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Abstract

This thesis studies the post-translational modifications of proteins by O-GlcNAcylation

with a computational biology approach. The O-GlcNAc transferase (OGT), the

enzyme that catalyses the protein O-GlcNAcylation, targets specific Serines and

Threonines (S/T) of intracellular proteins. However, while other post-translationally

modified residues, including phosphorylated ones, occur within sites distinguished

by their amino acid sequences, less than 25% of known O-GlcNAc sites match to a

sequence pattern. The small signal on the sequence patterns of multiple sites leads

to the question whether the sites’ structure defines the pattern recognised by OGT.

The thesis then focuses on the structural features of the modified sites that could

help distinguish potential sites from non-modifiable ones.

1622 O-GlcNAc sites were collected from the scientific literature. Next, 143 sites

were mapped to protein 3D structure in the PDB. Modified S/T were 1.7 times more

likely than unmodified S/T in the same protein to be annotated in the REMARK465

field of the PDB file, which defines missing regions in the protein structure, suggesting

that these sites may be in structurally disordered regions. Clustering the structure of

O-GlcNAc sites leads to ten distinct groups indicating the sites’ structural diversity.

The study was extended by the analysis of features predicted from the sequence of

xvii



O-GlcNAcylated proteins with Jpred4 and 3 disorder predictors, DisEMBL, IUpred

and JRonn. Overall, disorder scores and proportion of S/T in coils confirmed that

O-GlcNAc sites tend to be disordered.

A new classifier for O-GlcNAc-site (POGSPSF) was developed and trained with

sequence, predicted secondary structure and disordered from 1 283 non-redundant

sites. The POGSPSF Random Forest model achieved 71% area under the ROC curve

in a blind test. Predictions were applied to around 2.5 million S/T in the human

proteome. Nuclear and cytoplasmic protein were over-represented among the top

ranking proteins. Top scoring sites were also more likely to be phosphorylated. Also,

novel and potential proteins were identified within the predictions.
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Chapter 1

Introduction

1.1 The central dogma of molecular biology

The central dogma of molecular biology defines how the information flows from the

DNA molecule to proteins, via RNA molecules. Crick (1970) sets out the principles

of information transfer between the three macromolecules. The central concept is

the direction in which information flows: DNA → RNA → protein as illustrated in

Figure 1.1. This dogma is common to all living beings, from the simplest unicellular

to complex multicellular organisms. Crick also highlighted and discussed possible

exceptions.

Figure 1.1 emphasizes three processes that are also basic to living organisms.

The molecular basis of these processes is better understood today than when the

central dogma was first described; moreover, the molecular basis varies among studied

organisms. The DNA molecule stores the genetic information that is replicated,

during cell duplication. So the two daughter cells inherit the genetic information

from the two copies of DNA produced during replication.

1



1. Introduction 1.1. The central dogma of molecular biology

Figure 1.1: A simplified representation of the central dogma of molecular biology.
The central dogma establishes the flow of genetic information or the sequential
transfer of information from the DNA to the proteins. The DNA conserves genetic
information among generations. The RNA carries the information from the DNA
and subsequently, is decoded into proteins. The protein image refers to the proteins’
three-dimensional atomic model built and discussed in Chapter 5. As proteins are
central in this work, their representation was not simplified. Modified from Fu et al.
(2014)
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1. Introduction 1.1. The central dogma of molecular biology

The DNA → RNA information transfer occurs during the transcription process.

The transcription process uses DNA as a template and generates a transcript, an

RNA molecule containing the information encoded by the DNA. There are various

types of RNA molecules with different functions within the cell and the regulation

of transcript levels is a major step in cell physiology. However, the study of RNA

molecules is not in the scope of this thesis. Ribosomes are molecular machines that

translate the information encoded in the transcript, building the proteins.

All macromolecules in biological systems are built of monomers. 4 nucleotides

make the DNA and RNA: adenine, guanine, thymine (substituted by uracil in RNA)

and cytosine. The complexity for protein is higher, since proteins are built up from

20 amino acids. Table 1.1 lists the 20 amino acids, which differ in physico-chemical

properties, like size, shape and charge. Proteins will vary in length and amino acid

composition, differences that yield proteins with unique properties.

Ribosomes are molecular machines that synthesise proteins by reading information

from transcripts. During translation, the ribosomes extend the nascent protein chain

by linking the next amino acid to the chain, which has its carboxyl covalently bound

to the amino group of the nascent chain. After that, a peptide bond is formed

between the two amino acids. The first amino acid of the proteins’ chains contains a

free amino group and is called the N-terminus. The other end, which holds a free

carboxyl group, is called C-terminus.

From the evolutionary perspective, one can define a gene as a unit of hereditary

characteristics (Alberts et al., 2010). Genes are segments of the DNA containing

the information for proteins, RNAs and elements that regulate the transcription

process. The Coding DNA Sequence (CDS) is the region of the gene that contains
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1. Introduction 1.1. The central dogma of molecular biology

Table 1.1: List of the 20 standard amino acids, sorted by 1-letter name. The Type
column classifies each amino acid in 6 physico-chemical groups. The Polarity shows
the side chain polarity. The Charge column shows the side chain charge at neutral
pH.

Amino Acid 3-Letter 1-Letter Type Polarity Charge

Alanine Ala A aliphatic nonpolar neutral
Cysteine Cys C sulfur-containing nonpolar neutral
Aspartic acid Asp D acid/amide acidic polar negative
Glutamic acid Glu E acid/amide acidic polar negative
Phenylalanine Phe F aromatic nonpolar neutral
Glycine Gly G aliphatic nonpolar neutral
Histidine His H basic basic polar positive
Isoleucine Ile I aliphatic nonpolar neutral
Lysine Lys K basic basic polar positive
Leucine Leu L aliphatic nonpolar neutral
Methionine Met M sulfur-containing nonpolar neutral
Asparagine Asn N acid/amide polar neutral
Proline Pro P cyclic nonpolar neutral
Glutamine Gln Q acid/amide polar neutral
Arginine Arg R basic basic polar positive
Serine Ser S hydroxyl-containing polar neutral
Threonine Thr T hydroxyl-containing polar neutral
Valine Val V aliphatic nonpolar neutral
Tryptophan Trp W aromatic nonpolar neutral
Tyrosine Tyr Y aromatic polar neutral
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1. Introduction 1.2. Proteins

the information for the protein sequence. The start and end codons in a CDS indicate

the protein start and end, or the N- and the C-terminus, respectively.

Genes and other biological sequences can be conserved. Conserved sequences are

identical or similar, when the substitution of a few amino acids is allowed. Conserved

sequences inherited from a common ancestor of two species are named homologous.

Homologous sequences that diverge in sequence composition but not in function

are named orthologous. Two sequences are paralogous if they originate from a gene

duplication event, and resulting sequences may have different sequence composition

or function. These three terms, orthologous, paralogous and homologous, organise

the comparison of biological sequences, which can be made via a multiple sequence

alignment. Biological sequences include not only DNA, RNA and protein sequences

but also the order of polysaccharide, another class of macromolecules, discussed in

Section 1.3.2.

However, DNA, RNA and proteins are not a simple string of monomers. They

occupy the three-dimensional space, forming complex structures that are related to

their function. The Section 1.2 discusses the relationship between the structure and

function of proteins.

1.2 Proteins

“Proteins ... are the molecules that put cells’ genetic information in action.” (Alberts

et al., 2010). Proteins drive every dynamic process in cells. Small chains (< 30) of

amino acids are called peptides, and therefore proteins are also named polypeptides.

Enzymes are proteins that catalyse chemical reactions. However, enzymes are not the
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1. Introduction 1.2. Proteins

only type of proteins, and proteins have a large functional repertoire, like structuring

the cell shape, sensing the extracellular environment, moving and regulating other

macromolecules within the cell. A fact often ignored is that a single protein may

have multiple unrelated functions (Jeffery, 1999; Henderson and Martin, 2014).

After translation, each protein folds into a unique three-dimensional structure.

Experiments with the ribonuclease enzyme indicated that the protein sequence deter-

mines the enzyme biological activity and, therefore, its three-dimensional structure

(Anfinsen, 1973). In the protein native three-dimensional structure, the protein

achieves a state of minimum energy. The experiments also demonstrated that outside

the cell’s conditions proteins would fold into an alternative conformation without

biological activity, implying that the minimum energy state is not unique. However,

under certain conditions, the protein would fold into the native - or biological active

- state. Thus protein sequence, structure and function are associated.

Given the possible combinations of the 20 amino acids and their interactions,

protein folding is hard to study. However, two main physical components drive

the process. Firstly, the protein core forms from hydrophobic amino acids, which

tend to avoid contact with the solvent (water) and other hydrophilic side chains.

Secondly, contacts between amino acids, mainly local hydrogen bonds, stabilise the

protein structure. Ongoing research aims to understand better and simulate the

protein folding process. It is important to note that proteins are not static, but

rather dynamic macromolecules that fluctuate among conformations. The collection

of conformation and their transitions can also be associated with the protein function

(Karplus and Kuriyan, 2005; Henzler-Wildman and Kern, 2007).

Structural biology is a sub-area of biological sciences that studies the structure
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of proteins and how changes in a protein structure influence its function in the cell.

1.2.1 Structural biological concepts

A hierarchy of 4 levels organises proteins’ structure. The primary structure is the

linear sequence of amino acids in the protein chain, encoded by the CDS in a gene.

The secondary structure accounts for the local structure of the backbone atoms of the

polypeptide chain. The backbone of a residue comprises four atoms: the Cα, an O, an

N and a C. The Cβ atom links the residue backbone to its side chain, which confers

the physico-chemical properties of amino acids (See Table 1.1). Hydrogen bonds

stabilise the local structure and form regular structures, called secondary structure

elements. There are several patterns that, in general, can be simplified into two

main groups by the local structure of proteins: α-helix (H), or helices, and β-strands

(E) (Pauling and Corey, 1951; Pauling et al., 1951). A third type incorporates the

lack of a regular structure, coils (C). For H, the amino groups of a residue i forms

a hydrogen bond with the carboxyl group if residue i− 4 and regularity comprise

several residues, yielding a helix. In E the backbone atoms of three or more residues

are connected to the backbone atoms of residues not immediately adjacent to the

structure, producing an Extended planar conformation.

Interactions among secondary structure elements of a protein produce a higher-

level structure called a fold. The tertiary structure comprises the three-dimensional

position of every amino acid and also the contacts between non-local amino acids

and arrangement of amino acid side chains. The quaternary structure includes the

protein associations, the protein-protein and protein-ligand interactions. Proteins
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can comprise multiple subunits that assemble to promote the protein function. Homo-

oligomers are protein complexes with multiple copies of the same protein; hetero-

oligomers are protein complexes with more than one polypeptide chain. Proteins

bind to a vast array of ligands from ions, like zinc, to molecules, such as ATP or

water. These interactions can vary in time scale, while some proteins will always

participate in complexes, and others will only interact temporarily. In fact, many

proteins work in groups, called protein complexes, rather than individually.

X-ray crystallography is the most popular method to determine protein structure

at an atomic level. The method has several steps and is labour intensive. First,

the target protein needs to be pure and homogeneous for crystallisation, a process

in which the protein molecules pack together in a ordered three-dimensional array.

Subsequently, the crystal is exposed to X-rays generating a diffraction pattern. The

atoms’ electron density can be deduced from the diffraction pattern, but not before

a series of processing steps that aim to understand the nature of the crystal, like

its symmetry, the unit cell parameters, orientation and resolution limit, and to

solve the phase problem. The atomic model is build from the election density and

undergoes several iterations of refinement. Finally, it will be validated and submitted

to the Protein Data Bank (PDB). More recently, the number of protein structures

determined by nuclear magnetic resonance and cryo-electron microscopy is increasing

rapidly.

Although the definition of protein domains may change from field to field, domains

are typically considered compact regions of the protein three-dimensional structure

with some degree of functional independence (Siddiqui and Barton, 1995). An

example of a domain found in proteins with different functions is the Tetratricopeptide
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Repeats (TPR) domain (PFAM website, 2016b), known for mediating protein-protein

interactions (Hirano et al., 1990; Das et al., 1998). Proteins can have more than

one domain, so domains work like protein modules. Motifs are short regions of the

primary structure that also have some independent function, such ligand binding.

Both domains and motifs set patterns or amino acid signatures that can be studied

to understand their function. Also, motifs and domains are often conserved among

proteins with similar function. The protein function can be regulated, and the next

section describes one fundamental regulatory process.

1.3 Protein post-translational modifications

The collection of proteins in a cell is named the proteome, and two major components

control the proteome diversity. The first mechanism is at the RNA level, involving a

series of processes that include RNA splicing. The second mechanism occurs at the

protein level.

After translation and folding, a protein can have its backbone cleaved at a spe-

cific point or one of its residues attached to chemical groups. These modifications

are called Post-Translational Modification (PTM). Proteases are enzymes that irre-

versibly cleave proteins at unspecific or specific points. Conversely, the reversible

attachment of chemical groups to polypeptide chains is the second type of PTMs.

The modifications occur in sites, specific positions within the protein chain. Overall,

these modifications participate in the cell signalling process that coordinates the

actions within a cell in response to extra- or intracellular messengers. Figure 1.2

describes 4 types of PTM by functional roles. This thesis focuses on the last group:
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post-translationalm
odifications

Figure 1.2: PTM can be organised by function into four groups. The first is proteolytic processing that activates the protein or
peptide function. Proteolytic processing is also related to the controlled cell death process, named apoptosis and the second represents
PTM-dependent proteolysis when a protein is directed to specialised organelles where they are degraded. In the third group, the
modification enables protein-protein interactions. The fourth group is probably the most common one, and contains multiple reversible
PTM. Reprinted with permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology, (Jensen, 2006), copyright
2006.
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reversible multi-site PTM.

Regularly protein functional models obtained from experiments show PTM as on

and off switches, which describe proteins’ gain or loss functions upon modification.

A more accurate classification of how reversible PTM regulates protein functions

considers a few points. Upon modification, the protein can change cellular localisation

(Fushimi et al., 1997) or be degraded (Poizat et al., 2005). The PTM may also:

modulate enzyme activity and change its affinity to ligands (Hilário-Souza et al.,

2011); either disrupt or direct protein-protein interactions; affect protein structure

and dynamics (Xin and Radivojac, 2012). Accordingly, PTM adds a layer of control

over protein function that is more complex than a switch. Over 235 chemical

modifications have been experimentally catalogued (Khoury et al., 2011). The

modification types vary in size and physicochemically from a charged phosphate

group to a 70-residue long protein, ubiquitin. Although some PTM types are very

well studied, others were barely confirmed in vivo. Multiple enzymes can target

the same protein so that the protein can be modified in different sites by different

PTMs types (Cohen, 2000). The evidence of multi-site PTM increases the protein’s

complexity, because of all the possible combinations of sites and modification types.

