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Abstract

Understanding the etiology of complex disease remains Heclgg in biology. In re-
cent years there has been an explosion in biological dassstildy investigates machine
learning and network analysis methods as tools to aid catelidisease gene prioritisa-
tion, specifically relating to hypertension and cardiové&cdisease.

This thesis comprises four sets of analyses: Firstly, nanisymous single nucleotide
polymorphisms (nsSNPs) were analysed in terms of sequertstaucture based prop-
erties using a classifier to provide a model for predictinigt#eious nsSNPs. The degree
of sequence conservation at the nsSNP position was founel tieebsingle best attribute
but other sequence and structural attributes in combimatgre also useful. Predictions
for nsSNPs within Ensembl have been made publicly available

Secondly, predicting protein function for proteins with alosence of experimental
data or lack of clear similarity to a sequence of known fumttwas addressed. Pro-
tein domain attributes based on physicochemical and pgestlgtructural characteristics
of the sequence were used as input to classifiers for prediotembership of large and
diverse protein superfamiles from the SCOP database. Aohenent method was in-
vestigated that involved adding domains to the trainingskettthat are currently absent
from SCOP. This analysis resulted in improved classifieuesy, optimised classifiers
achieved 66.3% for single domain proteins and 55.6% wheludinty domains from
multi domain proteins. The domains from superfamilies Wity sequence similarity,
share global sequence properties enabling applicatiobg tdeveloped which compli-
ment profile methods for detecting distant sequence relstips.

Thirdly, a topological analysis of the human protein intdomne was performed. The
results were combined with functional annotation and sege®ased properties to build
models for predicting hypertension associated proteiriee Study found that predicted
hypertension related proteins are not generally assaciatth network hubs and do
not exhibit high clustering coefficients. Despite this,ythend to be closer and better
connected to other hypertension proteins on the interacteawork than would be ex-
pected by chance. Classifiers that combined PPI networkaauid sequence and func-

tional properties produced a range of precision and recafes according to the applied



weights.

Finally, interactome properties of proteins implicatedcardiovascular disease and
cancer were studied. The analysis quantified the influe(ddtral) nature of each pro-
tein and defined characteristics of functional modules aitbvgays in which the disease
proteins reside. Such proteins were found to be enrichetii2vithin proteins that are in-
fluential (p<0.05) in the interactome. Additionally, they cluster ingaey complex, highly
connected communities, acting as interfaces betweenptaufirocesses more often than
expected. An approach to prioritising disease candidasedon this analysis was pro-
posed.

Each analyses can provide some new insights into the effatentify novel disease

related proteins for cardiovascular disease.
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Chapter 1

Introduction

1.1 Introduction

The science of biology describes the organisation and pseseof organisms at each
level ranging from the molecular up to the ecosystem (Rsl&King, 1987). Each level
has connected, complex systems and understanding themslaips and connections be-
tween the component parts is an important challenge. Keyntenstanding each level
has been the move away from reductionist approaches to stlagproaches (Katagiri,
2003). Reductionists focus on one element of a system wihaitim to learn everything
about that element. Reductionist approaches have bear smatbcessful and continue to
be important in understanding the details of the componarispvhich will facilitate a
systems level understanding since we know more about tingdodl building blocks. In
contrast, wholist approaches observe all the componeats@cific level together.
Wholist approaches have led to a range of terms with the suffbe(eg. genome,
transcriptome, proteome), all are used to describe all timeponents of a system at a
particular level. Terms ending komics(eg. genomics, transcriptomics, proteomics) are
used to describe the approaches and technologies for studgich level, and allow us
to get a snapshot of these whole systems at a particular(fevees and -omics glossary
taxonomy, 2009). Genomics technologies include genome Vinkage screens where
variable Simple Sequence Repeats (SSRs) are used as raolearkers for a range of
applications including mapping disese genes and forensBEnome wide association

(GWA) studies are a second approach, in this case the \ariati genotype frequen-
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cies of markers such as single nucleotide polymorphism®€3ldre compared between
cases and controls or are tested for association with a itpiarg trait. SNPs are genetic
variations representing a simple single base pair diftegallele) between individuals
at a particular position within the DNA sequence, they anegeeted to contribute to the
causes of many complex traits. SNP arrays enable idenidiicat SNP variation across
the genome using 1000’s of SNPs in 1000’s of people and patgrtentifying associa-
tions with disease. Transcriptomics technologies inckx@ession microarrays for iden-
tifying genes that are over or under expressed in diseasetadf tissue relative to normal
tissues. Other techniques include the analysis of epigetteinges leading to phenotypic
variation through mechanisms such as DNA methylation @mognics) and the study of
protein-protein interactions (PPI) through approacheh sis yeast two-hybrid screens,
potentially leading to improved understanding of biol@giinctions (interactomics). At
all levels, the relationships between components of a syste of interest and can be
considered as networks where the components are vertidebarelationships are edges
(Junker & Schreiber, 2008). These large emerging datasets éach network provide
scientists with a wealth of data that has to be explored,riestand understood using
approaches that include data mining and the applicatioraghine learning and network
analysis.

A very important application is in the study of diseases, chhoften involves the
disruption of a functional pathway involving multiple gesrend their products. In genome
wide linkage screens regions as large as 30 million basedBlave been identified. In
GWA studies the associated regions tend to vary in size frdewakilobases (Kb) to
1000’s of Kb (McCarthyet al., 2008). With both types of study, investigators are left
with huge expanses of DNA which contain many hypotheticalege There is a need
to devise strategies to aid in the identification and piigation of genes within these
regions. The function of hypothetical genes must also bsidered. It is also important
to be able to isolate the functional SNPs from the multipl€Skhat are inherited together
in a linkage disequilibrium (LD) block. Candidate genes nadgo be prioritised and
knowledge of disease etiology may be acquired by biologiealork analysis of protein-

protein interactions contained within the human interano



Chapter 1. Introduction 15

The work described in this thesis investigates approaatreprédicting deleterious

SNPs and protein function and performing topological asialgf protein-protein interac-

tion (PPI) networks for the identification and prioritisatiof candidate genes for complex

diseases. The studies are focused on datasets from caditsadisease (cvd), hyper-

tension and cancer, but the methods can potentially beeapaiany disease phenotype.

The organisation of the thesis is as follows:

Chapter 1 introduces the rationale for the studies and ttiesfareas and discusses
the applied computational principles of machine learning graph theoretic ap-

proaches.

Chapter 2 describes the methods and results obtained fralysamg SNPs, using
supervised machine learning classifiers for predictingtéelous non-synonymous

SNPs (nsSNPs).

Chapter 3 describes the methods and results for predictotgip superfamily us-
ing classifiers with a set of sequence based attributes. artab/sis focuses on
large diverse superfamilies where it is difficult to assigndtion using traditional

sequence homology based methods.

Chapter 4 describes the methods and results obtained froraysug topological

properties of hypertension related proteins within the &nnmteractome. The re-
sultant hypertension protein network properties are costiwith sequence and
functional based information to build a model for predigtmovel candidate hyper-

tension related proteins.

Chapter 5 describes interactome analysis of proteins @aigd in cvd and cancer.
The influential nature of these proteins is quantified andranity structures are

analysed. An approach for prioritising cvd candidate gemskown.

Chapter 6 highlights the primary results, compares wittviptes work and de-

scribes possible future work and directions within the &ddields.
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1.2 An overview of Machine Learning

The increasing amount of information from numerous genamneghe easy access on the
world wide web has led to many opportunities for bioinforiositesearch. Algorithms are
required to extract information, knowledge and patterribiwithis data. Such algorithms
can be used to search the genomic space to determine a hyigdtia fits the space. In
this chapter we provide an overview of machine learning astdbe the main methods
used in this thesis.

Artificial intelligence (Al) falls within the field of comp@tr science and engineering,
it aims to produce computer programs that can cope with probslrequiring intelligent
behaviour, learning and adaptation. Machine learning isaadh of Al concerned with
the development of algorithms for learning (Michalskial., 1983). Deductive learning
is where a conclusion is arrived at using previously knowmsfar fulfilling conditions.
The conclusion is always true on condition of the facts bé&ing. In contrast, inductive
learning is where the facts may predict a conclusion withabability, but there is no
guarantee of the conclusion being true. Machine learnintpous use inductive learning
technigues to create programs by producing rules basedimmmawithin data sets. Sim-
ple pattern discovery alone may be more accurately clagdsiBedata mining. Machine
learning has many uses within the field of bioinformatics wehgatterns and rules are

used for well characterised examples to classify instaticgsare less well understood.

1.2.1 Supervised vs unsupervised algorithms

The three most common types of machine learning algoritmerssapervised learning
unsupervised learningndsemi-supervised learningSupervised learningr classifica-
tion learningtakes a set of examples that are classified, and createsfaudesdo classify
samples where the status is unknown. In contrassupervisedearning models a set of
inputs where labelled examples are not available. The iggoifinds a way of clustering
the data based upon the known features and then providesptiests for these clusters.
Semi-supervised learningilises both labelled and unlabelled instances in orderaate
a classifier.

Predicting whether a non-synonymous SNP (nsSNP) is disedasted or whether



Chapter 1. Introduction 17

a protein belongs to a certain functional group are questibat can be addressed via
machine learning methods. The methodopervised learnings appropriate as the aim
is to assign an instance, either a nsSNP or an unannotatesinpte one of a number of
classes. In the case of nsSNP classification it is possiblséca set of nsSSNPs where
the disease status is known as a training set to form a sete tiuat could be used to
make a prediction for nsSNPs where the function is unknowme Work performed in
this thesis utilisesupervised learningxclusively, so the focus from this point will be on
this approach. The supervised learning classifiers, stippotor machines (SVMs) and
decision trees (described below) are amongst the most calgrased classifiers within

the field of bioinformatics.

1.2.2 Support Vector Machines

Support vector machines (SVMs) are a kernel basgzbrvised learninglassifier devel-
oped by Corte & Vapnik (1995). They have been shown to be vecyrate in many
disciplines including bioinformatics, benefitting frometlability to handle high dimen-
sional data with a small number of instances, finding a go¢ahica between training set
accuracy and test data error. For a given set of trainingpvetabelled with two classes,
a SVM can find the optimal linear hyperplane that maximallyasates instances of the

classes by maximizing the margin between the two classgar@i.1).

1.2.2.1 Non-linear classification

Very often problems are not immediately linearly separabiel so the vectors must be
transformed into some higher dimensional space and thenaptiyperplane found in

this transformed feature space. Non-linear discrimimatan be achieved through the
application of a range dfernel functionsThe performance of the SVM is controlled by
this function and the regularization of the C parameter. Chmarameter is used to trade

between training errors and larger hyperplane margins.
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Support vector

Figure 1.1: Support vector machine (SVM) hyperplanes. Three hypegdane displayed; hl does
not separate the two classes (orange and blue circles) plaPages the classes with a small margin,
h3 with the maximum margin. The support vectors are circled
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1.2.2.2 MultiClass SVM

If there are more than two classes, various SVM techniques been designed to over-

come the problem.

One-vs-Others method The one-vs-others method is a simple method for dealing with
multi-class problems containing classes (Browret al., 2000). The problem is trans-
formed inton 2 way classifiers. Each classifier contains a single classdass'1’ and all

of the others classes combined as ‘class 2'.

For a query instance where the class is unknown the systésragainst each of the 2
class models to see whether it belongs to ‘class 1’ or ‘clasBits leads tan scores from
then classifiers. Ideally there will only be one case where theygiseassigned to ‘class
1'. In reality there may be false positives, whereby moratbae of the models assigns

the query to ‘class 1'. The complexity of ‘class 2’ may leadtte false positives.

Unique One-vs-Others method The unique one-vs-others method adds a second step
to the one-vs-others method for dealing with instances a/iieere are false positives
(Ding & Dubchak, 2001). This step involves the creation ofi&s classifiers for each

of the false positives. The final assigned class is the clegsmas selected most in these

models built from the false positives. In this step falseifpess should be eliminated.

One-vs-One method In the unique one-vs-others method 2-way classifiers afetbui
break the ties between the false positives. In the one-eppair wise coupling method,
the first step is abandoned altogether so the process is saagolely of the second step
of one against one classifiers (Hastie & Tibshirani, 1998)e Tinal chosen class is the
one that receives the most votes from each of these pair Vassifiers. This approach is
used by implementations such as SVM SMO (Platt, 1998) an8VM (Chang & Lin,
2001).

1.2.3 Decision Trees

Decision trees are supervised classifiers composed of & (frae structure) of decisions

(Quinlan JR, 1993). Each interior node of the tree relatesvariable where a decision is
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made on which branch to take based on the value of the varigb&decisions are usually
simple single attribute tests to divide the data. A leafespnts the predicted class based
on values at the nodes on the path from the root. Decisios traee the advantage over
many classifiers in that they produce interpretable rulesce(a tree has been built new
instances can be classified by starting at the root and follpw path down to a leaf.
An example of a decision tree can be seen in Figure 1.2 wheaetanty for the day is

chosen based on a number of attributes.

Weather?
Clear Raining
Car available?
No Xe‘s
Forecast?

Cloud \n
@

Figure 1.2: An example of a decision tree for choosing a weekend actsfitgywing decisions at the
nodes, and final classification at the leaves.

.
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When the attribute at a node is nominal, there will be one dirdor each attribute
value. If the attribute is continuous then it will usually §@it into 2 and a decision based
on whether the instance is above or below a threshold cutTfiere are a number of
methods for deciding which attribute should be used at eadl.nnformation gain of the
split is a commonly used measure, which measures the infameequired after using
the attribute as a classifier at a node subtracted from tbhenaftion required before using
the attribute as a classifier. The Gini measure calculatdisttal dispersion defined as a
ratio between 0 and 1 with lower values representing eqsdiilolition.

Decision trees apply varied criteria for halting tree grownhd then pruning it back.
This is done to prevent trees being produced that are todfepiecthe training dataset.
The aim is to produce a tree that is general enough to be dpjliany new instances
that require clasification, avoiding overfitting. The algfoms are efficient and therefore
able to handle large volumes of data due to the simple pariitg approach taken by the
algorithm. However, one drawback to this divide and congyp@roach is that the divisive
partitioning can mean that interesting relationships leetwattributes within the data can
be separated early on.

A very popular decision tree algorithm and one used in thesighis C4.5 (Quinlan
JR, 1993). Itis a very easy to use algorithm and is commoreg ugthin bioinformatics.
Performance of this classifier is often used as a benchmavkhtoh other classifiers
are compared. This algorithm uses information gain to pamtithe data at each node.
The algorithm is capable of handling many types of attrisutanpty nominal attributes,
nominal attributes, numeric attributes, unary attribptessing values, binary attributes,
and date attributes.

Random forest (RF) is a supervised classifier consisting wtipte decision trees
(Breiman, 2001) whereby the final class selected for an mestas the mode class se-
lected by the multiple decision trees. RF combines two nmeckearning methods of
‘bagging’ and ‘random feature selection’. Each tree ist@@drom a bootstrap sample of
the training data where about one-third of the cases arelgftout-of-bag (OOB) data).
OOB data is used to obtain an unbiased estimate of the errorgdilne training. This is

known as bagging. RF extends bagging because rather thag aitifeatures, RF ran-
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domly selects a subset of input variables to decide whasaecshould be made at each
node of the tree. Advantages of random forest classifielgdedhe fact that the error can
be balanced when the class population sizes are imbalancetthere are good methods
for handling missing data and overfitting can be avoided. dlgerithm can handle the
same array of attribute types as C4.5 (Quinlan, 1993).

Another decision tree based classifier used in this thediselPART decision list
which uses a separate-and-conquer approach. The algdnititats a partial C4.5 decision
tree in each iteration and makes the ‘best’ leaf into a rular{lke & Witten, 1998a). Again,

the algorithm can handle the same array of attribute typ€3ias.

1.2.4 Weka workbench

Weka is a freely available collection of machine learnirgpaithms for data mining tasks
(Witten & Frank, 1999) available from the web sitet p: / / ww. ¢s. wai kat 0. ac.
nz/ m / weka/ . The work in this thesis extensively used this workbench igman-
plementations of the various machine learning algorithifise workbench has its own
implementation of the C4.5 algorithm called J48. The alfpons can be applied to a
dataset through a graphical user interface (GUI), usingnancand line interface (CLI)
or called from Java code directly. Tools are included foadate-processing, classifica-
tion, regression, clustering, association rules, andadigation. The weka workbench is a
commonly used package within bioinformatics, with an egienlibrary called BioWeka,

created specifically for many common bioinformatics redatesks (Franlet al,, 2004).

1.2.5 Generating a classifier

In performing successful pattern recognition using cfessithere are a number of gen-
eral steps performed (Figure 1.3). Initially, the datagehstances and features are col-
lected, feature selection is then performed, the classifier trained, parameters are then
tuned for the chosen algorithm and finally the performanaduated. Feature selection
removes redundancy and noise leaving only the most distaitoiy features. The choice
of algorithm is important, some can deal with a large numlbarstances and features bet-

ter than others. For example, SVMs are good at coping with dimensionality datasets
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with a small number of samples, but these require a large atmadfumemory for large
datasets (Witten & Frank, 1999). Some, such as SVMs andidediges are sensitive to
imbalance in the training dataset whereas others such ag Baiyes are not (Witten &
Frank, 1999). Where possible it is preferrable to test a rarmb classifiers to identify
the most appropriate choice for the specific problem. Eveloaof the classifier aims
to avoid overfitting by making sure the rules are not speatfithe training dataset. The

classifier will often be validated on a separate datasetladteéng been trained and tested.

start

[Data coIIection}

|

[Feature selection}

[ Select 'classifier}

|

[Train classifier}

v
[ Validate classifier}

|

[ Evaluate classifier]

end

Figure 1.3: A typical machine learning approach (Al-Shahib, 2005)

1.2.5.1 Feature selection

Genomic data can be noisy, in that it is often extremely \deiavith some data even
being incorrectly annotated. Also the data may not be coma@ed annotation may be
missing for a number of training instances. Feature selectn help to remove or reduce

the effect of noisy data.
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1.2.5.2 Balanced vs unbalanced data

The number of instances belonging to each class in the nigaset may be imbalanced
resulting in a danger that the classifier will have a prefeedior selecting the most pop-
ulated class because the classifier assumes that there estargchance of an instance
belonging to this class as it is more prevalent (Barandek., 2003). The result is that

performance is reduced for the minority dataset. Howevenay be the case, such as
when detecting fraudulent telephone calls for example,dbgecting the minority case is

of greater importance (Fawcett & Provost, 1997). This camteaddressed in the nsSNP
analysis (Chapter 2) and when predicting hypertensioneglgenes based on network

topology (Chapter 4).

1.2.5.3 Evaluation of machine learning

A number of methods are available for evaluating machinenieg results and showing
the results are general enough to be applied to other datal@ial., 2001). Some of the
most common methods are described below. The various &saitlyshis study used all
methods except for the bootstrap method. The choice was degBnding on the size of

the dataset, the employed classifier, and whether the fidaigsrameters were tuned.

Independent test data: If the training dataset was used to measure overall perfocaa
of the classifier, an over optimistic result would be obtdin€herefore it is important to
evaluate performance on an independent test data set asgbisd way to gauge perfor-
mance on future unseen datasets. Thus partitioning a datestaining and independant

test datasets is appropriate where a dataset is large.

Cross validation: Cross validation is especially useful for smaller datagkthavi,
1995). The data is divided inta) number of ‘folds’. Each fold is treated as the test
dataset in turn, with the remainingl being used as training data. The performance of
the classifier on each fold is measured and then a final agcigraalculated based upon
the average of alt folds. Stratified cross validation ensures that the digtidn of class
instances in the fold is similar to the distribution in therquete dataset. Leave-one-out

cross validation is an extreme type of cross validation whgreach individual instance
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is held out in turn meaning there are the same number of feltlsese are instances. This

maximises the amount of data available for training but impotationally expensive.

Validation datasets: When performing classifier parameter tuning steps with gelar
dataset, three independent data sets are required: atyaiei, a validation set, and a test
set. The validation set is used to evaluate the effect ofgingralgorithm parameters and

is used to create the classifier but not used in the final estmaf accuracy.

Bootstrap: Bootstrapping creates a training dataset through samgpiithgeplacement
of the whole dataset meaning that the training dataset cataicorepeated instances
(Efron & Tibshirani, 1993). The test set is composed of datused in the training
set. The benefit is that a good size training set can be creltdthvi (1995) compared
bootstrapping and cross validation and showed the bestométhbe ten-fold stratified

cross validation in real-world datasets.

1.3 An overview of Network Analysis

Networks can be constructed from relationships that ex@svben a set of entities and
can be used to represent many types of biological data at teaelg, including gene ex-
pression, protein-protein interactions, signal trantdacand metabolic pathways, phy-
logenetic, ecological and ecosystem data (Junker & Scoere#®08). Network analysis
has only recently been applied to the world wide web, biaaband social networks,
and power grids. It is a rapidly growing field of research wthile analysis of biologi-
cal networks involving cross disciplinary research in b@l, mathematics, physics and
computer science. It is an important subject within the fadldioinformatics.

The rise of network approaches indicates a shift from a raohist approach to a
whole systems-level approach to understanding biologys fias only been possible in
recent years due to the decrease in the cost of computatobthandramatic increase
in biological data that has become available through ptejsach as the human genome
sequencing project (Landet al,, 2001; Venteet al, 2001). The network based approach

aims to assemble the ‘jigsaw’ of data produced through suitiatives.
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Key work by Watts & Strogatz (1998) showed that many netwalikplay common
properties: they contain highly connected subgraphs aod phth lengths. They termed
these networksmall-world networkslue to the similar commonly known ‘six degrees of
separation’ phenomonen seen between every person on Bartibasi & Albert (1999)
created a model for these networks and called theate-free networksThey found that
they follow a power law distribution in terms of the numbereafges incident to each
node. Thesacale-free networksontain a small number of highly connected nodes and
are very sturdy, being resilient to the random removal ofesodost studied biological

networks follow these rules.

1.3.1 Graph theory

Networks are modeled as graphs in order to allow analysisrafatgis a mathematical
object representing the networks as nodes and edges. Rialogtworks are represented
as different types of graph models depending on the netwdi&tworks modeled as
graphs can be directed, undirected or mixed. An undireategigcontains edges where
there is no edge direction. A protein-protein interacti®®l) network is an example
of a biological network that can be presented as an unddegtephG = (V, E),v €
V,e € FE where the proteins are nodeag @nd the interactions are edge$, (with edge
eqn connecting nodes andv (Junker & Schreiber, 2008). A directed graph represents
an interaction where information passes from one node totier, or one node has an
effect on the other. Gene regulation networks are an exaof@edirected network. A
mixed graph contains a combination of both types of int@évactirected and undirected.
Multigraphs are those where multiple edges exist betweeairagh nodes or vertices,
which are in the same direction if the graph is directed.

When measuring properties of the graphs, the type of graphtdiée considered.
For example, a pair of vertices in a directed graph are slyaannected if a path exists
between them when the direction of the edges is consideteslsfiortest path between a
pair of vertices is the path containing the minimal numbegdges. The path length is the
number of edges. A connected component of a graph is thestaxgember of nodes where

a path exists between each node pairing. As an example,&-igdirdisplays the largest
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Figure 1.4: An example of a biological network, namely the largest cated component of the
Arabidopsisprotein-protein interaction network. A red node represenprotein and a connecting
edge represents an interaction between a pair of proteihg. iffteractions were taken from the
IntAct database (Kerrieat al., 2007).

connected component of tAgabidopsis thaliangrotein-protein interaction network.
Attributes are often associated with graph nodes and edgeights or distances can
be applied to edges to quantify the relationship that existsveen the nodes. In the
construction of gene expression networks an edge can msyirthe level of coexpression
between the nodes. Protein names and functional informato be added to protein
nodes in a protein-protein interaction network.
Graphs are commonly stored as adjacency lists or matricess @mputer. In an
adjacency matrix rows and columns represent nodes and xelatnent’z,; = 1 if there
is an edge between nodesandt andG,; = 0 otherwise. Biological networks are often
stored as adjacency matrices, however they are very memiernysive and adjacency lists
are more appropriate when the number of edges is low. An ed¢ggdist comprises a row
for each node of a network. A row contains a list of all edgesd@nt to nodex.

Graph traversal algorithms are used to perform calculatmm each node within a
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network. Two search methods traditionally employed by Qralgorithms are depth first
searches (DFS) and breadth first searches (BFS) (Junker &iBeh 2008). In a depth
first search the algorithm starts off with a particular naten follows a path outwards as
far as possible for each neighbour. A breadth first seardts@ach neighbour first before
moving on to another vertex. Both methods can be encasedhwitioop to perform the
search for each connected component.

There are a number of measurement types that can be usecctiddke topology
of graph models constructed to represent biological nétsvoiThese include: global
network properties, centralities, motifs and clusteri@gntralities are used to rank nodes
in terms of their importance, motif analysis is the breakdm# sets of nodes into small
units, and clustering analysis describes the organisatidhe network on a number of
levels. Clustering can be used to define functional moduldspathways in biological
networks. Maybe one of the most commonly used graph measuessryday life is the
Google PageRank algorithm which is a variation of the commigenvector centrality
measure (Paget al., 1998). The algorithm considers each web page to be a notie wit
a link or edge between pages being a vote. Google looks atutmder of votes a page
receives. In addition it analyses the page casting the votes from important pages
(themselves having many votes) are upweighted.

The previous two sections described methods for extragtingmation and analysing
datasets. The following sections describe areas where teebnologies can be poten-

tially applied to increase biological understanding.

1.4 An overview of Single Nucleotide Polymorphisms

A major challenge in the post-genomic era is to understaadedlationship between ge-
netic and phenotypic variation. A SNP is the most common tfpariant in the human
genome, they are frequently related to human diseasestéBo& Risch, 2003). A SNP
represents a single base pair difference (allele) betwssiniduals of the same species
at a particular position within the DNA sequence. In the wsrpopulation, there are
thought to be about 10 million sites (one variant per 300 $aseaverage) where the

minor allele frequency is greater than 1% (Blgal., 2008). These common SNPs consti-
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tute 90% of the variation in the population and are commosbd.to map phenotypes to
genomic loci (Kruglyak & Nickerson, 2001; Reieht al., 2003; WTCCC, 2007; Ngt al,,
2008). SNPs can be identified in an individuals genome bydggrnng’ a DNA sample.
The associations between alleles in the population, is knasvlinkage disequilibrium
(LD). There are often strong levels of LD between markerslase proximity to each
other because the chance of a recombination event incregtbedistance from the SNP.
A large amount of data now exists in public repositories sasllbSNP (Sherrgt al,,
2001), HGVBASE (Fredmaat al., 2004) and SWISSPROT (Boeckmaetnal.,, 2003).

When SNPs or haplotypes associated with a particular phipedre isolated it is
necessary to identify the causative SNPs from the haplotylfeés can be done using
functional experiments, but theoretical knowledge in thst finstance can helpful for
both fine mapping and genotyping in the experimental degages

Single base changes in protein coding regions of DNA whield ®® changes in an
amino acid have the potential to effect protein structure famction. These are called
non-synonymous single nucleotide polymorphisms (nsSNiPs) have been the subject
of many recent studies (Ngt al, 2008). Some nsSNPs are related to diseases but others
are not associated with any change in the phenotype due thémge in the amino acid
not being significantly disruptive and are thus regardedeagral nsSNPs. Importantly,

nsSNPs are the most frequent type of disease mutation (@8téin & Risch, 2003).

1.4.1 SNP Databases

A number of repositories exist in the public domain with SNl @aelated information.

Four of the main SNP databases and their features are bresftyridbed below:

e The dbSNP database is the most important public databaddRd 8nd currently
includes approx 50 million SNPs from 44 organisistp: / / ww. ncbi . ni h.
gov/ SNP/). The dbSNP database allows access to the data via a semesbof
pages as well as allowing bulk download in Extensible Markapguage (XML),
FASTA format or MySQL dumpét t p: / / www. nysql . or g. These SNPs have
been detected either computationally in an automated néyreequence compar-

ison or have been determined experimentally and enteredhetdatabase via an
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online submission process.

e HGVbase litt p: // hgvbaseg2p. or g/ ) is a manually curated database of se-
guence variations aiming to provide links between genatygpel disease pheno-
types (Fredmaret al, 2004). Submissions are accepted online via the website.
HGVbase allows access to the data via a series of web pages hadic tab de-
limited format for frequency and association data. Theee@ans to make table

dumps of the relational database available for users.

e The Human Gene Mutation Databasd { p: / / ww. hgnd. cf . ac. uk/) is a
collection of locus-specific mutation and SNP databasesngshet al, 2003,
2008). Individual entries can be accessed via the browdehbte is no public ac-
cess to a bulk download of the data. The public version of HM&e to academic
and non profit organisations) contains 61,447 mutationsqemse substitutions, in-
sertions/deletions [indels], splicing variants etc) iR88 genes and provides 2,240

reference cDNA sequences as of December 2008.

e The SWISSPROT knowledgebadet ( p: / / ww. expasy. ch/ sprot/)is a
high quality, manually curated protein-centric databds# tontains the SWIS-
SPROT VARIANT pages. The SWISSPROT VARIANT pages contaitaitked in-
formation related specifically to nsSNPs. The version usetis thesis contained
19,611 human nsSNPs annotated as eitlis¥asg57%), polymorphism(29%) or
unclassified10%). The terndiseaseefers to SNPs that are causative in relation
to disease as well as to disease-linked functional polyhisnps. The ternpoly-
morphismrelates to mostly neutral polymorphisms. 3D structurabiinfation is
provided using experimentally derived structuref%% of the SNPs have corre-

sponding 3D models).

