and last-

ly, GO annotations whose functional association to either of the two functions were un-

clear. In cases that the description of the secondary function of a moonlighting protein 

was absent or incomplete in UniProt, we annotated the protein with appropriate GO terms 

selected from the GO database. 

 

 Semantic similarity & funsim score 

We used the relevance semantic similarity score (SSRel) [93] for computing func-

tional similarity of a pair of GO terms, c1 and c2: 

          (Eqn. 2.2) 

Here p(c) is the probability of a GO term c, which is defined as the fraction of the occur-

rence of c in the GO Database [43,85]. The root of the ontology has a probability of 1.0.  

s(c1,c2) is the set of common ancestors of the GO terms c1 and c2. The first term considers 

the relative depth of the common ancestor c to the depth of the two terms c1 and c2 while 
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the second term takes into account how rare it is to identify the common ancestor c by 

chance. 

To quantify the functional similarity of two proteins, both of which are annotated 

with a set of GO terms, we used the funsim score [93]. The funsim score of two sets of 

terms, GOA and GOB of respective size of N and M, is calculated from an all-by-all simi-

larity matrix sij. 

}..1{},..1{),( MjNi
B
j

A
iij GOGOsims 

                                              (Eqn. 2.3) 

sim(GOi
A, GOi

B) is the relevance similarity score for GOi
A and GOj

B. Since the relevance 

similarity score is defined only for GO pairs of the same category, a matrix is computed 

separately for the three categories, Biological Process (BP), Molecular Function (MF), 

and Cellular Component (CC). Then, the GOscore of the matrix of each GO category is 

computed as follows: 

                                             (Eqn. 2.4) 

GOscore will be any of the three category scores (MFscore, BPscore, CCscore). Finally 

the funsim score is computed as  
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where max(GOscore) = 1 (maximum possible GOscore) and the range of the funSim 

score is (0,1). 
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2.4.2 Results 

 Pairwise GO semantic similarity analysis  

We investigated whether the distinct dual functions of moonlighting proteins were 

reflected in their GO term annotations. We used 58 experimentally confirmed moonlight-

ing proteins in three datasets (see Materials and Methods). We classified the GO terms of 

these proteins into four classes: GO terms that belong to the “primary” function of the 

protein (Function 1, F1), terms that belong to the “secondary” function (Function 2, F2), 

terms that belong to both functions, and terms that do not belong to either of the functions. 

For each moonlighting protein, we computed the relevance semantic similarity score 

(SSRel, Eqn. 2.2) for three types of GO term pairs: pairs where both terms belong to either 

F1 or F2 and pairs that consist of one GO term from F1 and the other from F2. SSRel rang-

es from 0.0 to 1.0 with 0.0 for the least similarity and 1.0 for the highest similarity. 

Figure 2.4 shows an example of the semantic similarity of GO pairs for aconitase 

in yeast (UniProt ID: P19414). This protein was initially identified as an enzyme in the 

tri-carboxylic acid (TCA) cycle, which catalyzes the isomerization of citrate to iso-citrate 

via cis-aconitate. The GO terms for F1 include TCA cycle (GO:0006099), propionate 

metabolic process (GO:0019541), glutamate biosynthetic process (GO:0006537), citrate 

metabolic process (GO:0006101), cytosol (GO:0005829), cytoplasm (GO:0005737), cit-

rate hydro-lyase (GO:0052632), lyase activity (GO:0016829), iso-citrate hydro-lyase 

(GO:0052633) and aconitate hydratase activity (GO:0003994). The enzyme’s secondary 

function (F2)  was later found as a “role in mitochondrial DNA maintenance” [76], which 
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is annotated with GO terms including mitochondrial genome maintenance (GO:0000002), 

mitochondrial nucleoid (GO:0042645), single-stranded-DNA binding (GO:0003697), and 

double-stranded-DNA binding (GO:0003690). The GO terms that belong to both the pri-

mary and secondary functions (F3) are “mitochondrion” and “mitochondrial matrix” 

(GO:0005759). Figure 2.4A shows the SSRel score distribution of GO term pairs, those 

within F1 or F2 and pairs across F1 and F2 (F1F2 pairs). It is apparent that the SSRel 

scores for all the F1F2 pairs are very small, below 0.2. All four F2 pairs have large scores 

over 0.4. As for F1 pairs, 8 out of 27 have large scores over 0.4. We must note that 12 F1 

pairs have a score of 0, which occurs when the lowest common ancestor for a GO term 

pair is at the root of the GO hierarchy. In the case of aconitase, the majority of the 0 

scores for F1 pairs occurred between terms related to ion-sulfur cluster binding and aco-

nitase hydrolase (Fig. 2.4B). 

 

 

Figure 2.4 Semantic similarity distribution on MPs  

The distribution of the relevance semantic similarity SSRel score of GO term pairs, aco-

nitase, yeast (Uniprot ID : P19414).  

A, SSRel distribution of GO pairs within the primary function (function 1), the secondary 

function (function 2), and pairs from function 1 and 2.   

B, Hierarchical clustering of GO terms in the three GO categories using pairwise SSRel 

scores. 
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Figure 2.4B shows a hierarchical clustering of GO terms of aconitase based on 

SSRel. In all three GO categories, terms in F1 and F2 were clearly separated. In the Bio-

logical Process (BP) ontology, the only GO term in F2 is “mitochondrial genome mainte-

nance” (GO:0000002), which is separated from the other F1 GO terms. In the Molecular 

Function (MF) ontology, the GO terms with F2 labels (ssDNA and dsDNA binding, 

GO:0003697 and GO:0003690, respectively) form a cluster that is separate from the F1 

GO terms. Two separate clusters were formed for F1 terms in MF, “Iron-Sulfer cluster 

binding” GO terms (highlighted in yellow) and terms related to aconitase enzymatic ac-

tivity. The former F1 cluster lies closer to the F2 cluster due to a common ancestral term 

“binding”. In the Cellular Component (CC) ontology, the F2 term “mitochondrial nucle-

oid” (GO:0042645) is separate from F1 GO terms (related to cytoplasm) but clustered 

with two F3 terms. 

Next, we show the mean SSRel score for GO pairs within F1 or F2 and across 

F1and F2 for all moonlighting proteins in the three datasets (Fig. 2.5). The mean SSRel 

scores for F1 pairs and F2 pairs are higher than those for across F1F2 pairs in 51 (87.9%) 

moonlighting proteins (MPR1-3 datasets). One exception of this trend is Protein 17 in 

MPR1 (Fig. 2.5A). This protein is aconitase of Mycobacterium tuberculosis (UniProt ID: 

O53166), which has “TCA cycle enzyme” as F1 and “iron-responsive protein” as F2. 

This protein switches between the two functions depending on the cellular iron levels, 

namely, binding of a 4Fe-4S cluster occurs as a part of the aconitase function whereas 

binding of a 3Fe-4S cluster triggers the secondary function [67]. Thus, the GO term for 

“4 iron, 4 sulfur cluster binding” (GO:0051539) was classified for F1 and “3 iron, 4 sul-
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fur cluster binding” (GO:0051538) for F2, which resulted in a relatively high SSRel score 

of 0.698 for this F1F2 pair. 

 

Figure 2.5 Average SSRel of GO term pairs for MPs  

Average SSRel of GO pairs within function 1, function 2, and pairs from function 1 and 2 

were computed separately.   

A, Moonlighting proteins in the MPR1 set. Protein 24 is presenilin in Physcomitrella 

patens (Uniprot ID: A9S846). This protein have one GO term each in F1 and F2 (F1 

term GO:0004190, “aspartic type endopeptidase activity” and F2 term GO:0016021, 

“intergral to membrane”). The two GO terms are in different ontologies, MF and CC 

respectively, and thus the score are zero for F1 and F2 (because there is only one term) 

as well as F1-F2 (because similarity of GO terms in different categories cannot be con-

sidered).  

B, the MPR2 set; and  

C, the MPR3 set. 
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Figure 2.6 Average SSRel distribution of MP  

Box-and-whisker plots for average SSRel distribution of BP, MF, and CC GO pairs for 

the moonlighting proteins in the MPR1-3sets excluding proteins with * in Figure 2.5. The 

top and the bottom of a box show the first and third quartiles and the line in the middle of 

a box is the median. The two ends of whisker show the minimum and the maximum values.  

 

Figure 2.6 summarizes the distribution of the average SSRel  score for F1, F2, and 

F1F2 GO pairs in the BP, MF, and CC ontologies for the proteins in MPR1-3. The 

Friedman test was performed to evaluate statistical significance of score difference be-

tween F1, F2, and F1F2 GO term pairs. It was shown that the F1F2 pairs have signifi-

cantly smaller scores than F1 and F2 pairs in BP and CC (p-value < 0.05). As for MF, the 

score difference of F1F2 pairs from F1 pairs had a p-value below 0.05 but the p-value 

versus F2 pairs was a slightly larger value of 0.097. 

 

 Novel prediction in Escherichia coli genome 

The previous section showed that GO terms of moonlighting proteins can be clus-

tered into distinct functions using the SSRel score. In this section we identified potential 

BP MF CC
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moonlighting proteins in the Escherichia coli K-12 genome by examining clusters of GO 

term annotations taken from UniProt. We used GO terms of the BP ontology because BP 

GO terms showed a clearer separation between F1 and F2 functions (Fig. 2.6).  

Figure 2.6 shows clustering profiles of moonlighting proteins, where terms in BP 

and MF (Fig. 2.7A and B) GO were clustered using single linkage clustering at different 

SSRel cutoff values. A clustering profile provides a more thorough picture of GO term 

similarities than clustering using a single cutoff value. It can show how the number of 

clusters grows at different cutoff values. Using the profiles for moonlighting proteins in 

MPR1 (black), MPR2 (red), and MPR3 (green) as a reference, the following three criteria 

were used to identify potential moonlighting proteins in E. coli: 1) proteins that have at 

least eight GO terms in the UniProt annotation; 2) proteins that have at least two clusters 

in the clustering profile at a SSRel cutoff of 0.1; 3) proteins that have at least four clusters 

in the clustering profile at a 0.4 SSRel. 140 proteins were found to satisfy all of these three 

criteria. We have also identified potential non-moonlighting proteins by applying essen-

tially the opposite criteria to above: 1) proteins that have at least eight GO terms in the 

UniProt annotation; 2) proteins that have at most one cluster at a SSRel of 0.1; 3) proteins 

that have at most one cluster at 0.4 SSRel. There were 150 proteins that satisfied these cri-

teria for non-moonlighting proteins. 
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Figure 2.7 Clustering profiles of sets of MP and non-MPs 

For each protein in a dataset, GO terms were clustered using various threshold values of 

SSRel and average number of GO term clusters were plotted. The datasets plotted were 

experimentally known moonlighting proteins (MPR1, 2, and 3) and identified moonlight-

ing and non-moonlighting proteins in E. coli (Ecoli-MP and Ecoli-nonMP). E. coli moon-

lighting proteins were also plotted separately for each evidence category, 1 to 3 (Ecoli-

PosMP-Cat1-3; see Materials and Methods) as well as multi-domain multi-function pro-

teins.  

A, BP GO terms were considered.  

B, MF GO terms were considered. 

 

 For the 140 identified potential moonlighting proteins, we manually consulted 

original literature to determine the level of experimental support for annotated functions 

and whether diverse functions are directly related to each other. This literature check step 

has selected 43 proteins that have distinct dual functions. Subsequently, we used the 

Pfam database [72] to find domains in the 43 proteins in order to distinguish proteins 

whose multi-functionality originates from different domains. GO terms associated with 

each Pfam domain in a protein were compared with the primary and secondary functions 

of the protein. Finally, 33 proteins were selected as moonlighting proteins through this 

post-processing (Table A.1). The selected moonlighting proteins were further classified 

them into three categories. The first category is for moonlighting proteins that have clear 

A B
BP MF
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experimental evidence for two independent functions. The second category is proteins for 

which we found literature evidence of two diverse functions, but no evidence was found 

as to whether those two functions are independent or related. The third category is for 

“weak” moonlighting proteins for which the evidence for the secondary function was 

found from a large scale assay or a phenotypic experiment of mutants and the relationship 

between the primary and the newly found secondary function is not known. We would 

like to note that some of the moonlighting proteins classified into the second or the third 

category are so-called neomorphic moonlighting proteins [70], which exhibit the second-

ary function  due to a mutation or conformational change. 

Table A.2 lists ten multi-functional and multi-domain proteins that were excluded 

from by the Pfam domain search the final list of moonlighting proteins. These proteins 

happen to include five multi-reaction enzymes, which are enzymes that are generally 

listed as bi-functional or multi-functional proteins in UniProt and in literature. They per-

form multiple reactions with similar substrates in the same or different pathways. A mul-

ti-reaction enzyme is not included as a moonlighting protein in the original definition 

[69]. However, they are kept here along with the five other multi-domain proteins in Ta-

ble A.2 because they were detected by the GO clustering criteria. 

The identified 33 moonlighting proteins (Table A.1) and 10 multi-domain multi-

function proteins (Table A.2) do not have many overlap with the MoonProt database [84]  

and MultitaskProtDB [83]. Only two (PepA and DegP) in Table A.1 and one (NadR) in 

Table A.2 were found in the two databases. 

Among the 140 proteins that were identified by the GO clustering criteria, 97 

(69.3 %) of them were discarded later by the literature survey. The discarded proteins sat-
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isfied the three GO term clustering criteria but either a) the sufficient number of GO term 

clusters was due to a non-descriptive GO term at a high (general) level of the GO hierar-

chy such as “transport” or “biosynthesis”, which resulted in a small similarity scores with 

the other GO terms; or b) experimental evidence of GO terms were found in literature 

only for one of its functions but not the other. Proteins discarded by the latter reason may 

be confirmed as moonlighting proteins in the future when experimental evidence is made 

available. 

Clustering profiles of the identified moonlighting and non-moonlighting proteins 

in E. coli are shown in Figure 2.7 in comparison with the MPR1-3 datasets. Three catego-

ries of moonlighting proteins as well as multi-domain multi-functional proteins were also 

separately plotted. Clearly, the number of GO term clusters for moonlighting proteins is 

higher than non-moonlighting proteins for both BP and MF. In the MF ontology, the mul-

ti-domain multi-functional proteins have a larger number of clusters than the rest for high 

cutoff values of over 0.4. The two-sample Kolmogorov-Smirnov (KS) test showed that 

the E. coli moonlighting proteins (Ecoli-PosMP in Fig. 2.7) and the MPR1-3 sets have 

significantly larger numbers of clusters than the E. coli non-moonlighting proteins (Ecoli-

NegMP) at the three semantic similarity thresholds, 0.1, 0.5, and 1.0 for the BP ontology 

(Fig. 2.7A) (p-values < 0.05). As for the MF ontology, E. coli moonlighting proteins have 

significantly larger number of clusters than the E. coli non-moonlighting proteins at 

threshold 1.0, using a p-value cutoff of 0.05. The full results of the KS tests are provided 

in Table A.4. 
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It was noticed that known moonlighting proteins in the MPR1-3 sets have more 

GO annotations than the E. coli moonlighting proteins, which is a part of the reason why 

the MPR1-3 sets have more GO clusters (Fig. 2.7). The average number of BP GO anno-

tations of the E. coli moonlighting proteins was 5.76 while the MPR1-3 proteins had 9.65 

terms. The clustering profile analysis can identify new moonlighting proteins from their 

existing GO annotations in UniProt.  However, a limitation is that candidate proteins 

need to be well annotated with a sufficient number of GO terms. Indeed only 29.1% of E. 

coli proteins have eight or more GO terms and were subject to this analysis. In the subse-

quent sections, we will explore different ways to identify potential moonlighting proteins 

that do not require GO annotations. 

 

 Protein-protein interaction network of MPs 

From this section, we examine characteristic features of moonlighting proteins in 

large-scale omics data. We begin with the protein-protein interaction (PPI) network. In-

teracting proteins tend to share common function and thus a PPI network can be used as a 

valuable source for predicting protein function [94]. It was also shown that PPI networks 

are helpful in detecting additional novel function of well-known proteins [95]. We ob-

tained physically interacting proteins from the STRING database [96]. 

First, we examined the number of interacting proteins of moonlighting and non-

moonlighting proteins (Fig. 2.8A). In addition to the E. coli moonlighting and non-

moonlighting proteins, histograms for the MPR1-3 sets are shown for comparison. 

Among the E. coli MP set, 11 proteins in the first category (those that have clear experi-
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mental evidence of their dual functions) were also separately plotted to verify that the ob-

served trend for the entire E. coli MP set was consistent with its most reliable subset. 

Overall MP and nonMP have similar distributions with the largest peak at 0-5 interacting 

proteins. A small peak at 20-25 interacting proteins was observed for E. coli MP. This 

peak consists of two proteins, pepA (P68767) and frdB (P0AC47).  

 

Figure 2.8 Interacting proteins of MP and non-MPs 

Physically interacting proteins were obtained from the STRING database.  

A, Histogram of the number of interacting proteins.  

B, average number of clusters of interacting proteins clustered using the funsim score 

(Eqn. 2.5).  

C, Clustering was performed using the funsim score of BP terms only (Eqn. 2.5). 

 

  
        



36 

 

3
6
 

Next, we checked the functional divergence of interacting proteins. Using the 

same datasets as Figure 2.8A, interacting proteins for each moonlighting or non-

moonlighting proteins in the datasets are clustered based on their functional similarity 

using the funsim score (Eqn. 2.5). In Figure 2.8B, the average numbers of clusters per 

interacting protein at different threshold values are plotted. The funsim score of all three 

GO categories was used for Figure 2.8B while the funsim score with only BP (BP-funsim 

score) was used for Figure 2.8C. In the two clustering profiles (Figs. 2.8B & 2.8C) the 

non-MP set has consistently lower number of clusters as compared to moonlighting pro-

teins.  E. coli MPs and non-MPs show a clear contrast in the number of clusters with the 

former having over twice as many clusters as the latter. Consistent results were obtained 

when interacting proteins were selected from the STRING database using a score that 

combines different types of evidence including physical interactions, comparative ge-

nomics approaches, and gene expression (data not shown). A pairwise two-sample KS 

divergence test showed that the average number of clusters of the E. coli MP and nonMP 

sets is significantly different at the funsim-BP threshold values of 0.2, 0.6, and 0.8 and 

funsim threshold values 0.6 and 1.0 (Table A.4). To conclude, the results show that 

moonlighting proteins interact with proteins with more diverse functions than non-

moonlighting ones. 

We also investigated the extent to which the primary and secondary functions of a 

moonlighting protein are shared by its interacting proteins. For this analysis, we used 27 

moonlighting proteins in the MPR1-3 sets that have interacting proteins because GO 

terms for their primary and secondary functions were manually classified. For each 

moonlighting protein in MPR1-3, we computed the functional similarity of its primary 
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function (F1) and its secondary function (F2) separately against GO term annotation of its 

interacting proteins. Functional similarity was quantified by the funsim score (Fig. 2.9A) 

and the BP-funsim score (Fig. 2.9B). To determine if an interacting protein was biased to 

either the F1 or F2 function, the score difference between F1 and F2 was computed. 

 

Figure 2.9 Function similarity analysis of MP’s interacting partners 

A, The functional similarity score is computed between GO terms of the primary (F1) or 

the secondary (F2) functions of a moonlighting protein against the entire GO terms of its 

interacting protein and the score difference was computed. 

B, The same type of chart as panel A, using the BP-funsim score.  

C, Foreach moonlighting protein, percentages (%) of interacting proteins sharing F1, F2, 

or both functions of moonlighting proteins are shown.  

 

A B

C

Funsim BP
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It is evident that the F1 function is dominant for the majority of the interacting 

proteins. When the funsim score was considered (Fig. 2.9A), 96.3% of the interacting 

proteins have functions closer to the F1 rather than the F2 function. The dominance of 

F1-oriented functions in interacting proteins is consistent in Figure 2.9B, where the BP-

funsim score was considered. 

Figure 2.9C provides results for individual moonlighting proteins. For a moon-

lighting protein, GO terms of its F1 and F2 functions were compared separately to the 

entire GO annotation of each interacting protein. If GO terms of an interacting protein 

have a BP-funsim score that is larger than the mean SSRel scores of BP terms in F1 or F2 

of the moonlighting protein, the interacting protein was considered to share common F1 

or F2 function, respectively, with the moonlighting protein. In the case that a moonlight-

ing protein has very diverse F1 or F2 GO terms in itself with the mean SSRel score of 0, 

we used a BP-funsim score of 0.4 as a cutoff to determine if an interacting protein shares 

F1 or F2 function. Consistent with Figure 2.9A and 2.9B, the majority of interacting pro-

teins have F1 function for 18 out of 27 the moonlighting proteins (66.7%) (red bars). On 

the other hand, only nine moonlighting proteins (33.3%) have interacting proteins of F2 

functions (blue bars), and among them interacting proteins with F2 function are dominant 

for three (11.1%) moonlighting proteins. 

There are interacting proteins of moonlighting proteins that have functional simi-

larity with both F1 and F2 functions of moonlighting proteins (shown by green bars in 

Fig. 2.9C). Fifteen moonlighting proteins have in total of 30 interacting proteins with 

both F1 and F2 functions. We analyzed assigned GO terms of these interacting proteins 
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by referring to literature and found that 18 out of 30 of these proteins are also moonlight-

ing proteins while three proteins are multi-domain proteins. This result indicates that 

moonlighting proteins tend to interact with moonlighting proteins; thus, novel moonlight-

ing proteins may be identified by analyzing PPIs of moonlighting proteins. 

We discuss two such cases. The first example is mismatch repair endonuclease 

PMS2 (P54279) in mouse, which also contributes to somatic hypermutation [97]. It has 

just one interacting protein, which is another DNA mismatch repair protein Mlh1 

(Q9JK91) that is also involved in somatic hypermutation [98]. Thus, this is an example of 

two interacting moonlighting proteins that have the same primary and secondary func-

tions. 

The second example is mitogen activated protein kinase 1 (ERK2) (P28482) in 

human. This protein is MAP kinase and moonlights as a transcriptional repressor [99]. It 

has 187 interacting proteins in the PPI network, among which there are ten proteins with 

both F1 and F2 functions. One of the interacting partners is death-associated protein ki-

nase 3 (DAPK3, UniProt: O43293), which enhances transcriptional activities of 

STAT3/P40763 by phosphorylating them. Besides the kinase function, DARPK3 is 

known to have multiple secondary functions, including involvement in apoptosis [88], 

roles in transcription (same as the secondary function of ERK2), regulation of cell polari-

ty, contractile processes in non-muscle or smooth muscle cells, and cytokinesis [89]. 

Thus, in this example, among interacting moonlighting proteins that share both F1 and F2 

functions one of them has more secondary functions. 



40 

 

4
0
 

 Co-expressed protein network of MPs 

Next, we investigated functions of co-expressed genes with moonlighting proteins 

in E. coli. The E. coli gene expression data were taken from the COLOMBOS database 

[100], which contains expression data of 4295 genes in 2369 contrasts. We calculated the 

Pearson correlation coefficient of expression levels of each pair of genes and selected 

pairs as co-expressed if the absolute value of the correlation coefficient ranked within the 

top 2% largest values among all the pairs. The number of co-expressed genes of moon-

lighting and non-moonlighting proteins do not have large difference, except for a peak 

observed at 65 for the moonlighting proteins (Fig. 2.10A), which consists of four moon-

lighting proteins (P77489, P0A8Q3, P0AC47, and P25516). Then, similar to the analysis 

in Figure 2.8B and 2.8C, we computed functional clustering profile for co-expressed 

genes of E. coli moonlighting proteins to see if co-expressed genes have functional diver-

gence. The clustering profile using the funsim score (Fig. 2.10B) and the BP-funsim 

score (Fig. 2.10C) showed that the moonlighting proteins have a slightly larger average 

number of clusters of functionally similar proteins per co-expressed genes than that for 

non-moonlighting proteins, although this difference is not statistically significant (Table 

A.4). The same conclusion was obtained when we defined co-expressed genes as those 

which have over 0.4 of the correlation coefficient value (data not shown). 
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Figure 2.10 Gene expression profile analysis for MPs  

Average number of clusters of interacting proteins relative to the number of proteins in-

teracting by gene expression. Proteins considered to be interacting are the top 2% of 

proteins in the Gene Expression network of E. coli sorted in terms of the Pearson corre-

lation coefficient.  

A. Histogram of number of interacting proteins.  

B, Functional clustering using Funsim (BP, MF, CC) score thresholds between 0.1 and 

1.0.  

C, Functional clustering using Funsim (BP) score thresholds between 0.1 and 1.0. 

 

A

B C
Funsim BP
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 Phylogenetic co-evolution network of MPs  

We further analyzed genes that have similar comparative genomic context to the 

moonlighting proteins [90]. Using the STRING database, for a protein of interest, we se-

lected proteins as phylogenetically related if they were located in the neighbourhood of 

the target genes, were found to co-occur or co-absent, or were fused in multiple genomes. 

Concretely, genes that have a sufficient score (> 0.7 as recommended by STRING) at 

“neighborhood”, “co-occurrence”, or “gene-fusion” in the STRING database [96] were 

selected. It has been observed that phylogenetically proteins are functionally related in 

many cases [90]. Figure 2.11 shows the clustering profiles of phylogenetically related 

proteins of the moonlighting and non-moonlighting proteins. 

 A larger fraction of the non-moonlighting proteins have no phylogenetically relat-

ed proteins as compared with the moonlighting ones (0 at the x-axis in Fig. 2.11A). The 

clustering profiles using the funsim score (Fig. 2.11B) and the BP-funsim score (Fig. 

2.11C) show that the E. coli moonlighting proteins have slightly more functional clusters 

on average, i.e. more functional divergence in their phylogenetically related proteins, 

than their non-moonlighting counterparts. The p-value of this difference in the number of 

functional clusters was 0.08 at the score threshold of 0.8 in the funsim score (Fig. 2.11B) 

and larger than 0.05 for the BP-funsim score profile (Fig. 2.11C). Comparing with the 

MPR1-3 sets, on average MPR2 and MPR3 have a higher number of clusters than the E. 

coli moonlighting and proteins, while the MPR1 set has less functional divergence in 

their phylogenetically related proteins. 
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Figure 2.11 Phylogenetic profile analysis for MPs 

Average number of clusters of phylogenetically related proteins relative to the number of 

phylogenetically related proteins.  Phylogenetic related proteins are taken from the 

STRING database.  

A, The histogram of number of phylogenetically related proteins.  

B, Functional clustering using Funsim (BP, MF, CC) score with thresholds between 0.1 

and 1.0.  

C, Functional clustering using Funsim (BP) score thresholds from 0.1 to 1.0. 

