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Abstract

Understanding the etiology of complex disease remains a challenge in biology. In re-

cent years there has been an explosion in biological data, this study investigates machine

learning and network analysis methods as tools to aid candidate disease gene prioritisa-

tion, specifically relating to hypertension and cardiovascular disease.

This thesis comprises four sets of analyses: Firstly, non synonymous single nucleotide

polymorphisms (nsSNPs) were analysed in terms of sequence and structure based prop-

erties using a classifier to provide a model for predicting deleterious nsSNPs. The degree

of sequence conservation at the nsSNP position was found to be the single best attribute

but other sequence and structural attributes in combination were also useful. Predictions

for nsSNPs within Ensembl have been made publicly available.

Secondly, predicting protein function for proteins with anabsence of experimental

data or lack of clear similarity to a sequence of known function was addressed. Pro-

tein domain attributes based on physicochemical and predicted structural characteristics

of the sequence were used as input to classifiers for predicting membership of large and

diverse protein superfamiles from the SCOP database. An enrichment method was in-

vestigated that involved adding domains to the training dataset that are currently absent

from SCOP. This analysis resulted in improved classifier accuracy, optimised classifiers

achieved 66.3% for single domain proteins and 55.6% when including domains from

multi domain proteins. The domains from superfamilies withlow sequence similarity,

share global sequence properties enabling applications tobe developed which compli-

ment profile methods for detecting distant sequence relationships.

Thirdly, a topological analysis of the human protein interactome was performed. The

results were combined with functional annotation and sequence based properties to build

models for predicting hypertension associated proteins. The study found that predicted

hypertension related proteins are not generally associated with network hubs and do

not exhibit high clustering coefficients. Despite this, they tend to be closer and better

connected to other hypertension proteins on the interaction network than would be ex-

pected by chance. Classifiers that combined PPI network, amino acid sequence and func-

tional properties produced a range of precision and recall scores according to the applied
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weights.

Finally, interactome properties of proteins implicated incardiovascular disease and

cancer were studied. The analysis quantified the influential(central) nature of each pro-

tein and defined characteristics of functional modules and pathways in which the disease

proteins reside. Such proteins were found to be enriched 2 fold within proteins that are in-

fluential (p<0.05) in the interactome. Additionally, they cluster in large, complex, highly

connected communities, acting as interfaces between multiple processes more often than

expected. An approach to prioritising disease candidates based on this analysis was pro-

posed.

Each analyses can provide some new insights into the effort to identify novel disease

related proteins for cardiovascular disease.
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Chapter 1

Introduction

1.1 Introduction

The science of biology describes the organisation and processes of organisms at each

level ranging from the molecular up to the ecosystem (Roberts & King, 1987). Each level

has connected, complex systems and understanding the relationships and connections be-

tween the component parts is an important challenge. Key to understanding each level

has been the move away from reductionist approaches to wholist approaches (Katagiri,

2003). Reductionists focus on one element of a system with the aim to learn everything

about that element. Reductionist approaches have been rather successful and continue to

be important in understanding the details of the component parts which will facilitate a

systems level understanding since we know more about the individual building blocks. In

contrast, wholist approaches observe all the components ata specific level together.

Wholist approaches have led to a range of terms with the suffix-ome(eg. genome,

transcriptome, proteome), all are used to describe all the components of a system at a

particular level. Terms ending in-omics(eg. genomics, transcriptomics, proteomics) are

used to describe the approaches and technologies for studying each level, and allow us

to get a snapshot of these whole systems at a particular level(-omes and -omics glossary

taxonomy, 2009). Genomics technologies include genome wide linkage screens where

variable Simple Sequence Repeats (SSRs) are used as molecular markers for a range of

applications including mapping disese genes and forensics. Genome wide association

(GWA) studies are a second approach, in this case the variation in genotype frequen-
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cies of markers such as single nucleotide polymorphisms (SNPs) are compared between

cases and controls or are tested for association with a quantitative trait. SNPs are genetic

variations representing a simple single base pair difference (allele) between individuals

at a particular position within the DNA sequence, they are expected to contribute to the

causes of many complex traits. SNP arrays enable identification of SNP variation across

the genome using 1000’s of SNPs in 1000’s of people and potentially identifying associa-

tions with disease. Transcriptomics technologies includeexpression microarrays for iden-

tifying genes that are over or under expressed in disease affected tissue relative to normal

tissues. Other techniques include the analysis of epigenetic changes leading to phenotypic

variation through mechanisms such as DNA methylation (epigenomics) and the study of

protein-protein interactions (PPI) through approaches such as yeast two-hybrid screens,

potentially leading to improved understanding of biological functions (interactomics). At

all levels, the relationships between components of a system are of interest and can be

considered as networks where the components are vertices and the relationships are edges

(Junker & Schreiber, 2008). These large emerging datasets from each network provide

scientists with a wealth of data that has to be explored, described and understood using

approaches that include data mining and the application of machine learning and network

analysis.

A very important application is in the study of diseases, which often involves the

disruption of a functional pathway involving multiple genes and their products. In genome

wide linkage screens regions as large as 30 million bases (30cM) have been identified. In

GWA studies the associated regions tend to vary in size from afew kilobases (Kb) to

1000’s of Kb (McCarthyet al., 2008). With both types of study, investigators are left

with huge expanses of DNA which contain many hypothetical genes. There is a need

to devise strategies to aid in the identification and prioritisation of genes within these

regions. The function of hypothetical genes must also be considered. It is also important

to be able to isolate the functional SNPs from the multiple SNPs that are inherited together

in a linkage disequilibrium (LD) block. Candidate genes mayalso be prioritised and

knowledge of disease etiology may be acquired by biologicalnetwork analysis of protein-

protein interactions contained within the human interactome.
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The work described in this thesis investigates approaches for predicting deleterious

SNPs and protein function and performing topological analysis of protein-protein interac-

tion (PPI) networks for the identification and prioritisation of candidate genes for complex

diseases. The studies are focused on datasets from cardiovascular disease (cvd), hyper-

tension and cancer, but the methods can potentially be applied to any disease phenotype.

The organisation of the thesis is as follows:

• Chapter 1 introduces the rationale for the studies and the focus areas and discusses

the applied computational principles of machine learning and graph theoretic ap-

proaches.

• Chapter 2 describes the methods and results obtained from analysing SNPs, using

supervised machine learning classifiers for predicting deleterious non-synonymous

SNPs (nsSNPs).

• Chapter 3 describes the methods and results for predicting protein superfamily us-

ing classifiers with a set of sequence based attributes. Thisanalysis focuses on

large diverse superfamilies where it is difficult to assign function using traditional

sequence homology based methods.

• Chapter 4 describes the methods and results obtained from surveying topological

properties of hypertension related proteins within the human interactome. The re-

sultant hypertension protein network properties are combined with sequence and

functional based information to build a model for predicting novel candidate hyper-

tension related proteins.

• Chapter 5 describes interactome analysis of proteins implicated in cvd and cancer.

The influential nature of these proteins is quantified and community structures are

analysed. An approach for prioritising cvd candidate genesis shown.

• Chapter 6 highlights the primary results, compares with previous work and de-

scribes possible future work and directions within the studied fields.
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1.2 An overview of Machine Learning

The increasing amount of information from numerous genomesand the easy access on the

world wide web has led to many opportunities for bioinformatics research. Algorithms are

required to extract information, knowledge and patterns within this data. Such algorithms

can be used to search the genomic space to determine a hypothesis that fits the space. In

this chapter we provide an overview of machine learning and describe the main methods

used in this thesis.

Artificial intelligence (AI) falls within the field of computer science and engineering,

it aims to produce computer programs that can cope with problems requiring intelligent

behaviour, learning and adaptation. Machine learning is a branch of AI concerned with

the development of algorithms for learning (Michalskiet al., 1983). Deductive learning

is where a conclusion is arrived at using previously known facts or fulfilling conditions.

The conclusion is always true on condition of the facts beingtrue. In contrast, inductive

learning is where the facts may predict a conclusion with a probability, but there is no

guarantee of the conclusion being true. Machine learning methods use inductive learning

techniques to create programs by producing rules based on patterns within data sets. Sim-

ple pattern discovery alone may be more accurately classified as data mining. Machine

learning has many uses within the field of bioinformatics where patterns and rules are

used for well characterised examples to classify instancesthat are less well understood.

1.2.1 Supervised vs unsupervised algorithms

The three most common types of machine learning algorithms are: supervised learning,

unsupervised learningandsemi-supervised learning. Supervised learningor classifica-

tion learningtakes a set of examples that are classified, and creates a set of rules to classify

samples where the status is unknown. In contrast,unsupervisedlearning models a set of

inputs where labelled examples are not available. The algorithm finds a way of clustering

the data based upon the known features and then provides descriptions for these clusters.

Semi-supervised learningutilises both labelled and unlabelled instances in order tocreate

a classifier.

Predicting whether a non-synonymous SNP (nsSNP) is diseaserelated or whether
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a protein belongs to a certain functional group are questions that can be addressed via

machine learning methods. The method ofsupervised learningis appropriate as the aim

is to assign an instance, either a nsSNP or an unannotated protein to one of a number of

classes. In the case of nsSNP classification it is possible touse a set of nsSNPs where

the disease status is known as a training set to form a set of rules that could be used to

make a prediction for nsSNPs where the function is unknown. The work performed in

this thesis utilisessupervised learningexclusively, so the focus from this point will be on

this approach. The supervised learning classifiers, support vector machines (SVMs) and

decision trees (described below) are amongst the most commonly used classifiers within

the field of bioinformatics.

1.2.2 Support Vector Machines

Support vector machines (SVMs) are a kernel basedsupervised learningclassifier devel-

oped by Corte & Vapnik (1995). They have been shown to be very accurate in many

disciplines including bioinformatics, benefitting from the ability to handle high dimen-

sional data with a small number of instances, finding a good balance between training set

accuracy and test data error. For a given set of training vectors labelled with two classes,

a SVM can find the optimal linear hyperplane that maximally separates instances of the

classes by maximizing the margin between the two classes (Figure 1.1).

1.2.2.1 Non-linear classification

Very often problems are not immediately linearly separable, and so the vectors must be

transformed into some higher dimensional space and the optimal hyperplane found in

this transformed feature space. Non-linear discrimination can be achieved through the

application of a range ofkernel functions. The performance of the SVM is controlled by

this function and the regularization of the C parameter. TheC parameter is used to trade

between training errors and larger hyperplane margins.



Chapter 1. Introduction 18

Figure 1.1: Support vector machine (SVM) hyperplanes. Three hyperplanes are displayed; h1 does
not separate the two classes (orange and blue circles), h2 separates the classes with a small margin,
h3 with the maximum margin. The support vectors are circled
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1.2.2.2 MultiClass SVM

If there are more than two classes, various SVM techniques have been designed to over-

come the problem.

One-vs-Others method The one-vs-others method is a simple method for dealing with

multi-class problems containingn classes (Brownet al., 2000). The problem is trans-

formed inton 2 way classifiers. Each classifier contains a single class as ‘class 1’ and all

of the others classes combined as ‘class 2’.

For a query instance where the class is unknown the system tests against each of the 2

class models to see whether it belongs to ‘class 1’ or ‘class 2’. This leads ton scores from

then classifiers. Ideally there will only be one case where the query is assigned to ‘class

1’. In reality there may be false positives, whereby more than one of the models assigns

the query to ‘class 1’. The complexity of ‘class 2’ may lead tothe false positives.

Unique One-vs-Others method The unique one-vs-others method adds a second step

to the one-vs-others method for dealing with instances where there are false positives

(Ding & Dubchak, 2001). This step involves the creation of 2 class classifiers for each

of the false positives. The final assigned class is the class that was selected most in these

models built from the false positives. In this step false positives should be eliminated.

One-vs-One method In the unique one-vs-others method 2-way classifiers are built to

break the ties between the false positives. In the one-vs-one or pair wise coupling method,

the first step is abandoned altogether so the process is composed solely of the second step

of one against one classifiers (Hastie & Tibshirani, 1998). The final chosen class is the

one that receives the most votes from each of these pair wise classifiers. This approach is

used by implementations such as SVM SMO (Platt, 1998) and LibSVM (Chang & Lin,

2001).

1.2.3 Decision Trees

Decision trees are supervised classifiers composed of a graph (tree structure) of decisions

(Quinlan JR, 1993). Each interior node of the tree relates toa variable where a decision is
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made on which branch to take based on the value of the variable. The decisions are usually

simple single attribute tests to divide the data. A leaf represents the predicted class based

on values at the nodes on the path from the root. Decision trees have the advantage over

many classifiers in that they produce interpretable rules. Once a tree has been built new

instances can be classified by starting at the root and following a path down to a leaf.

An example of a decision tree can be seen in Figure 1.2 where anactivity for the day is

chosen based on a number of attributes.

Figure 1.2: An example of a decision tree for choosing a weekend activity, showing decisions at the
nodes, and final classification at the leaves.
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When the attribute at a node is nominal, there will be one branch for each attribute

value. If the attribute is continuous then it will usually besplit into 2 and a decision based

on whether the instance is above or below a threshold cut-off. There are a number of

methods for deciding which attribute should be used at each node. Information gain of the

split is a commonly used measure, which measures the information required after using

the attribute as a classifier at a node subtracted from the information required before using

the attribute as a classifier. The Gini measure calculates statistical dispersion defined as a

ratio between 0 and 1 with lower values representing equal distribution.

Decision trees apply varied criteria for halting tree growth and then pruning it back.

This is done to prevent trees being produced that are too specific to the training dataset.

The aim is to produce a tree that is general enough to be applied to any new instances

that require clasification, avoiding overfitting. The algorithms are efficient and therefore

able to handle large volumes of data due to the simple partitioning approach taken by the

algorithm. However, one drawback to this divide and conquerapproach is that the divisive

partitioning can mean that interesting relationships between attributes within the data can

be separated early on.

A very popular decision tree algorithm and one used in this thesis is C4.5 (Quinlan

JR, 1993). It is a very easy to use algorithm and is commonly used within bioinformatics.

Performance of this classifier is often used as a benchmark towhich other classifiers

are compared. This algorithm uses information gain to partition the data at each node.

The algorithm is capable of handling many types of attributes: empty nominal attributes,

nominal attributes, numeric attributes, unary attributes, missing values, binary attributes,

and date attributes.

Random forest (RF) is a supervised classifier consisting of multiple decision trees

(Breiman, 2001) whereby the final class selected for an instance is the mode class se-

lected by the multiple decision trees. RF combines two machine learning methods of

‘bagging’ and ‘random feature selection’. Each tree is created from a bootstrap sample of

the training data where about one-third of the cases are leftout (out-of-bag (OOB) data).

OOB data is used to obtain an unbiased estimate of the error during the training. This is

known as bagging. RF extends bagging because rather than using all features, RF ran-
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domly selects a subset of input variables to decide what decision should be made at each

node of the tree. Advantages of random forest classifiers include the fact that the error can

be balanced when the class population sizes are imbalanced and there are good methods

for handling missing data and overfitting can be avoided. Thealgorithm can handle the

same array of attribute types as C4.5 (Quinlan, 1993).

Another decision tree based classifier used in this thesis isthe PART decision list

which uses a separate-and-conquer approach. The algorithmbuilds a partial C4.5 decision

tree in each iteration and makes the ‘best’ leaf into a rule (Frank & Witten, 1998a). Again,

the algorithm can handle the same array of attribute types asC4.5.

1.2.4 Weka workbench

Weka is a freely available collection of machine learning algorithms for data mining tasks

(Witten & Frank, 1999) available from the web sitehttp://www.cs.waikato.ac.

nz/ml/weka/. The work in this thesis extensively used this workbench andits im-

plementations of the various machine learning algorithms.The workbench has its own

implementation of the C4.5 algorithm called J48. The algorithms can be applied to a

dataset through a graphical user interface (GUI), using a command line interface (CLI)

or called from Java code directly. Tools are included for data pre-processing, classifica-

tion, regression, clustering, association rules, and visualization. The weka workbench is a

commonly used package within bioinformatics, with an extension library called BioWeka,

created specifically for many common bioinformatics related tasks (Franket al., 2004).

1.2.5 Generating a classifier

In performing successful pattern recognition using classifiers there are a number of gen-

eral steps performed (Figure 1.3). Initially, the dataset of instances and features are col-

lected, feature selection is then performed, the classifiers are trained, parameters are then

tuned for the chosen algorithm and finally the performance evaluated. Feature selection

removes redundancy and noise leaving only the most discriminatory features. The choice

of algorithm is important, some can deal with a large number of instances and features bet-

ter than others. For example, SVMs are good at coping with high dimensionality datasets
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with a small number of samples, but these require a large amount of memory for large

datasets (Witten & Frank, 1999). Some, such as SVMs and decision trees are sensitive to

imbalance in the training dataset whereas others such as Naive Bayes are not (Witten &

Frank, 1999). Where possible it is preferrable to test a number of classifiers to identify

the most appropriate choice for the specific problem. Evaluation of the classifier aims

to avoid overfitting by making sure the rules are not specific to the training dataset. The

classifier will often be validated on a separate dataset after having been trained and tested.

Figure 1.3: A typical machine learning approach (Al-Shahib, 2005)

1.2.5.1 Feature selection

Genomic data can be noisy, in that it is often extremely variable with some data even

being incorrectly annotated. Also the data may not be complete and annotation may be

missing for a number of training instances. Feature selection can help to remove or reduce

the effect of noisy data.
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1.2.5.2 Balanced vs unbalanced data

The number of instances belonging to each class in the training set may be imbalanced

resulting in a danger that the classifier will have a preference for selecting the most pop-

ulated class because the classifier assumes that there is a greater chance of an instance

belonging to this class as it is more prevalent (Barandelaet al., 2003). The result is that

performance is reduced for the minority dataset. However, it may be the case, such as

when detecting fraudulent telephone calls for example, that detecting the minority case is

of greater importance (Fawcett & Provost, 1997). This concern is addressed in the nsSNP

analysis (Chapter 2) and when predicting hypertension related genes based on network

topology (Chapter 4).

1.2.5.3 Evaluation of machine learning

A number of methods are available for evaluating machine learning results and showing

the results are general enough to be applied to other data (Handet al., 2001). Some of the

most common methods are described below. The various analyses in this study used all

methods except for the bootstrap method. The choice was madedepending on the size of

the dataset, the employed classifier, and whether the classifier parameters were tuned.

Independent test data: If the training dataset was used to measure overall performance

of the classifier, an over optimistic result would be obtained. Therefore it is important to

evaluate performance on an independent test data set as it isa good way to gauge perfor-

mance on future unseen datasets. Thus partitioning a dataset into training and independant

test datasets is appropriate where a dataset is large.

Cross validation: Cross validation is especially useful for smaller datasets(Kohavi,

1995). The data is divided into (n) number of ‘folds’. Each fold is treated as the test

dataset in turn, with the remainingn-1 being used as training data. The performance of

the classifier on each fold is measured and then a final accuracy is calculated based upon

the average of alln folds. Stratified cross validation ensures that the distribution of class

instances in the fold is similar to the distribution in the complete dataset. Leave-one-out

cross validation is an extreme type of cross validation whereby each individual instance
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is held out in turn meaning there are the same number of folds as there are instances. This

maximises the amount of data available for training but is computationally expensive.

Validation datasets: When performing classifier parameter tuning steps with a large

dataset, three independent data sets are required: a training set, a validation set, and a test

set. The validation set is used to evaluate the effect of changing algorithm parameters and

is used to create the classifier but not used in the final estimation of accuracy.

Bootstrap: Bootstrapping creates a training dataset through samplingwith replacement

of the whole dataset meaning that the training dataset can contain repeated instances

(Efron & Tibshirani, 1993). The test set is composed of data not used in the training

set. The benefit is that a good size training set can be created. Kohavi (1995) compared

bootstrapping and cross validation and showed the best method to be ten-fold stratified

cross validation in real-world datasets.

1.3 An overview of Network Analysis

Networks can be constructed from relationships that exist between a set of entities and

can be used to represent many types of biological data at manylevels, including gene ex-

pression, protein-protein interactions, signal transduction and metabolic pathways, phy-

logenetic, ecological and ecosystem data (Junker & Schreiber, 2008). Network analysis

has only recently been applied to the world wide web, biological and social networks,

and power grids. It is a rapidly growing field of research withthe analysis of biologi-

cal networks involving cross disciplinary research in biology, mathematics, physics and

computer science. It is an important subject within the fieldof bioinformatics.

The rise of network approaches indicates a shift from a reductionist approach to a

whole systems-level approach to understanding biology. This has only been possible in

recent years due to the decrease in the cost of computation and the dramatic increase

in biological data that has become available through projects such as the human genome

sequencing project (Landeret al., 2001; Venteret al., 2001). The network based approach

aims to assemble the ‘jigsaw’ of data produced through such initiatives.
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Key work by Watts & Strogatz (1998) showed that many networksdisplay common

properties: they contain highly connected subgraphs and short path lengths. They termed

these networkssmall-world networksdue to the similar commonly known ‘six degrees of

separation’ phenomonen seen between every person on earth.Barabasi & Albert (1999)

created a model for these networks and called themscale-free networks. They found that

they follow a power law distribution in terms of the number ofedges incident to each

node. Thesescale-free networkscontain a small number of highly connected nodes and

are very sturdy, being resilient to the random removal of nodes. Most studied biological

networks follow these rules.

1.3.1 Graph theory

Networks are modeled as graphs in order to allow analysis. A graph is a mathematical

object representing the networks as nodes and edges. Biological networks are represented

as different types of graph models depending on the network.Networks modeled as

graphs can be directed, undirected or mixed. An undirected graph contains edges where

there is no edge direction. A protein-protein interaction (PPI) network is an example

of a biological network that can be presented as an undirected graphG = (V, E), v ∈

V, e ∈ E where the proteins are nodes (v) and the interactions are edges (e), with edge

eu,v connecting nodesu andv (Junker & Schreiber, 2008). A directed graph represents

an interaction where information passes from one node to theother, or one node has an

effect on the other. Gene regulation networks are an exampleof a directed network. A

mixed graph contains a combination of both types of interaction, directed and undirected.

Multigraphs are those where multiple edges exist between a pair of nodes or vertices,

which are in the same direction if the graph is directed.

When measuring properties of the graphs, the type of graph has to be considered.

For example, a pair of vertices in a directed graph are strongly connected if a path exists

between them when the direction of the edges is considered. The shortest path between a

pair of vertices is the path containing the minimal number ofedges. The path length is the

number of edges. A connected component of a graph is the largest number of nodes where

a path exists between each node pairing. As an example, Figure 1.4 displays the largest
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Figure 1.4: An example of a biological network, namely the largest connected component of the
Arabidopsisprotein-protein interaction network. A red node represents a protein and a connecting
edge represents an interaction between a pair of proteins. The interactions were taken from the
IntAct database (Kerrienet al., 2007).

connected component of theArabidopsis thalianaprotein-protein interaction network.

Attributes are often associated with graph nodes and edges.Weights or distances can

be applied to edges to quantify the relationship that existsbetween the nodes. In the

construction of gene expression networks an edge can represent the level of coexpression

between the nodes. Protein names and functional information can be added to protein

nodes in a protein-protein interaction network.

Graphs are commonly stored as adjacency lists or matrices ona computer. In an

adjacency matrix rows and columns represent nodes and a matrix elementGst = 1 if there

is an edge between nodess andt andGst = 0 otherwise. Biological networks are often

stored as adjacency matrices, however they are very memory intensive and adjacency lists

are more appropriate when the number of edges is low. An adjacency list comprises a row

for each node of a network. A row contains a list of all edges incident to noden.

Graph traversal algorithms are used to perform calculations on each node within a
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network. Two search methods traditionally employed by graph algorithms are depth first

searches (DFS) and breadth first searches (BFS) (Junker & Schreiber, 2008). In a depth

first search the algorithm starts off with a particular node,then follows a path outwards as

far as possible for each neighbour. A breadth first search visits each neighbour first before

moving on to another vertex. Both methods can be encased within a loop to perform the

search for each connected component.

There are a number of measurement types that can be used to describe the topology

of graph models constructed to represent biological networks. These include: global

network properties, centralities, motifs and clustering.Centralities are used to rank nodes

in terms of their importance, motif analysis is the breakdown of sets of nodes into small

units, and clustering analysis describes the organisationof the network on a number of

levels. Clustering can be used to define functional modules and pathways in biological

networks. Maybe one of the most commonly used graph measuresin everyday life is the

Google PageRank algorithm which is a variation of the commoneigenvector centrality

measure (Pageet al., 1998). The algorithm considers each web page to be a node with

a link or edge between pages being a vote. Google looks at the number of votes a page

receives. In addition it analyses the page casting the vote,votes from important pages

(themselves having many votes) are upweighted.

The previous two sections described methods for extractinginformation and analysing

datasets. The following sections describe areas where these technologies can be poten-

tially applied to increase biological understanding.

1.4 An overview of Single Nucleotide Polymorphisms

A major challenge in the post-genomic era is to understand the relationship between ge-

netic and phenotypic variation. A SNP is the most common typeof variant in the human

genome, they are frequently related to human diseases (Botstein & Risch, 2003). A SNP

represents a single base pair difference (allele) between individuals of the same species

at a particular position within the DNA sequence. In the world’s population, there are

thought to be about 10 million sites (one variant per 300 bases on average) where the

minor allele frequency is greater than 1% (Nget al., 2008). These common SNPs consti-
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tute 90% of the variation in the population and are commonly used to map phenotypes to

genomic loci (Kruglyak & Nickerson, 2001; Reichet al., 2003; WTCCC, 2007; Nget al.,

2008). SNPs can be identified in an individuals genome by ‘genotyping’ a DNA sample.

The associations between alleles in the population, is known as linkage disequilibrium

(LD). There are often strong levels of LD between markers in close proximity to each

other because the chance of a recombination event increaseswith distance from the SNP.

A large amount of data now exists in public repositories suchas dbSNP (Sherryet al.,

2001), HGVBASE (Fredmanet al., 2004) and SWISSPROT (Boeckmannet al., 2003).

When SNPs or haplotypes associated with a particular phenotype are isolated it is

necessary to identify the causative SNPs from the haplotype. This can be done using

functional experiments, but theoretical knowledge in the first instance can helpful for

both fine mapping and genotyping in the experimental design stage.

Single base changes in protein coding regions of DNA which lead to changes in an

amino acid have the potential to effect protein structure and function. These are called

non-synonymous single nucleotide polymorphisms (nsSNPs), and have been the subject

of many recent studies (Nget al., 2008). Some nsSNPs are related to diseases but others

are not associated with any change in the phenotype due to thechange in the amino acid

not being significantly disruptive and are thus regarded as neutral nsSNPs. Importantly,

nsSNPs are the most frequent type of disease mutation (60%) (Botstein & Risch, 2003).

1.4.1 SNP Databases

A number of repositories exist in the public domain with SNP and related information.

Four of the main SNP databases and their features are briefly described below:

• The dbSNP database is the most important public database of SNPs and currently

includes approx 50 million SNPs from 44 organisms (http://www.ncbi.nih.

gov/SNP/). The dbSNP database allows access to the data via a series ofweb

pages as well as allowing bulk download in Extensible MarkupLanguage (XML),

FASTA format or MySQL dumpshttp://www.mysql.org. These SNPs have

been detected either computationally in an automated manner by sequence compar-

ison or have been determined experimentally and entered into the database via an
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online submission process.

• HGVbase (http://hgvbaseg2p.org/) is a manually curated database of se-

quence variations aiming to provide links between genotypes and disease pheno-

types (Fredmanet al., 2004). Submissions are accepted online via the website.

HGVbase allows access to the data via a series of web pages andin basic tab de-

limited format for frequency and association data. There are plans to make table

dumps of the relational database available for users.