1.4.2 Hapmap

The International HapMap Projecht(t p: / / www. hapmap. or g) aims to determine
common gene variation and elucidate the haplotypes ledditite identification of tag-

ging SNPs in the human genome by genotyping populationsAfvita, Asia and Europe
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(HapMap, 2003). When two markers are in high linkage diddaium (LD), which is
a measure of how often alleles are inherited together, ihieaessary to genotype both
markers. Tagging SNPs are a subset of SNPs that can be delggséed on LD, to reduce
the genotyping effort required to capture the majority dbrmation within a region. The
project has genotyped over 3.9 million SNPs (an averagerageef 1.3 SNPs/KDb), as of
December 2008, in various populations from Africa, Amesigahina, Europe and Japan.
The allele frequencies, tagging SNPs and association ketBsIPs is also being anno-
tated. The data is in the public domain and is available \eankbsite and related tools
such as ‘Haploview’ (Barretet al., 2005) and ‘Tagger’ (de Bakkest al,, 2005). These
tools allow the identification of HapMap SNPs in a chosenargind selection of tagging
SNPs to capture the majority of the variation with the minfmamount of redundancy
between SNPs.

The Hapmap data is being used for association studies ofidatedgenes in the
genome and for further analysis of regions suggested bylyfdmsed linkage analysis.
More recently, whole genome association scans for variduatisare causing common

diseases have and are still being performed (WTCCC, 200 &p, 2008).

1.4.3 SNP supervised classification

Several studies have attempted to predict the functiomseguences of a nsSNP, namely
whether it is disease related or neutral, based on attslaftéhe polymorphism. Some
attributes depend only on the sequence information, famgkathe type of residue found
at the SNP location. Structural attributes such as solhagssibility can be chosen if the
protein sequence containing the nsSNP has a known 3D steumtus highly similar to
a protein sequence of known structure. As structural gec®priojects gain momentum
an increasingly large amount of protein 3D structural infation is becoming available.
Mapping nsSNPs onto the corresponding 3D structures ortbetetructures of proteins
which are highly similar at the sequence level immediatéhgga structural context to
the SNP and there are databases containing such modelst(¥iip2004).

Prior to the work completed in this thesis, a small numbetudigs had been done to

try to identify rules by which a nsSNP could be predicted talbleterious (affect protein
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function) or neutral. These included the development ofieogb rules (Wang & Moult,
2001; Ramensket al, 2002), the use of probabalistic methods (Chasman & Adams,
2001) and machine learning methods (Saunders & Baker, 20@shnan & Westhead,
2003). Krishnan & Westhead (2003) compared the performahtseo machine learning
methods (support vector machines (SVMs) and decision)teeggnst the probabalistic
methods employed by Chasman & Adams (2001) and found matgan@ng methods to
be generally better performing. Machine learning methodeewherefore considered to
be a valuable tool in the classification of nSSNP status. EB&® datasets used, included
data on known nsSNPs (Wang & Moult, 2001; Saunders & Baké€l2 2ZRamenskegt al.,
2002; Bao & Cui, 2005) and mutation data of bacteriophagey$dayme ande. colilac
repressor (Chasman & Adams, 2001; Krishnan & Westhead,)2@8abases of coding
nsSNPs have also been developed by Karehail. (2005), Cavallo & Martin (2005). All
SNPs contained within the SWISSPROT database have beeraltyggmnotated in terms
of their functional status. Bao & Cui (2005) were able to perf the largest analysis
to date using these annotated nsSNPs from SWISSPROT. Tiseyveld that structural
information is useful when there is little information frammologous sequences. Some
of the results that emerged from these approaches sugdbatdtie majority of disease
associated nsSNPs affect protein stability (Wang & MoultQD), they are located in
surface pockets of protein structures (Stitaelal., 2004) and that conservation of the
residue across species is an important predictive atéig@aunders & Baker, 2002).

The availability of suitable datasets for analysis of aatexd SNPs is constantly evolv-
ing in terms of the number of SNPs and the quality of SNP aniootaAs these datasets
grow, the performance of methods that aim to predict fumetiidy of nsSNPs will con-
tinue to improve.

Once a disease associated nsSNP has been identified, tlyghestnd gene products
becomes the focus of interest. If there is to be further wtdading of the etiology of the
disease the function of the protein isoforms must be asnedaThe next chapter focuses

on methods for assigning function to a protein sequence.
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1.5 An overview of Protein function

Proteins are macromolecular, organic compounds syn#tegism genes which are fun-
damental units of heredity made up of sections of coding DN#ey form essential main
structural components in every living cell and perform adired| cell functions.

The sequence of amino acids in a protein is defined by the DNfvesece of the
gene. Protein synthesis is initiated through a transoripgtage that involves genes being
transcribed into messenger RNA (MRNA) by RNA polymerasee miRNA is translated
into amino acid sequence by ribosomes, transfer RNA (tRAdgnizes the amino acids
corresponding to each nucleotide triplet (codon) of the rARBranden & Tooze, 1999).
The amino acids are linked together forming a chain of pegt{golypeptide).

Protein sequences are composed of ‘modular’ domains wheath domain has a
specific function and is an independant folding unit. Son@qgins are single domain
and belong to one family, whereas others are multidomaitepr® that can have more
than one function and belong to more than one family (Oregtgal, 1997). Domains
belonging to a family often share function and are derivechfe common ancestor. Sim-
ilarities in amino acid sequences allow proteins to be gedupto families. Conserved
amino acids within protein families are usually importaot the function of a protein.
The patterns of these conserved sequences can be usedgto @steins to functional
families.

Protein structure is considered at 4 levels of organisatlumfirst being the primary
structure and the remaining being 3D levels of folding. Ustinding how proteins fold

remains a major challenge within biology:

e The ‘primary structure’ is simply the amino acid sequenselit

e The ‘secondary structure’ is the first level of folding anéers to the arrangement
of the secondary structure components. The most commoesé tomponents are
the alpha helix, beta sheets and coiled regions (Fletteti@®2). Proteins can be

composed of many sections of different secondary strucitumgponents.

e The ‘tertiary structure’ is the second level of folding amders to the overall shape

of a protein molecule produced by the combination of secgndamponents; the
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spatial relationship of the secondary structures to on¢hano This controls the

general function of the protein.

e The ‘quaternary structure’ is the resultant structure poed by a number of inter-

acting proteins, forming a complex.

Sequence comparison by database searching is the most edynnsed technique
for assigning function to protein sequence, with the GappeAST and PSI-BLAST
programs (Altschukt al., 1997) having a citation count of 26,793 at Google Scholar
(http://schol ar. googl e. com January 2009). They work on the principal that
homologous sequences will share a high level of sequend&stgnand will relate to
evolutionary distance between the sequences. If the seavelals a sequence which

shares a large degree of similarity with the target sequentannotation can usually be

transferred with some confidence.

1.5.1 Databases
1.5.1.1 Sequence databases
There are three main nucleotide databases:

¢ NCBI - GenBank database based at the National Institure aftRl@IH) ht t p:

/I ww. ncbi . nl m ni h. gov/ Genbank/ i ndex. ht m
e DNA DataBank of Japan (DDBRt t p: / / ww. ddbj . nig. ac.jp

e European Molecular Biology Laboratory (EMBL) (Galperim@®). http://

www. ebi . ac. uk/ enbl /

All three resources share their data and act as annotatiedtoahs of all publicly avail-
able DNA sequences. As of December 2008 there were over Bénbidase pairs in

over 82 million sequences within Genbank. These databasebe searched by various

BLAST tools.

The main protein databases include:

e Uniprot is a non-redundant database of amino acid sequdAgaeeiler et al,

2004). This database contains sequences from SWISSPREWBIr and PIR.
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e SWISSPROT is a manually curated database of protein segsi&itwse source is
the EMBL database. TrEMBL is an amino acid database fromdhgessource but
is automatically translated from EMBL and includes segesnuot yet in SWIS-

SPROT (Boeckmanat al., 2003).

e PIR is a US based protein sequence database comprising eloemgively anno-
tated non-redundant sets of sequences whereby entriesaasified into family

groups (Barkeet al.,, 1999).

1.5.1.2 Motif and Family databases

The main protein motif and family databases include thefaithg resources:

e PROSITE is a collection of conserved motifs within proteamilies (Sigristet al.,

2002). All motifs are extensively annotated with referentliterature.

e The PFAM database contains multiple alignments and liesaof HMMs repre-
senting protein families (Batemamal., 2004). PFAM-A contains manually created
protein familes whereas PFAM-B is automatically createdltzas greater coverage.

PFAM can detect very rare instances of a motif.

e The ProDom database is automatically constructed from SRROT and is a
comprehensive collection of clustered domains. On the daderit lacks biological

annotation and some of the cluster boundaries are unrel{@elrvanet al,, 2002).

e The PRINTS and BLOCKS motif databases contain short melaignment frag-
ments (Henikoff & Henikoff, 1996; Attwooét al., 2003).

e Finally, Interpro is a database that aims to integrate adata most of the resources
discussed above (Apweilet al., 2001; Mulderet al,, 2005). Each record contains
links to the data sources in which it is present. It can beckeat using InterProScan

(Zdobnov & Apweiler, 2001).
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1.5.2 Sequence comparison

It is preferrable when studying protein function to chaeaise the function in terms of
the domain structure. Because of the modular nature ofipre¢gluencekocal alignment
methods are preferrable gtobal alignmentnethods. The latter is a term used to describe
methods whereby sequences are compared over the entitl @&ndpe two sequences
(Needleman & Wunsch, 1970).ocal alignmenimethods were created later because of
the need for an algorithm that could identify local regiohkigh similarity (Smithet al,,
1985). A number of tools exist for the assignment of proteimction based on sequence
comparison. As described, some databases contain arthsedeence whereas others

contain extracted common motifs from the domains of eachlyam

1.5.2.1 Pairwise sequence alignment

The BLAST algorithm is a fastocal alignmentmethod for optimally aligning two se-
quences using dynamic programming (Altscaul,, 1997). When performing a BLAST
search of a query sequence against a database of sequenggsitas returned with a

number of hits and associated statistical significance.

1.5.2.2 Multiple sequence alignment

Multiple sequence alignments can highlight patterns acfasilies of sequences that are
not obvious from pairwise alignments. A consensus aligringecreated using observed
residue frequencies at each position in the consensuseBeggiare usually weighted in
order to remove over representation of similar sequendes.CLUSTAL algorithms are
commonly used multiple alignment algorithms (Higgetsal., 1992; Thompsoret al,

1994).

1.5.2.3 Sequence profiles

Sequence profiles perform better than comparing indivisei@liences for identifiying ho-
mologs. PSI-BLAST is an example of a profile searching me{Adidchul et al,, 1997).
A query sequence is initially searched against a databasg BEAST. After the initial

run a multiple sequence alignment is created and from tlpesition specific scoring
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matrix (PSSM) is calculated whereby a score is held for each amikcsaeach position
within the sequence. The scores represent the observadkefreigs of amino acids at
each position of the multiple alignment. This PSSM is useskt@rch the database again
with hits being added to the PSSM. This continues for a lichitember of rounds or until
convergence of results. PSI-BLAST is a very sensitive sgagctechnique but caution is
required as unrelated sequences can be pulled in over tauhigrations, distorting the

PSSM and resulting in ‘drift’.

1.5.2.4 Hidden Markov Models

Hidden Markov models can also be used to represent an alignofigroteins. Rather
than creating a PSSM, the alignment is used to design a Matkaw and the transition
probabilities are estimated (Durbét al,, 1998). A probability can then be calculated as
to whether a query sequence was emitted from a particulan.ct#MMER and SAM
are commonly used implementations of HMMs (Karpdtigl.,, 1997; Sonnhammet al.,,

1997).

1.5.2.5 Profile/profile comparisons

A recent extension to sequence/profile searching usingBR8ET or HMMs is pro-
file/profile searching. This is now possible using PSSM/P&®&lrches (Yona & Leuvitt,
2002; Sadreyev & Grishin, 2003; Soding, 2005).

1.5.3 Protein function supervised classification

There have been numerous genome-wide scans performed thbeirgked or associated
region can be in excess of 30cM in size and thus contain hdadvé protein coding
genes. In order to select genes and SNPs from these regidaasjmiportant to have
functional annotation for each gene and the protein it eesadorder to aid prioritisation
of candidate genes for follow up studies. In the human genamgroximately 85% of
protein coding genes are known genes (Consortium, 2004)est 92 to 94% of human
genes experience alternative splicing, with 86% having @omisoform frequency of at

least 15% (Wangpt al., 2008). Each protein isoform may have related, distinctvene
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have opposing functions. Novel approaches to aid existietpads (described in section
1.5.2) for protein function annotation are still requiredexisting methods are not 100%
effective.

Wilson et al. (2000) have estimated that broad biological function cacdreserved
down to about 25% sequence identity. However, there arega laumber of sequences
that cannot be annotated with current methods. This lackpnbttion hinders the ex-
ploitation of some genome data, it also impacts on the utateiig of biological systems
as we do not have sufficient understanding of the constitp@ris and how they might
interact.

Machine learning methods have recently been used to exjiiengroblem of protein
function annotation. Rather than considering the sequeasestrings to be compared
at a character by character level, most of these methodstgaee&ntify global features
of the sequences that might be discriminative of functioreabures of function include
the enzyme commission database (IUBMB, 1992), expertitlzestsons from Riley for
Escherichia col{Riley, 1993), the Gene Ontology (Ashburmial., 2000) and categories
from the Munich Information Centre for Protein SequencefA®) (Meweset al,, 2004).

Ding & Dubchak (2001) have explored the use of support vaotiehines (SVMs) for
protein fold prediction using the SCOP protein structurabdase (Murziret al., 1995) as
a benchmark. SCOP is a hierarchical categorization of preteuctural domains where
levels in the hierarchy correspond to class (reflecting tteeall secondary structure com-
position of the protein, allv for example), fold (a general description of the spatial ar-
rangement of the secondary structure elements), supéyfaeiated proteins) and family
(closely related proteins where relationships are uswiNyous from sequence similarity
alone).

Support vector machines (SVM) have been used bye€al. (2003) to predict pro-
tein function for 54 functional families using attributesndar to those used by Ding
& Dubchak (2001). The potential of the method for the predicof distantly related
proteins has also been explored by testing the method onm2bmaly selected distantly
related proteins. This analysis achieved a predictionracguof 58.3%. Related studies

on enzyme functional prediction found 72% of a set of 50 ereeyoould be correctly as-
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signed where there was no known sequence homolog availdatest al., 2004). SVMs
have also been used to distinguish enzyme structures fromenpyme structures (Dob-
son & Doig, 2003). The most useful features included secgnskaucture content and
amino acid frequencies. Recently, Mehahal. (2007) used SVMs for superfamily clas-
sification of distantly related proteins, but did not regbg specific performance for each
superfamily.

Clare & King (2003) and Claret al. (2006) used decision trees with GO and MIPS
functional categories for mining data on tBaccharomyces cerevisiaed Arabidopsis
thalianagenomes. Predictions achieved 75% accuracy irSdmcharomyces cerevisiae
study and 85% precision in tgabidopsis thalianatudy. Attributes used were those de-
rived from PSI-BLAST, phenotypic properties, expressiatag sequence and secondary
structure.

Other sequence attributes that have been used for funtpogdiction relate to pre-
dicted properties of the sequences such as post translhtiordifications, subcellular
localization and secondary structure (Jenseal,, 2002) using the Riley functional clas-
sification (Riley, 1993) and Gene Ontology (Ashburatal., 2000).

After identifying disease causing nsSNPs and determiriiedgunction of the protein
in which they reside, it becomes important to understanctiveconment and pathways
through which the protein acts. This involves the study ot@ns in the wider context of

protein-protein interaction networks.

1.6 An overview of protein-protein interaction (PPI) net-
works

Protein-protein interaction (PPI) networks (the inteoatt) represent the relationships
between protein molecules, the study of which is importamtrateins acting as enzymes,
channels and transporters perform almost all cell funsti@dbertset al,, 2002; Hwang
et al, 2008). The study of the interactome could help improve théeustanding of

complex diseases.
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1.6.1 PPl database repositories

A number of PPI data repositories now exist in the public domA comprehensive list
can be found ahtt p: //ti ny. cc/ ppi dat abases. Some of the key resources are

described below (details correct as of December 2008):

e HPRD - Human Protein Reference Database is a database ohhoroizin in-
formation manually extracted from the literature by expgasdlogists who read,
interpret and analyse the published data (Misttral, 2006). The latest version

contains 38,167 protein-protein interactions.

e IntAct - Interaction Database is a public repository of matucurated protein in-
teraction data from the literature or through user submiss{Kerrieret al., 2007).
The site contains analysis tools, currently there are IrBdifteractions of which

approximately 32,000 are human.

e DIP - Database of Interacting Proteins, combines expetriatigrderived interac-
tions from a number of sources. The interactions are botrualgnand computa-
tionally curated. Currently there are 57,146 interactj@y@70 of which are human

interactions (Xenariost al.,, 2000).

e MINT - Molecular INTeraction Database contains proteirenatctions that have
been verified experimentally (Chatr-aryamomtial., 2007). The interactions are
extracted from the literature by expert curators. In tdtaré are 111,847 interac-

tions of which 21,357 are human.

e MIPS - Mammalian Protein-Protein Interaction Databasetaon literature de-

rived, high-quality interaction data manually curated kgerts (Pagett al,, 2005).

e BioGRID - The Biological General Repository for Interacti®atasets database
contains protein and genetic interactions from both hlgiotghput studies and
conventional focused studies for key model organisms KSttal., 2006). It cur-

rently contains over 198,000 interactions from six différgpecies.

e BIND - Biomolecular Interaction Network Database is a datxhthat stores details

of interactions, molecular complexes and pathways (Batlexl, 2001). BIND
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accepts individual submissions as well as interaction tata the protein data
bank (PDB) (Sussmaet al, 1998) and a number of large-scale high throughput

interaction experiments.

e OPHID - Online Predicted Human Interaction Database ig byilmapping high-
throughput model organism data to human proteins and tiegr data from
yeast two-hybrid based, literature-based interaction @tlublogy-based interac-
tion sources (Brown & Jurisica, 2005). The literature-dedi human PPI are ob-
tained from from BIND, HPRD and MINT. Predicted interactsoare made from
Saccharomyces cerevisigeaenorhabditis elegan®rosophila melanogastesnd
Mus musculus The 23,889 predicted interactions currently listed in dPldre
evaluated using protein domains, gene co-expression and Getology terms. In

total there are 48,222 interactions listed within OPHID.

e UniHI - The Unified Human Interactome is a unified repositogséd on 10
major interaction sources of computational and experialedgrived interactions
(Chaurasiaet al., 2007). It includes more than 150,000 distinct interactidor
more than 17,000 human proteins. Scores for quality asssgsame given based

on co-annotation and co-expression of the interactingeprst

e PIP - The Potential Interactions of Proteins web serverainatinteracting pro-
teins constructed for the human genome using an ortholaggdmethod (Jonsson
& Bates, 2006a). The orthologous protein interactions waken from DIP and
MIPS. Each interaction was given a confidence score basedquesce similarity
to proteins shown experimentally to interact and the amaofitvailable experi-
mental evidence for the interaction. There are 108,113ant®ns in this database
when a confidence score cut-off is applied that providesitahs of 85% and

specificity of 82%.

1.6.2 Methods to identify protein-protein interactions

There are many approaches, experimental and theoreticadefecting protein interac-

tions, each varying in sensitivity and specificity. Theyluae high-throughput meth-
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ods such as yeast 2-hybrid experiments (Raall., 2005; Stelzkt al,, 2005), manually
curated and literature based interaction sources sucheasliuman Protein Reference
Database (HPRD) (Mishrat al., 2006) and Interaction Database (IntAct) (Kerrgtral,,
2007) as well as predicted interactions basedrosilico methods such as Predictome
(Mellor et al,, 2002), POINT (Huanget al, 2004), Prolinks (Bowerst al., 2004) and
STRING (von Meringet al,, 2007).

1.6.3 PPI software

There are now many software applications available for thedysis of biological net-
works, a comprehensive survey, was recently described Wp@auloset al. (2008). A

selection of some of the popular tools are described below.

e APID - Agile Protein Interaction DataAnalyzer is a web based enabling the
exploration and analysis of PPI data from BIND, BioGRID, PHPRD, IntAct
and MINT PPI resources (Prieto & De Las Rivas, 2006).

e Cytoscape is an open source bioinformatics Java softwattoph for visualizing
molecular interaction networks and integrating theseautgons with gene expres-
sion profiles and other state data (Shanebal., 2003). Many user created plugins

are available for specific analysis tasks.

e Osprey is a standalone application that runs on a range tibptas with a license
for non commercial use (Breitkreutt al., 2003). Currently the source code is
not available and it is not appropriate for large scale ndtvamalysis. Data can
be loaded directly from BioGRID (Star&t al., 2006) and there is support for a
number of data formats. Osprey is a powerful tool for netwodnipulation and
has the important ability to incorporate new interactiam® ian already existing

network.

e ViSANT is freely available it t p: // vi sant . bu. edu) and integrates, mines
and displays hierarchical bio-network and pathway infdrama(Hu et al., 2008). It

is supported by the Predictome database where much of #raation data comes
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from resources such as BioGRID, MIPS, BIND and HPRD. Thid te@ble to

handle large-scale networks with millions of nodes and sdge

e Pajek s a standalone application (Batagelj & Mrvar, 1998% not an open source
application and runs under Windows operating systems buabyt is free for non-
commercial use. It is suitable for large scale networks,ighllg interactive and
incorporates many clustering methods. Pajek’s main stiheaghe variety of layout

algorithms.

e The Boost graph library (BGL)t t p: / / www. boost . org/ doc/1i bs/ 1.37_
0/ 1'i bs/ graph/ doc/i ndex. ht m is a C++ library for developers providing

a generic interface for traversing graphs and accessingréd’s structure.

Other popular software includes Graphvia € p: / / wwww. gr aphvi z. or g), Net-
workX (ht t p: // net wor kx. | anl . gov), cFinder (Adamcselet al, 2006), Guess
(http:// graphexpl oration. cond. or g) and igraph lgt t p: / / cneur ocvs.
rnki . kf ki . hu/igraph/).

1.6.4 PPI networks and supervised classification of diseasessoci-

ated genes

Early work using decision tree based classifiers showedskésgenes tend to be longer
and more conserved than non-disease genes (Lopez-Bigaz&u@is, 2004). Subse-
quent work constructing supervised classifiers includeditashal sequence based at-
tributes that included length, proximity to other genesprexount, GC content, trans-
membrane and signal peptide domain content, CpG relatgubgres and details of ho-
mologous and paralogous proteins (Adteal., 2005). Other annotation related attributes
such as co-expression and similarity of Gene Ontology (GX3hburneret al., 2000)
terms and text mining approaches have also been used fotigelef disease gene can-
didates (Perez-Iratxett al., 2005; Tiffinet al,, 2005; Adieet al., 2006). More recently,
attributes based on PPI have been used in supervised dassiiiapproaches (George

etal, 2006; Xu & Li, 2006).
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PPI network based approaches for studying human diseageshewn that disease
associated proteins often interact with other diseaseep®br share interaction neigh-
bours (Xu & Li, 2006). Specifically, there is a 10-fold incsean the likelihood of pro-
teins interacting when they are associated with the saneasks(Golet al,, 2007). Goh
et al.(2007) have also shown that ‘essential’ disease genes,ighwiutations are lethal,
form hubs (highly connected nodes) whereas ‘non-esskedialase genes do not display
this tendency. A k-nearest neighbours classifier using oritfeatures achieved a predic-
tion accuracy of 0.76 using the OMIM dataset (Xu & Li, 2006)disease is considered to
result from the disruption of a specific cluster (functiomaddule of interacting proteins)
and is caused by mutations in one or more of the proteinstheguih a recognised phe-
notype (Loscalzet al,, 2007). Different combinations of perturbed genes in atelusan
lead to the same phenotype. There is also data showing tm&t gimteins are implicated
in multiple phenotypes, that is there are disorders whichlbmatermed connected in that
they share associated proteins (Galal., 2007; Loscalzet al,, 2007; Sanet al., 2007).
Cancer is regarded as one of the most connected disordense(@b, 2007).

Analysis of protein-protein interaction networks has besad to explore several dis-
ease conditions including asthma (Hwaeta@l.,, 2008), neurodegenerative diseases (Goni
et al,, 2008), and with transcriptomics, human heart failure (8mo & Azuaje, 2007,
2008). PPI network properties for Alzheimers related prstdrom OMIM have been
studied by Cheret al. (2006) who found these proteins form a highly connected sub-
network. They devised a metric that enabled the ranking afbéem for its biological
relevance to Alzheimers pathways. Such analyses may bihelguggesting important
single proteins or clusters, the disruption of which coelad to a variety of disease con-
ditions. This can be particularly useful for adding weightandidates identified through
genome wide studies and could lead to a better understaoélithg molecular basis of
disease.

To date, many of the studies have been dependent on OMIM asreesof disease
related or implicated genes. OMIM is a comprehensive cgteof human genes and
their associated genetic phenotypes. It provides ‘fult;teeferenced overviews on all

known mendelian disorders and over 12,000 genes’. Alth@igtM was initially cre-
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ated to store details relating to mendelian traits its useldeen extended to some ex-
tent to cover more complex traits. The resource is not avigilas a relational database
but is available to download as formatted text. Studies sickian Drielet al. (2006)
have created tools such as MimMiner in an effort to mine thtenahlanguage used in
each record. MimMiner searches the data on a keyword baisig werds found in the
anatomy (A) and the disease (C) sections of the Medical Stibjeadings vocabulary
(MeSH) ht t p: / / ww. nl m ni h. gov/ mesh/. However, OMIM is an incomplete
resource that holds many speculative disease associafitiese is a need for trait spe-
cific analyses to be performed on expertly curated datagedssease implicated gene
products.

With cardiovascular disease (cvd) set to become the numhercause of deaths
worldwide, it is important to understand the etiologic magisms for cardiovascular re-
lated diseases such as hypertension, in order to identiyotes to improved treatment.
There have only been a small number of cvd focused studieatéotdat have exploited
the use of PPI networks. The approach of Geapal. (2006) which employs PPI and
pathway data together with sequence similarity, had noesscn correctly identifying
any of the putatively associated hypertension genes iedudtheir dataset. These anal-
yses were based on a small set of 5 hypertension relatedrzeteracted from OMIM.

Camargo & Azuaje (2007) undertook an analysis of genes cagd with human
heart failure by studying PPl network connectivity in a hunheart failure gene expres-
sion dataset. The network was constructed from interagtidgthin the HPRD database.
Relationships between co-expression and PPl connectixty analysed showing that
genes significantly differentially expressed were not gbkvaighly connected nodes.
Though some traditional heart failure proteins were notedghtially expressed, they
sometimes interacted with differentially-expressed @ret. It was noted that network
hubs can show weak co-expression with their directly irtieng partners. The ex-
ploratory study aimed to identify patterns and trends, Withconstructed network being
available on request to the authors. However there was nocneetclassifier described
for prioritising candidate genes. In a recent study, Cam&rd\zuaje (2008) focused on

dilated cardiomyopathy, a leading cause of heart failurgaiA, differentially expressed
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genes were evaluated in terms of PPl networks. In this aisatyassifier models were
used to suggest novel dilated cardiomyopathy associatezsge

With cvd being such an important target, there is value emaptting to further develop
such alternative approaches to predict potentially inaéid genes. Such methods may
be useful in identifying novel disease associated geneghssicomplementing existing

analysis strategies such as GWA studies.

1.7 Study Aims

Studies of the etiology and genetic contribution to compuleseases require methods to
identify causative functional SNPs and the disease agsdaignes in which they reside.
This study explores the utility of machine learning methfmagredicting functional nsS-
NPs and the function for proteins where annotation usingeational homology based
methods is absent. Such machine learning methods, combitledraph theoretic ap-
proaches are used to explore approaches to identify nosehsie associated proteins and
prioritise candidate gene lists through characterisimgRRI network topology of impli-

cated disease associated proteins.