Of course, not all combinations are observed in experiments. Moreover, enzymes

that catalyse PTM may compete for a particular residue. Also, a modified site may

disrupt the subsequent modification of a nearby site, for mutually exclusive sites;

some sites are only available for modification after the modification of an adjacent

site. Examples of sites that do not affect the modifications are also known.

Not all PTM sites have an impact on protein function (Beltrao et al., 2012). It is

experimentally challenging to track down a PTM site function. Moreover, even if the
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functional impact is unobserved in an experiment, it should not be entirely discarded.

PTM can only slightly change the protein structure (Xin and Radivojac, 2012) and

a particular functional impact may be unobserved. A site which is conserved among

homologous proteins is more likely to be functional. However, the phylogenetic

comparison of sites is not simple. For example, Beltrao et al. (2012) describes a

phosphorylation at Ser40 of the fungal protein Skp1. The modification promotes

an interaction that, in the human ortholog, is instead mediated by phosphorylation

at Tyr20. So, although the sites are not conserved between the fungal and human

proteins, the function is. Overall, the conservation analysis of PTM is hard because

of the lack of information on the sites’ functions in different organisms; therefore the

function of modification should be studied on a site by site basis.

Most of the enzymes that catalyse PTM recognise a particular segment within

the protein sequence, called a sequon. Another important characteristic of PTM

sites is their sub-stoichiometry. Not all protein copies will be modified at the same

point in time, and the ratio of unmodified / modified may be related to its function.

Because kinases are very popular drug targets, their structure and function have

been extensively studied (Dumas, 2001). Section 1.3.1 describes this modification in

more detail.

1.3.1 Reversible protein phosphorylation

Reversible protein phosphorylation is the most studied PTM and is present in the

6 kingdoms of life. Hubbard and Cohen (1993) estimated that, in eukaryote cells,

one-third of the proteins will undergo phosphorylation. In humans, the protein kinase

superfamily, the family of enzymes that catalyse protein phosphorylation, is one of
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the biggest protein families, encoded by ≈ 2% of the genome (Manning, 2002). “It

is difficult to find a physiological reaction that is not directly or indirectly affected

by protein phosphorylation” (Fischer, 2016). A subset of known cells’ physiological

processes are regulated by reversible protein phosphorylation:

1. Cell death

2. Cell cycle

3. Cytoskeletal rearrangement

4. Cell differentiation

5. Immune response

6. Transcription

7. Translation

8. Metabolism

Malfunction of the phosphorylation regulatory system has been linked to a series

of hereditary diseases and cancer, as reviewed by Cohen (2001).

The reversible phosphorylation cycles the attachment and removal of a phosphate

to Ser/Thr/Tyr. The reaction consists of the transfer of ATP’s γ-phosphate to the

side chain of residues within specific sites of the target protein. Phosphorylation in

bacteria and fungi can also modify His and Asp residues. Phosphatases remove the

attachment; this family of enzymes varies from promiscuous to very specific to a

site. Both kinases and phosphatases are regulated some times by other kinases, in

processes called kinase cascades. The process is explained by the kinase mediated

13
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kinase-activation, where one kinase regulates the following kinase in the cascade.

Malfunction of the phosphorylation regulatory system has been linked to a series of

hereditary diseases and cancer, as reviewed by Cohen (2001).

The side chains of Ser and Thr contains a hydroxyl group (-OH) that is uncharged

in cellular conditions. Upon modification at physiological pH, the O-phosphate has 2

negative charges and can pair with cationic residues, such as Arg (Walsh et al., 2005).

Protein conformational change often accompanies phosphorylation. The change

may occur in the secondary, tertiary or quaternary structures to accommodate the

phosphoryl group and its charges. Conformation transition differs from structure to

structure, as reviewed by Johnson and Lewis (2001). For instance, the Tau protein -

a protein involved in neurodegenerative diseases - is globally disordered in solution

(Schweers et al., 1994). Upon phosphorylation, Tau’s transient α-helix stabilises, and

this stabilisation changes the way it interacts with tubulin (Sibille et al., 2012) and,

hence, its function - which is to induce tubulin polymerization into microtubules. A

general rule is that phosphorylation induces small structural changes, which affects

the local structure and reduces conformational heterogeneity (Xin and Radivojac,

2012).

1.3.2 Protein glycosylation

Polysaccharides are one of the four macromolecules that constitute living cells, the

other 3 been nucleic acids (DNA and RNA), proteins, and lipids. The polysaccharide

chains are formed by monosaccharides, which are also named sugars. Glycosylation

is the enzymatic linkage of saccharides to proteins, lipids and other saccharides. The

attachment of mono or polysaccharide to a protein forms glycoproteins, the most
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widespread PTM.

Varki et al. (2009) classify mammalian glycosylation products into 7 classes. An N-

acetylglucosamine attached to an asparagine characterises the N-glycan; these polysac-

charides are very diverse in composition and branched. Hyaluronan is a group of ex-

tracellular and linear polysaccharides formed by N-acetylglucosamine and glucuronic

acid disaccharides in tandem. Mucins O-glycans have an N-acetylgalactosamine

α-linked to Serine/Threonine (S/T) in the target protein; non-mucin O-glycans have

different sugar core, such as mannose, fucose or glucose. The Glycosylphosphatidyli-

nositols (GPI) are covalently bound to a protein and a phosphoethanolamine group

(Et-P), which works as a membrane anchor to proteins. Another form of glycolipids

also occurs, specially glycosphingolipids in vertebrates. Glycosaminoglycans are

composed of linear disaccharide tandem repeats and have a very specific protein

binding activity. The only class found to happen in intracellular proteins is the

β-O-GlcNAcylation of S/T.

Structural characteristics determine the glycoproteins’ diversity. The glycosidic

bond joins the carbohydrate to another chemical group in the α and β forms,

depending on the saccharide and group stereochemistry. Also, a polysaccharide chain

can have multiple branches, increasing the polymer complexity. Figure 1.3 illustrates

the diversity of saccharides in mammalian organisms.

Since protein glycosylation builds up such diversity, it is hard to pinpoint a

function for this PTM. In mammalian organisms, most groups of protein glycosylation

happen in the lumen of the endoplasmic reticulum and the Golgi apparatus, two

specialised compartments in the cell. The glycoproteins transit in the secretory

pathway and stay on the cell-surface, facing the extracellular side of the membrane or
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Figure 1.3: The different types of mammalian saccharides. Glycoproteins are
complex molecules, part due to the diversity of saccharides and the polymer structure.
O-GlcNAc, highlighted in yellow, is a monosaccharide intracellular modification of
proteins and the theme of this thesis. Reprinted by permission from Macmillan
Publishers Ltd: Nature Reviews Immunology, (Marth and Grewal, 2008), copyright
2008.
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secreted into the extracellular medium. These glycoproteins that are exposed to the

extracellular medium are involved in cell-to-cell recognition, cell death and receptors

activation. In addition, most of the secreted protein are attached to saccharides, and

part of these glycoproteins will form the extracellular matrix.

The collection of glycoproteins changes over time and in response to signals. Dif-

ferently from RNA and protein sequences, DNA does not directly encode the polysac-

charide sequence. While replication, transcription and translation are template-

dependent processes, the polysaccharide sequence depends on the order that different

enzymes will attach a saccharide to the chain in the secretory pathway.

Glycosyltransferase and glycosidase are enzymes that catalyse the attachment and

the removal of saccharides from proteins. Almost every type of protein glycosylation

is irreversible, so once the saccharide is attached to the protein, it won’t be removed

until the protein degradation.

Glycobiology, the science that studies protein glycosylation, has a community

of its own. Protein glycosylation is an abundant and diverse in composition and

structure of the modifiers. This work focuses on the protein O-GlcNAcylation

modification, and its interplay with other PTMs.

1.4 Protein O-GlcNAcylation

An important, but yet overlooked, form of PTM is O-GlcNAcylation, also called

O-GlcNAc. Torres and Hart (1984) first described the glycosylation of intracellular

proteins, in particular, proteins of the nuclear envelope. Later O-GlcNAc modification

was found in nuclear, cytoplasmic and mitochondrial proteins (Holts and Hart, 1986).
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Figure 1.4: OGT has two substrates: the UDP-GlcNAc and a target protein. In
the top panel, hexosamine biosynthetic pathway produces UDP-GlcNAc. 4 metabolic
pathways plus the ATP molecule converges in the hexosamine biosynthetic pathway.
The pathway uses 2%-5% of the glucose that enters the cell; since glutamine, ATP and
glucose are precursors of the UDP-GlcNAc, its intracellular level is associated with
the cell’s nutritional state, hence UDP-GlcNAc is a nutrient sensor. The molecule is
also reactant for the synthesis of other glycolipids and glycoproteins. In the bottom
panel, OGT modifies the Calcium/calmodulin-dependent protein kinase type IV
(CaMK IV) in several residues. The red sphere represents the approximate location
of the Ser189 modification, which occurs in an unobserved segment of the protein
structure 2w4o (unpublished).
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The modification of intracellular proteins by O-β-glycosylation is common to

eukaryotes. The modification has been demonstrated experimentally in Trichoplax

adhaerens (Selvan et al., 2015), Caenorhabditis elegans (Lubas et al., 1997), Drosophila

melanogaster (Sinclair et al., 2009), plants (Chen et al., 2005) and mammals, but

not in yeast. This thesis focuses on mammalian organisms since the vast majority of

known sites were obtained from those organisms.

Several differences separate O-GlcNAc from other classes of protein glycosylation.

As already mentioned, O-GlcNAc occurs outside the secretory pathway. Also,

glycoproteins have complex structures and composition, as highlighted in Figure 1.3,

in contrast to O-GlcNAc, which is a monosaccharide. Furthermore, while most

mature glycoproteins are stable, the O-GlcNAc modification is actively attached and

removed in a controlled manner (Kearse and Hart, 1991; Chou et al., 1992). Thus

O-GlcNAc is a dynamic PTM, as is regulatory protein phosphorylation. The catalytic

cycle for protein O-GlcNacylation and protein phosphorylation is also similar. Two

enzymes control O-GlcNAc cycling: the glycosyltransferase OGT and the glycosidase

O-GlcNAcase (OGA). The first enzyme catalyses the β-linked attachment of a single

GlcNAc from the UDP-GlcNAc molecules to the side chain of a S/T in the acceptor

protein. For the opposite reaction, OGA cleaves the GlcNAc from the protein.

Protein phosphorylation and O-GlcNAc have two major differences. First, a

vast range of enzymes, more than 500 kinases and 200 phosphatases, drives protein

phosphorylation, while only OGT and OGA control O-GlcNAc cycling. Figure 1.4

shows the modification processes and describes the role of the UDP-GlcNAc. The

second difference regards the modification site. While phosphorylation has a clear
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sequon, a consensus motif for modification, the same is not true for protein O-

GlcNAcylation. In the early days (Gupta et al., 1999), when around 50 O-GlcNAc

sites were mapped to their protein sequences, 50% of sites held the pattern PV[ST]

for residues -2, -1 and 0, where the residues zero is the modified S/T. Chapters 2

and 3 further discuss this point, but overall the scientific literature agrees on the

lack of clear sequon for sites modified by O-GlcNAc, in contrast to kinases, which

have clear sequons.

Interestingly, some S/T known to be O-GlcNAc are also phosphorylated. The

Yin-O-Yang hypothesis describes the interplay between the two modifications (Hart

et al., 1995). OGT and kinase targeted sites were observed in various proteins. So

some kinases compete with OGT for the site’s modification. In fact, O-GlcNAc and

phosphosites occur not only in the same residues but also in neighbouring residues and

Chapter 4 discusses this event. The structural effects of protein phosphorylation have

been extensively studied (Johnson and Barford, 1993; Johnson and Lewis, 2001; Xin

and Radivojac, 2012). However, the effects of O-GlcNAc modification on substrate’s

structure is unknown, due to the lack of full-length OGT-modified protein structures.

Overall, there are many more reports and data on protein phosphorylation than on

protein O-GlcNAcylation.

The number of scientific reports on protein phosphorylation outnumbers the

reports on O-GlcNAc by 1 to 2 orders of magnitude. However, the role of protein

O-GlcNAcylation in health and disease has also been partially established. O-

GlcNAcylation of Akt1 has been associated with pancreatic cell death (Kang et al.,

2008). Proper O-GlcNAc cycling is also required for oocyte maturation (Lefebvre

et al., 2004), indicating that the modification participates in the cell cycle. OGT
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targets various cytoskeletal proteins (Ramirez-Correa et al., 2008; Kakade et al.,

2016) and the disruption of the modification has deleterious implications for the cell.

Although the PTM was discovered in lymphocytes, its role in the T cell-mediated

(Swamy et al., 2016) and innate (Ryu and Do, 2011) response to infection was only

recently described. Processes like transcription (Kelly et al., 1993), translation (Datta

et al., 1989; Zeidan et al., 2010) and macromolecules metabolism (Patti et al., 1999)

have been linked to O-GlcNAcylation and have been extensively reviewed in the

scientific literature (Hardivillé and Hart, 2014; Hanover et al., 2012). More recently

the modification was found involved in stress resistance in mammalian cells (Zachara

and Hart, 2004), heat resistance in Drosophila melanogaster (Radermacher et al.,

2014) and interplaying with phosphorylation in the control of the circadian clock

(Kaasik et al., 2013). OGT and OGA play a role in several diseases such as diabetes,

neurodegeneration and cancer, as extensively reviewed elsewhere (de Queiroz et al.,

2014; Bond and Hanover, 2013; Ngoh et al., 2010; Hart et al., 2011).

The two following sections detail the structure and function of the enzymes that

control O-GlcNAc cycling.

1.4.1 O-GlcNAc transferase

OGT (Enzyme Commission number 2.4.1.255) was first isolated in 1993, but the hu-

man gene was only cloned later (Lubas et al., 1997)(Ensembl identifier ENSG00000147162).

The human gene is located on chromosome X and encodes 3 proteins produced by

alternative splicing. The longest product is a protein with 110 kDa and 1046 residues

expressed constitutively in all human tissues. The gene has a highly conserved

primary sequence among mammalians (Kreppel et al., 1997) and is essential for
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Figure 1.5: Domain architecture for OGT 3 isoforms. Designed with http://
prosite.expasy.org/mydomains/. nc, nucleocytoplasmic; m, mithocondrial; s,
short.

embryogenesis and viability in mammalians (Shafi et al., 2000; O’Donnell et al.,

2004).

Figure 1.5 shows the three OGT isoforms. The nucleocytoplasmic (1 042 residues),

mitochondrial (920 residues) and short (665 residues) OGT differ in the number of

TPRs in the enzyme N-terminus. Also, the nucleocytoplasmic and the mitochondrial

version have a signal peptide directing the protein to the nucleus and the mitochon-

dria, respectively. The biological role of the short and mitochondrial isoforms are

unknown and the mitochondrial OGT is not necessary to the modification of known

mitochondrial targets (Love, 2002; Trapannone et al., 2016). In this work, OGT

refers to the nucleocytoplasmic isoform.