• The Human Gene Mutation Database (http://www.hgmd.cf.ac.uk/) is a

collection of locus-specific mutation and SNP databases (Stensonet al., 2003,

2008). Individual entries can be accessed via the browser but there is no public ac-

cess to a bulk download of the data. The public version of HGMD(free to academic

and non profit organisations) contains 61,447 mutations (missense substitutions, in-

sertions/deletions [indels], splicing variants etc) in 2,288 genes and provides 2,240

reference cDNA sequences as of December 2008.

• The SWISSPROT knowledgebase (http://www.expasy.ch/sprot/) is a

high quality, manually curated protein-centric database that contains the SWIS-

SPROT VARIANT pages. The SWISSPROT VARIANT pages contain detailed in-

formation related specifically to nsSNPs. The version used in this thesis contained

19,611 human nsSNPs annotated as eitherdisease(57%),polymorphism(29%) or

unclassified(10%). The termdiseaserefers to SNPs that are causative in relation

to disease as well as to disease-linked functional polymorphisms. The termpoly-

morphismrelates to mostly neutral polymorphisms. 3D structural information is

provided using experimentally derived structures (>25% of the SNPs have corre-

sponding 3D models).

1.4.2 Hapmap

The International HapMap Project (http://www.hapmap.org) aims to determine

common gene variation and elucidate the haplotypes leadingto the identification of tag-

ging SNPs in the human genome by genotyping populations fromAfrica, Asia and Europe



Chapter 1. Introduction 31

(HapMap, 2003). When two markers are in high linkage disequilibrium (LD), which is

a measure of how often alleles are inherited together, it is unnecessary to genotype both

markers. Tagging SNPs are a subset of SNPs that can be selected, based on LD, to reduce

the genotyping effort required to capture the majority of information within a region. The

project has genotyped over 3.9 million SNPs (an average coverage of 1.3 SNPs/Kb), as of

December 2008, in various populations from Africa, Americas, China, Europe and Japan.

The allele frequencies, tagging SNPs and association between SNPs is also being anno-

tated. The data is in the public domain and is available via the website and related tools

such as ‘Haploview’ (Barrettet al., 2005) and ‘Tagger’ (de Bakkeret al., 2005). These

tools allow the identification of HapMap SNPs in a chosen region and selection of tagging

SNPs to capture the majority of the variation with the minimum amount of redundancy

between SNPs.

The Hapmap data is being used for association studies of candidate genes in the

genome and for further analysis of regions suggested by family-based linkage analysis.

More recently, whole genome association scans for variantsthat are causing common

diseases have and are still being performed (WTCCC, 2007; Spencer, 2008).

1.4.3 SNP supervised classification

Several studies have attempted to predict the functional consequences of a nsSNP, namely

whether it is disease related or neutral, based on attributes of the polymorphism. Some

attributes depend only on the sequence information, for example the type of residue found

at the SNP location. Structural attributes such as solvent accessibility can be chosen if the

protein sequence containing the nsSNP has a known 3D structure or is highly similar to

a protein sequence of known structure. As structural genomics projects gain momentum

an increasingly large amount of protein 3D structural information is becoming available.

Mapping nsSNPs onto the corresponding 3D structures or ontothe structures of proteins

which are highly similar at the sequence level immediately gives a structural context to

the SNP and there are databases containing such models (Yipet al., 2004).

Prior to the work completed in this thesis, a small number of studies had been done to

try to identify rules by which a nsSNP could be predicted to bedeleterious (affect protein



Chapter 1. Introduction 32

function) or neutral. These included the development of empirical rules (Wang & Moult,

2001; Ramenskyet al., 2002), the use of probabalistic methods (Chasman & Adams,

2001) and machine learning methods (Saunders & Baker, 2002;Krishnan & Westhead,

2003). Krishnan & Westhead (2003) compared the performanceof two machine learning

methods (support vector machines (SVMs) and decision trees) against the probabalistic

methods employed by Chasman & Adams (2001) and found machinelearning methods to

be generally better performing. Machine learning methods were therefore considered to

be a valuable tool in the classification of nsSNP status. The nsSNP datasets used, included

data on known nsSNPs (Wang & Moult, 2001; Saunders & Baker, 2002; Ramenskyet al.,

2002; Bao & Cui, 2005) and mutation data of bacteriophage T4 lysozyme andE. coli lac

repressor (Chasman & Adams, 2001; Krishnan & Westhead, 2003). Databases of coding

nsSNPs have also been developed by Karchinet al.(2005), Cavallo & Martin (2005). All

SNPs contained within the SWISSPROT database have been manually annotated in terms

of their functional status. Bao & Cui (2005) were able to perform the largest analysis

to date using these annotated nsSNPs from SWISSPROT. They observed that structural

information is useful when there is little information fromhomologous sequences. Some

of the results that emerged from these approaches suggestedthat the majority of disease

associated nsSNPs affect protein stability (Wang & Moult, 2001), they are located in

surface pockets of protein structures (Stitzielet al., 2004) and that conservation of the

residue across species is an important predictive attribute (Saunders & Baker, 2002).

The availability of suitable datasets for analysis of annotated SNPs is constantly evolv-

ing in terms of the number of SNPs and the quality of SNP annotation. As these datasets

grow, the performance of methods that aim to predict functionality of nsSNPs will con-

tinue to improve.

Once a disease associated nsSNP has been identified, the hostgene and gene products

becomes the focus of interest. If there is to be further understanding of the etiology of the

disease the function of the protein isoforms must be ascertained. The next chapter focuses

on methods for assigning function to a protein sequence.
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1.5 An overview of Protein function

Proteins are macromolecular, organic compounds synthesised from genes which are fun-

damental units of heredity made up of sections of coding DNA.They form essential main

structural components in every living cell and perform almost all cell functions.

The sequence of amino acids in a protein is defined by the DNA sequence of the

gene. Protein synthesis is initiated through a transcription stage that involves genes being

transcribed into messenger RNA (mRNA) by RNA polymerase. The mRNA is translated

into amino acid sequence by ribosomes, transfer RNA (tRNA) recognizes the amino acids

corresponding to each nucleotide triplet (codon) of the mRNA (Branden & Tooze, 1999).

The amino acids are linked together forming a chain of peptides (polypeptide).

Protein sequences are composed of ‘modular’ domains whereby each domain has a

specific function and is an independant folding unit. Some proteins are single domain

and belong to one family, whereas others are multidomain proteins that can have more

than one function and belong to more than one family (Orengoet al., 1997). Domains

belonging to a family often share function and are derived from a common ancestor. Sim-

ilarities in amino acid sequences allow proteins to be grouped into families. Conserved

amino acids within protein families are usually important for the function of a protein.

The patterns of these conserved sequences can be used to assign proteins to functional

families.

Protein structure is considered at 4 levels of organisation, the first being the primary

structure and the remaining being 3D levels of folding. Understanding how proteins fold

remains a major challenge within biology:

• The ‘primary structure’ is simply the amino acid sequence itself.

• The ‘secondary structure’ is the first level of folding and refers to the arrangement

of the secondary structure components. The most common of these components are

the alpha helix, beta sheets and coiled regions (Fletterick, 1992). Proteins can be

composed of many sections of different secondary structurecomponents.

• The ‘tertiary structure’ is the second level of folding and refers to the overall shape

of a protein molecule produced by the combination of secondary components; the
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spatial relationship of the secondary structures to one another. This controls the

general function of the protein.

• The ‘quaternary structure’ is the resultant structure produced by a number of inter-

acting proteins, forming a complex.

Sequence comparison by database searching is the most commonly used technique

for assigning function to protein sequence, with the GappedBLAST and PSI-BLAST

programs (Altschulet al., 1997) having a citation count of 26,793 at Google Scholar

(http://scholar.google.com, January 2009). They work on the principal that

homologous sequences will share a high level of sequence similarity and will relate to

evolutionary distance between the sequences. If the searchreveals a sequence which

shares a large degree of similarity with the target sequence, an annotation can usually be

transferred with some confidence.

1.5.1 Databases

1.5.1.1 Sequence databases

There are three main nucleotide databases:

• NCBI - GenBank database based at the National Institure of Health (NIH) http:

//www.ncbi.nlm.nih.gov/Genbank/index.html

• DNA DataBank of Japan (DDBJ)http://www.ddbj.nig.ac.jp

• European Molecular Biology Laboratory (EMBL) (Galperin, 2007). http://

www.ebi.ac.uk/embl/

All three resources share their data and act as annotated collections of all publicly avail-

able DNA sequences. As of December 2008 there were over 85 billion base pairs in

over 82 million sequences within Genbank. These databases can be searched by various

BLAST tools.

The main protein databases include:

• Uniprot is a non-redundant database of amino acid sequences(Apweiler et al.,

2004). This database contains sequences from SWISSPROT, TrEMBL and PIR.
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• SWISSPROT is a manually curated database of protein sequences whose source is

the EMBL database. TrEMBL is an amino acid database from the same source but

is automatically translated from EMBL and includes sequences not yet in SWIS-

SPROT (Boeckmannet al., 2003).

• PIR is a US based protein sequence database comprising comprehensively anno-

tated non-redundant sets of sequences whereby entries are classified into family

groups (Barkeret al., 1999).

1.5.1.2 Motif and Family databases

The main protein motif and family databases include the following resources:

• PROSITE is a collection of conserved motifs within protein families (Sigristet al.,

2002). All motifs are extensively annotated with references to literature.

• The PFAM database contains multiple alignments and libraries of HMMs repre-

senting protein families (Batemanet al., 2004). PFAM-A contains manually created

protein familes whereas PFAM-B is automatically created and has greater coverage.

PFAM can detect very rare instances of a motif.

• The ProDom database is automatically constructed from SWISSPROT and is a

comprehensive collection of clustered domains. On the downside it lacks biological

annotation and some of the cluster boundaries are unreliable (Servantet al., 2002).

• The PRINTS and BLOCKS motif databases contain short multiple alignment frag-

ments (Henikoff & Henikoff, 1996; Attwoodet al., 2003).

• Finally, Interpro is a database that aims to integrate data from most of the resources

discussed above (Apweileret al., 2001; Mulderet al., 2005). Each record contains

links to the data sources in which it is present. It can be searched using InterProScan

(Zdobnov & Apweiler, 2001).
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1.5.2 Sequence comparison

It is preferrable when studying protein function to characterise the function in terms of

the domain structure. Because of the modular nature of protein sequenceslocal alignment

methods are preferrable toglobal alignmentmethods. The latter is a term used to describe

methods whereby sequences are compared over the entire length of the two sequences

(Needleman & Wunsch, 1970).Local alignmentmethods were created later because of

the need for an algorithm that could identify local regions of high similarity (Smithet al.,

1985). A number of tools exist for the assignment of protein function based on sequence

comparison. As described, some databases contain annotated sequence whereas others

contain extracted common motifs from the domains of each family.

1.5.2.1 Pairwise sequence alignment

The BLAST algorithm is a fastlocal alignmentmethod for optimally aligning two se-

quences using dynamic programming (Altschulet al., 1997). When performing a BLAST

search of a query sequence against a database of sequences, areport is returned with a

number of hits and associated statistical significance.

1.5.2.2 Multiple sequence alignment

Multiple sequence alignments can highlight patterns across families of sequences that are

not obvious from pairwise alignments. A consensus alignment is created using observed

residue frequencies at each position in the consensus. Sequences are usually weighted in

order to remove over representation of similar sequences. The CLUSTAL algorithms are

commonly used multiple alignment algorithms (Higginset al., 1992; Thompsonet al.,

1994).

1.5.2.3 Sequence profiles

Sequence profiles perform better than comparing individualsequences for identifiying ho-

mologs. PSI-BLAST is an example of a profile searching method(Altschulet al., 1997).

A query sequence is initially searched against a database using BLAST. After the initial

run a multiple sequence alignment is created and from this aposition specific scoring
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matrix (PSSM) is calculated whereby a score is held for each amino acid at each position

within the sequence. The scores represent the observed frequencies of amino acids at

each position of the multiple alignment. This PSSM is used tosearch the database again

with hits being added to the PSSM. This continues for a limited number of rounds or until

convergence of results. PSI-BLAST is a very sensitive searching technique but caution is

required as unrelated sequences can be pulled in over multiple interations, distorting the

PSSM and resulting in ‘drift’.

1.5.2.4 Hidden Markov Models

Hidden Markov models can also be used to represent an alignment of proteins. Rather

than creating a PSSM, the alignment is used to design a Markovchain and the transition

probabilities are estimated (Durbinet al., 1998). A probability can then be calculated as

to whether a query sequence was emitted from a particular chain. HMMER and SAM

are commonly used implementations of HMMs (Karpluset al., 1997; Sonnhammeret al.,

1997).

1.5.2.5 Profile/profile comparisons

A recent extension to sequence/profile searching using PSI-BLAST or HMMs is pro-

file/profile searching. This is now possible using PSSM/PSSMsearches (Yona & Levitt,

2002; Sadreyev & Grishin, 2003; Soding, 2005).

1.5.3 Protein function supervised classification

There have been numerous genome-wide scans performed wherethe linked or associated

region can be in excess of 30cM in size and thus contain hundreds of protein coding

genes. In order to select genes and SNPs from these regions, it is important to have

functional annotation for each gene and the protein it encodes in order to aid prioritisation

of candidate genes for follow up studies. In the human genome, approximately 85% of

protein coding genes are known genes (Consortium, 2004), ofthese 92 to 94% of human

genes experience alternative splicing, with 86% having a minor isoform frequency of at

least 15% (Wanget al., 2008). Each protein isoform may have related, distinct or even
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have opposing functions. Novel approaches to aid existing methods (described in section

1.5.2) for protein function annotation are still required as existing methods are not 100%

effective.

Wilson et al. (2000) have estimated that broad biological function can beconserved

down to about 25% sequence identity. However, there are a large number of sequences

that cannot be annotated with current methods. This lack of annotation hinders the ex-

ploitation of some genome data, it also impacts on the understanding of biological systems

as we do not have sufficient understanding of the constituentparts and how they might

interact.

Machine learning methods have recently been used to explorethe problem of protein

function annotation. Rather than considering the sequences as strings to be compared

at a character by character level, most of these methods seekto identify global features

of the sequences that might be discriminative of function. Measures of function include

the enzyme commission database (IUBMB, 1992), expert classifications from Riley for

Escherichia coli(Riley, 1993), the Gene Ontology (Ashburneret al., 2000) and categories

from the Munich Information Centre for Protein Sequences (MIPS) (Meweset al., 2004).

Ding & Dubchak (2001) have explored the use of support vectormachines (SVMs) for

protein fold prediction using the SCOP protein structure database (Murzinet al., 1995) as

a benchmark. SCOP is a hierarchical categorization of protein structural domains where

levels in the hierarchy correspond to class (reflecting the overall secondary structure com-

position of the protein, allα for example), fold (a general description of the spatial ar-

rangement of the secondary structure elements), superfamily (related proteins) and family

(closely related proteins where relationships are usuallyobvious from sequence similarity

alone).

Support vector machines (SVM) have been used by Caiet al. (2003) to predict pro-

tein function for 54 functional families using attributes similar to those used by Ding

& Dubchak (2001). The potential of the method for the prediction of distantly related

proteins has also been explored by testing the method on 24 randomly selected distantly

related proteins. This analysis achieved a prediction accuracy of 58.3%. Related studies

on enzyme functional prediction found 72% of a set of 50 enzymes could be correctly as-
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signed where there was no known sequence homolog available (Hanet al., 2004). SVMs

have also been used to distinguish enzyme structures from non-enzyme structures (Dob-

son & Doig, 2003). The most useful features included secondary structure content and

amino acid frequencies. Recently, Melvinet al. (2007) used SVMs for superfamily clas-

sification of distantly related proteins, but did not reportthe specific performance for each

superfamily.

Clare & King (2003) and Clareet al. (2006) used decision trees with GO and MIPS

functional categories for mining data on theSaccharomyces cerevisiaeandArabidopsis

thalianagenomes. Predictions achieved 75% accuracy in theSaccharomyces cerevisiae

study and 85% precision in theArabidopsis thalianastudy. Attributes used were those de-

rived from PSI-BLAST, phenotypic properties, expression data, sequence and secondary

structure.

Other sequence attributes that have been used for functional prediction relate to pre-

dicted properties of the sequences such as post translational modifications, subcellular

localization and secondary structure (Jensenet al., 2002) using the Riley functional clas-

sification (Riley, 1993) and Gene Ontology (Ashburneret al., 2000).

After identifying disease causing nsSNPs and determining the function of the protein

in which they reside, it becomes important to understand theenvironment and pathways

through which the protein acts. This involves the study of proteins in the wider context of

protein-protein interaction networks.

1.6 An overview of protein-protein interaction (PPI) net-

works

Protein-protein interaction (PPI) networks (the interactome) represent the relationships

between protein molecules, the study of which is important as proteins acting as enzymes,

channels and transporters perform almost all cell functions (Albertset al., 2002; Hwang

et al., 2008). The study of the interactome could help improve the understanding of

complex diseases.
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1.6.1 PPI database repositories

A number of PPI data repositories now exist in the public domain. A comprehensive list

can be found athttp://tiny.cc/ppidatabases. Some of the key resources are

described below (details correct as of December 2008):

• HPRD - Human Protein Reference Database is a database of human protein in-

formation manually extracted from the literature by expertbiologists who read,

interpret and analyse the published data (Mishraet al., 2006). The latest version

contains 38,167 protein-protein interactions.

• IntAct - Interaction Database is a public repository of manually curated protein in-

teraction data from the literature or through user submissions (Kerrienet al., 2007).

The site contains analysis tools, currently there are 174,078 interactions of which

approximately 32,000 are human.

• DIP - Database of Interacting Proteins, combines experimentally derived interac-

tions from a number of sources. The interactions are both manually and computa-

tionally curated. Currently there are 57,146 interactions, 2,070 of which are human

interactions (Xenarioset al., 2000).

• MINT - Molecular INTeraction Database contains protein interactions that have

been verified experimentally (Chatr-aryamontriet al., 2007). The interactions are

extracted from the literature by expert curators. In total there are 111,847 interac-

tions of which 21,357 are human.

• MIPS - Mammalian Protein-Protein Interaction Database contains literature de-

rived, high-quality interaction data manually curated by experts (Pagelet al., 2005).

• BioGRID - The Biological General Repository for Interaction Datasets database

contains protein and genetic interactions from both high-throughput studies and

conventional focused studies for key model organisms (Stark et al., 2006). It cur-

rently contains over 198,000 interactions from six different species.

• BIND - Biomolecular Interaction Network Database is a database that stores details

of interactions, molecular complexes and pathways (Baderet al., 2001). BIND
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accepts individual submissions as well as interaction datafrom the protein data

bank (PDB) (Sussmanet al., 1998) and a number of large-scale high throughput

interaction experiments.

• OPHID - Online Predicted Human Interaction Database is built by mapping high-

throughput model organism data to human proteins and integrating data from

yeast two-hybrid based, literature-based interaction andorthology-based interac-

tion sources (Brown & Jurisica, 2005). The literature-derived human PPI are ob-

tained from from BIND, HPRD and MINT. Predicted interactions are made from

Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogasterand

Mus musculus. The 23,889 predicted interactions currently listed in OPHID are

evaluated using protein domains, gene co-expression and Gene Ontology terms. In

total there are 48,222 interactions listed within OPHID.

• UniHI - The Unified Human Interactome is a unified repository based on 10

major interaction sources of computational and experimental derived interactions

(Chaurasiaet al., 2007). It includes more than 150,000 distinct interactions for

more than 17,000 human proteins. Scores for quality assessment are given based

on co-annotation and co-expression of the interacting proteins.

• PIP - The Potential Interactions of Proteins web server contains interacting pro-

teins constructed for the human genome using an orthology-based method (Jonsson

& Bates, 2006a). The orthologous protein interactions weretaken from DIP and

MIPS. Each interaction was given a confidence score based on sequence similarity

to proteins shown experimentally to interact and the amountof available experi-

mental evidence for the interaction. There are 108,113 interactions in this database

when a confidence score cut-off is applied that provides sensitivity of 85% and

specificity of 82%.

1.6.2 Methods to identify protein-protein interactions

There are many approaches, experimental and theoretical, for detecting protein interac-

tions, each varying in sensitivity and specificity. They include high-throughput meth-
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ods such as yeast 2-hybrid experiments (Rualet al., 2005; Stelzlet al., 2005), manually

curated and literature based interaction sources such as the Human Protein Reference

Database (HPRD) (Mishraet al., 2006) and Interaction Database (IntAct) (Kerrienet al.,

2007) as well as predicted interactions based onin silico methods such as Predictome

(Mellor et al., 2002), POINT (Huanget al., 2004), Prolinks (Bowerset al., 2004) and

STRING (von Meringet al., 2007).

1.6.3 PPI software

There are now many software applications available for the analysis of biological net-

works, a comprehensive survey, was recently described by Pavlopouloset al. (2008). A

selection of some of the popular tools are described below.

• APID - Agile Protein Interaction DataAnalyzer is a web basedtool enabling the

exploration and analysis of PPI data from BIND, BioGRID, DIP, HPRD, IntAct

and MINT PPI resources (Prieto & De Las Rivas, 2006).

• Cytoscape is an open source bioinformatics Java software platform for visualizing

molecular interaction networks and integrating these interactions with gene expres-

sion profiles and other state data (Shannonet al., 2003). Many user created plugins

are available for specific analysis tasks.

• Osprey is a standalone application that runs on a range of platforms with a license

for non commercial use (Breitkreutzet al., 2003). Currently the source code is

not available and it is not appropriate for large scale network analysis. Data can

be loaded directly from BioGRID (Starket al., 2006) and there is support for a

number of data formats. Osprey is a powerful tool for networkmanipulation and

has the important ability to incorporate new interactions into an already existing

network.

• VisANT is freely available (http://visant.bu.edu) and integrates, mines

and displays hierarchical bio-network and pathway information (Huet al., 2008). It

is supported by the Predictome database where much of the interaction data comes
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from resources such as BioGRID, MIPS, BIND and HPRD. This tool is able to

handle large-scale networks with millions of nodes and edges.

• Pajek is a standalone application (Batagelj & Mrvar, 1998).It is not an open source

application and runs under Windows operating systems only,but it is free for non-

commercial use. It is suitable for large scale networks, is highly interactive and

incorporates many clustering methods. Pajek’s main strength is the variety of layout

algorithms.

• The Boost graph library (BGL)http://www.boost.org/doc/libs/1 37

0/libs/graph/doc/index.html is a C++ library for developers providing

a generic interface for traversing graphs and accessing thegraph’s structure.

Other popular software includes Graphviz (http://www.graphviz.org), Net-

workX (http://networkx.lanl.gov), cFinder (Adamcseket al., 2006), Guess

(http://graphexploration.cond.org) and igraph (http://cneurocvs.

rmki.kfki.hu/igraph/).

1.6.4 PPI networks and supervised classification of diseaseassoci-

ated genes

Early work using decision tree based classifiers showed disease genes tend to be longer

and more conserved than non-disease genes (Lopez-Bigas & Ouzounis, 2004). Subse-

quent work constructing supervised classifiers included additional sequence based at-

tributes that included length, proximity to other genes, exon count, GC content, trans-

membrane and signal peptide domain content, CpG related properties and details of ho-

mologous and paralogous proteins (Adieet al., 2005). Other annotation related attributes

such as co-expression and similarity of Gene Ontology (GO) (Ashburneret al., 2000)

terms and text mining approaches have also been used for selection of disease gene can-

didates (Perez-Iratxetaet al., 2005; Tiffinet al., 2005; Adieet al., 2006). More recently,

attributes based on PPI have been used in supervised classification approaches (George

et al., 2006; Xu & Li, 2006).
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PPI network based approaches for studying human diseases have shown that disease

associated proteins often interact with other disease proteins or share interaction neigh-

bours (Xu & Li, 2006). Specifically, there is a 10-fold increase in the likelihood of pro-

teins interacting when they are associated with the same disease (Gohet al., 2007). Goh

et al.(2007) have also shown that ‘essential’ disease genes, in which mutations are lethal,

form hubs (highly connected nodes) whereas ‘non-essential’ disease genes do not display

this tendency. A k-nearest neighbours classifier using network features achieved a predic-

tion accuracy of 0.76 using the OMIM dataset (Xu & Li, 2006). Adisease is considered to

result from the disruption of a specific cluster (functionalmodule of interacting proteins)

and is caused by mutations in one or more of the proteins resulting in a recognised phe-

notype (Loscalzoet al., 2007). Different combinations of perturbed genes in a cluster can

lead to the same phenotype. There is also data showing that some proteins are implicated

in multiple phenotypes, that is there are disorders which can be termed connected in that

they share associated proteins (Gohet al., 2007; Loscalzoet al., 2007; Samet al., 2007).

Cancer is regarded as one of the most connected disorders (Goh et al., 2007).

Analysis of protein-protein interaction networks has beenused to explore several dis-

ease conditions including asthma (Hwanget al., 2008), neurodegenerative diseases (Goni

et al., 2008), and with transcriptomics, human heart failure (Camargo & Azuaje, 2007,

2008). PPI network properties for Alzheimers related proteins from OMIM have been

studied by Chenet al. (2006) who found these proteins form a highly connected sub-

network. They devised a metric that enabled the ranking of a protein for its biological

relevance to Alzheimers pathways. Such analyses may be helpful in suggesting important

single proteins or clusters, the disruption of which could lead to a variety of disease con-

ditions. This can be particularly useful for adding weight to candidates identified through

genome wide studies and could lead to a better understandingof the molecular basis of

disease.

To date, many of the studies have been dependent on OMIM as a source of disease

related or implicated genes. OMIM is a comprehensive catalogue of human genes and

their associated genetic phenotypes. It provides ‘full-text, referenced overviews on all

known mendelian disorders and over 12,000 genes’. AlthoughOMIM was initially cre-
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ated to store details relating to mendelian traits its use has been extended to some ex-

tent to cover more complex traits. The resource is not available as a relational database

but is available to download as formatted text. Studies suchas van Drielet al. (2006)

have created tools such as MimMiner in an effort to mine the natural language used in

each record. MimMiner searches the data on a keyword basis using words found in the

anatomy (A) and the disease (C) sections of the Medical Subject Headings vocabulary

(MeSH) http://www.nlm.nih.gov/mesh/. However, OMIM is an incomplete

resource that holds many speculative disease associations. There is a need for trait spe-

cific analyses to be performed on expertly curated datasets of disease implicated gene

products.

With cardiovascular disease (cvd) set to become the number one cause of deaths

worldwide, it is important to understand the etiologic mechanisms for cardiovascular re-

lated diseases such as hypertension, in order to identify new routes to improved treatment.

There have only been a small number of cvd focused studies to date that have exploited

the use of PPI networks. The approach of Georgeet al. (2006) which employs PPI and

pathway data together with sequence similarity, had no success in correctly identifying

any of the putatively associated hypertension genes included in their dataset. These anal-

yses were based on a small set of 5 hypertension related proteins extracted from OMIM.

Camargo & Azuaje (2007) undertook an analysis of genes implicated with human

heart failure by studying PPI network connectivity in a human heart failure gene expres-

sion dataset. The network was constructed from interactions within the HPRD database.

Relationships between co-expression and PPI connectivitywere analysed showing that

genes significantly differentially expressed were not always highly connected nodes.

Though some traditional heart failure proteins were not differentially expressed, they

sometimes interacted with differentially-expressed proteins. It was noted that network

hubs can show weak co-expression with their directly interacting partners. The ex-

ploratory study aimed to identify patterns and trends, withthe constructed network being

available on request to the authors. However there was no metric or classifier described

for prioritising candidate genes. In a recent study, Camargo & Azuaje (2008) focused on

dilated cardiomyopathy, a leading cause of heart failure. Again, differentially expressed
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genes were evaluated in terms of PPI networks. In this analysis classifier models were

used to suggest novel dilated cardiomyopathy associated genes.

With cvd being such an important target, there is value in attempting to further develop

such alternative approaches to predict potentially implicated genes. Such methods may

be useful in identifying novel disease associated genes as well as complementing existing

analysis strategies such as GWA studies.