 

 Genetic interaction network of MPs 

The last omics data we analyzed were genetic interactions. A genetically interact-

ing gene pair was identified by examining the growth curves of a single gene knockout 

mutant and a double gene knockout mutant. In general, genes in the same pathway tend 

A

B C
Funsim BP
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to show positive interaction and those in parallel pathways show negative or synthetic 

lethality [101]. Genetic interactions in E. coli were identified by Takeuchi et al. [102] us-

ing conjugation methods reported as GIANT-coli [103] and eSGA [104] with an im-

proved quantitative measurement [105]. This dataset includes genetic interaction data for 

215 genes against 3868 genes, which results in total of 813,560 gene combinations. 

Among them, 2009 pairs were identified as genetically interacting, which were defined as 

those have a correlation coefficient of over 0.2 in the maximum growth rate in time-series 

measurements [102]. The interacting gene pairs overlap with a small portion of the E. coli 

moonlighting and non-moonlighting proteins: 5 out of 33 moonlighting proteins, 3 out of 

16 first category moonlighting proteins, and 5 out of 150 non-moonlighting proteins. Us-

ing these shared proteins, we performed the clustering profile analysis (Fig. 2.12). 
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Figure 2.12 Genetic interaction network analysis for MPs  

The number of interacting proteins in the genetic interaction network of E. coli.  

A, The number of interacting proteins selected with a Pearson correlation cutoff of 0.2. E. 

coli MP and non-MP, multi-domain multi-functional proteins, and the first category E. 

coli MPs are plotted.  

B, The number of clusters of interacting proteins for individual E. coli moonlighting 

(blue) and non-moonlighting (red) proteins at BP-funsim threshold of 0.2.  

C, The number of clusters of interacting proteins for individual E. coli moonlighting 

(blue) and non-moonlighting (red) proteins at BP-funsim threshold of 0.6. 

 

Moonlighting and non-moonlighting proteins do not seem to have difference in 

the number of genetic interactions (Fig. 2.12A) and the number of functional clusters (Fig. 

2.12B & 2.12C), although the number of proteins available for the analysis was too small 

to make a firm conclusion. In terms of the number of genetic interactions (Fig. 2.12A), 

there is one moonlighting protein that has 43 genetic interactions. This protein is a subu-

B C

A

Threshold: 0.2 Threshold: 0.6
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nit of fumarate reductose flavoprotein in E. coli (P00363), which we classified as a first 

category moonlighting protein (Table A.1). The 43 interacting proteins belong to 30 dif-

ferent pathways. Panels B & C in Figure 2.12 show histograms of the number of func-

tional clusters of genetically interacting proteins for the E. coli moonlighting and non-

moonlighting proteins at the BP-funsim thresholds of 0.2 and 0.6. There is a moonlight-

ing protein that interacts with two proteins with very different functions (the bar at x=1.0 

in Fig. 2.12B). This protein is P23895, a third category/weak moonlighting protein identi-

fied to function as a multidrug transporter and in DNA damage response. It interacts with 

P77368 (UPF0098 family protein inferred by homology) and P75719 (endopeptidase that 

performs host cell lysis). 

To summarize the omics data analyses, we observed a clear tendency for moon-

lighting proteins to have physical interactions with more diverse classes of proteins and 

most of these proteins share the primary function of the moonlighting protein with which 

they interact. Moreover, it was found that moonlighting proteins frequently physically 

interact with other moonlighting proteins. In terms of gene expression and phylogenet-

ically related proteins, a weak trend was observed that on average moonlighting proteins 

interact with more functionally diverse proteins, although not all of the cases were statis-

tically significant. 

 

 Structural properties of MPs 

Now we turn our attention to structural properties of moonlighting proteins, 

namely intrinsically disordered regions and ligand binding sites. An intrinsically disor-
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dered region in a protein lacks a well-defined tertiary structure in its native condition. In-

trinsically disordered regions have been found to have important roles in protein function 

[106], often serving as binding sites for proteins. There are moonlighting proteins that 

can both activate and inhibit their binding partners in the same or overlapping binding 

regions which have been found to be disordered. These proteins can bind the same part-

ner in different conformations or bind to completely different partners through the disor-

dered binding regions [107]. Here, we examined the prevalence of disordered regions in 

the proteins in MPR1-3 and the E. coli moonlighting and non-moonlighting proteins. 

Disordered regions in the proteins were obtained from the D2P2 database [108]. 

 

Figure 2.13 Disordered region of MP & non-MPs 

Histograms of the disordered regions in moonlighting and non-moonlighting proteins. 

Five datasets are plotted: MPR1-3 (MPR-All), E. coli moonlighting proteins (Ecoli-MP), 

E. coli moonlighting proteins in the first category (Ecoli-MP-Cat1), multi-domain multi-

functional proteins, and E. coli non-moonlighting proteins (Ecoli-nonMP).  

A, Length of the disordered regions;  

B, Fraction of the length of disordered regions relative to the whole sequence length of 

the proteins. 
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The total length of disordered regions and their fraction relative to the full length 

of a protein are shown in Figure 2.13. The distributions for moonlighting proteins and 

non-moonlighting proteins were overall similar, both having the peak at lower end within 

disordered region lengths 0 to 5. However, it is noteworthy that moonlighting proteins 

had a smaller fraction of proteins with no disordered regions (Fig. 2.13A) and more 

moonlighting proteins had a larger fraction of disordered regions (Fig. 2.13B). Moon-

lighting proteins had a small peak for disordered regions of 47 residues in length and 

slightly higher frequency for disordered regions of over 90 residues (Fig. 2.13A). The 

peak of the moonlighting proteins at 47 residue-long disordered regions (Fig. 2.13A) con-

sists of four proteins, fumarate reductase (P00363), ribonuclease R (P21499) deferroche-

latase (P31545), and GTPase ObgE (P42641). Moonlighting proteins with a large fraction 

of disordered region include anion exchange protein 3 (P48751) and phosphopanto-

thenoylcysteine decarboxylase subunit VHS3 (Q08438) and subunit S1S2 (P36024). An-

ion exchange protein 3 does not have known physical interactions with other proteins 

while the two subunits of phosphopantothenoylcysteine decarboxylase have eight physi-

cal interactions in the PPI network. 

Finally, we discuss ligand binding sites in the tertiary structures of moonlighting 

proteins that are related to either of their primary or secondary functions. Such examples 

are limited since the tertiary structures of the proteins must be available for the analysis 

and multiple bound ligands need to be involved in the functions. Sixteen proteins in the 

MPR1-3 sets have their tertiary structures available in PDB [109,110]. Among them, we 

found six structures that have two ligands that bind to physically different locations. We 
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discuss two cases below, because the other four are multi-domain proteins (Fig. 2.14). 

These two proteins to be discussed are one-domain proteins according to Pfam.  

 

Figure 2.14 Moonlighting protein structures 

A, human dihydrolipoamide dehydrogenase (PDB ID: 1ZMC-A). It binds NAD shown in 

yellow at residues 208, 243, 279 (“NAD binding” classified as both F1 and F2 function) 

and FAD shown in cyan at residues 54, 119, 320 (“FAD binding” classified as F2 term). 

B, mitogen activated protein kinase 1 (PDB ID: 4G6N). It binds ATP (related to F1 func-

tion) at residues 31-39 and 54 (shown in yellow), and DNA (related to F2 function) with 

residues 259-277 (purple). 

 

The first example is dihydrolipoamide dehydrogenease (DLD) in human (P09622) 

(Fig. 2.14A). The primary function of this protein is as a mitochondrial enzyme in energy 

metabolism and its secondary function is protease. To perform the primary function, it 

utilizes dihydrolipoic acid and NAD+ to generate lipoic acid. Experiments suggest that 

mutations that destabilize a DLD homodimer can simultaneously induce the loss of a 

primary metabolic activity and the gain of a moonlighting proteolytic activity [111]. It 

was also pointed out that the moonlighting proteolytic activity of DLD could arise under 

pathological conditions, including the presence of dimer-destabilizing mutations or the 
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acidification of the mitochondrial matrix. The latter condition disrupts the quaternary 

structure of DLD, leading to a decrease in the dehydrogenase activity and increase in the 

diaphorase activity, which is a FAD and NAD dependent activity. Based on these infor-

mation we classified “NAD (nicotinamide adenine dinucleotide) or NADH binding” 

(GO:0051287) for both functions and term “FAD (flavin adenine dicucleotide) or 

FADH2 binding” (GO:0050660) to the secondary function. A crystal structure of DLD 

(PDB ID: 1ZMC-A) shows that the NAD and FAD binding sites are located in physically 

separate regions in the protein surface. 

The second example is MAP kinase (ERK2) in human. The secondary function of 

this protein was identified as a DNA binding transcriptional repressor that regulates inter-

feron gamma signalling [112]. Naturally, binding ATP is related to the primary function 

as a kinase (GO:0005524) while “DNA binding” (GO:0003677) belongs to the secondary 

function. As shown in Figure 2.14B, the binding sites for ATP and DNA are located quite 

far apart in the protein structure.  

To summarize the structural analyses, about 48% of moonlighting proteins have 

disordered regions longer than five residues and this percentage is larger than that of non-

moonlighting ones (29%). Also examples are observed in which moonlighting proteins 

have relatively longer disordered regions. In terms of the tertiary structures, examples are 

found where ligand (including DNA) binding sites that are related to either the primary or 

secondary functions are located in distinct regions on the protein surface. These structure 

features may be useful for predicting the existence of secondary function of proteins 

when combined with other evidences. 
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2.5 Computational prediction of MPs - MPFit 

The functional diversity of moonlighting proteins poses a significant challenge to 

computational protein function annotation as current methods do not explicitly consider 

the possibility of dual functions for a protein. Conventional sequence-based functional 

annotation methods, based on the concept of homology [6] or conserved motifs/domains 

[72-74], will have problems identifying secondary functions because there are cases 

where a homolog of a moonlighting protein does not possess the secondary function [75] 

or has a different secondary function [67,76]. Due to these intrinsic computational chal-

lenges, systematic studies of moonlighting proteins are still in an early stage for obtaining 

a comprehensive picture of proteins’ moonlighting functions or for developing computa-

tional methods for predicting moonlighting proteins [review by [47]]. Existing bioinfor-

matics approaches for detection of moonlighting proteins have two general shortcomings. 

First, they rely heavily on the existence of functional annotation of a protein (Chapple CE 

et al., 2015; Pritykin Y et al., 2015), which is a major bottleneck of the problem. Second, 

all the existing methods address different aspects of moonlighting proteins’ functional 

diversity: sequence similarity [49,78], motifs/domains, structural disorder [81], or pro-

tein-protein interaction (PPI) patterns combined with existing gene ontology annotations 

[79,113,114]. However, the diverse nature of moonlighting proteins’ functions, cellular 

locations, function switching mechanisms, and the organisms in which they are found 

gives compelling evidence that in order to understand and identify the overall functional 

aspects of these proteins, one should characterize these proteins in a wider function-

al/proteomic space. 
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Previously, we have identified functional characteristics of moonlighting proteins 

in different proteomic aspects using a computational framework [48]. Here, we have con-

structed an automated prediction model to identify moonlighting proteins based on fea-

tures we characterized in our previous study. To address the diverse nature of moonlight-

ing proteins, we have used a wide feature space ranging from gene ontology (GO) and 

several omics-scale data, namely protein-protein interaction (PPI), gene expression, phy-

logenetic profiles, genetic interactions, and network-based graph properties (such as node 

between-ness, degree centrality, closeness-centrality), to protein structural properties 

such as the number and the length of intrinsically disordered regions in the protein chain. 

Based on our computed GO and the omics-based protein feature space, we used machine 

learning classifiers as the framework for moonlighting protein prediction and used an ex-

isting moonlighting protein database to cross-validate our prediction model. Since a sig-

nificant fraction of proteins do not have certain functional/network features in databases, 

we have additionally developed an imputation technique using random forest to predict 

missing features for proteins. Cross-validation results on the dataset of known moonlight-

ing and non-moonlighting proteins (control dataset) show that if GO information is avail-

able, moonlighting proteins can be predicted with over 98% accuracy. More importantly, 

leveraging just the non-GO based features, our imputation-classification models can pre-

dict moonlighting proteins with over 75% accuracy. The latter result is very important 

because it indicates that moonlighting proteins without sufficient function annotations 

can be identified by analyzing available omics data, which is the first such development. 

Lastly, we have run our imputation-classification models with the best performing omics-

based feature combinations on three genomes, Saccharomyces cerevisiae (yeast), Caeno-
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rhabditis elegans, and Homo sapiens (human), and found that about 2-10% of the prote-

omes are potential moonlighting proteins.  

 

2.5.1 Methods 

The overall computational prediction model, named MPFit (Moonlighting protein 

Prediction with missing Feature Imputation) undergoes four phases: data construction, 

feature computation, missing feature imputation (when needed) and classification into 

moonlighting protein (MP) or non-moonlighting protein (non-MP).  Each of the steps is 

discussed in detail below. 

 

 Data construction for MPFit 

We used a manually curated moonlighting protein database, MoonProt [84], and 

extracted 268 proteins that had Uniprot ID mapping. 268 moonlighting proteins (MPs) 

include those from human (45 proteins, 16.8%), E. coli (30 proteins, 11.19%), yeast (27 

proteins, 10.1%), and mouse (11 proteins, 4.1%). In order for our model to train on nega-

tive examples of such proteins along with the positive examples, we used the following 

criteria to select negative examples of MPs (referred as non-moonlighting proteins, non-

MPs) from these four genomes as developed in our previous work [48]. A protein was 

selected as a non-MP if it has a) at least 8 GO term annotations, b) when GO terms in the 

Biological Process (BP) category were clustered using the semantic similarity score [93] 

thresholds of 0.1 and 0.5, not more than one cluster was obtained at each threshold. We 

further added a criterion on Molecular Function (MF) category GO terms: c) not more 
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than one cluster of MF GO terms at semantic similarity scores of 0.1 and 0.5. In essence, 

a non-MP is a protein that has a sufficient number of GO annotations but they are not 

functionally diverse. For this procedure, full GO annotations (including computationally 

predicted terms such as IEA) were taken from UniProt (ver. Dec 2014) and parental 

propagation of GO terms was not applied, to be consistent with the criteria established in 

our previous work [48].  Furthermore, we computed pairwise sequence similarity of the 

selected non-moonlighting proteins from the above three conditions and further ruled out 

redundant proteins that had more than 25% sequence identity to other sequences. This 

process yielded 162 non-MPs, among which 60 are from human (37.0%), 52 from mouse 

(32.1%), 34 from yeast (20.9%), and 16 from E. coli (9.88%). The MP and non-MP da-

tasets are made available at http://kiharalab.org/MPprediction/. 

 

 

Figure 2.15 Schematic diagram of MPFit 

Feature construction of moonlighting protein Aconitase in PPI network.  

 

http://ki/#haralab.org/MPprediction/
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 Feature computation and selection 

As MPs have dual functions, intuitively they interact with more proteins with dif-

ferent functions compared to non-MPs. This stems from the fact that proteins perform 

their functions through different forms of associations with other proteins. In our previ-

ous work [48], we have characterized MPs and non-MPs in terms of different omics-

based features (including PPI, gene expression, phylogenetic profile, genetic interactions) 

and showed that when the interacting partners are clustered based on their functional sim-

ilarity, the number of lusters tend to be higher for MPs than non-MPs. Based on this 

analysis, we develop the MPFit model in this work that uses the number of functional 

clusters as the features to classify MPs and non_MPs.  

We computed features for the dataset of MP and non-MPs to run machine learn-

ing classifiers. We selected features from a broad range of information domains, i.e., GO 

annotations, PPI network, gene expression profiles (GE), phylogenetic profiles (Phylo), 

genetic interactions (GI), disordered protein regions (DOR), and the protein’s graph 

properties in the PPI network (NET). In order to extract the feature for a protein Pi in any 

information domain, we first extracted the GO terms or proteins associated with Pi in that 

domain and built a network Ni for Pi. Each node in Ni can be either a GO term (if the in-

formation domain is GO) or a protein (if the information domain is any of the omics-

based information); edges in Ni represent association weights among nodes. Then we ap-

plied single linkage clustering on Ni and the number of clusters at several score thresh-

olds were selected as features of Pi [48]. Fig. 2.15 illustrates the feature computation pro-

cedure for aconitase in human (aco1), an MP, for the PPI network. First, we extracted 

interacting partners for aco1, then based on the GO annotation similarity score of the in-
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teracting partners, the PPI network was clustered and four clusters were obtained with a 

certain similarity cutoff i. Two of these clusters (circled in red) contain proteins related to 

the TCA cycle and are associated to the first function of aco1 while another cluster 

(green) was relevant to the second function. Such clustering was performed with five dif-

ferent similarity cutoffs (from 0.1 to 0.9 with an interval of 0.2), which resulted in a clus-

tering profile shown in the bottom of Fig. 2.15. Finally, we extracted the number of clus-

ters at multiple score cutoffs as the PPI network features of aco1. More details about the 

feature computation in PPI network domain is provided in the Supplementary Fig. A.1.  

To construct the gene expression (GE) network, expression profiles were obtained 

from the COEXPRESdb [115] database. Gene pairs that have an absolute value of their 

Pearson correlation of expression levels within the top 2% among all the pairs were con-

nected in the network. Phylogenetic profile (Phylo) network was constructed using the 

STRING [96] database. A protein pair was connected in the network if they have a suffi-

cient score (> 0.7 as recommended by STRING) at “neighborhood”, “co-occurrence”, or 

“gene-fusion” in the STRING database. For the genetic interaction (GI) network, we used 

the BIOGRID database [116] and extracted gene pairs that had the “experiment type” 

listed as “genetic” to be associated in the GI network. For the NET feature, three graph 

properties of proteins, namely, degree centrality, closeness centrality, and between-ness 

centrality, based on the PPI network (STRING database [96]) were computed as features. 

For the DOR feature, using the D2P2 database [108], we computed three properties of 

protein’s intrinsically disordered regions, namely, the number and the total length of dis-

ordered regions as well as the proportion of disordered regions in the sequence.  
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 Missing data imputation 

In order to deal with missing data, imputation is the approach that fills in the 

missing features rather than discarding the data points entirely and working with only the 

complete subset of the data. Among known imputation approaches, there are set of meth-

ods that fill in the missing feature from mean or median of the known values of the same 

features in other instances [117,118]. On the other hand, there are methods that do partial 

imputation by imputing the missing data based on known features of small neighborhood 

of the incomplete data [119,120]. In this work, we used a random forest-based imputation 

technique that predicts missing features [121,122]. Fig. 2.16A-B shows the procedure. In 

Fig. 2.16A, the training dataset is represented as a matrix where rows are proteins and 

columns are features. Missing features in the dataset are represented by NAs. The algo-

rithm starts by replacing NAs with the column medians. Then a random forest was con-

structed using the feature set that are temporally filled by the previous step (pseudo-

complete data in the figure). Next, the proximity matrix from the random forest was used 

to update the imputed values of the NAs. The (i, j) element of the proximity matrix is the 

fraction of the trees in which the proteins i and j fall in the same class.  The imputed val-

ue for a feature is the weighted average of the non-missing features from other proteins, 

where weights are the proximities. The imputation was iterated until the proximity ma-

trixes converged or the procedure is iterated ten times, when the missing features were 

determined. Finally, a random forest RFtrain was computed with this imputed training data 

matrix.  
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In order to impute missing features in the test set (Fig. 2.16B), the training dataset 

with missing values imputed was used to compute two filler vectors (referred to as MP-

filler and non-MP-filler), one for each of the MP and non-MP classes. The ith element of 

the filler vector MP-filler (non-MP-filler) is the mean of the imputed features at the ith 

column of the training matrix with the MP (non-MP) class label. The test dataset was rep-

resented as a matrix similar to the training data (rows are proteins, columns are features). 

For the test data row ri
test, since the label (MP/non-MP) is not known, two replicates were 

made: the missing features in the first replicate were filled using the vector MP-filler and 

the same for the second replicate was filled using the non-MP-filler vector. Now these 

two completed test replicates were run down through the previously trained random for-

est RFtrain. Each protein receives tree votes of MP and non-MP in RFtrain from replicates 1 

and 2, and the higher vote between the MP vote in replicate 1 and the non-MP vote in 

replicate 2 finally determines the MP/non-MP-fillers to be used in the missing features of 

the protein.  In Fig. 2.16B, the first protein received higher MP votes from replicate 1 

(290 votes) over non-MP votes from replicate 2 (50 votes); thus, the missing features of 

the protein are filled with the MP-filler vector. Finally, proteins in the test set were pre-

dicted to be MP or non-MP using a classifier. When RF was used for the classifier, this 
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voting was used as the final prediction. We have also used support vector machine 

(SVM) and naïve-Baiyes (NB) as the final classifier and compared all results. 

Figure 2.16 Schematic of missing feature imputation by MPFit  

A-B: Missing feature imputation method. RF: Random Forest. See text for details.  

 

Aside from this explicit random-forest based imputation technique, an alternative 

imputation method (termed as “probabilistic imputation”) was used in this work where 

the splitting probabilities in the random forest were learned from the subset of complete 

data and later used to classify the incomplete data. Detail of this method is discussed in 

Supplementary Fig. A.4 and its associated text.  

 

2.5.2 Results 

In this section we present and discuss the performance of MPFit with different 

combinations of features. MPFit was run and evaluated with the GO term feature and all 

possible combinations of six omics feature domains (namely, PPI, GE, Phylo, GI, DOR, 

and NET). There are 1+ (26 – 1) = 64 such combinations. 
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 Imputation of missing features facilitates usage of omics data 

For a given combination of omics features, there are proteins which lack some of 

the feature data. One way to handle such missing data by a classifier is to impute the 

missing data so that a classifier trained on the full features can be applied.  Fig. 2.17 con-

trasts the number of target proteins that were predicted by MPFit before and after the im-

putation. A point represents one of the 64 feature combinations. For each feature combi-

nation considered, proteins that have at least one feature were subject to imputation and 

those that do not have any features are discarded (data points in Fig. 2.17 with under 

100% protein coverage after imputation). 

Figure 2.17 Impact of missing feature imputation 

 

It is evident that the imputation technique dramatically increased the dataset cov-

erage, which also consequently improved classifier performance as explained in later sec-

tions. For example, the number of MP proteins for a feature combination of (PPI, Phylo, 

GE, GI, DOR) was originally 8 (2.9%), which increased to 192 (71.7%) after imputation. 

The features with 100% coverage after imputation are seven single features, GO, GE, 

Phylo, PPI, GI, NET, and DOR. 
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 Prediction accuracy of MPs  

Next, we discuss prediction performance of MPFit using random forest (RF) 

[122] as the final classifier in the pipeline (Fig. 2.16B).  The 64 different feature combi-

nations were used including the seven cases that only use one feature. Accuracy of pre-

dictions was evaluated by a weighted class average F-score, where the F-score was com-

puted separately for MP and non-MP protein classes and weighted by the number of pro-

teins in the corresponding class. The F-score is defined as 

(2*precision*recall)/(precision+recall), where precision and recall are defined as  

(TP/(TP+FP)) and (TP/(FP+FN)), respectively. Here, TP, FP, and FN stand for true posi-

tive, false positive, and false negative, respectively. Fig. 2.18 presents results with the 

seven single features as well as the five combinations of features that showed the highest 

F-score. Average F-score from a five-fold cross-validation was reported.  

When proteins have GO annotations, it is shown that prediction can be very accu-

rate, with an F-score of 0.993. Among the six individual omics features, GE showed the 

best F-score of 0.710, and the rest of the features performed similarly (F-scores range 

from 0.597 to 0.651). Results of all the possible combinations of omics features are pro-

vided in supplementary Fig. A.2. Their F-scores range from 0.784 to 0.571. Among the 

feature combinations, Phylo+GI showed highest accuracy (precision, recall and F-score 

are 0.799, 0.771, and 0.784, respectively), followed by Phylo+GI+NET and Phylo+NET. 

However, these three combinations have relatively low coverage (Fig. 2.18), while the 

fourth and fifth best performing feature combinations, Phylo+GE+GI+DOR+NET and 

PPI+Phylo+GE, have a high coverage with good F-scores that are close to the best value 

achieved by Phylo+GI  (0.7964, 0.7602 for coverage and 0.7109, 0.7538, for F-score, re-
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spectively). For this reason we used the fourth and fifth feature combinations in the ge-

nome-scale prediction performed in the subsequent section. Among the proteins in 

MoonProt, there are five protein pairs from the same organism that have over 25% se-

quence identity. We removed five proteins, one from each of these high-sequence-

similarity pairs and recomputed the F-score with cross-validation for the two feature 

combinations, Phylo+GE+GI+DOR+NET and PPI+Phylo+GE. The changes of F-score 

were marginal: an increase of 0.87 and 3.09 were observed for the former and the latter 

combinations, respectively. 

 

 

 

 

 

 

 

 

 

        Figure 2.18 Performance of MPFit with random forest 

 

Here we discuss two cases where combinations of different omics-based features 

improved prediction over single feature. The first example is a MP in human, which is a 

ribosomal protein (part of the 60S subunit) (UniProt ID: P46777) [123]. This protein also 

binds to and inhibits HDM2, an ubiquitin ligase, which results in stabilization of the p53 

tumor suppressor protein. Using only the PPI features, this protein is incorrectly predicted 

as non-MP.  This is because 63 interacting proteins in PPI network for this target protein 
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have relatively small number of functional clusters for MP. When clustered using  func-

tional similarity (funsim) scores for BP and MF (See Supplementary Fig A.1 for feature 

computation), the relative number of clusters stay below 0.32 at each clustering cutoff, 

which is significantly low compared to the MP distribution shown in Suppl. Fig. A.1B. 

However, the protein was correctly predicted as MP by the PPI+Phylo+GE combination. 

Phylo features were actual values while GE were imputed for this protein. 25 interacting 

proteins for this target in the phylogenetic profile network were clustered in to 2, 3, 3, 3, 

and 24 clusters at similarity cutoffs 0.1, 0.3, 0.5, 0.7, and 0.9 of the funsim score, which 

are larger than the non-MP distribution shown in Suppl. Fig. A.5A. Thus for this protein, 

addition of Phylo features to PPI made the prediction correct to MP. 

The second example is DNA replication factor Cdt1 (UniProt ID: Q9H211) [124]. 

Besides its primary function as DNA replication factor, this MP’s moonlighting function 

is a role in mitosis where it localizes to kinetochores through binding to the Hec1 compo-

nent of the Ndc80 complex. Using PPI features only, this protein is incorrectly predicted 

as non-MP, because its 29 interacting proteins in the PPI network were clustered into rel-

atively smaller number of functional groups. Clustering using funsim BP+MF score, the 

relative number of clusters stays below 0.35, which is significantly low compared to the 

MP distribution. However, the PPI+Phylo+NET feature combination correctly predicted 

the protein as MP. This is partly because the NET feature of this protein has high values, 

e.g. a between-ness centrality of 0.2668, which is high (above 75 percentile) compared to 

this feature's quantile distribution (Suppl. Fig. A.5B). 