The enzyme comprises two distinct regions, one in each terminus. The N-terminus

contains several repeats of the TPR domain, which was present in 766 human proteins

in the InterPro, a database of protein domains and motifs (EMBL-EBI website,

2016). The domain has 34 residues and a degenerated sequence, with key conserved

positions, as revealed in the domain multiple sequence alignment (Sikorski et al.,

1990). The conserved positions form a pattern of hydrophobic segments that folds

in a pair of anti-parallel α-helices. The domains occur in a wide range of proteins

in 3 to 16 tandem repeats and different arrangements, reviewed by D’Andrea and
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Regan (2003). Despite its widespread presence in unrelated proteins, the domain

has a well-established function of mediating protein-protein interactions.

OGT’s N-terminus contains 12.5 TPRs that oligomerizes into an extended super-

helix (J́ınek et al., 2004). OGT constructs without the N-terminus domains can target

peptide substrate in vitro (Lubas and Hanover, 2000), but cannot modify full-length

proteins (Kreppel and Hart, 1999). Hence the enzyme function requires its N-terminal

(Iyer and Hart, 2003). Furthermore, OGT works in a functional complex in vivo

(Wells et al., 2004; Cheung et al., 2008; Perez-Cervera et al., 2013) and databases of

binary protein-protein interactions inform the vast number of reported and inferred

OGT interactors. The inner surface of the superhelix resembles the peptide-binding

site of importin α protein, with potential functional implications (J́ınek et al., 2004).

Based on the structure similarity, J́ınek et al. (2004) speculated whether the enzyme’s

N-terminus works only as a molecular scaffold for protein-protein interactions or

have a more active role in substrate recognitions by OGT.

The C-terminus of OGT harbours the enzyme’s active site and is also called

the catalytic domain. The domain is classified into the family glycosyltransferase

41, exclusive to β-N-acetylglucosaminyltransferase. The region is subdivided into

two lobules and an intervening domain. The two lobules yield a pocket where the

UDP-GlcNAc binds before the protein recognition processes when the target protein

interacts with the enzyme. Three protein segments are responsible for nucleotide

binding, from residue 905 to residue 931, which is essential to the catalytic cycle

(Lazarus et al., 2011). The C-terminus is also involved in the protein translocation

to the plasma membrane mediated by a phosphatidylinositol binding motif (Yang

et al., 2008).
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OGT

UDP-GlcNAc

OGT•UDP-GlcNAc OGT•UDP-GlcNAc•Peptide

Peptide Glicopeptide

Figure 1.6: Schematic representation of OGT mechanism. Lazarus et al. (2012)
obtained the three-dimensional structure of OGT and the two substrates. Instead of
using the full-length OGT, the enzyme construct had 4.5 TPR. Also, the enzyme has
as substrate an incompetent peptide (Ser mutated to Ala) instead of a full-length
protein and UDP-5SGlcNAc, a very slow substrate to OGT. These conditions are
needed to capture the reaction, which occurs very rapidly otherwise. The mechanism
of the reaction catalysed by OGT is sequential. Figure based on Lazarus et al. (2012).

The details of the OGT catalytic mechanism were obtained by independent work

of two groups (Schimpl et al., 2012; Lazarus et al., 2012). The proposed mechanism

is named an ordered sequential bi-bi reaction and Figure 1.6 illustrates it. The cycle

starts with UDP-GlcNAc, the sugar donor, binding to the OGT at its binding site in

the active site. Next, the protein substrate binds to the OGT-UDP-GlcNAc complex.

The transfer reaction follows the complex formation, with OGT transferring the sugar

moiety from the UDP-GlcNAc to the hydroxyl group of the target S/T. Subsequently,

the enzymes liberate the glycoprotein and later the UDP, finalising the reaction

cycle.

OGT activity is regulated by the intracellular level of UDP-GlcNAc (Taylor

et al., 2009). The enzyme has high affinity for UDP-GlcNAc, in the µmolar range.

Although the affinity for several peptides has been calculated (Iyer and Hart, 2003),

24



1. Introduction 1.4. Protein O-GlcNAcylation

the better enzyme kinetics for different proteins is lacking. The enzyme activity is

inversely proportional to the levels of the glucose in a pathway that increases OGT

gene expression and directs the enzyme to specific targets, probably by different

protein-protein interactions (Cheung and Hart, 2008).

More recently, another O-GlcNAc transferase was identified in the secretory path-

way, the EGF domain-specific O-GlcNAc-Transferase (eOGT) (Enzyme Commission

number 2.4.1.255). The enzyme belongs to the glycosyltransferase family 61 and

target S/T of extracellular-targeted protein that contains the eukaryotic growth

factor-like domains. OGT and eOGT have different substrates (Müller et al., 2013).

1.4.2 O-GlcNAcase

The MGEA5 gene encodes the OGA protein (Enzyme Commission number 3.2.1.169)

with 916 residues. The human organism ubiquitously expresses the enzyme, with

elevated transcript levels in the brain and pancreas. The O-GlcNAcase activity was

detected in the cell nucleus and cytoplasm (Comtesse et al., 2001; Gao et al., 2001).

OGA is a neutral β-N-acetylglucosaminidase that catalyses the O-GlcNAc hy-

drolysis, but not GalNAc. The enzyme was first isolated from spleen (Dong and

Hart, 1994). The protein belongs to the glycoside hydrolase family 84 in the CAZy

Database (Cazy website, 2016), which is part the glycoside hydrolase superfamily

observed from single cellular organisms to humans. The domain with NAGidase

activity sits in the N-terminus (PFAM website, 2016a). The enzyme also contains

other domains, including a histone acetyltransferase domain in the C-terminus, but

the biological role of the domain in the C-terminus is unknown since the enzyme

does not have histone acetyltransferase activity (Rao et al., 2013).
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Specific inhibition of the β-N-acetylglucosaminidase activity in the human cell

led to increased global levels of protein O-GlcNAcylation (Dorfmueller et al., 2010,

2009), suggesting the importance of the enzyme in the O-GlcNAc process. However,

OGA site specificity remains uncertain. The bacterial homolog of OGA showed

β-N-acetylglucosaminidase activity for human substrates. The crystal structure of

the homolog with three glycopeptides demonstrated that the substrate recognition

occurs in a sequence-independent fashion (Schimpl et al., 2012). Additional molecular

dynamics experiments suggested that the interactions between glycopeptides and

OGA are not structure specific (Martin et al., 2014). The structural data show that

the glycopeptides’ backbone atoms are interacting with the enzyme. If, however,

experiments confirm that OGA is site specific, it may prove to be a valuable tool in

the study of the modification.

1.5 Detection of O-GlcNAc

Protein O-GlcNAcylation can be detected at the protein, site or residue level. Most

of the studies aim to map unambiguously the site position for a given protein, and

determine its biological role. ‘Gold-standard’ or bona fide sites are defined as genuine

sites unambiguously mapped to the protein sequence. The functional significance of

most known O-GlcNAc sites is uncertain, and mutagenesis experiments are the best

available to determine a site’s functions. The following sections briefly comment on

experimental methods to detect the sites. Computational methods that predict the

modification sites are examined in Chapter 3.
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1.5.1 Radio-labelled sugar donor

The first studies that discovered and characterised the subcellular location of O-

GlcNAc used radiolabelled UDP-Galactose to detected the modification. The gly-

coproteins extracted from cells can be treated with β-1,4-galactosyltransferase and

to incorporate the radiolabelled sugar, which can be detected by autoradiography

(Torres and Hart, 1984; Holts and Hart, 1986). However, the method is not convenient

because of the use of radioisotopes and the cross-reaction with terminal O-GlcNAc

in glycoproteins in the secretory pathway and extracellular medium.

1.5.2 Antibodies and lectins

Several antibodies have been developed to detect protein O-GlcNAcylation. An-

tibodies that recognise terminal GlcNAc, O-GlcNAcylated S/T and site-specific

modifications are available (Comer et al., 2001; Holt, 1987). Ma and Hart (2014)

consider the use of antibodies to be more sensitive and convenient than radiolabelling.

However, the antibodies can also cross-react with other glycoproteins and approaches

that minimise these cross-reactions have been proposed, as reviewed by Banerjee

et al. (2013), including the use of multiple antibodies instead of one.

Lectins are plant proteins that bind to specific sugar moieties. Succinylated wheat

germ agglutinin has been primarily employed in the enrichment of β-O-GlcNAcylated

proteins or peptides in chromatography columns and can achieve up to 50 000 fold

enrichment of nucleocytoplasmic glycoproteins. The enrichment techniques combined

with mass spectrometry helped to detect many of the known sites.
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1.5.3 Mass spectrometry

Although radiolabelling and antibodies are efficient to probe the modification at a

protein or peptide level, they cannot determine modification position without peptide

sequencing. Technical advances in mass spectrometry have led to an increase in the

number of experimentally determined O-GlcNAc sites from 50 in the year 2000 to

more than 1 000 sites today (Hornbeck et al., 2012).

Mass spectrometry has replaced Edman degradation as the protein sequencing

method of choice. Edman degradation works as an iterative and controlled cleavage

of the protein N-terminus followed by amino acid identification. The identification of

around 20 amino acids could determine the protein; however, the whole experiment

is slow, cannot detect protein modifications and depends on a unique N-terminus.

Mass spectrometry uses a different approach that enables it to identify and even

quantify a mixture of proteins in hours.

Figure 1.7 illustrates a mass spectrometry experiment. Mass spectrometry does

not require protein purification, and the first step is to isolate the protein sample by

fractionation. Next, the proteins are separated with SDS-page electrophoresis. The

proteins are excised from the gel and digested with trypsin and, subsequently, the

peptides are separated by high-performance liquid chromatography. The peptides

are ionised, accelerated, and the mass/charge ratio is detected. The profile of peptide

fragments forms a fingerprint that can match to an entry in a peptide fragment

database. Also, a shift of 210 Da from the expected fragment mass indicates the

O-GlcNAc. The peptide fragments can undergo a second round of ionisation that

breaks the peptide bonds and generates a series of mass-charge peaks. The analysis
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Figure 1.7: Schematic representation of mass spectrometry experiment. Reprinted
by permission from Macmillan Publishers Ltd: Nature, (Aebersold and Mann, 2003),
copyright 2003.
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of the series of peaks may unambiguously identify which residue is modified and the

peptide sequence. It is important to highlight that there are many different protocols

and types of mass-spectrometers.

There are several obstacles to mapping O-GlcNAc sites reliably. The modification

has low abundance (Roquemore et al., 1992) and is ten times less common than protein

phosphorylation (Hahne et al., 2012). Accordingly, the unmodified version of the

peptide can suppress the O-GlcNAcylated peptide mass/charge signal. The dynamic

nature of the modification and the activity of unspecific hexosaminidases, lysosomal

enzymes that remove sugars, enhance the problem. Also, methods that enrich O-

GlcNAcylated peptides in samples have limited specificity (Hahne et al., 2012; Ma

and Hart, 2014) and the β-glycosidic bond is labile under the peptide fragmentation

step by collision-induced dissociation, which determines the modification’s position

within the peptide fragment (Khidekel et al., 2004).

Recent advances in mass spectrometry are numerous and outside of the scope of

this thesis (Aebersold and Mann, 2003; Jensen, 2006; Miller and Blom, 2009; Ma and

Hart, 2014). It is important, however, to highlight the advances that enabled the large

scale identification of O-GlcNAc sites. Several methods swap the GlcNAc moiety for

a chemical group with stable linkage, as reviewed recently by Banerjee et al. (2013).

For example, Wells (2002) developed a the chemical tool that substitutes the O-

GlcNAc with a sulphide adduct that is stable under peptide fragmentation conditions.

The collision-induced dissociation is a standard mode of peptide fragmentation. As

mentioned before, the glycoside bond between GlcNAc and the S/T is labile and

breaks during peptide fragmentation by collision-induced dissociation (Chalkley and

Burlingame, 2001). Later, Chalkley et al. (2009) showed that the glycosidic bond is
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not labile under electron transfer dissociation fragmentation, leading to a series of

reports of higher-throughput O-GlcNAc sites identification from samples of different

organisms and tissues (Alfaro et al., 2012; Trinidad et al., 2012; Kim et al., 2011).

One current problem is to control the specificity of the detection. The development

of specific OGA (Dorfmueller et al., 2010) and OGT (Gross et al., 2005) inhibitors

enhanced the ability to detect the modification in physiological conditions. A reduced

OGA activity increases the intracellular level of the modification, and the inhibition

of OGT reduces the probability of the digested peptides to be unspecifically modified.

Data quality is one central problem of proteomics (Wilkins, 2009). Mass spec-

trometry experimental protocols vary. Methods for mapping O-GlcNAc sites display

the same challenges, considering that different studies use different experimental

designs. Moreover, studies may have defined differently what is a genuine site, from

what may be an experimental artefact (false positive) and the proteome heterogeneity

should be considered. Mixing data from multiple proteomics studies is, therefore,

challenging. Nonetheless, computational analysis of proteomics data is compelling

and can reveal proprieties of the modification that were not observed in individual

experiments.

1.6 Machine learning

In computer science, algorithms are defined as a set of instructions or operations

to accomplish a task. Algorithms can be programmed to solve specific problems.

Machine learning algorithms, on the other hand, learn from patterns in the input

data, without being explicitly programmed for a problem. The methods are especially
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useful when the amount of data is too large and too complicated for humans to

interpret. Accordingly, machine learning models learn from the training data and

apply it to novel data and can also extract knowledge from datasets.

There are two approaches to machine learning: supervised and unsupervised

learning. Supervised learning algorithms depend on an output variable, a categorical

or continuous variable, for each example in the dataset, while unsupervised learning

algorithms do not use it. Recently, two other methods have grown in popularity:

reinforcement learning and semi-supervised learning, similar to positive-unlabelled

learning. Reinforcement learning models apply continuous learning after the first

learning iteration. For example, the AlphaGo model learns from playing against

itself, after learning from recorded data of past games (Silver et al., 2016). The

second mixes supervised and unsupervised approaches for classifying partly labelled

data without requiring a negative dataset (Hao et al., 2015). Although this strategy

may potentially change the machine learning field, their algorithms are still under

scrutiny and testing.

The learning step is very specific to each machine learning method. Supervised

learning models are detailed in Chapter 3 and Section 1.6.1 briefly introduces methods

for unsupervised learning.

1.6.1 Unsupervised learning

Unsupervised learning can be applied to reduce the number of dimensions (features)

or to form the subset of examples in datasets. The latter is also called clustering.

There are two types of clustering algorithms: hierarchical and partitional clustering.

Hierarchical clustering provides a hierarchy among the examples in a dataset. The
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hierarchy is given by two factors: the distance metric and the linkage criteria. The

distance metric is a mathematical function that measures the pairwise distance of

examples. The Euclidean distance is the standard distance metric in most hierarchical

clustering implementations, but the metric should vary depending on the problem.