1.7.1 Specific aims of thesis
1.7.1.1 nsSNP analysis

e To improve on previous methods for predicting disease @ssatnsSNPs by ap-
plying machine learning methods to look for patterns in tis&rdbution of sequence

and structural based attributes related to disease anchh8MPs.

1.7.1.2 Protein function analysis

¢ To utilise machine learning methods for predicting protiperfamily membership
using global sequence based attributes and a training gebtd#in domains from
the SCOP classification scheme. Traditional homology bapptbaches work well
where there is a high level of sequence similarity betweemytrery sequence and a

sequence of known function. This study focuses on sequemtias ‘twilight zone’
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whereby sequence similarity is less than 30%.

1.7.1.3 Protein-protein interaction network analysis

e To characterise the topological properties of hypertensatated proteins within
the human interactome using protein-protein interactiaa drom OPHID and hy-

pertension associated genes carefully selected from thi/Qidtabase.

e To combine the identified hypertension protein network praps with simple se-
guence and functional based attributes to build a classifigeredicting novel hy-

pertension related proteins.

e To analyse the topological properties of implicated cardszular (cvd) and can-
cer related proteins within the human interactome usinggpreprotein interaction

data, and disease implicated proteins from publicly alséelsources.

¢ To quantify the influential nature of the cvd and cancer pnateanalyse community
structures and show an approach for prioritising candigatee products based on

these network measures.
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Chapter 2

NsSNP function analysis

This chapter focuses on using machine learning methodsréaligiing functional nsS-
NPs. All nsSNPs described in the SWISSPROT VARIANT web pdgasmapped onto
the Ensembl database (Hubbatdal., 2002) were considered, allowing the application of
Ensembl annotations to these variants. A number of sequertstructural attributes of
NsSSNPs were surveyed to see if previous trends of diseasseamclity are preserved in
light of much larger datasets now available, the attribtit@loether the nsSNP occurs in
a protein binding site was also included (Badeal., 2003).

One of the problems with using the available collection dtirel nsSNPs is the large
difference in numbers of disease associated and neutmral@asa. To address this problem
of class imbalance the effect of resampling and weightingherprediction performance

was assessed.

2.1 nsSNP analysis methods

2.1.1 SNP database creation

In order to create a resource to facilitate the predictiorfiuotctional nsSNPs, a SNP
database was initially constructed by extracting SNP edlatata from the Ensembl
database (Hubbaret al,, 2002) using a combination of structured query language_|SQ
and the Ensembl perl application programming interfacelYAEPnsembl was used as it

contains SNPs from the combined SNP resources describedtiors 1.4.1 and is a rich
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source of annotation. This data was loaded into a MySQL @atalvhereby the SNP ‘rs
identifiers’ were used as keys. Pipelines were constructexder to allow annotation

from external sources to be added to the SNPs (figure 2.1 \Rad included from:
e The manually curated protein knowledgebase SWISSPROTHtYah, 2004).

e The interactions within the Biomolecular Interaction Netw Database (BIND)

and the Molecular Modeling Database (MMDBBIND) (Badral., 2003).

e The Kyoto Encyclopedia of Genes and Genomes (KEGG) (KaaekRissoto,
2000).

e The Homology-derived Secondary Structure of Proteinshadeta (HSSP) (Sander
& Schneider, 1993).

e The Protein Data Bank (PDB) (Bermahal., 2000).

Tools were built to parse, reformat, map and load data ireadtibabase from these
sources. SWISSPROT was used to add information relatingpe¢odisease status of
the SNP as well as information relating to functional siteghin the protein sequence.
MMDBBIND and BIND were used to provide information relating protein interac-
tions. BIND contains interactions/complexes and pathwaysnot at the atomic level.
It provides residue ranges for the interacting regions. s€hentries are not dependent
on structure as sequence identifiers are used. This dated@sesin-vivo interactions
being studied and references the experimental evidendestipgports or disputes the
occurrence of the interaction. MMDBBIND (www.bind.ca) ¢aims atomic level details
of interactions. These interactions are annotated autoatist from MMDB entries
(MMDB is a subset of PDB that excludes theoretical modelstoAtact is made when
the van der waals radii of 2 atoms are within &5The KEGG database was used to
provide information relating to pathways and both HSSP ab@ Rvere used to add

structural information relating to the SNPs.
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Figure 2.1: Overview of the nsSNP annotation pipeline for creating the Slatabase.

2.1.2 nsSNP dataset

The SWISSPROT VARIANT web pages (Yai al., 2004) provide information on single
amino acid polymorphisms associated with a given SWISSP&@ry. The variants are
labelled as disease, unclassified or polymorphism. A sudideese SNPs were used in
this study, namely those frofdomo sapiensvhere the amino acid polymorphism was

found to map onto the Ensembl human genome protein sequlrgidP was considered

50
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mapped where the amino acid was the same in both the SWISSB&fEnce and the
Ensembl protein sequence and the aligned region using BLIA&&ITan expectation (E)
value< le — 10 over a region> 100 amino acids in length. Matches to known structure

and to structural homologs were obtained in the followingwa

e Each sequence containing a nsSNP was searched againg sghences in the
protein data bank using the PSI-BLAST program (Altscaubl, 1997) with ten

iterations.

e Only hits with an E value of less than 1e-10 where the amindsaat the position

of the nsSNP were the same were stored.

e Each of these nsSNP containing SWISSPROT entries was dligitd the se-
quence in a relevant HSSP (Sander & Schneider, 1993) file. r&\inere were
multiple PDB annotations in the SWISSPROT file, the PDB whiin lowest E value

was used.

2.1.3 nsSNP features

Structurally dependent features were considered sepafaien the set of features that
were not dependent on structure because the subset of nsBitdnng proteins with

associated 3D structures is considerably smaller thanehefsall nsSNP containing
proteins. A total of 17 features were used, 11 non strudyudabendent and 6 structurally

dependent.

2.1.3.1 Non structural features

The features chosen were largely based on those used by Bayretral. (2002) and
Krishnan & Westhead (2003):

e The residue types of the original and mutated residues.
e The physiochemical properties of the original and mutagésttiues.

e Sequence conservation: is the nsSNP at a conserved posli@sequence was

matched against a protein non redundant database usind-tk®1Bprogram and
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all hits with an E value less than 0.0005 were stored. A migltgignment was
constructed and sequence variation at the position of tB&lRswvas described by
calculating the position-specific independent counts@Store (Ramenskst al,,

2002).

e Point Accepted Mutation (PAM) score shift measured from FAd120 matrix
(Dayhoffet al., 1978).

e Side chain volume change (Tsai J, 1999).
e Mass change. The molecular weights are those of the nefngalamino acids.
e Hydrophobicity difference (Black SD, 1991).

In addition four further non structurally dependent atités (described below) were used,
these were taken from the SWISSPROT features table, patmi@ynation, ontology

classifications and interacting regions.

SWISSPROT features table

The SWISSPROT entry feature table may contain informatmyuafunctional sites. A

survey was carried out of functional site terms across &@IN#s in the SWISSPROT
VARIANT pages. Following Ramenskgt al. (2002), nsSNPs located within the follow-
ing labelled features were considered to be termed ‘funatisites for the benefit of the

machine learning analysis:
e ACT_SITE - amino acid(s) involved in the activity of an enzyme.
e BINDING - binding site for any chemical group (co-enzymeygthetic group, etc.)
e MOD _RES - posttranslational modification of a residue.

e SITE - any interesting single amino-acid site on the seqgeighat is not defined by
another feature key. It can also apply to an amino acid boridhwik represented

by the positions of the two flanking amino acids.

e LIPID - covalent bonding of a lipid moiety.
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e METAL - binding site for a metal ion.

e DISULPHID - disulphide bond.

e CROSSLNK - posttranslationally formed amino acid bonds.
e TRANSMEM - extent of a transmembrane region.

e SIGNAL - extent of a signal sequence (prepeptide).

e PROPEP - extent of a propeptide.

e NP_BIND - extent of a nucleotide phosphate-binding region.

e MUTAGEN - Site which has been experimentally altered by rgateesis.

KEGG pathways

In order to observe the distribution of disease and neus@8Ni#s within pathways we
mapped the set of 16,352 nsSNPs to KEGG pathways (Kanehisat&, B000). For each
pathway;i, we calculated the odds ratf9:

) 1
o Ndis/Npoly
U tot tot
Ndis/N

poly

where N, is the number of disease nsSNPs in pathwagd V%! is the total number of

disease nsSNPS in our dataset and similarly for polymonmssiNPs.

Gene Ontology

Each nsSNP containing protein sequence belongs to a nurhi@eme Ontology (GO)
categories (Ashburneat al, 2000). The odds ratio of neutral and disease nsSNPs were

calculated for each of the GO categories.

Interactions

The BIND (Baderet al., 2003) database was used to map nsSNPs to interacting segion
A potential interacting region was defined as a region frormaracid position n to amino

acid position m. These interactions were generally regatrserved experimentally and



Chapter 2. nsSNP function analysis 54

were not considered structurally dependent annotatiotied3IND database entries have
sequence identifiers. The odds rafipwas calculated wherd’,  is the number of sites
containing disease NnsSNPs in either an interacting regioie-interacting region and
Nt is the total number of sites containing disease nsSNPS imataset that map to

BIND and similarly for polymorphic nsSNPs.

2.1.3.2 Structural features

Five structural attributes were extracted from the comesing HSSP file (Sander &

Schneider, 1993):

e Secondary structure conformation: residue is in an isdla&ta-bridge (single pair
beta-sheet hydrogen bond formation), 5 turn helix (pi hel&turn helix (3/10
helix), 4 turn helix (alpha helix), bend, beta sheet in datand/or anti-parallel

sheet conformation (extended strand), hydrogen bondad3u# or 5 turn).
¢ Relative solvent accessibility.
e Normalised relative accessibility.
e Exposure (relative accessibility as 3 states).

e Buried charge.

Relative accessibility and normalised relative accelivere calculated in the same
manner as Chasman & Adams (2001). The maximum accessikfm:emrea/cé?) ref-
erence values are those calculated for residues in a GlySfa#ripeptide in extended
conformation (Miller S, 1987). In order to group the relataccessibility, it was projected
onto 3 states: buried (here definede®% relative accessibility), intermediate (9%arel.
acc. < 36%), exposed (rel. ace: 36%) (Rost & Sander, 1994). Buried charge is defined
as K,R,D,E,H wild type amino acid and ‘buried’ exposure slésrishnan & Westhead,

2003).

Interactions

The MMDBBIND database (Badest al, 2003) was used as a second source to map

nsSNPs to interacting regions. MMDBBIND contains atomi@laletails of interactions.
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These interactions are annotated automatically from MMOBgnet al., 2003) which is a
subset of experimentally determined PDB structures. Tiribate is therefore dependent
on structure as it requires a PDB identifier. MMDBBIND intetians are a much more
precise interaction annotation than the BIND interactimmthe BIND defined regions can
sometimes be very large in amino acid length. Again, the adtis P, was calculated
whereN’, . is the number of sites containing disease nsSNPs in eithirteaacting region

or non-interacting regiohand N% is the total number of sites containing disease nsSNPS

in our dataset that map to MMDBBIND and similarly for polynpbic nSSNPs.

2.1.4 Machine learning

All machine learning analysis was performed using the Welckage of machine learn-

ing algorithms (Witten & Frank, 1999).

2.1.4.1 Single attribute analysis

In order to identify the most effective classifier from alkbé attributes, the 1R classifying
algorithm was used (Holte, 1993). This classifier createmgleslevel decision trees
for each attribute and measures the prediction error rateias used with a minimum
bucket size of 14 and 10 fold cross validation on the fullyabaked dataset containing
all variables. The bucket size of 14 was chosen because tsides below this value
caused overfitting and/or an increase in the error rate. Tthbwdes were then ranked
in terms of their effectiveness as a predictor using theudefanker search method with
this 1R attribute evaluator, they were also ranked in terfrth@ information gain (IG)

they provide (Witten & Frank, 1999). Entropy is a measurenfdiimation and represents
the amount of information that would still be needed to dfgdkhe nsSNP having used
the attribute in question (Shannon CE, 1948). The inforomagjain is the information

required after using the attribute as a classifier subtiatten the information required

before using the attribute as a classifier.
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2.1.4.2 Attribute set analysis

It is of value to investigate the relative importance ofihtttes that require structure and
those that can be obtained by sequence alone. The impoxéseguence conservation
has been previously noted (Saunders & Baker, 2002) so it isasraportant to observe
whether the other non structurally dependent attributesdcadd to prediction quality
achieved with conservation score alone. Hence, we compaeelictions for the follow-

ing sets of selected attributes:
e Set (1) - All variables (3821 nsSNPs).
e Set (2) - Structurally dependent variables (3821 nsSNPs).
e Set (3) - All non structurally dependent attributes (14,636NPs).

e Set (4) - Non structurally dependent variables excludirg ¢bnservation score

(14,636 NSSNPs).
e Set (5) - The conservation score alone (14,636 NnsSNPs).

Decision trees have been shown to perform well in a mixedscvaidated training
dataset (Krishnan & Westhead, 2003). They also provide &dace score and intelli-
gible rules to a prediction. Based on this knowledge we detid use the J48 decision
tree classifier to analyze the assembled sets of variall8ss dhe Weka implementation
of C4.5 and was run with the default set of parameters and lti0cfoss validation. In
performing 10 fold cross validation, the data was divided &0 ‘folds’ and each fold was
treated as the test dataset in turn, with the remaining Qhesed as training data. The
performance of the classifier on each fold was measured, &ndlaccuracy calculated

based upon the average of all 10 folds.

2.1.4.2.1 Effect of imbalance There was a problem of imbalance (Al-Shaleibal.,

2005) within the dataset which would introduce skewing talsahe avoidance of errors
for the disease status as there are 2.5 times more diseds@#18&n neutral. The im-
balanced dataset applies a higher cost to getting a diseadietmpn wrong, meaning that

the rules inferred by the imbalanced dataset are able taghidease status but unable to
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predict neutral nsSSNPs accurately. The effect of imbalaegends on total set size, class
heterogeneity, data complexity and the classificationrtiegte. To address the problem
of imbalance in our dataset we applied cost-sensitive ifieestson by either resampling
or reweighting (Witten & Frank, 1999). Resampling can bedugeeither increase the
number of the minority classoyersample or reduce the number in the majority class
(undersample(Weiss & Provost, 2001). Reweighting can be used to applysato an
incorrectly classified minority class without altering thembers in each class. The cost
is directly proportional to the imbalance. This study conggaresults using both resam-
pling and reweighting. We undersampled the disease claggesisampling would make
exact copies of the neutral class, potentially resultingvarfitting of the data. Under-
sampling results in the loss of information so it was decittedandomly undersample
at rates of 100%, 75%, 50%, 25% and 0%. This means that at eé&hn% of the
excess members of the majority class were randomly remg@@¥e@hahibet al,, 2005),

resulting in a balanced dataset when undersampling at afrat@0%.

2.1.4.2.2 Attribute redundancy Some attributes work well in combination leaving
other attributes redundant and maybe even causing a reductprediction quality. The
optimised subset of attributes for each attribute set at éael of imbalance was ob-
tained using wrapper-based feature selection with J48dsdnning method with default
option settings. The wrapper-based feature selectionadethcombination with the Ge-
netic Search algorithm (Witten & Frank, 1999) produced thedst error rates in tests.
The genetic search algorithm was initialised with a popoitasize of 20 and then 50

generations were evaluated.

2.1.4.2.3 Measure of prediction quality Matthews correlation coefficient (MCC)
(Matthews, 1975) was used as the measure of predictionrpeafice. Matthews cor-
relation coefficient combines both sensitivity and speityfimto one measure and lies in
the range -1 to 1 with 1 meaning complete prediction accy@ayeaning every predic-
tion was randomly assigned. MCC is defined by

(TP.TN — FP.FN)

MCC =
/(TN + FN)(TN + FP)(TP+ FN)(TP + FP)
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where TP is true positive, FP is false positive, TN is trueatizg and FN is false
negative.
This is preferrable to using the error rate (E), defined behmgause in a case where

all samples are assigned to a majority class, E may stilllwe lo

B FP+FN
" TP+TN+FP+FN

2.2 nsSNP analysis results

2.2.1 Distribution of attributes across the normal and disase associ-

ated nsSNPs

A set of 16,352 SWISSPROT nsSNPs (out of a potential 18,8d@ldde mapped onto
the Ensembl database, of which 10,419 (64%) were diseageiaiesl, 4217 (26%) were
labelled as being neutral and 1716 (10%) were unclassifiédsd disease and neutral
nsSNPs were contained within 893 and 1256 proteins respsctA total of 500 nsSSNP-
containing proteins had structural homologs, of which 288gins contained disease re-
lated nsSNPs and 295 contained polymorphic nsSNPs (a p#eicontain both disease

and polymorphic nsSNPs). The data is summarised in Table 2.1

Disease| Polymorphism | Total
Number of nSSNPS 10,419 4217 14,636
Number of nsSNPS within proteins 3212 609 3821
with structural homologs
Number of Proteins with nsSNPs| 893 1256 2149
Number of Proteins with nsSNRs 299 295 594
having structural homologs

Table 2.1: Summary of SWISSPROT VARIANT training dataset
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2.2.1.1 Analysis of non structural features

The distribution of sequence derived attributes suggdsygptophan (W), tyrosine (Y)

and cysteine (C) in the wild and mutated residues incredseshance of the nsSNP
being disease related with odds ratios of 2.07, 2.03 andr2gj&ctively. This has pre-
viously been noted for tryptophan and cysteine by Vitlea@l. (2003). The likelihood

of the nsSNP being deleterious increases as the volume, andskydrophobicity dif-

ference between the wild and mutated residue increasesméhe change in volume,
mass and hydrophobicity between the wild and mutated residis 1.29, 1.29 and 1.31
times greater for disease NnsSNPs respectively. There eguptabe very little bias in the
other physiochemical properties individually towards st@&tus of the nsSNP. As previ-
ously observed, a nsSNP is much more likely to be deletesotiisan increasing PSIC
conservation score difference (Saunders & Baker, 2002g miban PSIC conservation

score was 2.2 times greater for disease related nsSNPs.

2.2.1.1.1 SWISSPROT features table Table 2.2 shows the most discriminatory
terms from the SWISSPROT features table, namely those wiwene90% of the corre-
sponding nsSNPs are disease related. The annotation ofNPrnisSthe SWISSPROT
feature table is not a good discriminator between diseadepatymorphic status. In
this dataset, the feature table terms which are predontynassociated with disease
related nsSNPs have very low counts, making it difficult toegalize about their utility

in predicting whether a given nsSNP is disease related.

2.2.1.1.2 KEGG pathways Analysis of nsSNPs that map to KEGG pathways re-
vealed that the odds ratid”] is highest for the following 4 pathways: phenylalanine,
tyrosine and tryptophan biosynthesis (15.6), methionie&imolism (15.16), carbon fixa-
tion (12.56), nucleotide sugars metabolism (12.33). Assignt to a KEGG map was not
used as an attribute for machine learning prediction agéisiglt may simply reflect that
these are commonly studied pathways and the pathway wagleoed to be a property

of the protein as opposed to the nsSNP.
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Site Disease| Polymorphism | Percentage (odds ratio) of
nsSNPs within these sites
that are disease

ACT_SITE 25 1 96.15 (10.12)

BINDING 13 0 100 (-)

DNA_BIND 352 20 94.62 (7.12)

METAL 38 0 100 (-)

MOD_RES 34 3 91.89 (4.59)

MUTAGEN 111 10 91.74 (4.49)

NP_BIND 108 8 93.1 (5.46)

Table 2.2: The number of disease and polymorphism nsSNPs within SWRE8Pfeature table
sites that contain> 90% disease nsSNPs. ACIITE - amino acid(s) involved in the activity of
an enzyme, BINDING - binding site for any chemical group érmyme, prosthetic group, etc.),
DNA _BIND - Extent of a DNA-binding region, METAL - binding site fa metal ion, MODRES -
posttranslational modification of a residue, MUTAGEN - Siteich has been experimentally altered
by mutagenesis, NBIND - extent of a nucleotide phosphate-binding region.

2.2.1.1.3 Gene Ontology The ratio of deleterious nsSNPs was found to be the highest
for the following GO biological processes: anti-inflammagtoesponse (GO:0030236),
peroxisome organization and biogenesis (GO:0007031), mardxisomal membrane
transport (GO:0015919). The GO cell location categoriesngathe highest ratio of
deleterious nsSNPs are the peroxisomal membrane (GO:@8D5ntegral to peroxi-
somal membrane (GO:0005779) and collagen type VII (GO:B00% categories. The
molecular function categories containing the highesbrafidisease to neutral nsSNPs
are phenylalanine 4-monooxygenase activity(GO:00045)pha-galactosidase activity
(G0O:0004557) and pyruvate kinase activity (GO:0004743).categories were not used
as machine learning attributes as they were considered podperties of the protein as

opposed to the nsSNP.

2.2.1.1.4 Interactions A total of 1,944 SWISSPROT nsSNPs mapped to proteins that
have entries in BIND. A significant number of disease nsSN@swathin interacting
regions (*=32.85, p=0.001) within BIND. Table 2.3 shows 71.7% (odd#ora.29) of
positions containing one or more NsSNPs that map to infagaoegions are associated
with disease (736 sites) as opposed to 28.3% (290 siteshvdaictain polymorphism
NSSNPs.
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2.2.1.2 Analysis of structural features

A total of 3,821 nsSNPs could be mapped to a homologous profdinown structure.
Of the nsSNPs that could be mapped to structure, diseasdPsi8Nded to be buried and
neutral NsSSNPs tend to be exposed. There was also a propemairds nsSNPs causing
disease occurring in beta sheets as previously noted (8umeyal., 2000) and a trend

towards neutrality with increased accessibility.

2.2.1.2.1 Interactions A total of 3,028 SWISSPROT nsSNPs mapped to proteins that
have structures or structural homologs in MMDBBIND (Baé¢rl., 2003). Table 2.3
shows 86% (odds ratio 1.29) of positions containing one orermsSNPs that map to
interacting residues are associated with disease (2%) bite also that 82% (odds ratio
0.97) of positions containing one or more nsSNPs that maprieimteracting residues are
associated with disease. The difference between intaggsties containing disease nsS-

NPs and non-interacting sites containing disease nsSN®setaignificant{*?=3.17).

Interacting  sites | Non-interacting
(num)[odds ratio] sites  (num)[odds
ratio]
Disease (BIND) 71.7%(736)[1.29] | 58.6%(431)[0.72]
Polymorphism (BIND) 28.3%(290) 41.4%(304)
Disease (MMDBBIND) 86.0%(294)[1.29] | 82.0%(1818)[0.97]
Polymorphism (MMDBBIND) | 14.0%(48) 18.0%(398)

Table 2.3: Distribution of disease and neutral nsSNPs within locatidimteracting or non-
interacting) from BIND and MMDBBIND. Some sites may contamultiple nsSNPs

All attributes excluding the KEGG pathway and GO attribmtese used for machine

learning analysis.

2.2.2 Machine Learning
2.2.2.1 Single attribute analysis

The 1R algorithm identified the best single attribute in teohpredicting disease status.
The attributes were ranked in terms of effectiveness asdigboe and were also ranked
in terms of the information gain that they provided (Tables@nd 2.5). The PSIC con-

servation score was identified as the best classifier in anbatbhdataset achieving 72%
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correctly classified instances with the rules that defined@N# as being disease status
with a score difference- 0.89 and neutral with a PSIC score difference- 0.89. These
classifiers compared favourably with the conservationesndes identified by Ramensky

et al. (2002) in their study whereby a PSIC score differerce 0.5 was classified as

benign, 1.5 to 2.0 possibly damaging ane 2.0 probably damaging.

1R Rank Attribute
72.82 conservation score (PSIC)
67.49 | normalised relative accessibility
63.46 MMDBBIND
62.64 mass change
62.56 relative accessibility
62.23 exposure
61.41 PAM score
60.67 mutation residue
60.34 volume change
59.19 wild type residue

Table 2.4: Top 10 attributes for predicting nsSNP function using 1Rhwili0 fold cross validation

and bucket size 14.

Information gain (bits) Attribute
0.2 conservation score (PSIC)
0.1 normalised relative accessibilit
0.09 wild residue
0.07 relative accessibility
0.06 PAM score
0.06 mass change
0.05 mutation residue
0.05 exposure
0.04 volume change
0.04 hydrophobicity difference

Table 2.5: The information gain per attribute when predicing nsSNR:fiom.

2.2.2.2 Attribute set analysis

The J48 decision tree algorithm was used to evaluate thectivedperformance of the

following subsets of attributes:
e Set (1) - All variables.

e Set (2) - Structural variables.
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e Set (3) - Non structurally dependent variables.

e Set (4) - Non structurally dependent variables excludirg ¢bnservation score

(PSIC).

e Set (5) - Conservation score alone.

2.2.2.2.1 Effect of Imbalance Attribute sets (1) and (2) contained 3,821 nsSNPs
when imbalanced and 1,218 when balanced, both sets inclstledtural variables.
Datasets (3), (4) and (5) contained 14,636 nsSNPs when ambad and 8,434 when
balanced. They contained more nsSNPs than sets (1) andgq@)ydeethey were not de-
pendent on structure.

The MCC increased with increasing balance within each ofsiis of attributes.
There was a difference in the MCC score between 0% balana@d @0P6 balanced of
0.24 for dataset (1), 0.29 for (2), 0.08 for (3), 0.07 for (Af&.15 for (5). The perfor-
mance of the weighted sets lay between the level of 25% and [Edl&&cing for each
attribute set (Figure 2.2).

The 100% balanced dataset (1) achieved a MCC of 0.49. Wheghteei and imbal-
anced the MCC was 0.3 and 0.25 respectively for this sameTdet. balanced dataset
(3) was equal second in the rankings with a 75% balanced seidfforming better than
dataset (2). The conservation score alone (set (5)) achewemilar MCC score when
considered separately (MCC 0.43) as it did when it was iredud set (3) (MCC 0.44)
when 100% balanced. When the conservation score is excthdeglis a drop of 0.16 in
the MCC of the 100% balanced dataset (3). When set (2) is badam performs better
than (4) but when it is not 100% balanced it has a lower MCCaBxtt(3) actually per-
forms better than the dataset (1) when the datasets:aré0% balanced or weighted.
The imbalanced dataset (2) achieved the lowest MCC score.

The rules learnt from the machine learning approach wene dpglied to make pre-
dictions on nsSNPs where the function was unknown. All nsShighin Ensembl (Build
27_1) were used as the unknown test dataset. The dataset wasdta the 100% bal-
anced dataset of 609 neutral and 609 disease nsSNPs usiagatiles. This resulted in

a predicted classification along with a confidence scoredohef the ‘unseen’ nsSNPs
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Figure 2.2: nsSNP function predictive performance of five attribute seib measured using

Matthews Correlation Coeffecient (MCC). Non struct varslgXSIC - Non structurally dependent
variables excluding the conservation score (PSIC); Strar - Structural variables; Non struct vars
- Non structurally dependent variables; All vars - All véddias.

within Ensembl. The predictions made for all of the Ensend#8MPs are available to be
viewed within Ensembl as a Distributed Annotation SysterA$Psource (Figure 2.3)

(Dowell et al,, 2001).

2.3 Discussion

The SNP database was created to observe how various secaethatructural based
nsSNP attributes as well as the level of balance in the trgidataset affect nsSSNP func-
tional prediction performance. Using the optimal set ofiladtes and level of balance
in the training dataset was found to increase the Matthewsletion coefficient (MCC)
and therefore increase the value of the predictions for ms$kee targeted studies of EH,
and other diseases.

The use of a 100% balanced dataset dramatically increas@d@C and removed any
bias towards building rules for prediction of the diseas¢estComplete undersampling is

a better choice than reweighting in addressing an imbathdataset. When imbalanced,
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Figure 2.3: Screenshot of nsSNP function predictions (labelled as tipedas track) integrated
within the Ensembl browser as a DAS source (Dowehl., 2001)

performance using conservation alone (MCC 0.28) is cloghdbachieved by Bao &
Cui (2005) (MCC 0.305) yet with a balanced dataset the MCQaatly improved (MCC
0.43).

We saw a larger spread in the MCC when using the smaller datts included
structural variables, because of the larger ratio of disdasneutral nsSNPs in these
datasets. This explains why the MCC for the dataset of albbées performed best
when> 50% balanced yet the performance drops below that of non stalbtidepen-
dent variables when the level of balance falls below thisr&glt also explains the similar
pattern seen when comparing structurally dependent \tasand non structurally de-
pendent variables excluding conservation, except thatubeff lies at the 75% level of
balance.