We also ran MPFit with random forest without imputation, i.e. only on proteins 

that do not have any missing feature in a feature combination. The results for all the fea-
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ture combinations are shown in Supplementary Fig. A.3. Skipping imputation substantial-

ly lowers coverage (Fig. 2.18, and Figs. A.2, A.3). Without imputation the coverage de-

creases as the number of features in a combination increases, which resulted in 0 cover-

age for 16 out of 64 cases (Fig. A.3). Also, the data sizes of MP and non-MP classes be-

come substantially different and imbalanced for several feature combinations (Fig. A.3). 

Note that the situation is opposite when the imputation procedure was applied, i.e. the 

coverage increases as the number of features to combine increases, because proteins that 

have at least one feature in a combination were subject to prediction by imputing other 

missing features. Imputation not only increases prediction coverage but also improves 

accuracy by increasing the size of the training set, as indicated by the cases that improved 

F-score by imputation. 

We examined prediction performance of MPFit when naïve Bayes [125] or SVM 

[126], was used as the last classifier in the procedure. As explained with Fig. 2.16, the 

missing data imputation was performed with random forest, and naïve Bayes or SVM 

was applied as the final classifier to proteins with full imputed features. Results with all 

64 feature combinations were shown in comparison with the results by random forest in 

Fig. 2.19. 
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Figure 2.19 Performance comparison of random forest with two other classifiers 

F-score using each of the different feature combinations by MPFit with random forest 

(RF) was compared with SVM (cross) or naïve Bayes (filled circles). The imputed dataset 

was used. Results are the weighted class average F-score over five-fold cross validation. 

 

Results in the lower triangle in Fig. 2.19 are the cases where random forest per-

formed better than the counterpart. It is apparent that random forest performed better than 

SVM and naïve Bayes for the majority of the cases. Using the GO term features showed 

the highest F-score by all the classifiers (the upper right corner of Fig. 2.19). Among the 

combinations of omics-based features, the Phylo+GI combination performed best also for 

naïve Bayes (F-scores: 0.784 and 0.760, by random forest and naïve Bayes, respectively). 

For SVM, the Phylo+GE combination showed the highest F-score (0.705). F-scores of 

feature combinations by the three classifiers correlated moderately. The correlation coef-

ficient between random forest and naïve Bayes was highest, 0.828, that for random forest 

with SVM was 0.542, and between SVM and naïve Bayes it was 0.561. Our speculation 

for random forest outperforming SVM is that the fairly low number of features used in 

this work is probably more suitable for random forest than SVM, which is shown to per-

form well for  a high dimensional feature space [127].    



66 

 

6
6
 

We also computed cross-validation F-score for the alternative imputation tech-

nique (termed as “probabilistic imputation”) and compared the result with the Random 

Forest Fscore shown in Fig. 2.19 with explicit imputation. The result is discussed in Sup-

plementary Fig. A.4 with the conclusion that explicit imputation outperforms the proba-

bilistic imputation.  

To summarize this section, MP and non-MP can be classified very accurately by 

MPFit when GO terms of the proteins are available. Encouragingly, prediction can be 

made with a sufficient accuracy even when no function annotation is available using 

proper combinations of omics-based features. Missing feature imputation increases the 

coverage of proteins that are subject to prediction and also helps to improve accuracy by 

increasing the training data of a classifier. Among the three classifiers tested, random for-

est performed better than SVM and naïve Bayes.  

 

 Genome wide computational prediction of MPs 

In the last section of this work, we report genome-wide prediction of MPs per-

formed with MPFit on three genomes, S. cerevisiae (yeast), C. elegans, and human. We 

used two feature combinations that gave high performance in both F-score and coverage 

(Fig. 2.18): Phylo+GE+GI+DOR+NET and PPI+Phylo+GE. MPFit with the two feature 

combinations were run separately with explicit feature imputation and random forest as 

the last classifier. Then, proteins that were predicted as MPs by consensus of both runs 

were taken as plausible MPs. Consensus was taken to only count highly plausible MPs 

and avoid over-estimation of the MP fraction in the genomes. For MPFit runs with a fea-

ture combination, proteins were discarded if they had no features in the combination (i.e. 
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imputation was only applied if a protein had at least one feature in the combination). In 

the yeast genome, which has 6718 proteins in UniProt [86], there were 4673 proteins 

(Coverage: 69.6%) that had at least one feature among PPI, Phylo, or GE, and 5845 pro-

teins (87.0%) that had at least one feature in Phylo, GE, GI, DOR, or NET. The coverag-

es for C. elegans are 79.8% and 89.5%, while that for the human genome are 68.1% and 

82.4% respectively for the  PPI+Phylo+GE and Phylo+GE+GI+ DOR+NET feature 

combinations. The results are summarized in Table 2.1. A list of predicted MPs is availa-

ble at http://kiharalab.org/MPprediction. 

 

Table 2.1 Genome-wide prediction of moonlighting proteins 

a) The fraction of proteins that were subject to the prediction among all the proteins in the 

genome; b) the number of known MPs listed in the MoonProt database that were predicted 

as MPs by MPFit; c) the fraction of proteins that were predicted as MPs by MPFit among 

the proteins in the genome. 

Genome # Proteins Coverage(%) a)  Known MPs Predicted b) MPs (%) c) 

yeast 6,718 69.56 22/27 (81.4%) 10.97 

C. elegans 20,133 79.82 1/1 (100%) 2.73 

human 20,098 67.91 33/45 (73.3%) 7.82 

 

First, we examined if known MPs listed in the MoonProt database in each genome 

were correctly predicted as MPs. The results in the second column from the right in Table 

2.1 show that MPFit predicts known MPs reasonably well with recall of over 73% to each 

genome. C. elegans has only one known MP, which was correctly predicted by MPFit. 

Next, we moved onto the blind genome-wide prediction to the three genomes. In the 

yeast genome, MPFit with the two feature combinations Phylo+GE+GI+DOR+NET and 

http://kiharalab.org/MPprediction
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PPI+Phylo+GE predicted 24.6% and 18.5% of the proteins as MPs, respectively, and 

among them, 10.9% of the proteins have a consensus prediction as MPs with the two fea-

ture sets. We note that this number of MPs in yeast is similar to the numbers obtained by 

a recent work by a different group [114]. In human, 67.6% of the total genome was sub-

ject to MPFit by both feature combinations, and 7.8% of the total genome was predicted 

as MP by consensus of the two feature combinations. 

In C. elegans, 79.8% of proteins were subject to prediction by the two feature 

combinations. For this genome, the two feature combinations showed difference in the 

number of proteins predicted as MPs. With the Phylo+GE+GI+DOR+NET combination, 

15.4% of the proteins were predicted as MPs while the fraction was 4.0% using the 

PPI+Phylo+GE combination, which resulted in a consensus of 2.73% of the proteins pre-

dicted as MPs. The fraction of predicted MPs by the latter feature combination was par-

ticularly lower than the other mainly because 48.5% of the predicted MPs by Phy-

lo+GE+GI+DOR+NET were not subject to prediction with the PPI+Phylo+GE combina-

tion due to missing features. 

To date there are two methods that predict whether a protein is moonlighting. A 

method by Chapple et al. considers a protein as MP if it is within an overlapping cluster 

in the PPI network and further passes a GO-based analysis. Out of the 45 known MPs in 

human in the MoonProt database, only 3 were predicted by this method (recall 0.0667) 

[113]. The second method by Pritykin et al. uses a GO-based multifunctional filtering 

criteria to predict MPs. Their method predicted 22 out of 45 known MPs in human (recall 

0.4889) and 13 out of 27 known MPs in yeast (recall 0.4815) as MPs [114]. Thus, as 
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shown in Table 2.1, MPFit showed a larger recall (Table 2.1) in both human and yeast 

than the two existing methods. 

 

 Analysis of genome-wide MP prediction 

We examined the functions of predicted MPs in the three genomes by considering 

GO [43] and KEGG pathway association [2]. In order to assign a protein to GO catego-

ries, we first mapped its GO annotations onto the terms at the second depth in the GO hi-

erarchy, and performed GO enrichment analysis (NaviGO at 

http://kiharalab.org/web/compare.php). Table 2.2 lists the enriched GO categories of the 

predicted MPs. This GO analysis covers 100%, 99.3%, and 99.9% of predicted MPs in 

yeast, C. elegans, and human, respectively, which have GO annotations. Table 2.3 is a list 

of associations of the predicted MPs to KEGG pathways. Note that this analysis was 

based on the the predicted moonlighting proteins that exist in KEGG [2] database 

(66.36%, 35.21%, and 51.92% in yeast, C. elegans and human genome respectively).  

In Table 2.2 and 2.3, the major proportion of MPs are enzymes. This observation 

is consistent with previous reports that many MPs were known primarily as enzymes 

when their secondary function was discovered [83,84,128]. 

Ribosome was listed as a KEGG pathway for the three genomes. An example is 

40S ribosomal protein S3 (Uniprot ID: P23396) in human, which functions primarily as a 

ribosomal protein (part of the 40S subunit), and has a second function of being a subunit 

of a DNA binding complex involved in NF-kappaB-mediated transcription [129]. This 

protein has GO term GO:0003735 structural constituent of ribosome, which is a direct 

descendant of  GO:0005198 structural molecule activity, and hence falls under the latter 

http://kiharalab.org/web/compare.php
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category in Table 2.2. The second example of MPs is glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH, Uniprot ID: P04406) in human. Besides its primary function as en-

zyme in the glycolysis pathway, this protein moonlights as interferon (IFN)-gamma-

activated inhibitor of translation that silences ceruloplasmin mRNA translation [130]. In a 

proteomics study [131], this protein was identified as one of the urinary exosome proteins, 

and thus contains GO:0070062 extracellular exosome, which is a child term of 

GO:0005576 extracellular region, and hence falls in the latter GO category in Table 2.2. 

Both are these examples are correctly predicted MPs in human by the two omics based 

combinations Phylo+GE+GI+DOR+NET and PPI+Phylo+GE. 

 

Table 2.2 GO categories of the predicted moonlighting proteins 

GO category “Enzyme” is upon membership of either GO:0008152 metabolic process or 

GO:0003824 catalytic activity. The percentage of GO terms will not sum to 100% for a 

genome because a protein can have multiple assigned GO terms. 

Genome Enriched GO terms MP (%) 

yeast enzyme (BP/MF) 

GO:0005488 binding (MF) 

GO:0032991 macromolecular complex (CC) 

GO:0071840 cellular component organization or biogenesis 

(BP) 

GO:0031974 membrane enclosed lumen (CC) 

GO:0005198 structural molecule activity (MF) 

GO:0009295 nucleoid (CC) 

GO:0016209 antioxidant activity (MF) 

91.86 

59.29 

51.70 

42.61 

26.05 

19.95 

0.951 

0.810 

C. elegans enzyme (BP/MF) 

GO:0005198 structural molecule activity (MF) 

GO:0002376 immune system process (BP) 

73.67 

15.72 

3.47 
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GO:0060089 mol. transducer activity (MF) 

GO:0004872 receptor activity (MF) 

1.65 

1.65 

human enzyme (BP/MF) 

GO:0005488 binding (MF) 

GO:0050896 response to stimulus (BP) 

GO:0032501 multicellular organismal process (BP) 

GO:0005576 extracellular region (CC) 

GO:0071840 cellular component organization or biogenesis 

(BP) 

GO:0051179 localization (BP) 

GO:0051704 multi-organism process (BP) 

GO:0040011 locomotion (BP) 

GO:0032991 macromolecular complex (CC) 

GO:0030054 cell junction (CC) 

GO:0000003 reproduction (BP)  

GO:0005198 structural molecule activity (MF) 

GO:0040007 growth (BP) 

GO:0031012 extracellular matrix (CC) 

GO:0009055 electron carrier activity (MF) 

76.77 

63.84 

45.51 

38.19 

36.54 

33.23 

29.03 

15.15 

10.18 

9.41 

7.51 

7.26 

7.07 

4.58 

3.95 

1.15 

 

Table 2.3 KEGG pathway associations of predicted moonlighting proteins 

Genome Top 5 KEGG pathways MP (%) 

yeast Metabolic pathways (KEGG ID 1100) 

Ribosome (3010) 

Biosynthesis of secondary metabolites (1110) 

Carbon Metabolism (1200) 

Biosynthesis of amino acids (1230) 

29.17 

15.33 

13.70 

6.92 

6.38 

C. ele-

gans 

Ribosome (3010) 13.79 
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Metabolic pathways (1100) 

Purine Metabolism (230) 

Pyrimidine Metabolism (240) 

Oxidative phosphorylation (190) 

12.34 

2.72 

2.54 

2.54 

human Metabolic pathways (1100) 

Ribosome (3010) 

Olfactory transduction (4740) 

Purine metabolism (230) 

Cytokine-cytokine receptor interaction (4060) 

18.38 

4.45 

3.94 

2.54 

2.42 

 

2.6 Text mining approach for prediction of MPs ─ DextMP 

All existing computational studies for moonlighting protein prediction, including 

our developed method MPFit overlook one major resource of information in automatic 

identification of MPs: text-based information that underlies in scientific literatures and 

textual description of protein functions in curated databases such as Uniprot.org [86]. 

Moreover, there are two existing online repositories that serve as experimentally validat-

ed resources for MPs [83,84], and they are built on expert knowledge with manual cura-

tion on existing literature, since in most of the cases MPs are not explicitly labelled in the 

database as “moonlighting”, “dual function”, “multitasking”, or related words. These lat-

ter two observations convinced us that a direct application of text mining techniques on 

MP literature would provide a major boost towards automatic MP prediction. To this as-

pect, in this work we propose a very first text mining based prediction algorithm for 

moonlighting protein classification.   
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For the last decade, text mining techniques has been extensively used to unravel 

non-trivial knowledge from structured/unstructured text data [132]. Text classification 

based methods consist of two broad steps: designing the best features, and modelling the 

classifiers. In terms of feature engineering, most of the existing works are based on bag-

of-words that leverage some word related statistics in the text [133]. The next level of 

text-based feature learning models motivates from representing each text with a distribu-

tion of latent topics [134]. These latter topic modelling based representations are able to 

capture the semantic information underlying the text. In recent years, unsupervised deep 

learning based feature construction has become popular in text mining [135] as well as 

speech and image recognition [136,137].  Such deep learning based methods map text 

into a condensed d-dimensional continuous vector space such that semantically similar 

texts are embedded nearby each other. In this work we propose DextMP (Deep learning 

on tEXT for prediction of Moonlighting Proteins) which consists of four broad steps: first, 

it extracts textual information of proteins by mining scientific literature (publication title 

or abstracts) and functional descriptions in curated database of Uniprot.org[86]. Second, 

it undergoes a feature construction phase in order to represent each text with a k-

dimensional feature. In this step, we apply a current state-of-the art deep unsupervised 

learning algorithm called paragraph vector [138] (termed as DEEP and PDEEP in our 

text, PDEEP as an extended deep learning), along with two other widely popular lan-

guage models (TFIDF in the bag-of-words model category [132] and LDA in the topic 

modeling category [134]) in order to provide a comparison among the competitive text-

based language models. Third, we use four machine learning classifiers to provide a 

MP/non-MP prediction on the text data based on the features learnt in the previous step. 
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Finally, we apply a text-to-protein mapping step to provide moonlighting protein predic-

tion based on MP prediction on protein’s associated text. Cross-validation results on the 

dataset of known moonlighting and non-moonlighting proteins (control dataset) show that 

DextMP can successfully predict MPs with over 94% accuracy with PDEEP as the lan-

guage model. Overall PDEEP performs significantly better than the two other baseline 

models (TFIDF and LDA). However, even with the simple bag-of-words model TFIDF, 

DextMP achieves over 85% accuracy, which s direct evidence that textual data are rich 

with information that can be applied for MP prediction. Among the different forms of 

text information, protein’s functional description in Uniprot.org provides better perfor-

mance than the other two (title and abstract of scientific literature). Lastly, we have run 

DextMP with the best performing language models and text-based feature combinations 

on four genomes, Saccharomyces cerevisiae (yeast), Homo sapiens (human), X. laevis 

(frog), and C. pneumoniae (pneumoniae) and found that about 8~31% of the proteomes 

are potential moonlighting proteins. Comparison of DextMP with three existing MP pre-

diction models, including our previously developed model MPFit that uses a diverse pro-

tein association features shows that DextMP significantly outperforms the others in speci-

ficity over known MPs and genome coverage. 

 

2.6.1 Methods 

Our method named DextMP (Deep learning on tEXT for prediction of Moonlight-

ing Proteins) is developed to learn features from the text information available for pro-

teins in Uniprot database [86] and literature in order to ultimately provide a prediction of 
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moonlighting protein class. In this section, we provide details of the framework of Dex-

tMP.  

 

 Data preparation  

In order to construct a control dataset for our prediction model, we used the 

moonlighting and non-moonlighting protein, termed as MP and non-MP for short (nega-

tive example of moonlighting proteins) dataset that we built in our previous work [50]. In 

summary, the MP class of the control dataset consists of 263 MPs selected from the man-

ually curated MP database MoonProt [84]. Only proteins that had Uniprot ID mapping in 

the MoonProt database were selected, and five MP proteins were further discarded to 

avoid redundancy as they had over 25% sequence identity with a paralogue protein in the 

set. To select the non-MP proteins, we applied the following GO-based criteria developed 

in our previous works [48,50] on top four genomes that are dominant in our dataset of 

MP, namely, human (45 MP, 17.1%), E. coli (29 MPs, 11%), yeast (23 MPs, 8.7%), and 

mouse (11 MPs, 4.2%): a protein was selected as a non-MP if it has a) at least 8 GO term 

annotations, b) when GO terms in the Biological Process (BP) category were clustered 

using the semantic similarity score [93] thresholds of 0.1 and 0.5, not more than one clus-

ter was obtained at each threshold, and c) not more than one cluster of MF GO terms at 

semantic similarity scores of 0.1 and 0.5 were formed. In essence, a non-MP is a protein 

that has a sufficient number of GO annotations but they are not functionally diverse. We 

further ruled our non-MPs that had above 25% sequence identity with another non-MP 

sequences, and finally selected 162 non-MPs, among which 60 are from human (37.0%), 

52 from mouse (32.1%), 34 from yeast (20.9%), and 16 from E. coli (9.88%). So in 
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summary, 263 MP and 162 non-MP were selected as control dataset for the DextMP 

model.  

Table 2.4 Data size of DextMP model 

anumber in the parenthesis indicates the number of proteins for which the text data was 

found 

 #proteins #titlesa #abstractsa #functions 

MP 263 2496 (214) 1450 (158) 194 

non-MP 162 1665 (162) 1624 (162) 162 

 

 Text extraction 

Based on our control dataset, we extracted three categories of text information for 

each protein from Uniprot.org [86]: a) title of each of the reference citations of protein’s 

record, b) abstract of each of the reference citations, and c) summary description of pro-

tein’s function curated by Uniprot. The text data for category a) and c) were directly col-

lected from Uniprot data dump, and for category b) we crawled the web links for ab-

stracts available in the protein page of Uniprot.org. Table 2.4 shows statistics on the data 

size. Note that while one protein can have multiple titles and abstracts associated with it 

(one-to-many relation between protein and title/abstract), it only has one function de-

scription (one-to-one relation between protein and function description).   

Upon extraction of raw text on our control dataset, we performed several layers of 

data cleanup. First, we discarded any redundant text information that appears both in MP 

and non-MP class. Second, we removed all stop words, punctuations, and special sym-

bols (Greek letters) from the text. Finally, we performed stemming and lemmatization in 
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order to deal with the root and auxiliary forms of words, respectively [132]. We used the 

nltk package in python [139] for this cleanup operations.    

 

 Framework of DextMP 

The overall framework of DextMP is shown in Fig 2.20. First, based on the con-

trol dataset of MP and non-MP, three categories of text information is extracted as raw 

data. Then a data clean-up step is carried out, and a dataset consisting of N texts of ti-

tles/abstracts/function descriptions is constructed (left panel Fig. 2.20). Then, in order to 

learn features for each of the text in this dataset, we apply a current state-of-the art deep 

unsupervised feature construction technique [138], along with two other widely popular 

language models (bag of words [132] and topic modeling [134]) to provide a thorough 

portrayal of text-based analysis on MPs. Then, based on these learned features, we used 

four machine learning classification algorithms, namely, logistic regression (LR), random 

forest (RF), SVM and gradient boosted machine (GBM) [140] to provide a MP/non-MP 

prediction on the text data. We emphasize that at this point of the DextMP model, a 

MP/non-MP class label is predicted at text level, i.e., for each of the texts that are associ-

ated to our control dataset of MP and non-MP, whether that be a title/abstract/function 

description. We call this first part of our DextMP model as text model, as shown in the 

left panel of Fig. 2.20.  
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Figure 2.20 Schematic of DextMP: MP prediction by deep learning into text 

 

Once we have a MP/non-MP class prediction for each associated text, we use the 

model shown in bottom panel of Fig. 2.20 to get a class prediction for the proteins (pro-

tein-level prediction). We start with the one-to-many mapping of L proteins to its associ-

ated M texts (title/abstract), receive the class labels (indicated as CL in right panel of Fig. 

2.20) for the texts using our text model, and apply two heuristics to get the protein-level 

class label: in majority vote, we simply take the binary class label of protein as the major-

ity class label of its associated text, and we applied different “majority” cutoffs to this 

end (50%, 70%, 80%, 90%). In weighted majority vote, we use the class prediction prob-

abilities associated to the text instead of the binary class label to find the protein-level 

class label in the same way as above. Please note this latter part of the DextMP model 

shown in the right panel of Fig. 2.20 is only applicable to the protein-text data that has a 

one-to-many mapping, which in this case is title and abstracts, and not the function de-

scription.   
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 Learning features from text 

We apply the following four language models for feature construction from text: 

1. Bag-of-words with TFIDF: Given a text corpus (collection of sentences/texts), this 

bag-of-words model first computes the dictionary that contains all the words in the text 

corpus. Given a dictionary of size N, a text can be represented as a N-dimensional real 

valued vector with TFIDF (short for Term Frequency-Inverse Document Frequency) 

[132] values for each word in the dictionary. Intuitively, TFIDF can statistically measure 

the importance of a keyword to a sentence with respect to its entire dictionary corpus. In 

this task of MP prediction, the TFIDF measure will help to identify the keywords that 

have more discriminative power towards MP related texts. For a word w, TFIDF is be 

computed as follows: TF(w) = (number of times word w appears in a text) / (total number 

of words in the text); IDF(w) = loge(total number of texts in the corpus/ number of texts 

with word w); TFIDF(w) = TF * IDF. 

2. Topic Modeling with LDA: In practice, the bag-of-words model has two critical limi-

tations: for a large dictionary, the size of the feature vector for each text can be huge, 

which makes it computationally expensive, and it does not take consideration of the word 

ordering in a text.  To alleviate above two challenges, researchers in [141] model each 

text as a distribution of latent topics (user defined parameter) and each topic as a distribu-

tion of words. Latent Dirichlet Allocation (LDA) [134] is one of the most popular topic 

modeling algorithms in text modeling. LDA is a modification of earlier topic models 

[142] and uses two Dirichlet-Multinomial distributions to model the mappings between 

documents and topics, and topics and words. In the DextMP model, we use an open 

source python implementation of LDA [143] for feature representation of protein’s text.  
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3. Unsupervised Deep Language Model DEEP: As our third language model, we use a 

deep learning based unsupervised feature construction algorithm [138]. This model maps 

texts into a continuous vector space of dimension d, such that semantically similar texts 

appears together i.e., forms a cluster. In a nutshell, for a sequence of words W = {w0 , w1, 

… , wn}, where wi ∈ D (D is the dictionary) and a text T containing the sequence of 

words, the model maximizes Pr(wi |w0, w1, . .wi-1, wi+1, .. wn, T) over the text corpus. The 

training of feature vector representation of the text is done using stochastic gradient de-

scent and the gradient is obtained via back-propagation [138]. For a given corpus of texts 

i.e. titles, abstracts, and functional descriptions, we apply an open source python imple-

mentation of the “paragraph vector” deep learning model  [143] to find k-dimensional 

feature representation of each text. 

4. PDEEP: Generally unsupervised deep language model requires large amount of train-

ing data for efficient feature learning. In DEEP the feature construction phase is based on 

the control dataset of MP and non-MP only. In PDEEP, we expand the training data to 

the entire protein’s text corpus in Uniprot.org. Concretely, we extract a total of 1,060,520 

titles available publication titles and 551,056 functional descriptions from the data dump 

of Uniprot.org to train the feature construction part of the PDEEP regardless of identify-

ing whether the corresponding proteins of the texts are MP or non-MPs. Since publica-

tion’s abstract is not available in the data dump, we omitted PDEEP training for abstracts. 

 

 Parameter tuning of DextMP 

We use grid search to tune the parameters for the feature construction model LDA 

and DEEP. In LDA, we execute grid search in [61,61,86] as (min, max, step size) to tune 
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the “number of topics” parameter for different types of texts and classifiers. In DEEP, we 

tune three parameters of the paragraph vector model for the 4 classifiers: “minimum 

count” tuned in [56,69,69] with grid search, “window size” tuned in [44,59,69] and “di-

mension size” in [40,61,61]. For a word, “minimum count” indicates the minimum num-

ber of texts that the word must appear in, “window size” is the size of the convolution 

context and “dimension size” indicates length of the feature vector representation. For 

specific values of these parameters on different settings please see Table A.5. We also 

tune the parameters associated with the four classifiers of DextMP using grid search. For 

LR and SVM we tune the regularization parameter and use default values for other pa-

rameters in the model set by the sklearn’s [140] implementation. For RF and GBM, we 

tune the “number of trees” parameter and use default values of others.  

 

2.6.2 Results 

In this section we demonstrate results of our proposed method DextMP. The lay-

out of this section is as follows: first we show a generic representation of MPs using the 

three categories of text data we leverage in this study. Second, we show cross-validation 

result of DextMP on text-level MP prediction. Third, cross-validation result on protein-

level MP prediction is discussed. Lastly, we apply DextMP on genome-scale MP predic-

tion and discuss the results along with model comparison with our previous MP predic-

tion method, MPFit and two other external methods. Interesting case studies showing 

predictive power of DextMP over MPFit is shown.  
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 MPs represented as text 

In Fig. 2.21, we show word cloud of the three categories of text information that 

we used in DextMP to represent MP and non-MP proteins: publication title (Fig. 2.21A), 

function description in Uniprot (Fig. 2.21B) and publication abstract (Fig. 2.21C). Only 

the MPs from the control dataset are used in the visualization in Fig. 2.21.    

From this generic text representation, a few points come to light: some of what we 

know about experimentally validated MPs are visible from this text representation, as 

words “enzyme”, “kinase”, “transcription” appear in all three text representations in Fig. 