The linkage determines the distance among groups as a function of their distances.

Instead, to return the hierarchical relationship, partitional clustering methods

divide a dataset with N elements in K clusters (or groups, partitions), where K ≤ N

(Zeugmann et al., 2011). Every cluster has one or more elements, and each element

belongs to a unique group. Single element groups are called singletons. Examples of

partitional clustering algorithms that were applied to biology are:

• K-means clustering

• Markov Cluster Algorithm clustering (Dongen, 2000)

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester

et al., 1996)

The methods mentioned above can be applied to similar problems; however,

their implementations and results vary. One may consider hierarchical clustering

slow since the methods calculate all pairwise relationships among examples in the

training set. In the other hand, K-means is known for its speed and simplicity but

requires the number of clusters beforehand. An alternative method is the pvclust

method, which permutates with replacement the examples in the dataset hundreds or

thousands of times, simulating new hierarchies, and detects groups that are statically

significant (Suzuki and Shimodaira, 2006). Pvclust is a case that mixes partitional
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and hierarchical clustering. Furthermore, given a threshold hierarchy produced by

clustering can generate groups.

The organisation of the machine learning algorithms in types and subtypes is

necessary to understand the field. However, the real application of these methods is

complementary, and many strategies use them in pipelines.

1.6.2 Supervised machine learning algorithms

The supervised approach to machine learning requires a labelled dataset. A model

learns from the data, and there are two varieties of models, depending on the type of

the labels. Regression methods have a continuous target variable, while classification

methods have discrete target or classes. In general, trained models can predict from

unseen data, although there are other applications for supervised models, such as

prioritise explanatory features. The classification can be divided into binary or multi-

class problems depending on the number of classes. PTM predictors aim to discover

novel modification sites and, ideally, not predict an unmodified site as modified.

Consequently, PTM prediction is a binary classification problem. Section 3.5 shows

an example of how regression approach may be applied to PTM prediction. Unless

otherwise stated, the subsequent references to the machine learning model will allude

to a binary classifier.

Machine learning applications are prevalent in our everyday life and supervised

learning has been applied to computational biology and the problem of PTM pre-

diction. There is a standard workflow to the several machine learning methods

(Domingos, 2014). In the first step, the data are encoded in a format compatible

with the learning algorithm. Machine learning models depend heavily on the input
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data (Baldi and Brunak, 2001), which is also named the training dataset. Dataset

encoding can also impact heavily on the performance of the classifier. Each example

in the training set is represented and described by an array of attributes called

features. The training set is a matrix with m× n elements, where m is the number

of examples and n the number of features.

After encoding, the training set can undergo further processing, named pre-

(learning)processing. This step aim operate the features, by reducing the number of

features for example, to improve the prediction performance and training efficiency.

The learning step is an iterative process, where the model optimises the prediction

performance by minimising an error function, in case of the Artificial Neural Network

(ANN) methods. Lastly, the model can undergo optimisation that involves tuning

the parameters for the used algorithms.

Under- or overfitting are two main issues in training machine learning models.

When a model is unable to learn (fit) from the data, as when it cannot detect any

useful pattern in the training set, it predicts as randomly as a coin’s flip. In the other

extreme, overfitting happens when the model learns the specifics of the training data

and is unable to generalise to new data. Overfitting can be decomposed into several

subproblems. For example, a model can overfit by learning the noise of the dataset,

which occurs when the training set has too many features or too few examples (cases

of increased variance). Some machine learning algorithms are sensitive to parameters,

and the lack of parameter tuning may lead to overfitting. Modern machine learning

algorithms train in iterations and reserve part of the dataset for testing to minimise

overfitting.
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1.7 Genetic Variants

Errors in the replication machinery and other external factors lead to genome

variability. A germinal genetic variant is a DNA mutation detected in the germinal

tissue involved in sexual reproduction and, consequently, can be inherited by progeny.

In contrast, somatic genetic variants are mutations usually detected in cancerous

tissues and are not inherited.

The arrival of DNA Next-Generation Sequencing (NGS) technology has driven

many large scale genomic studies since its popularisation. The higher-throughput

NGS technologies enable the resolution and quantification of intrinsic or natural

variations of genomes. Instances of DNA variation are formally called genetic

variants and classified as either structural variants or Single Nucleotide Variant

(SNV). Structural variants comprise complex changes or rearrangements in the

genome sequence, such as insertions, deletions and duplications of DNA segments.

SNVs are point mutations on the genome, where any other nucleotide substitutes a

single nucleotide from the reference genome.

SNVs in DNA regions that encode proteins are further classified according to their

effects on the encoded protein. 3 consecutive nucleotides forms a codon that encodes

an amino acid. Since the genetic code is degenerate, meaning many codons can

encode one amino acid, in a relationship many-to-one, a SNV may or may not yield

an Amino Acid Substitution (AAS). A synonymous Single Nucleotide Variant (sSNV)

does not alter the protein sequence, whilst a Non-Synonymous Single Nucleotide

Variant (nsSNV) yields an AAS and changes the protein sequence. If the nsSNV leads

to a new stop codon, then it is sub-classified as a nonsense variant, otherwise the
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variant is sub-classified as missense variant. Nonsense variants result in a truncation,

a shorter protein product, which is normally considered to cause protein loss of

function, although some exceptions are expected but yet unreported. In contrast,

the effect of missense variants on protein function is harder to predict. An individual

genome can have the order of 10 000 nsSNVs (Cargill et al., 1999), but less than 1 %

may have effect on the protein function and lead to disease.

Most of the mutations will have little or no impact on the organism’s ability to

survive or reproduce, and are termed neutral variants (Nachman and Crowell, 2000).

In contrast, mutations that have a positive or negative effect on maintaining its

genetic information throughout the next generation are called beneficial or deleterious

mutations, respectively. Deleterious mutations will undergo negative selection (or

purifying selection), which reduces the frequency with which a variation is observed

within a population until it is removed. That explains why genetic diseases are

rare within the human population. On the other hand, mutations that confer an

advantageous trait will be positively selected, and the observed frequency would tend

to increase over generations.

A cancerous cell loses the cell growth checkpoints and starts uncontrolled cellular

divisions. In this case, cancer driver mutations are the subtype of cancer mutations

that increase the cell’s division rate and will increase in frequency within the genomes

of the affected cells. Passenger mutations may impact on the protein function but

do not change cell’s growth rate and accumulate over cancer growth (Stratton et al.,

2009). Cancer biology is very complex and beyond the scope of this thesis. However,

it may be useful to compare how germinal and somatic variants are distributed over

proteins.
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Two computational methods have been widely applied to predict the outcomes

of genetic variants. Polymorphism Phenotyping (version 2) (PolyPhen-2) predicts

the functional impact of nsSNVs based on the machine learning model trained on

protein feature annotations, phylogenetic information and structural attributes, but

only if the suitable protein structure has been determined. The method classifies the

genetic variant as probably damaging, possibly damaging or benign. The Sorting

Intolerant from Tolerant (SIFT) method calculates the residues’ conservation on

homologous sequences and the fact that highly conserved regions are less tolerant

to AAS. This method also updates the confidence of the prediction based on the

quality of the multiple sequence alignment. Unlike PolyPhen-2, SIFT does not use

a source other than phylogenetic information. PolyPhen-2 and SIFT have been

widely used to prioritise potentially disease-causing missense variants. However,

the methods have their limitations. They yield poor predictions when the AAS

results in a gain of protein function (Flanagan et al., 2010), which is particularly

important in cancer. They also do not consider the different susceptibilities of genes

to genetic variants (Petrovski et al., 2013) and that the interpretation of the scores

should change depending on the gene in question (Itan et al., 2016). There are also

other features not employed by these tools, such as protein PTM information and

functional protein splicing variants.

In this thesis, PolyPhen-2 and SIFT were used because the methods are conve-

niently available at the Ensembl Variant Effect Predictor (VEP). However, these two

tools might not be the most accurate and, in fact, have been outperformed by several

other methods. An incomplete list of alternatives includes: SDM (Worth et al.,

2007), Mutation Assessor (Reva et al., 2011), CONDEL (Gonzalez-Perez et al., 2012),
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FATHMM (Shihab et al., 2013) SuSPect (Yates et al., 2014), SAAPpred (Al-Numair

and Martin, 2013), Ensembl VEP (McLaren et al., 2016).

More importantly, PolyPhen-2, SIFT and other tools that predict SNV effect on

protein function do not replace manual interpretation of AAS by inspection of the

protein’s features, its three-dimensional structure and interactions. The background

genetic variability of a protein sequence can also carry relevant information for protein

function, by revealing regions of unknown function that do not tolerate variations.

In conclusion, since the experimental characterisation of every AASs is unfeasible,

the prioritisation of AAS in disease studies is critical, and new computational tools

are needed to extend the functionality of the current ones.

1.8 Scope of the thesis

The molecular basis of OGT substrate recognition is poorly understood. The recent

reports of OGT crystal structure in complex with the target peptide answered some

questions on the issue; however a more comprehensive survey is needed. Thus

Chapter 2 characterises the three-dimensional structure of O-GlcNAc sites and

structural proprieties predicted from the protein sequences to extract some new

information that might help to sort modified sites from unmodified ones. The current

alternatives for classification of O-GlcNAc sites require a data-update, evaluation

of new machine learning models and encoding strategies. So Chapter 3 investigates

several supervised machine learning methods and data encoding strategies to predict

O-GlcNAc sites. Chapter 4 analyses the results of the application of Predict O-

GlcNAc Sites from Protein Sequences and Features (POGSPSF), including the
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proteome-wide analysis of predicted O-GlcNAc sites. Data analysis tools for protein

structure integration with other features are currently lacking. Chapter 5 describes the

development of Protein Feature Aggregator and Variants (ProteoFAV); ProteoFAV

is used for the analysis of genetic variants over the OGT three-dimensional structure.

Chapter 6 integrates the conclusions obtained in the thesis and suggests future work.
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Chapter 2

Structural Characterisation of

O-GlcNAc sites

Preface

This chapter briefly introduces the topic of kinase recognition and then characterises

the three-dimensional structure of O-GlcNAc sites. Next, it extends the investigation

by examining the structural features predicted from the proteins’ sequences. The

electron density maps of 32 structures were also examined for clues to the modification.

2.1 Introduction

Prior to protein O-GlcNacylation, OGT recognises the target protein. This interaction

is temporary, specific and depends on other factors, such as the enzyme’s cosubstrate

UDP-GlcNAc. Reviewing the topic of protein-protein interaction is beyond the scope

of this thesis; however, the kinase specificity problem may help understand the OGT
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recognition process.

The molecular basis of the molecular interaction of two molecules follows the rules

described by Chothia and Janin (1975), over 40 years ago. Van der Waal’s contacts,

electrostatic forces, hydrogen bonds and hydrophobic effect are the 4 components

that explain protein interactions. The authors demonstrated that the hydrophobic

effect makes a significant contribution to protein-protein interaction. However, they

also concluded that the hydrophobic effect was unspecific, and thus Van der Waal’s

contacts and hydrogen bonds ought to provide the specificity of protein-protein

interactions.

Since protein phosphorylation is the most well-studied PTM, the interaction

between protein substrates and kinases has been examined. The primary sequence

of the kinase’s substrates plays a major role in the kinase substrate recognition

(Neuberger et al., 2007; Blom et al., 1999). Kemp et al. (1975) first reported the

substrate specificity of the cyclic AMP-dependent protein kinase (PKA). The study

demonstrated that a simple substitution of an Arg to a Ser in the sequence of β

casein could decrease the modification rate 100 fold. At the time, the known PKA

sites lacked a known sequon. The authors and others (Cohen et al., 1975) suspected

that the tertiary structure of the substrate protein could participate in the kinase

recognition like the substrate structure carries a three-dimensional signature. Pinna

and Ruzzene (1996) commented that the tertiary structure might have overridden

any primary structure propensity due to structural limitations in the active site of

the kinase. More recently, Duarte et al. (2014) showed that residues far away from

the site in the three-dimensional structure also mediate the substrate recognition

by protein kinase C (PKC), building up evidence that the role of three-dimensional
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structure in PTM should be further studied.

Figure 2.1 compares the relative sequence entropy for sites modified by OGT and

three protein kinases with highest number of known sites in the PhosphoSitePlus

database (Hornbeck et al., 2015). The observed relative entropy for OGT sites

is lower than the site relative entropy for PKA, PKC and casein kinase 2 (CK2)

sites. Indicating the sequence in the sites recognised by OGT carries less primary

sequence information than those recognised by PKA, PKS or CK2 and so are harder

to distinguish from unmodified sites by sequence alone.

Most kinase substrate sites are intrinsically disordered (Iakoucheva et al., 2004).

Protein intrinsic disorder can occur locally or globally and regions without an ordered

three-dimensional structure often have specific functions (Wright and Dyson, 1999).

Different types of intrinsic disorder vary from flexible to unfolded segments within

the protein, so there is no single definition of the term. The flexibility can be

estimated as, for example, B-factors (or temperature factors), which are atom’s

attributes present in the PDB file. The B-factors measure the uncertainty of the

three-dimensional position of an atom based on the three-dimensional structure

model. B-factors can be decomposed into the thermal vibrations component and the

static disorder component. Another indication of protein disorder is missing electron

densities that are annotated as missing residues (REMARK465) or missing atoms

(REMARK470) in the PDB files. Although the intrinsic disorder is not the only

explanation for missing regions in protein structures, the annotation is often used to

classify disordered segments.

The crystal structure of OGT in a ternary complex with UDP-GlcNAc and a

peptide substrate revealed that the OGT and the peptides’ residues predominantly
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make contact via the peptide backbones (Lazarus et al., 2011; Schimpl et al., 2012).

This fact reduces the importance of the peptide side chain in the enzyme active site,

the cleft where the reaction occurs. A short structural motif, instead of sequence

motif, could work as a point of molecular recognition, even with a degenerate sequence.

Accordingly, this Chapter investigates the three-dimensional structure and features of

OGT substrates to determine if they share tertiary or secondary structure similarities.

2.2 Methods

2.2.1 Data sources

A total of 1 533 modified sites from 676 proteins were selected by combining proteins

curated from the literature up until 2011 (Wang et al., 2011) and from 2011-2013

(Jochmann et al., 2014). The sites were filtered to keep 7-residue long motifs

with unique sequences. The resulting dataset contained 1 385 sites in 620 proteins.

This dataset is referred to hereafter as the “modified sequence sites” (MSS). For

comparison, 100 329 S/T from the same proteins, but not thought to be modified by

OGT, were selected as a background and are referred to here as the “unmodified

sequence sites” (USS).