1.7 Study Aims

Studies of the etiology and genetic contribution to complexdiseases require methods to

identify causative functional SNPs and the disease associated genes in which they reside.

This study explores the utility of machine learning methodsfor predicting functional nsS-

NPs and the function for proteins where annotation using conventional homology based

methods is absent. Such machine learning methods, combinedwith graph theoretic ap-

proaches are used to explore approaches to identify novel disease associated proteins and

prioritise candidate gene lists through characterising the PPI network topology of impli-

cated disease associated proteins.

1.7.1 Specific aims of thesis

1.7.1.1 nsSNP analysis

• To improve on previous methods for predicting disease associated nsSNPs by ap-

plying machine learning methods to look for patterns in the distribution of sequence

and structural based attributes related to disease and neutral SNPs.

1.7.1.2 Protein function analysis

• To utilise machine learning methods for predicting proteinsuperfamily membership

using global sequence based attributes and a training set ofprotein domains from

the SCOP classification scheme. Traditional homology basedapproaches work well

where there is a high level of sequence similarity between the query sequence and a

sequence of known function. This study focuses on sequencesin the ‘twilight zone’
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whereby sequence similarity is less than 30%.

1.7.1.3 Protein-protein interaction network analysis

• To characterise the topological properties of hypertension related proteins within

the human interactome using protein-protein interaction data from OPHID and hy-

pertension associated genes carefully selected from the OMIM database.

• To combine the identified hypertension protein network properties with simple se-

quence and functional based attributes to build a classifierfor predicting novel hy-

pertension related proteins.

• To analyse the topological properties of implicated cardiovascular (cvd) and can-

cer related proteins within the human interactome using protein-protein interaction

data, and disease implicated proteins from publicly available sources.

• To quantify the influential nature of the cvd and cancer proteins, analyse community

structures and show an approach for prioritising candidategene products based on

these network measures.
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Chapter 2

nsSNP function analysis

This chapter focuses on using machine learning methods for predicting functional nsS-

NPs. All nsSNPs described in the SWISSPROT VARIANT web pagesthat mapped onto

the Ensembl database (Hubbardet al., 2002) were considered, allowing the application of

Ensembl annotations to these variants. A number of sequenceand structural attributes of

nsSNPs were surveyed to see if previous trends of disease andneutrality are preserved in

light of much larger datasets now available, the attribute of whether the nsSNP occurs in

a protein binding site was also included (Baderet al., 2003).

One of the problems with using the available collection of natural nsSNPs is the large

difference in numbers of disease associated and neutral examples. To address this problem

of class imbalance the effect of resampling and weighting onthe prediction performance

was assessed.

2.1 nsSNP analysis methods

2.1.1 SNP database creation

In order to create a resource to facilitate the prediction offunctional nsSNPs, a SNP

database was initially constructed by extracting SNP related data from the Ensembl

database (Hubbardet al., 2002) using a combination of structured query language (SQL)

and the Ensembl perl application programming interface (API). Ensembl was used as it

contains SNPs from the combined SNP resources described in section 1.4.1 and is a rich
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source of annotation. This data was loaded into a MySQL database whereby the SNP ‘rs

identifiers’ were used as keys. Pipelines were constructed in order to allow annotation

from external sources to be added to the SNPs (figure 2.1). Data was included from:

• The manually curated protein knowledgebase SWISSPROT (Yipet al., 2004).

• The interactions within the Biomolecular Interaction Network Database (BIND)

and the Molecular Modeling Database (MMDBBIND) (Baderet al., 2003).

• The Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto,

2000).

• The Homology-derived Secondary Structure of Proteins database (HSSP) (Sander

& Schneider, 1993).

• The Protein Data Bank (PDB) (Bermanet al., 2000).

Tools were built to parse, reformat, map and load data into the dababase from these

sources. SWISSPROT was used to add information relating to the disease status of

the SNP as well as information relating to functional sites within the protein sequence.

MMDBBIND and BIND were used to provide information relatingto protein interac-

tions. BIND contains interactions/complexes and pathwaysbut not at the atomic level.

It provides residue ranges for the interacting regions. These entries are not dependent

on structure as sequence identifiers are used. This databaserecordsin-vivo interactions

being studied and references the experimental evidence that supports or disputes the

occurrence of the interaction. MMDBBIND (www.bind.ca) contains atomic level details

of interactions. These interactions are annotated automatically from MMDB entries

(MMDB is a subset of PDB that excludes theoretical models). Acontact is made when

the van der waals radii of 2 atoms are within 0.5Å. The KEGG database was used to

provide information relating to pathways and both HSSP and PDB were used to add

structural information relating to the SNPs.
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Figure 2.1: Overview of the nsSNP annotation pipeline for creating the SNP database.

2.1.2 nsSNP dataset

The SWISSPROT VARIANT web pages (Yipet al., 2004) provide information on single

amino acid polymorphisms associated with a given SWISSPROTentry. The variants are

labelled as disease, unclassified or polymorphism. A subsetof these SNPs were used in

this study, namely those fromHomo sapienswhere the amino acid polymorphism was

found to map onto the Ensembl human genome protein sequence.A SNP was considered
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mapped where the amino acid was the same in both the SWISSPROTsequence and the

Ensembl protein sequence and the aligned region using BLASThad an expectation (E)

value< 1e − 10 over a region> 100 amino acids in length. Matches to known structure

and to structural homologs were obtained in the following way:

• Each sequence containing a nsSNP was searched against all the sequences in the

protein data bank using the PSI-BLAST program (Altschulet al., 1997) with ten

iterations.

• Only hits with an E value of less than 1e-10 where the amino acids at the position

of the nsSNP were the same were stored.

• Each of these nsSNP containing SWISSPROT entries was aligned with the se-

quence in a relevant HSSP (Sander & Schneider, 1993) file. Where there were

multiple PDB annotations in the SWISSPROT file, the PDB with the lowest E value

was used.

2.1.3 nsSNP features

Structurally dependent features were considered separately from the set of features that

were not dependent on structure because the subset of nsSNP containing proteins with

associated 3D structures is considerably smaller than the set of all nsSNP containing

proteins. A total of 17 features were used, 11 non structurally dependent and 6 structurally

dependent.

2.1.3.1 Non structural features

The features chosen were largely based on those used by Ramensky et al. (2002) and

Krishnan & Westhead (2003):

• The residue types of the original and mutated residues.

• The physiochemical properties of the original and mutated residues.

• Sequence conservation: is the nsSNP at a conserved position. The sequence was

matched against a protein non redundant database using the BLAST program and
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all hits with an E value less than 0.0005 were stored. A multiple alignment was

constructed and sequence variation at the position of the nsSNP was described by

calculating the position-specific independent counts (PSIC) score (Ramenskyet al.,

2002).

• Point Accepted Mutation (PAM) score shift measured from thePAM120 matrix

(Dayhoffet al., 1978).

• Side chain volume change (Tsai J, 1999).

• Mass change. The molecular weights are those of the neutral,free amino acids.

• Hydrophobicity difference (Black SD, 1991).

In addition four further non structurally dependent attributes (described below) were used,

these were taken from the SWISSPROT features table, pathwayinformation, ontology

classifications and interacting regions.

SWISSPROT features table

The SWISSPROT entry feature table may contain information about functional sites. A

survey was carried out of functional site terms across all nsSNPs in the SWISSPROT

VARIANT pages. Following Ramenskyet al. (2002), nsSNPs located within the follow-

ing labelled features were considered to be termed ‘functional’ sites for the benefit of the

machine learning analysis:

• ACT SITE - amino acid(s) involved in the activity of an enzyme.

• BINDING - binding site for any chemical group (co-enzyme, prosthetic group, etc.)

• MOD RES - posttranslational modification of a residue.

• SITE - any interesting single amino-acid site on the sequence, that is not defined by

another feature key. It can also apply to an amino acid bond which is represented

by the positions of the two flanking amino acids.

• LIPID - covalent bonding of a lipid moiety.
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• METAL - binding site for a metal ion.

• DISULPHID - disulphide bond.

• CROSSLNK - posttranslationally formed amino acid bonds.

• TRANSMEM - extent of a transmembrane region.

• SIGNAL - extent of a signal sequence (prepeptide).

• PROPEP - extent of a propeptide.

• NP BIND - extent of a nucleotide phosphate-binding region.

• MUTAGEN - Site which has been experimentally altered by mutagenesis.

KEGG pathways

In order to observe the distribution of disease and neutral nsSNPs within pathways we

mapped the set of 16,352 nsSNPs to KEGG pathways (Kanehisa & Goto, 2000). For each

pathway,i, we calculated the odds ratioPi:

Pi =
N i

dis/N
i
poly

N tot
dis/N

tot
poly

whereN i
dis is the number of disease nsSNPs in pathwayi andN tot

dis is the total number of

disease nsSNPS in our dataset and similarly for polymorphicnsSNPs.

Gene Ontology

Each nsSNP containing protein sequence belongs to a number of Gene Ontology (GO)

categories (Ashburneret al., 2000). The odds ratio of neutral and disease nsSNPs were

calculated for each of the GO categories.

Interactions

The BIND (Baderet al., 2003) database was used to map nsSNPs to interacting regions.

A potential interacting region was defined as a region from amino acid position n to amino

acid position m. These interactions were generally regionsobserved experimentally and
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were not considered structurally dependent annotations asthe BIND database entries have

sequence identifiers. The odds ratioPi was calculated whereN i
dis is the number of sites

containing disease nsSNPs in either an interacting region or non-interacting regioni and

N tot
dis is the total number of sites containing disease nsSNPS in ourdataset that map to

BIND and similarly for polymorphic nsSNPs.

2.1.3.2 Structural features

Five structural attributes were extracted from the corresponding HSSP file (Sander &

Schneider, 1993):

• Secondary structure conformation: residue is in an isolated beta-bridge (single pair

beta-sheet hydrogen bond formation), 5 turn helix (pi helix), 3 turn helix (3/10

helix), 4 turn helix (alpha helix), bend, beta sheet in parallel and/or anti-parallel

sheet conformation (extended strand), hydrogen bonded turn (3, 4 or 5 turn).

• Relative solvent accessibility.

• Normalised relative accessibility.

• Exposure (relative accessibility as 3 states).

• Buried charge.

Relative accessibility and normalised relative accessibility were calculated in the same

manner as Chasman & Adams (2001). The maximum accessible surface area (̊A2) ref-

erence values are those calculated for residues in a Gly-Xaa-Gly tripeptide in extended

conformation (Miller S, 1987). In order to group the relative accessibility, it was projected

onto 3 states: buried (here defined as<9% relative accessibility), intermediate (9%≤ rel.

acc.< 36%), exposed (rel. acc.≥ 36%) (Rost & Sander, 1994). Buried charge is defined

as K,R,D,E,H wild type amino acid and ‘buried’ exposure class (Krishnan & Westhead,

2003).

Interactions

The MMDBBIND database (Baderet al., 2003) was used as a second source to map

nsSNPs to interacting regions. MMDBBIND contains atomic level details of interactions.
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These interactions are annotated automatically from MMDB (Chenet al., 2003) which is a

subset of experimentally determined PDB structures. This attribute is therefore dependent

on structure as it requires a PDB identifier. MMDBBIND interactions are a much more

precise interaction annotation than the BIND interactionsas the BIND defined regions can

sometimes be very large in amino acid length. Again, the oddsratio Pi was calculated

whereN i
dis is the number of sites containing disease nsSNPs in either aninteracting region

or non-interacting regioni andN tot
dis is the total number of sites containing disease nsSNPS

in our dataset that map to MMDBBIND and similarly for polymorphic nsSNPs.

2.1.4 Machine learning

All machine learning analysis was performed using the Weka package of machine learn-

ing algorithms (Witten & Frank, 1999).

2.1.4.1 Single attribute analysis

In order to identify the most effective classifier from all ofthe attributes, the 1R classifying

algorithm was used (Holte, 1993). This classifier creates a single level decision trees

for each attribute and measures the prediction error rate. It was used with a minimum

bucket size of 14 and 10 fold cross validation on the fully balanced dataset containing

all variables. The bucket size of 14 was chosen because bucket sizes below this value

caused overfitting and/or an increase in the error rate. The attributes were then ranked

in terms of their effectiveness as a predictor using the default ranker search method with

this 1R attribute evaluator, they were also ranked in terms of the information gain (IG)

they provide (Witten & Frank, 1999). Entropy is a measure of information and represents

the amount of information that would still be needed to classify the nsSNP having used

the attribute in question (Shannon CE, 1948). The information gain is the information

required after using the attribute as a classifier subtracted from the information required

before using the attribute as a classifier.
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2.1.4.2 Attribute set analysis

It is of value to investigate the relative importance of attributes that require structure and

those that can be obtained by sequence alone. The importanceof sequence conservation

has been previously noted (Saunders & Baker, 2002) so it was also important to observe

whether the other non structurally dependent attributes could add to prediction quality

achieved with conservation score alone. Hence, we comparedpredictions for the follow-

ing sets of selected attributes:

• Set (1) - All variables (3821 nsSNPs).

• Set (2) - Structurally dependent variables (3821 nsSNPs).

• Set (3) - All non structurally dependent attributes (14,636nsSNPs).

• Set (4) - Non structurally dependent variables excluding the conservation score

(14,636 nsSNPs).

• Set (5) - The conservation score alone (14,636 nsSNPs).

Decision trees have been shown to perform well in a mixed cross validated training

dataset (Krishnan & Westhead, 2003). They also provide a confidence score and intelli-

gible rules to a prediction. Based on this knowledge we decided to use the J48 decision

tree classifier to analyze the assembled sets of variables. J48 is the Weka implementation

of C4.5 and was run with the default set of parameters and 10 fold cross validation. In

performing 10 fold cross validation, the data was divided into 10 ‘folds’ and each fold was

treated as the test dataset in turn, with the remaining 9 being used as training data. The

performance of the classifier on each fold was measured, and afinal accuracy calculated

based upon the average of all 10 folds.

2.1.4.2.1 Effect of imbalance There was a problem of imbalance (Al-Shahibet al.,

2005) within the dataset which would introduce skewing towards the avoidance of errors

for the disease status as there are 2.5 times more disease nsSNPs than neutral. The im-

balanced dataset applies a higher cost to getting a disease prediction wrong, meaning that

the rules inferred by the imbalanced dataset are able to predict disease status but unable to
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predict neutral nsSNPs accurately. The effect of imbalancedepends on total set size, class

heterogeneity, data complexity and the classification technique. To address the problem

of imbalance in our dataset we applied cost-sensitive classification by either resampling

or reweighting (Witten & Frank, 1999). Resampling can be used to either increase the

number of the minority class (oversample) or reduce the number in the majority class

(undersample) (Weiss & Provost, 2001). Reweighting can be used to apply a cost to an

incorrectly classified minority class without altering thenumbers in each class. The cost

is directly proportional to the imbalance. This study compared results using both resam-

pling and reweighting. We undersampled the disease class asoversampling would make

exact copies of the neutral class, potentially resulting inoverfitting of the data. Under-

sampling results in the loss of information so it was decidedto randomly undersample

at rates of 100%, 75%, 50%, 25% and 0%. This means that at each rate, ‘n% of the

excess members of the majority class were randomly removed’(Al-Shahibet al., 2005),

resulting in a balanced dataset when undersampling at a rateof 100%.

2.1.4.2.2 Attribute redundancy Some attributes work well in combination leaving

other attributes redundant and maybe even causing a reduction in prediction quality. The

optimised subset of attributes for each attribute set at each level of imbalance was ob-

tained using wrapper-based feature selection with J48 as the learning method with default

option settings. The wrapper-based feature selection method in combination with the Ge-

netic Search algorithm (Witten & Frank, 1999) produced the lowest error rates in tests.

The genetic search algorithm was initialised with a population size of 20 and then 50

generations were evaluated.

2.1.4.2.3 Measure of prediction quality Matthews correlation coefficient (MCC)

(Matthews, 1975) was used as the measure of prediction performance. Matthews cor-

relation coefficient combines both sensitivity and specificity into one measure and lies in

the range -1 to 1 with 1 meaning complete prediction accuracy, 0 meaning every predic-

tion was randomly assigned. MCC is defined by

MCC =
(TP.TN − FP.FN)

√

(TN + FN)(TN + FP )(TP + FN)(TP + FP )
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where TP is true positive, FP is false positive, TN is true negative and FN is false

negative.

This is preferrable to using the error rate (E), defined below, because in a case where

all samples are assigned to a majority class, E may still be low.

E =
FP + FN

TP + TN + FP + FN

2.2 nsSNP analysis results

2.2.1 Distribution of attributes across the normal and disease associ-

ated nsSNPs

A set of 16,352 SWISSPROT nsSNPs (out of a potential 18,812) could be mapped onto

the Ensembl database, of which 10,419 (64%) were disease associated, 4217 (26%) were

labelled as being neutral and 1716 (10%) were unclassified. These disease and neutral

nsSNPs were contained within 893 and 1256 proteins respectively. A total of 500 nsSNP-

containing proteins had structural homologs, of which 299 proteins contained disease re-

lated nsSNPs and 295 contained polymorphic nsSNPs (a protein can contain both disease

and polymorphic nsSNPs). The data is summarised in Table 2.1.

Disease Polymorphism Total
Number of nsSNPS 10,419 4217 14,636
Number of nsSNPS within proteins
with structural homologs

3212 609 3821

Number of Proteins with nsSNPs 893 1256 2149
Number of Proteins with nsSNPs
having structural homologs

299 295 594

Table 2.1: Summary of SWISSPROT VARIANT training dataset
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2.2.1.1 Analysis of non structural features

The distribution of sequence derived attributes suggests:tryptophan (W), tyrosine (Y)

and cysteine (C) in the wild and mutated residues increases the chance of the nsSNP

being disease related with odds ratios of 2.07, 2.03 and 2.03respectively. This has pre-

viously been noted for tryptophan and cysteine by Vitkupet al. (2003). The likelihood

of the nsSNP being deleterious increases as the volume, massand hydrophobicity dif-

ference between the wild and mutated residue increases. Themean change in volume,

mass and hydrophobicity between the wild and mutated residue was 1.29, 1.29 and 1.31

times greater for disease nsSNPs respectively. There appeared to be very little bias in the

other physiochemical properties individually towards thestatus of the nsSNP. As previ-

ously observed, a nsSNP is much more likely to be deleteriouswith an increasing PSIC

conservation score difference (Saunders & Baker, 2002). The mean PSIC conservation

score was 2.2 times greater for disease related nsSNPs.

2.2.1.1.1 SWISSPROT features table Table 2.2 shows the most discriminatory

terms from the SWISSPROT features table, namely those whereover 90% of the corre-

sponding nsSNPs are disease related. The annotation of a nsSNP in the SWISSPROT

feature table is not a good discriminator between disease and polymorphic status. In

this dataset, the feature table terms which are predominantly associated with disease

related nsSNPs have very low counts, making it difficult to generalize about their utility

in predicting whether a given nsSNP is disease related.

2.2.1.1.2 KEGG pathways Analysis of nsSNPs that map to KEGG pathways re-

vealed that the odds ratio (P ) is highest for the following 4 pathways: phenylalanine,

tyrosine and tryptophan biosynthesis (15.6), methionine metabolism (15.16), carbon fixa-

tion (12.56), nucleotide sugars metabolism (12.33). Assignment to a KEGG map was not

used as an attribute for machine learning prediction as thisresult may simply reflect that

these are commonly studied pathways and the pathway was considered to be a property

of the protein as opposed to the nsSNP.
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Site Disease Polymorphism Percentage (odds ratio) of
nsSNPs within these sites
that are disease

ACT SITE 25 1 96.15 (10.12)
BINDING 13 0 100 (-)
DNA BIND 352 20 94.62 (7.12)
METAL 38 0 100 (-)
MOD RES 34 3 91.89 (4.59)
MUTAGEN 111 10 91.74 (4.49)
NP BIND 108 8 93.1 (5.46)

Table 2.2: The number of disease and polymorphism nsSNPs within SWISSPROT feature table
sites that contain> 90% disease nsSNPs. ACTSITE - amino acid(s) involved in the activity of
an enzyme, BINDING - binding site for any chemical group (co-enzyme, prosthetic group, etc.),
DNA BIND - Extent of a DNA-binding region, METAL - binding site for a metal ion, MODRES -
posttranslational modification of a residue, MUTAGEN - Sitewhich has been experimentally altered
by mutagenesis, NPBIND - extent of a nucleotide phosphate-binding region.

2.2.1.1.3 Gene Ontology The ratio of deleterious nsSNPs was found to be the highest

for the following GO biological processes: anti-inflammatory response (GO:0030236),

peroxisome organization and biogenesis (GO:0007031), andperoxisomal membrane

transport (GO:0015919). The GO cell location categories having the highest ratio of

deleterious nsSNPs are the peroxisomal membrane (GO:0005778), integral to peroxi-

somal membrane (GO:0005779) and collagen type VII (GO:0005590) categories. The

molecular function categories containing the highest ratio of disease to neutral nsSNPs

are phenylalanine 4-monooxygenase activity(GO:0004505), alpha-galactosidase activity

(GO:0004557) and pyruvate kinase activity (GO:0004743). GO categories were not used

as machine learning attributes as they were considered to beproperties of the protein as

opposed to the nsSNP.

2.2.1.1.4 Interactions A total of 1,944 SWISSPROT nsSNPs mapped to proteins that

have entries in BIND. A significant number of disease nsSNPs are within interacting

regions (χ2=32.85, p=0.001) within BIND. Table 2.3 shows 71.7% (odds ratio 1.29) of

positions containing one or more nsSNPs that map to interacting regions are associated

with disease (736 sites) as opposed to 28.3% (290 sites) which contain polymorphism

nsSNPs.
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2.2.1.2 Analysis of structural features

A total of 3,821 nsSNPs could be mapped to a homologous protein of known structure.

Of the nsSNPs that could be mapped to structure, disease nsSNPs tended to be buried and

neutral nsSNPs tend to be exposed. There was also a propensity towards nsSNPs causing

disease occurring in beta sheets as previously noted (Sunyaev et al., 2000) and a trend

towards neutrality with increased accessibility.

2.2.1.2.1 Interactions A total of 3,028 SWISSPROT nsSNPs mapped to proteins that

have structures or structural homologs in MMDBBIND (Baderet al., 2003). Table 2.3

shows 86% (odds ratio 1.29) of positions containing one or more nsSNPs that map to

interacting residues are associated with disease (294 sites) but also that 82% (odds ratio

0.97) of positions containing one or more nsSNPs that map to non-interacting residues are

associated with disease. The difference between interacting sites containing disease nsS-

NPs and non-interacting sites containing disease nsSNPs was not significant (χ2=3.17).

Interacting sites
(num)[odds ratio]

Non-interacting
sites (num)[odds
ratio]

Disease (BIND) 71.7%(736)[1.29] 58.6%(431)[0.72]
Polymorphism (BIND) 28.3%(290) 41.4%(304)
Disease (MMDBBIND) 86.0%(294)[1.29] 82.0%(1818)[0.97]
Polymorphism (MMDBBIND) 14.0%(48) 18.0%(398)

Table 2.3: Distribution of disease and neutral nsSNPs within locations (interacting or non-
interacting) from BIND and MMDBBIND. Some sites may containmultiple nsSNPs

All attributes excluding the KEGG pathway and GO attributeswere used for machine

learning analysis.

2.2.2 Machine Learning

2.2.2.1 Single attribute analysis

The 1R algorithm identified the best single attribute in terms of predicting disease status.

The attributes were ranked in terms of effectiveness as a predictor and were also ranked

in terms of the information gain that they provided (Tables 2.4 and 2.5). The PSIC con-

servation score was identified as the best classifier in a balanced dataset achieving 72%
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correctly classified instances with the rules that defined a nsSNP as being disease status

with a score difference> 0.89 and neutral with a PSIC score difference<= 0.89. These

classifiers compared favourably with the conservation score rules identified by Ramensky

et al. (2002) in their study whereby a PSIC score difference<= 0.5 was classified as

benign, 1.5 to 2.0 possibly damaging and>= 2.0 probably damaging.

1R Rank Attribute
72.82 conservation score (PSIC)
67.49 normalised relative accessibility
63.46 MMDBBIND
62.64 mass change
62.56 relative accessibility
62.23 exposure
61.41 PAM score
60.67 mutation residue
60.34 volume change
59.19 wild type residue

Table 2.4: Top 10 attributes for predicting nsSNP function using 1R with 10 fold cross validation
and bucket size 14.

Information gain (bits) Attribute
0.2 conservation score (PSIC)
0.1 normalised relative accessibility
0.09 wild residue
0.07 relative accessibility
0.06 PAM score
0.06 mass change
0.05 mutation residue
0.05 exposure
0.04 volume change
0.04 hydrophobicity difference

Table 2.5: The information gain per attribute when predicing nsSNP function.

2.2.2.2 Attribute set analysis

The J48 decision tree algorithm was used to evaluate the predictive performance of the

following subsets of attributes:

• Set (1) - All variables.

• Set (2) - Structural variables.
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• Set (3) - Non structurally dependent variables.

• Set (4) - Non structurally dependent variables excluding the conservation score

(PSIC).

• Set (5) - Conservation score alone.

2.2.2.2.1 Effect of Imbalance Attribute sets (1) and (2) contained 3,821 nsSNPs

when imbalanced and 1,218 when balanced, both sets includedstructural variables.

Datasets (3), (4) and (5) contained 14,636 nsSNPs when imbalanced and 8,434 when

balanced. They contained more nsSNPs than sets (1) and (2) because they were not de-

pendent on structure.

The MCC increased with increasing balance within each of thesets of attributes.

There was a difference in the MCC score between 0% balanced and 100% balanced of

0.24 for dataset (1), 0.29 for (2), 0.08 for (3), 0.07 for (4) and 0.15 for (5). The perfor-

mance of the weighted sets lay between the level of 25% and 50%balancing for each

attribute set (Figure 2.2).

The 100% balanced dataset (1) achieved a MCC of 0.49. When weighted and imbal-

anced the MCC was 0.3 and 0.25 respectively for this same set.The balanced dataset

(3) was equal second in the rankings with a 75% balanced set (1), performing better than

dataset (2). The conservation score alone (set (5)) achieved a similar MCC score when

considered separately (MCC 0.43) as it did when it was included in set (3) (MCC 0.44)

when 100% balanced. When the conservation score is excludedthere is a drop of 0.16 in

the MCC of the 100% balanced dataset (3). When set (2) is balanced it performs better

than (4) but when it is not 100% balanced it has a lower MCC. Dataset (3) actually per-

forms better than the dataset (1) when the datasets are<= 50% balanced or weighted.

The imbalanced dataset (2) achieved the lowest MCC score.

The rules learnt from the machine learning approach were then applied to make pre-

dictions on nsSNPs where the function was unknown. All nsSNPs within Ensembl (Build

27 1) were used as the unknown test dataset. The dataset was trained on the 100% bal-

anced dataset of 609 neutral and 609 disease nsSNPs using allvariables. This resulted in

a predicted classification along with a confidence score for each of the ‘unseen’ nsSNPs
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Figure 2.2: nsSNP function predictive performance of five attribute subsets measured using
Matthews Correlation Coeffecient (MCC). Non struct vars excl PSIC - Non structurally dependent
variables excluding the conservation score (PSIC); Structvars - Structural variables; Non struct vars
- Non structurally dependent variables; All vars - All variables.

within Ensembl. The predictions made for all of the Ensembl nsSNPs are available to be

viewed within Ensembl as a Distributed Annotation System (DAS) source (Figure 2.3)

(Dowell et al., 2001).

2.3 Discussion

The SNP database was created to observe how various sequenceand structural based

nsSNP attributes as well as the level of balance in the training dataset affect nsSNP func-

tional prediction performance. Using the optimal set of attributes and level of balance

in the training dataset was found to increase the Matthews correlation coefficient (MCC)

and therefore increase the value of the predictions for use in the targeted studies of EH,

and other diseases.