There are a number of caveats with the training dataset. ateset may include
NsSNPs predicted to be ‘disease’ where some of the nsSNPsmhae in linkage dis-
equilibrium with the phenotype in question and may theneivot be causative. This
‘pollutes’ the training set and may lead to a higher erroe eatd lower MCC. Further fil-
tering of the dataset would lead to a smaller but cleanaritrgiset that could in turn lead
to lower error rates and an increase in the MCC. Further cioatjdns could arise where

molecular phenotypic changes that don’t result in a phygicanotype and unstudied or
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unobserved phenotypic changes may result in a nsSNP beasgiftéd as neutral that
should be classified as disease. Improvements to the sysidchalso be made if SNPs
could be graded in terms of how damaging they are as oppodéeé tmoolean states of
disease and polymorphism that currently classifies thertinmea databases may contain
this information. Decision trees were used to build modetgpfedicting functional nsS-

NPs due to their easily interpretable rules. Running Wekth afl available classifiers

and various configurations may identify a classifier thabotstimproved accuracy.

Since completion of the nsSNP analysis, a number of furtheties have been per-
formed, thirteen of which cited the work in this thesis. Wais included a study focus-
ing on 686 sequence based attributes (Hu & Yan, 2008) usinmikasapproach to that
taken in this thesis. Performance was similar to resultsesed in this study. Further
work by Tianet al. (2007) created an SVM based application called Pareprohaihic
cluded sequence and evolutionary information surroundingSNP and did not include
structural attributes. A novel structure-based approBamgo (Bonds ON Graph), was
introduced whereby protein structures were consideredsidue-residue interaction net-
works (Chenget al., 2008). Graph theoretic approaches were applied to igemtsidues
that are critical for maintaining structural stability wih the network. The effect of a
nsSNP change could then be evaluated. Performance was @bigim commonly used
PolyPhen (Sunyaest al., 2001) and Panther (Thomasal,, 2003) approaches. A study
by Careet al. (2007) aimed to quantify effects of the different approachsed in the
field. They concluded that the SWISSPROT training datatsetiun this study was the
preferred training dataset to date and some of the conclsisiere based on findings from
this thesis.

Reassuringly, previously observed trends can be seendrsthdy of a large num-
ber of nsSNPs. Disease nsSNPs tend to affect protein syaang & Moult, 2001),
are buried (Stitzielet al, 2004) and often disrupt a conserved residue (Saunders &
Baker, 2002). This work extends previous work by addrestiegproblems of imbal-
ance and redundancy within the attributes for a large selecf natural nsSNPs and
then goes on to make predictions on all Ensembl nsSNPs. 8eiddBaker (2002)

and Bao & Cui (2005) showed that in the absence of a conservatiore, structural
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attributes are valuable predictors. Here it is affrmedngsnachine learning meth-
ods that the sequence conservation measure is the mostfpbsgiagle predictor and

it has been shown that a high level of accuracy is achievedjube conservation score
alone. It has also been shown that structural attribute®mbination with the conser-
vation score improves prediction accuracy but also thatthee other non structurally
dependent attributes that can reduce the error rate fuatherare valuable in the ab-
sence of a conservation score. The performance of all atitrikubsets however, is very
much dependent on how the datasets are configured. The nmmaxprediction accu-

racy can be achieved by combining all attributes of the ns@iifin a balanced dataset.
The predictions based on all of these learnings are availl public use as a DAS

sourcehttp : //www.brightstudy.ac.uk/das_help.html (Figure 2.3) and as an annota-

tion within the SNP function portal (Wargt al., 2006).
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Chapter 3

Protein function analysis

This chapter focuses on the performance of machine leawlassifiers in predicting
function for distantly related protein sequences. Typycalo approaches are used to
address such a multi-class problem. The first involves augfte algorithm to the multi-
class problem directly. An example of an algorithm that carasily generalized to cope
with multi-class problems is the decision-tree classifieihe second approach involves
creating several two-class problems and a class is asshgassdi on the predictions ob-
tained from the two-class problems. This approach has thefibef not requiring any
changes to the underlying algorithm. Examples of this agganclude error-correcting
output codes (Dietterich & Bakiri, 1995) and pairwise ciisation (Furnkranz, 2002).
Here we experiment with a range of classifiers that implemanéd approaches for ad-
dressing the multi-class problem.

Membership of a SCOP superfamily was used as a measure aiciialaelatedness
(Murzin et al,, 1995). The SCOP database is a manually curated resourperseg by
a host of automated methods to provide comprehensive andadealescriptions of the
structural relationships between proteins where the stregés known. The relationship
between sequence structure and function is indefinite andéer of studies have shown
protein superfamilies within a single fold having diversadtions, an example being the
aldo-keta reductases, a large hydrolase superfamily,tanthiol protein esterases which
include the eye-lens and corneal crystallins (Hegyi & Ga#nst1999). The TIM-barrel
fold is an extreme example of divergent evolution with thiel finctioning as a generic

scaffold catalyzing 15 different enzymatic functions. B the superfamily level, there



Chapter 3. Protein function analysis 69

can be difficulty in inferring function from structure. An @&xple can be seen in the
enolase superfamily where there are hundreds of sequevaiésbée. Known structures
of this superfamily catalyze eight different overall reant (Gerltet al, 2005). Despite
this, proteins in the same SCOP superfamily are believecteelated from structural
and other considerations and would therefore often be ¢xgéc have the same general
functional role. However, they include proteins which asgydiverse at the level of
sequence similarity and for which relatedness would notdpaegent from consideration

of sequence alone.

3.1 Protein function analysis methods

This study was restricted to large and diverse SCOP supgigammamely those with
more than 15 sequences that do not share more than 20% seqdentity. A range
of popular machine learning methods as implemented in thikaWerkbench (Witten
& Frank, 1999) were employed and a web based clustered camgpofrastructure was
built to enable rapid identification of optimal classifiersdlaconfigurations (Figure 3.1).
This tool parses and stores results in a MySQL databasestglihding a summary to the
user by email. A sequence enrichment step was introducedéan to increase the number
of sequences available for training. The dataset provideakenging benchmark but one

which is very relevant to enhanced genome annotation gteste

3.1.1 Protein domain dataset

Two datasets were created for analysis; the first comprisathdhs from single domain
proteins exclusively and this was the main focus of thisstédsecond dataset included
domains from multi domain proteins. The inclusion of SCORmdms from multi domain
protein structures is useful for characterising domainsrmy present problems with the
functional characterisation of a protein. Namely, the tiorcof a multi domain protein
(composed of 2 SCOP domains A and B for example) may not naglysise the sum
of the functions associated with the individual constitugomains, A and B. However

including SCOP domains from multi domain protein strucsutees lead to many more



Chapter 3. Protein function analysis 70

CEO Online Submit form

Dataset (required)

EE———

W Do with non-stratified train/test folds :
W Do with fully siratified tram/test folds. Dataset structure (eptional)
'Well provide a folder full of sample datasets that will show here|

as dropdowner. Dude's got a right to test first. _

Test set (optional) (1) Give struct g line change:
[line]t3[tab]t4" 2/t4 belong t

I T 165 respectt

Classifier and configuration selection (add to/edit lines in syntax)

) -Q weka.classifiers . bayes.nst.ssarc
ns. =53 0=-K0-D1 -G =R 0.0 =N 0.5 |_
. functions.Libs S0 -K1 -R 0.0 -N 0.5 |~
weka.class -functions. K -R 0.0 -N 0.5
weka.class ers.meta.END -5 1 ic s.meta.nestedDi
weka.clagsifiers.meta,.END -5 1 -I 10 -W weka.classifiers.meta.nestedDi -
‘ m, '

Figure 3.1: Screenshot of the web based version of Weka, which is ineedgnaith a computing
cluster.

examples.

Domain sequences were obtained from the Astral20 datablaisé wontains SCOP
domain sequences sharing less than 20% sequence idernyn@et al., 2000). Su-
perfamilies containing fewer than 16 domains at this levaemuence redundancy were
excluded. The datasets were split such that two thirds tdimees from each superfamily

were used for training and the remaining one third of instarfor testing the models.

3.1.1.1 Superfamily enrichment

The SCOP database provides a gold standard structuratceswith reliable comprehen-
sive annotation, meaning that domains should be accurelegdgified at the level of su-
perfamily despite being diverse at the sequence level. Thevas to extend this diverse
set of domain sequences by including entries from sequeatadbases without known
structure and therefore missing SCOP annotation. The mefasdhis was to boost the
numbers of instances available for training the machineleg algorithms. It was nec-
essary to be cautious, however, because if very remotévedatere included there was
a danger they may not actually be part of the same superfasgiilifoe et al. (2005) have

previously described an approach to recruit sequence€iliitd domain superfamilies.

The following steps were performed to enrich the number afgxes in each super-
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family:

e A BLAST (Altschul et al,, 1997) search using each of the domain sequences from
the diverse SCOP superfamilies was performed against tiRdiB0 subset of the

Uniprot database (Apweilat al., 2004).
¢ In order for a hit to be retained, the E value had todf20005.
¢ Hits were excluded where80% of the domain was aligned

¢ Hits were also excluded where the length of the aligned®edi the UniRef50 hit
was <80% of the length of the aligned section of the domain (to wkelhits that

had long gaps within the alignment.)

e UniRef50 hits were further excluded that matched domaimsa® than one super-

family in order to reduce ambiguity in superfamily membgpsdf the hit.

e BLASTClust (Dondoshansky, 2002) was then run against theltiag SCOP do-
mains and UniRef50 hits for each superfamily to remove rddany. For each

cluster the SCOP domains were retained as the cluster egpagise when present.

e Results were compared where BLASTClust was used to remaendant se-
guences at-20% and then-30% sequence identity. BLASTClust was set at these
levels of sequence identity because below 25% similar faondan not confidently
be inferred by sequence alone (Wilsetral,, 2000). It was considered that 30% was
a conservative cutoff where similar function could be marefently inferred. At
a cutoff of 20%, confidence in assumption of function was lolue it was consid-

ered to be of interest to compare to the 30% cutoff.

3.1.2 Protein domain features

Attributes selected for machine learning were based upenptbperties explored by
Dubchaket al. (1995) who analysed protein folds in the context of the SC@Bsifi-
cation. These attributes relate to the hydrophobicity, ¥fan Waals volume, polarity,
polarizibility and predicted secondary structure of theiremacid sequence. The sec-

ondary structure (C=Colil, H=Helix, E=Strand) was prediaising PSIPRED (McGuffin
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et al, 2000). Each amino acid was labelled as belonging to onereétbroups for each

of these descriptors (Table 3.1).

Property Groupl Group2 Group3
Hydrophobicity Polar Neutral Hydrophobic
R,K,E.D,Q,N | GASTPH)Y | CVLIMFW
Normalized Van Der Waals 0-2.78 2.95-4.0 4.43-8.08
G,AS,CT,PD N,VEQ,,L | M\HKFR,Y,W
Polarity 4.9-6.2 9.0-9.2 10.4-13.0
L,LLFEW,C,M,V,Y PATG,S H,Q,R,K,N,E,D
Polarizibility 0.0.108 0.128-0.186 0.219-0.409
G,AS,D, T C,PN,VEQ,IL| K;M,H FR,Y,W
Secondary structure C=Cail H=Helix E=Strand
Amino acid composition n.a n.a n.a
Amino acid length n.a n.a n.a

Table 3.1: Properties of each domain sequence that were used as t&i$riioupredict superfamily
membership using machine learning classifiers (n.a = ndtcatybe). (The first 5 properties were
taken from Dubchalkt al. (1995))

All descriptors were analyzed in the context of their conifpams, distribution and
transition along the amino acid sequence. Taking hydrojoitglas an example, the
composition element comprised three attributes; the pgge composition of polar (P),
neutral (N), hydrophobic (H) amino acids in the domain segee The transition was
also composed of three hydrophobicity related attributes;percentage frequency of P
followed by N or N followed by P, the percentage frequency dbkowed by H or H
followed by P and the percentage frequency of N followed byrHHdollowed by a N.
The distribution comprised 15 hydrophobicity relatedibtires describing the amino acid
sequence in terms of the proportion of the length of the dorsaguence that contained
the first, 25%, 50%, 75%, 100% of each of the groups of amindsa@, N or H). In
addition to these previously studied properties, the amiid sequence length (bins of
length 20 amino acids) and amino acid composition were addettributes. A total of

126 attributes were included in the machine learning amalys

3.1.3 Machine learning

All machine learning analysis was performed using the Welaction of tools and algo-
rithms (Witten & Frank, 1999). The models were evaluatedroimédependent test dataset

which comprised one third of the original non-enriched data
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3.1.3.1 Single attribute analysis

In order to identify the most effective attribute in the mimehlearning prediction, the
1R classifying algorithm (Holte, 1993) and the informatgpain (IG) attribute evaluator
were used. The 1R classifying algorithm creates singld deision trees for each at-
tribute and measures the prediction error rate. The 1G at@umeasures the information
required after using the attribute as a classifier subttlafcten the information required
before using the attribute as a classifier. In both algortiime attributes were ranked in
terms of their effectiveness as predictors using the defaoker search method (Witten

& Frank, 1999).

3.1.3.2 Attribute set analysis

The performance of 32 machine learning classifiers in a wit@b configurations were
compared for the prediction of protein function based ongassent to one of 24 su-
perfamilies using 126 amino acid based sequence attripsendix C, Table 7). The
clustered implementation of Weka (Witten & Frank (1999)swesed to rapidly identify
the optimal classifiers and configurations.

The enrichment process was assessed by comparing therpanice using the non-
enriched resources and enriched resources using a BLASTEltroff of 20% and 30%
sequence identity. In order to assess the performance d¢énigth of the domain as an
attribute, the prediction performances using all variahlere compared with the perfor-

mance of all variables excluding the length of the domaimuesaqge.

3.1.3.3 Measure of performance

The performance of the machine learning methods was askesisg) the number of true
positives (TP), true negatives (TN), false positives (FR) false negatives (FN).

The positive predictive value (precision) (P) of predioBaan be described by

TP
P= TP+ FP

and recall (sensitivity) (R) is considered to be
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TP
R= TP+ FN

The F-measure (F) combines the positive predictive valdaacall measurements in

the following manner

3.1.4 Benchmarking

SCOP superfamilies chosen as classes in this study werdic@clarge diverse su-
perfamilies whose domains shared no more than 20% sequeeicgty. It is typically
difficult to classify members of such superfamilies usinguamtional sequence homol-
ogy methods.

To evaluate the performance of the machine learning approlae results of the PSI-
BLAST program were compared with models built using the paniehed datasets. PSI-
BLAST was run using a similar method to Melvit al. (2007). A database of UniRef90
sequences was initially used to create profiles for eacheostihdied SCOP domain se-
guences (Wt al,, 2006). Each profile was then matched separately againsabate
composed solely of the Astral20 proteins from the studiggedamilies. Matches with
an E-value< 0.0005 over 5 iterations were identified.

A definitive comparison of PSI-BLAST with a model created by&3/M (no sequence
enrichment) was difficult as various measures of performammuld be used. For each
PSI-BLAST query, we observed the number of matches with S@Q@mRains from the
correct superfamily and incorrect superfamily using thiengel threshold. We considered
a query to be correctly assigned to a superfamily (TP) whemtimber of hits to domains
from the true superfamily exceeded the number of hits froralsef superfamily. We
acknowledge that this approach is biased due to the sizeeofuperfamily, but think
that it is typical of the kind of approach taken when a usesmafits to assign functional

annotation.
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3.2 Protein function analysis results

3.2.1 Protein domain datasets

Two datasets were created for analysis, a primary datasgirising domains from single
domain proteins only and a secondary dataset which inclddetdhins from multi domain
proteins.

The exclusion of multi domain protein sequences in the sidghmain dataset reduced
the number of domains included in the analysis from 4931 &¥ZB8ontained within 1136
superfamilies). Excluding superfamilies that contairegdr than 16 domains at this level
of sequence redundancy further reduced the number of denmaiided to 573 contained
within 24 superfamilies (columns 1 and 2 in Appendix B, TableFor the second dataset
(which included domains from multi domain proteins), extihg superfamilies that con-
tained fewer than 16 domains resulted in 1448 domains aoedavithin 49 superfamilies

(columns 1 and 2 in Appendix B, Table 2).

3.2.1.1 Superfamily enrichment

Increasing the number of diverse sequence examples indheny datasets involved
taking entries from UniRef50 that showed distant homology similar function to a
domain sequence within the superfamily being studied @tval., 2006). Appendix B
Tables 1 and 2 show the number of instances per superfamilyeirsingle and multi
domain training datasets before and after the enrichmemtegs using BLASTClust at
20% and 30% redundancy. The periplasmic binding proté&m#lisuperfamily (id 53850)
exhibited the biggest increase (10.38 fold single domdiri, 3 fold multi domain) in the
number of instances after enrichment and the restrictiatormclease-like superfamily

(52980) had the smallest increase (1.15 fold single dorair3 fold multi domain).

3.2.2 Machine Learning
3.2.2.1 Single attribute analysis

The top ten attributes in the non-enriched datasets andelslef 20% and 30% enrich-

ment when using both the 1R and IG algorithms comprisedatgs relating to the com-
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position, transition and distribution of secondary stouetelements (coil, helix, strand)
and the length of the domain. The domain length was in the tagrbutes in all but one

training set and algorithm combination.

3.2.2.2 Attribute set analysis
3.2.2.3 Single domain dataset

Generally performance of the classifiers in both the singlé multi domain datasets
improved with the increasing level of enrichment in thertnag datasets. Best performing
classifiers in the single domain dataset were the END classithieving 64.2% correctly
classified instances on the non-enriched dataset, AdaBdasbtaining 64.2% correctly
classified instances on the dataset enriched at a level of @¥d_ibSVM achieving
66.3% correctly classified instances with a dataset ertlictie level of 30%. END is
a meta classifier for handling multi-class datasets witha®scclassifiers by building an
ensemble of nested dichotomies (Dat@l., 2005). AdaBoostM1 is a class for boosting a
nominal class classifier using the Adaboost M1 method (Ft&u8chapire, 1996). When
excluding the domain length as an attribute, the best parfg classifier was the END
classifier obtaining 64.2% correctly classified instancgagithe 30% enriched training
dataset.

The classifiers varied greatly in predicting each supetfamrable 3.2 shows the
performance per superfamily in the single domain dataseguke best performing Lib-
SVM classifier and 30% enrichment. The model achieved thegm$formance in pre-
dicting membership to the ARM repeat superfamily (id 483(éll) alpha proteins class
(id 46456)) with an F-measure of 0.91. The poorest perfognsnperfamily was the
nucleotide-diphospho-sugar transferases superfaniily3#48) (alpha and beta proteins

class a/b (id 51349)) with an F-measure of 0.

3.2.2.4 Multi domain dataset

There were 49 superfamilies (1448 domains) that had moretfalomains within As-
tral20 when including multi domain proteins. Appendix B T&aB shows the SCOP class

and fold membership for the 49 superfamilies. The classaadptd beta proteins a+b (id
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Superfamily Precision | Recall | F-Measure
46458 a.1.1 sf Globin-like 0.8 0.8 0.8
46689 a.4.1 sf Homeodomain-like 0.67 0.67 0.67
46785 a.4.5 sf Winged helix DNA-bindingdg-  0.77 0.83 0.8
main

47266 a.26.1 sf 4-helical cytokines 0.86 0.75 0.8
48371 a.118.1 sf ARM repeat 1 0.83 0.91
49785 b.18.1 sf Galactose-binding domajn- 0.75 0.5 0.6
like

49899 b.29.1 sf Concanavalin A-like 0.67 0.57 0.62
lectins/glucanases

50249 b.40.4 sf Nucleic acid-binding proteir] 0.57 0.89 0.7
50729 b.55.1 sf PH domain-like 0.75 0.5 0.6
51182 b.82.1 sf RmIC-like cupins 1 0.2 0.33
88633 b.121.4 sf Positive stranded ssRNA 0.57 0.8 0.67
viruses

51445 c.1.8 sf (Trans)glycosidases 1 0.43 0.6
51735 c.2.1 sf NAD(P)-binding Rossmanp- 0.8 0.67 0.73
fold domains

52540 ¢.37.1 sf P-loop containing nucleoside 0.52 0.76 0.62
triphosphate hydrolases

52833 c.47.1 sf Thioredoxin-like 0.86 0.67 0.75
52980 c.52.1 sf Restriction endonuclease-like 1 0.14 0.25
53335 ¢.66.1 sf S-adenosyl-L-methionine- 0.35 0.46 0.4
dependent methyltransferases

53383 c¢.67.1 sf PLP-dependent transferasgs  0.78 0.88 0.82
53448 c.68.1 sf Nucleotide-diphospho-sugar 0 0 0
transferases

53474 ¢.69.1 sf alpha/beta-Hydrolases 0.75 0.82 0.78
53850 ¢.94.1 sf Periplasmic binding protein- 0.55 0.86 0.67
like Il

55729 d.108.1 sf  Acyl-CoA N 0.56 0.71 0.63
acyltransferases (Nat)

57059 g.3.6 sf omega toxin-like 0.8 0.57 0.67
57095 g.3.7 sf Scorpion toxin-like 0.63 0.83 0.71

77

Table 3.2: Performance in predicting the 24 SCOP superfamilies (eketumulti domain proteins)
using Support Vector Machines (LibSVM) with enrichment agdundancy cutoff of 30%.
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53931) is better represented in this analysis.

The same configurations and evaluation method were applitbdstdataset. Best per-
forming classifiers for each dataset were AdaBoostM1 aaige¥8.5% correctly classi-
fied instances using the non-enriched dataset, END obtab807% correctly classified
instances on the training dataset enriched at 20%, and AmdBId achieving 55.6% on
the training dataset enriched at 30%. The results of madbdamaing for each superfamily
using AdaBoostM1 and enrichment at sequence identity of 8@de seen in Table 3.3.
When excluding the domain length as an attribute, the be&ino@ng classifier obtained
54.8% correctly classified instances using the 30% enritlagting dataset and the END
classifier.

Again, the success of the machine learning methods in gnegi8COP superfamily
varied greatly depending on the superfamily with F-measamging from 0 to 0.92. The
top performing superfamilies were the globin-like (id 483%all alpha protein class (id
46456)), and C2H2 and C2HC zinc finger (id 57667) (small pnstelass (id 56992)) su-
perfamilies, both with an F-measure of 0.92. The ARM repepéesgfamily (id 48371) still
performed well being ranked 4th in terms of F-measure (0.8Rg poorest performing
superfamilies were the restriction endonuclease-liké&sg880), the nucleotidylyl trans-
ferase (id 52374) (both belonging to the alpha and betaipsottass a/b (id 51349)) and
the cysteine proteinases (id 54001) (Alpha and beta proteth (id 53931)) superfami-

lies, all with F-measures of 0.
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Table 3.3:Performance in predicting the 49 SCOP superfamilies (anal-

ysis including multi domain proteins) using AdaBoostM1 twénrich-

ment at a redundancy cutoff of 30%.

Superfamily Precision | Recall | F-Measure
46458 a.1.1 sf Globin-like 0.86 1 0.92
46626 a.3.1 sf Cytochrome ¢ 0.67 0.75 0.71
46689 a.4.1 sf Homeodomain-like 0.57 0.67 0.62
46785 a.4.5 sf “Winged helix” DNA- 0.65 0.74 0.69
binding domain

47266 a.26.1 sf 4-helical cytokines 1 0.38 0.55
47473 a.39.1 sf EF-hand 0.5 0.17 0.25
48371 a.118.1 sf ARM repeat 0.78 0.88 0.82
48726 b.1.1 sf Immunoglobulin 0.68 0.83 0.75
49265 b.1.2 sf Fibronectin type 111 0.42 0.5 0.46
81296 b.1.18 sf E set domains 0.22 0.15 0.18
49503 b.6.1 sf Cupredoxins 0.67 0.5 0.57
49785 Db.18.1 sf Galactose-binding 0.57 0.8 0.67
domain-like

49899 b.29.1 sf Concanavalin A-like  0.57 0.73 0.64
lectins/glucanases

50249 b.40.4 sf Nucleic acid-binding pro- 0.38 0.3 0.33
teins

50729 b.55.1 sf PH domain-like 0.55 0.6 0.57
51011 b.71.1 sf Glycosyl hydrolase dp- 0.4 0.4 0.4
main

51182 b.82.1 sf RmIC-like cupins 0.67 0.67 0.67
88633 b.121.4 sf Positive stranded ssRINA  0.75 0.43 0.55

viruses

Continued on Next Page. ..
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Table 3.3 — Continued

Superfamily Precision | Recall | F-Measure
51445 c.1.8 sf (Trans)glycosidases 0.77 0.81 0.79
51569 ¢.1.10 sf Aldolase 0.67 0.33 0.44
51735 c¢.2.1 sf  NAD(P)-binding 0.5 0.7 0.58
Rossmann-fold domains

51905 c.3.1 sf FAD/NAD(P)-binding dot 0.6 0.27 0.38
main

52317 c¢.23.16 sf Class | glutamine 0.5 0.4 0.44
amidotransferase-like

52374 ¢.26.1 sf Nucleotidylyl transferase 0 0 0
52540 c.37.1 sf P-loop containing nuclep- 0.36 0.49 0.42
side triphosphate hydrolases

52833 c.47.1 sf Thioredoxin-like 0.61 0.79 0.69
52980 c.52.1 sf Restriction endonuclease- 0 0 0
like

53067 c.55.1 sf Actin-like ATPase domajn  0.43 0.33 0.38
53098 c.55.3 sf Ribonuclease H-like 0.56 0.63 0.59
53335 ¢.66.1 sf S-adenosyl-L-methionine- 0.39 0.36 0.37
dependent methyltransferases

53383 c¢.67.1 sf PLP-dependent traps- 0.7 0.88 0.78
ferases

53448 c¢.68.1 sf Nucleotide-diphosphp- 0.33 0.17 0.22
sugar transferases

53474 c.69.1 sf alpha/beta-Hydrolases 0.42 0.62 0.5
53850 c¢.94.1 sf Periplasmic binding 0.38 0.75 0.5
protein-like Il

56784 ¢.108.1 sf HAD-like 0.5 0.4 0.44
54001 d.3.1 sf Cysteine proteinases 0 0 0

Continued on Next Page. ..
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Table 3.3 — Continued

Superfamily Precision | Recall | F-Measure
54211 d.14.1 sf Ribosomal protein S5 do- 0.6 0.33 0.43
main 2-like

54236 d.15.1 sf Ubiquitin-like 0.71 0.83 0.77
54373 d.16.1 sf FAD-linked reductases, C- 1 0.6 0.75

terminal domain
54593 d.32.1 sf Glyoxalase/Bleomycjn 0.8 0.67 0.73
resistance protein/Dihydroxybiphenyl
dioxygenase
55347 d.81.1 sf Glyceraldehyde-3- 0.5 0.33 0.4
phosphate dehydrogenase-like, C-termipal
domain
55486 d.92.1 sf Metalloproteasés 0.5 0.5 0.5
(“zincins”), catalytic domain
55729 d.108.1 sf Acyl-CoA Nj 0.71 0.56 0.63

acyltransferases (Nat)

56672 e.8.1 sf DNA/RNA polymerases 0.8 0.8 0.8
57059 g.3.6 sf omega toxin-like 0.5 0.29 0.36
57095 g.3.7 sf Scorpion toxin-like 0.57 0.67 0.62
57196 g.3.11 sf EGF/Laminin 0.71 1 0.83
57667 g.37.1 sf C2H2 and C2HC zinc fin- 1 0.86 0.92
gers

57716 g.39.1 sf Glucocorticoid receptgr- 0.71 0.71 0.71

like (DNA-binding domain)
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3.2.3 Benchmarking

Performance of PSI-BLAST and SVMs (using the non-enrichetdskets) was very vari-
able, with the two methods often differing in performancedach superfamily (Appendix
B Tables 4 and 5). We found that 8 out of 24 superfamilies aeli@ better F-measure
with SVMs in the single domain analysis and 10 out of 49 oladia greater F-measure
in the multi domain analysis. F-measures were comparablaémy other superfamilies,
especially in the single domain study. SVMs outperformetBIAST for all 5 of the

studied superfamilies from the small protein class (id 23 well as performing bet-
ter or comparably for superfamilies of the all alpha pradestass (id 46456). The mean

performance measures per superfamily are shown in Table 3.4

SVM PSI-BLAST
Dataset Precision| Recall| F-Measure| Precision| Recall | F-Measure
Single domain|  0.64 0.61 0.61 0.96 0.6 0.7
Multi domain 0.5 0.41 0.42 0.95 0.57 0.67

Table 3.4: The mean precision, recall and F-measure per superfanujuged by SVMs and PSI-
BLAST using the unenriched datasets comprising 24 (donfeans single domain proteins) and 49
superfamilies (including domains from multi domain prosi

3.3 Discussion

The SCOP database provides a gold standard structuralrcesaith reliable compre-
hensive annotation, meaning that domains should be aetyretssified at the level
of superfamily despite being diverse at the sequence ldv&s. desirable to be able to
build machine learning models in order to be able to assignftimctional annotation to
domains where the structure is unknown and function is diffio infer by traditional

methods.