2.21. This is consistent with the previous reports that many MPs were known primarily as 

enzymes when their secondary function was discovered, in many cases which included 

acting as transcription factors [50,83,84,128]. The word “ribosome” appear as top word 

in Fig. 2.21, which is also consistent with our previous finding [50] where predicted MPs 

were enriched in ribosomal pathways in KEGG database [2], and moonlighting functions 

of ribosomal proteins were found in literature [144]. Additionally, words that are clear 

indicator of MPs also appear in text, such as “bifunctional” (word count in title is 21/0 for 

MP/non-MP), “multifunctional” (word count 12/0 for MP/non-MP). These initial find-

ings lead us to develop more sophisticated text-based feature representation of MP and 

non-MP proteins, which will ultimately deliver successful MP predictions. 

 

 

 

 

 

 

 

Figure 2.21 Word cloud of extracted text on MP dataset  
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 DextMP performance on text-level prediction 

Table 2.5 F-Score of DextMP on text-level prediction 

 LR RF SVM GBM 

TFIDF-title 0.7774 0.7942 0.8751 0.7218 

LDA-title 0.4071 0.5056 0.4372 0.5162 

DEEP-title 0.6236 0.6005 0.6795 0.6157 

PDEEP-title  0.6261 0.5436 0.6596 0.5935 

TFIDF-abstract 0.9220 0.8682 0.9371 0.8396 

DA-abstract 0.6102 0.6410 0.6220 0.6604 

DEEP-abstract 0.6684 0.7420 0.7327 0.7069 

TFIDF-function 0.7412 0.7439 0.7715 0.6947 

LDA-function 0.5586 0.6000 0.5581 0.6781 

DEEP-function 0.7700 0.8181 0.8104 0.7369 

PDEEP-fufunction 0.7335 0.7166 0.7564 0.6816 
 

We now demonstrate results of DextMP over 5-fold cross validation on our con-

trol dataset for text-level MP prediction in Table 2.5. A schematic of this part of the Dex-

tMP model is described in Fig 2.20 (top panel) and Methods section 2.2. As this is the 

first text information based analysis on MPs, along with running DextMP with two dif-

ferent deep learning based models (DEEP and PDEEP), we used two other popular lan-

guage model categories (TFIDF in “bag-of-words” model and LDA in the “topic model-

ling” category) in order to provide a baseline for the text based learning. For each lan-

guage model, three forms of text information (title, abstract, function description) were 

used separately (except the PDEEP-abstract combination, which was omitted out due to 

data unavailability). For MP classification on the learned features, we further use four 

classifiers LR, RF, SVM and GBM (shown in columns of Table 2.5).  See Methods about 

parameter tuning of these different models.  
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For each type of text information (title, abstract, function), the best performing 

model under each of the 4 classifiers is in boldface in Table 2.5. Among the four different 

language models, DEEP and PDEEP clearly outperforms the baseline model LDA in all 

three text information categories and all four classifiers. Largest gap in F-Score in this 

comparison is 0.2523, between LDA-function-SVM and DEEP-function-SVM combina-

tions. In terms of comparison with TFIDF, DEEP shows superior performance than 

TFIDF in the function category, while TFIDF shows better performance in the other two 

text categories, i.e., title and abstract. The largest win for DEEP over TFIDF is at the 

function-RF combination, with F-Score gap of 0.0741. However, TFIDF shows better 

performance with a much higher margin in the abstract-SVM combination (F-score gap 

0.2044). 

Overall, in the title category, TFIDF-title-SVM has the best F-score 0.8751 (pre-

cision 0.8920, recall 0.8640). In the abstract category, the best combination is again 

TFIDF-abstract-SVM (F-Score, precision, recall of 0.9371, 0.9376, and 0.9369, respec-

tively). In the function category, DEEP-function-RF stands as the best model (F-Score, 

precision, recall of 0.8181, 0.8311, and 0.8161, respectively). Overall performance of ab-

stract is superior to the title and function categories. From Table 2.5, the (min, median, 

max) of the F-scores shown under the abstract category is (0.6102, 0.7198, 0.9371), while 

the same for function and title are (0.5581, 0.7352, 0.8181) and (0.4071, 0.6197, 0.8751), 

respectively. Among the 11 different setting (rows in Table 2.5), SVM classifier shows 

better result than other three (LR, RF, GBM) in 6 cases, RF wins for 3 cases and GBM 

for 2 cases. 
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PDEEP was built as an extension from DEEP by enlarging its training set to the 

whole corpus of proteins in Uniprot.org. While this model shows comparable perfor-

mance with DEEP in the title category (largest gap of F-Score 0.0569 with title-RF), 

DEEP shows clearly better performance than PDEEP in the function category (largest F-

Score difference 0.1014 at function-RF). Our speculation behind this poor performance 

of PDEEP is that because of large training data, textual features that are unique for MP 

becomes somewhat generalized in the PDEEP’s feature representation compared to 

DEEP. An example showing evidence of this speculation is the S13 ribosomal protein in 

human (Uniprot ID P62277) for which DEEP correctly made a MP prediction, while 

PDEEP failed.  According to MoonProt database  [84], apart from being a ribosomal pro-

tein, it moonlights by inhibiting the splicing own RNA transcript and inhibiting the re-

moval of intron 1 from rpS13 mRNA [145]. A text data describing the first function is 

belongs to the ribosomal protein S15P family which appears once in the training dataset 

for DEEP, while appears 989 times in the extended training dataset for PDEEP. Besides, 

words describing this proteins moonlighting function, such as “intron” and “RNA splic-

ing” has very different counts in the training dataset of DEEP and PDEEP (“intron” ap-

pears 17 times in DEEP and 1391 times in PDEEP, “RNA splicing” appears 7 times in 

DEEP and 734 times in PDEEP). This gives indication that the larger training dataset re-

duces the uniqueness of MP features in this case. 

In terms of computation time, TFIDF, LDA, DEEP, and PDEEP shows different 

performance when the total computational time is broken into three phases: training, in-

ference of features for each text, and text classification. In the training phase, for (title, 

abstract, function), computational time for TFIDF, LDA and DEEP are (0.1457, 0.6172, 
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0.1350), (2.5952, 5.3780, 3.2526), and (1109.49, 1659.13, 253.61) seconds, respectively. 

For the inference phase, the same for TFIDF: (2.6048, 7.8240, 0.6350), LDA: (1.0952, 

1.6222, 0.2909), and DEEP: (0.6052, 0.5905, 0.0576). For the last phase, classification, 

TFIDF: (168.95, 299.143, 19.83), LDA: (12.69, 9.80, 1.51), and DEEP: (30.64, 31.43, 

1.73). Since the first phase training can be pre-computed based on the control data once 

and be reused later, it is evident that DEEP can be used much more efficiently than LDA 

and specially TFIDF (significantly at the classification phase), in terms of computational 

time.   

In summary, with text-based representations, simple bag-of-words model such as 

TFIDF achieves over 93% accuracy (with TFIDF-abstract-SVM). The DEEP model 

shows superior performance when the Uniprot function description is used to represent 

the text information for the proteins with random forest as the final classifier, and 

achieves a highest F-score of over 81%.  

 

 DextMP performance on protein-level prediction 

In this section we discuss the performance of DextMP over 5-fold cross validation 

when the text-level MP/non-MP class prediction demonstrated in the previous section is 

mapped to protein-level class prediction. A schematic of this part of the DextMP model is 

described in Fig 2.20 (bottom panel) and Methods section.  For rest of the two text cate-

gories (title/abstract), in order to perform the text-to-protein mapping of the MP/non-MP 

class labels predicted on the text, we resort to two schemes: majority voting and weighted 

majority voting. For each combination of text information (title/abstract), language model 

(TFIDF/LDA/DEEP/PDEEP), the classifiers (LR/RF/SVM, GBM), and for both 



87 

 

8
7
 

weighted and non-weighted majority voting cases, we ran DextMP over 5-fold cross val-

idation with different majority vote cutoffs (50%, 70%, 80%, 90%) (Supplemental Fig. 

A.5-A.8) and selected the optimal cut-off for each combination. In Fig. 2.22 we show a 

comparison between the protein-level F-scores at the optimal majority vote cutoffs for the 

weighted and non-weighted cases. Results in the lower triangle in Fig. 2.22 are the cases 

where non-weighted majority voting performed better than the counterpart. Although the 

F-scores differs insignificantly between these two cases in Fig. 2.22, the non-weighted 

scheme still wins in most of them. So for the rest of the results in this work we use only 

the non-weighted majority voting with the optimal voting cutoffs. 

  

 

 

 

 

 

 

 

 

Figure 2.22 Weighted and non-weighted majority voting comparison 

 F-scores for weighted and non-weighted majority voting at optimal voting cut-offs 

 

Table 2.6 shows the result for 5-fold cross validation on protein-level MP predic-

tion. Similar to Table 2.6, for each type of text information (title, abstract, function), the 

best performing model under each of the 4 classifiers is in boldface in Table 2.6. Here 

also, both DEEP and PDEEP models clearly outperforms the LDA model in all three text 

categories. In the title category, TFIDF shows better result than DEEP for 3 out of 4 clas-

sifiers (largest F-Score gap 0.0655 at title-RF), while DEEP wins in 1 out of 4 cases. 



88 

 

8
8
 

TFIDF-title-SVM has the best F-Score in the title category (F-Score 0.8330, precision 

0.8479, recall 0.8316).  

 

Table 2.6 F-Score of DextMP on protein-level prediction 

Benchmark F-Score of DextMP over 5-fold cross validation on protein-level prediction. 

LR – Logistic Regression, RF – Random Forest, SVM – Support Vector Machine, GBM – 

Gradient Boosted Model 

 LR RF SVM GBM 

TFIDF-title 0.7703 0.7474 0.8330  0.6901 

LDA-title 0.5129 0.5708 0.5017 0.5363 

DEEP-title 0.7291 0.6819 0.7766 0.7116 

PDEEP-title 0.6611 0.5079 0.5159 0.6067 

TFIDF-abstract 0.8132 0.8225 0.8208 0.7833 

DA-abstract 0.5351 0.5554 0.5458 0.6014 

DEEP-abstract 0.7998 0.8325 0.7963 0.7897 

TFIDF-function 0.7412 0.7439 0.7715 0.6947 

LDA-function 0.3978 0.5308 0.3878 0.5271 

DEEP-function 0.7700 0.8180 0.8104 0.7369 

PDEEP-
function 

0.7335 0.7166 0.7564 0.6816 

 

In the abstract category, TFIDF and DEEP shows has equal wins for the 4 classi-

fiers, and DEEP-abstract-RF has the best F-score (0.8325, precision 0.8402, recall 

0.8323). For the function category, DEEP wins over TFIDF for all three classifiers, with 

best F-Score of 0.8180 (precision 0.8311, recall 0.8161). So overall at the protein-level 

MP prediction, DEEP outperforms TFIDF and LDA by showing better F-Score in 7 out 

of 12 cases. Intuitively, the DEEP model’s superior performance is evident from how 

these models are built. The bag-of-word models relies on word count (TFIDF) and do not 

consider more intricate relationships such as ordering of words [132]. LDA is at coarse-

grained level over the bag-of-words models as it captures the latent topic distribution of 
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the text [134]. On the other hand, the deep learning based models are able to capture the 

semantic relationship within words in a text [138].  

Similar to the text-level prediction, the abstract category shows overall better per-

formance than the title and function category in the protein-level prediction as well.  

From Table 2.6, the (min, median, max) of the F-scores shown under the abstract catego-

ry is (0.5351, 0.7930, 0.8325), while the same for function and title are (0.3878, 0.7352, 

0.8180) and (0.5017, 0.6715, 0.8330), respectively. Among the 11 different setting (rows 

in Table 2.6), the RF classifier shows better result than other three (LR, RF, GBM) in 5 

cases, SVM wins for 4 cases, and both GBM & LR win for 1 case. The highest overall F-

Score at protein-level MP prediction in Table 2.6 is 0.8330 (precision 0.8479, recall 

0.8316) by the TFIDF-title-SVM combination which is very close to the DEEP-abstract-

RF setting (F-score 0.8325, precision 0.8402, recall 0.8323). 

Although abstract based models excel in both text-level and protein-level MP 

prediction, practically it is not usable for large-scale predictions as the data is not directly 

available in the Uniprot knowledgebase. Hence we chose top four models from Table 2.6 

under the title and the function category (i.e., TFIDF-title-SVM, DEEP-function-RF, 

DEEP-function-SVM, and TFIDF-title-LR) in order to perform blind predictions on ge-

nomes using DextMP (described in next subsection). 
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Table 2.7 Genome-scale prediction by DextMP     

Genome yeast human X. 

laevis  

C. pneumoniae 

#proteins 6,721 20,104 11,078 1,110 

Coverage 96.73% 98.06% 30.54% 38.74% 
%MP (vote >= 3) 2,438 

(36.27%) 

4,657 

(23.16%) 

543 

(4.90%) 

368 

(33.15%) 
%MP (vote > 3) 2,008 

(9.98%) 

1080 

(16.07%) 

331 

(2.99%) 

331 

(29.82%) 

#known MP 23 45 NA NA 
recall (vote>= 3) 0.8889 0.9333 NA NA 
Recall (vote > 3) 0.7404 0.7111 NA NA 

 

 Genome-scale prediction of MPs using DextMP 

In this section we show results of DextMP model for two genomes on which MP 

prediction has been performed before: S. cerevisiae (yeast), and H. sapiens (human), and 

two genomes novel genomes for which MP prediction was not possible by other models 

due to lack of data: X. laevis, and C. pneumoniae. In order to perform genome prediction, 

we used the title and function description as protein’s text information, ran four best per-

forming models (TFIDF-title-SVM, DEEP-function-RF, DEEP-function-SVM, and 

TFIDF-title-LR) and took the consensus of the predictions. Previously, we have per-

formed genome prediction with our diverse protein association feature based model 

MPFit [50], and showed that it outperformed two existing models that predicts MP: 

method by [113] identifies proteins that are members of overlapping clusters in the PPI 

network and predicts a subset of them as MP by further GO based analysis. The second 

method by [114] developed a GO based multifunctional filtering criteria to predict MPs. 

In this section, we discuss comparison of DextMP with MPFit and these two other mod-

els for MP prediction in yeast and human genome.  
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Table 2.7 shows the genome results. In yeast genome, out of 6,721 proteins, 6,500 

had both title and function description in Uniprot.org (coverage 96.73%). Among these 

proteins, 2, 438 are predicted as MP by DextMP consensus. We computed recall of this 

prediction out of the 27 known yeast MPs in MoonProt [84], and found that 24 of them 

were predicted correctly (recall 0.8889) by the majority vote consensus (at least 3 MP 

votes out of 4 DextMP models). This performance is higher than what we achieved with 

our previous model MPFit (recall 0.8146) which in turn outperformed another existing 

model by [114],  that predicts 876 proteins as MP in the yeast genome, with recall of 

0.4815. Note that apart from outperforming the two models MPFit and the model by 

[114] in terms of recall in yeast genome prediction, DextMP also has much higher cover-

age than both (coverage for DextMP 96.73%, MPFit 69.56% and [114] 68.69%). With a 

more stringent consensus protocol (4 MP votes from all 4 DextMP models), the recall 

over known MP was 0.7404, which is lower than MPFit but higher than the model by 

[114]. 9.98% of the yeast genome was predicted as MP with this more stringent consen-

sus voting.  

In human genome, out of 20, 104 proteins, 19, 713 proteins had both title and 

function descriptions and could be applied in DextMP (coverage 98.06%), which is high-

er than both MPFit (coverage 67.91%), work by [114] (coverage 48.08%), and [113] 

(coverage 64.01%). Out of 45 known MPs in human, 42 are predicted correctly by Dex-

tMP (recall 0.9333) when majority voting was applied among the 4 DextMP models (vote 

>= 3 in Table 2.7), which outperforms all existing models that predicts MP on human by 

a large margin (MPFit recall 0.7333, [113] 0.0667, [114] 0.4889). With the stringent con-

sensus voting (vote > 3 in Table 2.7), recall was 0.7111 which is lower than MPFit but 
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higher than both the models by [114] and [113]. 16.07% of the human genome was pre-

dicted as MP with this more stringent consensus voting.  

So, in summary, DextMP outperforms MPFit and other two MP prediction mod-

els in two aspects: in correctly predicting known MPs (recall) with recall as high as 91%, 

and in coverage, i.e., applicability of the models in the genome corpus. Applicability of 

the model by [113] relies on availability of proteins in PPI database. For MPFit the cov-

erage depends on availability of  proteins in a number of protein association databases 

including PPI, and the model by [114] solely depends on GO annotation availability. 

Since DextMP can be applied to any protein that has textual information in Uniprot, it 

have much larger coverage than the other existing models.  

As observed in the higher coverage result by DextMP above, a major advantage 

of DextMP is that it solely relies on text information of proteins, unlike other available 

methods including MPFit which cannot be applied for proteins/genomes that lack exper-

imental studies (such as PPI, gene expression etc.). To this aspect, we ran two other ge-

nomes with DextMP that are non-applicable for MPFit and the two other existing models 

compared above due to lack of experimental studies: X. laevis and C. pneumoniae. The 

result is in the last two columns of Table 2.7. For X. laevis, out of 11,078 proteins, 30.5% 

has function text information in Uniprot, and DextMP predicted 543 (4.90%) as MP with 

majority voting. For C. pneumoniae, out of 1,110 proteins, 430 proteins has text infor-

mation in Uniprot, and DextMP predicted 368 of them as MP. The two latter results show 

the wider applicability of DextMP over other existing models.   

We now provide three case studies where DextMP correctly predicts a protein as 

moonlighting and our previous method MPFit fails. First of these cases is a band 3 anion 
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transport protein in human (Uniprot ID P02730). As the primary function it transports 

inorganic anions across the plasma membrane, and as the moonlighting function it acts as 

scaffold protein providing binding sites for glycolytic enzymes [146]. MPFit model fails 

to predict this as MP because this lacks features in four out of six different feature do-

mains of MPFit, i.e., lack of data in PPI, phylogenetic profile (PHYL), genetic interaction 

(GI) and interaction network properties (NET), upon which MPFit model applies ma-

chine learning classifiers for MP prediction. However, this protein has functional descrip-

tion in Uniprot.org [86], which provides a clear textual depiction of  it’s two functions, 

such as: functions both as a transporter that mediates electroneutral anion exchange 

across the cell membrane and as a structural protein, and interactions of its cytoplasmic 

domain with cytoskeletal proteins, glycolytic enzymes, and hemoglobin. Based on this 

text, DextMP extracts features and finally makes a correct MP prediction.  

Our second case study of successful prediction by DextMP is protein PHGPx 

(Uniprot ID P36969) in human. Primary function of this MP is cell protection against 

membrane lipid peroxidation and cell death; moonlighting function is the protein’s struc-

tural role in mature spermatozoa [147]. In MPFit feature space, this protein lacks PHYL, 

GI and disordered region features (DOR). From its existing PPI features, it is evident that 

it’s interacting proteins form tight clusters even at high clustering thresholds (number of 

clusters relative to the number of interacting proteins stays as low as 0.3 for high cluster-

ing cutoff), so based on these MPFit incorrectly predicts it as a non-MP. However, the 

protein’s functional description in Uniprot includes texts that indicates both it’s functions, 

such as protects cells against membrane lipid peroxidation and required for normal 
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sperm development and male fertility, which finally results in a correct MP prediction by 

DextMP.  

Our final example is protein Gephyrin (Q9NQX3) in human. This protein anchors 

transmembrane receptors by connecting membrane proteins to cytoskeleton microtubule 

binding protein. It’s moonlighting function is biosynthesis of the molybdenum cofactor 

[148]. In MPFit feature space, this protein lacks PPI, PHYL, GI and NET features. Alt-

hough its GE features show high number of clusters of co-expressed partners, MPFit fails 

to predict it correctly when it combines features from multiple domains. DextMP makes 

correct prediction for this protein as it’s function description include microtubule-

associated protein involved in membrane protein-cytoskeleton interactions, related to it’s 

first function, and catalyzes two steps in the biosynthesis of the molybdenum cofactor, 

related to the second function. These examples clearly show different scenarios where 

DextMP provides successful MP prediction through its powerful feature inference from 

textual data and also higher applicability/coverage compared to existing models.
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CHAPTER 3. GROUP FUNCTION PREDICTION 

3.1 Background 

The second part of this research addresses yet another divergence from the one-

protein-one function paradigm by investigating group function of proteins. With the 

overwhelming development of genomic and proteomic technologies, massive amount of 

proteomic data becomes available. Consequently, the computational challenge of correct-

ly annotating protein’s function and explaining the mechanisms through which multiple 

proteins interact in a cell toward a common phenomenon becomes ever more important. 

Intuitively, proteins interact in a cell physically, through gene expression or genetic inter-

action to commemorate a common function that so often ends up causing a dis-

ease/disorder. To understand the functional nature of a set of proteins, it is often im-

portant to understand the biological process/molecular function/cellular location the pro-

teins are involved in as a group, rather than understanding the detailed functional charac-

teristics of the individual proteins in the group. More often than not, biological experi-

ments reveal sets of proteins involved in a disease/disorder, co-expressed together, or 

phylogenetically correlated together without sufficient explanation of the functional 

mechanisms of these group activities. The perspective of “group” function annotation to a 

set of proteins opens up novel possibilities of understanding the functional nature of 

complex cellular interactions of such protein groups.   
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The problem of building computational model to directly predict group functions 

of a set of proteins is both unique and significant. The present bioinformatics approach 

that comes closest to the notion of group function is the Gene Ontology (GO) term en-

richment analyses based on the functions of known proteins, a direction often used to 

come to a consensus functionality of a set of protein groups. However, the major draw-

back of such an approach is that it is based on identified protein functions/GO terms, 

which is an often sparse knowledge for a group of novel genes found to be involved in 

disease related phenomenon. As a related effort to this problem, in [149], the authors per-

formed SNP-targeted GWAS studies to identify set of genes involved in the Rheumatoid 

Arthritis disease and then clustered the PPI network to identify the gene group’s common 

biological pathways in the KEGG [2] database. However, both these latter methods lack 

an integrative perspective when accounting for the multitudes of levels of associations 

that the gene groups might be involved in the cell for causing the targeted dis-

ease/phenomenon, when comprehending their group functions.  

 In this study, we propose a novel computational method called Group Function 

Prediction (GFP) that uses experimental data to predict the function of a protein group, 

even when individual protein functions cannot be reliably predicted by taking into 

account protein’s interaction networks as well GO annotations in the existing databases. 

The key concept underlying group function prediction is considering function in the 

context of functional and physical interaction relationships of genes. To implement this 

strategy, we use an integration of a number of individual type of protein interaction 

networks – physical protein-protein interaction (PPI), gene co-expression network (GE), 

phylogenetic profile similarity network (Phyl),  gene ontology (GO) similarity network 
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and KEGG pathway similarity network. Fig. 3.1 shows a schematic diagram of the GFP 

model. Briefly, it takes a group of target proteins pre-identified to be involved in 

disease/disorder as input (1), and builds an integrated interaction network with the target 

proteins and other proteins in the same organism. We use a network integration tool – 

similarity network fusion (SNF) [150] to integrate the information of multiple protein 

interaction network. (2) Then, proteins are clustered using the affinity propagation 

method [151] based on the similarity of integrated features. The target proteins are 

grouped in a cluster with some other proteins, whose function will be predicted iteratively 

in the subsequent steps. Each gene cluster will be assigned GO terms by the majority vote 

of its component genes. Some clusters remain un-annotated if they do not contain enough 

annotated genes. (3) Then, GFP predicts function of the un-annotated clusters using a 

Conditional Random Field (CRF) framework [152]. The essence of the CRF module is to 

predict cluster functions in the network based on the functional properties of the cluster 

neighbourhood. (4) Subsequently, GFP propagates the new CRF cluster GO labels to the 

unknown proteins in the each cluster so that it reflects the group function  predicted by 

the CRF module in the previous step (Fig. 3.2, see Methods for detail). (1’) Now that the 

GO term annotations of genes are updated, protein networks are integrated again with the 

updated GO similarity network, and computation (1) to (4) is iterated until the function 

assignments to the groups/clusters between successive iterations come to an agreement, 

or sufficient number of iterations have been reached.  
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Figure 3.1 Schematic diagram of the group function prediction (GFP) model 

Iterative procedure of group function prediction. In (3) and (4), clusters/proteins in red 

are updated with their predicted GO annotations. PPI, protein-protein interaction; Phyl, 

phylogenetic profile; GE, gene expression; KEGG, pathway similarity.  

 

 

Figure 3.2 Assignment of protein’s function derived from the group function 

Step 4 of the GFP pipeline shown in Fig. 3.1. 
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3.2 Methods 

3.2.1 Network construction 

The backbone of our GFP model is an integrated network of protein-protein asso-

ciation. We choose the human genome to construct the backbone network, as our initial 

target dataset is from human. We use five resources to construct individual protein inter-

action network, and then use a network integration tool to combine them. 

 1. Protein-protein interaction (PPI) network – we construct PPI network using the 

high confidence physical interactions (>0.7 confidence score) of STRING database [96]. 

From Human proteins (NCBI taxID 9606), a total of 15,036 genes had high confidence 

interactions in PPI. 

 2. Phylogenetic Profile network (Phyl) – We construct the phylogenetic profile 

network by taking all interactions from the STRING database that has medium confi-

dence score (>0.4) in any of the following  criteria – “neighborhood”, “fusion”, “co-

occurance”[96]. A total of 1197 human genes had medium conifedence phylogenetic pro-

file interactions.  

 3. Gene Ontology (GO) similarity network – For all human proteins, GO annota-

tion is taken from the uniprot database[86]. GO similarity score is computed by the fun-

sim score using BP and MF GO ontology [93]. Two proteins are chosen to have a GO 

interaction if they have a funsim score above cutoff (0.7).   

 4. Gene expression (GE) network – We extracted gene expression profiles in 

Human genome from the COEXPRESdb database [115]. We calculated the Pearson cor-

relation coefficient of expression levels of each pair of genes and selected pairs as co-
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expressed if the absolute value of the correlation coefficient ranked within the top 2% 

largest values among all the pairs. A total of 17,341 human proteins were extracted from 

the database with gene expression profiles.  

 5. KEGG pathway association – We mapped all human genes to KEGG path-

ways[2]. There were 287 unique pathways found in the 23,658 human genes in KEGG 

database. We constructed a binary vector of length 287 indicating existance/non-

existance of a certain KEGG pathway for each of the human gene, and then computed a 

cosine similarity between two binary vectors (p) of genes g and g’ as a pathway similarity 

score- 
||||
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'
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gg
pp

pp
s  . We used a score cutoff of 0.2 to selected associated genes in 

the KEGG network.  