The use of a 100% balanced dataset dramatically increased the MCC and removed any

bias towards building rules for prediction of the disease state. Complete undersampling is

a better choice than reweighting in addressing an imbalanced dataset. When imbalanced,
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Figure 2.3: Screenshot of nsSNP function predictions (labelled as the snp das track) integrated
within the Ensembl browser as a DAS source (Dowellet al., 2001)

performance using conservation alone (MCC 0.28) is close tothat achieved by Bao &

Cui (2005) (MCC 0.305) yet with a balanced dataset the MCC is greatly improved (MCC

0.43).

We saw a larger spread in the MCC when using the smaller datasets that included

structural variables, because of the larger ratio of disease to neutral nsSNPs in these

datasets. This explains why the MCC for the dataset of all variables performed best

when> 50% balanced yet the performance drops below that of non structurally depen-

dent variables when the level of balance falls below this figure. It also explains the similar

pattern seen when comparing structurally dependent variables and non structurally de-

pendent variables excluding conservation, except that thecut off lies at the 75% level of

balance.

There are a number of caveats with the training dataset. The dataset may include

nsSNPs predicted to be ‘disease’ where some of the nsSNPs mayonly be in linkage dis-

equilibrium with the phenotype in question and may themselves not be causative. This

‘pollutes’ the training set and may lead to a higher error rate and lower MCC. Further fil-

tering of the dataset would lead to a smaller but cleaner training set that could in turn lead

to lower error rates and an increase in the MCC. Further complications could arise where

molecular phenotypic changes that don’t result in a physical phenotype and unstudied or
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unobserved phenotypic changes may result in a nsSNP being classified as neutral that

should be classified as disease. Improvements to the system could also be made if SNPs

could be graded in terms of how damaging they are as opposed tothe boolean states of

disease and polymorphism that currently classifies them, intime databases may contain

this information. Decision trees were used to build models for predicting functional nsS-

NPs due to their easily interpretable rules. Running Weka with all available classifiers

and various configurations may identify a classifier that obtains improved accuracy.

Since completion of the nsSNP analysis, a number of further studies have been per-

formed, thirteen of which cited the work in this thesis. Workhas included a study focus-

ing on 686 sequence based attributes (Hu & Yan, 2008) using a similar approach to that

taken in this thesis. Performance was similar to results achieved in this study. Further

work by Tianet al. (2007) created an SVM based application called Parepro which in-

cluded sequence and evolutionary information surroundinga nsSNP and did not include

structural attributes. A novel structure-based approach,Bongo (Bonds ON Graph), was

introduced whereby protein structures were considered as residue-residue interaction net-

works (Chenget al., 2008). Graph theoretic approaches were applied to identify residues

that are critical for maintaining structural stability within the network. The effect of a

nsSNP change could then be evaluated. Performance was comparable to commonly used

PolyPhen (Sunyaevet al., 2001) and Panther (Thomaset al., 2003) approaches. A study

by Careet al. (2007) aimed to quantify effects of the different approaches used in the

field. They concluded that the SWISSPROT training datatset used in this study was the

preferred training dataset to date and some of the conclusions were based on findings from

this thesis.

Reassuringly, previously observed trends can be seen in this study of a large num-

ber of nsSNPs. Disease nsSNPs tend to affect protein stability (Wang & Moult, 2001),

are buried (Stitzielet al., 2004) and often disrupt a conserved residue (Saunders &

Baker, 2002). This work extends previous work by addressingthe problems of imbal-

ance and redundancy within the attributes for a large selection of natural nsSNPs and

then goes on to make predictions on all Ensembl nsSNPs. Saunders & Baker (2002)

and Bao & Cui (2005) showed that in the absence of a conservation score, structural
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attributes are valuable predictors. Here it is affirmed, using machine learning meth-

ods that the sequence conservation measure is the most powerful single predictor and

it has been shown that a high level of accuracy is achieved using the conservation score

alone. It has also been shown that structural attributes in combination with the conser-

vation score improves prediction accuracy but also that there are other non structurally

dependent attributes that can reduce the error rate furtherand are valuable in the ab-

sence of a conservation score. The performance of all attribute subsets however, is very

much dependent on how the datasets are configured. The maximum prediction accu-

racy can be achieved by combining all attributes of the nsSNPwithin a balanced dataset.

The predictions based on all of these learnings are available for public use as a DAS

sourcehttp : //www.brightstudy.ac.uk/das help.html (Figure 2.3) and as an annota-

tion within the SNP function portal (Wanget al., 2006).
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Chapter 3

Protein function analysis

This chapter focuses on the performance of machine learningclassifiers in predicting

function for distantly related protein sequences. Typically, two approaches are used to

address such a multi-class problem. The first involves adapting the algorithm to the multi-

class problem directly. An example of an algorithm that can be easily generalized to cope

with multi-class problems is the decision-tree classifier.The second approach involves

creating several two-class problems and a class is assignedbased on the predictions ob-

tained from the two-class problems. This approach has the benefit of not requiring any

changes to the underlying algorithm. Examples of this approach include error-correcting

output codes (Dietterich & Bakiri, 1995) and pairwise classification (Fürnkranz, 2002).

Here we experiment with a range of classifiers that implementvaried approaches for ad-

dressing the multi-class problem.

Membership of a SCOP superfamily was used as a measure of functional relatedness

(Murzin et al., 1995). The SCOP database is a manually curated resource supported by

a host of automated methods to provide comprehensive and accurate descriptions of the

structural relationships between proteins where the structure is known. The relationship

between sequence structure and function is indefinite and a number of studies have shown

protein superfamilies within a single fold having diverse functions, an example being the

aldo-keta reductases, a large hydrolase superfamily, and the thiol protein esterases which

include the eye-lens and corneal crystallins (Hegyi & Gerstein, 1999). The TIM-barrel

fold is an extreme example of divergent evolution with the fold functioning as a generic

scaffold catalyzing 15 different enzymatic functions. Even at the superfamily level, there
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can be difficulty in inferring function from structure. An example can be seen in the

enolase superfamily where there are hundreds of sequences available. Known structures

of this superfamily catalyze eight different overall reactions (Gerltet al., 2005). Despite

this, proteins in the same SCOP superfamily are believed to be related from structural

and other considerations and would therefore often be expected to have the same general

functional role. However, they include proteins which are very diverse at the level of

sequence similarity and for which relatedness would not be apparent from consideration

of sequence alone.

3.1 Protein function analysis methods

This study was restricted to large and diverse SCOP superfamilies, namely those with

more than 15 sequences that do not share more than 20% sequence identity. A range

of popular machine learning methods as implemented in the Weka workbench (Witten

& Frank, 1999) were employed and a web based clustered computing infrastructure was

built to enable rapid identification of optimal classifiers and configurations (Figure 3.1).

This tool parses and stores results in a MySQL database, whilst sending a summary to the

user by email. A sequence enrichment step was introduced in order to increase the number

of sequences available for training. The dataset provides achallenging benchmark but one

which is very relevant to enhanced genome annotation strategies.

3.1.1 Protein domain dataset

Two datasets were created for analysis; the first comprised domains from single domain

proteins exclusively and this was the main focus of this study. A second dataset included

domains from multi domain proteins. The inclusion of SCOP domains from multi domain

protein structures is useful for characterising domains but may present problems with the

functional characterisation of a protein. Namely, the function of a multi domain protein

(composed of 2 SCOP domains A and B for example) may not necessarily be the sum

of the functions associated with the individual constituent domains, A and B. However

including SCOP domains from multi domain protein structures does lead to many more
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Figure 3.1: Screenshot of the web based version of Weka, which is integrated with a computing
cluster.

examples.

Domain sequences were obtained from the Astral20 database which contains SCOP

domain sequences sharing less than 20% sequence identity (Brenneret al., 2000). Su-

perfamilies containing fewer than 16 domains at this level of sequence redundancy were

excluded. The datasets were split such that two thirds of instances from each superfamily

were used for training and the remaining one third of instances for testing the models.

3.1.1.1 Superfamily enrichment

The SCOP database provides a gold standard structural resource with reliable comprehen-

sive annotation, meaning that domains should be accuratelyclassified at the level of su-

perfamily despite being diverse at the sequence level. The aim was to extend this diverse

set of domain sequences by including entries from sequence databases without known

structure and therefore missing SCOP annotation. The reason for this was to boost the

numbers of instances available for training the machine learning algorithms. It was nec-

essary to be cautious, however, because if very remote relatives were included there was

a danger they may not actually be part of the same superfamily. Sillitoeet al.(2005) have

previously described an approach to recruit sequences intoCATH domain superfamilies.

The following steps were performed to enrich the number of examples in each super-
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family:

• A BLAST (Altschul et al., 1997) search using each of the domain sequences from

the diverse SCOP superfamilies was performed against the UniRef50 subset of the

Uniprot database (Apweileret al., 2004).

• In order for a hit to be retained, the E value had to be<0.0005.

• Hits were excluded where<80% of the domain was aligned

• Hits were also excluded where the length of the aligned section of the UniRef50 hit

was<80% of the length of the aligned section of the domain (to exclude hits that

had long gaps within the alignment.)

• UniRef50 hits were further excluded that matched domains ofmore than one super-

family in order to reduce ambiguity in superfamily membership of the hit.

• BLASTClust (Dondoshansky, 2002) was then run against the resulting SCOP do-

mains and UniRef50 hits for each superfamily to remove redundancy. For each

cluster the SCOP domains were retained as the cluster representative when present.

• Results were compared where BLASTClust was used to remove redundant se-

quences at>20% and then>30% sequence identity. BLASTClust was set at these

levels of sequence identity because below 25% similar function can not confidently

be inferred by sequence alone (Wilsonet al., 2000). It was considered that 30% was

a conservative cutoff where similar function could be more confidently inferred. At

a cutoff of 20%, confidence in assumption of function was lower but it was consid-

ered to be of interest to compare to the 30% cutoff.

3.1.2 Protein domain features

Attributes selected for machine learning were based upon the properties explored by

Dubchaket al. (1995) who analysed protein folds in the context of the SCOP classifi-

cation. These attributes relate to the hydrophobicity, Vander Waals volume, polarity,

polarizibility and predicted secondary structure of the amino acid sequence. The sec-

ondary structure (C=Coil, H=Helix, E=Strand) was predicted using PSIPRED (McGuffin
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et al., 2000). Each amino acid was labelled as belonging to one of three groups for each

of these descriptors (Table 3.1).

Property Group1 Group2 Group3
Hydrophobicity Polar Neutral Hydrophobic

R,K,E,D,Q,N G,A,S,T,P,H,Y C,V,L,I,M,F,W
Normalized Van Der Waals 0-2.78 2.95-4.0 4.43-8.08

G,A,S,C,T,P,D N,V,E,Q,I,L M,H,K,F,R,Y,W
Polarity 4.9-6.2 9.0-9.2 10.4-13.0

L,I,F,W,C,M,V,Y P,A,T,G,S H,Q,R,K,N,E,D
Polarizibility 0.0.108 0.128-0.186 0.219-0.409

G,A,S,D,T C,P,N,V,E,Q,I,L K,M,H,F,R,Y,W
Secondary structure C=Coil H=Helix E=Strand
Amino acid composition n.a n.a n.a
Amino acid length n.a n.a n.a

Table 3.1: Properties of each domain sequence that were used as attributes to predict superfamily
membership using machine learning classifiers (n.a = not applicable). (The first 5 properties were
taken from Dubchaket al. (1995))

All descriptors were analyzed in the context of their composition, distribution and

transition along the amino acid sequence. Taking hydrophobicity as an example, the

composition element comprised three attributes; the percentage composition of polar (P),

neutral (N), hydrophobic (H) amino acids in the domain sequence. The transition was

also composed of three hydrophobicity related attributes;the percentage frequency of P

followed by N or N followed by P, the percentage frequency of Pfollowed by H or H

followed by P and the percentage frequency of N followed by H or H followed by a N.

The distribution comprised 15 hydrophobicity related attributes describing the amino acid

sequence in terms of the proportion of the length of the domain sequence that contained

the first, 25%, 50%, 75%, 100% of each of the groups of amino acids (P, N or H). In

addition to these previously studied properties, the aminoacid sequence length (bins of

length 20 amino acids) and amino acid composition were addedas attributes. A total of

126 attributes were included in the machine learning analysis.

3.1.3 Machine learning

All machine learning analysis was performed using the Weka collection of tools and algo-

rithms (Witten & Frank, 1999). The models were evaluated on an independent test dataset

which comprised one third of the original non-enriched dataset.
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3.1.3.1 Single attribute analysis

In order to identify the most effective attribute in the machine learning prediction, the

1R classifying algorithm (Holte, 1993) and the informationgain (IG) attribute evaluator

were used. The 1R classifying algorithm creates single level decision trees for each at-

tribute and measures the prediction error rate. The IG evaluator measures the information

required after using the attribute as a classifier subtracted from the information required

before using the attribute as a classifier. In both algorithms the attributes were ranked in

terms of their effectiveness as predictors using the default ranker search method (Witten

& Frank, 1999).

3.1.3.2 Attribute set analysis

The performance of 32 machine learning classifiers in a totalof 96 configurations were

compared for the prediction of protein function based on assignment to one of 24 su-

perfamilies using 126 amino acid based sequence attributes(Appendix C, Table 7). The

clustered implementation of Weka (Witten & Frank (1999)) was used to rapidly identify

the optimal classifiers and configurations.

The enrichment process was assessed by comparing the performance using the non-

enriched resources and enriched resources using a BLASTClust cut-off of 20% and 30%

sequence identity. In order to assess the performance of thelength of the domain as an

attribute, the prediction performances using all variables were compared with the perfor-

mance of all variables excluding the length of the domain sequence.

3.1.3.3 Measure of performance

The performance of the machine learning methods was assessed using the number of true

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).

The positive predictive value (precision) (P) of predictions can be described by

P =
TP

TP + FP

and recall (sensitivity) (R) is considered to be
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R =
TP

TP + FN

The F-measure (F) combines the positive predictive value and recall measurements in

the following manner

F =
2(P ∗ R)

(P + R)

3.1.4 Benchmarking

SCOP superfamilies chosen as classes in this study were specifically large diverse su-

perfamilies whose domains shared no more than 20% sequence identity. It is typically

difficult to classify members of such superfamilies using conventional sequence homol-

ogy methods.

To evaluate the performance of the machine learning approach, the results of the PSI-

BLAST program were compared with models built using the non-enriched datasets. PSI-

BLAST was run using a similar method to Melvinet al. (2007). A database of UniRef90

sequences was initially used to create profiles for each of the studied SCOP domain se-

quences (Wuet al., 2006). Each profile was then matched separately against a database

composed solely of the Astral20 proteins from the studied superfamilies. Matches with

an E-value< 0.0005 over 5 iterations were identified.

A definitive comparison of PSI-BLAST with a model created by an SVM (no sequence

enrichment) was difficult as various measures of performance could be used. For each

PSI-BLAST query, we observed the number of matches with SCOPdomains from the

correct superfamily and incorrect superfamily using the defined threshold. We considered

a query to be correctly assigned to a superfamily (TP) when the number of hits to domains

from the true superfamily exceeded the number of hits from a false superfamily. We

acknowledge that this approach is biased due to the size of the superfamily, but think

that it is typical of the kind of approach taken when a user attempts to assign functional

annotation.
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3.2 Protein function analysis results

3.2.1 Protein domain datasets

Two datasets were created for analysis, a primary dataset comprising domains from single

domain proteins only and a secondary dataset which includeddomains from multi domain

proteins.

The exclusion of multi domain protein sequences in the single domain dataset reduced

the number of domains included in the analysis from 4931 to 2867 (contained within 1136

superfamilies). Excluding superfamilies that contained fewer than 16 domains at this level

of sequence redundancy further reduced the number of domains included to 573 contained

within 24 superfamilies (columns 1 and 2 in Appendix B, Table1). For the second dataset

(which included domains from multi domain proteins), excluding superfamilies that con-

tained fewer than 16 domains resulted in 1448 domains contained within 49 superfamilies

(columns 1 and 2 in Appendix B, Table 2).

3.2.1.1 Superfamily enrichment

Increasing the number of diverse sequence examples in the training datasets involved

taking entries from UniRef50 that showed distant homology yet similar function to a

domain sequence within the superfamily being studied (Wuet al., 2006). Appendix B

Tables 1 and 2 show the number of instances per superfamily inthe single and multi

domain training datasets before and after the enrichment process using BLASTClust at

20% and 30% redundancy. The periplasmic binding protein-like II superfamily (id 53850)

exhibited the biggest increase (10.38 fold single domain, 10.13 fold multi domain) in the

number of instances after enrichment and the restriction endonuclease-like superfamily

(52980) had the smallest increase (1.15 fold single domain,1.13 fold multi domain).

3.2.2 Machine Learning

3.2.2.1 Single attribute analysis

The top ten attributes in the non-enriched datasets and at levels of 20% and 30% enrich-

ment when using both the 1R and IG algorithms comprised attributes relating to the com-
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position, transition and distribution of secondary structure elements (coil, helix, strand)

and the length of the domain. The domain length was in the top 5attributes in all but one

training set and algorithm combination.

3.2.2.2 Attribute set analysis

3.2.2.3 Single domain dataset

Generally performance of the classifiers in both the single and multi domain datasets

improved with the increasing level of enrichment in the training datasets. Best performing

classifiers in the single domain dataset were the END classifier achieving 64.2% correctly

classified instances on the non-enriched dataset, AdaBoostM1 obtaining 64.2% correctly

classified instances on the dataset enriched at a level of 20%and LibSVM achieving

66.3% correctly classified instances with a dataset enriched at a level of 30%. END is

a meta classifier for handling multi-class datasets with 2-class classifiers by building an

ensemble of nested dichotomies (Donget al., 2005). AdaBoostM1 is a class for boosting a

nominal class classifier using the Adaboost M1 method (Freund & Schapire, 1996). When

excluding the domain length as an attribute, the best performing classifier was the END

classifier obtaining 64.2% correctly classified instances using the 30% enriched training

dataset.

The classifiers varied greatly in predicting each superfamily. Table 3.2 shows the

performance per superfamily in the single domain dataset using the best performing Lib-

SVM classifier and 30% enrichment. The model achieved the best performance in pre-

dicting membership to the ARM repeat superfamily (id 48371)(all alpha proteins class

(id 46456)) with an F-measure of 0.91. The poorest performing superfamily was the

nucleotide-diphospho-sugar transferases superfamily (id 53448) (alpha and beta proteins

class a/b (id 51349)) with an F-measure of 0.

3.2.2.4 Multi domain dataset

There were 49 superfamilies (1448 domains) that had more than 15 domains within As-

tral20 when including multi domain proteins. Appendix B Table 3 shows the SCOP class

and fold membership for the 49 superfamilies. The class alpha and beta proteins a+b (id
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Superfamily Precision Recall F-Measure
46458 a.1.1 sf Globin-like 0.8 0.8 0.8

46689 a.4.1 sf Homeodomain-like 0.67 0.67 0.67

46785 a.4.5 sf Winged helix DNA-binding do-

main

0.77 0.83 0.8

47266 a.26.1 sf 4-helical cytokines 0.86 0.75 0.8

48371 a.118.1 sf ARM repeat 1 0.83 0.91

49785 b.18.1 sf Galactose-binding domain-

like

0.75 0.5 0.6

49899 b.29.1 sf Concanavalin A-like

lectins/glucanases

0.67 0.57 0.62

50249 b.40.4 sf Nucleic acid-binding protein 0.57 0.89 0.7

50729 b.55.1 sf PH domain-like 0.75 0.5 0.6

51182 b.82.1 sf RmlC-like cupins 1 0.2 0.33

88633 b.121.4 sf Positive stranded ssRNA

viruses

0.57 0.8 0.67

51445 c.1.8 sf (Trans)glycosidases 1 0.43 0.6

51735 c.2.1 sf NAD(P)-binding Rossmann-

fold domains

0.8 0.67 0.73

52540 c.37.1 sf P-loop containing nucleoside

triphosphate hydrolases

0.52 0.76 0.62

52833 c.47.1 sf Thioredoxin-like 0.86 0.67 0.75

52980 c.52.1 sf Restriction endonuclease-like 1 0.14 0.25

53335 c.66.1 sf S-adenosyl-L-methionine-

dependent methyltransferases

0.35 0.46 0.4

53383 c.67.1 sf PLP-dependent transferases 0.78 0.88 0.82

53448 c.68.1 sf Nucleotide-diphospho-sugar

transferases

0 0 0

53474 c.69.1 sf alpha/beta-Hydrolases 0.75 0.82 0.78

53850 c.94.1 sf Periplasmic binding protein-

like II

0.55 0.86 0.67

55729 d.108.1 sf Acyl-CoA N-

acyltransferases (Nat)

0.56 0.71 0.63

57059 g.3.6 sf omega toxin-like 0.8 0.57 0.67

57095 g.3.7 sf Scorpion toxin-like 0.63 0.83 0.71

Table 3.2: Performance in predicting the 24 SCOP superfamilies (excluding multi domain proteins)
using Support Vector Machines (LibSVM) with enrichment at aredundancy cutoff of 30%.
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53931) is better represented in this analysis.

The same configurations and evaluation method were applied to this dataset. Best per-

forming classifiers for each dataset were AdaBoostM1 achieving 48.5% correctly classi-

fied instances using the non-enriched dataset, END obtaining 53.7% correctly classified

instances on the training dataset enriched at 20%, and AdaBoostM1 achieving 55.6% on

the training dataset enriched at 30%. The results of machinelearning for each superfamily

using AdaBoostM1 and enrichment at sequence identity of 30%can be seen in Table 3.3.

When excluding the domain length as an attribute, the best performing classifier obtained

54.8% correctly classified instances using the 30% enrichedtraining dataset and the END

classifier.

Again, the success of the machine learning methods in predicting SCOP superfamily

varied greatly depending on the superfamily with F-measureranging from 0 to 0.92. The

top performing superfamilies were the globin-like (id 46458) (all alpha protein class (id

46456)), and C2H2 and C2HC zinc finger (id 57667) (small proteins class (id 56992)) su-

perfamilies, both with an F-measure of 0.92. The ARM repeat superfamily (id 48371) still

performed well being ranked 4th in terms of F-measure (0.82). The poorest performing

superfamilies were the restriction endonuclease-like (id52980), the nucleotidylyl trans-

ferase (id 52374) (both belonging to the alpha and beta proteins class a/b (id 51349)) and

the cysteine proteinases (id 54001) (Alpha and beta proteins a+b (id 53931)) superfami-

lies, all with F-measures of 0.
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Table 3.3:Performance in predicting the 49 SCOP superfamilies (anal-

ysis including multi domain proteins) using AdaBoostM1 with enrich-

ment at a redundancy cutoff of 30%.

Superfamily Precision Recall F-Measure

46458 a.1.1 sf Globin-like 0.86 1 0.92

46626 a.3.1 sf Cytochrome c 0.67 0.75 0.71

46689 a.4.1 sf Homeodomain-like 0.57 0.67 0.62

46785 a.4.5 sf “Winged helix” DNA-

binding domain

0.65 0.74 0.69

47266 a.26.1 sf 4-helical cytokines 1 0.38 0.55

47473 a.39.1 sf EF-hand 0.5 0.17 0.25

48371 a.118.1 sf ARM repeat 0.78 0.88 0.82

48726 b.1.1 sf Immunoglobulin 0.68 0.83 0.75

49265 b.1.2 sf Fibronectin type III 0.42 0.5 0.46

81296 b.1.18 sf E set domains 0.22 0.15 0.18

49503 b.6.1 sf Cupredoxins 0.67 0.5 0.57

49785 b.18.1 sf Galactose-binding

domain-like

0.57 0.8 0.67

49899 b.29.1 sf Concanavalin A-like

lectins/glucanases

0.57 0.73 0.64

50249 b.40.4 sf Nucleic acid-binding pro-

teins

0.38 0.3 0.33

50729 b.55.1 sf PH domain-like 0.55 0.6 0.57

51011 b.71.1 sf Glycosyl hydrolase do-

main

0.4 0.4 0.4

51182 b.82.1 sf RmlC-like cupins 0.67 0.67 0.67

88633 b.121.4 sf Positive stranded ssRNA

viruses

0.75 0.43 0.55

Continued on Next Page. . .
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Table 3.3 – Continued

Superfamily Precision Recall F-Measure

51445 c.1.8 sf (Trans)glycosidases 0.77 0.81 0.79

51569 c.1.10 sf Aldolase 0.67 0.33 0.44

51735 c.2.1 sf NAD(P)-binding

Rossmann-fold domains

0.5 0.7 0.58

51905 c.3.1 sf FAD/NAD(P)-binding do-

main

0.6 0.27 0.38

52317 c.23.16 sf Class I glutamine

amidotransferase-like

0.5 0.4 0.44

52374 c.26.1 sf Nucleotidylyl transferase 0 0 0

52540 c.37.1 sf P-loop containing nucleo-

side triphosphate hydrolases

0.36 0.49 0.42

52833 c.47.1 sf Thioredoxin-like 0.61 0.79 0.69

52980 c.52.1 sf Restriction endonuclease-

like

0 0 0

53067 c.55.1 sf Actin-like ATPase domain 0.43 0.33 0.38

53098 c.55.3 sf Ribonuclease H-like 0.56 0.63 0.59

53335 c.66.1 sf S-adenosyl-L-methionine-

dependent methyltransferases

0.39 0.36 0.37

53383 c.67.1 sf PLP-dependent trans-

ferases

0.7 0.88 0.78

53448 c.68.1 sf Nucleotide-diphospho-

sugar transferases

0.33 0.17 0.22

53474 c.69.1 sf alpha/beta-Hydrolases 0.42 0.62 0.5

53850 c.94.1 sf Periplasmic binding

protein-like II

0.38 0.75 0.5

56784 c.108.1 sf HAD-like 0.5 0.4 0.44

54001 d.3.1 sf Cysteine proteinases 0 0 0

Continued on Next Page. . .
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Table 3.3 – Continued

Superfamily Precision Recall F-Measure

54211 d.14.1 sf Ribosomal protein S5 do-

main 2-like

0.6 0.33 0.43

54236 d.15.1 sf Ubiquitin-like 0.71 0.83 0.77

54373 d.16.1 sf FAD-linked reductases, C-

terminal domain

1 0.6 0.75

54593 d.32.1 sf Glyoxalase/Bleomycin

resistance protein/Dihydroxybiphenyl

dioxygenase

0.8 0.67 0.73

55347 d.81.1 sf Glyceraldehyde-3-

phosphate dehydrogenase-like, C-terminal

domain

0.5 0.33 0.4

55486 d.92.1 sf Metalloproteases

(“zincins”), catalytic domain

0.5 0.5 0.5

55729 d.108.1 sf Acyl-CoA N-

acyltransferases (Nat)

0.71 0.56 0.63

56672 e.8.1 sf DNA/RNA polymerases 0.8 0.8 0.8

57059 g.3.6 sf omega toxin-like 0.5 0.29 0.36

57095 g.3.7 sf Scorpion toxin-like 0.57 0.67 0.62

57196 g.3.11 sf EGF/Laminin 0.71 1 0.83

57667 g.37.1 sf C2H2 and C2HC zinc fin-

gers

1 0.86 0.92

57716 g.39.1 sf Glucocorticoid receptor-

like (DNA-binding domain)

0.71 0.71 0.71
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3.2.3 Benchmarking

Performance of PSI-BLAST and SVMs (using the non-enriched datasets) was very vari-

able, with the two methods often differing in performance for each superfamily (Appendix

B Tables 4 and 5). We found that 8 out of 24 superfamilies achieved a better F-measure

with SVMs in the single domain analysis and 10 out of 49 obtained a greater F-measure

in the multi domain analysis. F-measures were comparable for many other superfamilies,

especially in the single domain study. SVMs outperformed PSI-BLAST for all 5 of the

studied superfamilies from the small protein class (id 56992) as well as performing bet-

ter or comparably for superfamilies of the all alpha proteins class (id 46456). The mean

performance measures per superfamily are shown in Table 3.4.