3.3.1 Superfamily enrichment

Machine learning methods benefit from having more trainiatad Our seed data sets,
namely 24 and 49 large and sequence diverse (no two sequarar@sy more than 20%

sequence identity) superfamilies, provide a ‘ground trathce we know from SCOP
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(which uses structural and other considerations) thatithieims are in fact related. How-
ever, the datasets were somewhat limited in size and theigues$ how to extend them
was not trivial: adding very weakly related sequences deteby PSI-BLAST might
contaminate the superfamily by introducing proteins whiclact did not belong to the
superfamily; but being very restrictive with the cut off wdwnly add more examples of
close homologs. We observed that the performance of theinetkarning algorithms
improved when the SCOP superfamily datasets were enriathat the percentage of
sequence similarity used as a cutoff in the enrichment goe#fected prediction perfor-
mance. The performance at the sequence identity cutoff&f\8@s better than the lower
cutoff of 20%. At the 20% level there was the possibility ohtamination and alignment
errors which would affect the predicted secondary strecaitributes and may have led
to lower performance. It is expected that this step couldrawg performance if applied
to the many published fold prediction models (Ashbureteal., 2000; Ding & Dubchak,
2001; Linet al, 2005; Shen & Chou, 2006; Melviet al,, 2007; Shaminet al., 2007;
Damoulas & Girolami, 2008)

3.3.2 Single attribute analysis

Attributes vary in their contributions to the predictionssuperfamily membership in
the machine learning models. Jensgral. (2002) previously concluded that secondary
structure was the most important descriptor in their profiegnction prediction study. This
study found predicted secondary structure was importargridicting function with the
composition, transition and distribution of secondaryature elements being the most
important attributes in the single attribute analysis. séeret al. (2002) concluded that
protein length was not a valuable attribute in their studigdewever, we found that the
length of the sequence was a valuable attribute in the siagtibute analysis for the
24 superfamilies of the single domain analysis. Figure B@ws many superfamilies
display a clustering with regards to length in the non-draetsingle domain resource.
All four domains over 550 residues belong to the ARM repepesiamily (48371 a.118.1
sf), with the Importin beta domain (d1ggra.118.1.1) being the longest domain (877

residues). However, when combining all attributes for ugh the 32 applied classifiers



Chapter 3. Protein function analysis 84

the models still performed well following the exclusion ardain length as an attribute.
This suggests that the classifiers were not dependent oninléength as an attribute and

other sequence properties were important in accuratedgifyeng superfamilies.

B Il 49899 b.29.1 sfConcanavalin A-  []46785 a.4.5 sf "Winged helix"
50 like lectins/glucanases DNA-binding domain
M 57059 g.3.6 sf omega toxin-like [ 47266 a.26.1 sf 4-helical cytokines
451 Il 51445 c.1.8 sf (Trans)glycosidases [l 52980 c.52.1 sf Restriction
[ 52540 c.37.1 sf P-loop containing endonuclease-like
nucleoside triphosphate hydro- [ 51735 c.2.1 sf NAD(P)-binding
lases Rossmann-fold domains
404 [[] 46458 a.1.1 sf Globin-like [[1 57095 g.3.7 sf Scorpion toxin-like
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Length of domain sequence

Figure 3.2: Domain sequence length for superfamilies from Astral2@ twmtain>15 domains
(excluding multi domain proteins). The length is groupett inins of 20 amino acids. This figure
highlights the clustering of superfamilies by domain semegelength. The Importin beta domain
(dlggraa.118.1.1) from the ARM repeat superfamily (48371 a.118.i& she longest domain (877
residues).

3.3.3 Attribute set analysis
3.3.3.1 Single domain dataset

In analysis of combined attributes in the single domainues®s, the best performing clas-
sifier was LibSVM, obtaining 66.3% correctly classified arstes in an independent test
set using a training dataset that was enriched at a level %f S€quence identity. The
success of the machine learning methods in predicting STP&®mmily varied greatly
depending on the superfamily (Table 3.2). The P-loop cairtgi nucleoside triphos-

phate hydrolases (id 52540) and S-adenosyl-L-methiodependent methyltransferases
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(id 53335) had a large proportion of false positives. Thaigght percent of instances be-
longing to the 53335 superfamily were classified as 525401&9d of 52540 instances
were classified as 53335 suggesting that there is some signitetween these super-
families or that the diversity of both groups means thatsifgsg the two is difficult.
Both superfamilies belong to the same alpha and beta psotalh) (id 51349) class but
are members of different folds within the SCOP classifigatibigure 3.3 shows clearly
(black bordered squares) that when the model misclassifigsstance, it usually classi-
fies it correctly at the SCOP class level. This may reflect that'predicted secondary
structure’ attribute facilitated the correct class assignt (the SCOP class level repre-
sents the overall secondary structure composition of tbeepr). The alpha and beta pro-
teins a/b (id 51349) class contains the largest number adréampilies (10) in this study,
resulting in some misclassifications among the superfamthat it contains. The poor-
est performing superfamilies, nucleotide-diphosphoastiginsferases (id 53448) and re-
striction endonuclease-like (id 52980), both belong te tiass. The 52980 superfamily
also contains the smallest number of instances (15) in diritig dataset enriched at
30%. The best performing superfamily, ARM repeat (id 483BEJongs to a class (all
alpha proteins (id 46456)) containing only 5 superfamifiesn this study and has 50
instances in the 30% enriched training dataset. It mightdpe&ed that there would be
many misclassifications between the homeodomain-likerfaupdy (id 46689) and the
“winged helix” DNA-binding domain superfamily (id 46785% &oth of these superfam-
ilies belong to the same SCOP fold (DNA/RNA-binding 3-halibundle). Whilst 33%
of 46689 instances were misclassified as 46785, only 16% 3léstances were mis-
classified as 46689. This may be explained by the large numb&mnces belonging to
the 46785 superfamily, 114 at 30% enrichment, compared for3dhe 46689 superfam-
ily (Appendix B, Table 1). The larger number of instances rhaye resulted in a better
model being constructed. Therefore, it appears that thersity of superfamilies at the
class level as well as the number of instances availabledonng affect the performance

of the classifiers.
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Figure 3.3: Superfamily confusion matrix produced by an SVM model wittiadaset enriched at
30% sequence identity (excluding multi domain proteingiclEsmall square represents the percent-
age of domains belonging to the superfamily on the y axi®(superfamily) that were predicted to
belong to the superfamily on the x axis (predicted supetfamiihe colour of each square relates to
the predicted percentage of total instances accordingetedlour ramp on the right of the matrix.
Black bordered squares represent the 5 classes that thp@dasilies are grouped into (Appendix
B, Table 6). This figure highlights the fact that when a doniaimisclassified at the superfamily
level, it is usually correctly assigned at the class levéhimithe SCOP hierarchy.
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(1) 46458 a.l1.1 sf Globin-like, (2) 46689 a.4.1 sf Homeodiortiie, (3) 46785 a.4.5 sf "Winged he-
lix” DNA-binding domain, (4) 47266 a.26.1 sf 4-helical ckioes, (5) 48371 a.118.1 sf ARM repeat, (6)
49785 b.18.1 sf Galactose-binding domain-like, (7) 498294 sf Concanavalin A-like lectins/glucanases,
(8) 50249 b.40.4 sf Nucleic acid-binding proteins, (9) 5®%255.1 sf PH domain-like, (10) 51182
b.82.1 sf RmIC-like cupins, (11) 88633 h.121.4 sf Positirarsded ssRNA viruses, (12) 51445 c.1.8 sf
(Trans)glycosidases, (13) 51735 c.2.1 sf NAD(P)-bindirgg$tnann-fold domains, (14) 52540 ¢.37.1 sf
P-loop containing nucleoside triphosphate hydrolases), $2833 c.47.1 sf Thioredoxin-like, (16) 52980
€.52.1 sf Restriction endonuclease-like, (17) 53335 &.66S-adenosyl-L-methionine-dependent methyl-
transferase, (18) 53383 c.67.1 sf PLP-dependent trassferél 9) 53448 c.68.1 sf Nucleotide-diphospho-
sugar transferases, (20) 53474 ¢.69.1 sf alpha/beta-tagd® (21) 53850 ¢.94.1 sf Periplasmic binding
protein-like Il, (22) 55729 d.108.1 sf Acyl-CoA N-acyltrsfierases (Nat), (23) 57059 g.3.6 sf omega toxin-
like, (24) 57095 g.3.7 sf Scorpion toxin-like
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3.3.3.2 Multi domain dataset

The inclusion of multi domain proteins resulted in therengebver twice the number of
superfamilies available for study, with superfamiliesfirthe alpha and beta proteins a+b
class (id 53931) being better represented (Appendix B,el@pl The AdaBoostM1 clas-
sifier obtained 55.6% accuracy with a training dataset Bedcat 30%. The classifiers
still performed well despite the increase in the number glestamilies resulting from
the inclusion of domains from multi domain proteins. Agdhe success of the machine
learning methods in predicting SCOP superfamily variecdtlyelepending on the super-
family (Table 3.3). The restriction endonuclease-like5@980), nucleotidylyl transferase
(id 52374) and cysteine proteinases (id 54001) superfasndll performed poorly with
F-measures of 0. The top performing superfamilies were kbigirgtlike (id 46458) and
C2H2 and C2HC zinc finger (id 57667) superfamilies. The gidlke (id 46458) super-
family was ranked 3rd in the single domain analysis whereasa2H2 and C2HC zinc
finger (id 57667) superfamily was absent. The globin-likk46458) superfamily was
ranked 29th in terms of the fold increase in the number otumsts after the enrichment
step at 30% and was ranked 35th in terms of the total numberstdnces after the en-
richment. The C2H2 and C2HC zinc finger (id 57667) superfanvés ranked 19th in
terms of the fold increase in the number of instances afeertirichment step at 30%
and was ranked 29th in terms of the total number of instanites the enrichment. It
therefore seems unlikely that performance was biased tsthese superfamilies due to
imbalance in the dataset. Again, the P-loop containingeusitie triphosphate hydro-
lases (id 52540) had a large proportion of false positivd84{6 Additionally 23% and
30% of domains from the superfamily E set domains (id 8123 pwnisclassified as su-
perfamilies Immunoglobulin (id 48726) and fibronectin tyflg(id 49265) respectively.
Both superfamilies belong to Immunoglobulin-like betadaich fold (id 48725) which
is part of the all beta proteins class (id 48724) and wereuebed from the single domain
dataset.

Generally, similar patterns were observed in the singlenaniti domain datasets with
misclassifications at the superfamily level being corseeisigned at the fold or class

level. Superfamilies that performed best in both the siragid multi domain analysis
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belonged to either the all alpha protein (id 46456) or smaitgin classes (id 56992).
Poorest performers belonged to the alpha and beta clagses éetb) (ids 51349, 53931).

3.3.4 Benchmarking

For most superfamilies, PSI-BLAST did not detect unrelatethains with scores better
than the threshold, although the program failed to detéthalpossible correct matches
(ie to related domains). For these superfamiles, the defindf a correct assignment,
namely that the number of hits to domains from the true sap@ty exceeded the num-
ber of hits from a false superfamily, meant that the preaisias 1.0 leading to a high
F-measure. A more exacting requirement for confident dlaaton would be the identi-
fication of multiple (ideally all) related domains with segrbetter than the threshold. As
an example, we describe the breakdown of PSI-BLAST resait superfamilies. The
globin-like superfamily (id 46458) performed well withing PSI-BLAST results in the
single domain analysis (2nd top F-measure). Fourteen ol afomains in this super-
family were assigned to the true superfamily. However, esth14, four were classified
based on single matches, that is PSI-BLAST only detectedtelmta one other protein
in the same superfamily. The “Winged helix” DNA-binding dam superfamily (46785)
produced relatively poor results with PSI-BLAST (F-me&s0r49). Of the 37 domains
within this superfamily, only 12 were assigned to the trupestamily. Matches for 5
of these 12 were based on single hits and the maximum numbasrcgctly returned
domains for any query was 8. So, almost half of the assigrswveeite not confident clas-
sifications. The comparison with PSI-BLAST for the detectiod these remotely related
proteins shows that there are global sequence properéiesdh be used to successfully
classify domains from superfamilies, with the performaimceany cases depending on
the class that the superfamily belongs to. As previouskgdta definitive comparison of
PSI-BLAST with a model created by an SVM (no sequence enrgtthrwas difficult as
various measures of performance could be used and perfoenzdithe models is further

improved when we use BLAST as part of the enrichment process.
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3.3.5 Summary

The protein universe does not contain only 24 or 49 supeliiesrand we have not al-
lowed for this possibility. The approach we describe dogsatiow for an extra category
‘unknown superfamily’. One area of improvement would inmeproviding a method for
identifying an instance that does not belong to any of thdistli(24 or 49) superfamilies.
This might evolve as a pre-process step. Additionally, thpleyed attributes are not ex-
pected to be optimal for detecting close sequence reldtipagor which good solutions
already exist.

Whilst the methods described here do not provide a compbétidien for superfamily
prediction they show that machine learning methods thasiden simple sets of global
sequences based attributes may be useful for suggestiregfamdy membership and
hence narrow down the potential functional space, espgtialsuperfamilies belonging
to all alpha (id 46456) and small protein classes (id 56992js study shows that ma-
chine learning approaches to predicting SCOP categoriebeanproved by performing
a sequence enrichment step that exploits unannotatedrsszgaeithin genomic sequence
databases. As such these approaches may complement pretiileds for detecting dis-

tant relationships.
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Chapter 4

Combining protein-protein interaction
network and sequence attributes for

predicting hypertension related proteins

This chapter describes an exploratory study examining tiopegsties of 65 proteins
listed as being associated with hypertension in the Onlieadiélian Inheritance in Man
database (OMIM, Hamostt al. (2002)). The performance of a classifier which includes
protein-protein interaction (PPI) network, sequence afagributes for the detection
of hypertension related candidate proteins is reportedteRr-protein interactions form
networks which can be explored using graph theoretic agpes The networks can be
thought of as undirected cyclic graphs where the proteiesiades and the interactions
are edges. If proteins A and B directly interact then therstexan edge connecting nodes

A and B.

4.1 Hypertension PPl and sequence analysis methods

4.1.1 Dataset

OMIM is a comprehensive catalogue of human genes and thedceded genetic phe-
notypes. It provides a set of positive examples for macheaening approaches to build

classifiers for predicting disease genes. Each record iOt¥iéM database is associ-
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ated with a unique identifier which relates to a disease, Hsemwed symptoms and the
associated genes. The symptoms field of each OMIM entry waegdor the term ‘hy-
pertension’ and the results were manually filtered. The gessociated with OMIM
entries displaying hypertension as a symptom were then ethppto their SWISSPROT

protein identifiers (Boeckmaret al., 2003).

4.1.2 Protein-protein interaction network properties

Protein-protein interactions involving hypertensiorated SWISSPROT identifiers were
extracted from the OPHID database (Brown & Jurisica, 2006RPHID is an on-line
database of human protein-protein interactions built bppirag high-throughput model
organism data to human proteins. It also integrates data yemst two-hybrid, literature-
based interaction and orthology-based interaction ssurcéhe hypertension related
SWISSPROT proteins (nodes) present in OPHID are referreab tTd (hypertension
dataset). One thousand datasets, each containing the semibenof proteins as HTd
(65), were then generated by randomly selecting proteiodgs) from OPHID, which
included the HTd proteins. We refer to this group of dataast®d1..1000.

In order to investigate the PPI properties relating to higresion, a two step approach
was taken. Firstly, the ‘general topology’ of each HTd protgas investigated whereby
PPI properties of each HTd protein were investigated irticeieto all surrounding pro-
teins. Secondly, network properties were investigatediBpally in relation to other HTd
proteins (‘dataset topology’). Comparisons were made thi¢hRd1..1000 datasets. The
aim of this analysis was to identify whether HTd proteins @vbetter connected than
random and whether any differences could be explained liygaeeral background con-
nectivity. For example, can short distances between HTtepr® be explained through
HTd proteins being interaction hubs? A perl module (PPl.ma3 created that enables a
graph to be created and written to disk with the benefit thaigttaph structure does not
have to be created and read into memory each time a scriph.isTius saves a signifi-
cant amount of time when performing repeated graph thealethalysis on large graph

structures.
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4.1.2.1 General topology

Degree of nodesThe mean degree (total number of edges associated withirp(p)e
was calculated for OPHID as a whole, for HTd and Rd1..1000s Teasure was then
extended to identify the number of proteins within a raditi8 mteraction steps frorp
(figure 4.1).

Clustering coefficientThe clustering coefficient (C) for protemis the number of links
between the proteins that directly interact wjgtdivided by the number of links that
could possibly exist between them (if the directly intenagtproteins were a clique).
This measure originates from Watts & Strogatz (1998) whal uist® determine whether
a network was ‘small-world’. The clustering coefficient wadculated for each HTd and

each Rd1..1000 protein.

Figure 4.1: lllustration showing the number of proteins within a chosadius of a selected hyper-
tension related protein (red node). A radius of 2 is showmasxample (greyed area), the blue and
green nodes are proteins falling within this radius. Thesblode indicates that the protein is not
hypertension related whereas the green node indicateseathypion related protein.

4.1.2.2 Dataset topology

Degree of nodesThe mean degree was recalculated for each dataset (HTd,1R0Q)
where only interactions with proteins from the same dataseé considered. This mea-
sure was then extended to identify the number of proteima tiee same dataset within a
radius of 3 interaction steps (green nodes in figure 4.1).

Geodesic distancethe length of the shortest connecting path between eaclopiifd

proteins (HTd protein A to HTd protein B), and each pair ofd@am proteins (Relprotein
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A to Rdx protein B) was calculated using Dijkstra’s algorithm (Bijia, 1959).

Interaction subnetworksWe derivedexpandedsubnetworks for each of the datasets,
using the approach of Chex al. (2006), whereby all the proteins and their directly inter-
acting partners were selected. The proportion of all pnstéiom each of thesexpanded
subnetwork datasets that were contained within the lam@mstected component were
calculated. A connected component is a set of proteins Wlgezach protein can be

reached from any other protein via a combination of inteoacsteps.

4.1.3 Hypertension pathways and protein function

To investigate pathway properties of hypertension relgtedeins, proteins from HTd
were mapped to identifiers from the KEGG database (Kanettisd, 2006). We ex-
cluded the following KEGG identifiers that related to typésnderactions as opposed to
pathways, although we are aware there is some subjectivitys selection: ABC trans-
porters, phosphotransferase system (PTS), two-compaystegm, neuroactive ligand-
receptor interaction, cytokine-cytokine receptor intéican, ECM-receptor interaction,
cell adhesion molecules (CAMs), aminoacyl-tRNA biosysibetype Il secretion sys-
tem, type Il secretion system, type IV secretion systemARHE interactions in vesicular
transport, ubiquitin mediated proteolysis, proteasorak oycle - yeast. The distribution
of HTd proteins in the remaining pathways was investigateiGcompared to Rd1..1000.

The semantic similarity of Gene Ontology (GO) terms fromheaspect (biological
function, molecular process and cellular location) wasintgd for the HTd proteins using
the program G-Sesame (Waetgl.,, 2007). A GO term’s semantics (biological meanings)
are encoded into a numeric value by aggregating the semaoriicibutions of all their
ancestor terms in the GO graph. The similarity between Ggés presented by aggre-
gating the semantic contributions of their shared ancestars over the sum of the GO
term semantic scores. An algorithm has been designed touneei® functional similar-
ity of two genes based upon the semantic similarities ambed@3O terms that annotate
these genes. The correlation between the semantic sityitdrGO terms and geodesic
distance apart in the PPI network was then measured for @iai#$d proteins.

GO slims are cut-down versions of the GO categories comgiaisubset of the terms
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in the whole GO. They give a broad overview of the ontologyteathwithout the detail
of the specific fine grained terms. The distribution of GO dl&shburneret al., 2000)
molecular functions and biological processes were studiedder to identify categories
that were over-represented or under-represented in leyyseon proteins compared to the

Rd1..1000 datasets.

4.1.4 Classification

A machine learning approach was taken to predict hypexensilated proteins using a
combination of attributes from the PPl and GO analysis, dagtbwith physicochemical
properties of the protein sequences. The training datasgpiised the proteins contained
within Rd1..30 (1950 instances) and the HTd dataset (6amtsts).

The selected attributes relating PPI network propertiesawh protein were: the
geodesic distance to the closest known HTd protein; theagesaind standard deviation of
distances from each HTd protein; the number of direct ictevas; the number of direct
interactions with HTd proteins; the number of proteins up tmateractions away (up to
one intermediary); the number of HTd proteins up to 2 intéoas away; the number of
proteins up to 3 interactions away (up to two intermedidrig® number of HTd proteins
up to 3 interactions away; Attributes relating to molectlarction and biological process
were selected from GO slim categories that were found to thereover or underrep-
resented within the hypertension dataset, namely, ‘resptmstimulus’ (GO:0050896),
‘electron transport’ (GO:0006118) and ‘oxidoreductasévag’ (GO:0016491). Physic-
ochemical properties for each protein sequence were eddcllusing the Protparam
program at Expasywiwv. expasy. or g). A bioperl (mwv. bi oper| . or g) module
(Bio::Tools::Protparam) was created specifically for ghispose. Sequence properties
used in the classifier were: amino acid length; number ofihegjg charged amino acids;
number of positively charged amino acids; molecular weitfreoretical pl; number of
carbon atoms; number of hydrogen atoms; number of nitrogensg number of oxygen
atoms; number of sulphur atoms; half life; instability Ixgstability class; aliphatic in-
dex; GRAVY; amino acid composition; The GRAVY (Grand Aveeagf Hydropathy)

value for a peptide or protein was calculated as the sum ofdpathy values of all
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the amino acids, divided by the number of residues in the esezpi(Kyte & Doolittle,
1982). Various feature selection methods were tested tiseng/eka workbench (Witten
& Frank, 1999) to remove redundancy and identify key attebu

Because there was a large imbalance in the training datasety(more random pro-
teins than hypertension proteins), a CostSensitive flaséWitten & Frank, 1999) was
used as a wrapper around a Bagged PART classifier (Frank &nYitt998b; Breiman,
1996). A cost could then be applied for an incorrect HTd protéassification during ten
fold cross validation in an attempt to address the imbalahbes weighted approach has
been shown to be a succesful method for coping with classlanba using a similar type
of classifier and has an advantage over undersampling ithéi is no loss of informa-
tion (Chenet al,, 2004). Choosing a cost depends on priorities. For exarapksearcher
may be prepared to accept a high false positive rate (FPR)Yer ®o obtain a high rate
of recall for hypertension related proteins. The class¥ias run 400 times with a range
of cost matrices that applied varying penalties for incctityepredicting a HTd protein
using a key set of attributes. The bagged PART classifier ecgsibn list classifier that
uses a separate-and-conquer approach. A partial C4.5atetiise is built in each itera-
tion and the ‘best’ leaf is made into a rule. It performs welterms of speed because no
postprocessing required. The runs were repeated usingripéesnajority-rule approach.

When benchmarking the classifier we wished to identify ayieace similar proteins
as some of our attributes are sequence based. BLASTClusti¢ael of 25% identity)

(Dondoshansky, 2002) was used to identify sequence hommaliin the HTd dataset.

4.2 Hypertension protein PPl and sequence analysis re-
sults

We isolated 96 hypertension related genes from OMIM, 90 dtiwhould be mapped to
SWISSPROT identifiers. Where an OMIM id had multiple assecigroteins, we made
the assumption that all were associated with hypertensidimeluded them in the dataset
as there was insufficient evidence to assume otherwise. €03@hds, 65 were present

within OPHID. These 65 proteins were associated with 47agies (distinct OMIM ids)
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where hypertension was recorded as a symptom. The averageenwf proteins per
OMIM id was 1.5. We refer to this dataset as HTd. The OPHID loaga used in this

study contained 48,222 interactions.

4.2.1 Network properties
4.2.1.1 General topology

Degree of nodesThe average degree (number of direct interactions assdciwaith a
protein) for the whole of OPHID was 9.04. The HTd proteins hadaverage degree of
10.0615. The average degree for OMIM genes (that are pras@®HID) was 12.91.
The number of proteins within radii of 1 (degree), 2 and 3raxt@ons from each protein
is shown in the top row of quantile-quantile plots in Figure.4T he difference in distribu-
tions between HTd and Rd1..1000 was only marginally sigamfidor direct interactions
(degree) and was not significant for interactions withinirafd2 and 3 interactions when
using the Wilcoxon rank sum test (p-values = 0.03, 0.09, 0e@®ectively), although
there were outiers in the Rd1..1000 proteins acting as hubs.

Clustering coefficientiFigure 4.3 shows the quantile-quantile plot of clusteriogft-
cients (C) for HTd and Rd1..1000. If they come from similastdbutions, the distribu-
tions should align. Wilcoxon rank sum test with continuityri@ction shows that they
come from the same distribution (p-value = 0.1085). HowekerBartlett’s K-squared
test shows there is heterogeneity of variance (p-value 81@68) with the random genes
having a wider variance of C. In terms of interacting parsrtbat are involved in no fur-
ther interactions (C=0), there was no significant diffeeshetween the two sets; 52.3%
HTd proteins and 39% of Rd1..1000 proteins (Chi-squared3§7Lp-value = 0.1730).
There was no significant difference in the proportion of Hfid &d1..1000 proteins that
only have a single interacting partner with 18 HTd proteims an average of 18.86 across

the Rd1..1000 datasets.

4.2.1.2 Dataset topology

Degree of nodesThe second row of quantile-quantile plots in Figure 4.2 shiosvsub-

set of interactions within radii of 1 (degree), 2, 3 interaics that belonged to the same
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Figure 4.2: Quantile-quantile plots for the number of proteins up tostatice of 3 interactions away
from HTd and Rd1..1000 proteins. The top row plots relatelltnteractions and the second row
plots limit to interactions with proteins belonging to tterse dataset as the protein being studied.
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Figure 4.3: Quantile-quantile plot of clustering coefficients (C) foetHTd and Rd1..1000 proteins.
Wilcoxon rank sum test with continuity correction showsttteey come from the same distribution
(p-value = 0.1085). ht=hypertension
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dataset as the protein p under study. These plots can be oednpdh the first row plots
displaying all interactions within similar radii. The diffence in distributions between
HTd and Rd1..1000 for these subsets of interactions up tdiagaf 3 interactions is sig-
nificant when using the Wilcoxon rank sum test (p-value = 2:49, 3.842e-06, 0.0003
respectively). meaning there are larger numbers of HTdeprstsurrounding any given
HTd protein than there are Rgbroteins surrounding Rdoroteins (within the radii up to
3 interactions).

Geodesic distancézigure 4.4 shows the geodesic distance between each palicopid-
teins and each pair of proteins from Rd1..100. We limitedheofirst 100 random datasets
due to the computationally expensive process involved icutating the distance. The
difference in the distribution of distances was signific@hticoxon rank sum p=0.004).
Fifteen out of 65 (23%) HTd proteins are directly connectaccomparison, on average,
only 3 out of every 65 (6%) Rd1..100 proteins are directlyramied.

Interaction subnetworksThere were 623 proteins (646 interactions) in the datas®t c
prising the HTd proteins and their direct interaction partn The average number of
proteins and directly interacting partners for the RdN(Ld@atasets was 583 (std 109).
The largest connected component in thgpandedsubnetwork involving the HTd pro-
teins and their direct partners contained 550 of the 623pre1(88%). The size of this
subnet is in the upper 5% of the distribution over Rd1..1F0gure 4.5).

900,
800+

700+

600 W HTd
Il Rd1..100 avg

500

400+

frequency

300+

200+

1001

1 2 3 4 5 6 7 8 9 infinite
geodesic distance

Figure 4.4: lllustration showing the geodesic distances between Hotepr pairs and Rdprotein
pairs. Infinite relates to protein pairs that are unconrkdteth directly and indirectly.
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Figure 4.5: The proportion of proteins in the largest connected compbfeer HTd and each
Rd1..1000expandedsubnetworks. In the HTédxpandedsubnetwork, the largest connected com-
ponent contains 88% of the proteins. ht=hypertension

4.2.2 Hypertension pathways and protein function

The HTd proteins are spread across 36 KEGG pathways. Th¥eedBthese pathways
contain 3 HTd proteins, 10 (28%) contain 2 HTd proteins arrdmaining pathways
(64%) contain single HTd proteins. Table 4.1 shows the pagtswhat contain multiple
HTd proteins. By comparison, for the subset of 22 Rd1..10&@@skts that map to the
same number of pathways (36), only 3% of the pathways coBtpmoteins, 15% contain
2 proteins and 82% contain 1 protein. The clustering of HTadens in KEGG pathways
is significantly different to the pattern observed in thessilof Rd1..1000 datasets that
map to 36 pathways (Wilcoxon rank sum test p=0.02).