2.2.2 Mapping O-GlcNAc sites to protein structures

Protein chains >30 residues long from structures determined by X-ray crystallography

to≤2.50 Å resolution were selected from the PDB on the 2nd August of 2015. Mapping

the 1 385 OGT sites from 620 proteins to PDB structures by the Structure Integration

with Function, Taxonomy and Sequence (SIFTS) software (Velankar et al., 2013)
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Figure 2.1: Sequence entropy of sites (±7 residues) modified by the three kinases
with most sites in PhosphoSitePlus database (Hornbeck et al., 2015): protein kinase
A (with 1 285 sites), protein kinase C (with 930 sites) and casein kinase 2 (CK2 with
742 sites). 1 530 OGT sites were compiled from the same database. The sequence
entropy was calculated by using the Python library WebLogo (Crooks et al., 2004).
Lines show mean relative entropy and the semi-transparent area represents 95%
Confidence Intervals (CI).
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located 45 sites in 24 proteins of known structure. The structures of a further 107

sites were identified by searching the sequences of O-GlcNAcylated proteins against

the PDB chains with BLAST (Altschul et al., 1990) (release 2.2.18) and filtering by

a conservative E-value of 1× 10−25 to minimise erroneous matches. The cutoff of

E-value ≤1× 10−25 , found empirically, ensured the reliability of the match in the

region of each site by inspecting all alignments between query and PDB sequence

at different thresholds. Table 2.1 shows the number of matches obtained for each

threshold and a less conservative threshold would minimally increase the number of

sites including dubious matches. 336 proteins and 107 sites were matched by the Blast

search. Selecting the protein chain with the highest coverage (SIFTS) or E-value

(BLAST) left 143 sites in 107 proteins for further analysis, referred to hereafter as

the “143 Structural Sites” (SS143). An alternative approach that represented a site

as the mean or median attribute value from multiple protein structures were also

tested with equivalent similar results to the ones shown here.

Table 2.1: Number of matches per E-value level.

E-value Number of proteins Number of sites

10−1 403 159
10−5 403 139
10−10 403 126
10−15 378 115
10−20 353 109
10−25 336 107
10−30 312 100

2.2.3 Site definition and clustering

The three-dimensional structure of OGT with its substrates suggested that the

region of contact between OGT and a modifiable S/T includes the residues and ±3
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amino acids either side (Schimpl et al., 2012). From the structural sites returned

in Section 2.2.2, 132 “Structural Sites” (hereafter SS132) had at least one match

with all backbone atoms for the 7-residue long site and were retained for further

analysis. Cα atoms of each residue and the Cα and the Cβ for the central S/T

were superimposed for all pairs of sites. The resulting matrix of Root-Mean-Square

Deviation (RMSD) values were clustered altogether with Euclidean distance and

complete linkage and groups were produced by setting a 3 Å cutoff.

2.2.4 Structural properties of sites

Protein secondary structure assignments were obtained from Define Secondary

Structure of Proteins (DSSP) (Kabsch and Sander, 1983). DSSP annotates 7 different

secondary structure states: 310 helix (G), α helix (H), π helix (I), bends (S), turns

(T), isolated (B) and extended (E) β-bridge. These assignments were reduced to

three states:

1. 310 helix, α helix and π helix to H

2. isolated and extended β-bridge to E

3. all other, including residues with no assignment, to C

The solvent accessible area from DSSP was normalised by the residue’s maximum

accessible area as described in Cuff and Barton (2000). A S/T was considered

exposed if its Relative Solvent Accessibility (RSA) was >25%; partially buried if

>5% and ≤ 25%; and buried if ≤ 5%.

Cα temperature factors or B-factors were standardised (Z-score normalised) over

the B-factors for all Cα in the same chain. This operation is indicated because the

47



2. Structural Characterisation of O-GlcNAc sites 2.2. Methods

B-factors obtained in different X-ray crystallography experiments are not directly

comparable.

2.2.5 Prediction of protein disorder and secondary struc-

ture

JPred4 (Drozdetskiy et al., 2015) produced the protein secondary structure predictions

for the proteins in the MSS dataset. Since Jpred4 is limited to sequences shorter

than 800 residues, 300 sequences were trimmed while ensuring the modified S/T was

at least 100 residues away from the N- and C-terminus to avoid edge effects.

The intrinsic disorder was predicted by JRonn (Java implementation of Ronn

(Yang et al., 2005)), IUpred (Dosztányi et al., 2005) and DisEMBL (Linding et al.,

2003) through the JABAWS (Troshin et al., 2011) (release 2.1) command line

application. These methods provide 6 disorder prediction scores, which are followed

by the score cutoff (in parenthesis) as determined by the methods’ authors: DisEMBL-

REM465 (0.6), DisEMBL-COILS (0.516), DisEMBL-HOTLOOPS (0.1204), IUpred-

Long (0.5), IUpred-Short (0.5) and JRonn (0.5). Disorder predictions were also

performed on a background set of 1 164 S/T selected at random from globular proteins

in the Astral dataset (Fox et al., 2014)] (release 2.04), referred to hereafter as the

‘Globular Set’ (GS). Figure 2.2 shows the relationship among the different datasets

with the numbers of sites and proteins, which was also summarised in Table 2.2.
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Table 2.2: Datasets summary. See Section 2.2 for details. Sites, number of sites;
Proteins, number of proteins.

Dataset name Sites Proteins Short name

Modified Sequence Sites 1 385 620 MSS
Unmodified Sequence Sites 100 329 620 USS
Structural Sites 143 106 SS143
Structural Sites with backbone 132 93 SS132
Globular Set 1 164 1 164 GS

Wang et al (2011)
403 sites

170 proteins

Jochmann et al (2014)
1181 sites

540 proteins

Filter
redundant

sites

Sifts

MSS
1377 sites

620 proteins

USS
100 329 sites
620 proteins

GS
1164 sites

1164 proteins

Blast

SS143
143 sites

106 proteins

Complete
backbone

SS132
132 sites

93 proteins

yes

no

yes

yes

Legend Symbol

Data

Process

Dataset

Decision

Figure 2.2: Datasets’ relationships.
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2.2.6 O-GlcNAc sites clues in electron density maps

In general, protein crystallisation demands large quantities of protein that is typically

obtained from super expression in Saccharomyces cerevisiae and Escherichia coli,

two organisms without O-GlcNAc cycling enzymes. However, when the protein

is naturally abundant, there is no need for the superexpression in a heterologous

system. Also, some protein structures are obtained from systems that might express

OGT and OGA. The electron density models of 32 protein structures was then

analysed for clues to the modification. The protein structures were obtained from

organisms that contain O-GlcNAc cycling and Appendix A.1 lists these organisms

and the site positions. Electron density was obtained from the Electron Density

Server (https://eds.bmc.uu.se/eds/) and visually examined with Coot (Emsley

and Cowtan, 2004).

For the examination, the Coot graphical interface was centred on the potentially

modified residue with the command ‘Draw/Go to atom’. The σ parameter was varied

from 1.5 to 3.0 with the command ‘HID/ScrollWheel/Attach scroll wheel’. The

electron density map of OGT modified peptide TAB1 (PDB accession number 4ay5,

chain I) centred at Ser11 was used as comparison.

2.2.7 Statistical analysis and code

The data collection, processing, analysis and the Cα clustering steps, were written

in the Python programming language (Python Software Foundation, version 2.7

http://www.python.org) with the Pandas (version 0.17) (McKinney and Team,

2015), and Biopython (version 1.65) (Cock et al., 2009) libraries. Statistical tests
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were performed with the Statsmodels (version 0.6) and Scipy (version 0.16) libraries.

A p-value threshold was set to 0.05.

2.3 Results

2.3.1 Analysis of O-GlcNAc sites in proteins structures

Previous reports have suggested that O-GlcNAc sites, like phosphorylation sites,

are predominantly present in disordered regions of proteins (Trinidad et al., 2012).

Increased B-factors is an indicative of structural flexibility. The standardised B-factor

distribution is equivalent between modified and unmodified S/T (Kruskal-Wallis

two-sample test p=0.12). Figure 2.3 shows the standardised B-factors distributions

for each secondary structure element. However, the distribution of standardised

B-factors is different (Kruskal-Wallis two-sample test p=0.02), while the distributions

for residues in E and H are similar (Kruskal-Wallis two-sample test p=0.72 and

0.37, respectively). The shift on the B-factors distributions of modified residues in C

indicates an increased uncertainty of the residues’ spatial position in the analysed X-

ray structures, and in consequence suggests that modified residues do not participate

as much as unmodified ones in crystallographic contacts.

Of the 143 modified S/T mapped to protein structures in the present study, 26

are in parts of the protein structure annotated in the REMARK465 file of PDB file.

In comparison, 553 of 4 811 unmodified S/T from the same protein structures are also

found in missing regions. Accordingly, O-GlcNAcylated S/T in these proteins are

1.7 times more likely to be in REM465 regions (Fisher’s exact test p=0.02). Since

one cause of missing atoms in the three-dimensional structure of a protein is the
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high flexibility of the region, this finding is consistent with O-GlcNAcylated S/T

occurring more frequently in disordered or highly flexible regions.

Table 2.3 summarises proportions of DSSP assigned secondary structure for the

SS143 dataset comparing modified and unmodified S/T in the same proteins. The

proportions of H, E and C are not different between the two groups, suggesting that

there is no preference in the secondary structure for modified S/T in this dataset.

Table 2.3: The proportion of secondary structure types for modified and unmodified
S/T in the SS143 dataset. Within parenthesis the number of S/T. Within square
brackets the lower and upper 95% CI. SS, secondary structure type.

Modified Unmodified p-value
SS Proportion 95% CI Proportion 95% CI
C 0.55 [0.46, 0.63] 0.51 [0.50, 0.53] 0.36

(78) (2 475 )
H 0.25 [0.18, 0.32] 0.32 [0.31, 0.33] 0.06

(36) (1 525 )
E 0.2 [0.13, 0.27] 0.17 [0.16, 0.18] 0.27

(29) (811)
Total 143 4 811

Residues that are buried in the protein structure are not thought to be modified

by phosphorylation, due to the structural constraints. Figure 2.4 shows the RSA for

modified and unmodified S/T in the three levels of solvent accessibility. Although

the overall distributions of unmodified and modified are in the limit of statistical

significance (Kruskal-Wallis two-sample test p=0.06), there is no clear distinction

for the three levels of RSA. The Kruskal-Wallis two-sample test for buried was 0.53,

partially buried 0.25 and exposed p=0.80. So the distributions of RSA for modified

and unmodified S/T are similar. Table 2.4 shows the contingency table for each level

of RSA.
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Figure 2.3: Modified and unmodified S/Ts ST have similar distributions of B-
factors. The values were grouped by secondary structure, but no difference was
observed without grouping. X-axis, DSSP secondary structure; y-axis, standardised
Cα B-factor. All parameters refer to S/T, not to the site. The violin plots should be
interpreted as the distributions for the B-factors values. Dashed lines represent 25%,
50% and 75% quantiles respectively.
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Figure 2.4: Relative solvent accessibility of modified and unmodified S/T of
O-GlcNAcylated protein structures. DSSP calculated solvent accessibility was nor-
malised by the residue theoretical maximum accessibility and the derived scores
were reduced to three levels: buried (<0.05), partially buried (<0.25 and >.05) and
exposed (>0.25) levels. The mean relative solvent accessibility is equivalent between
modified and unmodified residues. The y-axis shows the solvent accessibility levels,
and the x-axis the values of relative solvent accessibility.

Table 2.4: Frequencies for residues in each RSA level and the modified and unmod-
ified groups. χ2 test p=0.42.

Buried Partially Buried Exposed
modified 26 27 65
unmodified 1066 1105 2084
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2.3.2 Comparison of local structure around structural sites

Since no differences in secondary structure propensity were observed between modified

and unmodified S/T, the local three-dimensional structure of the 7 residue peptides

centred on S/T was investigated by pairwise superposition and clustering (see

Methods). 36 sites produce singlet, while the remaining 96 sites fall into 10 clusters

with the 3 Å RMSD cutoff. Figure 2.5 illustrates the superimposed structures for

sites in clusters, where green, yellow and grey represent residues in H, E and C

secondary structures elements, respectively. Table 2.5 shows the mean properties for

each structural group. Sites are found in a wide range of secondary structure types.

The sites in Clusters E, G and J, have consistent consensus secondary structures.

Clusters A-D, F, H and I are all variants on coil-helix or coil-strand transitions.

All buried sites, listed in Table 2.6, group in clusters D and G. Table A.2 in the

Appendix section lists all sites and sites’ properties in the SS132 dataset.

A close examination of the three-dimensional structure containing the buried sites

confirms that these sites are indeed buried. The 3 sites in cluster D were improbable

to be targeted by OGT due to their close proximity to the protein core. But the 4

sites in cluster G may be modified, since 2 of them (PDB accession number 3abm

and 4y7y) are located at the interface between two protein chains, indicating the

monomer could be modified. The other two (PDB accession number 2zxe and 4l3j)

are in regions that might be accessible upon conformational change.

To test if the clusters found for the SS132 are features of O-GlcNAc modification

or just reflect the natural composition of site centred in S/T, 132 unmodified S/T

were randomly selected from the same proteins and clustered. Random selection
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and clustering was repeated 1 000 times and the resulting clusters compared with

those clusters in the SS132 dataset. The number of clusters identified in each

sample ranged from 10-14 (95% CI), which is consistent with the SS132 dataset.

Furthermore, the structural clusters identified from the random sampling included

structural clusters similar to those for the modified sites, suggesting that there are no

dominant secondary structural or conformational patterns indicative of O-GlcNAc

modified sites in the structural data currently available for these sites.

Table 2.5: Summary of structural groups properties. Members, number of members
per group; B-factors, site Cα mean B-factors; SA, residue average relative solvent
accessibility; SS, site DSSP secondary structure.

Members B-factors SA SS
Cluster

A 8 0.06 0.35 [EH]CCHHHH
B 7 −0.35 0.28 HHHCCCC
C 2 1.26 0.43 -------
D 16 −0.37 0.23 [CE][CE]EEEEC
E 5 0.54 0.35 CCCCCCC
F 8 0.56 0.41 CCCCC[CH][CH]
G 25 −0.20 0.23 HHHHHHH
H 8 0.01 0.22 [CE]EE[CE]C[CE]E
I 6 0.22 0.32 CCCCHHH
J 11 0.22 0.36 CCCCCCC

Table 2.6: List of sites with buried sites in the SS132 dataset. PDB, PDB accession
number; Chain, chain within the protein structure; Position, position within the
protein structure chain; SA, site average relative solvent accessibility; SS, site DSSP
secondary structure.

PDB Chain Position Cluster SA

1f4j B 114 D 0.05
3cb2 B 170 D 0.02
4qvp T 131 D 0.01
2zxe A 366 G 0.02
3abm R 63 G 0.01
4l3j A 180 G 0.01
4y7y Z 190 G 0.04
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Figure 2.5: Structural groups of O-GlcNAc sites. Green residues participate in
H, yellow in E and grey in C, following DSSP assignments. The sites’ Cα atoms
and the S/T Cβ were superimposed. Their RMSD were clustered with complete
linkage and Euclidean distance, and groups were defined by the 3 Å threshold. The
threshold, defined to minimise the diversity of secondary structure state per group,
yielded 10 groups, and even within groups the structural conservation was minimal.
Therefore, OGT target site has no single structural motif. Cβ for the target S/T is
shown. Ribbon colour represents secondary structure elements: grey, C; green, H;
and yellow, E.
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2.3.3 Search for modification in electron density maps

Protein crystallography can be applied to the study of PTMs, focusing the investi-

gation of a site’s function and the modification’s impact on the protein structure.