SVM PSI-BLAST
Dataset Precision Recall F-Measure Precision Recall F-Measure

Single domain 0.64 0.61 0.61 0.96 0.6 0.7
Multi domain 0.5 0.41 0.42 0.95 0.57 0.67

Table 3.4: The mean precision, recall and F-measure per superfamily produced by SVMs and PSI-
BLAST using the unenriched datasets comprising 24 (domainsfrom single domain proteins) and 49
superfamilies (including domains from multi domain proteins).

3.3 Discussion

The SCOP database provides a gold standard structural resource with reliable compre-

hensive annotation, meaning that domains should be accurately classified at the level

of superfamily despite being diverse at the sequence level.It is desirable to be able to

build machine learning models in order to be able to assign this functional annotation to

domains where the structure is unknown and function is difficult to infer by traditional

methods.

3.3.1 Superfamily enrichment

Machine learning methods benefit from having more training data. Our seed data sets,

namely 24 and 49 large and sequence diverse (no two sequencessharing more than 20%

sequence identity) superfamilies, provide a ‘ground truth’ since we know from SCOP
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(which uses structural and other considerations) that the proteins are in fact related. How-

ever, the datasets were somewhat limited in size and the question of how to extend them

was not trivial: adding very weakly related sequences detected by PSI-BLAST might

contaminate the superfamily by introducing proteins whichin fact did not belong to the

superfamily; but being very restrictive with the cut off would only add more examples of

close homologs. We observed that the performance of the machine learning algorithms

improved when the SCOP superfamily datasets were enriched and that the percentage of

sequence similarity used as a cutoff in the enrichment process effected prediction perfor-

mance. The performance at the sequence identity cutoff of 30% was better than the lower

cutoff of 20%. At the 20% level there was the possibility of contamination and alignment

errors which would affect the predicted secondary structure attributes and may have led

to lower performance. It is expected that this step could improve performance if applied

to the many published fold prediction models (Ashburneret al., 2000; Ding & Dubchak,

2001; Lin et al., 2005; Shen & Chou, 2006; Melvinet al., 2007; Shamimet al., 2007;

Damoulas & Girolami, 2008)

3.3.2 Single attribute analysis

Attributes vary in their contributions to the predictions of superfamily membership in

the machine learning models. Jensenet al. (2002) previously concluded that secondary

structure was the most important descriptor in their protein function prediction study. This

study found predicted secondary structure was important for predicting function with the

composition, transition and distribution of secondary structure elements being the most

important attributes in the single attribute analysis. Jensenet al. (2002) concluded that

protein length was not a valuable attribute in their studies. However, we found that the

length of the sequence was a valuable attribute in the singleattribute analysis for the

24 superfamilies of the single domain analysis. Figure 3.2 shows many superfamilies

display a clustering with regards to length in the non-enriched single domain resource.

All four domains over 550 residues belong to the ARM repeat superfamily (48371 a.118.1

sf), with the Importin beta domain (d1qgraa.118.1.1) being the longest domain (877

residues). However, when combining all attributes for use with the 32 applied classifiers
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the models still performed well following the exclusion of domain length as an attribute.

This suggests that the classifiers were not dependent on domain length as an attribute and

other sequence properties were important in accurately classifying superfamilies.

Figure 3.2: Domain sequence length for superfamilies from Astral20 that contain>15 domains
(excluding multi domain proteins). The length is grouped into bins of 20 amino acids. This figure
highlights the clustering of superfamilies by domain sequence length. The Importin beta domain
(d1qgra a.118.1.1) from the ARM repeat superfamily (48371 a.118.1 sf) is the longest domain (877
residues).

3.3.3 Attribute set analysis

3.3.3.1 Single domain dataset

In analysis of combined attributes in the single domain resource, the best performing clas-

sifier was LibSVM, obtaining 66.3% correctly classified instances in an independent test

set using a training dataset that was enriched at a level of 30% sequence identity. The

success of the machine learning methods in predicting SCOP superfamily varied greatly

depending on the superfamily (Table 3.2). The P-loop containing nucleoside triphos-

phate hydrolases (id 52540) and S-adenosyl-L-methionine-dependent methyltransferases
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(id 53335) had a large proportion of false positives. Thirtyeight percent of instances be-

longing to the 53335 superfamily were classified as 52540 and15% of 52540 instances

were classified as 53335 suggesting that there is some similarity between these super-

families or that the diversity of both groups means that classifying the two is difficult.

Both superfamilies belong to the same alpha and beta proteins (a/b) (id 51349) class but

are members of different folds within the SCOP classification. Figure 3.3 shows clearly

(black bordered squares) that when the model misclassifies an instance, it usually classi-

fies it correctly at the SCOP class level. This may reflect thatthe ‘predicted secondary

structure’ attribute facilitated the correct class assignment (the SCOP class level repre-

sents the overall secondary structure composition of the protein). The alpha and beta pro-

teins a/b (id 51349) class contains the largest number of superfamilies (10) in this study,

resulting in some misclassifications among the superfamilies that it contains. The poor-

est performing superfamilies, nucleotide-diphospho-sugar transferases (id 53448) and re-

striction endonuclease-like (id 52980), both belong to this class. The 52980 superfamily

also contains the smallest number of instances (15) in the training dataset enriched at

30%. The best performing superfamily, ARM repeat (id 48371), belongs to a class (all

alpha proteins (id 46456)) containing only 5 superfamiliesfrom this study and has 50

instances in the 30% enriched training dataset. It might be expected that there would be

many misclassifications between the homeodomain-like superfamily (id 46689) and the

“winged helix” DNA-binding domain superfamily (id 46785) as both of these superfam-

ilies belong to the same SCOP fold (DNA/RNA-binding 3-helical bundle). Whilst 33%

of 46689 instances were misclassified as 46785, only 16% of 46785 instances were mis-

classified as 46689. This may be explained by the large numberinstances belonging to

the 46785 superfamily, 114 at 30% enrichment, compared to 35for the 46689 superfam-

ily (Appendix B, Table 1). The larger number of instances mayhave resulted in a better

model being constructed. Therefore, it appears that the diversity of superfamilies at the

class level as well as the number of instances available for training affect the performance

of the classifiers.
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Figure 3.3: Superfamily confusion matrix produced by an SVM model with adataset enriched at
30% sequence identity (excluding multi domain proteins). Each small square represents the percent-
age of domains belonging to the superfamily on the y axis (true superfamily) that were predicted to
belong to the superfamily on the x axis (predicted superfamily). The colour of each square relates to
the predicted percentage of total instances according to the colour ramp on the right of the matrix.
Black bordered squares represent the 5 classes that the 24 superfamilies are grouped into (Appendix
B, Table 6). This figure highlights the fact that when a domainis misclassified at the superfamily
level, it is usually correctly assigned at the class level within the SCOP hierarchy.

Axis labels:

(1) 46458 a.1.1 sf Globin-like, (2) 46689 a.4.1 sf Homeodomain-like, (3) 46785 a.4.5 sf ”Winged he-

lix” DNA-binding domain, (4) 47266 a.26.1 sf 4-helical cytokines, (5) 48371 a.118.1 sf ARM repeat, (6)

49785 b.18.1 sf Galactose-binding domain-like, (7) 49899 b.29.1 sf Concanavalin A-like lectins/glucanases,

(8) 50249 b.40.4 sf Nucleic acid-binding proteins, (9) 50729 b.55.1 sf PH domain-like, (10) 51182

b.82.1 sf RmlC-like cupins, (11) 88633 b.121.4 sf Positive stranded ssRNA viruses, (12) 51445 c.1.8 sf

(Trans)glycosidases, (13) 51735 c.2.1 sf NAD(P)-binding Rossmann-fold domains, (14) 52540 c.37.1 sf

P-loop containing nucleoside triphosphate hydrolases, (15) 52833 c.47.1 sf Thioredoxin-like, (16) 52980

c.52.1 sf Restriction endonuclease-like, (17) 53335 c.66.1 sf S-adenosyl-L-methionine-dependent methyl-

transferase, (18) 53383 c.67.1 sf PLP-dependent transferases, (19) 53448 c.68.1 sf Nucleotide-diphospho-

sugar transferases, (20) 53474 c.69.1 sf alpha/beta-Hydrolases, (21) 53850 c.94.1 sf Periplasmic binding

protein-like II, (22) 55729 d.108.1 sf Acyl-CoA N-acyltransferases (Nat), (23) 57059 g.3.6 sf omega toxin-

like, (24) 57095 g.3.7 sf Scorpion toxin-like
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3.3.3.2 Multi domain dataset

The inclusion of multi domain proteins resulted in there being over twice the number of

superfamilies available for study, with superfamilies from the alpha and beta proteins a+b

class (id 53931) being better represented (Appendix B, Table 3). The AdaBoostM1 clas-

sifier obtained 55.6% accuracy with a training dataset enriched at 30%. The classifiers

still performed well despite the increase in the number of superfamilies resulting from

the inclusion of domains from multi domain proteins. Again,the success of the machine

learning methods in predicting SCOP superfamily varied greatly depending on the super-

family (Table 3.3). The restriction endonuclease-like (id52980), nucleotidylyl transferase

(id 52374) and cysteine proteinases (id 54001) superfamilies all performed poorly with

F-measures of 0. The top performing superfamilies were the globin-like (id 46458) and

C2H2 and C2HC zinc finger (id 57667) superfamilies. The globin-like (id 46458) super-

family was ranked 3rd in the single domain analysis whereas the C2H2 and C2HC zinc

finger (id 57667) superfamily was absent. The globin-like (id 46458) superfamily was

ranked 29th in terms of the fold increase in the number of instances after the enrichment

step at 30% and was ranked 35th in terms of the total number of instances after the en-

richment. The C2H2 and C2HC zinc finger (id 57667) superfamily was ranked 19th in

terms of the fold increase in the number of instances after the enrichment step at 30%

and was ranked 29th in terms of the total number of instances after the enrichment. It

therefore seems unlikely that performance was biased towards these superfamilies due to

imbalance in the dataset. Again, the P-loop containing nucleoside triphosphate hydro-

lases (id 52540) had a large proportion of false positives (64%). Additionally 23% and

30% of domains from the superfamily E set domains (id 81296) were misclassified as su-

perfamilies Immunoglobulin (id 48726) and fibronectin typeIII (id 49265) respectively.

Both superfamilies belong to Immunoglobulin-like beta-sandwich fold (id 48725) which

is part of the all beta proteins class (id 48724) and were excluded from the single domain

dataset.

Generally, similar patterns were observed in the single andmulti domain datasets with

misclassifications at the superfamily level being correctly assigned at the fold or class

level. Superfamilies that performed best in both the singleand multi domain analysis
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belonged to either the all alpha protein (id 46456) or small protein classes (id 56992).

Poorest performers belonged to the alpha and beta classes (a/b or a+b) (ids 51349, 53931).

3.3.4 Benchmarking

For most superfamilies, PSI-BLAST did not detect unrelateddomains with scores better

than the threshold, although the program failed to detect all the possible correct matches

(ie to related domains). For these superfamiles, the definition of a correct assignment,

namely that the number of hits to domains from the true superfamily exceeded the num-

ber of hits from a false superfamily, meant that the precision was 1.0 leading to a high

F-measure. A more exacting requirement for confident classification would be the identi-

fication of multiple (ideally all) related domains with scores better than the threshold. As

an example, we describe the breakdown of PSI-BLAST results for 2 superfamilies. The

globin-like superfamily (id 46458) performed well within the PSI-BLAST results in the

single domain analysis (2nd top F-measure). Fourteen out of15 domains in this super-

family were assigned to the true superfamily. However, of these 14, four were classified

based on single matches, that is PSI-BLAST only detected a match to one other protein

in the same superfamily. The “Winged helix” DNA-binding domain superfamily (46785)

produced relatively poor results with PSI-BLAST (F-measure 0.49). Of the 37 domains

within this superfamily, only 12 were assigned to the true superfamily. Matches for 5

of these 12 were based on single hits and the maximum number ofcorrectly returned

domains for any query was 8. So, almost half of the assignments were not confident clas-

sifications. The comparison with PSI-BLAST for the detection of these remotely related

proteins shows that there are global sequence properties that can be used to successfully

classify domains from superfamilies, with the performancein many cases depending on

the class that the superfamily belongs to. As previously stated, a definitive comparison of

PSI-BLAST with a model created by an SVM (no sequence enrichment) was difficult as

various measures of performance could be used and performance of the models is further

improved when we use BLAST as part of the enrichment process.
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3.3.5 Summary

The protein universe does not contain only 24 or 49 superfamilies and we have not al-

lowed for this possibility. The approach we describe does not allow for an extra category

‘unknown superfamily’. One area of improvement would involve providing a method for

identifying an instance that does not belong to any of the studied (24 or 49) superfamilies.

This might evolve as a pre-process step. Additionally, the employed attributes are not ex-

pected to be optimal for detecting close sequence relationships for which good solutions

already exist.

Whilst the methods described here do not provide a complete solution for superfamily

prediction they show that machine learning methods that consider simple sets of global

sequences based attributes may be useful for suggesting superfamily membership and

hence narrow down the potential functional space, especially for superfamilies belonging

to all alpha (id 46456) and small protein classes (id 56992).This study shows that ma-

chine learning approaches to predicting SCOP categories can be improved by performing

a sequence enrichment step that exploits unannotated sequences within genomic sequence

databases. As such these approaches may complement profile methods for detecting dis-

tant relationships.
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Chapter 4

Combining protein-protein interaction

network and sequence attributes for

predicting hypertension related proteins

This chapter describes an exploratory study examining the properties of 65 proteins

listed as being associated with hypertension in the Online Mendelian Inheritance in Man

database (OMIM, Hamoshet al. (2002)). The performance of a classifier which includes

protein-protein interaction (PPI) network, sequence and GO attributes for the detection

of hypertension related candidate proteins is reported. Protein-protein interactions form

networks which can be explored using graph theoretic approaches. The networks can be

thought of as undirected cyclic graphs where the proteins are nodes and the interactions

are edges. If proteins A and B directly interact then there exists an edge connecting nodes

A and B.

4.1 Hypertension PPI and sequence analysis methods

4.1.1 Dataset

OMIM is a comprehensive catalogue of human genes and their associated genetic phe-

notypes. It provides a set of positive examples for machine learning approaches to build

classifiers for predicting disease genes. Each record in theOMIM database is associ-
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ated with a unique identifier which relates to a disease, the observed symptoms and the

associated genes. The symptoms field of each OMIM entry was parsed for the term ‘hy-

pertension’ and the results were manually filtered. The genes associated with OMIM

entries displaying hypertension as a symptom were then mapped onto their SWISSPROT

protein identifiers (Boeckmannet al., 2003).

4.1.2 Protein-protein interaction network properties

Protein-protein interactions involving hypertension related SWISSPROT identifiers were

extracted from the OPHID database (Brown & Jurisica, 2005).OPHID is an on-line

database of human protein-protein interactions built by mapping high-throughput model

organism data to human proteins. It also integrates data from yeast two-hybrid, literature-

based interaction and orthology-based interaction sources. The hypertension related

SWISSPROT proteins (nodes) present in OPHID are referred toas HTd (hypertension

dataset). One thousand datasets, each containing the same number of proteins as HTd

(65), were then generated by randomly selecting proteins (nodes) from OPHID, which

included the HTd proteins. We refer to this group of datasetsas Rd1..1000.

In order to investigate the PPI properties relating to hypertension, a two step approach

was taken. Firstly, the ‘general topology’ of each HTd protein was investigated whereby

PPI properties of each HTd protein were investigated in relation to all surrounding pro-

teins. Secondly, network properties were investigated specifically in relation to other HTd

proteins (‘dataset topology’). Comparisons were made withthe Rd1..1000 datasets. The

aim of this analysis was to identify whether HTd proteins were better connected than

random and whether any differences could be explained by their general background con-

nectivity. For example, can short distances between HTd proteins be explained through

HTd proteins being interaction hubs? A perl module (PPI.pm)was created that enables a

graph to be created and written to disk with the benefit that the graph structure does not

have to be created and read into memory each time a script is run. This saves a signifi-

cant amount of time when performing repeated graph theoretical analysis on large graph

structures.
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4.1.2.1 General topology

Degree of nodes:The mean degree (total number of edges associated with protein (p))

was calculated for OPHID as a whole, for HTd and Rd1..1000. This measure was then

extended to identify the number of proteins within a radius of 3 interaction steps fromp

(figure 4.1).

Clustering coefficient:The clustering coefficient (C) for proteinp is the number of links

between the proteins that directly interact withp divided by the number of links that

could possibly exist between them (if the directly interacting proteins were a clique).

This measure originates from Watts & Strogatz (1998) who used it to determine whether

a network was ‘small-world’. The clustering coefficient wascalculated for each HTd and

each Rd1..1000 protein.

Figure 4.1: Illustration showing the number of proteins within a chosenradius of a selected hyper-
tension related protein (red node). A radius of 2 is shown as an example (greyed area), the blue and
green nodes are proteins falling within this radius. The blue node indicates that the protein is not
hypertension related whereas the green node indicates a hypertension related protein.

4.1.2.2 Dataset topology

Degree of nodes:The mean degree was recalculated for each dataset (HTd, Rd1..1000)

where only interactions with proteins from the same datasetwere considered. This mea-

sure was then extended to identify the number of proteins from the same dataset within a

radius of 3 interaction steps (green nodes in figure 4.1).

Geodesic distance:The length of the shortest connecting path between each pairof HTd

proteins (HTd protein A to HTd protein B), and each pair of random proteins (Rdx protein



Chapter 4. PPI network attributes for predicting hypertension related proteins 93

A to Rdx protein B) was calculated using Dijkstra’s algorithm (Dijkstra, 1959).

Interaction subnetworks:We derivedexpandedsubnetworks for each of the datasets,

using the approach of Chenet al.(2006), whereby all the proteins and their directly inter-

acting partners were selected. The proportion of all proteins from each of theseexpanded

subnetwork datasets that were contained within the largestconnected component were

calculated. A connected component is a set of proteins whereby each protein can be

reached from any other protein via a combination of interaction steps.

4.1.3 Hypertension pathways and protein function

To investigate pathway properties of hypertension relatedproteins, proteins from HTd

were mapped to identifiers from the KEGG database (Kanehisaet al., 2006). We ex-

cluded the following KEGG identifiers that related to types of interactions as opposed to

pathways, although we are aware there is some subjectivity in this selection: ABC trans-

porters, phosphotransferase system (PTS), two-componentsystem, neuroactive ligand-

receptor interaction, cytokine-cytokine receptor interaction, ECM-receptor interaction,

cell adhesion molecules (CAMs), aminoacyl-tRNA biosynthesis, type II secretion sys-

tem, type III secretion system, type IV secretion system, SNARE interactions in vesicular

transport, ubiquitin mediated proteolysis, proteasome, cell cycle - yeast. The distribution

of HTd proteins in the remaining pathways was investigated and compared to Rd1..1000.

The semantic similarity of Gene Ontology (GO) terms from each aspect (biological

function, molecular process and cellular location) was obtained for the HTd proteins using

the program G-Sesame (Wanget al., 2007). A GO term’s semantics (biological meanings)

are encoded into a numeric value by aggregating the semanticcontributions of all their

ancestor terms in the GO graph. The similarity between GO terms is presented by aggre-

gating the semantic contributions of their shared ancestorterms over the sum of the GO

term semantic scores. An algorithm has been designed to measure the functional similar-

ity of two genes based upon the semantic similarities among the GO terms that annotate

these genes. The correlation between the semantic similarity of GO terms and geodesic

distance apart in the PPI network was then measured for pairsof HTd proteins.

GO slims are cut-down versions of the GO categories containing a subset of the terms
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in the whole GO. They give a broad overview of the ontology content without the detail

of the specific fine grained terms. The distribution of GO slim(Ashburneret al., 2000)

molecular functions and biological processes were studiedin order to identify categories

that were over-represented or under-represented in hypertension proteins compared to the

Rd1..1000 datasets.

4.1.4 Classification

A machine learning approach was taken to predict hypertension related proteins using a

combination of attributes from the PPI and GO analysis, combined with physicochemical

properties of the protein sequences. The training dataset comprised the proteins contained

within Rd1..30 (1950 instances) and the HTd dataset (65 instances).

The selected attributes relating PPI network properties ofeach protein were: the

geodesic distance to the closest known HTd protein; the average and standard deviation of

distances from each HTd protein; the number of direct interactions; the number of direct

interactions with HTd proteins; the number of proteins up to2 interactions away (up to

one intermediary); the number of HTd proteins up to 2 interactions away; the number of

proteins up to 3 interactions away (up to two intermediaries); the number of HTd proteins

up to 3 interactions away; Attributes relating to molecularfunction and biological process

were selected from GO slim categories that were found to be either over or underrep-

resented within the hypertension dataset, namely, ‘response to stimulus’ (GO:0050896),

‘electron transport’ (GO:0006118) and ‘oxidoreductase activity’ (GO:0016491). Physic-

ochemical properties for each protein sequence were calculated using the Protparam

program at Expasy (www.expasy.org). A bioperl (www.bioperl.org) module

(Bio::Tools::Protparam) was created specifically for thispurpose. Sequence properties

used in the classifier were: amino acid length; number of negatively charged amino acids;

number of positively charged amino acids; molecular weight; theoretical pI; number of

carbon atoms; number of hydrogen atoms; number of nitrogen atoms; number of oxygen

atoms; number of sulphur atoms; half life; instability Index; stability class; aliphatic in-

dex; GRAVY; amino acid composition; The GRAVY (Grand Average of Hydropathy)

value for a peptide or protein was calculated as the sum of hydropathy values of all
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the amino acids, divided by the number of residues in the sequence (Kyte & Doolittle,

1982). Various feature selection methods were tested usingthe Weka workbench (Witten

& Frank, 1999) to remove redundancy and identify key attributes.

Because there was a large imbalance in the training dataset (many more random pro-

teins than hypertension proteins), a CostSensitive classifier (Witten & Frank, 1999) was

used as a wrapper around a Bagged PART classifier (Frank & Witten, 1998b; Breiman,

1996). A cost could then be applied for an incorrect HTd protein classification during ten

fold cross validation in an attempt to address the imbalance. This weighted approach has

been shown to be a succesful method for coping with class imbalance using a similar type

of classifier and has an advantage over undersampling in thatthere is no loss of informa-

tion (Chenet al., 2004). Choosing a cost depends on priorities. For example,a researcher

may be prepared to accept a high false positive rate (FPR) in order to obtain a high rate

of recall for hypertension related proteins. The classifierwas run 400 times with a range

of cost matrices that applied varying penalties for incorrectly predicting a HTd protein

using a key set of attributes. The bagged PART classifier is a decision list classifier that

uses a separate-and-conquer approach. A partial C4.5 decision tree is built in each itera-

tion and the ‘best’ leaf is made into a rule. It performs well in terms of speed because no

postprocessing required. The runs were repeated using the simple majority-rule approach.

When benchmarking the classifier we wished to identify any sequence similar proteins

as some of our attributes are sequence based. BLASTClust (ata level of 25% identity)

(Dondoshansky, 2002) was used to identify sequence homologs within the HTd dataset.

4.2 Hypertension protein PPI and sequence analysis re-

sults

We isolated 96 hypertension related genes from OMIM, 90 of which could be mapped to

SWISSPROT identifiers. Where an OMIM id had multiple associated proteins, we made

the assumption that all were associated with hypertension and included them in the dataset

as there was insufficient evidence to assume otherwise. Of the 90 ids, 65 were present

within OPHID. These 65 proteins were associated with 47 diseases (distinct OMIM ids)
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where hypertension was recorded as a symptom. The average number of proteins per

OMIM id was 1.5. We refer to this dataset as HTd. The OPHID database used in this

study contained 48,222 interactions.

4.2.1 Network properties

4.2.1.1 General topology

Degree of nodes:The average degree (number of direct interactions associated with a

protein) for the whole of OPHID was 9.04. The HTd proteins hadan average degree of

10.0615. The average degree for OMIM genes (that are presentin OPHID) was 12.91.

The number of proteins within radii of 1 (degree), 2 and 3 interactions from each protein

is shown in the top row of quantile-quantile plots in Figure 4.2. The difference in distribu-

tions between HTd and Rd1..1000 was only marginally significant for direct interactions

(degree) and was not significant for interactions within radii of 2 and 3 interactions when

using the Wilcoxon rank sum test (p-values = 0.03, 0.09, 0.08respectively), although

there were outiers in the Rd1..1000 proteins acting as hubs.

Clustering coefficient:Figure 4.3 shows the quantile-quantile plot of clustering coeffi-

cients (C) for HTd and Rd1..1000. If they come from similar distributions, the distribu-

tions should align. Wilcoxon rank sum test with continuity correction shows that they

come from the same distribution (p-value = 0.1085). Howeverthe Bartlett’s K-squared

test shows there is heterogeneity of variance (p-value = 0.001368) with the random genes

having a wider variance of C. In terms of interacting partners that are involved in no fur-

ther interactions (C=0), there was no significant difference between the two sets; 52.3%

HTd proteins and 39% of Rd1..1000 proteins (Chi-squared = 1.857 p-value = 0.1730).

There was no significant difference in the proportion of HTd and Rd1..1000 proteins that

only have a single interacting partner with 18 HTd proteins and an average of 18.86 across

the Rd1..1000 datasets.

4.2.1.2 Dataset topology

Degree of nodes:The second row of quantile-quantile plots in Figure 4.2 showthe sub-

set of interactions within radii of 1 (degree), 2, 3 interactions that belonged to the same
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Figure 4.2: Quantile-quantile plots for the number of proteins up to a distance of 3 interactions away
from HTd and Rd1..1000 proteins. The top row plots relate to all interactions and the second row
plots limit to interactions with proteins belonging to the same dataset as the protein being studied.
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Figure 4.3: Quantile-quantile plot of clustering coefficients (C) for the HTd and Rd1..1000 proteins.
Wilcoxon rank sum test with continuity correction shows that they come from the same distribution
(p-value = 0.1085). ht=hypertension
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dataset as the protein p under study. These plots can be compared with the first row plots

displaying all interactions within similar radii. The difference in distributions between

HTd and Rd1..1000 for these subsets of interactions up to a radius of 3 interactions is sig-

nificant when using the Wilcoxon rank sum test (p-value = 2.49e-11, 3.842e-06, 0.0003

respectively). meaning there are larger numbers of HTd proteins surrounding any given

HTd protein than there are Rdx proteins surrounding Rdx proteins (within the radii up to

3 interactions).

Geodesic distance:Figure 4.4 shows the geodesic distance between each pair of HTd pro-

teins and each pair of proteins from Rd1..100. We limited to the first 100 random datasets

due to the computationally expensive process involved in calculating the distance. The

difference in the distribution of distances was significant(Wilcoxon rank sum p=0.004).

Fifteen out of 65 (23%) HTd proteins are directly connected.In comparison, on average,

only 3 out of every 65 (6%) Rd1..100 proteins are directly connected.

Interaction subnetworks: There were 623 proteins (646 interactions) in the dataset com-

prising the HTd proteins and their direct interaction partners. The average number of

proteins and directly interacting partners for the Rd1..1000 datasets was 583 (std 109).

The largest connected component in theexpandedsubnetwork involving the HTd pro-

teins and their direct partners contained 550 of the 623 proteins (88%). The size of this

subnet is in the upper 5% of the distribution over Rd1..1000 (Figure 4.5).
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Figure 4.4: Illustration showing the geodesic distances between HTd protein pairs and Rdx protein
pairs. Infinite relates to protein pairs that are unconnected, both directly and indirectly.
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Figure 4.5: The proportion of proteins in the largest connected component for HTd and each
Rd1..1000expandedsubnetworks. In the HTdexpandedsubnetwork, the largest connected com-
ponent contains 88% of the proteins. ht=hypertension

4.2.2 Hypertension pathways and protein function

The HTd proteins are spread across 36 KEGG pathways. Three (8%) of these pathways

contain 3 HTd proteins, 10 (28%) contain 2 HTd proteins and the remaining pathways

(64%) contain single HTd proteins. Table 4.1 shows the pathways that contain multiple

HTd proteins. By comparison, for the subset of 22 Rd1..1000 datasets that map to the

same number of pathways (36), only 3% of the pathways contain3 proteins, 15% contain

2 proteins and 82% contain 1 protein. The clustering of HTd proteins in KEGG pathways

is significantly different to the pattern observed in the subset of Rd1..1000 datasets that

map to 36 pathways (Wilcoxon rank sum test p=0.02).