 

3.2.2 Network integration 

We use a non-linear message passing based method by Wang et al. [150] to inte-

grate the individual networks described above. We use the R package used for this meth-

od (SNF in short for Similarity Network Fusion) that takes multiple networks in terms of 

similarity matrices. Each matrix is equivalent to a similarity network where nodes are 

proteins and weighted edges represent pairwise protein similarity. SNF then iteratively 

fuses the networks by a non-linear method based on message passing theory that itera-

tively updates every network, making it more similar to the others with every iteration. 

Within a few iterations, SNF converges to a single network.  
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3.2.3 Concise Gene Ontology (GO) vocabulary for predicting group function 

The GO vocabulary[153] has over 40,000 GO terms and to include everything in 

our function prediction model would result in significant slow-down of the model run-

time. In order to use a concise functional vocabulary for our GFP model, we used the 

concept of Slim GO terms. Slim GO terms are a cut-down version of the GO ontologies 

containing a subset of the terms in the whole GO and are selected and maintained by the 

GO consortium [43]. In order to get sufficiently detailed annotations for our predicted 

group functions, we used a customized ontology slim that can be applied to specific an-

notated datasets and exploits latent information in the structure of the ontology graph and 

in the annotation data [154]. In this method, input annotation terms are mapped to the 

slim term(s) in closest proximity to the annotation term in the path(s) from the annotation 

term to the root node. We mapped all the direct GO annotations of 14,885 human pro-

teins into this customized ontology set 303 GO terms. The depth of the customized slim 

terms can be controlled in the method by a parameter called information content (IC), 

which refers to information carried by a node based on its annotation and its position 

within the DAG. We used an IC cut-off of 0.3 as recommended by the authors [154] for 

generating our GO slim dataset. Thus we limit our function prediction vocabulary to 

these 303 slim GO terms.  

 

3.2.4 Affinity propagation based clustering method 

The affinity propagation based clustering method clusters data by employing an 

idea of passing messages between them [151]. It was shown to have a low error rate and 
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fast as compared to other common clustering methods. The number of clusters is influ-

enced by the so-called preference parameter, Setting the preference parameter to the me-

dian of the input distances results in a moderate number of clusters and setting them to 

the minimum of input distances results in a smaller number of clusters. We used the R 

library “apcluster” for this method.  

Clustering of the integrated network (step 2 in Fig. 3.1) of the GFP model is based 

on a mean of two type of inter-node distances: integrated network’s edge weights output-

ted from SNF, and a functional similarity score (funsim) [93] of protein pairs based on 

their GO term annotations. 

 

3.2.5 Protein function prediction model using Conditional Random Field (CRF) 

Network models can model a biological network data to predict protein function. 

A graphical model is able to represent complex joint distributions of a large number of 

variables compactly using a set of local relationships specified by a graph. Each node in 

the graph represents a random variable and nodes are connected by edges, which describe 

the dependency between the variables. Probabilistic graphical models can model the en-

tire network simultaneously, and incorporates information of protein function and inter-

actions according to the edges defined in the graph.  

 Markov Random Fields (MRFs), is a probabilistic graphical model that have been 

used previously to predict protein functions based on network data. Deng et al. [155] laid 

the basic framework of an MRF model that predicts protein functional annotation from 

PPI network. Kourmpetis et. al.[156] extended this model by improving parameter esti-

mation through multiple parameter estimation steps. Other approaches exist that uses 



103 

 

1
0
3
 

MRF to integrate multiple sources of information to predict protein function from net-

work [157,158]. A MRF-based framework basically models relationships between the 

input data and assumes independence between them. Conditional random fields are dis-

criminative version of MRFs which model the dependence of the output on the local 

graph neighborhood input rather than the full joint distribution of the input and the output. 

Previously, Gehrmann et al [159] used CRF to predict protein function by integrating 

multiple network resources. In this scope, we extend the work by Gehrmann et. al.[159] 

by including protein’s functional association in the graph neighborhood and build an in-

dependent CRF-based function prediction module that we use in our GFP pipeline shown 

in Fig. 3.1.  

We use CRF for predicting GO terms to groups in step (3) of Fig. 3.1. A graphical 

model such as CRF is able to compactly represent complex joint distributions of a large 

number of variables using a set of local relationships specified by a graph. CRF can mod-

el the entire network simultaneously, and incorporates protein function and interaction 

information using the edges defined in the network. A CRF computes the probability of 

having binary labels Y (here whether proteins have a particular GO term annotation) giv-

en parameters and input variables X (the protein features provided in the integrated 

network):  
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where Z(X) is a normalization factor, c is a clique, and C is the set of all cliques in the 

graph. The rightmost part of Eq. 3.1 shows that the probability is computed from two 

(Eqn. 3.1) 
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terms, a single term c, s, which considers the GO term label yi of one protein, and a 

pairwise term c, p,, which takes into account neighboring proteins’ GO term labels, yi and 

yj. The two terms are defined concretely by potential functions as: 
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Eq. 3.3 represents a single term where the probability of labels depends only on 

features of each node, while Eq. 3.4 are a pairwise term where dependency of neighbour-

ing labels is expressed. In the single term (Eq. 3.3), N1 and N0 are the number of GO 

terms that annotate/do not annotate the protein (i.e. 1s and 0s in the GO annotation vector 

for the protein), and P(yi|yj) is the function association score developed previously in our 

group[12,13], which basically expresses the conditional probability that yi is assigned 

simultaneously with yj, to each sequence in UniProt,. Thus, annotation yi for a protein de-

pends on existing GO annotation of the protein. In the pairwise term that considers pro-

teins i and j, e(i, j) is the edge weight of the two proteins in the integrated network (Fig. 

3.1) and funsim(i, j) is the functional similarity [89] between protein i and j. Weights w3 

to w6 control the influence of the neighbouring proteins when the protein has the GO term 

(yj = 1) and when it does not (yj = 0). A previous work using CRF for function prediction 

from a PPI network [98], used only a pairwise factor. In comparison with their work, the 

(Eqn. 3.2) 

(Eqn. 3.3) 

(Eqn. 3.4) 
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GFP model proposed above would be advantageous because GFP can consider the coher-

ence of the GO term’s annotation or lack thereof relative to the existing GO terms for the 

protein. Using the equations above, the conditional probability of a protein annotated 

with a GO term,  XYyp ii ,,|1  , can be expressed in terms of the logistic function 

[99]. Parameters of the GFP model are trained using a Metropolis-Hastings framework 

and inference is done using Gibbs sampling. 

 

3.2.5 Assignment of protein’s function derived from the group function 

At the last step of the GFP model (step 4 of Fig. 3.1), we update the GO annota-

tions of the individual proteins according to their cluster/group function predicted by the 

CRF module.  The procedure of this step follows from Fig. 3.2. Here, Fg
i denote list of 

GO terms for the group (cluster) after iteration i and Fm denote the same for an individual 

member protein. If the protein is an unknown protein with no GO annotations in Uniprot 

database [86], we directly assign the group function Fg as it’s member protein function 

Fm. Otherwise, for each new GO term gj in the Fg
i list, we check the maximum similarity 

score SS between gj and any GO term in Fm. We used relevance semantic similarity score 

[93] as the SS score for within-domain (Biological Process, Molecular Function, and Cel-

lular Component domains) GO pairs, and the  function association matrix (FAM) score 

previously developed in our group [12,13] for cross-domain GO pairs. If the SS score is 

above a pre-defined cut-off, we add the group function gj to Fm. After this step, the GO 

annotations of all the individual protein nodes in the integrated graph is updated accord-

ing to their respective group functions, i.e., cluster annotations predicted by the CRF 
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module. Note that at each iteration, Fm is taken from the original known annotation of the 

member protein, i.e., F_m0, so that successive updates of the group functions from Fg
i can 

be performed on protein’s originally known annotation, F_m0.    

 

3.3 Results 

3.3.1 Validation of the CRF model 

For generation of dataset for the validation of the CRF pipeline, we clustered a 

protein-protein interaction (PPI) network of 6,124 human proteins that are involved in 

1,12,895 interactions and selected 16 clusters that had at least 50 member proteins. The 

PPI network was extracted from the STRING database[96] with high confidence physical 

association score (>700). Clustering was done using the affinity propagation based clus-

tering [151] described in Methods. For each of these selected clusters we tested whether 

the CRF with different combination of features (used in Eqns. 3.3-3.4) can correctly pre-

dict the GO terms of proteins in the network using the GO term annotation of neighbour-

ing proteins. This is to test if the CRF itself is correctly implemented and if the features 

are useful for prediction. For all validation results shown in this section, a slimmed GO 

vocabulary of 303 GO terms is used, as described in Methods. In the PPI network clusters, 

10% of the proteins were chosen as prediction targets and their annotations were removed.  

4-fold cross validation result for 6 selected clusters out of 14 is shown in Fig. 

3.3A-C (See supplemental Fig B.1 for the selection of these 6 clusters). Here we tested 3 

different levels of feature combinations along with 2 different prior assignment of GO 

terms in the CRF model. “2-features” in Fig. 3.3 refer to the first and second terms in Eq. 
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3.4 in Methods, and “4-features” use all four terms in Eq. 3.4. The “6-features” CRF 

modules use all 6 term in Eq. 3.3 and Eq. 3.4. The two prior GO term assignments used 

are: RandPrior which is assigned based on frequency of GO terms in the training set, and 

PFPPrior which is taken from the GO prediction by the sequence based function predic-

tion algorithm PFP  previously developed in our group [12,13]. Supplemental Fig. B.2 

shows the same results for all 14 clusters we selected above from the human PPI. Overall, 

the 6-feature combination shown in Eq. 3.3-3.4 with RandPrior and two specified cut-offs 

for the P(yi|yj) score and funsim(i,j)(0.25 and 0.4, respectively) outperforms the other fea-

ture combinations we applied.  The highest F-score achieved through CRF module was 

0.7975 (precision 0.7957 and recall 0.7993) by the C8 cluster with 6-features-RandPrior 

and the cut-offs mentioned above. The subsequent results in this paper uses this best fea-

ture combination in the CRF module. 

 

 

Figure 3.3 F- score on the GO prediction by CRF model  
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Next, we computed the average F-score accuracy over 4-fold cross validation 

computed at individual GO term level. Fig. 3.4(A-F) reports the result with CRF (∆) for 

the six selected clusters as in Fig. 3.3 in comparison with a naïve prediction based simply 

on the frequency of GO terms in the group (● in the plot). The x-axis in the plot is the 

fraction of GO term occurrence in the training set, and y-axis is the average cross-

validation F-score for that GO term. For all six selected clusters in Fig. 3.4A-F, CRF (∆) 

showed a strong ability to make a correct GO assignment when GO terms are not com-

mon in the group (left half of the plots), where the frequency-based prediction breaks 

down. 

 

Figure 3.4 Per-GO term f-score of CRF 

Reported is the average F-score of a four-fold cross validation (∆) for 6 clusters in Hu-

man PPI network in comparison with a naïve prediction based simply on the frequency of 

GO terms in the group (● in the plot). ∆, CRF-based annotation; ● annotation based on 

frequency of GO terms. 
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3.3.2 Validation of the GFP pipeline 

 As dataset for the validation of the entire GFP pipeline (Fig. 3.1), we select 10 

group of genes found in a SNP-targeted Genome-wide association studies (GWAS) stud-

ies as set of proteins involved in the Rheumatoid Arthritis disease [149]. Starting with a 

list of SNPs found to be associated with disease in GWAS, this study devises functionally 

important KEGG pathways through the identifications of SNP-targeted gene groups with-

in these pathways.  

Table 3.1 GFP validation dataset and network size 

anumber of nodes in the direct PPI neighbourhood of the gene groups; bLTM: Leukocyte 

transendothelial migration 

 

DataSet #gen

es 

#netN

odesa 

#PPI #Phy

lo 

#KEGG #GO #GE #SNF 

ALLOGTAFT 8 37 189 0 10 17 37 220 

APOPTOSIS 11 155 1877 0 33 145 159 2074 

CANCER 32 1159 13859 0 3295 3141 5224 23907 

CHEMOKINE 26 1013 23430 15 7613 3584 3703 33914 

JAKSTAT 15 403 4577 0 782 833 847 5817 

LTMb 17 757 9254 0 1811 1589 2184 13715 

MAPK 20 715 8717 0 1634 1533 2243 12019 

NEUROTROPHIN 20 779 10126 0 1754 1736 2391 14950 

TCELL 16 595 7666 0 1579 1210 1660 11240 

TOLL 13 611 7310 0 914 1286 1580 10405 

 

For each of these group of genes (named according to the KEGG pathway they have 

shown to be involved in [149]), we first map them to different protein association net-

works and extract the portion of each component network consisting of the genes in the 
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group and their direct neighbors and then use SNF [150] platform to integrate the compo-

nent network. Table 3.1 shows the data size for each of the groups and their associated 

networks.   

 After the integrated network (size shown in the last column of Table 3.1) is built 

for each of the 10 gene groups, we run the iterative GFP pipeline shown in Fig. 3.1 on 

these genes until convergence. Result of this GFP pipeline validation is shown for MAPK 

dataset in Fig. 3.5 (A-C). GFP was run on 713 proteins including the 20 target proteins in 

the integrated network with 12,019 interactions, and group function of the target proteins 

were predicted using the GO enrichment analysis performed on the predicted GO terms 

of the proteins after completion of each GFP iteration. The GFP pipeline was run until 

either the predicted enriched GO terms of the protein group from iteration i had sufficient 

change from iteration i-1 and i-2 or the number of iterations reached 10. To examine the 

robustness of the GFP pipeline’s prediction, an increasing fraction of the GO terms anno-

tating the 20 proteins in the gene group were removed (shown in x-axis), and the accura-

cy in terms of F-score, precision and recall of the prediction was computed (Fig. 3.5, A-

C). The last iteration is shown separately (∆ in the plots), which in this case co-indices 

with the 5th iteration (● in the plots).  In comparison with the reference, a set of enriched 

GO terms after GO term removal from the existing partial annotation of the dataset (dot-

ted line, denoted as RA-MAPK-ENRICH), GFP showed robust accuracy even after more 

than 50% of GO terms were removed. In contrast, the reference GO enrichment analysis 

quickly loses correct annotations and cannot infer the group function as GO terms are 

removed from proteins. Notably, recall performance shown in Fig. 3.5A grows signifi-

cantly better with successive iterations. Precision shown in Fig. 3.5B is the opposite, 
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which is intuitive as GFP mostly adds GO terms denoting group function of the protein 

with successive iterations (see Fig. 3.2 and Methods for the procedure for updating indi-

vidual protein’s function derived from their group function). Note that since along the x-

axis we are essentially removing GO terms from the existing partial annotation of the 20 

proteins in the group (i.e., from the annotation at 0.0 x-axis for the baseline RA-MAPK-

ENRICH), precision computed for the baseline does not drop until we remove 100% of 

the annotations. Overall, F-score for GFP showed significant improvement over the base-

line for all x-axis points after 50% of the annotations were removed with a high recall of 

0.8387 at x-axis = 0.5 compared to the baseline recall of 0.3226.   

 

Figure 3.5 Group function prediction with GO-removal simulation 

F-score of prediction was reported after removing a fraction of GO terms from a group 

of 20 proteins in the MAPK signaling pathway 

.  
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Next, we ran another set of validation pipeline with a different method of remov-

ing annotations from the existing partial annotations of the protein groups. Instead of re-

moving an increasing fraction of GO terms from the existing annotation, we remove en-

tire GO annotations for an increasing fraction of proteins. The intuition behind this sec-

ond way of validation is to remove any bias due to removal of individual GO terms from 

the protein group’s annotation as done in Fig. 3.5, and to create a more realistic simula-

tion of under-annotated datasets. The result is shown in Fig. 3.6A-C. Overall, the conclu-

sion remains the same as the latter result. However, the baseline model has slightly higher 

accuracy than Fig. 3.5, since after removal of a protein Pa’s annotation a certain true GOi 

may still exist in another protein Pb, hence still retaining the precision and recall for the 

baseline. Nevertheless, GFP achieves recall as high as 0.8064 at 70% protein’s annotation 

removal, compared to baseline recall of 0.4194.  

 

Figure 3.6 Group function prediction with protein-removal simulation 
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We ran similar tests for the rest of the 10 datasets in Table 3.1, and confirmed that 

the CRF-based GFP model is capable of robustly predicting correct GO terms for pro-

teins and protein groups even when a substantial amount of GO annotations are missing. 

Results (F-score and Recall) for rest of the dataset is shown in Supplemental Figure B.3-

B.4 and B.5-B.6 for the GO removal and protein removal simulations, respectively.  

 

3.3.3 GFP parameter tuning 

At the last step of the GFP model (step 4 of Fig. 3.1), we update the GO annota-

tions of the individual proteins according to their cluster/group function predicted by the 

CRF module. For this procedure (Fig. 3.2), the similarity score cut-off SS represents how 

similar a new group function needs to be to a member protein’s function in order to be 

added to the protein’s annotation list.  Here we show how we tuned this parameter sepa-

rately for GO removal and protein removal simulations described in Fig. 3.5-3.6 for the 

MAPK dataset.  We ran similar simulations with three different SS cut-offs, i.e., 0.3, 0.5, 

and 0.7 and computed recall, precision and F-score for the MAPK dataset. Figure 3.7-3.8 

shows the result separately for two different schemes we took for gradual removal of an-

notations. Based on these results, we chose to use a SS cut-off of 0.3 and 0.7 for the GO 

removal results shown in Fig. 3.5 and the protein removal result shown in Fig. 3.6, re-

spectively.  
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Figure 3.7 SS parameter tuning for GO removal  

 

 

Figure 3.8 SS parameter tuning for protein removal.  

Group function prediction to a group of 20 proteins in the MAPK signalling pathway for 

different SS cutoffs. F-score of prediction was reported after removing entire GO annota-

tions of a fraction of proteins in the group. 
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CHAPTER 4. UPDATE OF AFP METHODS & CAFA CHALLENGE 

4.1 Background 

 An essential task in bioinformatics is to propose and develop new tools and new 

ideas. However, to support the biology community, it is equally important to maintain 

and update previously-developed software tools so that users can continue using them. 

For a prediction method, it is important that the prediction accuracy be improved over 

time so that it can keep pace with other existing methods of the same type. For the ad-

vancement of such computational techniques it is very important that there are communi-

ty wide efforts for objective evaluation of prediction accuracy. Community-wide predic-

tion assessments have become popular in several computational prediction areas. Such 

experiments include CASP (Critical Assessment of techniques for Structure Prediction) 

[160] CAPRI (Critical Assessment of PRediction of Interactions) [161], and CAGI (Criti-

cal Assessment of Genome Interpretation) (http://cagi2010.org/). For the field of AFP, 

some experiments have been held in the past, which include MouseFunc 2006 

(http://hugheslab.med.utoronto.ca/supplementary-data/mouseFunc_I/), ISMB (Intelligent 

Systems in Molecular Biology) AFP SIG (Special Interest Group) 2005 [162], the 2006 

AFP meeting [163], and also the function prediction category in CASP6 [164] and 

CASP7 [165]. As a part of recently concluded ISMB conference 2011, CAFA (Critical 

Assessment of Function Prediction) experiment was conducted to gauge the 
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Gene Ontology (GO) [166] prediction accuracy of various AFP methods 

(http://biofunctionprediction.org/). 

The last part of my research [51-53] copes with the AFP problem in three aspects: 

A. database update and improvement of methods previously developed in our group- 

PFP[12,13] and ESG [14], B. development of a web-server for the methods, and C. par-

ticipation in CAFA[54] and benchmarking the performances. Along the same line of 

work, we develop two ensemble methods that combine GO predictions from multiple 

AFP models.  

 

4.2 PFP/ESG servers and GO visualization tools 

Here we developed web servers for our two function prediction algorithms, Pro-

tein Function Prediction (PFP) and Extended Similarity Group (ESG).  As described in 

Methods 2.3.1.1, PFP predicts Gene Ontology (GO) terms for a query protein based on 

sequence information [12,13]. PFP extends traditional PSI-BLAST [6] search by extract-

ing and scoring GO annotations from distantly similar sequences and by applying contex-

tual associations of GO terms observed in the annotation database to the scoring scheme. 

PFP was ranked the best in the function prediction category in the Critical Assessment of 

Techniques for Protein Structure Prediction (CASP) [167]. 

As described in detail in Methods 2.3.1.2, ESG performs iterative sequence data-

base searches and assigns a probability score to each GO term based on its relative simi-

larity scores to the multiple-level neighbors in a protein similarity graph [14]. ESG was 

shown to outperform conventional methods in a thorough benchmark study. In the large-

scale community based critical assessment of protein function annotation (CAFA) exper-

http://biofunctionprediction.org/
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iment, ESG was ranked 4th in predicting Molecular Function (MF) GO terms among 54 

participating groups [54]. Thus, both PFP and ESG have been rigorously benchmarked 

both in the original papers and in objective assessments by the community. 

PFP and ESG were designed to achieve complementary goals: PFP is for large 

prediction coverage by retrieving annotations widely including weakly similar sequences. 

On the other hand, ESG is for improving specificity by accumulating contribution of con-

sistently predicted GO terms in an iterative search. Here, we introduce a publicly availa-

ble webserver for these two function prediction methods. The interactive webserver of 

PFP and ESG reported in this scope [52] is developed to assist in the sequence-based 

function prediction and to enhance the understanding of predicted functions by an effec-

tive visualization of the predictions in a hierarchical GO topology.  

 

4.2.1 Results 

 Input & output visualization of the webserver 

PFP and ESG accept query inputs of FASTA formatted protein sequences. Users 

may submit sequences separated by line breaks in the text box titled “Enter Query Se-

quence(s)” or upload a FASTA file containing multiple sequences. To view a sample of 

the format, users may click on “Load Sample” to fill the field with an example sequence. 

Selecting “Clear” will remove all inputs sequences including uploaded files. Currently, 

up to 100 sequences may be annotated in order to avoid blocking the job queue, particu-

larly for ESG. 
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Particularly for ESG, there are two more parameters that need to be entered for 

ESG algorithm: “Number of hits” and “Number of stages”. “Number of hits” indicates 

number of PSI-BLAST hits to be considered at each level of ESG. Default value of this 

parameter is set to 10 in our web server. “Number of stages” indicates the levels of 

neighborhood around the query protein that will be considered by ESG. Default value for 

this parameter is chosen as 2. User can change the value to any other numbers but cur-

rently we are limiting the “Number of hits” to be smaller than 100 due to computational 

constraints. We recommend not changing the “Number of stages” parameter to a larger 

value as the computational time will suffer exponentially and we did not observe an im-

provement during benchmark in the original paper [14]. As for the “Number of hits” ar-

gument, we would encourage the user to test different settings and increase the value. For 

example, if user increases the default value from 10 to 50, roughly it takes 5 times more 

computational time (2 stage setting) but an improvement in the accuracy. 

Both PFP and ESG algorithms predict GO terms for a given protein sequence. 

ESG outputs a score that ranges from (0,1). Predicted GO terms are listed on the result 

page (Fig. 4.1, left panel). Predictions are classified into four confidence levels: very high, 

high, moderate, and the rest. In addition, a XML file is provided that summarizes the pre-

diction. Moreover, predicted GO terms are visualized as discussed below. Submitted jobs 

are tracked and kept in a MySQL database so that the user can retrieve the results later. 
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 Tracing origin of the predicted GO terms 

The servers provide sequence IDs indicating the source of each predicted GO 

term. We implemented this functionality because it is a common question by users how a 

GO term is predicted by the servers (Fig. 4.1, right panel).  

.

 
 

Figure 4.1 Output page of ESG & GO visualization 

A result page of PFP is essentially the same. Below the input sequence, links are provid-

ed for downloading the prediction result in an XML file and for visualizing predicted GO 

terms in GO hierarchy. 

 

 GO term visualization 

The GO term visualizer intuitively shows predicted GO terms in the GO hierarchy 

(Fig. 4.1, right panel). A visualized GO graph can be zoomed in/out or further expanded 

to see sub-nodes of a branch. GO terms are colored based on their assigned probability. 

GO terms can be also colored based on the number of child nodes of them that are pre-

dicted. In addition, visualization in cytoscape allows 3 modes of GO hierarchy visualiza-
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tion (Tree, Radial, Circle) and enables users to select and drag around groups of GO 

terms.  

 

4.3 Performance evaluation of PFP/ESG on CAFA’2011 experiment 

In the CAFA experiment in 2011, in total of 48,298 target protein sequences were 

released for prediction, which consist of seven eukaryotic genomes, eleven prokaryotic 

genomes, and a supplementary set of additional sequences. The participating predictor 

groups were expected to submit GO annotations for these targets in Biological Process 

(BP) and Molecular Function (MF) domains. Out of these set, the organizers selected 436 

targets in BP domain and 366 targets in MF domain that newly obtained experimental 

annotation in the SWISS-PROT database from January to May 2011, which is after the 

closing of the submission,. Submitted predictions were evaluated using different predic-

tion accuracy measures described in Methods. 

We have submitted predictions using two methods developed in our group, the 

Protein Function Prediction (PFP) method [12,13] or the Extended Similarity Group 

(ESG) method [14]. PFP and ESG use PSI-BLAST sequence database search results, 

from which function information is extracted extensively, even from weakly similar se-

quences. In this article, we analyze the prediction performance of these two methods in 

comparison with BLAST, the Prior method, and GOtcha [15], whose predictions are pro-

vided by the CAFA organizers. Prediction performance evaluation employed four metrics 

used by the organizers; the threshold method, the top N method, the weighted threshold 

method, and the semantic similarity method (see Methods). Besides evaluating original 

predictions by PFP and ESG submitted to CAFA, we further investigated the followings 
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to have a better understanding of their performance: 1) For PFP predictions, we reranked 

predicted GO terms using a different score from the originally used score and compared 

the performances; 2) We combined PFP and ESG predictions with those from  the Prior 

method that simply ranks GO term by the background frequency in a database; 3) We 

evaluated prediction accuracies of each method separately for different functional catego-

ries; and 4) We examined successful and unsuccessful predictions by PFP and ESG in 

comparison with BLAST. The in-depth analysis discussed here will complement the 

overall assessment of by the CAFA organizers that will be published elsewhere. Since 

PFP and ESG are based on sequence database search results, our analyses are not only 

useful for PFP and ESG users but will also shed light on the relationship of the sequence 

similarity space and functions that can be inferred from the sequences.  

 

4.3.1 Methods 

In this section we briefly describe the AFP methods that are compared in this 

study. Predictions in the MF and the BP domain were evaluated by comparing them with 

annotations with experimental evidences (i.e. non Inferred Electronic Annotations; non-

IEA) in the Uni-Prot database. For each target, predictions were restricted to 1000 highest 

score predictions with the score ranging between 0 and 1. 

 

 The Prior method 

          In the prior method, each GO term is assigned the frequency of its occurrence in 

SWISS-PROT (January 2011 version) including a pseudo count of 1. For a given target 
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sequence, top 1000 GO terms with highest frequencies were selected as predictions. Thus, 

all target sequences have the same set of predictions by this method. The prior predic-

tions for each target were provided by the organizers. 