Protein molecules in crystals are packed in a repetitive, symmetrical structure,

whereas each protein and its solvation layer remains trapped. The electrons in the

crystal scatter the energetic X-ray photons, resulting in a diffraction pattern. After

processing, the diffraction pattern generates probabilistic maps of atom positions

in the crystal lattice. Furthermore, if fractions of the proteins consistently carry a

modified S/T, the electron density map may hold clues to its position and structural

context.

Electron density maps are subject to interpretation. The crystallographer builds

the protein structure based on the electron density maps, the protein sequence and

other pieces of evidence. The electron density maps may contain an immense amount

of information, and therefore the crystallographer often needs to ignore electron

densities which are likely to be annotated as one of the molecules used in protein

crystallisation. Thus, some protein structures could carry O-GlcNAc. However, the

various chains in the 32 analysed protein structure did not exhibit any misannotated

density or any clues regarding the modification.

2.3.4 Analysis of features predicted for the MSS dataset

The number of O-GlcNAc sites on proteins with known three-dimensional structure

is limited to around 10% of the dataset. Therefore, to extend the analysis, prediction

algorithms were applied to the sequences in the MSS and USS datasets, as detailed

58



2. Structural Characterisation of O-GlcNAc sites 2.3. Results

Table 2.7: Jpred4 predicted solvent accessibility for S/T in the MSS and USS
datasets. The proportions of buried S/T as predicted by the Jnetsol method in
Jpred4. The proportions of buried S/T the same between the modified and unmodified
groups in the three levels predicted by the method. Within parenthesis, the number
of S/T; within square brackets, the lower and upper 95% CI. The p-value refers to
the two-tailed z-score test between the modified and unmodified groups.

Modified Unmodified p-value
Buried at Proportion 95% CI Proportion 95% CI
0% 0.01 [0.00, 0.01] 0.01 [0.008, 0.009] 0.18

(7) (836 )
5% 0.04 [0.03, 0.05] 0.04 [0.038, 0.040] 0.86

(55) (3 917 )
25% 0.29 [0.27, 0.31] 0.35 [0.27, 0.28] 0.31

(403) (28 044 )

in Section 2.2.

One unanticipated finding was that modified and unmodified S/T were equally

distributed for the three levels of solvent accessibility predicted by Jpred4. Table 2.7

shows the proportion of buried S/T in the MSS dataset, which is equivalent to the

proportions of buried residues USS at the 0%, 5% and 25% levels. Modified residues

are thought to be exposed to the solvent, so the lack of predicted accessibility was

not expected.

According to Jpred4 secondary structure predictions, the composition secondary

structure is different between modified and unmodified residues. Table 2.8 summarises

the difference. An increase of the proportion of modified S/T occur in C (p<0.01)

with a decrease in the H, but not in E. This indicates the Jpred4 predicts modified

residues to be within C rather than structured secondary structure regions, which

agrees with the argument that modified sites are more likely to occur in flexible

regions.

The application of multiple disorder predictions, instead of a single one, is ideal
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Table 2.8: Jpred4 predicted secondary structure proportions for S/T in the MSS
and USS datasets. Modified S/T are significantly more likely to occur in C, compared
to H and E. Within parenthesis the number of S/T. Within square brackets the
lower and upper 95% CI. The p-value refers to the two-tailed z-score test between
the modified and unmodified groups.

Modified Unmodified p-value
SS Proportion 95% CI Proportion 95% CI
C 0.88 [0.86, 0.90] 0.829 [0.826, 0.831] <0.01

(1212) (457848)
H 0.08 [0.07, 0.09] 0.126 [0.124, 0.128] <0.01

(107) (136489)
E 0.05 [0.04, 0.06] 0.045 [0.043, 0.046] 0.6

(66) (40243)

Table 2.9: Predicted disorder between MSS and USS datasets. The mean scores
± standard error for each predictor is shown. All scores, excepting DisEMBL-
HOTLOOPS, reveal a small but significant increase of mean disorder score for
modified S/T over unmodified ones. The p-value refers to the two-tailed t-test
between the modified and unmodified groups.

Method Modified Unmodified p-value Effect size

DisEMBL-REM465 0.48 ± 0.004 0.47 ± 0.001 0.01 0.07
DisEMBL-COILS 0.60 ± 0.004 0.58 ± 0.001 <0.01 0.09
DisEMBL-HOTLOOPS 0.10 ± 0.001 0.10 ± 0.001 0.45 0.02
IUpred-Long 0.59 ± 0.006 0.55 ± 0.001 <0.01 0.16
IUpred-Short 0.48 ± 0.005 0.45 ± 0.001 <0.01 0.11
JRonn 0.61 ± 0.004 0.62 ± 0.001 0.02 0.07

since the different tools base their algorithms on various definitions of protein intrinsic

disorder. Three disorder prediction tools, resulting in 6 different scores, were applied

to the sequence of O-GlcNAcyalted proteins. Table 2.9 shows a small, but significant,

increase of mean predicted disorder for all scores predictions, except for DisEMBL-

HOTLOOPS, a predictor method which is trained using structural B-factors. This

result is consistent with the result obtained with the SS143 dataset.

To confirm that O-GlcNAc sites tend to be in disordered regions, the MSS dataset

was compared with the GS, which contains proteins known to be predominantly
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globular, and hence mostly ordered structure. In Figure 2.6, the y-axis illustrates

the log10 odds ratio of disordered residues in the MSS and GS datasets, for relative

positions, in residues, to the central S/T (x-axis). The odds ratio measures the

proportion of residues predicted as disordered, given each score threshold, for MSS/GS

groups on a log scale. Consequently, a number close to 0 indicates no difference.

DisEMBL-HOTLOOPS reports a relatively small increase (> 0.5 log10 odds of the

proportion of disordered residues in each dataset) of the ratio of disordered residues

around the modification sites; while DisEMBL-COILS and JRonn also indicate a

small increase, but not in a particular region, but rather over the segment analysed.

IUpred-Long and IUpred-Short and DisEMBL-REM465 show a bigger increase of

the ratio of disordered residues in the MSS dataset and IUpred-Short and REM465

have their peak within -15 to +15 residues from the modification positions, detecting

a clear increase of the ratio disordered residues in MSS / disordered residues in GS

close to the modification.

2.4 Discussion

Protein phosphorylation and O-GlcNAcylation have many similarities. Both are

reversible PTM that participate in cell signalling networks. Phosphosites are present

in both ordered and disordered regions and the role of structural disorder of these

sites has been studied and applied to computational predictors (Durek et al., 2009).

However, despite its extensive involvement with human disease, little attention has

been paid to protein O-GlcNAcylation as a molecular process. This work aimed to

understand the three-dimensional structure of the O-GlcNAc sites.
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2.4.1 Modified and unmodified residues are equally exposed

to the solvent

Solvent accessibility can be used to complement the prediction of phosphorylation

sites (Zhou et al., 2004). But the characterisation of the structure of O-GlcNAc

sites demonstrated that these sites are not more exposed than other S/T within

O-GlcNAcylated proteins. O-GlcNAc modification of buried S/T is unlikely since the

process requires ternary complex that includes the targeted protein before the reaction.

However, Jiménez et al. (2007) found that around 15% of the analysed phosphosites

are buried. Furthermore, a recent structural review of the O-GlcNAcylation of

histones concluded that several sites are not on the nucleosome surface (Gambetta

and Müller, 2015). So far, this issues has been unreported, and three potential

explanation are possible. For example, Zhu et al. (2015) report Sp1 and Nup62

co-translational O-GlcNAcylation, which may explain the modification of residues

not exposed to the solvent if the modification occurs before or during protein folding.

Also, protein structures are not static entities as they are represented in protein

crystal structures, and buried residues may become exposed in a different alternative

conformation or by other forces, like molecular recognition by OGT. More likely,

incorrect mapping from the mass spectrometry experiment cannot be disregarded.

Anyhow, S/T are polar residues and are buried in only 5% of the sites in structures.
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2.4.2 Sites targeted by OGT might be associated with sec-

ondary structure transitions

While the structural sites in the SS143 dataset have equal proportions of the secondary

structure states, the result from secondary structure predictions on the MSS set

showed that O-GlcNAc sites are likely to reside in coils. So the proportions of

secondary structure assigned by DSSP and predicted by Jpred4 differ. While

secondary structure prediction has limited accuracy, the number of samples in the

SS143 dataset is limited and potentially biased. Also, clustering sites in the SS132

dataset highlight groups that are more likely to occur near to the transition between

a secondary structure element and C, as observed in several members of clusters

A-D, F and H.

2.4.3 O-GlcNAc sites also occur in disordered regions

The increased proportion of modified residues in disordered regions suggests that

structural flexibility around the modification sites plays a role in the molecular

recognition process. The idea that regions with increased structural mobility could

mediate binding is not new (Janin and Chothia, 1990). But sites in structured regions

of protein clearly indicate that not all mapped O-GlcNAc sites are in disordered

regions. Furthermore, InterproScan (Zdobnov and Apweiler, 2001) (version 5.4 in

September of 2014) analysis of O-GlcNAc sites assigned 19% of the sites to protein

domains, the number that goes in agreement to what is known for phosphoserines and

phosphothreonines in PFAM domains, which is around 25% (Hornbeck et al., 2012;

Beltrao et al., 2012). Hence, like protein phosphorylation, protein O-GlcNAcylation
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targets sites in ordered and disordered regions.

2.4.4 Potential OGT specificity drivers

OGT targets specific peptides and the active site may change the three-dimensional

structure of the substrate site (Pathak et al., 2015), what may explain why O-GlcNAc

sites’ tertiary structure is indistinguishable from unmodified sites. But other factors

also may explain OGT specificity. OGT participates in macromolecular assemblies

(Wells et al., 2004), and the role of adaptor proteins should not be ignored. Wells

et al. (2004) report OGT as part of a functional complex that includes a S/T protein

phosphatase recruited by the enzyme N-terminus. However, it is as yet unknown

whether the complex interferes with the OGT interaction with its substrate. Besides,

long-range residues, or residues that are far away in the protein sequence, but

close in its structure are critical in protein phosphorylation, more specifically in

PKC substrate recognition (Duarte et al., 2014). Other components, such as UDP-

GlcNAc concentration and subcellular location-dependent interactions, modulate

OGT activity and also may have a role in its substrate molecular recognition (Nagel

and Ball, 2014). Altogether, site sequence and structure should influence, but are

not able completely to distinguish, modified and unmodified sites. More strikingly

features predicted from the sequence are better tools to sort O-GlcNAc sites from

unmodified S/T than linear structural motifs.

2.5 Conclusions

• This work is the first comprehensive structural study of O-GlcNAc sites
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• Modified sites mapped to proteins crystal structures do not seem to have a

three-dimensional signature

• Surprisingly, some of the sites mapped to structures were found in buried

regions

• Modified and unmodified S/T were compared, an excess of modified S/T was

observed in regions annotated as REM465, suggesting that in fact O-GlcNAc

sites are associated with protein intrinsic disorder

• The proportions of predicted disorder and secondary structure were different

for modified and unmodified S/T
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Chapter 3

Computational prediction of

O-GlcNAc sites

Preface

Firstly, this chapter introduces machine learning algorithms and methods used to

predict PTM sites, focusing on methods that predict O-GlcNAc sites. Next, it

describes the stages for training a model and investigates the most appropriate

training set and machine learning methods for the predictor. It also discusses optimal

motif encoding strategies. Finally, a machine learning classifier of O-GlcNAc sites

was trained on the motif sequences and predicted features and evaluated.

3.1 Introduction

The experimental validation of PTM sites demands time and resources that are

often unavailable. Apart from studying the features that characterise the sites, as
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done in Chapter 2, computational methods can learn from the data by identifying

patterns in a set of sites. Machine learning methods are widely used to prioritise

potential PTM sites prior to experimental validation (see Section 1 for a review of

experimental validation of O-GlcNAc sites). A trained model can systematically

rank sites in a target protein, based on what is known about the sites. Another

important application of PTM classifiers is the proteome-wide study of predicted

sites, which can suggest new properties of the studied PTM that are not observed in

the initial dataset due to its limited size.

Machine learning methods have been applied to predict several types of PTM

sites. Examples are cleavage sites (Nielsen et al., 1997); cysteines that form disulfide

bridges (Fariselli et al., 1999; Ceroni et al., 2006); phosphorylation sites (Jensen

et al., 2002); and kinase-specific phosphorylation sites (Neuberger et al., 2007). Trost

and Kusalik (2011) reviewed around 40 classifiers of phosphorylation sites. The

differences among the tools include not only their predictive performance but also

what machine learning algorithm was applied, how the training set was prepared,

how the learning procedure was carried out, how to define the motif length, and

whether to use the sequence only or to include other features. A new method that

classifies PTM sites needs to address all these issues.

The importance of O-GlcNAcylated proteins was reviewed in Chapter 1. These

proteins are involved in a wide range of functions, from gene transcription regulation

(Brimble et al., 2010) and protein translation (Zeidan et al., 2010) to modulation of

protein kinases (Dias et al., 2009; Wang et al., 2012). OGT is known for targeting

proteins with the highest demands for chemical energy in specific tissues, such as

P-type ATPases (Clark et al., 2003) and components of the cytoskeleton (Hédou

68



3. Computational prediction of O-GlcNAc sites 3.1. Introduction

et al., 2009). Overall, this PTM is thought to sense changes in nutrient availability

and control adaptation to a new condition. More recently, the specific function of a

few sites has been described.

For example, pairs of the Keratins 8/18 protein form the intermediate filament,

critical for the epithelial organisation Kakade et al. (2016). The protein is phospho-

rylated (residues Ser33 and Ser52) and O-GlcNAcylated (residues Ser29, Ser30, and

Ser48). Kakade et al. (2016) describe that the cells carrying the Ser30Ala mutant,

which abolish O-GlcNAcylation of the Ser30, lose the ability to migrate under a

condition that simulates wound closure. So, specific sites can have a higher level of

importance to the cell and organism. The human proteome has around 2.50× 106

S/T and machine learning methods can help sort potentially modified sites from

unmodified ones. Thus, the sites can be further studied to establish whether their

modification does or doesn’t have a function or involvement in human diseases.

The next sections introduced the Position-Specific Scoring Matrix (PSSM), ANN,

Support Vector Machines (SVM) and random forests supervised machine learning

methods.