It was important to investigate the origin of the observed high level of connectivity in

‘dataset topological’ properties of the HTd dataset. HTd proteins that clustered in path-

ways were investigated to see whether they originated from the same OMIM record. For

those that did we noted the geodesic distance separating them. This might help iden-

tify any potential biases in the HTd dataset. Of the 3 pathways that each contain 3

HTd proteins, 2 pathways contain HTd proteins that map to thesame hypertension re-

lated OMIM id. The first of these pathways is the human cell communication pathway
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Pathway ID Description No. of
HTd
proteins

path:dhsa00500 Starch and sucrose metabolism 3
path:dhsa01430 Cell Communication 3
path:dhsa04610 Complement and coagulation cascades 3
path:dhsa00052 Galactose metabolism 2
path:dhsa00140 C21-Steroid hormone metabolism 2
path:dhsa00561 Glycerolipid metabolism 2
path:dhsa00600 Sphingolipid metabolism 2
path:dhsa03320 PPAR signaling pathway 2
path:dhsa04350 TGF-beta signaling pathway 2
path:dhsa04630 Jak-STAT signaling pathway 2
path:dhsa04640 Hematopoietic cell lineage 2
path:dhsa04742 Taste transduction 2
path:dhsa05216 Thyroid cancer 2

Table 4.1: The KEGG Homo sapiens pathways containing multiple HTd proteins

(path:dhsa01430). An OMIM id (215600 Cirrhosis, familial)is shared between 2 of the

3 HTd proteins in this pathway. The respective proteins are:K1C18 HUMAN [P05783]

(Keratin, type I cytoskeletal 18 (Cytokeratin-18) and K2C8HUMAN [P05787] (Keratin,

type II cytoskeletal 8 (Cytokeratin-8). These proteins areseparated by a geodesic dis-

tance of 4. The second pathway containing 3 HTd proteins is the complement and co-

agulation cascades pathway (path:dhsa04610). Again, one OMIM id (235400 hemolytic

uremic syndrome) is shared between 2 of the 3 HTd proteins in this pathway. The pro-

teins are: CFAHHUMAN [P08603] (Complement factor H precursor (H factor 1))and

MCP HUMAN [P15529] (Membrane cofactor protein precursor (Trophoblast leukocyte

common antigen)). The geodesic distance between these proteins is 2. Only 1 of the

10 pathways that contain 2 HTd proteins have proteins that map to the same hyperten-

sion related OMIM id. This pathway is the taste transductionpathway (path:dhsa04742).

The shared OMIM id is 177200 (Liddle syndrome). The 2 proteins in this pathway that

share this OMIM id are: SCNNBHUMAN [P51168] (Amiloride-sensitive sodium chan-

nel subunit beta (Epithelial Na(+) channel subunit beta)) and SCNNGHUMAN [P51170]

(Amiloride-sensitive sodium channel subunit gamma (Epithelial Na(+) channel subunit

gamma)). These proteins directly interact in the PPI network.

There was not a strong correlation between GO semantic similarity and geodesic dis-

tance for HTd protein pairs. Correlations were calculated for each aspect of GO (molec-
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ular function, biological process and cellular component).

Most of the HTd proteins fall into GO slim categories binding(GO:0005488), pro-

tein binding (GO:0005515) and catalytic activity (GO:0003824). The difference in the

overall distribution of GO slim biological process categories between hypertension and

Rd1..1000 proteins is significant (p-value = 0.01554) whereas the distribution of molec-

ular function GO slim categories is not (p-value = 0.5369). In terms of biological pro-

cesses, specific GO slim categories ‘response to stimulus’ (GO:0050896) and ‘electron

transport’ (GO:0006118) are overrepresented within the hypertension dataset with p =

0.005277 and p = 0.0009852 repectively. In terms of molecular functions, ‘oxidoreduc-

tase activity’ (GO:0016491) is overrepresented within thehypertension dataset (p-value

= 0.01219). These categories are still significantly overrepresented following the removal

of 3 homologs in HTd.

4.2.3 Classification

The CfsSubsetEval evaluator used with the BestFirst searchmethod identified seven key

attributes: percentage amino acid composition of G; percentage amino acid composi-

tion of K; the geodesic distance to the closest HTd protein; the standard deviation of the

geodesic distances to each HTd protein; whether the proteinbelonged to GO slim cate-

gories ‘response to stimulus’ (GO:0050896) and ‘electron transport’ (GO:0006118); the

number of direct connections with HTd proteins. The BestFirst approach searches the

space of attribute subsets by greedy hillclimbing augmented with a backtracking facility

(Witten & Frank, 1999). The CfsSubsetEval evaluator calculates the worth of a subset of

attributes by considering the individual predictive ability of each feature along with the

degree of redundancy between them. Subsets of features thatare highly correlated with

the class while having low intercorrelation are preferred (Hall, 1998). The Bagged PART

classifier was run 400 times over a range of penalties (using acost matrix) for incorrectly

predicting a HTd protein using the 7 key attributes. The runswere repeated using the

simple majority-rule approach but the TPR never exceeded the FPR. Figure 4.6 shows

the true positive rate (TPR) plotted against the false postive rate (FPR) when predicting

hypertension proteins.
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Figure 4.6: Illustration showing the true positive rate [TPR] against false positive rate [FPR] when
predicting hypertension proteins using a weighted Bagged PART classifer. The penalty for an incor-
rect prediction was varied by using a CostSensitive classifier

BLASTClust (at a level of 25% identity) (Dondoshansky, 2002) showed that the HTd

dataset was not heavily populated with sequence homologs. Only 2 pairs of proteins were

found to share more than 25% identity. The first protein pair was: SCNNBHUMAN

[P51168] (Amiloride sensitive sodium channel subunit beta) and SCNNGHUMAN

[P51170] (Amiloride sensitive sodium channel subunit gamma). These proteins shared

34% sequence identity (E=3e-102). The second protein pair was: C11B1HUMAN

[P15538] (Cytochrome P450 11B1, mitochondrial precursor)and C11B2HUMAN

[P19099] (Cytochrome P450 11B2, mitochondrial precursor). These proteins shared 85%

sequence identity (E=0.0). All proteins were included in the machine learning classifica-

tion.

4.3 Discussion

This study found there to be little difference in the generalbackground topological proper-

ties of HTd and Rd1..1000 proteins in protein-protein interaction networks. Hypertension

related proteins do not form large hubs and they do not display high cluster coefficient
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(C) scores. Previous studies including Rualet al. (2005); Stelzlet al. (2005); Jonsson

& Bates (2006b); Xu & Li (2006) have suggested that disease genes were likely to form

hubs. However, Gohet al. (2007) recently suggested that these studies included ‘essen-

tial’ genes in which any mutations are lethal. Once these genes had been excluded it was

shown that the remaining ‘non-essential’ disease genes didnot tend to form hubs. HTd are

likely to be ‘non-essential’ genes and our findings are consistent with Gohet al. (2007).

OMIM has an average degree of 13 which is higher than the hypertension proteins (10)

and OPHID (9), possibly because OMIM includes these ‘essential’ disease genes.

Despite the insignificant differences in background network topology, we find that

HTd proteins display greater connectivity in relation to each other than we might expect.

HTd protein pairs exhibit shorter geodesic distances than random and the largestexpanded

subnet size lies within the top 5% of the distribution for therandom datasets. This means

that 88% of the proteins are connected (directly or indirectly) when a network is created

using HTd proteins and their direct partners. It is similar to previously observed distri-

butions in Alzheimers disease proteins where the largest subnet contained 83% of the

proteins (Chenet al., 2006). There is also a significant difference from random inthe

number of HTd proteins within a radius of 3 interactions fromany other HTd protein.

The HTd proteins are spread over 36 KEGG pathways, reflectingthe complex, locus

rich nature of hypertension related proteins. We might haveexpected to see HTd proteins

that cluster in the same pathway to have originated from the same OMIM id and be close

in the PPI network. We found that this was not always the case.The proteins were usually

associated with different diseases where hypertension wasa symptom. Where proteins

shared a pathway, originating from the same OMIM id, only 1 ofthe 3 HTd protein pairs

were directly connected.

We expected to see a negative correlation between distance separating two HTd pro-

teins in the PPI network and GO semantic similarity. However, we were unable to show

this correlation in our dataset. The difference in the distribution of GO slim biological

process categories between HTd proteins and the Rd1.1000 was significant. There were

a number of notable molecular function and biological process categories that were over-

represented in the hypertension dataset, namely ‘responseto stimulus’ (GO:0050896),
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‘oxidoreductase activity’ (GO:0016491), ‘nucleic acid binding’ (GO:0003676).

There are caveats with the OMIM hypertension dataset, the OMIM database is the

most complete repository of diseases and their associated genes but of course it is not

complete and is updated all the time. There was concern that the increased connectiv-

ity of the HTd proteins may be due to biases in the PPI resource. We might expect the

hypertension related proteins to have been studied more than the randomly selected pro-

teins and therefore to see a larger number of documented interactions. However, if this

were the case, we would have expected more of them to be hubs. Potential interaction

biases could be further investigated by considering interactions, such as those from high

throughput experiments, separately. Because the sources of OPHID interactions vary in

their reliability, we created a second weighted network, retaining the same proteins and

interactions but assigning a weight (or distance) to each interaction in a similar manner

to Chenet al. (2006). In this weighted network, proteins were separated by a distance

relating to annotation confidence. Interactions with high quality annotation retained their

default distance of 1, medium quality interactions were separated by a distance of 1.5

and low quality interactions a distance of 2. We then repeated the relevant analyses. Our

results did not show significant trend differences to the unweighted analyses with respect

to GO semantic similarity and geodesic distance correlations.

The methods described here could easily be applied to other disease datasets in

OMIM. The hypertension dataset itself would be improved with the addition of validated

hypertension related proteins. However, the model constructed shows that there are pat-

terns within PPI networks, shared function and sequence based properties that can be used

to aid prioritisation of candidate gene lists identified through experiments such as genome

wide association studies. We anticipate that machine learning analyses that combine such

attributes will be useful in helping to characterise disease related genes in future studies.
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Chapter 5

Protein interaction networks associated

with cardiovascular disease and cancer:

shared network properties

The work in this chapter compares the protein-protein interaction network properties of

two major diseases, cardiovascular disease (cvd) and cancer. For both diseases there are

large curated datasets available. The study focuses on two sets of network descriptors,

namely network centralities and network clusters. Centrality measures can be used to

identify influential nodes in a graph and clustering analysis describes the organisation

of the network on a number of levels and can be used to define functional modules and

pathways in biological networks. Three measures of centrality were considered: degree

centrality which simply counts the number of edges connected to a vertex; closeness cen-

trality which considers communication to all other nodes bymaking use of the length of

shortest paths to all nodes from a given node and betweennesscentrality which ‘mea-

sures’ how much a node is involved in communication within the network, by identifying

the number of shortest paths between pairs of nodes that passthrough such a node. This

measure identifies ‘bottlenecks’ within the network. The degree centrality only captures

the local neighbourhood topology of a network and hence the influence of direct neigh-

bouring proteins, whereas betweenness also captures the indirect influences of proteins

distal to the subject protein. Betweenness is therefore a measure of importance within

the wider context of the network. High betweenness and low degree has previously been
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used to define the ‘modularity’ of various networks (Girvan &Newman, 2002; Guimerà

& Amaral, 2004; Joyet al., 2005). In addition to centrality, the following clustering prop-

erties were explored (i) whether proteins involved in cvd and cancer tended to be part of

complex or simple processes, (ii) whether these processes are small or large, (iii) how

the disease proteins are distributed across the processes and (iv) how many of the dis-

ease proteins are bridges between communities and therefore acting as interfaces between

biological processes. A combination of centrality measures and clustering were used to

describe the interactome topology of these diseases and demonstrate an approach that

could be used to aid prioritisation of candidate genes.

5.1 PPI analysis methods

5.1.1 Dataset

Proteins thought to be implicated in cardiovascular disease were taken from the Vascu-

lar Disease 50k SNP Array Consortia chip (http://bioinf.itmat.upenn.edu/

cvdsnp/query.php) (Keatinget al., 2008). Proteins on this chip were carefully se-

lected as potential candidates for cardiovascular diseaseusing information from quanti-

tative trait loci studies, consideration of pathways important to vascular disease and the

biomedical literature. The proteins were split into three categories: priority 1 proteins

included significant known mediators of vascular disease and key findings from whole

genome association studies (602 proteins). The two other categories included more spec-

ulative assignments (2015 priority 2 and 494 priority 3 proteins). We mapped these pro-

teins onto a set of human PPI from the PIP webserver created byJonsson & Bates (2006a)

using an orthology based approach applied to the RefSeq dataset (Pruittet al., 2007).

The cancer dataset came from a census conducted from the literature of genes that are

mutated and causally implicated in cancer development (‘cancer genes’) (Futrealet al.,

2004). Futrealet al. (2004) had mapped these cancer proteins onto their PPI dataset.
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5.1.2 Measures

The PPI network was considered as an undirected graphG = (V, E), v ∈ V, e ∈ E where

the proteins are nodes (v) and the interactions are edges (e), with edgeem,n connecting

nodesm andn. We considered the following three measures of centrality using the Python

package NetworkX (https://networkx.lanl.gov):

Degree centrality: the number of edges connected to a vertexwere counted and nor-

malised by dividing by the total number of possible interactions that could be made, that

is the number of nodes minus one.

Closeness centrality: This could only be calculated for nodes belonging to the same

connected component, the shortest path length for unconnected nodes is infinity. If

dist(m, n) is the length of the shortest path fromm to n then the closeness centrality

was defined as:

Cclose(m) =
1

1
(|V |−1)

∑

n∈V dist(m, n)
(5.1)

Shortest Path Betweenness centrality: In the following, let σmn denote the number of

shortest paths between verticesm ton andσmn(ν) be the number of shortest paths fromm

to n that pass throughν (Junker & Schreiber, 2008). The rate of communication between

m andn involving ν is given byδmn(ν) = σmn(ν)/σmn. The shortest path betweenness

centrality can then be defined as:

Cbetweenness(ν) =
∑

m∈V ∧m6=ν

∑

n∈V ∧n 6=ν

δmn(ν) (5.2)

The average degree centrality was calculated for nodes associated with cancer and cvd

to examine the hub like properties of disease associated proteins. The nodes of the human

interactome were then ranked according to the three measures of centrality and identified

putatively functionally important nodes in the interactome.

Following Jonsson & Bates (2006a), but also using the much larger cvd dataset, net-

work clustering was investigated through the community structure with theCfinderalgo-

rithm (Adamcseket al., 2006). This program uses thek-clique clustering method which

defines communities in terms of overlapping cliques. Ak-clique is a set ofk nodes where

there is an interaction between each pair of nodes.Cfinder identifies communities as the
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union ofk-cliques in whichk-1 nodes are shared. Communities were identified at vari-

ousk-values and the proportion of the member proteins that were cvd or cancer related.

Generally at low values ofk we would expect a large number of extensive communities

of less tightly connected proteins with a large overlap. Forhigherk values fewer, more

distinct communities appear. Analysis of the community structure identifies bridge nodes

as nodes belonging to more than one community. These may participate in multiple pro-

cesses and act as interfaces between processes.

5.2 Cardiovascular disease and cancer PPI analysis re-

sults

In total, there are 17,039 RefSeq protein IDs (108,113 interactions) in the PPI dataset

(Jonsson & Bates, 2006a). We were able to map 2,249 cvd implicated protein IDs to

this dataset, 19% being cvd priority 1 proteins, 63% cvd priority 2 and 18% cvd priority

3 (Keatinget al., 2008). Within the network, 439 protein IDs were annotated as being

cancer from the cancer census (Futrealet al., 2004). The number of cvd proteins mapped

to the PPI network was therefore approximately 5 fold greater than the number of mapped

cancer proteins. Of the cancer RefSeq proteins IDs mapped tothe PPI dataset, 120 (27%)

were also proteins implicated in cvd. Of these proteins, 28 were cvd priority 1 proteins.

5.2.1 Centrality

The betweenness, closeness and degree centrality measureswere calculated for each pro-

tein within the PPI network. The average number of interactions (degree) for cvd priority

1 proteins was 19.6, cvd overall was 15.7 and cancer proteinswas 22.6 (table 5.1). There

is a notable difference between the average degree of cvd priority 1 proteins (19.6) and cvd

priority 2/3 proteins (6.0). The distribution of each of thenormalised centrality measures

are shown in Figure 5.1. The distribution of betweenness anddegree centrality values

differ significantly when comparing each of the disease datasets against the non disease

dataset using the Wilcoxon rank sum test. In general, the degree and betweenness values

follow an exponential distribution and the closeness centrality conforms to a normal dis-
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tribution. Using the probability density function we were able to calculate the probability

for each centrality score. The proteins displaying ‘high centrality’ (p<0.05), particularly

degree and betweenness centrality, are enriched approximately 2 fold with cancer and cvd

proteins. Specifically, 24%, 26% and 18% of cvd proteins displayed high betweenness,

degree and closeness centrality and 6%, 7% and 6% of cancer proteins displayed high

betweenness, degree and closeness centrality. This compares to total presence in the in-

teractome of 13% for cvd and 3% for cancer. Table 5.2 shows the‘top 10’ proteins for

each centrality measure, it shows that 29% of these are currently annotated as cvd pro-

teins and 17% are already associated with OMIM morbidity accession numbers (Hamosh

et al., 2002).
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Figure 5.1: The (a) betweenness, (b) closeness and (c) degree centrality distributions for each stud-
ied subset of proteins. Cancercvdpr1 = proteins annotated as both cancer and cvd priority 1, cancer-
cvd=proteins annotated as both cancer and cvd.

cvd non cvd cvdpr1 non cvdpr1 cancer non cancer
Average degree 15.7 6.4 19.6 6.0 22.6 9.9

Table 5.1: Connectivity of proteins: Average degree of cardiovascular (cvd), cvd priority 1 (cvdpr1)
and cancer proteins.

The high degree observed by cvd and cancer proteins may partly be explained by the
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Description (RefSeq Peptide ID) cancer cvd cvd pr1 bc dc cc OMIM Morbidity description

Filamin-A (Endothelial actin-binding protein) (NP001447) y y y

Actin, cytoplasmic 1 (Beta-actin)(NP001092) y y Dystonia, juvenile-onset

Alpha-actinin-2 (NP001094) y y

60 kDa heat shock protein, mitochondrial precursor (Heat shock protein 60) (NP002147) y y Spastic paraplegia 13, autosomal dominant

Calmodulin (NP001734) y y y

Cell division protein kinase 3 (NP001249) y y

Importin subunit alpha-7 (Karyopherin subunit alpha-6) (NP 036448) y

Transportin-1 (Importin beta-2) (Karyopherin beta-2) (NP002261) y

Heat shock 70 kDa protein 1 (NP005337) y y y

UDP-N-acetylglucosamine–peptideN-acetylglucosaminyltransferase 110 kDa subunit (NP858058) y

Guanine nucleotide-binding protein G(k) subunit alpha (G(i) alpha-3) (NP006487) y

Guanine nucleotide-binding protein subunit alpha-11 (G alpha-11) (NP002058) y

Guanine nucleotide-binding protein G(i), alpha-2 subunit(NP 002061) y y y

Guanine nucleotide-binding protein G(q) subunit alpha (NP002063) y y

Glucose-fructose oxidoreductase domain-containing protein 2 precursor (NP110446) y

Transcriptional enhancer factor TEF-3 (NP958849) y

Glycoprotein hormones alpha chain precursor (NP000726) y

Sphingomyelin phosphodiesterase 2 (NP003071) y y

Molybdenum cofactor biosynthesis protein 1 A(NP620306) y

39S ribosomal protein L13, mitochondrial (NP054797) y

Cytochrome c oxidase subunit 2 (NP536846) y Mitochondrial complex IV deficiency

Bardet-Biedl syndrome 5 protein (NP689597) y y Bardet-Biedl syndrome

Interleukin-17 receptor A precursor (NP055154) y

Uridine phosphorylase 1 (NP003355) y

Table 5.2: The ‘top ten’ most influential interactome proteins for eachof the centrality mea-
sures. The ‘y’ denotes possession of the quality defined by the column. Cancer=cancer protein,
cvd=cardiovascular protein, cvdpr1=cardiovascular priority 1 protein. Of these proteins, 29% are
currently annotated as cvd related and 17% are already associated with OMIM database morbidity
identifiers (Hamoshet al., 2002). The OMIM morbidity description relates to a diseasewhich the
protein is associated with. bc=betweeness centrality, dc=degree centrality, cc=closeness centrality.
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promiscuous nature of their domains (Table 5.3). In order tocalculate the general promis-

cuity of each domain we firstly extracted domain-domain interaction frequencies from

PFAM (Batemanet al., 2004). The promiscuity p values shown in the table were calcu-

lated based on this analysis of interaction frequencies of the PFAM domains, which con-

form to a probability density function as described by Jonsson & Bates (2006a). Sixteen

of the top 20 most frequent occurring cvd domains are promiscuous and 7 are among the

top 30 most frequent occurring cancer domains. Table 5.3 shows that domain promiscuity

can generally be seen to increase with increasing cvd domainfrequency. Two domains

namely, zinc finger, C4 type PF00105 and ligand-binding domain of nuclear hormone re-

ceptor PF00104 are not promiscuous domains but are common toboth disease conditions.

Both families are steroid or nuclear hormone receptors implicated in DNA-dependent

transcription regulation.

Most frequently occurring cvd do-

mains (descending order)

PFAM id Promiscuity (p) In top 30

cancer do-

mains

Promiscuous

(p<0.005)

Protein kinase domain PF00069 3.70E-013 ♠ ⋆

7 transmembrane receptor

(rhodopsin family)

PF00001 4.67E-003 ⋆

Immunoglobulin domain PF00047 7.93E-011 ♠ ⋆

Protein tyrosine kinase PF07714 4.67E-003 ⋆

EGF-like domain PF00008 1.33E-011 ♠ ⋆

Immunoglobulin V-set domain PF07686 2.84E-009 ⋆

Pleckstrin homology domain PF00169 2.18E-005 ⋆

Zinc finger, C4 type (two domains) PF00105 1.67E-001 ♠

Ligand-binding domain of nuclear

hormone receptor

PF00104 2.79E-002 ♠

Immunoglobulin I-set domain PF07679 1.30E-004 ⋆

Fibronectin type III domain PF00041 3.64E-006 ♠ ⋆

SH2 domain PF00017 3.64E-006 ⋆

Leucine Rich Repeat PF00560 1.33E-011 ⋆

EGF-like domain PF07974 7.80E-004 ⋆

Trypsin PF00089 0.00E+000 ⋆

Collagen triple helix repeat (20

copies)

PF01391 1.67E-001

ABC transporter PF00005 7.80E-004 ⋆

SH3-domain PF00018 6.09E-007 ♠ ⋆

Calcium binding EGF domain PF07645 3.64E-006 ⋆

Variant SH3 domain PF07653 1.00E+000

Table 5.3: Promiscuity of the top 20 most frequently occurring cvd domains (in descending order).
A ♠ is present for domains that are frequently present in cancerproteins. Domains marked with a⋆
are thought to be promiscuous domains.
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Joyet al.(2005) observed an abundance of proteins in the yeast interactome displaying

high betweenness and low connectivity (degree) (HBLC). Such a feature is not found in

randomly generated scale free networks. They suggested this was due to some modular

organization of the network. We were able to show HBLC is a feature of the studied

human PPI network (Figure 5.2) and note disease proteins seem to be evenly distributed in

this figure. This measure of modularity through HBLC is observed where a link between

modules is composed of 2 or more steps, the intermediate proteins will display low degree.

Using a cutoff of p<0.05 for high betweenness and low degree there are no proteins that

display ‘extreme’ HBLC. Identification of community bridges in the clustering analysis

provides additional evidence of modularity within the network. Such community bridges

whilst having high betweenness, may also display high degree due to the formation of

interactions with proteins from multiple communities, therefore not displaying HBLC but

still supporting the idea of modularity.

5.2.2 Clustering

The community structure of the network was then analysed with theCfinder program.

For low k-values there are a large number of highly overlapping communities. Ask in-

creases, the number of communities decreases as does the overlap between them (table

5.4). The disease proteins make up a larger proportion of thecommunity proteins ask-

value increases suggesting a greater presence in complex, distinct communities. There is

no significant difference in the distribution of community based proteins with increasing

k-values between the disease datasets using the Wilcoxon rank sum test.

For eachk-value cancer proteins tend to be in the larger communities than cvd proteins

which in turn are in larger communities than non-disease proteins (Figure 5.3). This

suggests cvd and cancer proteins also take part in large processes. Are these proteins

spread across a number of communities or do they cluster within specific communities?

Figure 5.4 shows that cvd priority 1 and cancer proteins exhibit a greater tendancy to

cluster within communities than cvd (all priorities) and non disease proteins.

Table 5.5 shows which proteins are present in multiple communities and therefore

possibly act as interfaces between multiple processes further supporting the idea of mod-
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Figure 5.2: Degree (dc) versus betweenness centrality (bc) for the studied PPI network. Six subsets
of proteins are shown; cancer and cvd priority 1 proteins, cancer and cvd priority 2 or 3 proteins,
cancer proteins, cvd priority 2 or 3 proteins, cvd priority 1proteins, proteins not implicated in either
cvd or cancer
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Figure 5.3: The distribution of community sizes (number of proteins) for the studied PPI network.
Four types of communities are represented; those containing cvd proteins (all priorities), cvd proteins
(priority 1 only), cancer proteins and communities that do not contain either cvd or cancer proteins
(non disease).
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Figure 5.4: Illustration showing the percentage of proteins assigned to each community for 4 protein
subsets. It shows any clustering within communities. The plots represent 4 datasets; communities
containing cvd proteins (all priorities), cvd priority 1 proteins (cvdpr1), cancer proteins and commu-
nities that do not contain either cvd or cancer proteins (nondisease)
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k-value Communities % cvd proteins % cvdpr1 proteins % cancer proteins
3 222 15.2(0.50) 3.1(0.45) 3.5(0.45)
4 189 17.8(0.27) 3.8(0.25) 4.9(0.29)
5 98 18.4(0.13) 4.9(0.15) 5.4(0.15)
6 37 21.2(0.06) 5.5(0.07) 6.1(0.06)
7 19 22.4(0.03) 7.0(0.04) 7.0(0.04)
8 9 27.8(0.02) 8.8(0.03) 6.3(0.02)

Table 5.4: The percentage of proteins making up communities from cvd, cvd priority 1 and cancer
protein datasets. The values in brackets represent the proportion of proteins for a chosenk-value as a
fraction of all communities. Cardiovascular disease proteins make up 15.2% of proteins ink-value =
3 communities. This percentage accounts for 0.5 of all cvd proteins assigned to communities. There
are more proteins in the larger communities (lowk-value) but the disease proteins make up a larger
proportion of the community proteins ask-value increases

ularity within the network. Both cvd and cancer proteins actas bridges more often than

expected at eachk-value. There is no significant difference in the distribution of pro-

teins that are bridges between cvd, cvd priority 1 and canceracross thek-values using the

Wilcoxon rank sum test.

k-
value

cvd
obs(%)

cvd
exp(%)[fd]

cvdpr1
obs(%)

cvdpr1
exp(%)[fd]

cancer
obs(%)

cancer
exp(%)[fd]

3 12.29 7.95[1.55] 13.57 8.45[1.61] 12.67 8.46[1.50]
4 14.20 12.78[1.11] 9.66 13.16[0.73] 21.39 12.60[1.70]
5 14.97 9.33[1.61] 17.05 10.03[1.70] 12.37 10.26[1.21]
6 14.79 14.18[1.04] 21.62 13.88[1.56] 17.07 14.13[1.21]
7 13.51 6.64[2.03] 17.39 7.49[2.32] 17.39 7.49[2.32]
8 10.53 0.00[-] 16.67 1.60[10.43] 7.69 2.60[2.96]

Table 5.5: Community bridges - proteins that are present in multiple communities, acting as in-
terfaces between processes. The percentage of proteins belonging to more than one community is
shown for protein datasets cvd, cvd priority 1 and cancer (obs=observed). Expected (exp) values
were based on non cvd priority 1 or non cancer proteins (fd=fold difference between observed and
expected).