 We have also combined the prior predictions with predictions by PFP and ESG. 

These predictions are called the enriched PFP/ESG or PFP/ESG + Prior. In PFP + Prior, 

we added GO terms to PFP predictions that are not predicted by PFP (the expected accu-

racy was used for the PFP score). The score (i.e. frequency) for GO terms imported from 

the prior method was rescaled by considering maximum and minimum scores of PFP 

predictions for that target. GO terms originally predicted by PFP and ones imported from 

the prior method are sorted by the score. Similar to the PFP + Prior, ESG + Prior also 

combined the original ESG predictions and GO terms from the prior method that are not 

predicted by ESG. Since both the ESG score and the frequency in the prior method range 

from 0 to 1, GO terms from the two methods were sorted by the score without rescaling.  

 

 BLAST 

          BLAST search [5] with default parameters was performed for each target sequence. 

Score for a particular annotation term was the maximum sequence identity with the hit 

annotated with that term. Predictions by BLAST were provided by the organizers. 

 

 Gotcha 

          GOtcha [15] incorporates the hierarchical structure of GO vocabulary with the idea 

of homology based annotation transfer to achieve improved coverage. It uses BLAST [5] 

to search similar sequence hits and assigns a score, -log(E-value), to each GO annotation 
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of the sequence hits and its less specific ancestors in the GO hierarchy. The scores as-

signed to each GO node from all the sequence hits are summed and then normalized us-

ing the score of the root of either MF or BP ontology. The normalized score thus obtained 

is referred as I-score, which was used for selecting target annotations. Predictions by 

Gotcha were provided by the organizers. 

 

 Assessment methods for prediction accuracy 

In CAFA, predictions were evaluated using four different methods. The threshold 

and the top N methods count exact match of predicted and the actual annotations, punish-

ing any predictions that are more or less specific than the actual annotations. On the other 

hand, the weighted threshold and the semantic similarity take into account the infor-

mation content of terms being matched on the GO hierarchy. Please refer to the organiz-

ers’ paper in the same journal issue for more details. We have used Gene Ontology ver-

sion October 2011 for obtaining ancestors for each GO term.  

 

 The Threshold method 

For each prediction method we use thresholds ranging from 0.01 to 1.0 to calcu-

late the average precision, recall, and specificity for all targets. For each target if a partic-

ular prediction has a score above the threshold, the predicted GO term is propagated to 

the root of the ontology. The performances are analyzed in terms of precision-recall curve 

and the receiver operator characteristic (ROC). For the threshold method, when using 

PFP raw scores that are not scaled between 0 and 1, we selected 1 to 1000 GO term pre-
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dictions by the increments of 5 and compute average precision, recall and specificity for 

all targets. 

 

 TopN 

The top N highest scoring predictions for a prediction method are taken into con-

sideration with N varying from 1 to 20. For all the predictions within top N, parental an-

notations until the root of the ontology are included. All predicted annotations with a tie 

score at a particular ranking are considered for the cutoff.  

 

 Weighted threshold 

As shown in Equation 4.1, frequency of a GO term c in the database is computed 

as the number of gene products annotated by term c and its children h in the GO hierar-

chy.  





)(

)()()(
cchildh

hfreqcannotcfreq                                                                      (Eqn. 4.1) 

where annot(c) is the number of gene products annotated by non IEA evidence codes in 

September 2011 version of SWISS-PROT database. Probability of a particular term c, 

p(c)=freq(c)/freq(root),  is computed as the ratio of the frequency of c against the fre-

quency of the root term of the MF or BP ontology. Information content of term c is given 

by IC(c) = -log10(p(c)). Using this information content, weighted precision is calculated 

as the sum of information content of the terms in the true positive set divided by the sum 

of information content of the terms in the true and false positive sets. Similarly, weighted 

recall is computed as the sum of information content of the terms in the true positive set 
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divided by the sum of information content of the terms in the true positive and false nega-

tive sets. As with the previous methods, if a particular prediction is above the given 

threshold, then its ancestors till the root of the ontology are included in the prediction set. 

 

 Semantic similarity 

Semantic similarity for a pair of GO terms is given by the maximum information 

content of a shared ancestor of both terms and it is averaged between all pairs of true and 

predicted terms to obtain the semantic similarity for a target. We calculate the semantic 

precision for a target protein as the average of the difference between the IC of a predict-

ed term and the maximum of the IC of common parental terms between the predicted 

term and any correct term. Similarly, semantic recall is calculated for a target as the aver-

age of the difference between the IC of a true term and the maximum of the IC of com-

mon parental terms between the true term and any predicted term. Here the information 

content values are based on the Prior probabilities for each term provided by the CAFA 

organizers. The average semantic similarity, semantic precision and semantic recall are 

computed across all targets at each threshold varying from 0.01 to 1.0. 

 

4.3.2 Results 

 

 PFP with raw scores 

In the CAFA experiment we submitted PFP predictions sorted by the confidence 

score. In this section, we rank predicted GO terms by PFP according to the raw score and 

see how its performance compares with the confidence score and the other methods. 
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From ranked list of PFP predictions by their raw score, precision, recall, and specificity 

are calculated at each of the top N predictions taken with an interval of 5. 

 Figure 4.2 shows the precision-recall curve and the ROC of PFP with raw score 

compared with the other methods. For the BP domain, we observe that PFP with raw 

score (PFP_RAW in the plots) has slightly higher precision for a given recall value than 

PFP predictions ranked by the confidence score (PFP). PFP with raw score has clearly 

better performance than PFP with confidence score in the ROC curve (Fig. 4.2B), par-

ticularly at lower false positive range (x-axis). The similar behavior of PFP raw score is 

observed for predictions in the MF domain (Figs. 4.2C & 4.2D). These results indicate 

that the confidence score of PFP, which is computed in two steps from the raw score via 

the p-score distribution (see Methods), was not very successful in ranking predicted GO 

terms especially at top ranks (lower false positive regions). Thus, derivation of the confi-

dence score needs to be reexamined and probably revised. 
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Figure 4.2 Performance comparison of AFP methods 

 Performance of PFP(confidence score), PFP prediction sorted by the raw score 

(PFP_RAW), ESG, PRIOR, BLAST, and Gotcha.  A, Precision – Recall plot for the BP 

domain.  B, ROC for the BP domain.  C, Precision – Recall plot for the MF domain.  D, 

ROC for the MF domain. 

 

 PFP and ESG with enriched priors 

Next, we combined the PFP and ESG predictions with the prior predictions (PFP 

+ Prior, ESG + Prior) to see if PFP/ESG predictions were missing obvious GO terms (Fig. 

4.3). We show the performance of the methods is evaluated with the top N method, where 

N ranges from 1 to 20.  
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 ESG with enriched priors (ESG + Prior) shows the best performance among all 

the methods in BP domain when evaluate by the precision-recall plot (Fig. 4.3A). The 

improvement by ESG + Prior over ESG is also observed in terms of ROC (Fig. 4.3B). 

ESG + Prior also performed better than ESG in the MF domain (Figs. 4.3C & 4.3D). 

ESG tends to predict fewer GO terms than even BLAST since its algorithm essentially 

selects terms that are consistently identified by iterative searches. The results in Figure 

4.3 indicate that obvious GO terms in Prior were not included in ESG predictions.  Since 

some GO terms may be lost in the iterative process of the ESG algorithm, the scoring 

scheme needs to have a close inspection. On the other hands, adding Prior prediction to 

PFP did not show any improvement over PFP, which indicates that PFP’s predictions al-

ready include correct terms from Prior.  

 

 

Figure 4.3  Performance comparison of AFP methods with enriched priors 

A, Precision – Recall plot for the BP domain;  

B, ROC for the BP domain;  

C, Precision – Recall plot for the MF domain;  

D, ROC for the MF domain. 
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 PFP and ESG with semantic similarity 

In Figure 4.4 the performance of the methods are evaluated in terms of the seman-

tic similarity. The average of the semantic similarity between all pairs of true and pre-

dicted GO terms is for each method is plotted relative to thresholds in Figure 4.4A and 

4.4C for the BP and MF domain, respectively. It is shown that ESG’s performance is sig-

nificantly better than the other methods for both BP and MF targets. PFP performance is 

average among all the teams in this measure.  On the other hand, PFP stands out in the 

semantic precision and recall plots (Figs. 4.4B & 4.4D). ESG comes second in the BP 

domain (Fig. 4.4B) but shows worst performance among all in the prediction of MF terms 

(Fig. 4.4D). 

 

 

Figure 4.4 Performance comparison of AFP methods with semantic similarity 

A, Semantic similarity relative to the score threshold. Predictions in the BP domain are 

evaluated;   

B, Semantic precision vs semantic recall for the BP domain;  

C, Semantic similarity relative to the score threshold in the MF domain;  

D, semantic precision vs semantic recall for the MF domain. 
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 Examples of successful and failure PFP/ESG predictions 

Finally, we discuss the prediction examples where PFP, ESG, and BLAST suc-

ceeded at different levels that provide insights into the advantages and shortcomings of 

our methods. The first example is T06450, Escherichia coli protein trbA, which is anno-

tated with GO:0042026 protein refolding as per the CAFA target annotations. BLAST 

search finds only one sequence hit O26024 that does not have any non-IEA annotation in 

the database resulting in no predictions. As for ESG, some of the correct low resolution 

annotations are extracted from a sequence hit Q9UZ03 retrieved in the first iteration of 

PSI-BLAST search with very large E-value (above 1) and its second level hits, including 

Q8A608, Q64PS6, Q5L9I8. These predicted annotations are parental terms of actual an-

notations: GO:0008152 metabolic process is a parental term of GO:0042026 protein re-

folding, and GO:0008652 amino acid biosynthetic process shares a common ancestor 

GO:0044237 cellular metabolic process with the target annotation GO:0042026 protein 

refolding. PFP was able to predict some low resolution parental terms of the correct an-

notation such as GO:0046483 cellular macromolecule metabolic process and 

GO:0044260 cellular protein metabolic process, with significantly high confidence 

scores of 0.81 and 0.99. Both these terms are not part of annotations of any of the PSI-

BLAST hit but received partial scores by considering co-occurrence of GO terms. 

 The second example, T06299, rutE from E. coli, is annotated by two leaf terms 

GO:0019740 nitrogen utilization and GO:0019860 uracil metabolic process. For this tar-

get BLAST again does not predict anything as there are no search hits with non IEA an-

notations. Using IEA annotation of highly similar PSI-BLAST hits, ESG predicted 
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GO:0055114 oxidation-reduction process, which shares a shallow common ancestor 

GO:0008152 metabolic process with a target term GO:0006212 uracil catabolic process. 

Similar to the previous example, PFP again predicted low resolution annotations 

GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism and 

GO:0046131 pyrimidine ribonucleoside metabolism thereby showing higher sensitivity 

when no close homologs are available for annotation transfer. 

 The third target T05345 is sensor protein CpxA from E. coli with leaf annotation 

GO:0046777 protein amino acid autophosphorylation. ESG predicted GO:0018106 pep-

tidyl-histidine phosphorylation, which shares an immediate parent GO:0006468 protein 

amino acid phosphorylation with the target term GO:0046777 protein amino acid auto-

phosphorylation. Also another term GO:0016310 phosphorylation, which is an ancestor 

of the target annotation is predicted by ESG with a high score of 0.93. PFP correctly pre-

dicts the ancestors of the target term, GO:0016310 phosphorylation, GO:0006464 protein 

modification and GO:0006468 protein amino acid phosphorylation with very high scores. 

BLAST predicts the target term and its ancestors with lower scores along with a number 

of unrelated predictions with high scores. Overall all the methods are able to predict the 

target term or its close ancestors, but the total number of terms predicted by BLAST (193 

terms) and PFP (134 terms) are significantly higher than ESG (7 terms),  resulting into 

more precise predictions by ESG. 

 The last example, T18799, Homo sapiens Ribonuclease H2 subunit B, is annotat-

ed by a leaf term GO:0006401 RNA catabolic process which has been accurately predict-

ed by BLAST. BLAST obtains this correct annotation from sequence hits such as 

Q5TBB1, Q5XI96, Q3ZBI3, Q80ZV0, Q28GD9, and Q5HZP1. These sequences were 
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also found by ESG, however, due to use of an older database that do not have updated 

annotations for these sequences, no correct annotation was retrieved. There are some 

shared ancestors, e.g. GO:0016070 RNA metabolic process, GO:0090304 nucleic acid 

metabolic process, GO:0044260 cellular macromolecule metabolic process between the 

low scoring ESG prediction GO:0006429 leucyl-tRNA aminoacylation and the target an-

notation GO:0006401 RNA catabolic process. PFP was able to correctly predict low reso-

lution terms, GO:0044260 cellular macromolecule metabolism and GO:0016070 RNA 

metabolism. 

 To summarize, the first and the second examples illustrate a situation where PFP 

predicts low resolution parental terms of actual annotations while BLAST can only find 1 

or 0 terms. There are PFP’s successful prediction which were found indirectly by using 

the GO term co-occurrence. In the second example, IEA annotations lead to correct pre-

dictions for ESG and PFP. The third example is the case that ESG made predictions with 

higher precision with smaller number of false positives than BLAST and ESG. The last 

example is that ESG missed to make correct prediction because the sequence database 

which was searched was not up-to-date. 

 

4.4 PFP/ESG update for CAFA2 & novel ensemble approaches 

In the second round of CAFA, CAFA2, for which an evaluation meeting was held 

as a SIG meeting at the ISMB conference in Boston in 2014, a total of 100,816 target 

protein sequences from 27 species were provided. These are more than double the 

amount of targets than in CAFA1 (48,298 targets in 18 species), which was held in 2011. 
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The participants could submit up to three models (variations in the prediction method) for 

a registered prediction method (group).   

In this work, we report benchmark results and enhancements made as preparation 

for CAFA2 prior to participation. We first discuss the effect of an update of annotation 

databases that are used in our sequence-based function prediction methods, PFP and ESG. 

In the CAFA1 experiment, ESG was ranked 4th in MF among 54 participating groups 

[54]. We then examined whether considering prior distribution of GO terms in the Uni-

Prot sequence database [86] improved the accuracy. PFP and ESG using the updated da-

tabases performed significantly better than the same with older databases. We did not ob-

serve meaningful improvement by adding GO terms’ prior probability.  

Finally, we constructed two ensemble function prediction methods, CONS and 

FPM, that combine GO predictions from PFP [12,13], ESG [14], PSI-BLAST [6], PFAM 

[72], FFPRED [170], and HHblits [171]. Among the six individual methods, ESG with 

the updated database performed the best. One of the ensemble methods, CONS, per-

formed the best while the other one, FPM, ranked in the middle when compared with the 

six individual methods. Successful and unsuccessful cases of ensemble methods are dis-

cussed. 

 

4.4.1 Benchmark dataset 

The benchmark consists of 2055 non-redundant protein sequences selected from 

the UniProt Reference Clusters (UniRef) database [86]. UniRef provides clustered sets of 

sequences from the Uniprot knowledgebase. We selected a cluster resolution of 50% se-

quence identity. Among these UniRef50 clusters, we selected the representative proteins 
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from clusters that satisfy the following two criteria: 1), each cluster representative should 

have at least 1500 proteins in its cluster and 2), the cluster representative protein should 

have a non-empty GO term annotation in the UniProt database.  

 

4.4.2 Methods 

 FFPRED method 

FFPred [172] predicts more than 440 possible GO terms for a query protein using 

support vector machines (SVMs) that use more than 200 features of the query. These fea-

tures are spread among fourteen feature types. These types include twenty features de-

scribing amino acid composition; seven features describing the sequence itself; fifty fea-

tures describing the phosphorylation and others [173]. The SVM-Light [174] package 

was used to create the SVM classifiers. For each GO term, an SVM classifier was trained 

by empirically determining the set of kernel parameters and features that performed best 

in a k-fold cross validation of the set of training proteins. The best features were deter-

mined on the level of the feature types, so that if the inclusion of the features in a feature 

type did not improve the SVM, all the features for that feature type were discarded.  

 

 HHBlits method 

HHblits [171] takes a sequence or multiple sequence alignment as a query and 

produces a profile HMM from this input. Using the computed HMM, the program itera-

tively searches a database of profile HMMs, with similar HMMs used to update the query 

HMM. A pre-filter of discretized HMM profiles is used in order to dramatically speed up 
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the process. There are two pre-filtering steps when comparing the extended sequence pro-

files to those of the database. The first makes sure that the score of the largest un-gapped 

alignment between two profiles passes a threshold. Out of the remaining sequences, those 

with a Smith-Waterman alignment better than a threshold are used. The GO terms from 

the protein sequences in the final HMM are collected as the predictions of GO terms of 

the query. 

 

 Consensus method (CONS) 

CONS is one of the ensemble methods we constructed that combines predicted 

GO terms for a target protein from the following six AFP methods, namely, PFP [12,13], 

ESG [14], PSI-BLAST [6], PFAM [72], FFPred [172], and HHblits [171]. PSI-BLAST 

was run up to three iterations and GO terms were taken from the top five hits. PFAM [57] 

is a database of HMMs of protein families and domains. A protein can be associated with 

more than one protein domain HMM. A query sequence was compared with HMMs in 

PFAM using the HMMER software suite [175] and GO terms were retrieved from hits 

equal to or below an E-value of 0.01 using the model2GO file associated with PFAM. 

CONS combines GO term predictions from each of the individual methods and 

provides a consensus confidence score. The consensus confidence score for a GO term is 

essentially the weighted sum of scores of the GO term from individual methods. The 

score for GO term GOi is defined as 

           (Eqn. 4.2) 
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where m is an index through each of the six individual methods, and N is the total number 

of unique GO terms for the target predicted by the six methods. The weights wm reflect 

prior knowledge of the performances of individual methods m, which are the accuracies 

of the methods (Fmax
 score). wm for a target sequence was computed on the benchmark 

dataset after removing the target from the dataset. 

 

 Frequent Pattern Mining (FPM): an ensemble method 

The Frequent Pattern Mining (FPM) is a widely-used data mining technique for 

finding frequently occurring patterns of items. Agrawal et al. [176] first introduced an a 

priori technique of mining all frequent item sets from a transactional database. Later, Tao 

et al. refined the technique for datasets where each item can have weights [177]. Here we 

used the flavour of the latter technique to construct an ensemble protein function predic-

tion method from the underlying six individual AFP methods.  

We describe the FPM method in the function prediction setting with a toy exam-

ple. Let us consider GO term predictions from three AFP methods, Method A, B, C, for a 

certain target protein. Let us also assume that each method has a pre-computed Fmax ac-

curacy score, accuracy(Method A) = 0.6, accuracy(Method B) = 0.7, and accura-

cy(Method C) = 0.5. We assume the three methods predict GO terms as follows: 

 Method A: GO1: 0.5, GO2: 0.6, GO3: 0.4 

 Method B: GO2: 0.7, GO3: 0.8, GO4: 0.4, GO5: 0.6 

 Method C: GO2: 0.8, GO3: 0.9, GO5: 0.6 

Here, GO1:0.5 under “Method A” denotes that Method A predicts GO1 with a confi-

dence score 0.5.  
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First, we define two weights that we use throughout the FPM process. weight(mk) 

is a weight given to each method mk as follows: 

                          (Eqn. 4.3) 

|mk| is the number of GO terms predicted by the method mk. accuracy(mk) for a target se-

quence is computed on the benchmark dataset after removing the target from the dataset. 

When the benchmark dataset has multiple target proteins, method weights can be 

different for each target. For the target in the above toy data,  

  

weight(GOset) is a weight given to a set of GO terms with set size |set| as follows: 

                          (Eqn. 4.4) 

Here M is the set of all methods and S is the set of methods that predicted GOset. For the 

above toy example, M is 3 and S is 2 for GO2 (since 2 methods, i.e., Method A and 

Method B, have GO2. GO2 is a GOset of size, |set| = 1). Initially, FPM generates all pos-

sible GOsets of |set| = 1 and computes the weights of each GOset using Eqn 4.4. In the 

above toy example, the generated GOsets are {GO1, GO2, GO3, GO4, GO5} and the 

weights are: 
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Then FPM uses a pre-defined weight cut-off to select the GOsets with weights higher than 

the cut-off and maintains a lexicographic ordering of this selected GOsets, L, throughout 

the rest of the process. In the above toy example, for a weight cut-off 0.5, FPM selects L 

= {GO2, GO3, GO5}. 

Now, the FPM algorithm runs iteratively starting from |set| = 2 and increases |set| 

by 1 at each iteration. At each iteration i, FPM creates a list, GListi of frequently-

occurring GOsets at the current iteration i. At iteration 1, GList1 = L.  In each iteration i, 

FPM generates GOset where |set|=i by lexicographically extending each element in GListi-

1 with each element in set L. FPM then keeps the GOsets that have weight(GOset)  above 

the weight cut-off and stores them in GListi. Iterations continue until no new GOset can be 

generated. We demonstrate the generation of GListi at each iteration for the above toy 

example. 

 Iteration 1: Candidate GOset: {GO1, GO2, GO3, GO4, GO5}, GListi: {GO2, GO3, 

GO5} 

 Iteration 2: Candidate GOset: {GO2-GO3, GO2-GO5, GO3-GO5}, GListi: {GO2-

GO3, GO2-GO5, GO3-GO5} 

 Iteration 3: Candidate GOset: {GO2-GO3-GO5}, GListi: {GO2-GO3-GO5} 
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At iteration i, weight(GOset) with |set| = i is calculated using Equation 4.4. In the 

above list, the weight of GOset, GO2-GO5 at iteration 2 is calculated as-

 

The final result (most frequently occurring GOset) is chosen in two ways: 

FPM_maxLen chooses the maximum-length GOset among all in GListi (for all i), and 

FPM_maxScoreLen chooses the maximum-length GOset among the highest scoring 

GOsets in all GListi (among all i). For each target in the benchmark data, the FPM algo-

rithm runs once and generates the most frequently predicted GO terms for that target. We 

used 0.7 as the predefined weight cut-off.   

 

 Evaluation metric: The Fmax score 

The Fmax score is computed according to the evaluation strategy taken in CAFA1 

[54]. For each target, given a true annotation set T and a predicted annotation set Pt from 

an AFP method above a certain GO confidence score threshold t, precision and recall is 

calculated as follows: 

  

      

where . Then, at each confidence threshold t, aver-

age precision and recall is calculated across all targets. From these average values, F-
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measure is calculated as the harmonic mean between precision and recall at each confi-

dence threshold value. Then the maximum F-measure across all thresholds is taken as the 

Fmax score.  

            (Eqn. 4.6) 

4.4.3 Result 

 Database update for PFP/ESG 

First we discuss the effect of updating the underlying databases of PFP and ESG. 

The framework of both methods consists of three steps: 1) retrieving similar sequences to 

a query sequence from a sequence database; 2) extracting GO terms that are associated 

with the retrieved sequences; 3) and finally predicting GO terms for the query (see Meth-

ods). Two different databases are used in the procedure, i.e. a sequence database used in 

Step 1, against which the query is searched and another database in Step 2 that stores GO 

terms for the retrieved sequences. The latter database is referred to as the annotation da-

tabase. 

 The sequence database to be searched against (Step 1) for both PFP and ESG is 

UniProt (the Swiss-Prot portion). This database is referred to as Swiss-Prot-SeqDB. We 

have been using a 2008 version of Swiss-Prot, but this time it was updated to the version 

01/20/2013. 

PFP and ESG use different annotation databases (Step 2). PFP uses the so-called 

PFPDB, which is an integrated database of GO terms taken from multiple databases. 
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PFPDB is discussed in details later in this section. ESG uses the GO database download-

ed from http://geneontology.org/page/download-ontology as its annotation database. The 

old version used earlier is from 2008 and the new version that is used in this work (and in 

CAFA2) was downloaded in 2013. 

Table 4.1 describes the differences in the number of sequences and GO terms be-

tween the old and new databases. The number of sequences in Swiss-Prot-SeqDB is ex-

panded in the new database to more than double the size (2.45 times) of the old database. 

The second row of Table 4.1 is data for PFPDB, the annotation database used for 

PFP. PFPDB is a collection of GO terms from multiple annotation resources, including 

UniProt-SwissProt. The updated PFPDB database did not include annotations from Swis-

sProt-Keywords and added two new annotation resources to the previous ones (PIRSF 

[178] and Reactome [179]). With the updated PFPDB, the functional association matrix 

(FAM), which is the conditional probability P(fa|fi) in Equation 2.1 used in PFP was also 

updated. In PFPDB, the total number of GO terms in the updated database is increased to 

almost double (1.91 times) from the old database. The number of unique GO terms in the 

annotation database for ESG, which is the GO database, increased by 1.78 times from 

2008 to 2013. 

In Table 4.2, we show the effects of combining multiple annotation resources 

(from which annotations are transferred) for the updated PFPDB in terms of the sequence 

coverage and the GO coverage. The sequence coverage is the percentage of the sequences 

in Swiss-Prot that have at least one GO term annotation. The GO coverage is the percent-

age of GO terms that are included in PFPDB relative to the entire GO vocabulary. Having 

a large coverage is essential for the PFP and ESG function prediction methods, because it 

http://geneontology.org/page/download-ontology
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directly affects the algorithms’ ability to retrieve function information from a PSI-

BLAST search result.  

 

Table 4.1 PFP/ESG database update 

 2008 version  2013 version  

Sequence Database (Swiss-Prot-
SeqDB) 

  

Number of sequences 211,104 514,673 

PFPDB (Annotation database for 
PFP) 

  

Number of unique GO terms 18,327 35,029 

 

External resources for PFPDB 

HAMAP, InterPro, 
SwissProt-keywords, 
Pfam, PRINTS, 
ProDom, PROSITE, 
SMART, TIGRFam 

HAMAP, InterPro, Pfam, 
PRINTS, ProDom, PRO-
SITE, SMART, TIGR-
Fam, PIRSF, Reactome 

Annotation Database for ESG   

Number of GO terms 13,420 23,896 

 

Each of SwissProt-GO, InterPro, and Pfam has a very high (>90%) sequence cov-

erage as an annotation resource. In terms of the GO coverage, SwissProt-GO has the 

highest percentage. The rest of the databases have relatively small coverage, with In-

terPro being the highest among them; however, its GO coverage is as small as 10.59%. 

Overall, 98.42% of Swiss-Prot sequences have at least one GO annotation and 60.83% of 

GO terms in the current GO vocabulary are represented in PFPDB. Compared with the 

sequence and GO coverage of SwissProt-GO, which was the starting point of the annota-

tion, adding more GO terms from additional sources did not gain much, only about 4% 

for the sequence coverage and 0.5% for the GO coverage. These results are substantially 

different from when we constructed PFPDB originally in 2008 [12,13]. At that time, the 

sequence coverage jumped from 13.4% to 92.9% by importing GO terms from the addi-
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tional sources (Hawkins et al., 2008 [12,13], Table II). The reason for the small gain in 

coverage can probably be attributed to the fact that GO annotations in Swiss-Prot have 

been far better developed since then and annotations in different databases are better 

shared between databases now. 