3.1.1 Position-Specific Scoring Matrix

A PSSM is not a machine learning method, although some authors treat them as

so (Baldi and Brunak, 2001). PSSM represents the knowledge-based alignment of a

series of motifs. The methods summarise a multiple sequence alignment and can be

applied to describe motifs in DNA, RNA and protein sequences. PSSM can match

new motifs that were not included in the training set (Stormo et al., 1982). The

matrix captures the preferred amino acid in each position of the multiple sequence
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alignment, so the score for amino acid a in the position i is given by the Equation 3.1

Sa,i = log10
fa,i

Ba

(3.1)

Where fa,i is the frequency of the amino acid a in the position i corrected by

pseudo counts (arbitrarily set to = 1) and Ba is the background amino acid frequency1.

The sum of each amino acid score gives the motif score (Durbin et al., 1998). The

cutoff value that classifies the motif as modified or not was obtained under 10-fold

cross-validation (see Section 3.2.6).

In this work, a PSSM was implemented with the Pandas DataFrame data structure

(McKinney and Team, 2015), and adapted to work with SciKit-Learn, to take

advantage of the library RandomizedSearchCV and metric evaluation pipeline. It is

important to note that PSSM models did not include any extra features, detailed in

Section 3.2.4, only the motif sequence.

The disadvantage of a PSSM over more advanced models is that the models

cannot identify a non-linear combination of amino acids. A hypothetical training set

contains examples dominated by two patterns, one always contains an Ala amino acid

in the position -2 and the other always contains a Val in the position -3. An example

with Ala in -2, and Val in -3 would have a high score, although this example never

appears in the training set and the combination might be mutually exclusive. Other

Machine learning methods deal with this issue better. Hence, PSSMs are indicated

for motifs with a clear sequence pattern. In that case, PSSMs are useful because the

result interpretation is direct and transparent, different from most machine learning
1The natural frequency of the amino acid in the human proteome
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methods.

3.1.2 Artificial Neural Network

An ANN emulates a simplified biological network of neurons (Wu, 1997). Each

node of the network is a neuron, and the neurons, which are organised in layers, are

interconnected. A common ANN architecture has three layers: input, hidden and

output. The systems learn by an iterative process where the weights of the neurons’

interconnections update to adapt to the signals in the input layer and minimise

learning error. Overall, the network aims to map the information from the input

nodes to the output nodes.

The number of neurons per layer and the layers’ dimensions varies in different

implementations. Also, ANNs have several parameters that need to be optimised. So,

a critical problem with this machine learning method is designing the network and

tuning its parameters. The network design is problem specific, so different problems

demand different architectures. Moreover, parameters tuning of ANN models lead to

overfitting. Because of the limitations, other machine learning methods are preferred

over ANN.

3.1.3 Support Vector Machines

SVMs work differently from ANNs. SVM were introduced in 1992 (Boser et al., 1992),

later successfully applied to prioritisation of cancer genes (Guyon et al., 2002). Since

then, the SVM has become one of the most popular machine learning methods for

classifications in computational biology and has been applied to PTM site prediction

(Kim et al., 2004).
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There are two key concepts for understanding SVMs: kernel functions and the

margin separation (Ben-Hur and Weston, 2010). For a binary classification problem

that is linearly separable and with two features, or a feature space of two dimensions,

the SVM solution is the line that maximises the separation between the two classes.

The distance between the line and each class is the margin. For problems in higher

dimensions, or more than two features, a hyperplane substitutes the line as the

decision boundary. The members of each class that are closest to the decision

boundary are the support vectors. The hyperplane can be interpreted as a decision

surface, and the surface to member distance associated with the probability of the

class membership.

As most problems are not linearly separable, the kernel functions work by trans-

forming the feature space to separate members from the different classes, given

their features similarities. The kernel function transforms the feature space into an

equivalent but higher dimensional feature space, where the classes are separable.

The Gaussian kernel Radial Basis Function (RBF) is the standard SVM kernel in

SciKit-learn because of its popularity. The method also supports training on large

datasets, that limits older machine learning methods. Kernel functions are critical

for SVM, new kernels heavily impact on prediction performance (Leslie et al., 2002).

Overall, SVM models generalise better than ANN models, specially for training

sets with high dimensional feature spaces. Also, SVM have fewer parameters and

thus are simpler to tune. For example, the linear kernel has a single parameter, C,

which tries to balance the number of misclassification and simplicity of the decision

surface. So the higher the C parameter, the lower the misclassification rate, but

more complicated the decision surface, which leads to overfitting. Apart from the C
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parameters, the RBF kernel also have the γ parameter, which defines the shape of

the Gaussian model. Smaller γ represents a more constrained model, where a single

example has too much influence.

3.1.4 Random forests

Random forests are an ensemble machine learning method, while SVM and ANN are

single decision classifiers. In general, ensemble methods train weaker classifiers that

collectively outperform single decision ones. Decision trees are relative lightweight

classifiers compared to other methods, like SVM.

The unit of the random forest algorithm is a decision tree. Decision trees use

simple decision rules inferred from the features. There are multiple decision trees

algorithms (Scikit-Learn website, 2016b), but most of them use a binary tree, which

implies that each node splits in two.

The individual tree is trained with a bootstrap aggregating the training set.

Bootstrapping is a statistical technique that subsamples N samples from a dataset

with N samples with replacement, meaning that elements will be repeated in sampled

data. The remaining samples are used to determine the out-of-bag error, which is

used for internal estimation of the prediction error.

The learning occurs in iterations. In each step, the feature space is partitioned.

One critical rule is how to determine the ‘node impurity’, or the features that best

explain the mix of classes in one node. When the criterion is set and reached, the

node is split into two child nodes. The process repeats until a secondary criterion is

achieved and the terminal nodes assign the class.
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Breiman (2001) demonstrated that the generalisation error converges to a mini-

mum value. The author also showed that the new random forest implementations

were more robust to noise and outliers than previous implementations, which makes

the algorithm particularly useful for biological problems. Another significant advan-

tage of random forests over SVMs and ANN is that the algorithm is not a ‘black box’;

thus some information regarding the feature importance can be extracted from the

model. However, there is a trade-off between model transparency and generalisation

error, because the higher the number of decisions tree the lower the generalisation

error, but the model becomes harder to interpret.

The SciKit-learn implementations of random forests and SVMs were used in this

work. The models were trained with the class weight parameter set to ‘balanced‘.

With this setup, a model trained with unbalanced datasets will penalise more the

misclassification of the minority class (the positives) over the majority one. In the

case of prediction of PTM sites, methods aim to predict novel sites, so the positive

class is more important than the negative.

The random forest method has more parameters than SVMs and some other

methods. However, it is less sensitive to parameter tuning than other methods. Two

key parameters heavily impact the prediction performance, the n estimators and

the max features. The other parameters define split criterion and other tree specific

characteristics.

In conclusion, machine learning is an iterative process; adding features, engineering

better encoder and optimising parameter can improve the prediction performance.

Regardless, one golden rule of machine learning is “more data beats a cleverer

algorithm” (Domingos, 2014). More data can always improve predictive performance.
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3.1.5 O-GlcNAc site classifiers up to 2013

The aim of PTM sites classifiers is to sort modified sites from unmodified ones,

ideally by some rank.

The YinOYang method was the first machine learning predictor of O-GlcNAc

sites (Gupta and Brunak, 2002). YinOYang used an ANN trained on a dataset

of 40 sites (Wang et al., 2011). YinOYang included phosphorylation prediction

from NetPhosK (Hjerrild et al., 2004) since O-GlcNAc and phosphorylation can

occur at the same site (Wang et al., 2008). Gupta and Brunak (2002) concluded

that OGT does not recognise a clear sequence pattern, but they still highlight the

position-specific over-representation of the following amino acids:

• Prolines at positions -4, -3, -2

• Valines at positions -1, +2, +4, +5

• Serines at positions +1, +4, +7

where position 0 is the modified S/T.

Wang et al. (2011) built a Database of O-GlcNAcylated Proteins and Sites

(dbOGAP) comprising 172 proteins, 798 sites curated from the literature and 365 sites

inferred from orthologous proteins. The sites in the database revealed the consensus

motif [PV][PA][VT][S/T][TS][AS], which was not sufficient to define all the O-GlcNAc-

site motifs in the database. So a SVM model called OGlcNAcScan was trained with

the sites in the database. The model achieved an Area Under the Curve (AUC) of

74.30 % under a 5-fold cross-validation.

The prediction performance of OGlcNAcScan and YinOYang were assessed by
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Jochmann et al. (2014), who collected a dataset of 1 181 new O-GlcNAc sites deter-

mined by mass-spectrometry from 520 proteins. On the new dataset, OGlcNAcScan

and YinOYang yielded low sensitivity of 44 % and 30 %, respectively. The authors

explain the low sensitivity as a consequence of both a small training set and the

inclusion of a mixture of substrates of the 3 OGT isoforms. Recent evidence sug-

gests that the nucleocytoplasmic isoform of OGT can target mitochondrial proteins

(Trapannone et al., 2016) and so far, there is no experimental evidence indicating

that the different isoforms have different substrates. For this reason, it is most likely

that the small training dataset explains the lack of sensitivity of the OGlcNAcScan

and YinOYang methods.

Gupta and Brunak (2002), Wang et al. (2011) and Jochmann et al. (2014) all agree

that sequence alone does not contain enough information for training a predictor of

O-GlcNAc sites. Section 3.2 describes the machine learning models and an approach

to training a new classifier of O-GlcNAc sites that combines predicted secondary

structure, solvent accessibility and disorder. Figure 3.1 summarises the stages of its

implementation and testing.

3.2 Methods

Collecting and cleaning the training set is the first and maybe the most important

step of training any machine learning model (Domingos, 2014). For models trained

on data derived from proteins, this stage needs extra care to control for sequence

redundancy (Cuff and Barton, 2000; Overton et al., 2011). Protein domains can be

conserved even in proteins with different sequences, which may lead to a strong bias
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Figure 3.1: A systematic approach to building a predictor of O-GlcNAc sites. 2
datasets were studied. The DVA720 was kindly provided by Pathak et al. (2015)
and analysed in Section 3.5, and the second dataset is based on the MSS and USS
sets from Chapter 2. For the last dataset, the data cleaning step reduces redundant
protein and site information. After splitting the non-redundant dataset in one
training and one blind-testing set, the trained machine learning models included
PSSM, SVM with linear and RBF kernels and random forests. The models were
trained on datasets with 3 ratios of positive:negative examples (1:1, 1:10 and 1:70)
and motifs of size 6, 7, 11, 15, 21, 31, 41 residues. Model parameters were optimised.
The selected model was used to predict the blind test set. This test evaluates how
well the predictor generalises by predicting unseen data.

77



3. Computational prediction of O-GlcNAc sites 3.2. Methods

in the data, resulting in over-training of the model (Baldi and Brunak, 2001; Miller

and Blom, 2009).

3.2.1 True positive set

Binary classifiers of PTM sites should contain a set of positive (modified) examples and

a set of negative (unmodified) examples. The predictor aims to discover new potential

sites, so, in this case, comprises S/T with substantial evidence of modification by

OGT. Thus, the dataset cleaning stages aimed to maximise the number of true

positives, while minimising the number of redundant examples that do not add

new information to the learning stage. Too few examples, or too many redundant

examples, will lead to under- and overfitting, respectively, so a balance between both

is needed.

Filtering redundant proteins

The dataset obtained in Chapter 2 contained 1 533 13-amino acid long sites with

non-identical sequence from 676 proteins. The protein sequences were clustered with

Blastclust (0.70 identity and 90 % coverage) (Altschul et al., 1990). Parameters were

fine-tuned to control the proteins within clusters, which are shown in Appendix B.1.

The protein with the most sites was selected, resulting in a dataset with 591 proteins

containing a total of 1 374 sites. This stage of the cleaning is also necessary for

dealing with redundant sites in homologous proteins (see Section 3.2.2).
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Removing redundant sites

Mapping O-GlcNAc sites to protein structures in Chapter 2 revealed that some sites

occur within similar domains. Since only a small percentage of O-GlcNAcylated

proteins have a 3-dimensional structure in the PDB, InterproScan domain prediction

on each protein sequence was executed (Zdobnov and Apweiler, 2001). Domains

defined by InterPro (Hunter et al., 2009), CATH (Sillitoe et al., 2015), SCOP (Fox

et al., 2014) and Pfam (Finn et al., 2014) were assigned to the sequence of O-

GlcNAcylated proteins, and modified sites that occur in the same relative position or

±2 residues within a domain were analysed. Sites were only grouped if the domain

assignment looked correct and the sequence alignment was unambiguous, i.e. without

a large extension of gaps around the site. Appendix B.2 lists 12 groups and the

14 sites that were discarded. The discarded sites represent a small proportion of

the positive dataset. However, their redundancy may have a significant impact on

training machine learning models with predicted secondary structure and disorder;

therefore the redundant sites were removed.

3.2.2 Negative dataset

The choice of a true negative set is often a problem in machine learning, in particular

for models trained with PTM sites. There are no experimentally validated data

on unmodified sites. Since there is no large, refined set of S/T that cannot be

O-GlcNAcylated, here the negative dataset was sampled from the 89 771 unmodified

S/T in O-GlcNAcylated proteins. This selection strategy of true negative examples

has been previously applied to the phosphorylation classifiers (Neuberger et al.,
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2007). Although it might contain unreported true positives, it is expected that their

proportion will be insignificant in comparison to the set. Negative selection from

proteins known to be O-GlcNAcylated should provide the hardest examples for the

classifiers to learn since positive and negative examples come from the same context

and bias. If the model can distinguish the classes within this context, it should be

able to generalise to unseen proteins.

3.2.3 Blind test dataset

A blind test set, also termed hold-out set elsewhere, was built by random sampling

and setting aside 136 positive and 136 negative examples (10 %) from the training

dataset. This dataset was not used during the training or optimisation stages and

serves as an independent measure of generalisation to new data.

3.2.4 Dataset encoding

The majority of machine learning methods train on numerical features. Moreover,

some learning tasks that are facilitated if features are pre-processed by normalisation,

for example. Categorical features such as the amino acid sequence, and ordinal

features need to be encoded as numbers.

The O-GlcNAc-site motif sequences were sparsely encoded. This encoding strategy

represents each amino acid in the motif as a vector of 20 binary elements, where

each element defines an amino acid. For example, the amino acid Alanine was

represented by the [1, 0, 0, . . . , 0] vector. The absence of a residue, for motifs in the

N- or C-terminus of proteins, were represented by the [0, 0, 0, . . . , 0] vector, with 20

zeros.
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Extra features

The following additional features, analysed in Chapter 2, were added to the encoded

motif sequence vector:

• Jpred4 secondary structure (Drozdetskiy et al., 2015)

• Jpred4 solvent accessibility (Cuff and Barton, 2000; Drozdetskiy et al., 2015)

• JRonn disorder (Yang et al., 2005) (missing JRonn predictions were substituted

with zero)

• DiSEMBL disorder (Linding et al., 2003)

• IUpred disorder (Dosztányi et al., 2005)

The secondary structure elements H, E and C were also sparsely encoded. Each

one of the 3 solvent accessibility levels (0%, 5% and 25%) was represented by a

binary element 0, for exposed, and 1, for buried. The disorder scores were included

as they are. Figure 3.2 illustrates the complete encoding scheme for one amino acid.