5.2.3 Combining centrality and clustering for novel candidate priori-

tisation

Combining measures relating to centrality and clustering may help identify or prioritise

disease candidate genes. For example, here we describe, andshow in Figure 5.5 how

a set of proteins can be characterised in terms of their PPI topological environment and

hence evaluated as potential cvd related proteins. We are not suggesting they are good

candidates, merely showing how they can be evaluated. For this particular example we
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show all proteins belonging to communities fork-value 8 which represent the most com-

plex, tightly connected communities found in the interactome. The cvd proteins currently

make up 27.8% of proteins in communities at thisk-value, but this only represents 2% of

all community based cvd proteins (Table 5.4). The shape of the node (protein) represents

the disease status, the size is proportionate to the degree and the colour represents the

betweenness centrality of the protein as shown in the colourbar. Of the 9 communities

present, one is notable in that 6 of its 8 proteins (a single clique) are currently annotated

as cvd proteins (Figure 5.6). The remaining 2 proteins couldbe of interest due to their

presence in such a highly connected, cvd rich community. Thefirst of these proteins is

cell division cycle 37 protein CDC37 (NP008996), which is thought to play a critical

role in directing heat shock protein 90 (HSP90) to its targetkinases. HSP90 is present in

this clique, it is annotated as being both cancer and cvd related. The second protein is the

TNF receptor-associated protein 1 TRAP1 (NP057376) which is a mitochondrial HSP90

protein. A number of proteins from otherk-value=8 communities are also of potential

interest (Figure 5.5). Firstly, transportin 1 isoform 1 TNP01 (NP002261) is currently

not annotated as being cvd or cancer related, yet it interacts directly with a large number

of cvd proteins and exhibits extremely high betweenness anddegree centrality (p<0.05).

It can also be seen to be bridging 2 communities and may therefore act as an interface

between functional modules. This gene encodes the beta subunit of the karyopherin re-

ceptor complex which interacts with nuclear localization signals to target nuclear proteins

to the nucleus. Secondly, leucine zipper transcription regulator 2 SEC16B (NP149118).

It currently has no known cvd or cancer association yet it displays very high degree and

betweenness (p<0.05) and provides a link between 2 communities through its direct in-

teraction with the nuclear factor of kappa light polypeptide gene NFKB2 (NP002493),

which is a cvd priority 1 and cancer associated protein. SEC16B is required for secre-

tory cargo traffic from the endoplasmic reticulum to the golgi apparatus and for nor-

mal transitional endoplasmic reticulum (tER) organization. This protein is ubiquitous in

terms of tissue specificity. Finally, protein phosphatase 2catalytic subunit beta PPP2CB

(NP 001009552) also stands out as an extremely influential interactome protein (both

degree and betweenness centrality p<0.05), it also currently has no cvd or cancer anno-
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tation. This protein is implicated in the negative control of cell growth and division, and

the gene encodes the phosphatase 2A catalytic subunit. Protein phosphatase 2A is one of

the four major serine/threonine phosphatases, and it is implicated in the negative control

of cell growth and division. This protein maps to 8p21-p12, aregion associated with a

broad range of cancers (Imbertet al., 1996).

PPP2CB

HSP90AA1TNP01
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TRAP1
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0.021
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0.027
0.030

Figure 5.5: Network showing all proteins in communities fork-value = 8. The interactions between
proteins of these communities are shown as edges linking thenodes. The node size = degree, colour
= betweenness centrality and the node shape is defined by the disease status of the protein. A number
of nodes are labelled with their protein identifiers.

5.3 Discussion

Network based approaches are providing important tools forsystems biology. Simple

graph theoretic measures such as degree and betweenness centralities are useful metrics

for suggesting how influential particular proteins (nodes)in the network are, in relation

to the network as a whole. We have found that both cvd and cancer proteins are over-

represented within the set of proteins that are central to the interactome, particularly with

respect to degree and betweenness, and that generally pleiotropic proteins tend to be most
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Figure 5.6: Network showing all proteins in a cvd richk-value = 8 community comprising a single
clique where 6 of the 8 component proteins are implicated in cvd. The node size = degree, colour
= betweenness centrality and the node shape is defined by the disease status of the protein. Nodes
are labelled with their protein identifiers. CHUK (NP001269) is a conserved helix-loop-helix ubiq-
uitous kinase, MAP3K14 (NP003945) is mitogen-activated protein kinase, IKBKG (NP003630)
is an inhibitor of kappa light polypeptide gene, IKBKE (NP054721) is a IKK-related kinase ep-
silon, IKBKB (NP 001547) is an inhibitor of kappa light polypeptide gene, CDC37 (NP008996)
is the cell division cycle 37 protein, TRAP1 (NP057376) is the TNF receptor-associated protein 1,
HSP90AA1 (NP005339) is heat shock protein 90kDa alpha.
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influential (Figure 5.1). A list of influential human interactome proteins, that is proteins

with centrality scores with p<0.05, is available fromhttp://compbio.mds.qmw.

ac.uk/centralproteins.txt. This list may be useful for the prioritisation of

candidate gene lists.

Closeness centrality can only be calculated for connected proteins which leads to high

closeness values for proteins belonging to small connectedcomponents. To overcome

this caveat the closeness centrality could have been calculated for the single largest con-

nected component with the unfortunate effect of reducing the number of proteins with

closeness scores. This may partly explain why cvd is not as over-represented in the list

of proteins exhibiting high closeness as this list containsa large number of proteins from

small components.

Barabassi et al. (2007) have shown that ‘essential’ diseasegenes, in which muta-

tions are lethal, often causing embryonic mortality, form hubs (highly connected nodes)

whereas ‘non-essential’ disease genes do not display this tendency (Gohet al., 2007).

Analysis performed in chapter 4 supported this claim by showing hypertension related

proteins, disruption of which would not be thought to be lethal, are generally not hub

like proteins (Dobsonet al., 2008). In this study, we show that cvd and cancer proteins

display a range of centrality scores but they are over-represented in the list of proteins

displaying high degree and betweenness scores. Cardiovascular disease and cancer cover

a wide range of disease phenotypes which may partly explain varying centrality scores.

In addition, the cvd dataset contains many proteins which are thought to be good candi-

dates for association with cvd but as yet many are unproven. Priority 2 and 3 proteins

are more speculative suggestions than priority 1 proteins.Work is currently underway

testing the cvd chip (Keatinget al., 2008) in a range of cardiovascular diseases including

hypertension. This data will indicate whether any are actually causal in cvd.

Our results relating to network clustering add to the findings first shown in cancer by

Jonsson & Bates (2006a). Importantly we are also able to showthat similar properties

are exhibited in a much larger dataset of cvd proteins. Cardiovascular related proteins,

especially priority 1 proteins, tend to act through a small number of large, complex (tightly

connected) processes and exist as interfaces between processes more often that would be
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expected

We repeated the analysis on the cvd proteins in the I2D (previously OPHID) dataset

(Brown & Jurisica, 2005) of PPIs in order to investigate whether the findings could be

replicated. In an attempt to remove the effect of experimental bias, we only included in-

teractions obtained through high throughout approaches byexcluding those sourced from

BIND, HPRD, MINT and MIPS. An obvious difference between thestudied dataset and

this I2D subset was the much greater range of clique sizes, extending tok=40, compared

to k=12. It is reassuring to see the trends could be replicated inthis dataset. We still

find that there is an overrepresentation of bridges in the I2Ddataset for cvd and that cvd

proteins cluster together in larger communities for eachk. Less obvious was the dra-

matic increase in the proportion of cvd proteins with increasingk, although the maximum

proportion of cvd proteins can be seen atk=23 for cvdpr1 andk=31, 32, 33 for cvd (all

priorities). In terms of centrality, observations were replicated with the average between-

ness and degree centralities being 2.4 and 1.3 fold greater for cvdpr1 proteins compared

to non cvd proteins.

The results presented here show that there are network properties common to both

cancer and cvd which may also be reflected in other diseases. The shared properties

relate to both network centrality and clustering. There area number of proteins actually

associated with both conditions and these may be general disease mediators.

The strategy of combining centrality measures with analysis of community structure

is important when taking this wholeist perspective to understanding the etiological mech-

anisms of disease.
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Chapter 6

General Discussion

Advances in methods for analysing genes and proteins related to disease have provided

new opportunities for the application of biology to medicalpractice (Mathewet al., 2007).

The completeness, volume and interpretation of data produced by such methods, requires

novel computational biology approaches. This thesis describes four different analyses,

the results of which may aid in the interpretation and prioritisation of candidate disease

genes in large scale molecular datasets. Machine learning and graph theoretic approaches

were used. Some of the approaches combined heterogeneous data sources including such

as PPI databases and curated databases such as OMIM.

Initial work focused on developing methods for identifyingdeleterious nsSNPs. The

analysis found various sequence and structural propertieswere important. Sequence con-

servation was shown to be the most useful attribute in predicting functional nsSNPs in a

large dataset from the SWISSPROT database. Structural attributes in combination with

the conservation score improved the prediction accuracy, but other non structurally depen-

dant attributes were found to reduce the error rate further and were valuable in the absence

of a conservation score. The nsSNP function prediction analysis also showed the impor-

tance of balance within training datasets highlighting theimportance of training dataset

configuration. Currently, the SNP function prediction scores are being used for prioritis-

ing nsSNPs in current BRIGHT studies (http://www.brightstudy.ac.uk), and

for the recent blood pressure meta analysis (Christopher Newton-Chehet al., 2009). The

method could be extrapolated, by the creation of a tool to obtain on the fly predictions for

novel SNPs identified through resequencing experiments. The user would be required to
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submit a suspected SNP and its surrounding sequence. Since completion of the nsSNP

analysis, a number of further studies have been performed, thirteen of which have cited

the work in this thesis and are complementary. In light of these recent studies (described

in Section 2.3), further work could be performed, for example: some of the attributes

found to be important in studies such as those of Tianet al. (2007) and Hu & Yan (2008)

could be incorporated into the method; a meta server that collects predictions from all

prediction servers would also be useful. A classifier could then be trained which uses

predictions from each of the component servers as attributes. It is currently difficult to

evaluate the worth of such studies without performing functional work to prove that the

SNP was truly a functional SNP. These predictions should be considered a guide to help

prioritise gene candidates. With time more prediction servers may become available to

complement servers such as PolyPhen (Sunyaevet al., 2001) and SIFT (Ng & Henikoff,

2003). The focus of most SNP studies so far has been on predicting nsSNPs whereas

disease associated SNPs often fall in regulatory regions. Such SNPs have only been con-

sidered in a small number of studies such as Mottagui-Tabaret al. (2005) and Torkamani

& Schork (2008), exploring methods to predict these would also be of interest.

Machine learning approaches were also used to develop a method for the functional

annotation of proteins belonging to large diverse superfamilies. Our analysis found that

global sequence properties of protein domains are useful indetermining the protein su-

perfamily. These properties have previously been used to predict protein folds (Ding

& Dubchak, 2001). Such an approach can be used to complement traditional homol-

ogy alignment based approaches. In performing the analysisan enrichment approach

step was explored, this resulted in significant improvements to the classifier performance.

The enrichment step involved carefully choosing and addingsequences to the training

dataset that are currently absent from SCOP. It is expected that this addition could im-

prove performance if applied to the many published fold prediction models (Ashburner

et al., 2000; Ding & Dubchak, 2001; Linet al., 2005; Shen & Chou, 2006; Melvinet al.,

2007; Shamimet al., 2007; Damoulas & Girolami, 2008). To extend this work a selective

ensembling algorithm is currently under construction for multi-classifier, multi-subspace

classification tasks such as the superfamily and fold prediction problem. This should pro-
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vide improved prediction performance over single classifiers. Essentially, the approach

deploys a large number of different ‘base’ classifiers (eg. neural networks and decision

trees) that are trained with various feature subspaces (amino acid bigrams or composition

features for example) and selects the best classifier/subspace pair for each target class,

in this case the protein fold or superfamily. This is achieved rapidly through the use of

the cluster implementation of Weka. These ‘class winners’ are ordered by the number of

predictions made by the winner on the class it represents. This results in a list of rules that

are applied in sequence. This approach has been found to improve previously reported

state of the art approaches in terms of classification accuracy, reported by Linet al.(2005)

on the SCOP PDB-40D benchmark fold dataset (Ding & Dubchak, 2001).

The PPI topology of hypertension implicated proteins was also investigated and mod-

els were produced for predicting novel hypertension proteins. The models showed there

are patterns within PPI networks, as well as shared functionand sequence based proper-

ties that can be used to aid prioritisation of candidate genelists. Predicted hypertension

related proteins are closer and better connected in the interactome than would be expected

by chance, despite not being hubs or having a highly connected local environment. We

thought that geodesic distance between hypertension protein pairs might correlate with

GO semantic similarity but were unable to find a significant correlation. In addition to the

attributes used in this study, data from other sources, suchas expression data, could also

be integrated into the model. A number of recent studies havecombined expression data

and literature derived data with information relating to PPI networks to perform integrated

analyses for the study of human heart failure (Camargo & Azuaje, 2007). In this study, a

PPI network was assembled representing heart failure-relevant interactions. The relation-

ships between protein connectivity and expression were analysed and co-expression and

connectivity. High connectivity did not always correlate with high differential expression

and genes may exhibit weak expression correlation with their interacting partners. The

study was very much an exploratory, hypothesis-free, data driven study. A next stage

for this study, would be to develop a web based application, to enable users to prioritise

novel candidates based on these properties. This could involve either the construction of

a pipeline to calculate the attributes required by the classifier on the fly or precalculating
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the attributes for each RefSeq protein (Pruittet al., 2007) and storing the attributes in a

database.

Finally we performed an interactome analysis of a large dataset of manually curated

cvd and cancer implicated proteins, the data showed that these disease implicated pro-

teins tend to act through a small number of large, complex (tightly connected) processes

and exist as interfaces between processes more often that would be expected. The pro-

teins also had a tendancy to be influential proteins within the interactome and there were

network properties in common which may also be reflected in other diseases. A recent

genome wide meta analysis identified 8 loci associated with blood pressure (Christopher

Newton-Chehet al., 2009). All the gene products from these regions are being assessed

for priority based on their centrality scores, community structure and proximity to other

cvd implicated proteins. A few of the proteins from each of the 8 loci have been found

to belong to the same community, possibly highlighting a common pathway or functional

module. These proteins are priority targets for further investigation. A useful aid to pri-

oritising candidates based upon the studied topological properties would be a metric that

combined values relating to centrality and clustering intoa single score. In addition, a

tool could be developed that allows a user to enter a RefSeq protein identifier and return

a visual representation of the protein in its topological environment with cvd and cancer

implicated proteins highlighted along with the centralityand community structure dis-

played, in a similar manner to figure 5.5. Such an applicationcould be created as a plugin

to the open source package, Cytoscape (Shannonet al., 2003).

Data integration is a rapidly growing field that combines data from wholist heteroge-

neous biological sources providing many opportunities to develop more complete models

of systems. Methods that combine and integrate data with clinical data and pathway data

enable the investigation of how perturbations lead to disease and should provide a clearer

understanding of the pathways through which they act. As such, these methods could aid

accurate diagnosis and prognosis as well as enabling betterprevention and therapy in the

future. Most current cancer treatments, for example, have low specificity leading to ag-

gressive side effects (Mathewet al., 2007). Identifying cancer specific molecular changes

could lead to the identification of disease sub types, and molecular markers, this could
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help in the development of more targeted therapies with fewer side effects. Multiple drug

combinations are often used to treat hypertension, and there are varied patient responses

(Chobanianet al., 2003). A tailored drug combination for a particular patient determined

at diagnosis would improve the patient experience and reduce care costs.

Comprehensive integrated pathway information is vital forstudying biological pro-

cesses and how they are affected in disease. However, pathway data exists in a range

of diverse pathway databases (http://pathguide.org). The datasets are often in-

complete and sparsely populated (Caryet al., 2005). PPIs networks created through a

combination of manual curation and high throughput screening can contribute towards

knowledge of pathway structure.

The integration of genotype and microarray data with PPI andpathway information

is an important challenge showing promise for predicting the effect of a mutation on

disease and identifying therapeutic targets through vulnerable points in particular path-

ways. In a study performed by Chuanget al. (2007), expression data was combined

with PPI networks in order to identify differentially expressed combinations of trancripts

(modules) based on interactome proximity and mutual information. The analysis showed

improved ability over single transcript markers to predictmetastasis within breast cancer

patients. We are currently developing an approach for identifying disease associated mod-

ules within PPI networks based on SNP association scores from GWA studies. This could

help identify multiple SNPs that by themselves do not display significant association but

have a significant combined effect (figure 6.1). This assumesthat the biological pathways

have multiple vulnerable points that can lead to the same disease phenotype (Mathew

et al., 2007). These are examples of integrated approaches that could enable significant

advances in the study and understanding of the etiology of complex diseases.

This thesis utilised static, qualitative presentation of integrated genome scale data,

through the identification and study of relationships that exist between component parts.

A quantitative analysis that aims to understand the relationships or network dynamics

(understanding the nature of the links) within a system is a bigger challenge and it is

receiving growing interest (Luscombeet al., 2004). Progress in this area is being made

by the measuring of gene expression through microarrays andpathway simulations have
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Figure 6.1: An approach that combines SNP association Chi-squared scores to identify disease
associated PPI subnetworks. In this example, SNPs were taken from the coeliac genome wide asso-
ciation study by van Heelet al.(2007). Proteins (nodes) are coloured according to their Chi-squared
value with diamonds representing proteins with Chi-squared scores having p-values< 0.05

been used in model organisms such asEscherichia coliand budding yeast to find pathway

regulators (Chenet al., 2000). The speed of advances within these key areas of computa-

tional biology suggests that such integrated, wholist approaches will extend long into the

future.
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Appendix A. Environment, Parameters and Specification

Hardware

The majority of the data processing performed in this thesiswas done using Linux and

Unix computers available at the Genome Centre, St Barts and The London, Queen Mary

University of London. Both the Genome Centre and Queen Mary University of Lon-

don High Throughput Computing (HTC) clusters were used to perform analyses. Large

amounts of filespace on the Genome Centre servers were used tostore data and software.

All Genome Centre servers and cluster were administered andmaintained by the thesis

author.

Programming Languages and Databases

The main programming languages used for data harvesting, parsing, manipulation, re-

sults collection and evaluation were Perl 5 (http://www.perl.org) and Python

(http://www.python.org). MySQL version 5.0.5 (http://www.mysql.com)

was used to create databases for storing data and results of the analyses. R version 2.6.2

was used for statistical tests including the Wilcoxon sign rank test, Pearsons and Spear-

mans and to produce most of the plots within the thesis (R Development Core Team,

2008).

Software and Operating Systems

• Linux and Unix operating systems including Ubunbtu, CentOS, Debian, Scientific

Linux and Sun Solaris 8 distributions were used throughout this thesis. All pro-

grams were written and tested using these operating systems.

• The Weka machine learning workbench was used for machine learning classifica-

tion (Witten & Frank, 1999). It consists of Java implementations of many ma-

chine algorithms, that can be applied directly to a dataset.Weka contains tools for

data pre-processing, classification, regression, clustering, association rules, and vi-

sualisation. LibSVM was integrated into the Weka Environment using WLSVM

(EL-Manzalawy & Honavar, 2005).
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• The Apache 2 web server (http://www.apache.org/) and Perl CGI mod-

ules (http://perldoc.perl.org/CGI.html) were used to create the web

based, cluster implementation of Weka.

• The PSIC (position-specific independent counts) program was used to calculate

conservation at the position of a nsSNP (Ramenskyet al., 2002). Profiles are ex-

tracted from sequence alignments with position-specific counts of independent ob-

servations.

• The LDAS (Lightweight Distributed Annotation Server) framework was used for

implementing the DAS server to server up nsSNP function predictions (Dowell

et al., 2001)

• PSI-BLAST and BLAST were used for various analyses that required sequences

to be aligned. This included the enrichment step of the protein function analysis

(Altschulet al., 1997).

• BLASTClust was used to cluster sequences based on their sequence similarity

(Dondoshansky, 2002).

• Secondary structure prediction of a protein was performed with PSIPRED (McGuf-

fin et al., 2000).

• The Python API implemented by Casbonet al. (2006) as part of the Biopython

project was used to manipulate and parse ASTRAL and SCOP filesto construct

datasets for the protein superfamily analysis.

• G-Sesame was used to calculate the semantic similarity of GOterms associated

with sets proteins (Wanget al., 2007).

• The NetworkX Python routines were used to calculate centrality scores and produce

network figures (https://networkx.lanl.gov)

• TheCfinderprogram was used to identify communities for the analysis ofcvd and

cancer implicated proteins (Adamcseket al., 2006). This program uses thek-clique

clustering method.
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Appendix B. Supplementary tables relating to protein su-

perfamily prediction
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Superfamily No. of
domains
(D)

No. of
domains
(20E)

No. of
domains
(30E)

30E/D

46458 a.1.1 sf Globin-like 11 22 31 2.82

46689 a.4.1 sf Homeodomain-like 12 35 35 2.92

46785 a.4.5 sf “Winged helix” DNA-

binding domain

25 81 114 4.56

47266 a.26.1 sf 4-helical cytokines 15 19 27 1.8

48371 a.118.1 sf ARM repeat 11 35 50 4.55

49785 b.18.1 sf Galactose-binding

domain-like

13 17 21 1.62

49899 b.29.1 sf Concanavalin A-like

lectins/glucanases

14 19 28 2

50249 b.40.4 sf Nucleic acid-binding

proteins

19 37 58 3.05

50729 b.55.1 sf PH domain-like 11 27 27 2.45

51182 b.82.1 sf RmlC-like cupins 11 16 20 1.82

88633 b.121.4 sf Positive stranded ss-

RNA viruses

11 23 23 2.09

51445 c.1.8 sf (Trans)glycosidases 15 30 45 3

51735 c.2.1 sf NAD(P)-binding

Rossmann-fold domains

13 24 56 4.31

52540 c.37.1 sf P-loop containing nu-

cleoside triphosphate hydrolases

43 89 138 3.21

52833 c.47.1 sf Thioredoxin-like 17 36 41 2.41

52980 c.52.1 sf Restriction

endonuclease-like

13 14 15 1.15

53335 c.66.1 sf S-adenosyl-L-

methionine-dependent methyltrans-

ferases

25 71 92 3.68

53383 c.67.1 sf PLP-dependent trans-

ferases

15 36 72 4.8

53448 c.68.1 sf Nucleotide-diphospho-

sugar transferases

11 20 45 4.09

53474 c.69.1 sf alpha/beta-Hydrolases23 41 130 5.65

53850 c.94.1 sf Periplasmic binding

protein-like II

13 31 135 10.38

55729 d.108.1 sf Acyl-CoA N-

acyltransferases (Nat)

15 37 49 3.27

57059 g.3.6 sf omega toxin-like 15 19 19 1.27

57095 g.3.7 sf Scorpion toxin-like 12 22 22 1.83

Table 1: Number of domains per superfamily (in the analysis that excluded multi domain proteins)
from Astral20 before enrichment (D) and after enrichment at20% (20E) and 30% (30E) sequence
identity cutoffs
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Table 2: Number of domains per superfamily (in the analysis that in-

cluded multi domain proteins) from Astral20 before enrichment (D) and

after enrichment at 20% (20E) and 30% (30E) sequence identity cutoffs

Superfamily D 20E 30E 30E/D

46458 a.1.1 sf Globin-like 11 19 24 2.18

46626 a.3.1 sf Cytochrome c 15 20 20 1.33

46689 a.4.1 sf Homeodomain-like 23 114 115 5

46785 a.4.5 sf “Winged helix” DNA-

binding domain

55 144 175 3.18

47266 a.26.1 sf 4-helical cytokines 15 20 24 1.6

47473 a.39.1 sf EF-hand 13 25 34 2.62

48371 a.118.1 sf ARM repeat 17 43 53 3.12

48726 b.1.1 sf Immunoglobulin 36 103 105 2.92

49265 b.1.2 sf Fibronectin type III 21 60 61 2.9

81296 b.1.18 sf E set domains 26 52 53 2.04

49503 b.6.1 sf Cupredoxins 15 33 40 2.67

49785 b.18.1 sf Galactose-binding

domain-like

21 37 43 2.05

49899 b.29.1 sf Concanavalin A-like

lectins/glucanases

22 41 56 2.55

50249 b.40.4 sf Nucleic acid-binding

proteins

39 68 91 2.33

50729 b.55.1 sf PH domain-like 19 47 48 2.53

51011 b.71.1 sf Glycosyl hydrolase do-

main

19 24 24 1.26

51182 b.82.1 sf RmlC-like cupins 12 19 22 1.83

88633 b.121.4 sf Positive stranded ss-

RNA viruses

15 23 23 1.53

Continued on Next Page. . .
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Table 2 – Continued

Superfamily D 20E 30E 30E/D

51445 c.1.8 sf (Trans)glycosidases 33 64 99 3

51569 c.1.10 sf Aldolase 12 16 36 3

51735 c.2.1 sf NAD(P)-binding

Rossmann-fold domains

47 87 137 2.91

51905 c.3.1 sf FAD/NAD(P)-binding

domain

21 37 42 2

52317 c.23.16 sf Class I glutamine

amidotransferase-like

11 19 23 2.09

52374 c.26.1 sf Nucleotidylyl trans-

ferase

13 24 31 2.38

52540 c.37.1 sf P-loop containing nu-

cleoside triphosphate hydrolases

70 150 227 3.24

52833 c.47.1 sf Thioredoxin-like 28 56 71 2.54

52980 c.52.1 sf Restriction

endonuclease-like

15 16 17 1.13

53067 c.55.1 sf Actin-like ATPase do-

main

17 27 36 2.12

53098 c.55.3 sf Ribonuclease H-like 15 28 37 2.47

53335 c.66.1 sf S-adenosyl-L-

methionine-dependent methyltrans-

ferases

29 69 110 3.79

53383 c.67.1 sf PLP-dependent trans-

ferases

16 32 66 4.13

53448 c.68.1 sf Nucleotide-diphospho-

sugar transferases

12 19 45 3.75

53474 c.69.1 sf alpha/beta-Hydrolases27 54 145 5.37

Continued on Next Page. . .
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Table 2 – Continued

Superfamily D 20E 30E 30E/D

53850 c.94.1 sf Periplasmic binding

protein-like II

15 33 152 10.13

56784 c.108.1 sf HAD-like 11 23 47 4.27

54001 d.3.1 sf Cysteine proteinases 18 28 33 1.83

54211 d.14.1 sf Ribosomal protein S5

domain 2-like

11 21 23 2.09

54236 d.15.1 sf Ubiquitin-like 11 21 24 2.18

54373 d.16.1 sf FAD-linked reductases,

C-terminal domain

11 19 19 1.73

54593 d.32.1 sf Glyoxalase/Bleomycin

resistance protein/Dihydroxybiphenyl

dioxygenase

12 19 19 1.58

55347 d.81.1 sf Glyceraldehyde-

3-phosphate dehydrogenase-like,

C-terminal domain

11 23 32 2.91

55486 d.92.1 sf Metalloproteases

(“zincins”), catalytic domain

18 44 54 3

55729 d.108.1 sf Acyl-CoA N-

acyltransferases (Nat)

11 25 41 3.73

56672 e.8.1 sf DNA/RNA polymerases11 23 56 5.09

57059 g.3.6 sf omega toxin-like 15 19 19 1.27

57095 g.3.7 sf Scorpion toxin-like 12 20 20 1.67

57196 g.3.11 sf EGF/Laminin 11 55 55 5

57667 g.37.1 sf C2H2 and C2HC zinc

fingers

15 40 40 2.67

57716 g.39.1 sf Glucocorticoid

receptor-like (DNA-binding domain)

13 22 22 1.69
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Table 3:The 49 superfamilies in the multi domain analysis with their

respective folds and classes within the SCOP hierarchy. False positive

superfamily predictions are often correctly assigned at the level of protein

class.