It was important to investigate the origin of the observeghHevel of connectivity in
‘dataset topological’ properties of the HTd dataset. HTakgins that clustered in path-
ways were investigated to see whether they originated flrasame OMIM record. For
those that did we noted the geodesic distance separating tfid@is might help iden-
tify any potential biases in the HTd dataset. Of the 3 pattsmdnat each contain 3
HTd proteins, 2 pathways contain HTd proteins that map tosmee hypertension re-

lated OMIM id. The first of these pathways is the human cell samication pathway
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Pathway ID | Description No. of
HTd
proteins

path:dhsa00500 Starch and sucrose metabolism 3

path:dhsa01430 Cell Communication
path:dhsa04610 Complement and coagulation cascades
path:dhsa00052 Galactose metabolism
path:dhsa00140 C21-Steroid hormone metabolism
path:dhsa00561 Glycerolipid metabolism
path:dhsa00600 Sphingolipid metabolism
path:dhsa03320 PPAR signaling pathway
path:dhsa04350 TGF-beta signaling pathway
path:dhsa04630 Jak-STAT signaling pathway
path:dhsa04640 Hematopoietic cell lineage
path:dhsa04742 Taste transduction
path:dhsa05216 Thyroid cancer

NNDNDNDNDNNNDNNDNDWW

Table 4.1: The KEGG Homo sapiens pathways containing multiple HT deinst

(path:dhsa01430). An OMIM id (215600 Cirrhosis, familied)shared between 2 of the
3 HTd proteins in this pathway. The respective proteins K18 HUMAN [P05783]
(Keratin, type | cytoskeletal 18 (Cytokeratin-18) and K2BBIMAN [P05787] (Keratin,
type Il cytoskeletal 8 (Cytokeratin-8). These proteins separated by a geodesic dis-
tance of 4. The second pathway containing 3 HTd proteinsasctmplement and co-
agulation cascades pathway (path:dhsa04610). Again, Mi&@ (235400 hemolytic
uremic syndrome) is shared between 2 of the 3 HTd proteinsisnpathway. The pro-
teins are: CFAHHUMAN [P08603] (Complement factor H precursor (H factor ajd
MCP_HUMAN [P15529] (Membrane cofactor protein precursor (Troplast leukocyte
common antigen)). The geodesic distance between theseinmsas 2. Only 1 of the
10 pathways that contain 2 HTd proteins have proteins thgt tmahe same hyperten-
sion related OMIM id. This pathway is the taste transducpathway (path:dhsa04742).
The shared OMIM id is 177200 (Liddle syndrome). The 2 pratemthis pathway that
share this OMIM id are: SCNNB{UMAN [P51168] (Amiloride-sensitive sodium chan-
nel subunit beta (Epithelial Na(+) channel subunit betad) &CNNGHUMAN [P51170]
(Amiloride-sensitive sodium channel subunit gamma (Egigh Na(+) channel subunit
gamma)). These proteins directly interact in the PPI nétwor

There was not a strong correlation between GO semanticagitgibnd geodesic dis-

tance for HTd protein pairs. Correlations were calculatedehich aspect of GO (molec-
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ular function, biological process and cellular component)

Most of the HTd proteins fall into GO slim categories bindif@®0:0005488), pro-
tein binding (GO:0005515) and catalytic activity (GO:08@38). The difference in the
overall distribution of GO slim biological process catagsrbetween hypertension and
Rd1..1000 proteins is significant (p-value = 0.01554) waste distribution of molec-
ular function GO slim categories is not (p-value = 0.5369).tdrms of biological pro-
cesses, specific GO slim categories ‘response to stimuB@:@050896) and ‘electron
transport’ (GO:0006118) are overrepresented within theehgnsion dataset with p =
0.005277 and p = 0.0009852 repectively. In terms of moledulactions, ‘oxidoreduc-
tase activity’ (GO:0016491) is overrepresented withinhigpertension dataset (p-value
=0.01219). These categories are still significantly oy@esented following the removal

of 3 homologs in HTd.

4.2.3 Classification

The CfsSubsetEval evaluator used with the BestFirst seaathod identified seven key
attributes: percentage amino acid composition of G; peaggnamino acid composi-
tion of K; the geodesic distance to the closest HTd protéia;standard deviation of the
geodesic distances to each HTd protein; whether the prbsonged to GO slim cate-
gories ‘response to stimulus’ (GO:0050896) and ‘electrangport’ (GO:0006118); the
number of direct connections with HTd proteins. The Bestrapproach searches the
space of attribute subsets by greedy hillclimbing augnmenti¢h a backtracking facility
(Witten & Frank, 1999). The CfsSubsetEval evaluator caiad the worth of a subset of
attributes by considering the individual predictive apilbf each feature along with the
degree of redundancy between them. Subsets of featurearthhighly correlated with
the class while having low intercorrelation are preferiddll(, 1998). The Bagged PART
classifier was run 400 times over a range of penalties (usaogiamatrix) for incorrectly
predicting a HTd protein using the 7 key attributes. The nwese repeated using the
simple majority-rule approach but the TPR never exceeded-#R. Figure 4.6 shows
the true positive rate (TPR) plotted against the false pestte (FPR) when predicting

hypertension proteins.
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Figure 4.6: lllustration showing the true positive rate [TPR] agairedsé positive rate [FPR] when
predicting hypertension proteins using a weighted Bag@drilRclassifer. The penalty for an incor-
rect prediction was varied by using a CostSensitive classifi

BLASTClust (at a level of 25% identity) (Dondoshansky, 2pSRowed that the HTd
dataset was not heavily populated with sequence homolagyg.2pairs of proteins were
found to share more than 25% identity. The first protein pais WSCNNBHUMAN
[P51168] (Amiloride sensitive sodium channel subunit petad SCNNGHUMAN
[P51170] (Amiloride sensitive sodium channel subunit gajpnirhese proteins shared
34% sequence identity (E=3e-102). The second protein pa#: WC11B1IHUMAN
[P15538] (Cytochrome P450 11B1, mitochondrial precursamy C11B2HUMAN
[P19099] (Cytochrome P450 11B2, mitochondrial precursbingese proteins shared 85%
sequence identity (E=0.0). All proteins were included ia thachine learning classifica-

tion.

4.3 Discussion

This study found there to be little difference in the genbealkground topological proper-
ties of HTd and Rd1..1000 proteins in protein-protein iatéion networks. Hypertension

related proteins do not form large hubs and they do not didpiigh cluster coefficient
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(C) scores. Previous studies including Realal. (2005); Stelzlet al. (2005); Jonsson
& Bates (2006b); Xu & Li (2006) have suggested that diseasegvere likely to form
hubs. However, Gokt al. (2007) recently suggested that these studies includedriess
tial’ genes in which any mutations are lethal. Once theseg&ad been excluded it was
shown that the remaining ‘non-essential’ disease genasadignd to form hubs. HTd are
likely to be ‘non-essential’ genes and our findings are &iast with Gohet al. (2007).
OMIM has an average degree of 13 which is higher than the bgp&ion proteins (10)
and OPHID (9), possibly because OMIM includes these ‘esaledisease genes.

Despite the insignificant differences in background nekwtopology, we find that
HTd proteins display greater connectivity in relation tekeather than we might expect.
HTd protein pairs exhibit shorter geodesic distances thaadom and the largeskpanded
subnet size lies within the top 5% of the distribution for thedom datasets. This means
that 88% of the proteins are connected (directly or indiy¢ethen a network is created
using HTd proteins and their direct partners. It is simiapteviously observed distri-
butions in Alzheimers disease proteins where the largdstetucontained 83% of the
proteins (Cheret al,, 2006). There is also a significant difference from randortha
number of HTd proteins within a radius of 3 interactions frany other HTd protein.

The HTd proteins are spread over 36 KEGG pathways, refletimgomplex, locus
rich nature of hypertension related proteins. We might leeygected to see HTd proteins
that cluster in the same pathway to have originated fromadheesOMIM id and be close
in the PPI network. We found that this was not always the célse proteins were usually
associated with different diseases where hypertensioravgsnptom. Where proteins
shared a pathway, originating from the same OMIM id, only thef3 HTd protein pairs
were directly connected.

We expected to see a negative correlation between distapeeading two HTd pro-
teins in the PPI network and GO semantic similarity. Howgwer were unable to show
this correlation in our dataset. The difference in the thatron of GO slim biological
process categories between HTd proteins and the Rd1.1008igm@ficant. There were
a number of notable molecular function and biological pssaeategories that were over-

represented in the hypertension dataset, namely ‘resgonstamulus’ (GO:0050896),
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‘oxidoreductase activity’ (GO:0016491), ‘nucleic acichting’ (GO:0003676).

There are caveats with the OMIM hypertension dataset, theMOtatabase is the
most complete repository of diseases and their associaeesdout of course it is not
complete and is updated all the time. There was concern lieantreased connectiv-
ity of the HTd proteins may be due to biases in the PPl resoufde might expect the
hypertension related proteins to have been studied moretiigarandomly selected pro-
teins and therefore to see a larger number of documentecatitens. However, if this
were the case, we would have expected more of them to be hwbsntRl interaction
biases could be further investigated by considering icteras, such as those from high
throughput experiments, separately. Because the sour€@BHID interactions vary in
their reliability, we created a second weighted networkaireng the same proteins and
interactions but assigning a weight (or distance) to eatdraction in a similar manner
to Chenet al. (2006). In this weighted network, proteins were separated Histance
relating to annotation confidence. Interactions with highldy annotation retained their
default distance of 1, medium quality interactions wereasaed by a distance of 1.5
and low quality interactions a distance of 2. We then repktite relevant analyses. Our
results did not show significant trend differences to the eigited analyses with respect
to GO semantic similarity and geodesic distance corralatio

The methods described here could easily be applied to otlseask datasets in
OMIM. The hypertension dataset itself would be improvecdwiite addition of validated
hypertension related proteins. However, the model coc&tdushows that there are pat-
terns within PPI networks, shared function and sequencaq@®eperties that can be used
to aid prioritisation of candidate gene lists identifiecbilngh experiments such as genome
wide association studies. We anticipate that machineileguanalyses that combine such

attributes will be useful in helping to characterise dise@dated genes in future studies.
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Chapter 5

Protein interaction networks associated
with cardiovascular disease and cancer:

shared network properties

The work in this chapter compares the protein-protein adgon network properties of
two major diseases, cardiovascular disease (cvd) and rcadfaeboth diseases there are
large curated datasets available. The study focuses ondtsm$ network descriptors,
namely network centralities and network clusters. Ceiyraheasures can be used to
identify influential nodes in a graph and clustering analydscribes the organisation
of the network on a number of levels and can be used to defireidmal modules and
pathways in biological networks. Three measures of catytnakre considered: degree
centrality which simply counts the number of edges conmkiti@ vertex; closeness cen-
trality which considers communication to all other nodesmgking use of the length of
shortest paths to all nodes from a given node and betweeweesslity which ‘mea-
sures’ how much a node is involved in communication withiatietwork, by identifying
the number of shortest paths between pairs of nodes thathpasgh such a node. This
measure identifies ‘bottlenecks’ within the network. Thgrée centrality only captures
the local neighbourhood topology of a network and hencerfieence of direct neigh-
bouring proteins, whereas betweenness also capturesdiedninfluences of proteins
distal to the subject protein. Betweenness is therefore @asuore of importance within

the wider context of the network. High betweenness and |layvesehas previously been
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used to define the ‘modularity’ of various networks (GirvarN&wman, 2002; Guimera
& Amaral, 2004; Joyet al., 2005). In addition to centrality, the following clustegiprop-
erties were explored (i) whether proteins involved in cvd aancer tended to be part of
complex or simple processes, (ii) whether these processesnaall or large, (iii) how
the disease proteins are distributed across the procesdgs/ahow many of the dis-
ease proteins are bridges between communities and thegafong as interfaces between
biological processes. A combination of centrality measwed clustering were used to
describe the interactome topology of these diseases andrd#rate an approach that

could be used to aid prioritisation of candidate genes.

5.1 PPl analysis methods

5.1.1 Dataset

Proteins thought to be implicated in cardiovascular diseesre taken from the Vascu-
lar Disease 50k SNP Array Consortia chiyg € p: / / bi oi nf. it mat. upenn. edu/
cvdsnp/ query. php) (Keatinget al, 2008). Proteins on this chip were carefully se-
lected as potential candidates for cardiovascular disesisg information from quanti-
tative trait loci studies, consideration of pathways impot to vascular disease and the
biomedical literature. The proteins were split into thre¢egories: priority 1 proteins
included significant known mediators of vascular diseaskkay findings from whole
genome association studies (602 proteins). The two otliegodes included more spec-
ulative assignments (2015 priority 2 and 494 priority 3 pias). WWe mapped these pro-
teins onto a set of human PPI from the PIP webserver creatédrisson & Bates (2006a)
using an orthology based approach applied to the RefSegeatafaruittet al., 2007).
The cancer dataset came from a census conducted from tregure of genes that are
mutated and causally implicated in cancer developmenh¢eagenes’) (Futreadt al.,

2004). Futreakt al. (2004) had mapped these cancer proteins onto their PPledlatas
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5.1.2 Measures

The PPI network was considered as an undirected graph(V, E'),v € V| e € E where
the proteins are nodes)(and the interactions are edge3, (with edgee,, ,, connecting
nodesn andn. We considered the following three measures of centraditygithe Python
package NetworkXHt t ps: // net wor kx. | anl . gov):

Degree centrality: the number of edges connected to a vesex counted and nor-
malised by dividing by the total number of possible intei@ts that could be made, that
is the number of nodes minus one.

Closeness centrality: This could only be calculated foresodelonging to the same
connected component, the shortest path length for unctethemdes is infinity. If
dist(m,n) is the length of the shortest path from to n then the closeness centrality
was defined as:

1
Cclose (m) - 1

: (5.1)
W ZTLGV dzst(m, n)

Shortest Path Betweenness centrality: In the followinigz le, denote the number of
shortest paths between vertieeso n ando,,,,, () be the number of shortest paths fram
to n that pass through (Junker & Schreiber, 2008). The rate of communication betwe
m andn involving v is given byd,.,(v) = 0n(v)/0mn. The shortest path betweenness

centrality can then be defined as:

Cbetweenness(’/) = Z Z 6mn(7/) (52)

meV Am#v neV An#v

The average degree centrality was calculated for nodesiassw with cancer and cvd
to examine the hub like properties of disease associatedipso The nodes of the human
interactome were then ranked according to the three measticentrality and identified
putatively functionally important nodes in the interacem

Following Jonsson & Bates (2006a), but also using the mugjetacvd dataset, net-
work clustering was investigated through the communitycttrre with theCfinderalgo-
rithm (Adamcselet al., 2006). This program uses tkeclique clustering method which
defines communities in terms of overlapping cliquek-&lique is a set ok nodes where

there is an interaction between each pair of no@mderidentifies communities as the
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union ofk-cliques in whichk-1 nodes are shared. Communities were identified at vari-
ousk-values and the proportion of the member proteins that wedeoc cancer related.
Generally at low values df we would expect a large number of extensive communities
of less tightly connected proteins with a large overlap. kigherk values fewer, more
distinct communities appear. Analysis of the communitycire identifies bridge nodes
as nodes belonging to more than one community. These magipaté in multiple pro-

cesses and act as interfaces between processes.

5.2 Cardiovascular disease and cancer PPI analysis re-
sults

In total, there are 17,039 RefSeq protein IDs (108,113 aatgwns) in the PPl dataset
(Jonsson & Bates, 2006a). We were able to map 2,249 cvd iatpticprotein IDs to
this dataset, 19% being cvd priority 1 proteins, 63% cvdmisi@ and 18% cvd priority

3 (Keatinget al, 2008). Within the network, 439 protein IDs were annotatedeaing
cancer from the cancer census (Futegal., 2004). The number of cvd proteins mapped
to the PPI network was therefore approximately 5 fold grethten the number of mapped
cancer proteins. Of the cancer RefSeq proteins IDs mappbe ©P1 dataset, 120 (27%)

were also proteins implicated in cvd. Of these proteins, 82vevd priority 1 proteins.

5.2.1 Centrality

The betweenness, closeness and degree centrality measuessalculated for each pro-
tein within the PPI network. The average number of intecati(degree) for cvd priority
1 proteins was 19.6, cvd overall was 15.7 and cancer proteas22.6 (table 5.1). There
is a notable difference between the average degree of awdtpi proteins (19.6) and cvd
priority 2/3 proteins (6.0). The distribution of each of thermalised centrality measures
are shown in Figure 5.1. The distribution of betweennessdagilee centrality values
differ significantly when comparing each of the disease sttaagainst the non disease
dataset using the Wilcoxon rank sum test. In general, theedegnd betweenness values

follow an exponential distribution and the closeness edityrconforms to a normal dis-
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tribution. Using the probability density function we wel@ato calculate the probability
for each centrality score. The proteins displaying ‘hightcaity’ (p<0.05), particularly
degree and betweenness centrality, are enriched appr@yn2eold with cancer and cvd
proteins. Specifically, 24%, 26% and 18% of cvd proteinsldiggd high betweenness,
degree and closeness centrality and 6%, 7% and 6% of canutein® displayed high
betweenness, degree and closeness centrality. This cesmpetotal presence in the in-
teractome of 13% for cvd and 3% for cancer. Table 5.2 show&apel0’ proteins for
each centrality measure, it shows that 29% of these arentlyr@nnotated as cvd pro-
teins and 17% are already associated with OMIM morbidityasion numbers (Hamosh

et al, 2002).
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Figure 5.1: The (a) betweenness, (b) closeness and (c) degree cgmdisiiibutions for each stud-
ied subset of proteins. Cancercvdprl = proteins annotatedt cancer and cvd priority 1, cancer-
cvd=proteins annotated as both cancer and cvd.

cvd | non cvd| cvdprl| non cvdprl| cancer| non cancer
Average degree 15.7 6.4 19.6 6.0 22.6 9.9

Table 5.1: Connectivity of proteins: Average degree of cardiovasdighad), cvd priority 1 (cvdprl)
and cancer proteins.

The high degree observed by cvd and cancer proteins may paréxplained by the



Description (RefSeq Peptide ID) cancer | cvd| cvd prl | bg dg cc] OMIM Morbidity description

Filamin-A (Endothelial actin-binding protein) (N®01447) y
Actin, cytoplasmic 1 (Beta-actin)(NB01092)

Alpha-actinin-2 (NP001094)

60 kDa heat shock protein, mitochondrial precursor (Heatklprotein 60) (NE002147)
Calmodulin (NP001734) y
Cell division protein kinase 3 (NB01249)

Importin subunit alpha-7 (Karyopherin subunit alpha-6P(B36448)
Transportin-1 (Importin beta-2) (Karyopherin beta-2) (N62261)
Heat shock 70 kDa protein 1 (N®05337) y |y
UDP-N-acetylglucosamine—peptide N-acetylglucosantiagkferase 110 kDa subunit (N58058)
Guanine nucleotide-binding protein G(k) subunit alpha)&fpha-3) (NP006487)

Guanine nucleotide-binding protein subunit alpha-11 {@hat11) (NP002058)

Guanine nucleotide-binding protein G(i), alpha-2 sub(ixP_002061) y |y
Guanine nucleotide-binding protein G(q) subunit alpha_ (00R063) y
Glucose-fructose oxidoreductase domain-containingsmc precursor (NEL10446)
Transcriptional enhancer factor TEF-3 (19B8849)

Glycoprotein hormones alpha chain precursor (0®726)

Sphingomyelin phosphodiesterase 2 (BIB3071) y
Molybdenum cofactor biosynthesis protein 1 A(l20306)
39S ribosomal protein L13, mitochondrial (NI’54797)
Cytochrome c oxidase subunit 2 (NF36846)

Bardet-Biedl syndrome 5 protein (N689597) y
Interleukin-17 receptor A precursor (NI55154)
Uridine phosphorylase 1 (NB03355)

Dystonia, juvenile-onset

KK K K ¥ <

KKK K KKK KK

< K K K

Mitochondrial complex IV deficiency
Bardet-Biedl syndrome

KIS K K K

Spastic paraplegia 13, autosomal domina

Table 5.2: The ‘top ten’ most influential interactome proteins for easfhthe centrality mea-
sures. The 'y’ denotes possession of the quality defined &yctlumn. Cancer=cancer protein,
cvd=cardiovascular protein, cvdprl=cardiovascularnisidl protein. Of these proteins, 29% are
currently annotated as cvd related and 17% are alreadyiatsbevith OMIM database morbidity
identifiers (Hamoslet al,, 2002). The OMIM morbidity description relates to a diseaséch the
protein is associated with. bc=betweeness centralityddgree centrality, cc=closeness centrality.
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promiscuous nature of their domains (Table 5.3). In ordeatoulate the general promis-
cuity of each domain we firstly extracted domain-domainraxtgon frequencies from
PFAM (Batemaret al., 2004). The promiscuity p values shown in the table wereucalc
lated based on this analysis of interaction frequencies®@PAM domains, which con-
form to a probability density function as described by Jons& Bates (2006a). Sixteen
of the top 20 most frequent occurring cvd domains are pramoigs and 7 are among the
top 30 most frequent occurring cancer domains. Table 5 &skiwat domain promiscuity
can generally be seen to increase with increasing cvd dofredqnency. Two domains
namely, zinc finger, C4 type PF00105 and ligand-binding doraBnuclear hormone re-
ceptor PF00104 are not promiscuous domains but are comnbmthalisease conditions.
Both families are steroid or nuclear hormone receptorsisapd in DNA-dependent

transcription regulation.

Most frequently occurring cvd dor PFAM id | Promiscuity (p)| In top 30| Promiscuous

mains (descending order) cancer do-| (p<0.005)
mains

Protein kinase domain PF00069 3.70E-013 | &

7 transmembrane receptprPFO0001 4.67E-003

(rhodopsin family)

Immunoglobulin domain PF00047 7.93E-011 ® *

Protein tyrosine kinase PFO7714| 4.67E-003 *

EGF-like domain PF00008 1.33E-011 | & *

Immunoglobulin V-set domain PF07686 2.84E-009 *

Pleckstrin homology domain PF00169 2.18E-005 *

Zinc finger, C4 type (two domains) PF00105 1.67E-001 ®

Ligand-binding domain of nuclear PF00104 2.79E-002 ®

hormone receptor

Immunoglobulin I-set domain PF0O7679 1.30E-004 *

Fibronectin type 11l domain PF00041 3.64E-006 o *

SH2 domain PF00017| 3.64E-006 *

Leucine Rich Repeat PF00560 1.33E-011 *

EGF-like domain PF07974 7.80E-004 *

Trypsin PF0O0089| 0.00E+000 *

Collagen triple helix repeat (20 PF01391 1.67E-001

copies)

ABC transporter PF00005 7.80E-004

SH3-domain PF00018| 6.09E-007 | &

Calcium binding EGF domain PF07645 3.64E-006

Variant SH3 domain PF07653 1.00E+000

Table 5.3: Promiscuity of the top 20 most frequently occurring cvd doredin descending order).
A & is present for domains that are frequently present in cgmodeins. Domains marked withxa
are thought to be promiscuous domains.
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Joyet al.(2005) observed an abundance of proteins in the yeastatbena displaying
high betweenness and low connectivity (degree) (HBLC)hSuéeature is not found in
randomly generated scale free networks. They suggesteavéts due to some modular
organization of the network. We were able to show HBLC is dauenof the studied
human PPI network (Figure 5.2) and note disease proteins &elee evenly distributed in
this figure. This measure of modularity through HBLC is olisdrwhere a link between
modules is composed of 2 or more steps, the intermediateipsotill display low degree.
Using a cutoff of p<0.05 for high betweenness and low degree there are no psdteih
display ‘extreme’ HBLC. Identification of community bridgén the clustering analysis
provides additional evidence of modularity within the netlv Such community bridges
whilst having high betweenness, may also display high dedte to the formation of
interactions with proteins from multiple communities, ifere not displaying HBLC but

still supporting the idea of modularity.

5.2.2 Clustering

The community structure of the network was then analyset thie Cfinder program.
For low k-values there are a large number of highly overlapping comti@s. Ask in-
creases, the number of communities decreases as does ttepdyetween them (table
5.4). The disease proteins make up a larger proportion ofah@nunity proteins ak-
value increases suggesting a greater presence in com@grcticommunities. There is
no significant difference in the distribution of communityded proteins with increasing
k-values between the disease datasets using the Wilcoxkrsuamtest.

For eacltk-value cancer proteins tend to be in the larger communhias ¢vd proteins
which in turn are in larger communities than non-diseasdeprs (Figure 5.3). This
suggests cvd and cancer proteins also take part in largegses. Are these proteins
spread across a number of communities or do they clustemvwafiecific communities?
Figure 5.4 shows that cvd priority 1 and cancer proteins ekl greater tendancy to
cluster within communities than cvd (all priorities) andhratisease proteins.

Table 5.5 shows which proteins are present in multiple comities and therefore

possibly act as interfaces between multiple processedssiusupporting the idea of mod-
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Figure 5.2: Degree (dc) versus betweenness centrality (bc) for théest®PI network. Six subsets
of proteins are shown; cancer and cvd priority 1 proteinaceaand cvd priority 2 or 3 proteins,
cancer proteins, cvd priority 2 or 3 proteins, cvd prioritgrbteins, proteins not implicated in either
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(non disease).
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Figure 5.4: lllustration showing the percentage of proteins assiga@dth community for 4 protein
subsets. It shows any clustering within communities. Thésplepresent 4 datasets; communities
containing cvd proteins (all priorities), cvd priority 1qieins (cvdprl), cancer proteins and commu-
nities that do not contain either cvd or cancer proteins @isease)
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k-value | Communities| % cvd proteins % cvdprl proteing % cancer proteins
3 222 15.2(0.50) 3.1(0.45) 3.5(0.45)
4 189 17.8(0.27) 3.8(0.25) 4.9(0.29)
5 98 18.4(0.13) 4.9(0.15) 5.4(0.15)
6 37 21.2(0.06) 5.5(0.07) 6.1(0.06)
7 19 22.4(0.03) 7.0(0.04) 7.0(0.04)
8 9 27.8(0.02) 8.8(0.03) 6.3(0.02)

Table 5.4: The percentage of proteins making up communities from cvd priority 1 and cancer
protein datasets. The values in brackets represent theriapof proteins for a chosdavalue as a
fraction of all communities. Cardiovascular disease pnstenake up 15.2% of proteins kavalue =

3 communities. This percentage accounts for 0.5 of all cetlgims assigned to communities. There
are more proteins in the larger communities (kwalue) but the disease proteins make up a larger
proportion of the community proteins &svalue increases

ularity within the network. Both cvd and cancer proteinsasbridges more often than
expected at eack-value. There is no significant difference in the distribatiof pro-
teins that are bridges between cvd, cvd priority 1 and caacess thé&-values using the

Wilcoxon rank sum test.

k- cvd cvd cvdprl cvdprl cancer cancer
valuel obs(%) | exp(%)[fd] | obs(%) | exp(%)[fd] | obs(%) exp(%)[fd]

3 | 1229 |7.95[155] | 1357 | 8.45[1.61] | 12.67 8.46[1.50]
4 | 1420 |12.78[1.11]| 9.66 13.16[0.73]| 21.39 12.60[1.70]
5 |14.97 |9.33[1.61] | 17.05 | 10.03[1.70]| 12.37 10.26[1.21]
6 |14.79 |14.18[1.04]| 21.62 | 13.88[1.56]| 17.07 14.13[1.21]
7 | 1351 |6.64[2.03] | 17.39 | 7.49[2.32] | 17.39 7.49[2.32]
8 |10.53 | 0.00[] 16.67 | 1.60[10.43]| 7.69 2.60[2.96]

Table 5.5: Community bridges - proteins that are present in multiplmgwnities, acting as in-
terfaces between processes. The percentage of proteorsgb@l to more than one community is
shown for protein datasets cvd, cvd priority 1 and cancesfobserved). Expected (exp) values
were based on non cvd priority 1 or non cancer proteins (fid=ddference between observed and
expected).