 

Table 4.2 Coverage from additional resources in updated PFPDB 

aSequence coverage is the percentage of sequences in Swiss-Prot annotated with at least 

one GO term after addition of translated terms from the format in column 1. bGO cover-

age is the percentage of terms in the GO vocabulary represented in Swiss-Prot after ad-

dition of translated terms from the resource in column 1.   

 

 Sequence Coverage (%)a GO Coverage (%)b 

SwissProt-GO 94.50 60.27 

HAMAP 58.35 3.55 

InterPro 95.75 10.59 

Pfam 92.34 6.47 

PRINTS 22.26 3.09 

ProDom 5.39 1.18 

ProSite 56.45 2.53 

SMART 23.25 1.26 

TIGRFam 49.92 4.78 

PIRSF 18.38 4.29 

Reactome 1.46 0.01 

ALL 98.42 60.83 
 

 Benchmarking prediction accuracy of updated for PFP/ESG 

Figure 4.5 shows the results of PFP using the old and the updated PFPDB. To 

simulate a realistic scenario in which close homologs of a query do not exist in the se-

quence database, when predicting function for a target in the benchmark dataset, similar 

sequences in the sequence database to the target that have a certain E-value or smaller (i.e. 

more significant) were removed. The E-value cut-off is shown along the x-axis of the 
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figure. Thus, for example, at E-value of 0.01 (shown by x = 0.01 in the figure), all the 

sequences in the database that have an E-value of 0.01 or smaller to the query were re-

moved. At x = 0, sequence hits with an E-value of 0 were removed in order to avoid an-

notation transfer from exactly matched sequences. The y-axis reports the average Fmax 

score over all benchmark targets. 

 

 

Figure 4.5 Performance of PFP evaluated on GO terms including parental terms 

Performance of PFP using the new and the old PFPDB. Before evaluating predictions, 

both predicted and true GO terms were propagated to the root of the ontology.  

A, Evaluation on BP GO terms.  

B, Evaluation on MF GO terms. 

 

For this evaluation, we extend both predicted and true GO terms of each target 

with parental GO terms in the GO hierarchy. For a predicted or true GO term GOi, all pa-

rental GO terms of GOi in the GO hierarchy (more precisely, a Directed Acyclic Graph or 

DAG) were added and the performance evaluation was done by comparing the extended 

GO term sets. This parental propagation on the true and predicted annotation sets was 

also adopted in the official CAFA assessments. For PFP with the updated PFPDB, differ-

ent functional association matrix (FAM) score cut-offs were tested. The FAM score is the 

probability that a GO term fa co-exists in the annotation of a protein when another GO 
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term fi already exists in the annotation of the protein. Concretely, it is the conditional 

probability P(fa|fi) in Equation 1 in the Methods section. For example, in Figure 4.5, PFP-

BP(or MF)-FAM0.9 represents the prediction results of PFP using the updated PFPDB 

and only very strongly associated GO terms in FAM, with a FAM score of 0.9 or higher. 

On the other hand, PFP-BP(or MF)-FAM0.25 used many GO term associations including 

ones that are weakly associated, with a conditional probability of 0.25 or higher. For 

more details of the FAM score, refer to the original paper of the PFP algorithm [12,13]. 

Figure 4.5 shows predictions for the Biological Process (BP) GO category (Figure 

4.5A) and for the Molecular Function (MF) GO category (Figure 4.5B) separately. In 

Figure 4.5A, all of the PFP predictions with the new PFPDB performed better than PFP 

with the old database (PFP-BP-OLD). For PFP-BP/MF-OLD, a FAM score threshold of 

0.9 was used. Among five different FAM score threshold values (0.25 to 0.9), PFP-BP-

FAM0.9 showed the largest average Fmax accuracy across all the E-value cut-off scores. 

At the first E-value cut-off, 0.0, PFP-BP-FAM0.9 achieved the largest average Fmax 

score of 0.6873 and PFP-BP-FAM0.75 showed the second highest score of 0.6856. 

Comparing the results using the full PFPDB (PFP-BP-FAM0.5) and those using a 

subset of GO terms in PFPDB that have experimental evidence (i.e. GO terms that are not 

Inferred from Electronic Annotation, non-IEA) (PFP-BP-nonIEA-FAM0.5), the former 

had a larger average Fmax score as shown in Fig. 4.5A-B. In Figure 4.5 we excluded IEA 

GO terms only from PFPDB and kept IEA GO terms for the target proteins as correct 

terms. Figure 4.5B is the performance on MF GO terms. Overall, prediction accuracy for 

MF (Figure 4.5B) were higher than for BP (Figure 4.5A). The best-performing prediction 

setting for MF was again PFP-MF-FAM0.9, with an average Fmax score of 0.7817 at an 
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E-value cut-off of 0.0 and PFP-MF-FAM0.75 was the second best (0.7644). Consistent 

with Figure 4.5A, PFP with the old database was the worst (an Fmax score of 0.6479 at 

an E-value cut-off of 0.0). In the original paper of PFP [12,13], a similar performance 

comparison was conducted with different FAM score thresholds (Figure 4 in the original 

paper of PFP [12,13]), where PFP with a FAM score cut-off of 0.9 was shown to perform 

best among others. Thus, the findings for the current benchmark with the updated data-

base is consistent with the earlier study [12,13].  

 

 

Figure 4.6 Performance of PFP and ESG on GO terms including parental terms 

Each predicted and true GO term was propagated to the root of the ontology before 

evaluation. GO terms in all three ontologies (BP, MF, CC) were used in computing pre-

diction accuracy. 

 

In Figure 4.6, we added the ESG’s results to the plots. The Fmax score was com-

puted using GO terms for all three ontologies (BP, MF, and Cellular Component (CC)). 

ESG with the updated database (ESG-Updated) performed the best (average Fmax of 

0.8401 at an E-value cut-off of 0.0) among the eight settings compared. ESG-OLD was 

the second best (an average Fmax of 0.7655 at E-value 0.0), and PFP-OLD had the low-

est accuracy (an average Fmax of 0.5852 at E-value 0.0).  
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In summary, updating the databases contributed in improving the prediction accu-

racy (average Fmax scores) substantially for both PFP and ESG. ESG showed a higher 

average Fmax score than PFP. The best-performing FAM score threshold value for PFP 

was 0.9, which was consistent with our earlier study. 

 

Table 4.3 Average Fmax for individual and ensemble methods 

All true and predicted annotations have been propagated to the root of the ontology. All 

three GO categories were used in the evaluation.  

 

  Method  Average Fmax 

PFP-Updated 0.7447 

PFP-OLD 0.5852 

ESG-Updated 0.8401 

ESG-OLD 0.7655 

FFPred 0.3248 

PFAM 0.5583 

HHblits 0.4662 

PSI-BLAST 0.5991 

CONS 0.8085 

FPM_MaxLen 0.7937 

FPM_MaxScoreLen 0.4628 
 

 Prediction performance of ensemble methods 

Next we discuss the prediction accuracy of two ensemble methods in comparison 

with individual component methods (Table 4.3). Two ensemble methods, CONS and 

FPM, were constructed that combine GO predictions from six individual methods: PFP, 

ESG, PFAM, PSI-BLAST, HHblits, and FFPred. The CONS method computes a score 

for a GO term as a weighted sum of scores of the GO terms from the component methods. 

The weight of a method is prior knowledge of the accuracy of the method. FPM selects 

combinations of GO terms that are computed by multiple methods with a sufficiently 
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high score (see Methods). In Table 4.3, we show results of two variations of FPM. 

FPM_maxLen is an FPM method that selects a GO term set with the largest size (number 

of GO terms) from a candidate pool of predicted GO term sets with a sufficiently large 

score. FPM_maxScoreLen, on the other hand, selects the GO term set with the highest 

overall score (often resulting in outputs of a small number of GO terms). Overall, out of 

all the individual and ensemble methods, the most successful method was ESG-Updated, 

which showed the largest average Fmax score of 0.8401. CONS came at a second (Fmax 

score of 0.8085), followed by FPM_maxLen (Fmax score 0.7937), ESG-Old, and PFP-

Updated in this order. On this benchmark, FFPred, PFAM, and HHblits performed very 

poorly relative to PFP-Updated and ESG-Updated. 

To further understand performance of the ensemble methods, we next examined 

the number of wins for each method, i.e. the number of times that each method showed 

the largest Fmax score (Figure 4.7). In this analysis, for each target the confidence cut-off 

values used for each component method were optimized to give the largest Fmax score to 

the target, in order to understand how well ensemble methods can assemble individual 

predictions in the best case scenario in which each component method offers its best pos-

sible prediction. In terms of the number of wins, ESG is the best and CONS and FPM 

follow in that order, which is consistent with the results on the average Fmax scores (Ta-

ble 4.3) (note that there are queries where multiple methods tied for same Fmax score). 

Overall, the two ensemble methods did not show better performance than the best com-

ponent method, ESG, but as illustrated later there are many cases in which the ensemble 

methods successfully selected correct GO terms from different component methods. 
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Figure 4.7 Fraction of queries where method showed largest Fmax score 

The fraction on the y-axis was computed as the number of queries in which a method had 

the largest Fmax score over the total number of queries (2055 protein sequences). FPM 

in this graph denotes FPM_MaxLen because it performed better than its counterpart, 

FPM_maxscoreLen. The fraction does not sum up to 100% due to cases where multiple 

methods tied for the largest Fmax score. 

 

From Figure 4.7, we can see that CONS and FPM provided the most accurate 

prediction for 52.2% and 40.0% of the queries.  

 

 Case studies of the CONS method 

Table 4.4 illustrates how CONS combines predictions of the individual methods. 

The first two examples (Table 4.4A and Table 4.4B) are cases where CONS improved the 

prediction over the individual methods. Similar to Figure 4.7, the Fmax computation for 

this analysis is done at the individual protein level. The first example, Table 4.4A, is pre-

dictions for a capsid protein from the Hepatitis E virus (UniProt ID: Q9IVZ8). For this 

protein, CONS had the highest Fmax score, 0.667, and PFP had the second-highest, with 

an Fmax score of 0.575 (Fmax was computed after parental propagation). In its top hits, 

CONS correctly predicted all five GO annotations of this protein (shown in bold in the 
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table) together with two parental terms of correct GO terms (shown in italics in the table). 

Interestingly, PFP, the second-best predictor, predicted only four of the five correct GO 

terms, whereas the last one GO:0039615, came from ESG. 

For the second example (Table 4.4B), CONS had the largest Fmax score of 0.915, 

followed by PSI-BLAST, which had an Fmax score of 0.824. The query, succinate dehy-

drogenase iron-sulfur subunit, has eight GO term annotations. Among them, CONS pre-

dicted seven with high confidence scores, and one, GO:0000104, at a low score. Out of 

these eight GO term annotations, GO:00051539, GO:0046872, and GO:0006099 were 

predicted with high scores by three individual methods, PFP, ESG, and PSI-BLAST. 

GO:0000104 was strongly predicted by PSI-BLAST. GO:0009055 and GO:0022900 

were predicted with relatively high scores by ESG and PFP. Thus, this is an example 

which shows that CONS can successfully select different correct terms from different 

methods. 

There are also cases that show the opposite trend, where CONS could not improve 

prediction (Table 4.4C). In the third example, showing the GO annotations of ATP-

dependent RNA helicase, the best Fmax score among the component methods was from 

ESG (0.761), followed by PSI-BLAST (0.673), PFP (0.667), and PFAM (0.653), while 

CONS had an Fmax score of 0.66 and was ranked fourth among all methods. In this ex-

ample, all five correct GO terms were predicted by ESG, but four of them were with 

weak scores. PFP predicted only two correct terms, GO:0005524 (ATP binding) with a 

high score and GO:0000027 (ribosomal large subunit assembly) with a low score, while 

PSI-BLAST, FFPred, and PFAM only predicted GO:0005524 among the five correct 
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terms. Thus, combining them could not increase the scores of the correct terms, and ra-

ther, introduced over 100 incorrect terms. 

 

Table 4.4 Examples of predictions by CONS and individual component methods 

A Capsid protein (UniProt ID: Q9IVZ8) 

GO terms in bold are correct annotations of the protein. Terms in italic indicate parental 

terms of correct GO terms. Terms in parentheses are wrong predictions. 

For CONS prediction, GO terms that have a confidence score larger than 0.4 are listed. 

For PFP prediction, GO terms that have a confidence score larger than 0.5 are listed. 

For ESG, all predicted GO terms are shown. 

 

CONS GO:0019028  1.00  viral capsid 

GO:0005198  0.97  structural molecule activity 

GO:0019012  0.70 virion 

GO:0039615  0.68  T=1 icosahedral viral capsid 

(GO:0032774)  0.43 

GO:0003723  0.43  RNA binding 

GO:0044228  0.43  host cell surface 

GO:0030430  0.43  host cell cytoplasm 

PFP GO:0044228  1.00  host cell surface 

(GO:0032774)  1.00 

GO:0030430  1.00  host cell cytoplasm 

GO:0005198  1.00  structural molecule activity 

GO:0003723  1.00  RNA binding 

(GO:0006351)  0.71 

GO:0043656  0.65  intracellular region of host 

GO:0033646  0.65  host intracellular part  

(GO:0008150)  0.59 

GO:0003676  0.59  nucleic acid binding 

ESG GO:0019012  1.00  virion 

GO:0019028  1.00  viral capsid 

GO:0039615  0.99  T=1 icosahedral viral capsid 

(GO:0019048)  0.15 

(GO:0030683)  0.15 

(GO:0039573)  0.15 
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B Succinate dehydrogenase iron-sulfur subunit (UniProt ID: P51053) 

For CONS, PFP, and ESG prediction, GO terms that have a confidence score equal to or 

larger than 0.10, 0.20, and 0.56 are shown (i.e. up to the last correct GO term). For PSI-

BLAST all predicted GO terms are shown. 

 

CONS GO:0051536  1.00  iron-sulfur cluster binding 

GO:0009055  0.25  electron carrier activity 

GO:0051539  0.24  4 iron, 4 sulfur cluster binding 

GO:0046872  0.24  metal ion binding 

GO:0006099  0.22  tricarboxylic acid cycle 

(GO:0016020)  0.21   

GO:0051537  0.21  2 iron, 2 sulfur cluster binding 

GO:0051538  0.21  3 iron, 4 sulfur cluster binding 

GO:0016491  0.16  oxidoreductase activity 

GO:0055114  0.16  oxidation-reduction process 

GO:0009060  0.16  aerobic respiration 

GO:0022900  0.14  electron transport chain 

(GO:0008177)  0.13 

…and 9 more terms 

GO:0000104  0.10  succinate dehydrogenase activity 

PFP GO:0055114  1.00  oxidation-reduction process 

GO:0051540  1.00  metal cluster binding 

…and 10 more terms 

GO:0051539  0.52  4 iron, 4 sulfur cluster binding 

GO:0009055  0.46  electron carrier activity 

(GO:0005886)  0.46 

(GO:0071944)  0.44 

(GO:0044435)  0.43 

GO:0022900  0.42  electron transport chain 

…and 9 more terms 

GO:0046872  0.35  metal ion binding 

…and 6 more terms 

GO:0006099  0.33  tricarboxylic acid cycle 

…and 8 more terms 

GO:0000104  0.25  succinate dehydrogenase activity 

(GO:0050136)  0.23 

(GO:0003954)   0.23 

GO:0051537  0.22  2 iron, 2 sulfur cluster binding  

GO:0051538  0.20  3 iron, 4 sulfur cluster binding 
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ESG (GO:0005743)  0.66 

GO:0006099  0.66  tricarboxylic acid cycle 

(GO:0008177)   0.66 

GO:0009055  0.66  electron carrier activity 

GO:0046872  0.66  metal ion binding 

GO:0051537  0.66  2 iron, 2 sulfur cluster binding 

GO:0051538  0.66  3 iron, 4 sulfur cluster binding 

GO:0051539  0.66  4 iron, 4 sulfur cluster binding 

(GO:0005749)  0.60 

(GO:0048039)  0.60 

GO:0022900  0.56  electron transport chain 

PSI-
BLAST 

(GO:0016020)  0.80 

GO:0051538  0.80  3 iron, 4 sulfur cluster binding 

GO:0051539  0.80  4 iron, 4 sulfur cluster binding 

GO:0051536  0.80  iron-sulfur cluster binding 

(GO:0006810)  0.80 

(GO:0009061)  0.80 

GO:0046872  0.80  metal ion binding 

GO:0006099  0.80  tricarboxylic acid cycle 

GO:0009060  0.80  aerobic respiration   

(GO:0005489)  0.80 

GO:0051537  0.80  2 iron, 2 sulfur cluster binding 

(GO:0005506)  0.80 

GO:0000104  0.80  succinate dehydrogenase activity 

(GO:0006118)  0.80 

GO:0016491  0.80  oxidoreductase activity 
 

C ATP-dependent RNA helicase SrmB  (UniProt ID: P21507) 

CONS GO:0005524  1.0000  ATP binding 

GO:0003676  0.2937  nucleic acid binding 

GO:0004386  0.2445  helicase activity 

GO:0000166  0.2370  nucleotide binding 

GO:0008026  0.2350  ATP-dependent helicase activity 

GO:0016787  0.1987  hydrolase activity 

GO:0003723  0.1860  RNA binding 

(GO:0003677)  0.1683   

…and 37 more terms 

GO:0004004  0.0364  ATP-dependent RNA helicase activity 

GO:0044424  0.0364 intracellular part 

(GO:0051716)  0.0353 

(GO:0071843)  0.0351 

…and 142 more terms 
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GO:0000027  0.0079  ribosomal large subunit assembly 

(GO:0050789)  0.0078 

(GO:0051252)  0.0078 

…and 3 more terms 

GO:0033592  0.0073  RNA strand annealing activity 

GO:0030687  0.0073  preribosome, large subunit precursor 

PFP GO:0044464  1.00  cell part 

GO:0008150  1.00  biological process    

GO:0005623  1.00  cell 

GO:0003676  1.00  nucleic acid binding 

GO:0004386  0.99  helicase activity 

GO:0005575  0.94  cellular component 

GO:0022613  0.84  ribonucleoprotein complex biogenesis 

GO:0003674  0.84  molecular function 

(GO:0090304)  0.77   

GO:0032559  0.76  adenyl ribonucleotide binding 

GO:0005524  0.76  ATP binding   

…and 116 more terms 

GO:0004004  0.11  ATP-dependent RNA helicase activity 

(GO:0080090)  0.10 

GO:0070013)  0.10 

…and 407 more terms 

GO:0000027  0.01  ribosomal large subunit assembly 

ESG GO:0000166  0.80  nucleotide binding 

GO:0003676  0.80  nucleic acid binding 

GO:0003723  0.80  RNA binding 

GO:0005524  0.80  ATP binding 

GO:0004386  0.73  helicase activity 

GO:0008026  0.73  ATP-dependent helicase activity 

GO:0016787  0.73  hydrolase activity 

(GO:0000184)  0.46 

(GO:0005634)  0.46 

(GO:0006364)  0.46 

GO:0042254  0.46  ribosome biogenesis 

(GO:0005737)  0.38 

GO:0004004  0.28  ATP-dependent RNA helicase activity 

GO:0000027  0.07  ribosomal large subunit assembly 

(GO:0005515)  0.07 
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CHAPTER 5. DISCUSSSION & SUMMARY 

5.1 Moonlighting proteins 

Moonlighting proteins have more than one independent function. It is speculated 

that moonlighting proteins are not few in number and expected to be found more in the 

future. Identification of moonlighting proteins indicates that potential secondary func-

tions need to be considered when it comes to protein function, which has significant im-

pact on functional genomics, proteomics, and computational gene function annotation 

[61]. 

In the first part of MP characterization, we examined current GO annotations of 

known moonlighting proteins. We found that the GO term annotations for moonlighting 

proteins can be clustered into more than one cluster based on the semantic similarity be-

tween pairs of GO terms. Thus, even in the case that moonlighting proteins are not la-

belled as such in the annotation database, we will be able to identify them by observing 

the functional divergence of annotated GO terms. Based on this intuitive observation, we 

analyzed E. coli proteins in the database and identified novel moonlighting proteins. The 

majority of interacting proteins of a moonlighting protein shared the primary function of 

the moonlighting protein and we found that a substantial fraction of the interacting pro-

teins were themselves moonlighting proteins. 
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The characteristics of moonlighting proteins were investigated by comparing their 

features with those of non-moonlighting proteins. In general, finding examples that do 

not possess a certain property is not straightforward as future research may find that the 

examples actually do have the property. So are non-moonlighting proteins – there is an 

undeniable possibility that non-moonlighting proteins used in this study will be found as 

moonlighting in the future. Nevertheless we believe the current research is valuable and 

has contributed in progressing our understanding of moonlighting proteins because the 

non-moonlighting proteins were selected in a reasonable way and also because the differ-

ences and similarities of characteristics of moonlighting and non-moonlighting proteins 

were clarified that can serve as hypotheses in the future works. We would also like to 

point out that similar approaches of selecting negative data sets were taken in analyzing 

protein-protein interactions (by constructing a non-interacting protein dataset, Negatome 

[180]) and in analyzing proteins with particular functions (by constructing the NoGo da-

tabase [181]), which contributed in development of computational prediction methods 

and thereby advance our understanding and the research field. 

We observed significant functional divergence in physically interacting proteins 

with moonlighting proteins, which could be a good feature to use for predicting of moon-

lighting proteins. However, the other features of moonlighting proteins in omics data 

were weak. Thus, predicting moonlighting proteins from an individual feature may not be 

an easy task. This also reminds us that moonlighting functions are observed in various 

physiological conditions of a cell, which differ for each moonlighting protein. Therefore, 

ultimately, prediction of moonlighting proteins or secondary functions of a protein needs 

a holistic understanding of behavior of molecules in a cell. In practice, this means that 
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integrating various different cell-level data will be effective in prediction, which includes 

proteomics, ionomics, phenotypic data of mutants, bioinformatics predictions, computa-

tional simulations of pathways, and molecular dynamics of biomolecules. Such an auto-

mated computational method would be useful in resolving many ambiguities in prote-

omics analysis as well as in unfolding many complexities of protein functions. Improved 

understanding of moonlighting functions of proteins can be a touchstone for our 

knowledge of molecular biology, because it requires comprehensive, multilevel data and 

deep knowledge of the cell. 

Based on the above analysis, we proposed a novel computational approach, MPFit, 

for detecting MPs from GO annotations or omics-based features. Compared to existing 

MP prediction methods that use only the GO term feature [114] or one feature type 

[49,113],  MPFit can be applied to a larger fraction of proteins in a genome due to the use 

of several omics-based features and the implemented imputation protocol for filling miss-

ing features. As the mechanisms by which MPs exhibit multiple functions differ from 

case by case, using various feature types is reasonable to capture MPs of different nature. 

MPFit was developed as a model that leverages a diverse protein interaction features [50] 

to predict MPs. Complementary to MPFit, we used a completely different knowledgebase 

for extracting unique features of MPs in order to make MP prediction and complements 

our previous MP study. Our proposed method DextMP is the first text-based MP predic-

tion method to our knowledge. Compared to existing methods that use only the GO term 

feature [114] or one feature type [49,113] or our previous method MPFit [50],  DextMP 

shows significant improvement of performance for both specificity over known MPs and 

wide applicability due to its sole reliability over textual description associated to proteins.  
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Based on these current works on MPs, a useful future direction would be to ex-

tend MPFit and DextMP to work as not only a binary prediction models for MP/non-MP, 

but predict the GO terms of the multiple functions of the predicted MPs. Such an exten-

sion would give a more comprehensive understanding of the functional landscape of MPs, 

even for the predictions made in genome-scale. Current MPFit model makes the MP pre-

diction essentially from the functional clusters in the protein association networks (i.e., 

PPI, GE etc.). Performing GO enrichment on the functional clusters of the interaction 

networks could be start to find out the different biological functions predicted for the 

MPs. Another future direction on MPFit model would be make it’s feature space broader 

with usage of more omics data, for example, incorporation of KEGG [2] pathway infor-

mation along with other omics association network of proteins. Lastly, development of 

publicly available servers for both the methods, i.e., MPFit and DextMP, would provide a 

huge platform for making blind MP prediction on novel proteins or genomes.  

 

5.2 Group function prediction 

Existing computational AFP methods aims at identifying individual functions of 

proteins, and there is no existing model that can identify protein’s group function. The 

perspective of “group” function annotation to a set of proteins opens up novel possibili-

ties of understanding the functional nature of complex cellular interactions of such pro-

tein groups.  In this research, we propose a model that takes groups of proteins found to 

work together in certain biological experiment, disease, or pathway, maps them to several 

functional linkage networks and integrates them, and then uses an iterative clustering and 

graphical modeling based schema to find group functions of the input proteins. As a 
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backbone to the function prediction model of protein group, we use an integration of a 

number of major protein interaction networks. We propose a conditional random field 

(CRF)-based framework that predicts function of the “protein groups” in the network 

based on group neighborhood, and iteratively updates the function annotation of the un-

known group members such that it reflects the protein’s group activity.  

A future direction on this group function prediction problem would be to answer 

other associated questions regarding “group function” of the set of proteins, such as: A. 

for an input group of proteins that may have multiple group function, can the group func-

tions be directly inferred from the function annotations of the clusters in the GFP model, 

rather the enriched GO terms of the predicted functions of the input gene groups? B. 

What are the proteins other than the ones in the input gene group that may be involved in 

the group functions? C. From the predicted group functions, can the unannotated input 

protein’s functions inferred in a more detailed level than the group function notion? Ex-

tension of the current GFP model that can answer these associated questions would be 

useful in understanding the group activities of proteins in the cell. 

 

5.3 Update on AFP methods and CAFA challenge 

An essential task in bioinformatics is to propose and develop new tools and new 

ideas. However, to support the biology community, it is equally important to maintain 

and update previously-developed software tools so that users can continue using them. 

For a prediction method, it is important that the prediction accuracy be improved over 

time so that it can keep pace with other existing methods of the same type. Since the orig-

inal development of PFP and ESG, the two methods have been benchmarked in CAFA1 
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by the organizers [54] as well as by our group [51] and their webservers have been re-

cently renovated so that users can obtain prediction information in more organized fash-

ion [52] (http://kiharalab.org/pfp and http://kiharalab.org/esg). The participation in CA-

FA2 provided us with a suitable opportunity to update databases for PFP and ESG and to 

develop ensemble approaches.  

We have shown that the prediction performance of PFP and ESG improved by 

updating databases. Although it may sound obvious to expect better performance with 

updated databases, it is not necessarily a given, especially considering the recent very-fast 

expansion of databases. This fast expansion has caused several problems, such as increas-

ing sparseness of useful data (i.e. functional annotation) relative to the size of sequence 

databases and error propagation of incorrect annotations [182].  