Class Fold Superfamily

46456 a cl All alpha proteins 46457 a.1 cf Globin-like 46458 a.1.1 sf Globin-like

46625 a.3 cf Cytochrome c 46626 a.3.1 sf Cytochrome c

46688 a.4 cf DNA/RNA-

binding 3-helical bundle

46689 a.4.1 sf Homeodomain-

like

46785 a.4.5 sf “Winged helix”

DNA-binding domain

47265 a.26 cf 4-helical cy-

tokines

47266 a.26.1 sf 4-helical cy-

tokines

47472 a.39 cf EF Hand-like 47473 a.39.1 sf EF-hand

48370 a.118 cf alpha-alpha su-

perhelix

48371 a.118.1 sf ARM repeat

48724 b cl All beta proteins 48725 b.1 cf Immunoglobulin-

like beta-sandwich

48726 b.1.1 sf Immunoglobulin

49265 b.1.2 sf Fibronectin type

III

81296 b.1.18 sf E set domains

49379 b.6 cf Cupredoxin-like 49503 b.6.1 sf Cupredoxins

49784 b.18 cf Galactose-

binding domain-like

49785 b.18.1 sf Galactose-

binding domain-like

49898 b.29 cf Concanavalin A-

like lectins/glucanases

49899 b.29.1 sf Concanavalin

A-like lectins/glucanases

50198 b.40 cf OB-fold 50249 b.40.4 sf Nucleic acid-

binding proteins

Continued on Next Page. . .
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Table 3 – Continued

Class Fold Superfamily

50728 b.55 cf PH domain-like 50729 b.55.1 sf PH domain-like

51010 b.71 cf Glycosyl hydro-

lase domain

51011 b.71.1 sf Glycosyl hydro-

lase domain

51181 b.82 cf Double-stranded

beta-helix

51182 b.82.1 sf RmlC-like cu-

pins

88632 b.121 cf Nucleoplasmin-

like/VP (viral coat and capsid

proteins)

88633 b.121.4 sf Positive

stranded ssRNA viruses

51349 c cl Alpha and beta pro-

teins (a/b)

51350 c.1 cf TIM beta/alpha-

barrel

51445 c.1.8 sf

(Trans)glycosidases

51569 c.1.10 sf Aldolase

51734 c.2 cf NAD(P)-binding

Rossmann-fold domains

51735 c.2.1 sf NAD(P)-binding

Rossmann-fold domains

51904 c.3 cf FAD/NAD(P)-

binding domain

51905 c.3.1 sf FAD/NAD(P)-

binding domain

52171 c.23 cf Flavodoxin-like 52317 c.23.16 sf Class I glu-

tamine amidotransferase-like

52373 c.26 cf Adenine nu-

cleotide alpha hydrolase-like

52374 c.26.1 sf Nucleotidylyl

transferase

52539 c.37 cf P-loop containing

nucleoside triphosphate hydro-

lases

52540 c.37.1 sf P-loop contain-

ing nucleoside triphosphate hy-

drolases

52832 c.47 cf Thioredoxin fold 52833 c.47.1 sf Thioredoxin-

like

52979 c.52 cf Restriction

endonuclease-like

52980 c.52.1 sf Restriction

endonuclease-like

Continued on Next Page. . .
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Table 3 – Continued

Class Fold Superfamily

53066 c.55 cf Ribonuclease H-

like motif

53067 c.55.1 sf Actin-like AT-

Pase domain

53098 c.55.3 sf Ribonuclease

H-like

53334 c.66 cf S-adenosyl-L-

methionine-dependent methyl-

transferases

53335 c.66.1 sf S-adenosyl-L-

methionine-dependent methyl-

transferases

53447 c.68 cf Nucleotide-

diphospho-sugar transferases

53448 c.68.1 sf Nucleotide-

diphospho-sugar transferases

53473 c.69 cf alpha/beta-

Hydrolases

53474 c.69.1 sf alpha/beta-

Hydrolases

53849 c.94 cf Periplasmic bind-

ing protein-like II

53850 c.94.1 sf Periplasmic

binding protein-like II

56783 c.108 cf HAD-like 56784 c.108.1 sf HAD-like

53931 d cl Alpha and beta pro-

teins (a+b)

54000 d.3 cf Cysteine pro-

teinases

54001 d.3.1 sf Cysteine pro-

teinases

54210 d.14 cf Ribosomal pro-

tein S5 domain 2-like

54211 d.14.1 sf Ribosomal pro-

tein S5 domain 2-like

54235 d.15 cf beta-Grasp

(ubiquitin-like)

54236 d.15.1 sf Ubiquitin-like

54372 d.16 cf FAD-linked re-

ductases, C-terminal domain

54373 d.16.1 sf FAD-linked re-

ductases, C-terminal domain

54592 d.32 cf Glyox-

alase/Bleomycin resistance

protein/Dihydroxybiphenyl

dioxygenase

54593 d.32.1 sf Glyox-

alase/Bleomycin resistance

protein/Dihydroxybiphenyl

dioxygenase

Continued on Next Page. . .
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Table 3 – Continued

Class Fold Superfamily

55346 d.81 cf Glyceraldehyde-

3-phosphate dehydrogenase-

like, C-terminal domain

55347 d.81.1 sf

Glyceraldehyde-3-phosphate

dehydrogenase-like, C-terminal

domain

55485 d.92 cf Zincin-like 55486 d.92.1 sf Metallopro-

teases (“zincins”), catalytic do-

main

55728 d.108 cf Acyl-CoA N-

acyltransferases (Nat)

55729 d.108.1 sf Acyl-CoA N-

acyltransferases (Nat)

56572 e cl Multi domain pro-

teins (alpha and beta)

56671 e.8 cf DNA/RNA poly-

merases

56672 e.8.1 sf DNA/RNA poly-

merases

56992 g cl Small proteins 57015 g.3 cf Knottins (small in-

hibitors, toxins, lectins)

57059 g.3.6 sf omega toxin-like

57095 g.3.7 sf Scorpion toxin-

like

57196 g.3.11 sf EGF/Laminin

57666 g.37 cf C2H2 and C2HC

zinc fingers

57667 g.37.1 sf C2H2 and

C2HC zinc fingers

57715 g.39 cf Glucocorticoid

receptor-like (DNA-binding do-

main)

57716 g.39.1 sf Glucocorticoid

receptor-like (DNA-binding do-

main)
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Table 4:The precision, recall and F-measure produced by PSI-BLAST

and SVMs on the unenriched dataset containing 24 superfamilies (do-

mains from multi domain proteins excluded).

SVM PSI-BLAST

Superfamily Precision Recall F-Measure Precision Recall F-Measure

46458 a.1.1 sf Globin-like 0.71 1 0.83 1 0.94 0.97

46689 a.4.1 sf

Homeodomain-like

0.67 0.67 0.67 1 0.33 0.5

46785 a.4.5 sf “Winged he-

lix” DNA-binding domain

0.71 0.83 0.77 1 0.32 0.49

47266 a.26.1 sf 4-helical cy-

tokines

1 0.63 0.77 1 0.3 0.47

48371 a.118.1 sf ARM re-

peat

0.8 0.67 0.73 1 0.65 0.79

49785 b.18.1 sf Galactose-

binding domain-like

0.4 0.67 0.5 1 0.32 0.48

49899 b.29.1 sf Con-

canavalin A-like

lectins/glucanases

0.5 0.57 0.53 1 0.67 0.8

50249 b.40.4 sf Nucleic

acid-binding proteins

0.75 0.33 0.46 1 0.32 0.49

50729 b.55.1 sf PH domain-

like

0.5 0.5 0.5 1 0.59 0.74

51182 b.82.1 sf RmlC-like

cupins

0.75 0.6 0.67 1 0.81 0.9

88633 b.121.4 sf Positive

stranded ssRNA viruses

0.8 0.8 0.8 1 0.63 0.77

Continued on Next Page. . .
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Table 4 – Continued

Superfamily Precision Recall F-Measure Precision Recall F-Measure

51445 c.1.8 sf

(Trans)glycosidases

0.8 0.57 0.67 1 0.59 0.74

51735 c.2.1 sf NAD(P)-

binding Rossmann-fold do-

mains

0.8 0.67 0.73 1 0.95 0.97

52540 c.37.1 sf P-loop con-

taining nucleoside triphos-

phate hydrolases

0.5 0.71 0.59 1 0.75 0.86

52833 c.47.1 sf

Thioredoxin-like

0.86 0.67 0.75 1 0.85 0.92

52980 c.52.1 sf Restriction

endonuclease-like

0.5 0.57 0.53 1 0.1 0.18

53335 c.66.1 sf S-adenosyl-

L-methionine-dependent

methyltransferase

0.2 0.23 0.21 1 0.84 0.91

53383 c.67.1 sf PLP-

dependent transferases

0.56 0.63 0.59 1 1 1

53448 c.68.1 sf Nucleotide-

diphospho-sugar trans-

ferases

0 0 0 1 0.59 0.74

53474 c.69.1 sf alpha/beta-

Hydrolases

0.55 0.55 0.55 1 0.91 0.95

53850 c.94.1 sf Periplasmic

binding protein-like II

0.71 0.71 0.71 1 0.8 0.89

55729 d.108.1 sf Acyl-CoA

N-acyltransferases (Nat)

0.67 0.29 0.4 1 0.95 0.98

Continued on Next Page. . .
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Table 4 – Continued

Superfamily Precision Recall F-Measure Precision Recall F-Measure

57059 g.3.6 sf omega toxin-

like

0.86 0.86 0.86 0 0 0

57095 g.3.7 sf Scorpion

toxin-like

0.83 0.83 0.83 1 0.11 0.2
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Table 5:The precision, recall and F-measure produced by PSI-BLAST

and SVMs on the unenriched dataset containing 49 superfamilies (do-

mains from multi domain proteins included).

SVM PSI-BLAST

Superfamily Precision Recall F-Measure Precision Recall F-Measure

46458 a.1.1 sf Globin-like 0.78 0.82 0.8 1 0.94 0.97

46626 a.3.1 sf Cytochrome c0.76 0.7 0.73 1 0.83 0.9

46689 a.4.1 sf

Homeodomain-like

0.51 0.63 0.56 1 0.43 0.6

46785 a.4.5 sf “Winged he-

lix” DNA-binding domain

0.72 0.77 0.74 1 0.35 0.52

47266 a.26.1 sf 4-helical cy-

tokines,

0.74 0.61 0.67 1 0.3 0.47

47473 a.39.1 sf EF-hand, 0.63 0.26 0.37 1 0.58 0.73

48371 a.118.1 sf ARM re-

peat,

0.64 0.64 0.64 1 0.44 0.61

48726 b.1.1 sf Immunoglob-

ulin

0.54 0.7 0.61 1 0.78 0.88

49265 b.1.2 sf Fibronectin

type III

0.58 0.48 0.53 1 0.71 0.83

81296 b.1.18 sf E set do-

mains

0.19 0.18 0.18 1 0.28 0.44

49503 b.6.1 sf Cupredoxins 0.07 0.04 0.05 1 0.78 0.88

49785 b.18.1 sf Galactose-

binding domain-like

0.43 0.48 0.46 1 0.42 0.59

49899 b.29.1 sf Con-

canavalin A-like

lectins/glucanases

0.37 0.49 0.42 1 0.64 0.78

Continued on Next Page. . .
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Table 5 – Continued

Superfamily Precision Recall F-Measure Precision Recall F-Measure

50249 b.40.4 sf Nucleic

acid-binding proteins

0.33 0.49 0.39 1 0.39 0.56

50729 b.55.1 sf PH domain-

like

0.63 0.59 0.61 1 0.59 0.74

51011 b.71.1 sf Glycosyl hy-

drolase domain

0.59 0.55 0.57 0.89 0.28 0.42

51182 b.82.1 sf RmlC-like

cupins

0.14 0.06 0.08 1 0.78 0.88

88633 b.121.4 sf Positive

stranded ssRNA virus

0.64 0.41 0.5 1 0.5 0.67

51445 c.1.8 sf

(Trans)glycosidases

0.53 0.82 0.65 1 0.71 0.83

51569 c.1.10 sf Aldolase 0 0 0 1 0.72 0.84

51735 c.2.1 sf NAD(P)-

binding Rossmann-fold do-

mains

0.44 0.67 0.53 0.92 0.87 0.9

51905 c.3.1 sf

FAD/NAD(P)-binding

domain

0.46 0.47 0.46 0.97 0.91 0.94

52317 c.23.16 sf Class I

glutamine amidotransferase-

like

0.6 0.19 0.29 1 0.88 0.93

52374 c.26.1 sf Nucleotidy-

lyl transferase

0 0 0 1 0.89 0.94

52540 c.37.1 sf P-loop con-

taining nucleoside triphos-

phate hydrolases

0.34 0.75 0.46 1 0.82 0.9

Continued on Next Page. . .
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Table 5 – Continued

Superfamily Precision Recall F-Measure Precision Recall F-Measure

52833 c.47.1 sf

Thioredoxin-like

0.77 0.57 0.66 1 0.83 0.91

52980 c.52.1 sf Restriction

endonuclease-like

0.33 0.09 0.14 1 0.09 0.16

53067 c.55.1 sf Actin-like

ATPase domain

0.57 0.46 0.51 1 0.27 0.42

53098 c.55.3 sf Ribonucle-

ase H-like

0.52 0.48 0.5 1 0.57 0.72

53335 c.66.1 sf S-adenosyl-

L-methionine-dependent

methyltransferases

0.23 0.33 0.27 1 0.86 0.93

53383 c.67.1 sf PLP-

dependent transferases

0.67 0.42 0.51 1 1 1

53448 c.68.1 sf Nucleotide-

diphospho-sugar trans-

ferases

0 0 0 1 0.61 0.76

53474 c.69.1 sf alpha/beta-

Hydrolases

0.59 0.58 0.58 1 0.93 0.96

53850 c.94.1 sf Periplasmic

binding protein-like II

1 0.35 0.52 1 0.74 0.85

56784 c.108.1 sf HAD-like 1 0.06 0.12 1 0.19 0.32

54001 d.3.1 sf Cysteine pro-

teinases

0 0 0 1 0.59 0.74

54211 d.14.1 sf Ribosomal

protein S5 domain 2-like

0.31 0.19 0.23 1 0.53 0.69

54236 d.15.1 sf Ubiquitin-

like

0.33 0.12 0.17 1 0.31 0.48

Continued on Next Page. . .
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Table 5 – Continued

Superfamily Precision Recall F-Measure Precision Recall F-Measure

54373 d.16.1 sf FAD-linked

reductases, C-terminal do-

main

0.57 0.25 0.35 1 0.94 0.97

54593 d.32.1 sf Glyox-

alase/Bleomycin resistance

protein/Dihydroxybiphenyl

dioxygenase

1 0.59 0.74 1 0.33 0.5

55347 d.81.1 sf

Glyceraldehyde-3-

phosphate dehydrogenase-

like, C-terminal domain

0.31 0.22 0.26 1 0.41 0.58

55486 d.92.1 sf Metallopro-

teases (“zincins”), catalytic

domain

0.8 0.24 0.36 0.96 0.85 0.9

55729 d.108.1 sf Acyl-CoA

N-acyltransferases (Nat)

0.5 0.37 0.43 0.92 0.75 0.83

56672 e.8.1 sf DNA/RNA

polymerases

0 0 0 1 0.81 0.9

57059 g.3.6 sf omega toxin-

like

0.5 0.55 0.52 0 0 0

57095 g.3.7 sf Scorpion

toxin-like

0.63 0.56 0.59 1 0.11 0.2

57196 g.3.11 sf

EGF/Laminin

0.71 0.63 0.67 1 0.06 0.12

57667 g.37.1 sf C2H2 and

C2HC zinc fingers

0.9 0.82 0.86 1 0.14 0.24

Continued on Next Page. . .
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Table 5 – Continued

Superfamily Precision Recall F-Measure Precision Recall F-Measure

57716 g.39.1 sf Glucocor-

ticoid receptor-like (DNA-

binding domain)

0.5 0.35 0.41 0 0 0
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Table 6:The 24 superfamilies in this study with their respective folds

and classes within the SCOP hierarchy. False positive superfamily pre-

dictions are often correctly assigned at the level of protein class.

Class Fold Superfamily

46456 a cl All alpha proteins 46457 a.1 cf Globin-like 46458 a.1.1 sf Globin-like

46688 a.4 cf DNA/RNA-

binding 3-helical bundle

46689 a.4.1 sf

Homeodomain-like

46785 a.4.5 sf “Winged he-

lix” DNA-binding domain

47265 a.26 cf 4-helical cy-

tokines

47266 a.26.1 sf 4-helical cy-

tokines

48370 a.118 cf alpha-alpha

superhelix

48371 a.118.1 sf ARM re-

peat

48724 b cl All beta proteins 49784 b.18 cf Galactose-

binding domain-like

49785 b.18.1 sf Galactose-

binding domain-like

49898 b.29 cf Concanavalin

A-like lectins/glucanases

49899 b.29.1 sf Con-

canavalin A-like

lectins/glucanases

50198 b.40 cf OB-fold 50249 b.40.4 sf Nucleic

acid-binding proteins

50728 b.55 cf PH domain-

like

50729 b.55.1 sf PH domain-

like

51181 b.82 cf Double-

stranded beta-helix

51182 b.82.1 sf RmlC-like

cupins

88632 b.121 cf

Nucleoplasmin-like/VP

(viral coat and capsid

proteins)

88633 b.121.4 sf Positive

stranded ssRNA viruses

Continued on Next Page. . .
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Table 6 – Continued

Class Fold Superfamily

51349 c cl Alpha and beta

proteins (a/b)

51350 c.1 cf TIM

beta/alpha-barrel

51445 c.1.8 sf

(Trans)glycosidases

1734 c.2 cf NAD(P)-binding

Rossmann-fold

51735 c.2.1 sf NAD(P)-

binding Rossmann-fold do-

mains

52539 c.37 cf P-loop con-

taining nuceoside triphos-

phate hydrolases

52540 c.37.1 sf P-loop con-

taining nucleoside triphos-

phate hydrolases

52832 c.47 cf Thioredoxin

fold

52833 c.47.1 sf

Thioredoxin-like

52979 c.52 cf Restriction

endonuclease-like

52980 c.52.1 sf Restriction

endonuclease-like

53334 c.66 cf S-adenosyl-

L-methionine-dependent

methyltransferases

53335 c.66.1 sf S-adenosyl-

L-methionine-dependent

methyltransferases

53382 c.67 cf PLP-

dependent transferases

53383 c.67.1 sf PLP-

dependent transferases

53447 c.68 cf Nucleotide-

diphospho-sugar trans-

ferases

53448 c.68.1 sf Nucleotide-

diphospho-sugar trans-

ferases

53473 c.69 cf alpha/beta-

Hydrolases

53474 c.69.1 sf alpha/beta-

Hydrolases

53849 c.94 cf Periplasmic

binding protein-like II

53850 c.94.1 sf Periplasmic

binding protein-like II

53931 d cl Alpha and beta

proteins (a+b)

55728 d.108 cf Acyl-CoA

N-acyltransferases Nat)

55729 d.108.1 sf Acyl-CoA

N-acyltransferases (Nat)

Continued on Next Page. . .
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Table 6 – Continued

Class Fold Superfamily

56992 g cl Small proteins 57015 g.3 cf Knottins (small

inhibitors, toxins, ectins)

57059 g.3.6 sf omega toxin-

like

57095 g.3.7 sf Scorpion

toxin-like



Appendix C. Weka classifier lineup 158

Appendix C. Weka classifier lineup

Table 7: The lineup of classifiers and configurations chosen to run as

a batch job on the clustered implementation of Weka. This lineup was

used to identify the best classifier configuration for predicting SCOP su-

perfamily.

Classifier

weka.classifiers.functions.SMO – -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K

’weka.classifiers.functions.supportVector.PolyKernel-C 250007 -E 1.0’

weka.classifiers.bayes.BayesNet – -D -Q weka.classifiers.bayes.net.search.local.K2 – -P 1 -S

BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5

weka.classifiers.bayes.BayesNet – -D -Q weka.classifiers.bayes.net.search.local.HillClimber – -P 1

-S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.rules.PART

weka.classifiers.functions.SMO – -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K

’weka.classifiers.functions.supportVector.PolyKernel-C 250007 -E 2.0’

weka.classifiers.functions.SMO – -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K

’weka.classifiers.functions.supportVector.PolyKernel-C 250007 -E 4.0’

weka.classifiers.functions.SMO – -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K

’weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.01’

weka.classifiers.functions.SMO – -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K

’weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.1’

weka.classifiers.functions.SMO – -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K

’weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.05’

weka.classifiers.functions.SMO – -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1 -K

’weka.classifiers.functions.supportVector.RBFKernel -C 250007 -G 0.001’

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 30 -W weka.classifiers.rules.PART

Continued on Next Page. . .
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Table 7 – Continued

Classifier

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 50 -W weka.classifiers.rules.PART

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.trees.J48

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 30 -W weka.classifiers.trees.J48

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 50 -W weka.classifiers.trees.J48

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.trees.REPTree

weka.classifiers.bayes.BayesNet – -D -Q weka.classifiers.bayes.net.search.local.RepeatedHillClimber

– -U 10 -A 1 -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 30 -W weka.classifiers.trees.REPTree

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 50 -W weka.classifiers.trees.REPTree

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.trees.RandomForest

– -I 10 -K 107 -S 1

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.trees.RandomForest

– -I 10 -K 87 -S 1

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.trees.RandomForest

– -I 10 -K 67 -S 1

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.rules.PART

Continued on Next Page. . .
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Table 7 – Continued

Classifier

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 30 -W weka.classifiers.rules.PART

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 50 -W weka.classifiers.rules.PART

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.trees.J48

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 30 -W weka.classifiers.trees.J48

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 50 -W weka.classifiers.trees.J48

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 10 -W weka.classifiers.trees.REPTree

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 30 -W weka.classifiers.trees.REPTree

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.DataNearBalancedND

– -S 1 -W weka.classifiers.meta.Bagging – -P 100 -S 1 -I 50 -W weka.classifiers.trees.REPTree

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W

weka.classifiers.trees.RandomForest – -I 10 -K 0 -S 1

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.trees.J48 – -C

0.25 -M 2

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.rules.PART –

-M 2 -C 0.25 -Q 1

weka.classifiers.bayes.BayesNet – -D -Q weka.classifiers.bayes.net.search.local.TabuSearch – -L 5

-U 10 -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5

Continued on Next Page. . .
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Table 7 – Continued

Classifier

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.trees.REPTree

– -M 2 -V 0.0010 -N 3 -S 1 -L -1

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.rules.PART – -M 2 -C

0.25 -Q 1

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 30 -W weka.classifiers.rules.PART – -M 2 -C

0.25 -Q 1

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 50 -W weka.classifiers.rules.PART – -M 2 -C

0.25 -Q 1

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.trees.J48

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 30 -W weka.classifiers.trees.J48

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 50 -W weka.classifiers.trees.J48

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.trees.REPTree

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 30 -W weka.classifiers.trees.REPTree

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 50 -W weka.classifiers.trees.REPTree

weka.classifiers.meta.END – -S 1 -I 10 -W weka.classifiers.meta.nestedDichotomies.ClassBalancedND

– -S 1 -W weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W

weka.classifiers.trees.SimpleCart – -S 1 -M 2.0 -N 5 -C 1.0

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.trees.RandomForest – -I

10 -K 107 -S 1

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.trees.RandomForest – -I

10 -K 87 -S 1

weka.classifiers.meta.AdaBoostM1 – -P 100 -S 1 -I 10 -W weka.classifiers.trees.RandomForest – -I

10 -K 67 -S 1

weka.classifiers.functions.LibSVM – -S 0 -K 0 -D 1 -G 1.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010

-P 0.1 -B

Continued on Next Page. . .
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Table 7 – Continued

Classifier

weka.classifiers.functions.LibSVM – -S 0 -K 0 -D 1 -G 1.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 0 -D 1 -G 1.0 -R 0.0 -N 0.5 -M 40.0 -C 0.1 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 0 -D 1 -G 1.0 -R 0.0 -N 0.5 -M 40.0 -C 10.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 1 -D 2 -G 1.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 1 -D 2 -G 1.0 -R 0.0 -N 0.5 -M 40.0 -C 0.1 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 1 -D 2 -G 1.0 -R 0.0 -N 0.5 -M 40.0 -C 10.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 1 -D 4 -G 1.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 2 -D 1 -G 0.005 -R0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 2 -D 1 -G 0.001 -R0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 2 -D 1 -G 0.01 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.LibSVM – -S 0 -K 2 -D 1 -G 0.1 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.0010

-P 0.1 -B

weka.classifiers.functions.MultilayerPerceptron – -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

weka.classifiers.functions.MultilayerPerceptron – -L 0.6 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

weka.classifiers.functions.MultilayerPerceptron – -L 0.8 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

weka.classifiers.functions.RBFNetwork – -B 2 -S 1 -R 1.0E-8-M -1 -W 0.1

weka.classifiers.functions.RBFNetwork – -B 2 -S 1 -R 1.0E-8-M -1 -W 0.3

Continued on Next Page. . .
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Table 7 – Continued

Classifier

weka.classifiers.functions.RBFNetwork – -B 4 -S 1 -R 1.0E-8-M -1 -W 0.1

weka.classifiers.functions.RBFNetwork – -B 4 -S 1 -R 1.0E-8-M -1 -W 0.3

weka.classifiers.functions.SimpleLogistic – -I 0 -M 500 -H50 -W 0.0

weka.classifiers.functions.SimpleLogistic – -I 0 -M 500 -H50 -W 0.0 -A

weka.classifiers.trees.LMT – -I -1 -M 5 -W 0.0

weka.classifiers.trees.LMT – -I -1 -M 5 -W 0.0 -A

weka.classifiers.bayes.BayesNet – -D -Q weka.classifiers.bayes.net.search.local.TAN – -S BAYES

-E weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5

weka.classifiers.bayes.NaiveBayes

weka.classifiers.lazy.IB1

weka.classifiers.lazy.IBk

weka.classifiers.lazy.KStar

weka.classifiers.lazy.LWL

weka.classifiers.misc.HyperPipes

weka.classifiers.rules.ConjunctiveRule

weka.classifiers.rules.DecisionTable

weka.classifiers.rules.JRip

weka.classifiers.rules.NNge

weka.classifiers.rules.OneR

weka.classifiers.rules.PART

weka.classifiers.trees.SimpleCart – -S 1 -M 2.0 -N 5 -C 1.0

weka.classifiers.rules.ZeroR

weka.classifiers.trees.DecisionStump

weka.classifiers.trees.J48

weka.classifiers.trees.REPTree

weka.classifiers.trees.RandomForest

weka.classifiers.trees.RandomTree

Continued on Next Page. . .
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Table 7 – Continued

Classifier

weka.classifiers.bayes.ComplementNaiveBayes

weka.classifiers.bayes.NaiveBayesMultinomial

weka.classifiers.misc.FLR

weka.classifiers.trees.NBTree
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