5.2.3 Combining centrality and clustering for novel candicate priori-

tisation

Combining measures relating to centrality and clusterimy imelp identify or prioritise
disease candidate genes. For example, here we describshawdn Figure 5.5 how
a set of proteins can be characterised in terms of their Rfldgical environment and
hence evaluated as potential cvd related proteins. We drsuggesting they are good

candidates, merely showing how they can be evaluated. Fopé#nticular example we
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show all proteins belonging to communities fevalue 8 which represent the most com-
plex, tightly connected communities found in the interasto The cvd proteins currently
make up 27.8% of proteins in communities at tkigalue, but this only represents 2% of
all community based cvd proteins (Table 5.4). The shapeeohtite (protein) represents
the disease status, the size is proportionate to the degreéha colour represents the
betweenness centrality of the protein as shown in the cbsurOf the 9 communities
present, one is notable in that 6 of its 8 proteins (a singtgie) are currently annotated
as cvd proteins (Figure 5.6). The remaining 2 proteins cbeldf interest due to their
presence in such a highly connected, cvd rich community. fifsieof these proteins is
cell division cycle 37 protein CDC37 (NB08996), which is thought to play a critical
role in directing heat shock protein 90 (HSP90) to its takjedses. HSP9O0 is present in
this clique, it is annotated as being both cancer and cvteekld he second protein is the
TNF receptor-associated protein 1 TRAP1 (R®7376) which is a mitochondrial HSP90
protein. A number of proteins from oth&value=8 communities are also of potential
interest (Figure 5.5). Firstly, transportin 1 isoform 1 TINP(NP.002261) is currently
not annotated as being cvd or cancer related, yet it intedictly with a large number
of cvd proteins and exhibits extremely high betweennesdagdee centrality (p0.05).

It can also be seen to be bridging 2 communities and may trerefct as an interface
between functional modules. This gene encodes the betaiswabuhe karyopherin re-
ceptor complex which interacts with nuclear localizatiggnals to target nuclear proteins
to the nucleus. Secondly, leucine zipper transcriptionlesgr 2 SEC16B (NFL49118).

It currently has no known cvd or cancer association yet pldigs very high degree and
betweenness 0.05) and provides a link between 2 communities throughiresctin-
teraction with the nuclear factor of kappa light polypeptgene NFKB2 (NF002493),
which is a cvd priority 1 and cancer associated protein. $B0% required for secre-
tory cargo traffic from the endoplasmic reticulum to the gapgparatus and for nor-
mal transitional endoplasmic reticulum (tER) organizatidhis protein is ubiquitous in
terms of tissue specificity. Finally, protein phosphatasatalytic subunit beta PPP2CB
(NP_001009552) also stands out as an extremely influentialdoteme protein (both

degree and betweenness centraliky0d5), it also currently has no cvd or cancer anno-
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tation. This protein is implicated in the negative contrbtell growth and division, and

the gene encodes the phosphatase 2A catalytic subunigifPptosphatase 2A is one of
the four major serine/threonine phosphatases, and it iBdatpd in the negative control
of cell growth and division. This protein maps to 8p21-pl2egion associated with a

broad range of cancers (Imbettal., 1996).

cancer & cvdprl
cancer & cvd
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Figure 5.5: Network showing all proteins in communities fiowvalue = 8. The interactions between
proteins of these communities are shown as edges linkingdtes. The node size = degree, colour
= betweenness centrality and the node shape is defined bis#asd status of the protein. A number
of nodes are labelled with their protein identifiers.

5.3 Discussion

Network based approaches are providing important toolsystems biology. Simple
graph theoretic measures such as degree and betweenngabtmmnare useful metrics
for suggesting how influential particular proteins (nodesthe network are, in relation
to the network as a whole. We have found that both cvd and camogeins are over-
represented within the set of proteins that are centraldariteractome, particularly with

respect to degree and betweenness, and that generallyrgietgproteins tend to be most
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Figure 5.6: Network showing all proteins in a cvd ridavalue = 8 community comprising a single
cligue where 6 of the 8 component proteins are implicatedsth dhe node size = degree, colour
= betweenness centrality and the node shape is defined bystesd status of the protein. Nodes
are labelled with their protein identifiers. CHUK (NI®1269) is a conserved helix-loop-helix ubig-
uitous kinase, MAP3K14 (NP03945) is mitogen-activated protein kinase, IKBKG (R@3630)

is an inhibitor of kappa light polypeptide gene, IKBKE (NIB4721) is a IKK-related kinase ep-
silon, IKBKB (NP_001547) is an inhibitor of kappa light polypeptide gene, GIGNP.008996)

is the cell division cycle 37 protein, TRAP1 (NB57376) is the TNF receptor-associated protein 1,
HSP90AA1 (NP005339) is heat shock protein 90kDa alpha.
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influential (Figure 5.1). A list of influential human intetame proteins, that is proteins
with centrality scores with p<0.05, is available fronmt t p: / / conpbi o. nds. gmw.
ac. uk/ central proteins.txt. This list may be useful for the prioritisation of
candidate gene lists.

Closeness centrality can only be calculated for connectat@ips which leads to high
closeness values for proteins belonging to small connemetponents. To overcome
this caveat the closeness centrality could have been aetéclfor the single largest con-
nected component with the unfortunate effect of reducimgrthmber of proteins with
closeness scores. This may partly explain why cvd is not as@presented in the list
of proteins exhibiting high closeness as this list contaiterge number of proteins from
small components.

Barabassi et al. (2007) have shown that ‘essential’ disgases, in which muta-
tions are lethal, often causing embryonic mortality, forabs (highly connected nodes)
whereas ‘non-essential’ disease genes do not displayehdéency (Golet al, 2007).
Analysis performed in chapter 4 supported this claim by shgvinypertension related
proteins, disruption of which would not be thought to be &btlare generally not hub
like proteins (Dobsort al., 2008). In this study, we show that cvd and cancer proteins
display a range of centrality scores but they are over-sgmted in the list of proteins
displaying high degree and betweenness scores. Cardidaagisease and cancer cover
a wide range of disease phenotypes which may partly expkaiying centrality scores.
In addition, the cvd dataset contains many proteins whiehtfawught to be good candi-
dates for association with cvd but as yet many are unproveiority 2 and 3 proteins
are more speculative suggestions than priority 1 proteWerk is currently underway
testing the cvd chip (Keatinet al,, 2008) in a range of cardiovascular diseases including
hypertension. This data will indicate whether any are dlsteausal in cvd.

Our results relating to network clustering add to the findifigst shown in cancer by
Jonsson & Bates (2006a). Importantly we are also able to shatsimilar properties
are exhibited in a much larger dataset of cvd proteins. ©aadicular related proteins,
especially priority 1 proteins, tend to act through a smathber of large, complex (tightly

connected) processes and exist as interfaces betweerspesamore often that would be
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expected

We repeated the analysis on the cvd proteins in the 12D (pusly OPHID) dataset
(Brown & Jurisica, 2005) of PPIs in order to investigate wieetthe findings could be
replicated. In an attempt to remove the effect of experi@drias, we only included in-
teractions obtained through high throughout approachexbtiyding those sourced from
BIND, HPRD, MINT and MIPS. An obvious difference between #tadied dataset and
this 12D subset was the much greater range of clique sizésnexg tok=40, compared
to k=12. It is reassuring to see the trends could be replicatadisndataset. We still
find that there is an overrepresentation of bridges in thedataset for cvd and that cvd
proteins cluster together in larger communities for elaci.ess obvious was the dra-
matic increase in the proportion of cvd proteins with insiagk, although the maximum
proportion of cvd proteins can be seerkaf3 for cvdprl ank=31, 32, 33 for cvd (all
priorities). In terms of centrality, observations wereliegted with the average between-
ness and degree centralities being 2.4 and 1.3 fold greatexélprl proteins compared
to non cvd proteins.

The results presented here show that there are network riegpeommon to both
cancer and cvd which may also be reflected in other diseashks. siared properties
relate to both network centrality and clustering. Thereaameimber of proteins actually
associated with both conditions and these may be geneedsianediators.

The strategy of combining centrality measures with analgsicommunity structure
is important when taking this wholeist perspective to ustisrding the etiological mech-

anisms of disease.
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Chapter 6

General Discussion

Advances in methods for analysing genes and proteins delatdisease have provided
new opportunities for the application of biology to medipedctice (Mathevet al., 2007).
The completeness, volume and interpretation of data pemtibhg such methods, requires
novel computational biology approaches. This thesis de=tifour different analyses,
the results of which may aid in the interpretation and ptisation of candidate disease
genes in large scale molecular datasets. Machine learnohgraph theoretic approaches
were used. Some of the approaches combined heterogendas®deces including such
as PPI databases and curated databases such as OMIM.

Initial work focused on developing methods for identifyidgleterious nsSNPs. The
analysis found various sequence and structural propevees important. Sequence con-
servation was shown to be the most useful attribute in ptiedgi¢unctional nsSNPs in a
large dataset from the SWISSPROT database. Structurdluadts in combination with
the conservation score improved the prediction accurartyther non structurally depen-
dant attributes were found to reduce the error rate furtheémgere valuable in the absence
of a conservation score. The nsSNP function predictionyamsablso showed the impor-
tance of balance within training datasets highlightingithportance of training dataset
configuration. Currently, the SNP function prediction gsoare being used for prioritis-
ing NnsSNPs in current BRIGHT studidst(t p: / / ww. bri ght st udy. ac. uk), and
for the recent blood pressure meta analysis (ChristophetdteChehet al., 2009). The
method could be extrapolated, by the creation of a tool taialan the fly predictions for

novel SNPs identified through resequencing experiments.ubler would be required to
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submit a suspected SNP and its surrounding sequence. Singdeation of the nsSNP
analysis, a number of further studies have been perforrhated¢n of which have cited
the work in this thesis and are complementary. In light oséheecent studies (described
in Section 2.3), further work could be performed, for examnpome of the attributes
found to be important in studies such as those of Eiaal. (2007) and Hu & Yan (2008)
could be incorporated into the method; a meta server th#atslpredictions from all
prediction servers would also be useful. A classifier cobkehtbe trained which uses
predictions from each of the component servers as attsbutas currently difficult to
evaluate the worth of such studies without performing fiomzl work to prove that the
SNP was truly a functional SNP. These predictions shouldobsidered a guide to help
prioritise gene candidates. With time more prediction eeymay become available to
complement servers such as PolyPhen (Sungaal, 2001) and SIFT (Ng & Henikoff,
2003). The focus of most SNP studies so far has been on gregitcsSNPs whereas
disease associated SNPs often fall in regulatory regiamsh SNPs have only been con-
sidered in a small number of studies such as Mottagui-Tabal: (2005) and Torkamani
& Schork (2008), exploring methods to predict these wousd dle of interest.

Machine learning approaches were also used to develop aoth&ihthe functional
annotation of proteins belonging to large diverse supdti@s Our analysis found that
global sequence properties of protein domains are usefilgtermining the protein su-
perfamily. These properties have previously been used ddigir protein folds (Ding
& Dubchak, 2001). Such an approach can be used to complemaelitianal homol-
ogy alignment based approaches. In performing the anadysienrichment approach
step was explored, this resulted in significant improvem#nthe classifier performance.
The enrichment step involved carefully choosing and addeguences to the training
dataset that are currently absent from SCOP. It is expebtadhis addition could im-
prove performance if applied to the many published fold temh models (Ashburner
et al, 2000; Ding & Dubchak, 2001; Liet al, 2005; Shen & Chou, 2006; Melvit al.,
2007; Shaminet al,, 2007; Damoulas & Girolami, 2008). To extend this work a sile
ensembling algorithm is currently under construction fattirclassifier, multi-subspace

classification tasks such as the superfamily and fold ptiediproblem. This should pro-
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vide improved prediction performance over single classfieessentially, the approach
deploys a large number of different ‘base’ classifiers (egural networks and decision
trees) that are trained with various feature subspaceseatid bigrams or composition
features for example) and selects the best classifier/aabgpair for each target class,
in this case the protein fold or superfamily. This is acheevapidly through the use of
the cluster implementation of Weka. These ‘class winnees‘aadered by the number of
predictions made by the winner on the class it represenis.résults in a list of rules that
are applied in sequence. This approach has been found tovepreviously reported
state of the art approaches in terms of classification acgur@ported by Liret al. (2005)
on the SCOP PDB-40D benchmark fold dataset (Ding & Dubch@@1)

The PPI topology of hypertension implicated proteins was alvestigated and mod-
els were produced for predicting novel hypertension pnstelThe models showed there
are patterns within PPl networks, as well as shared funetimhsequence based proper-
ties that can be used to aid prioritisation of candidate distee Predicted hypertension
related proteins are closer and better connected in thecttene than would be expected
by chance, despite not being hubs or having a highly conddatal environment. We
thought that geodesic distance between hypertensionipnodéirs might correlate with
GO semantic similarity but were unable to find a significamteation. In addition to the
attributes used in this study, data from other sources, aa@xpression data, could also
be integrated into the model. A number of recent studies bhaxghined expression data
and literature derived data with information relating td R&tworks to perform integrated
analyses for the study of human heart failure (Camargo & fZ2007). In this study, a
PPI network was assembled representing heart failurganelénteractions. The relation-
ships between protein connectivity and expression werlysed and co-expression and
connectivity. High connectivity did not always correlatégwhigh differential expression
and genes may exhibit weak expression correlation withr thegracting partners. The
study was very much an exploratory, hypothesis-free, datem study. A next stage
for this study, would be to develop a web based applicatmentable users to prioritise
novel candidates based on these properties. This coultveedither the construction of

a pipeline to calculate the attributes required by the dias®n the fly or precalculating
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the attributes for each RefSeq protein (Preittal, 2007) and storing the attributes in a
database.

Finally we performed an interactome analysis of a largesddtaf manually curated
cvd and cancer implicated proteins, the data showed thaettisease implicated pro-
teins tend to act through a small number of large, complgkilyy connected) processes
and exist as interfaces between processes more often tlid We expected. The pro-
teins also had a tendancy to be influential proteins withénititeractome and there were
network properties in common which may also be reflected hertliseases. A recent
genome wide meta analysis identified 8 loci associated vibdopressure (Christopher
Newton-Chekhet al, 2009). All the gene products from these regions are beisgssed
for priority based on their centrality scores, communityisture and proximity to other
cvd implicated proteins. A few of the proteins from each @ gloci have been found
to belong to the same community, possibly highlighting a c@n pathway or functional
module. These proteins are priority targets for furtheestigation. A useful aid to pri-
oritising candidates based upon the studied topologicagrties would be a metric that
combined values relating to centrality and clustering iatsingle score. In addition, a
tool could be developed that allows a user to enter a RefSsqipridentifier and return
a visual representation of the protein in its topologicaliemment with cvd and cancer
implicated proteins highlighted along with the centrabiiyd community structure dis-
played, in a similar manner to figure 5.5. Such an applicatarid be created as a plugin
to the open source package, Cytoscape (Shaahah 2003).

Data integration is a rapidly growing field that combinesadabm wholist heteroge-
neous biological sources providing many opportunitiessieetbp more complete models
of systems. Methods that combine and integrate data witicelidata and pathway data
enable the investigation of how perturbations lead to dis@ad should provide a clearer
understanding of the pathways through which they act. Ak, ghese methods could aid
accurate diagnosis and prognosis as well as enabling Ipe¢iezntion and therapy in the
future. Most current cancer treatments, for example, hawespecificity leading to ag-
gressive side effects (Matheatal., 2007). Identifying cancer specific molecular changes

could lead to the identification of disease sub types, ancoutdr markers, this could
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help in the development of more targeted therapies with fewe effects. Multiple drug
combinations are often used to treat hypertension, ané #rervaried patient responses
(Chobaniaret al., 2003). A tailored drug combination for a particular patidatermined
at diagnosis would improve the patient experience and eedare costs.

Comprehensive integrated pathway information is vitaldtudying biological pro-
cesses and how they are affected in disease. However, pattata exists in a range
of diverse pathway databasdd € p: / / pat hgui de. or g). The datasets are often in-
complete and sparsely populated (Catyal, 2005). PPIls networks created through a
combination of manual curation and high throughput scregian contribute towards
knowledge of pathway structure.

The integration of genotype and microarray data with PPI @attiway information
is an important challenge showing promise for predicting #¢ffect of a mutation on
disease and identifying therapeutic targets through vabile points in particular path-
ways. In a study performed by Chuaeg al. (2007), expression data was combined
with PPI networks in order to identify differentially exm®ed combinations of trancripts
(modules) based on interactome proximity and mutual inédrom. The analysis showed
improved ability over single transcript markers to predgtastasis within breast cancer
patients. We are currently developing an approach for ifjémg disease associated mod-
ules within PPI networks based on SNP association scores@®WA studies. This could
help identify multiple SNPs that by themselves do not diggignificant association but
have a significant combined effect (figure 6.1). This assuheghe biological pathways
have multiple vulnerable points that can lead to the sameades phenotype (Mathew
et al, 2007). These are examples of integrated approaches thigt @able significant
advances in the study and understanding of the etiologyropbtex diseases.

This thesis utilised static, qualitative presentationrdgégrated genome scale data,
through the identification and study of relationships thastdbetween component parts.
A quantitative analysis that aims to understand the redatigps or network dynamics
(understanding the nature of the links) within a system isggdr challenge and it is
receiving growing interest (Luscomig al,, 2004). Progress in this area is being made

by the measuring of gene expression through microarraygatiavay simulations have
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Figure 6.1: An approach that combines SNP association Chi-square@sctoridentify disease
associated PPI subnetworks. In this example, SNPs wers tedk@ the coeliac genome wide asso-
ciation study by van Headt al. (2007). Proteins (nodes) are coloured according to thaisGhared
value with diamonds representing proteins with Chi-sqdamres having p-values 0.05

been used in model organisms suclicasherichia coland budding yeast to find pathway

regulators (Cheet al,, 2000). The speed of advances within these key areas of dampu

tional biology suggests that such integrated, wholist @aghes will extend long into the

future.
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Appendix A. Environment, Parameters and Specification

Hardware

The majority of the data processing performed in this thesis done using Linux and
Unix computers available at the Genome Centre, St Barts &ed_dndon, Queen Mary
University of London. Both the Genome Centre and Queen Mamwéssity of Lon-

don High Throughput Computing (HTC) clusters were used téop@ analyses. Large
amounts of filespace on the Genome Centre servers were useddalata and software.
All Genome Centre servers and cluster were administeredraidtained by the thesis

author.

Programming Languages and Databases

The main programming languages used for data harvestimginga manipulation, re-
sults collection and evaluation were Perl & ¢ p: / / ww. per | . or g) and Python
(http:// www. pyt hon. or g). MySQL version 5.0.5t t p: / / www. nmysqgl . com)
was used to create databases for storing data and resutts ahalyses. R version 2.6.2
was used for statistical tests including the Wilcoxon sigmnkrtest, Pearsons and Spear-
mans and to produce most of the plots within the thesis (R Dpwaent Core Team,

2008).

Software and Operating Systems

e Linux and Unix operating systems including Ubunbtu, CentD&bian, Scientific
Linux and Sun Solaris 8 distributions were used throughbist thesis. All pro-

grams were written and tested using these operating systems

e The Weka machine learning workbench was used for machimeiteaclassifica-
tion (Witten & Frank, 1999). It consists of Java implemeimias of many ma-
chine algorithms, that can be applied directly to a dataasfeka contains tools for
data pre-processing, classification, regression, ciagtesissociation rules, and vi-
sualisation. LibSVM was integrated into the Weka Environimgsing WLSVM
(EL-Manzalawy & Honavar, 2005).
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e The Apache 2 web serveht(t p: / / ww. apache. or g/ ) and Perl CGI mod-
ules htt p: // perl doc. perl.org/ Cd . ht nl )were used to create the web

based, cluster implementation of Weka.

e The PSIC (position-specific independent counts) programm wged to calculate
conservation at the position of a nsSNP (Rameretkgl,, 2002). Profiles are ex-
tracted from sequence alignments with position-specifint®of independent ob-

servations.

e The LDAS (Lightweight Distributed Annotation Server) framork was used for
implementing the DAS server to server up nsSNP function iptieds (Dowell

et al, 2001)

e PSI-BLAST and BLAST were used for various analyses thatirequsequences
to be aligned. This included the enrichment step of the prdtenction analysis

(Altschulet al,, 1997).

e BLASTClust was used to cluster sequences based on theiesegsimilarity

(Dondoshansky, 2002).

e Secondary structure prediction of a protein was performigad RSIPRED (McGuf-

fin et al,, 2000).

e The Python API implemented by Casbenhal. (2006) as part of the Biopython
project was used to manipulate and parse ASTRAL and SCOPtdilesnstruct

datasets for the protein superfamily analysis.

e G-Sesame was used to calculate the semantic similarity otéa@s associated

with sets proteins (Wanet al., 2007).

e The NetworkX Python routines were used to calculate catytisdores and produce

network figuresit t ps: / / net wor kx. | anl . gov)

e TheCfinderprogram was used to identify communities for the analysisvdfand
cancer implicated proteins (Adamcsetial., 2006). This program uses tkeclique

clustering method.
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Superfamily No. of | No. of | No. of | 30E/D
domains | domains | domains
(D) (20E) (30E)
46458 a.1.1 sf Globin-like 11 22 31 2.82
46689 a.4.1 sf Homeodomain-like 12 35 35 2.92
46785 a.4.5 sf “Winged helix” DNA{ 25 81 114 4.56
binding domain
47266 a.26.1 sf 4-helical cytokines | 15 19 27 1.8
48371 a.118.1 sf ARM repeat 11 35 50 4.55
49785 h.18.1 sf Galactose-bindingl3 17 21 1.62
domain-like
49899 b.29.1 sf Concanavalin A-like14 19 28 2
lectins/glucanases
50249 b.40.4 sf Nucleic acid-binding19 37 58 3.05
proteins
50729 b.55.1 sf PH domain-like 11 27 27 2.45
51182 h.82.1 sf RmIC-like cupins 11 16 20 1.82
88633 b.121.4 sf Positive stranded $st1 23 23 2.09
RNA viruses
51445 c.1.8 sf (Trans)glycosidases | 15 30 45 3
51735 c.2.1 sf NAD(P)-binding 13 24 56 431
Rossmann-fold domains
52540 ¢.37.1 sf P-loop containing nu-43 89 138 3.21
cleoside triphosphate hydrolases
52833 ¢.47.1 sf Thioredoxin-like 17 36 41 2.41
52980 c¢.52.1 sf  Restriction 13 14 15 1.15
endonuclease-like
53335 c¢.66.1 sf S-adenosyl-L-25 71 92 3.68
methionine-dependent  methyltrans-
ferases
53383 ¢.67.1 sf PLP-dependent transit5 36 72 4.8
ferases
53448 ¢.68.1 sf Nucleotide-diphosphio11 20 45 4.09
sugar transferases
53474 c.69.1 sf alpha/beta-Hydrolase23 41 130 5.65
53850 ¢.94.1 sf Periplasmic bindingl3 31 135 10.38
protein-like Il
55729 d.108.1 sf Acyl-CoA Ny 15 37 49 3.27
acyltransferases (Nat)
57059 g.3.6 sf omega toxin-like 15 19 19 1.27
57095 g.3.7 sf Scorpion toxin-like 12 22 22 1.83

Table 1: Number of domains per superfamily (in the analysis thatweet multi domain proteins)
from Astral20 before enrichment (D) and after enrichmer2G# (20E) and 30% (30E) sequence

identity cutoffs
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Table 2: Number of domains per superfamily (in the analysis that in-
cluded multi domain proteins) from Astral20 before enrigimn(D) and

after enrichment at 20% (20E) and 30% (30E) sequence igiantioffs

Superfamily D 20E 30E 30E/D
46458 a.1.1 sf Globin-like 11 19 24 2.18
46626 a.3.1 sf Cytochrome ¢ 15 20 20 1.33
46689 a.4.1 sf Homeodomain-like 23 114 115 5
46785 a.4.5 sf “Winged helix” DNA{ 55 144 175 3.18
binding domain

47266 a.26.1 sf 4-helical cytokines | 15 20 24 1.6
47473 a.39.1 sf EF-hand 13 25 34 2.62
48371 a.118.1 sf ARM repeat 17 43 53 3.12
48726 b.1.1 sf Immunoglobulin 36 103 105 2.92
49265 b.1.2 sf Fibronectin type 11l 21 60 61 2.9
81296 b.1.18 sf E set domains 26 52 53 2.04
49503 b.6.1 sf Cupredoxins 15 33 40 2.67
49785 Db.18.1 sf Galactose-binding21 37 43 2.05
domain-like

49899 h.29.1 sf Concanavalin A-like22 41 56 2.55
lectins/glucanases

50249 b.40.4 sf Nucleic acid-binding39 68 91 2.33
proteins

50729 b.55.1 sf PH domain-like 19 47 48 2.53
51011 b.71.1 sf Glycosyl hydrolase dp-19 24 24 1.26
main

51182 h.82.1 sf RmIC-like cupins 12 19 22 1.83
88633 b.121.4 sf Positive stranded $s15 23 23 1.53
RNA viruses

Continued on Next Page. ..
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Table 2 — Continued

Superfamily D 20E 30E 30E/D
51445 c.1.8 sf (Trans)glycosidases | 33 64 99 3
51569 ¢.1.10 sf Aldolase 12 16 36 3
51735 c.2.1 sf NAD(P)-binding 47 87 137 2.91

Rossmann-fold domains

51905 c.3.1 sf FAD/NAD(P)-binding 21 37 42 2
domain
52317 ¢.23.16 sf Class | glutaminell 19 23 2.09

amidotransferase-like

52374 c¢.26.1 sf Nucleotidylyl trans- 13 24 31 2.38
ferase

52540 ¢.37.1 sf P-loop containing nu-70 150 227 3.24
cleoside triphosphate hydrolases

52833 ¢.47.1 sf Thioredoxin-like 28 56 71 2.54
52980 c¢.52.1 sf  Restriction 15 16 17 1.13
endonuclease-like

53067 ¢.55.1 sf Actin-like ATPase dg-17 27 36 2.12
main

53098 ¢.55.3 sf Ribonuclease H-like | 15 28 37 2.47
53335 c¢.66.1 sf S-adenosyl-L-29 69 110 3.79

methionine-dependent  methyltrans-

ferases

53383 ¢.67.1 sf PLP-dependent transi6 32 66 413
ferases

53448 ¢.68.1 sf Nucleotide-diphosphio12 19 45 3.75
sugar transferases

53474 ¢.69.1 sf alpha/beta-Hydrolase27 54 145 5.37

Continued on Next Page. ..
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Table 2 — Continued

Superfamily D 20E 30E 30E/D
53850 ¢.94.1 sf Periplasmic bindingl5 33 152 10.13
protein-like Il

56784 ¢.108.1 sf HAD-like 11 23 47 4.27
54001 d.3.1 sf Cysteine proteinases | 18 28 33 1.83
54211 d.14.1 sf Ribosomal protein $511 21 23 2.09

domain 2-like
54236 d.15.1 sf Ubiquitin-like 11 21 24 2.18
54373 d.16.1 sf FAD-linked reductasgs11 19 19 1.73
C-terminal domain

54593 d.32.1 sf Glyoxalase/Bleomycjn12 19 19 1.58

resistance protein/Dihydroxybipheny!
dioxygenase
55347 d.81.1 sf Glyceraldehyde-11 23 32 291
3-phosphate dehydrogenase-like,
C-terminal domain
55486 d.92.1 sf Metalloproteasesl8 44 54 3
(“zincins”), catalytic domain
55729 d.108.1 sf Acyl-CoA N- 11 25 41 3.73

acyltransferases (Nat)

56672 e.8.1 sf DNA/RNA polymerasesl1l 23 56 5.09
57059 g.3.6 sf omega toxin-like 15 19 19 1.27
57095 g.3.7 sf Scorpion toxin-like 12 20 20 1.67
57196 g.3.11 sf EGF/Laminin 11 55 55 5
57667 9.37.1 sf C2H2 and C2HC zincl5 40 40 2.67
fingers

57716 ¢.39.1 sf Glucocorticoid 13 22 22 1.69

receptor-like (DNA-binding domain)
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Table 3:The 49 superfamilies in the multi domain analysis with their

respective folds and classes within the SCOP hierarchyseRabsitive

superfamily predictions are often correctly assignedetdtiel of protein

class.
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Class

Fold

Superfamily

46456 a cl All alpha proteins

46457 a.1 cf Globin-like

46458 a.1.1 sf Globin-like

46625 a.3 cf Cytochrome ¢

46626 a.3.1 sf Cytochrome ¢

46688 a.4 cf DNA/RNA-

binding 3-helical bundle

like

46689 a.4.1 sf Homeodomain

46785 a.4.5 sf “Winged helix’

DNA-binding domain

47265 a.26 cf 4-helical cy

tokines

47266 a.26.1 sf 4-helical cy

tokines

47472 a.39 cf EF Hand-like

47473 a.39.1 sf EF-hand

48370 a.118 cf alpha-alpha s

perhelix

U-48371 a.118.1 sf ARM repeat

48724 b cl All beta proteins

48725 b.1 cf Immunoglobulin

like beta-sandwich

48726 b.1.1 sf Immunoglobulir]

49265 b.1.2 sf Fibronectin typ

)

81296 b.1.18 sf E set domains

49379 b.6 cf Cupredoxin-like

49503 b.6.1 sf Cupredoxins

49784 b.18 cf Galactose

binding domain-like

binding domain-like

-49785 b.18.1 sf Galactose

49898 b.29 cf Concanavalin A

like lectins/glucanases

- 49899 b.29.1 sf Concanavali

A-like lectins/glucanases

50198 b.40 cf OB-fold

50249 b.40.4 sf Nucleic acid

binding proteins

Continued on Next Page. ..
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Table 3 — Continued
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Class