The ensemble methods, CONS and FPM, showed the largest average Fmax score 

over all individual component methods except for ESG. The six individual methods used 

in the ensemble methods may not be the best choice, since their performances were im-

balanced, i.e. a large discrepancy in accuracy between PFP/ESG and the rest of the meth-

ods. Also, it is noteworthy that all the individual methods use the same source of infor-

mation as input, i.e. sequence data. Since both CONS and FPM seem to have an ability to 

assemble the more accurate GO term set as predictions compared to individual methods 

(Figure 4.7), it will be interesting to apply the two ensemble methods to integrate a better 

combination of individual methods that use a wide variety of information sources such as 

protein structures and protein-protein interaction data and whose performance is more 

balanced.

http://kiharalab.org/pfp
http://kiharalab.org/esg
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         Appendix A More on Moonlighting Proteins 

Table A1 Moonlighting proteins identified in E. coli 

Protein-

Name/UniProt 

ID/gene ID 

First Function Additional Functions Class Ref 

b0118/P36683

/AcnB 

Aconitate hydratase Post-transcriptional 

regulation; mRNA 

binding 

I [77] 

b1019/P31545

/EfeB 

Peroxidase on  

guaiacol 

Iron assimilation from 

heme; response to 

DNA damage stimulas 

I [183] 

 

b1276/P25516

/AcnA 

Aconitate hydratase Post-transcriptional 

regulation; mRNA 

binding 

I [77] 

 

b1967/P31658

/HchA 

Molecular chaperone Glyoxalase activity I [184] 

b3183/P42641

/ObgE 

GTPase Role in ribosome bio-

genesis 

I [185,186] 

b4151/P0A8Q

3/FrdD 

Membrane bound res-

piratory protein (an-

aerobic condition) 

Role in bacterial fla-

gellar switch (aerobic 

conditions) 

I [187] 

b4152/P0A8Q

0/FrdC 

Membrane bound res-

piratory protein (an-

aerobic condition) 

Role in bacterial fla-

gellar switch (aerobic 

conditions) 

I [187] 

b4153/P0AC4

7/FrdB 

Membrane bound res-

piratory protein (an-

aerobic condition) 

Role in bacterial fla-

gellar switch (aerobic 

conditions) 

I [187] 
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b4154/P00363/ 

FrdA 

 

Membrane bound 

respiratory protein 

(anaerobic condi-

tion) 

Role in bacterial flagellar 

switch (aerobic conditions) 

I [187] 

b4179/P21499/

Rnr 

Helicase RNase I [188] 

b4260/P68767/ 

PepA†b 

Plasmid  

recombination 

Peptide catabolic process; 

DNA binding/transcriptional 

control 

I [189] 

b0161/P0C0V0/

DegP† 

Chaperone Proteolysis II [190] 

 

b0509/P77161/

GlxR 

Glyoxylate  

metabolism 

Allantoin assimilation; DNA 

damage response 

II [191,

192] 

b0957/P0A910/

OmpA 

 

Transport 

 

1. Viral entry  2.DNA damage 

response 

II [191,

193] 

 

b1317/P77366/

YcjU 

 

Carbohydrate  

metabolism 

1. Cell-to-cell plasmid trans-

fer 2. Reduce the lethal effects 

of stress. 

II [194,

195] 

b1710/P06610/

BtuE 

Glutathione  

peroxidase 

Non-essential role in vitamin-

B12 transport 

II [196,

197] 

b2415/P0AA04/

PtsH 

Phosphocarrier pro-

tein essential in sug-

ar transport 

Positive regulation of glyco-

gen catabolism 

II [198] 

 

b2552/P24232/

Hmp 

(aerobic condition) 

Nitric oxide dioxy-

genase (NOD) 

(anaerobic condition) Ampli-

fier of superoxide stress, NO 

and FAD reductase 

II [111,

199]   

b2949/P0A8I1/

YqgF 

Putative Holliday 

junction resolvase 

Transcription anti-termination II [200,

201] 

b3414/P63020/

NfuA 

Fe-S biogenesis Necessary for the use of ex-

tracellular DNA as the sole 

source of carbon and energy 

II [202] 
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b3463/P0A9R7/

FtsE 

Cell division Salt transport by  

ABC-Transporter 

II [112]   

b3706/P25522/

MnmE 

tRNA modification Regulating glutamate-

dependent acid resistance 

II [203] 

b0135/P31058/

YadC 

Cell adhesion Reduce lethal effects of stress III [195] 

b0284/P77489/

YagR 

Putative xanthine  

dehydrogenase 

DNA damage response III [191] 

b0543/P23895/ 

EmrE 

Multidrug trans-

porter 

DNA damage response III [191] 

b1018/P0AB24/

EfeO 

Involved in Iron up-

take 

Response to lethal antimicro-

bial and environmental stress 

III [195]   

b2037/P37746/

RfbX 

Putative O-antigen 

transporter 

DNA damage response III [191] 

b2147/P25889/ 

PreA 

Pyrimidine base 

degradation 

Required for swarming  

Motility 

III [204] 

b2290/P0A959/

AlaA 

Involved in biosyn-

thesis of  

alanine 

Response to lethal antimicro-

bial and environmental stress 

III [195]   

 

b3191/P64602/

MlaB 

Phospholipid ABC 

transporter 

Response to lethal antimicro-

bial and environmental stress 

III [195]   

b3233/P0A9Q9/

Asd 

Aspartate-

semialdehyde  

dehydrogenase 

DNA damage response III [191] 

b4177/P0A7D4/

PurA 

Adenylosuccinate 

synthetase 

DNA damage response III [191] 

b4383/P0A6K6/

DeoB 

Phosphopentomu-

tase 

DNA damage response III [191] 

(Continued) 
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Table A2 Multi-domain proteins with multiple functions in E.coli 

gene ID 

/Protein 

Name/UniProt 

ID 

First Function Additional Functions Ref. 

b0002/P00561/

ThrA 

Aspartokinase Homoserine dehydrogenase [205] 

b0529/P24186/

FolD 

Oxidation of methylene-

tetrahydrofolate 

Hydrolysis of  

methenyltetrahydrofolate 

[206] 

 

b1241/P0A9Q7

/AdhE 

Alcohol dehydrogenase 

 

Acetaldehyde dehydrogen-

ase; Pyruvate-formate-lyase 

deactivase 

[207,208] 

b1888/P07363/

CheA 

Chematoxis sensor kinase Regulation of protein; 

dephosphorylation 

[77,209, 

210] 

b2255/P77398/

ArnA 

Oxidative decarboxylation 

of UDP-glucuronic acid 

Formyltransferase [175] 

b3052/P76658/

HldE 

D-beta-D-heptose  

7-phosphate kinase 

D-beta-D-heptose  

1-phosphate  

adenosyltransferase 

[211] 

b3368/P0AEA

8/CysG 

SAM-dependent  

methylation 

NAD-dependent ring dehy-

drogenation;  

Ferrorochelation 

[212] 

 

b3650/P0AG24

/SpoT 

ppGpp synthase ppGpp hydrolase [213,214] 

b3940/P00562/

MetL 

Aspartokinase Homoserine dehydrogenase [205] 

b4390/P27278/

NadR† 

Transcriptional regulator Nicotinamide mononucleo-

tide adenylyltransferase; 

Ribosylnicotinamide kinase 

[215] 
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Table A3 The MPR3 moonlighting protein dataset.  

Uniprot ID 

/ProteinName  

Organism Primary 

Function 

Secondary Function(s) Ref 

P79149/Pinin Canis famil-

iaris 

Induce 

junction 

formation 

and en-

hance cell 

aggregation 

Component of the RNP 

structure 

[216] 

P27487/DPP4 Homo sapiens Serine pro-

tease 

1.  Cell surface 

glycoprotein 

receptor for CAV1 

2. Co-stimulatory 

protein involving in 

T-cell receptor-

mediated T-cell 

activation and 

proliferation. 

3. Binding collagen 

and fibronectin 

4. Involvement in 

apoptosis 

[217]  

Q91XR9/GPx-4 Mus musculus Antioxidant 

of mature 

sperm 

Structural protein of the 

mitochondrial capsule 

[218] 

O35242/FAN Mus musculus Apoptosis Inflammatory signalling [219] 

E3D2R2/Fructo

se-1, 6-

bisphosphate 

aldolase  

Neisseria 

meningitidis 

Glycolytic 

enzyme 

Host-cell invasion [220] 

Q7L0Y3/ 

MRP1 

Homo sapiens tRNA me-

thyltrans-

ferase 

Dehydrogenase [221] 

Q9Y7F0/Peroxi

redoxin TSA1 

Candida  

albicans 

Antioxi-

dant against 

sulfur-

Involved in  morphology [222] 



185 

 

 

1
8
5
 

containing 

radicals 

P48237/CCM1 Saccharomy-

ces cerevisiae 

Introns re-

moval in 

mRNA 

maturation 

Maintains the steady-state 

levels of the mitoribosome 

small subunit RNA 

[223] 

P11325/Nam2p Saccharomy-

ces cerevisiae 

Mitochon-

drial 

leucyl-

tRNA syn-

thetase 

Mitochondrial RNA splic-

ing activity 

[224] 

Q9P2J5/LeuRS Homo sapiens tRNA syn-

thetase 

Translocation and activa-

tion of mTORC1 to lyso-

somal membrane 

[225] 

P47897/GlnRS Homo sapiens tRNA syn-

thetase 

Suppresses apoptotic acitiv-

ities 

[225] 

Q6DRC0/SerR

S 

Danio rerio tRNA syn-

thetase 

Regulates development of 

closed circulatory system 

[225-

227] 

P00883/Fructos

e-bisphosphate 

aldolase A 

Oryctolagus 

cuniculus 

Glycolytic 

enzyme 

Regulation of cell mobility [228] 

P0A518/Cpn60-

1  

Mycobacte-

rium tubercu-

losis 

Prototypic 

molecular 

chaperone 

Osteoclast-inhibitory action [228] 

P0A518/Cpn60-

2 

Mycobacte-

rium  

tuberculosis 

Prototypic 

molecular 

chaperone 

Stimulates macrophage pro-

inflammatory cytokine syn-

thesis 

[228] 
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Table A4 P-value from Kolmorov-Smirnov test for clustering profiles 

For the clustering profiles shown as figures, the Kolmorov-Smirnov test was performed 

to examine if the number of clusters formed at specified cutoff is significantly different 

between a moonlighting protein dataset (MPR1, 2, 3, or the E. coli MP set) and E. coli 

non-moonlighting protein set.  Refer to corresponding figure captions and text. 

 

Dataset MP sets compared with the E. coli non-MP set 

Description of data Score 

Cutoff 

MPR1 MPR2 MPR3 E. coli MP 

Number of BP GO 

term clusters grouped 

with SSrel  

0.1 < 0.05 < 0.05 < 0.05 < 0.05 

0.5 < 0.05 < 0.05 < 0.05 < 0.05 

1.0 < 0.05 < 0.05 < 0.05 < 0.05 

Number of MF GO 

term clusters grouped 

with SSrel  

0.1 < 0.05 < 0.05 0.37 0.10 

0.5 0.07 0.12 0.10 0.25 

1.0 < 0.05 < 0.05 0.09 < 0.05 

Number of clusters 

of interacting pro-

teins grouped with 

funsim  

0.2 0.61 0.14 0.60 0.16 

0.6 0.96 0.93 < 0.05 < 0.05 

0.8 < 0.05 < 0.05 < 0.05 < 0.05 

Number of clusters 

of interacting pro-

teins grouped with 

BP-funsim  

0.2 0.42 0.33 0.16 < 0.05 

0.6 0.89 0.69 < 0.05 < 0.05 

0.8 0.08 0.19 < 0.05 < 0.05 

Number of clusters 

of coexpressed pro-

teins grouped with 

funsim  

0.2 -  - - 0.83 

0.6 - - - 0.75 

0.8 - - - 0.38 

Number of clusters 

of coexpressed pro-

teins grouped with 

BP-funsim  

0.2 - - - 0.82 

0.6 - - - 0.35 

0.8 - - - 0.17 

Number of clusters 

of phylogenetically 

related proteins 

grouped with funsim 

(Fig. 8B) 

0.2 0.07 0.59 0.26 0.27 

0.6 0.16 0.08 0.23 0.30 

0.8 0.15 0.45 < 0.05 0.08 

Number of clusters 

of phylogenetically 

related proteins 

grouped with BP-

funsim  

0.2 0.07 0.70 0.47 0.65 

0.6 0.15 0.08 0.17 0.36 

0.8 0.11 < 0.05 < 0.05 0.29 
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A 1 Feature selection procedure of MPFit 

Detail discussion of feature selection process in the protein-protein interaction 

(PPI) feature domain is given here. PPI data was extracted from the STRING database 

[96]. For each protein in the dataset of moonlighting and non-moonlighting proteins (MP 

and non-MP), we extracted PPI interactions that had sufficient confidence score (> 0.4) in 

STRING. 124 moonlighting proteins (46.3%) and 61 non-moonlighting proteins (37.7%) 

in the dataset had such PPI interactions in STRING. Next, we checked the functional di-

vergence of interacting proteins. Interacting proteins for each MP or non-MP were clus-

tered using GO term-based functional similarity. To quantify the functional similarity of 

two proteins, we used the funsim score [93]. Computation of funsim score is described in 

Methods section 2.4.1.2, Eqn 2.2-2.8.  

Using this framework of GO-based functional similarity (Eqn. 2.5) between two 

proteins, we clustered the interacting proteins of each of the MPs and non-MPs in the da-

taset and created a clustering profile (Fig. S1). A clustering profile shows the number of 

clusters formed by using ten different cutoff values (from 0.1 to 1.0 with an interval of 

0.1). For PPI network, we selected three different GO category combinations (Fig. S1). 

Using these three clustering profiles (Fig. S1A, S1B, S1C), we selected the number of 

protein clusters (y-axis) at 5 score thresholds each (0.1, 0.3, 0.5, 0.7, and 0.9 at the x-

axis). This procedure constructs 15 features in total for each MPs and non-MPs in the PPI 

feature domain.  
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 Figure A1  Clustering profiles of interacting proteins of MP and non-MP 

Physically interacting proteins for a MP or a non-MP were clustered using 5 cutoff val-

ues of a functional similarity score. Single linkage clustering was used. (A-B) the aver-

age number of clusters of interacting proteins relative to the number of interacting pro-

teins. The funsim score with all three GO categories was used for A, and the funsim score 

with BP & MF GO term only in Eqn. 2.5 was used for B.  C) the funsim score with all 

three GO categories was used. Note that the y-axis is the average number of clusters per 

interacting proteins in the PPI network, which is different from the value used in (A). 

 

Similar feature selection procedure was used for the other four features, i.e., GE using 

the COEXPRESdb database [115], GI using the BioGRID database [116], Phylo from the 

STRING database [96], and GO from Uniprot [86] and Gene Ontology [43]. For the NET 

feature domain, three graph properties of proteins, namely, degree centrality, closeness 

centrality, and between-ness centrality, based on the PPI network were computed as fea-
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tures. For the DOR feature domain using the D2P2 database [108], we computed three 

properties of protein’s intrinsically disordered regions, namely, the number of disordered 

regions, the length of disordered regions, and the proportion of disordered regions in the 

sequence.  

 

A 2 Performance of MPFit with random forest for GO and all omics-based feature 

combinations 

 

 

Figure A2 Performance of MPFit with random forest. 

Results of 5-fold cross validation of MPFit with random forest classifier for the GO 

based features, and all possible feature combinations of the six omics-based features. 

Feature legends – GO: Gene Ontology, PPI: Protein-Protein Interactions, Phylo: Phylo-

genetic profile, GE: Gene Expression, DOR: DisOrdered Regions, GI: Genetic Interac-

tions, NET: 3 graph properties – betweenness, degree centrality, closeness centrality. F-

score computed as 2-class weighted average over MP/non-MP class. Coverage was com-

puted as the mean protein coverage of MP/non-MP classes. For combinations with the 

same number of features, the results are sorted by their F-scores. 
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Numbers 1-64 shown on the x-axis represent the following feature combinations: 

 

1:GO , 2:GE , 3:DOR , 4:Phylo , 5:GI , 6:PPI , 7:NET  

8:Phylo+GI , 9:Phylo+NET , 10:Phylo+GE , 11:PPI+Phylo , 12:Phylo+DOR , 

13:PPI+GE , 14:GE+DOR ,15:PPI+GI , 16:PPI+DOR , 17:PPI+NET , 18:DOR+NET , 

19:GE+GI , 20:GI+DOR , 21:GE+NET , 22:GI+NET 

23:Phylo+GI+NET , 24:PPI+Phylo+GE , 25:PPI+GE+GI , 26:PPI+GE+DOR , 

27:GE+DOR+NET ,28:PPI+GE+NET , 29:Phylo+GE+GI , 30:Phylo+GE+DOR , 

31:PPI+Phylo+DOR 32:Phylo+GE+NET , 33:Phylo+GI+DOR , 34:GE+GI+DOR , 

35:PPI+Phylo+GI , 36:Phylo+DOR+NET , 37:PPI+Phylo+NET , 38:PPI+GI+NET , 

39:PPI+DOR+NET , 40:GI+DOR+NET , 41:PPI+GI+DOR , 42:GE+GI+NET 

43:Phylo+GE+GI+DOR , 44:PPI+Phylo+GE+DOR , 45:PPI+Phylo+GE+NET , 

46:Phylo+GE+DOR+NET , 47:PPI+GE+GI+NET , 48:PPI+GE+DOR+NET , 

49:PPI+Phylo+GI+NET 50:PPI+GE+GI+DOR , 51:PPI+Phylo+GE+GI , 

52:Phylo+GE+GI+NET , 53:GE+GI+DOR+NET , 54:PPI+Phylo+DOR+NET , 

55:PPI+Phylo+GI+DOR , 56:Phylo+GI+DOR+NET , 57:PPI+GI+DOR+NET 

58:Phylo+GE+GI+DOR+NET , 59:PPI+Phylo+GE+DOR+NET , 

60:PPI+Phylo+GE+GI+DOR , 61:PPI+GE+GI+DOR+NET , 

62:PPI+Phylo+GE+GI+NET , 63:PPI+Phylo+GI+DOR+NET , 

64:PPI+Phylo+GE+GI+DOR+NET 

 

Note that the coverage generally increases as the number of used features increases be-

cause missing features were imputed for a protein that have at least one feature among a 

particular combination considered.  
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A 3 Performance of MPFit with random forest without imputation  

 

Figure A3  Performance of MPFit with RF without missing feature imputation.  

Results of a five-fold cross validation were reported. Coverage is reported separately for 

the MP class (circles) and non-MP class (triangles). The feature combinations on the x-

axis are the same as Fig. A.2: 

 

1:GO , 2:Phylo , 3:PPI , 4:NET , 5:DOR , 6:GE , 7:GI 

8:PPI+Phylo , 9:Phylo+DOR , 10:Phylo+NET , 11:DOR+NET , 12:PPI+DOR , 

13:Phylo+GE , 14:GE+DOR , 15:GE+NET , 16:PPI+NET , 17:PPI+GE , 18:PPI+GI , 

19:GI+DOR , 20:GI+NET , 21:GE+GI , 22:Phylo+GI 

23:Phylo+GE+DOR , 24:PPI+Phylo+DOR , 25:Phylo+GE+NET , 26:PPI+GI+DOR , 

27:PPI+Phylo+NET , 28:Phylo+DOR+NET , 29:GE+DOR+NET , 30:PPI+GE+NET , 

31:PPI+DOR+NET , 32:PPI+GE+DOR , 33:PPI+Phylo+GE , 34:GI+DOR+NET , 

35:PPI+GI+NET , 36:PPI+GE+GI , 37:GE+GI+DOR , 38:GE+GI+NET 

39:Phylo+GI+DOR , 40:PPI+Phylo+GI , 41:Phylo+GI+NET , 42:Phylo+GE+GI 

43:Phylo+GE+DOR+NET , 44:GE+GI+DOR+NET , 45:PPI+Phylo+GE+NET , 

46:PPI+GE+DOR+NET , 47:PPI+Phylo+GE+DOR , 48:PPI+Phylo+DOR+NET , 

49:PPI+GI+DOR+NET , 50:PPI+GE+GI+DOR , 51:PPI+GE+GI+NET , 

52:PPI+Phylo+GI+DOR , 53:Phylo+GI+DOR+NET , 54:Phylo+GE+GI+NET , 

55:PPI+Phylo+GI+NET , 56:Phylo+GE+GI+DOR , 57:PPI+Phylo+GE+GI 
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58:PPI+GE+GI+DOR+NET , 59:PPI+Phylo+GE+DOR+NET , 

60:PPI+Phylo+GE+GI+DOR , 61:Phylo+GE+GI+DOR+NET , 

62:PPI+Phylo+GE+GI+NET , 63:PPI+Phylo+GI+DOR+NET , 

64:PPI+Phylo+GE+GI+DOR+NET 

 

Note that the coverages are low because no imputation was performed. 

 

A 4 Random forest classifier with a probabilistic imputation  

We also examined a different way of missing feature imputation. In the alterna-

tive approach, unlike filling missing features by voting using temporarily assigned feature 

values as described in Methods (termed “explicit imputation”), the splitting probabilities 

in random forest that were learned from the training data were used for imputation.  The 

concrete pipeline of this so-called “probabilistic imputation” is as follows: first, we train 

the random forest with only those proteins that have non-missing features in a certain fea-

ture combination. In each branch of each decision tree in the random forest, a fraction is 

learned (and stored) from the training data that indicates what portion of the proteins in 

the training set was split with that branch. Then we run down each protein Pi in the test 

data through each tree in the trained random forest. Whenever Pi falls into a tree node 

that splits based on a feature which is missing in Pi, we split Pi using the branch probabil-

ities associated with that node that we learned from the training data. Finally, a majority 

vote is taken for Pi counting the number of trees that classifies Pi in MP/non-MP class. 

Two slightly different ways of the probabilistic imputation were implemented. The first 

method takes a weighted majority vote of the trees that classifies a test protein Pi as 

MP/non-MP, where a weight for one tree Ti is the fraction that is learned from the train-
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ing data for the leaf branch of Ti that leads to a MP/non-MP class for Pi (Random Forest 

Probabilistic Imputation, Weighted, RF-PI-W). The second method simply takes a non-

weighted majority vote for the test data point Pi (RF-PI-NW, Random Forest Probabilis-

tic Imputation, Not Weighted). 

Fig. S4 shows that the explicit imputation overall outperforms the two probabilistic im-

putation methods. Indeed, the explicit imputation showed higher F-score for all the fea-

ture combinations except for two cases: The DOR+NET combination had a higher F-

score with RF-PI-NW (difference is 0.0156) and DOR had a higher F-score with RF-PI-

W than the explicit imputation (difference 0.0139). Comparing the two probabilistic im-

putation methods, the non-weighted version (RF-PI-NW) showed a higher F-Score than 

its weighted counterpart (RF-PI-W) in 38 out of 64 (59.38%) feature combinations. 

 

Figure A4 Performance comparison of explicit and probabilistic imputation.  

The former is described in Methods. Values shown are the weighted class average F-

score over fivefold cross validation. RF-PI-W: Random Forest Probabilistic Imputation, 

Weighted; RF-PI-NW: Random Forest Probabilistic Imputation, Not Weighted. See text 

for details. 
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The reason why the explicit imputation worked better than the probabilistic imputation 

would be because the latter performs training on only a small the portion of the dataset 

that have no-missing features for a certain feature combination. For example, for a com-

bination of all six omics features, PPI+Phylo+GE+GI+DOR+NET, there are only eight 

proteins with no missing features that could be used for training the probabilistic imputa-

tion. This lack of sufficient training data resulted in poor F-scores for MPFit with proba-

bilistic imputation (0.409 for both RF-PI-NW and RF-PI-W), which contrasted with the 

good performance exhibited by MPFit with explicit imputation (F-score: 0.721) 

 

A 5 DextMP additional Data 

 

Figure A5 DextMP parameter tuning for TFIDF 

5-fold cross validation F-score for protein-level MP prediction for different majority vote 

cut-offs with TFIDF language model. 
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Figure A6 DextMP parameter tuning for LDA 

5-fold cross validation F-score for protein-level MP prediction for different majority vote 

cut-offs with LDA language model. 

 

 

Figure A7 DextMP parameter tuning for DEEP 
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Figure A8 DextMP parameter tuning for PDEEP 

5-fold cross validation F-score for protein-level MP prediction for different majority vote 

cut-offs with PDEEP language model. 

 

 Table  A5 Selected optimal parameters for DEEP and LDA for different  classifiers 

 

 LR RF SVM GBM 

LDA-title # of topics = 50 # of topics = 70 0 # of topics = 60 # of topics = 

50 

DEEP-

title 

min_count = 5 

window = 3 

size = 120 

min_count = 5 

window = 3 size 

= 140 

min_count = 5 

window = 2 size 

= 80 

min_count = 

5 window = 

2 size = 140 

LDA-

abstract 

# of topics = 70 # of topics = 50 0 # of topics = 20 # of topics = 

70 

DEEP-

abstract 

min_count = 3 

window = 4 

size = 180 

min_count = 3 

window = 2 size 

= 20 

min_count = 5 

window = 7 size 

= 20 

min_count = 

2 window = 

5 size = 20 

LDA-

function 

# of topics = 70 # of topics = 80 0 # of topics = 10 # of topics = 

50 

DEEP-

function 

min_count = 3 

window = 8 

size = 180 

min_count = 4 

window = 4 size 

= 100 

min_count = 1 

window = 6 size 

= 20 

min_count = 

1 window = 

2 size = 40 
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Appendix B More on Group Function Prediction 

 

Figure B1 Six human PPI cluster selection for CRF validation 

A human protein-protein interaction network of 6124 human proteins that are involved in 

112,895 interactions are clustered and out of 16 clusters that had at least 50 member 

proteins, 6 clusters are selected for Fig. 3-4 that have a non-zero fraction of GO term 

distributions in the annotations of the proteins in the cluster. 
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Figure B2 CRF cross validation for 14 Human PPI clusters. 

Top: average F-score, Middle: average precision and Bottom: average Recall         
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Figure B3 GFP f-score of GO removal simulations 

Group function prediction to 9 groups of proteins. F-score of prediction was reported 

after removing a fraction of GO terms.  
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Figure B4 GFP recall of GO removal simulations 

Group function prediction to 9 groups of proteins. Recall of prediction was reported after 

removing a fraction of GO terms.  
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Figure B5 GFP f-score of protein removal simulations 

 Group function prediction to 9 groups of proteins. F-score of prediction was reported 

after removing a fraction of proteins. 
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Figure B6 GFP recall of protein removal simulations 

Group function prediction to 9 groups of proteins. Recall of prediction was reported after 

removing a fraction of proteins. 
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