Fold

Superfamily

50728 b.55 cf PH domain-like

1]

50729 b.55.1 sf PH domain-like

lase domain

51010 b.71 cf Glycosyl hydro

+ 51011 b.71.1 sf Glycosyl hydrg

lase domain

beta-helix

51181 b.82 cf Double-strandgd51182 b.82.1 sf RmIC-like cut

pins

proteins)

88632 b.121 cf Nucleoplasmin-88633 b.121.4 sf

like/VP (viral coat and capsiq

Positive

stranded ssRNA viruses

51349 c cl Alpha and beta prg-51350 c.1 cf TIM beta/alphat

teins (a/b)

barrel

51445 c.1.8 sf

(Trans)glycosidases

51569 c.1.10 sf Aldolase

51734 c.2 cf NAD(P)-binding

Rossmann-fold domains

51735 c.2.1 sf NAD(P)-binding

Rossmann-fold domains

binding domain

51904 c¢.3 cf FAD/NAD(P)-

51905 c.3.1 sf FAD/NAD(P)-

binding domain

52171 c.23 cf Flavodoxin-like

52317 ¢.23.16 sf Class | glu

tamine amidotransferase-like

52373 c¢.26 cf Adenine nut

cleotide alpha hydrolase-like

52374 c¢.26.1 sf Nucleotidyly,

transferase

lases

52539 ¢.37 cf P-loop containin

nucleoside triphosphate hydr

052540 ¢.37.1 sf P-loop contair

D-ing nucleoside triphosphate hy

drolases

52832 c.47 cf Thioredoxin fold

52833 c.47.1 sf Thioredoxin

like

52979

c.52 cf

endonuclease-like

Restriction

52980 c¢.52.1 sf Restriction

endonuclease-like

Continued on Next Page. ..
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Table 3 — Continued

Class Fold

Superfamily

like motif

53066 c.55 cf Ribonuclease H

-53067 c.55.1 sf Actin-like AT-

Pase domain

53098 c¢.55.3 sf Ribonucleag

H-like

transferases

53334 c.66 cf S-adenosyl-L

methionine-dependent methy

I-methionine-dependent methy

transferases

53447 c¢.68 cf

diphospho-sugar transferases

Nucleotider 53448 c¢.68.1 sf Nucleotideg

diphospho-sugar transferases

53473 c¢.69 cf

Hydrolases

alpha/betg

Hydrolases

ing protein-like Il

53849 ¢.94 cf Periplasmic bind

-53850 c¢.94.1 sf Periplasmi

binding protein-like Il

56783 ¢.108 cf HAD-like

56784 c.108.1 sf HAD-like

teins (a+b) teinases

53931 d cl Alpha and beta prg-54000 d.3 cf Cysteine pro

- 54001 d.3.1 sf Cysteine prq

teinases

54210 d.14 cf Ribosomal pro

tein S5 domain 2-like

- 54211 d.14.1 sf Ribosomal prg

tein S5 domain 2-like

54235 d.15 cf

(ubiquitin-like)

beta-Gras

p54236 d.15.1 sf Ubiquitin-like

54372 d.16 cf FAD-linked re

ductases, C-terminal domain

ductases, C-terminal domain

54592  d.32

alase/Bleomycin

dioxygenase

protein/Dihydroxybiphenyl

cf  Glyox-

resistang

54593 d.32.1 sf Glyox-
ealase/Bleomycin resistandg

protein/Dihydroxybiphenyl

- 53335 ¢.66.1 sf S-adenosyl-L

-53474 ¢.69.1 sf alpha/beta

54373 d.16.1 sf FAD-linked ret

145

(9]

dioxygenase

Continued on Next Page. ..
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Table 3 — Continued
Class Fold Superfamily
55346 d.81 cf Glyceraldehyde-55347 d.81.1 sf

3-phosphate  dehydrogenas

like, C-terminal domain

eGlyceraldehyde-3-phosphate
dehydrogenase-like, C-termina

domain

55485 d.92 cf Zincin-like

55486 d.92.1 sf Metalloproy

teases (“zincins”), catalytic do

main

55728 d.108 cf Acyl-CoA N-

acyltransferases (Nat)

55729 d.108.1 sf Acyl-CoA N-

acyltransferases (Nat)

56572 e cl Multi domain pro-

teins (alpha and beta)

56671 e.8 cf DNA/RNA poly-

merases

56672 e.8.1 sf DNA/RNA poly-

merases

56992 g cl Small proteins

57015 g.3 cf Knottins (small in

hibitors, toxins, lectins)

57059 g.3.6 sf omega toxin-like¢

57095 g.3.7 sf Scorpion toxin

like

57196 g.3.11 sf EGF/Laminin

57666 g.37 cf C2H2 and C2HC 57667 ¢.37.1 sf C2H2 an

zinc fingers

C2HC zinc fingers

57715 g.39 cf Glucocorticoid

receptor-like (DNA-binding do-

main)

57716 g.39.1 sf Glucocorticoigl

receptor-like (DNA-binding do-

main)




Appendix B. Supplementary tables relating to protein sizmeify prediction 147

Table 4:The precision, recall and F-measure produced by PSI-BLAST
and SVMs on the unenriched dataset containing 24 supeiéantdo-

mains from multi domain proteins excluded).

SVM PSI-BLAST
Superfamily Precision| Recall | F-Measure | Precision| Recall | F-Measure
46458 a.1.1 sf Globin-like | 0.71 1 0.83 1 0.94 0.97
46689 a4l sf 0.67 0.67 0.67 1 0.33 0.5
Homeodomain-like
46785 a.4.5 sf “Winged her 0.71 0.83 0.77 1 0.32 0.49
lix” DNA-binding domain
47266 a.26.1 sf 4-helical cy+ 1 0.63 0.77 1 0.3 0.47
tokines
48371 a.118.1 sf ARM rer 0.8 0.67 0.73 1 0.65 0.79
peat
49785 b.18.1 sf Galactose-0.4 0.67 0.5 1 0.32 0.48
binding domain-like
49899 bh.29.1 sf Cont 0.5 0.57 0.53 1 0.67 0.8
canavalin A-like
lectins/glucanases
50249 b.40.4 sf Nuclei¢ 0.75 0.33 0.46 1 0.32 0.49
acid-binding proteins
50729 b.55.1 sf PH domain- 0.5 0.5 0.5 1 0.59 0.74
like
51182 b.82.1 sf RmIC-likg 0.75 0.6 0.67 1 0.81 0.9
cupins
88633 b.121.4 sf Positive 0.8 0.8 0.8 1 0.63 0.77
stranded ssRNA viruses

Continued on Next Page...
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Table 4 — Continued

Superfamily Precision| Recall | F-Measure | Precision| Recall | F-Measure

51445 c.1.8 sfl 0.8 0.57 0.67 1 0.59 0.74
(Trans)glycosidases

51735 c.2.1 sf NAD(P){ 0.8 0.67 0.73 1 0.95 0.97

binding Rossmann-fold do
mains

52540 c.37.1 sf P-loop con- 0.5 0.71 0.59 1 0.75 0.86

taining nucleoside triphos
phate hydrolases

52833 c47.1 sfl 0.86 0.67 0.75 1 0.85 0.92
Thioredoxin-like
52980 c.52.1 sf Restriction 0.5 0.57 0.53 1 0.1 0.18

endonuclease-like

53335 ¢.66.1 sf S-adenosy|-0.2 0.23 0.21 1 0.84 0.91
L-methionine-dependent
methyltransferase

53383 c¢.67.1 sf PLP; 0.56 0.63 0.59 1 1 1

dependent transferases

53448 c.68.1 sf Nucleotide- 0 0 0 1 0.59 0.74
diphospho-sugar trang-

ferases

53474 ¢.69.1 sf alpha/beta-0.55 0.55 0.55 1 0.91 0.95
Hydrolases

53850 ¢.94.1 sf Periplasmic0.71 0.71 0.71 1 0.8 0.89
binding protein-like Il

55729 d.108.1 sf Acyl-CoA 0.67 0.29 0.4 1 0.95 0.98

N-acyltransferases (Nat)

Continued on Next Page...
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Table 4 — Continued
Superfamily Precision| Recall | F-Measure | Precision| Recall | F-Measure
57059 g.3.6 sf omega toxin- 0.86 0.86 0.86 0 0 0
like
57095 ¢.3.7 sf Scorpion 0.83 0.83 0.83 1 0.11 0.2
toxin-like
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Table 5:The precision, recall and F-measure produced by PSI-BLAST
and SVMs on the unenriched dataset containing 49 supeiéantdo-

mains from multi domain proteins included).

SVM PSI-BLAST
Superfamily Precision| Recall | F-Measure | Precision| Recall | F-Measure
46458 a.1.1 sf Globin-like | 0.78 0.82 0.8 1 0.94 0.97
46626 a.3.1 sf Cytochrome|c0.76 0.7 0.73 1 0.83 0.9
46689 a4.l sff 0.51 0.63 0.56 1 0.43 0.6
Homeodomain-like
46785 a.4.5 sf “Winged her 0.72 0.77 0.74 1 0.35 0.52
lix” DNA-binding domain
47266 a.26.1 sf 4-helical cy- 0.74 0.61 0.67 1 0.3 0.47
tokines,
47473 a.39.1 sf EF-hand, | 0.63 0.26 0.37 1 0.58 0.73
48371 a.118.1 sf ARM ret 0.64 0.64 0.64 1 0.44 0.61
peat,
48726 b.1.1 sf Immunoglob- 0.54 0.7 0.61 1 0.78 0.88
ulin
49265 b.1.2 sf Fibronectin 0.58 0.48 0.53 1 0.71 0.83
type lll
81296 b.1.18 sf E set dg-0.19 0.18 0.18 1 0.28 0.44
mains
49503 b.6.1 sf Cupredoxing 0.07 0.04 0.05 1 0.78 0.88
49785 b.18.1 sf Galactose-0.43 0.48 0.46 1 0.42 0.59
binding domain-like
49899 b.29.1 sf Con; 0.37 0.49 0.42 1 0.64 0.78
canavalin A-like
lectins/glucanases

Continued on Next Page. ..
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Table 5 — Continued

Superfamily Precision| Recall | F-Measure | Precision| Recall | F-Measure

50249 b.40.4 sf Nuclei¢ 0.33 0.49 0.39 1 0.39 0.56

acid-binding proteins

50729 b.55.1 sf PH domain- 0.63 0.59 0.61 1 0.59 0.74
like
51011 b.71.1 sf Glycosyl hyt 0.59 0.55 0.57 0.89 0.28 0.42

drolase domain

51182 h.82.1 sf RmIC-like 0.14 0.06 0.08 1 0.78 0.88
cupins
88633 b.121.4 sf Positive 0.64 0.41 0.5 1 0.5 0.67

stranded ssRNA virus
51445 c.1.8 sfl 0.53 0.82 0.65 1 0.71 0.83
(Trans)glycosidases
51569 ¢.1.10 sf Aldolase 0 0 0 1 0.72 0.84
51735 c.2.1 sf NAD(P){ 0.44 0.67 0.53 0.92 0.87 0.9

binding Rossmann-fold do

mains
51905 c.3.1 sfl 0.46 0.47 0.46 0.97 0.91 0.94
FAD/NAD(P)-binding
domain

52317 ¢.23.16 sf Class || 0.6 0.19 0.29 1 0.88 0.93

glutamine amidotransferase
like
52374 ¢.26.1 sf Nucleotidy} 0 0 0 1 0.89 0.94
lyl transferase

52540 c.37.1 sf P-loop con-0.34 0.75 0.46 1 0.82 0.9

taining nucleoside triphos

phate hydrolases

Continued on Next Page. ..
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Table 5 — Continued

Superfamily Precision| Recall | F-Measure | Precision| Recall | F-Measure

52833 c.47.1 sf 0.77 0.57 0.66 1 0.83 0.91

Thioredoxin-like

52980 c.52.1 sf Restriction 0.33 0.09 0.14 1 0.09 0.16

endonuclease-like

53067 c.55.1 sf Actin-like 0.57 0.46 0.51 1 0.27 0.42

ATPase domain

53098 c.55.3 sf Ribonucle- 0.52 0.48 0.5 1 0.57 0.72
ase H-like
53335 ¢.66.1 sf S-adenosy|-0.23 0.33 0.27 1 0.86 0.93

L-methionine-dependent
methyltransferases
53383 c¢.67.1 sf PLP: 0.67 0.42 0.51 1 1 1

dependent transferases

53448 c.68.1 sf Nucleotide- 0 0 0 1 0.61 0.76
diphospho-sugar trang-

ferases

53474 c.69.1 sf alpha/beta-0.59 0.58 0.58 1 0.93 0.96
Hydrolases

53850 ¢.94.1 sf Periplasmic 1 0.35 0.52 1 0.74 0.85
binding protein-like Il

56784 ¢.108.1 sf HAD-like | 1 0.06 0.12 1 0.19 0.32
54001 d.3.1 sf Cysteine prg-0 0 0 1 0.59 0.74
teinases

54211 d.14.1 sf Ribosomal 0.31 0.19 0.23 1 0.53 0.69
protein S5 domain 2-like

54236 d.15.1 sf Ubiquitin{ 0.33 0.12 0.17 1 0.31 0.48

like

Continued on Next Page. ..
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Table 5 — Continued

Superfamily Precision| Recall | F-Measure | Precision| Recall | F-Measure

54373 d.16.1 sf FAD-linked 0.57 0.25 0.35 1 0.94 0.97

reductases, C-terminal dg

main
54593 d.32.1 sf Glyoxq 1 0.59 0.74 1 0.33 0.5
alase/Bleomycin resistange
protein/Dihydroxybiphenyl
dioxygenase

55347 d.81.1 sff 0.31 0.22 0.26 1 0.41 0.58
Glyceraldehyde-3-
phosphate dehydrogenade-
like, C-terminal domain
55486 d.92.1 sf Metallopro} 0.8 0.24 0.36 0.96 0.85 0.9
teases (“zincins”), catalyti
domain

55729 d.108.1 sf Acyl-CoA 0.5 0.37 0.43 0.92 0.75 0.83

N-acyltransferases (Nat)

56672 e.8.1 sf DNA/RNA| 0 0 0 1 0.81 0.9
polymerases

57059 g.3.6 sf omega toxin- 0.5 0.55 0.52 0 0 0
like

57095 ¢g.3.7 sf Scorpion 0.63 0.56 0.59 1 0.11 0.2
toxin-like

57196 g.3.11 sff 0.71 0.63 0.67 1 0.06 0.12
EGF/Laminin

57667 ¢g.37.1 sf C2H2 and 0.9 0.82 0.86 1 0.14 0.24
C2HC zinc fingers

Continued on Next Page...



Appendix B. Supplementary tables relating to protein sizmeify prediction 154

Table 5 — Continued

Superfamily Precision| Recall | F-Measure | Precision| Recall | F-Measure

57716 ¢.39.1 sf Glucocor 0.5 0.35 0.41 0 0 0

ticoid receptor-like (DNA-

binding domain)
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Table 6:The 24 superfamilies in this study with their respectivelfol

and classes within the SCOP hierarchy. False positive famgy pre-

dictions are often correctly assigned at the level of protéass.

Class

Fold

Superfamily

46456 a cl All alpha proteins

5 46457 a.1 cf Globin-like

46458 a.1.1 sf Globin-like

46688 a.4 cf DNA/RNA-

binding 3-helical bundle

46689 a.4.1 Sfi

Homeodomain-like

46785 a.4.5 sf “Winged her

lix” DNA-binding domain

47265 a.26 cf 4-helical cy;

tokines

47266 a.26.1 sf 4-helical cy

tokines

48370 a.118 cf alpha-alph

superhelix

248371 a.118.1 sf ARM re

peat

48724 b cl All beta proteins

49784 b.18 cf Galactose

binding domain-like

h

-49785 bh.18.1 sf Galactosg

binding domain-like

49898 b.29 cf Concanavali

A-like lectins/glucanases

n49899 bh.29.1 sf Con

canavalin A-like

lectins/glucanases

50198 b.40 cf OB-fold

50249 b.40.4 sf Nucleig

acid-binding proteins

50728 b.55 cf PH domaint

like

50729 b.55.1 sf PH domain

like

51181 b.82 cf Double

stranded beta-helix

51182 b.82.1 sf RmIC-likg

cupins

88632 b.121 cf

Nucleoplasmin-like/VP

(viral coat and capsid

proteins)

1

88633 b.121.4 sf Positive

stranded ssRNA viruses

Continued on Next Page. ..
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Class

Fold

Superfamily

51349 c cl Alpha and bet

proteins (a/b)

151350 c.1 cf  TIM

beta/alpha-barrel

51445 c.1.8 sf

(Trans)glycosidases

1734 c.2 cf NAD(P)-binding

Rossmann-fold

51735 c.2.1 sf NAD(P){

binding Rossmann-fold do

mains

52539 ¢.37 cf P-loop con
taining nuceoside triphos

phate hydrolases

+ 52540 ¢.37.1 sf P-loop con

- taining nucleoside triphos

phate hydrolases

52832 c¢.47 cf Thioredoxir]

fold

52833 c.47.1 S

Thioredoxin-like

52979 c¢.52 cf Restrictior]

endonuclease-like

52980 c.52.1 sf Restriction

endonuclease-like

53334 c.66 cf S-adenosy
L-methionine-dependent

methyltransferases

-53335 ¢.66.1 sf S-adenosy|

L-methionine-dependent

methyltransferases

53382 «c¢.67 cf PLP-

dependent transferases

53383 c¢.67.1 sf PLP

dependent transferases

53447 c.68 cf Nucleotide
diphospho-sugar trang

ferases

+ 53448 c.68.1 sf Nucleotide

- diphospho-sugar trang

ferases

53473 c¢.69 cf alpha/betg

Hydrolases

-53474 c.69.1 sf alpha/betg

D
1

Hydrolases

53849 c.94 cf Periplasmi

binding protein-like Il

¢ 53850 ¢.94.1 sf Periplasmi

O

binding protein-like Il

53931 d cl Alpha and bet

proteins (a+hb)

n 55728 d.108 cf Acyl-CoA

N-acyltransferases Nat)

55729 d.108.1 sf Acyl-CoA

N-acyltransferases (Nat)

Continued on Next Page. ..
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Table 6 — Continued

Class Fold Superfamily

56992 g cl Small proteins | 57015 g.3 cf Knottins (small 57059 g.3.6 sf omega toxin

inhibitors, toxins, ectins) like

57095 ¢.3.7 sf Scorpion

toxin-like
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Appendix C. Weka classifier lineup

Table 7:The lineup of classifiers and configurations chosen to run as
a batch job on the clustered implementation of Weka. Thisumwas
used to identify the best classifier configuration for prédicSCOP su-

perfamily.

Classifier

weka.classifiers.functions.SMO - -C 1.0 -L 0.0010 -P 1.@2E-N 0 -V -1 -W 1 K

'weka.classifiers.functions.supportVector.PolyKer@P50007 -E 1.0’

weka.classifiers.bayes.BayesNet — -D -Q weka.classb@yss.net.search.local.K2 — -P 1 -S

BAYES -E weka.classifiers.bayes.net.estimate.Simpietasor — -A 0.5

weka.classifiers.bayes.BayesNet — -D -Q weka.classhigyss.net.search.local. HillClimber — -P 1

-S BAYES -E weka.classifiers.bayes.net.estimate. Singpiefator — -A 0.5

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 10 -\Wewedassifiers.rules.PART

weka.classifiers.functions.SMO - -C 1.0 -L 0.0010 -P 1.@E-N O -V -1 -W 1 -K

'weka.classifiers.functions.supportVector.PolyKer@R50007 -E 2.0’

weka.classifiers.functions.SMO - -C 1.0 -L 0.0010 -P 1.@E-N O -V -1 -W 1 -K

'weka.classifiers.functions.supportVector.PolyKer@R50007 -E 4.0’

weka.classifiers.functions.SMO - -C 1.0 -L 0.0010 -P 1.@E-N O -V -1 -W 1 -K

'weka.classifiers.functions.supportVector.RBFKer=P50007 -G 0.01’

weka.classifiers.functions.SMO - -C 1.0 -L 0.0010 -P 1.@E-N O -V -1 -W 1 -K

'weka.classifiers.functions.supportVector. RBFKeraeP50007 -G 0.1

weka.classifiers.functions.SMO - -C 1.0 -L 0.0010 -P 1.@2E-N 0 -V -1 -W 1 K

'weka.classifiers.functions.supportVector.RBFKer=P50007 -G 0.05’

weka.classifiers.functions.SMO - -C 1.0 -L 0.0010 -P 1.@2E-N 0 -V -1 -W 1 K

'weka.classifiers.functions.supportVector. RBFKer@P50007 -G 0.001’

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 30 -\Wevedassifiers.rules.PART

Continued on Next Page. ..
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Table 7 — Continued

Classifier

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 50 -\Wewetassifiers.rules.PART

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 10 -\Wevedassifiers.trees.J48

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 30 -\Wevedassifiers.trees.J48

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 50 -\Wevedassifiers.trees.J48

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 10 -\Wavedassifiers.trees.REPTree

weka.classifiers.bayes.BayesNet— -D -Q weka.classliggyss.net.search.local. RepeatedHillClimber

—-U10-A1-P1-SBAYES -E weka.classifiers.bayes.net.egnSimpleEstimator — -A 0.5

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 30 -\Wavedassifiers.trees.REPTree

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 50 -\Wavedassifiers.trees.REPTree

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND
—-S 1-W weka.classifiers.meta.Bagging—-P 100 -S 1 -1 10 -\Wawadassifiers.trees.RandomForest

--110-K107-S1

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND
—-S1-W weka.classifiers.meta.Bagging—-P 100 -S 1 -1 10 -\Wavetassifiers.trees.RandomForest

—--110-K87-S1

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND
—-S 1-W weka.classifiers.meta.Bagging—-P 100 -S 1 -1 10 -\Wawadassifiers.trees.RandomForest

—-110-K67-S1

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifieggamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 10 -\Wewetassifiers.rules.PART

Continued on Next Page. ..
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Table 7 — Continued

Classifier

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifieggamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 30 -\Wewetassifiers.rules.PART

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 50 -\Wewetassifiers.rules.PART

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 10 -\Wevedassifiers.trees.J48

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifieggamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 30 -\Wevedassifiers.trees.J48

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifieggamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 50 -\Wavedassifiers.trees.J48

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifieggamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 10 -\Wavedassifiers.trees.REPTree

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifieggamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 30 -\Wavedassifiers.trees.REPTree

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifieggamestedDichotomies.DataNearBalancedND

—-S 1 -W weka.classifiers.meta.Bagging — -P 100 -S 1 -1 50 -\Wavedassifiers.trees.REPTree

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

- S 1 -W weka.classifiers.meta.AdaBoostM1 - -P 100 -S 1 - 1W -

weka.classifiers.trees.RandomForest—-110-K0-S 1

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -Ml@veka.classifiers.trees.J48 — -C

0.25-M 2

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND
—-S 1 -W weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -M{@veka.classifiers.rules.PART —

-M2-C0.25-Q1

weka.classifiers.bayes.BayesNet — -D -Q weka.classbimyss.net.search.local. TabuSearch — -L 5

-U 10 -P 1 -S BAYES -E weka.classifiers.bayes.net.estirSatgleEstimator — -A 0.5

Continued on Next Page. ..
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Table 7 — Continued

Classifier

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND

—-S 1 -W weka.classifiers.meta.AdaBoostM1 —-P 100 -S 1 -W @veka.classifiers.trees.REPTree

--M2-V0.0010-N3-S1-L-1

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -I 10 -W wahssifiers.rules.PART —-M 2 -C

0.25-Q1

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -I 30 -W waéhssifiers.rules.PART —-M 2 -C

0.25-Q1

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -I 50 -W waéhssifiers.rules.PART —-M 2 -C

0.25-Q1

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -I 10 -W wa&ssifiers.trees.J48

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -| 30 -W wa&ssifiers.trees.J48

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -| 50 -W wa&ssifiers.trees.J48

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -I 10 -W wa&ssifiers.trees.REPTree

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -1 30 -W watkssifiers.trees.REPTree

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -1 50 -W watkssifiers.trees.REPTree

weka.classifiers.meta.END —-S 1 -1 10 -W weka.classifiezgamestedDichotomies.ClassBalancedND
- S 1 -W weka.classifiers.meta.AdaBoostM1 - -P 100 -S 1 - 1W -

weka.classifiers.trees.SimpleCart—-S1-M 2.0-N5-C 1.0

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -1 10 -W watkssifiers.trees.RandomForest — -|

10-K107-S1

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -1 10 -W wa&ssifiers.trees.RandomForest — -1

10-K87-S1

weka.classifiers.meta.AdaBoostM1 — -P 100 -S 1 -1 10 -W wa&ssifiers.trees.RandomForest — -1

10-K67-S1

weka.classifiers.functions.LibSVM —--S0-K0-D1-G 1.0-R &N 0.5-M 40.0 -C 1.0 -E 0.0010

-P0.1-B

Continued on Next Page. ..
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Table 7 — Continued

Classifier

weka.classifiers.functions.LibSVM --S0-K0-D1-G 1.0-R &N 0.5-M 40.0-C 1.0 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM --S0-K0-D1-G 1.0-R &N 0.5-M 40.0 -C 0.1 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM—--S0-K0-D1-G 1.0-R &N 0.5-M 40.0-C 10.0 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM--S0-K1-D2-G 1.0-ReN 0.5-M 40.0-C 1.0 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM--S0-K1-D2-G 1.0-ReN 0.5-M 40.0-C 0.1 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM--S0-K1-D2-G1.0-ReN 0.5-M 40.0-C 10.0 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM--S0-K1-D4 -G 1.0-ReN 0.5-M 40.0-C 1.0 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM—--S0-K2-D 1 -G 0.0050R-N 0.5-M 40.0-C 1.0-E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM—--S0-K2-D 1 -G 0.0010R-N 0.5-M 40.0-C 1.0 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM--S0-K2-D1-G 0.01-RE&N 0.5-M 40.0-C 1.0 -E 0.0010

-P0.1-B

weka.classifiers.functions.LibSVM —--S0-K2-D1-G 0.1 -R &N 0.5-M 40.0-C 1.0 -E 0.0010

-P0.1-B

weka.classifiers.functions.MultilayerPerceptron—-B M 0.2 -N 500-V0-S0-E20-H a

weka.classifiers.functions.MultilayerPerceptron— -6 M 0.2 -N 500-V0-S0-E20-H a

weka.classifiers.functions.MultilayerPerceptron— -8 M 0.2 -N 500-V0-S0-E20-H a

weka.classifiers.functions.RBFNetwork—-B 2 -S 1 -R 1.08481 -W 0.1

weka.classifiers.functions.RBFNetwork —-B 2 -S 1 -R 1.08481 -W 0.3

Continued on Next Page. ..
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Table 7 — Continued

Classifier

weka.classifiers.functions.RBFNetwork —-B 4 -S 1 -R 1.08481 -W 0.1

weka.classifiers.functions.RBFNetwork—-B 4 -S 1 -R 1.088481 -W 0.3

weka.classifiers.functions.SimpleLogistic — -1 0 -M 500581-W 0.0

weka.classifiers.functions.SimpleLogistic — -1 0 -M 500581-W 0.0 -A

weka.classifiers.trees.LMT —-1 -1 -M 5 -W 0.0

weka.classifiers.trees.LMT —-1-1 -M 5 -W 0.0 -A

weka.classifiers.bayes.BayesNet — -D -Q weka.classbigyss.net.search.local. TAN — -S BAYES

-E weka.classifiers.bayes.net.estimate.SimpleEstimath 0.5

weka.classifiers.bayes.NaiveBayes

weka.classifiers.lazy.IB1

weka.classifiers.lazy.IBk

weka.classifiers.lazy.KStar

weka.classifiers.lazy. LWL

weka.classifiers.misc.HyperPipes

weka.classifiers.rules.ConjunctiveRule

weka.classifiers.rules.DecisionTable

weka.classifiers.rules.JRip

weka.classifiers.rules.NNge

weka.classifiers.rules.OneR

weka.classifiers.rules.PART

weka.classifiers.trees.SimpleCart—-S1-M2.0-N5-C 1.0

weka.classifiers.rules.ZeroR

weka.classifiers.trees.DecisionStump

weka.classifiers.trees.J48

weka.classifiers.trees.REPTree

weka.classifiers.trees.RandomForest

weka.classifiers.trees.RandomTree

Continued on Next Page. ..
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Table 7 — Continued

Classifier

weka.classifiers.bayes.ComplementNaiveBayes

weka.classifiers.bayes.NaiveBayesMultinomial

weka.classifiers.misc.FLR

weka.classifiers.trees.NBTree
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