For sites in proteins, a vector with 32 elements represents each amino acid. The

number of amino acids per motif, or the motif length, varies from 6 to 41.

SS

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 a b c d e f

AA SA D

Figure 3.2: Amino acid encoding for SVM and random forest models trained
on O-GlcNAc sites data. The figure illustrates the encoding of a single example.
The amino acid, AA in the image, and the secondary structure element (SS) were
sparsely encoded. The 3 solvent accessibility levels (SA), 0%, 5% and 25%, were
represented as 3 elements, 0 denoting exposed and 1 buried. Disorder scores (D)
were input as they are: a, JRonn; b, DiSEMBL-HOTLOOPS; c, DiSEMBL-REM465;
d, DiSEMBL-COILS; e, IUpred-short; and f, IUpred-long.
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3.2.5 Dataset balance

For a 2-class problem, a balanced dataset has the same number of positive and

negative examples in the training set. Equation 3.2 defines a balanced dataset.

Rationegative:positive = Number of negatives
Number of positives ≈ 1 (3.2)

In this work, Rationegative:positive ≈ 70, which means there were approximately 70

unmodified S/T for each modified one. Data imbalance is a common problem for

PTM classifiers that select the negative dataset from a set of unmodified sites.

One issue associated with dataset imbalance is the classifier performance evalua-

tion. The accuracy metric, detailed in Section 3.2.6, is not indicated for evaluation

of a model that learned from an imbalanced dataset because a naive predictor that

always predicts the major class will obtain better accuracy than random choice.

A second issue is the elevated number of examples. After a critical point,

additional negative examples will not improve the model’s performance. Moreover,

an increased number of negative examples will drop the model efficiency, defined

as the time the method takes to learn from the data. As a result of an inefficient

method, further developments, such as the optimisation of the method parameters’

and potential improvements, and testing new encoding strategies, will be delayed.

In conclusion, model efficiency also needs to be taken into account while deciding

the most appropriate dataset balance.

A simple strategy to deal with class imbalance is to under-sample the majority

class. So, the negative examples were randomly selected to match ratios equal

to either 10:1 or 1:1. This strategy has the additional advantage of reducing the
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probability of a mislabelled true positive being included in the negative dataset.

The natural ratio of modified and unmodified S/T is unknown. From the data in

the training set, the ratio in the human proteome was estimated to be approximately

36 000 modified S/T to the 2.50× 106 S/T. However, this number should be smaller,

since OGT will not target a subset of the proteins. If the under-sampling of the

majority class is employed, the procedure will affect the classifier scoring and may

also impact on the proportion of predictions, depending on the method used. So

the artificial Rationegative:positive may lead to over-prediction. The proportion of the

classes is critical when the prediction is applied to the human proteome, in Chapter 4.

3.2.6 Training and testing

Since several models were trained with different methods in different setups, the

performance of the models needs to be compared. The Section 3.2.6 discusses

mainly the classification metrics for a binary classification task that needs to support

unbalanced data. A metric for regression model evaluation is also briefly introduced,

as it is used in Section 3.5.

Measuring the classifier performance

The accuracy metric (Equation 3.3) measures the proportion of correctly predicted

examples (true positive and true negative) over all predictions.

Accuracy = TP + TN

TP + TN + FP + FN
(3.3)

As discussed before, accuracy is suboptimal for evaluation methods trained on
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unbalanced datasets. The True Positive Rate (TPR) (Equation 3.4), or sensitivity,

and the False Positive Rate (FPR) (Equation 3.5), or specificity, measure the

proportion of correctly assigned true positive and true negative respectively. Precision

measures the fraction misclassification of the positive class.

TPR = TP

TP + FN
(3.4)

FPR = FP

TN + FP
(3.5)

Precision = TP

TP + FP
(3.6)

Where true positive (TP) and true negative (TN) are the correctly predicted

positives and negatives, respectively. Negative examples misclassified as positives

are termed false positives (FP), while positive examples misclassified as negative are

called false negatives (FN).

The Receiver Operating Characteristic (ROC) curve plots the relationship between

the TPR and FPR. The AUC is a summary statistic for the ROC curve. An AUC

of 0.50 represents a random prediction, and the ideal ROC curve (all positive and

negatives correctly classified) has AUC of 1.

Equation 3.7 shows the Matthews Correlation Coefficient (MCC), which also

expresses the predictor performance. The score measures the correlation between

expected and observed predictions and varies from -1 and 1, where 0 denotes as good

as random predictions and 1 ideal predictions. Both MCC and AUC of the ROC
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curve are metrics indicated for binary imbalanced classification problem (Baldi and

Brunak, 2001).

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(3.7)

Regression models in Section 3.5 were evaluated with the R2 (Equation 3.8)

metric:

R2 = 1−

∑
i

(yi − fi)2

∑
i

(yi − ȳ)2 (3.8)

Where ∑
i

(yi − ȳ)2 is the total sum of the squares and ∑
i

(yi − fi)2 is the residual

sum of the squares, for n samples f = [f1, . . . , fn], predicted values y = [y1, . . . , yn]

and ȳ is the mean predicted value. The metric measures the deviation of a predicted

value from its target value. The closer to 1, the more accurate the regression model.

This score is not symmetrical and may be negative in case the model fails to learn

from the training set (Scikit-Learn website, 2016d).

Training stage

Models were trained with the 10-fold cross-validation. This approach divides the

dataset into 10 parts and, for each iteration, trains with 9 parts and tests on 1.

The mean MCC score was calculated from the 10 iterations. Since an algorithm’s

performance may be different for different motif lengths, the sizes 6, 7, 11, 15, 21, 31

and 41 amino acids were tested.

Parameters were optimised with the RandomizedSearchCV function implemented

in SciKit-Learn. It works by fine-tuning the parameters, aiming to achieve the
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maximum MCC score during the cross-validation. An alternative method to

RandomizedSearchCV is the GridSearchCV function, which exhaustively searches a

pre-established list of parameters. The advantage of using RandomizedSearchCV is

detecting parameters that impact on predictor performance and extends the search

for optimal parameter values (Bergstra and Bengio, 2012) while limiting the search

for parameters with less impact.

Each machine learning algorithm contains specific parameters that need to be

empirically adjusted. Table 3.1 lists these parameters and their possible values. The

random forest parameters ‘minimum samples per leaf’ (min samples per leaf) and

‘minimum samples per split’ (min samples per split) were sampled from a discrete

uniform statistical distribution, while the other numeric values were sampled from a

continuous uniform function, implemented in SciPy. In the ‘Possible values’ column,

the number within parenthesis determines the range of the distribution. Random

forest has an important parameter, n estimators, that represents the number of

decision trees in the forest. This parameter does not need to be optimised, because

the higher the number, the better the predictive performance, until a critical point,

where the performance stops increasing. The n estimators was left at its default

(10) until the final prediction, since this parameter also has a large impact on training

efficiency.

3.2.7 Mining novel sites from abstracts

To compare POGSPSF with alternative predictors, a new dataset of O-GlcNAc sites

was collected from abstracts of scientific articles in the Pubmed Central repository

(Maloney et al., 2013). The repository was searched with the BioPython (Cock et al.,
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Table 3.1: Machine learning algorithm parameters optimised with
RandomizedSearchCV. The ‘Possible values’ column defines search the space.

Machine learning Parameter names Possible values

PSSM cutoff uniform distribution(-2, 12)

Random forests

bootstrap True or False
minimum samples per
leaf

uniform distribution(1, 15)

minimum samples per
split

uniform distribution(1, 7)

criterion Gini or Entropy
maximum features uniform distribution(0.1, 1.0)

SVM with linear kernel C uniform distribution(0.1, 10 000)

SVM with RBF kernel C uniform distribution(0.10 , 10 000)
γ uniform distribution(0.01 , 100)

2009) Entrez Application Programming Interface (API) for articles containing the

OGT term. The selected abstracts were processed with the following case insensitive

regular expression:

\W(s|ser|serine|t|thr|threonine)([\d+]{1,3})([a-z]{1,3})?\W

The regular expression matches text such as Ser473 or T41A. 25 articles that

match the regular expression were manually curated, yielding 19 novel O-GlcNAc

sites in 8 proteins. The S/Ts in the proteins were classified with POGSPSF (this

work), YinOYang (Gupta and Brunak, 2002) and OGlcNAcScan (Wang et al., 2011)

to evaluated each classifier’s performance.
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3.3 Results

3.3.1 Machine learning algorithm selection

The efficiency and performance of methods were compared by running parameter

optimisation with 10-fold cross-validation using the balanced training set and a time

limit of 24 hours. Also, motif lengths from 6 to 41 amino acids were evaluated. The

applied machine learning algorithms were PSSM, SVM with linear and RBF kernels,

and random forest.

Figure 3.3 shows the parameter optimisation for the trained models. The SVM

based models did not complete parameter optimisation within the time limit, except

the model with the linear kernel and for motif lengths six and seven. All other

models were optimised within the time limit.

The PSSM models obtain an MCC score ≤ 0.12 in the experiment. In fact, PSSM

models were trained as a baseline since there is enough evidence to support that

sequence alone poorly distinguishes modified and unmodified S/T. Hence PSSM

models were expected to have the worst prediction performance of the methods.

Random forest models perform poorly for motif lengths of 6 or 7 amino acids

but obtain a MCC score of 0.23 for motif lengths of 11, which is the top score in the

experiment. Longer motif lengths did not increase the random forest performance.

The result with the motif length of 7 residues was considered an outlier, and further

investigation is needed to determine why the predictive performance of this point

was so low.

Table 3.2 lists the performance metric for a combination of motif length and ratio

(Rationegative:positive). Motif length < 11 amino acid have a negative impact on the
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Figure 3.3: 4 machine learning algorithms were optimised for the same number of
iterations for a maximum of 24 hours. In the y-axis, the mean MCC calculated from
10-fold cross validation; in the x-axis the motif length. The SVM based model did
not train within the time limit, except the linear kernel with 6 and 7 amino acid
motifs, and therefore, are missing from the plot.
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predictor performance and are omitted. The balanced training set outperforms the

unbalanced options for all tested motif lengths. 2 training sets obtained the top

performance, 0.73 AUC. The simplest model, with the motif length of 21 residues,

was selected for a longer round of parameter optimisation.

Table 3.2: Prediction performance for random forest models with a combination
of training sets. The combination comprises example ratio and motif length. The
models with 21 and 31 amino acids obtained the top scoring prediction performance
of 0.73 AUC. Ratio, Rationegative:positive. Motif length in residues. AUC, MCC,
sensitivity and specificity calculated with 10-fold cross-validation.

Motif length Ratio AUC MCC Sensitivity Specificity

11 1 0.71 0.34 0.70 0.42
11 10 0.70 0.16 0.49 0.09
11 70 0.61 0.04 0.26 0.01

21 1 0.73 0.33 0.69 0.40
21 10 0.70 0.17 0.54 0.09
21 70 0.62 0.04 0.29 0.01

31 1 0.73 0.36 0.71 0.40
31 10 0.70 0.14 0.49 0.09
31 70 0.62 0.03 0.22 0.01

41 1 0.71 0.31 0.68 0.42
41 10 0.70 0.15 0.54 0.09
41 70 0.61 0.06 0.04 0.01

Figure 3.4 shows the ROC curve for the model trained with a motif length of

21, example ratio 1:1, optimised parameters and n estimators to 10 000. The small

increase in prediction performance indicates the model optimisation has a limited

impact for the algorithm in this dataset. The AUC under the ROC curve for the

blind test set is equal to 0.71, demonstrating that the model can generalise to new

data. Table 3.3 shows model TPR and FPR for each class.
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Table 3.3: POGSPSF TPR and FPR for each class.

Class FPR TPR

Unmodified 0.73 0.63
Modified 0.57 0.68

Mean 0.66 0.65
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Figure 3.4: ROC curves for the final model. Each iteration of the cross-validation
is shown by a grey curve. The combined results of the cross-validation iteration is
shown by the black curve. The blind test result is shown by the red curve, which
is within the cross-validation iterations. The dashed line represents the random
predictor.
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Table 3.4: POGSPSF performance comparison. YinOYang has highest MCC,
however POGSPSF has the highest sensitivity among the methods, thus better for
detecting truly modified O-GlcNAc sites, while challenged with 12 sites obtained
from scientific literature. Precision and specificity were calculated for the positive
class.

Precision Specificity MCC

YinOYang 0.71 0.42 0.53
OGlcNAcScan 0.17 0.17 0.12
POGSPSF 0.23 0.58 0.31

note that this comparison is limited due to the small size of the dataset.

3.4 Discussion

This Chapter listed the common problems with computational classifiers of PTM sites.

Then, the systematic study and development of a new machine learning model called

POGSPSF was presented and compared to two broadly used tools for identification

of potential of O-GlcNAc sites.

3.4.1 Problems with classification of PTM sites

Data redundancy is an overlooked issue for PTM classifiers based on machine learning

algorithms, including OGlcNAcScan. To balance the maximum number of examples

and to minimise the number of redundant examples is a challenge. Manual selection

of sites is possible, but it can introduce undesirable biases. Since this work uses the

motif sequence and its features for the prediction, a new pipeline was added to deal

with motif redundancy. It first discards the sites with duplicated sequence, for a

site defined as a sequence of 13 amino acids. Subsequently, the protein sequence

was clustered with Blastclust. The clustering of protein sequences with Blastclust
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or CD-HIT (Li and Godzik, 2006) is a common step among the methods that aim

to predict PTM sites. However protein sequence clustering with a very stringent

parameter (identity ≤ 50%) may discard more sites than necessary, and the number

of known O-GlcNAc sites is already limited. Since this work adds structural features

calculated from the protein sequences, proteins were clustered with an identity

threshold of parameter 70% and the sites occurring in the same relative position

of a domain, i.e. with the same structural context, were manually analysed and

removed. With this pipeline, only two pairs of sites, Q96L91-3027 and Q8CHI8-2940;

P11798-306 and Q3TY93-178, had < 5 amino acids differences, for a motif length of

21 amino acids. Due to its size, it is much harder to apply the manual component

of this pipeline to the negative dataset. The redundancy in the negative dataset

may explain why models trained with the balanced dataset had superior prediction

performance compared to the ones trained with the balanced dataset.

A second issue is the lack of high quality site information. In 2013, YinOYang

and OGlcNAcScan were the only two computational predictors of O-GlcNAc sites

available, contrasting to a plethora of tools that predict protein phosphorylation from

the sequence. The YinOYang method was trained on a very limited dataset, which is

not available despite the fact the method is still active on-line. Also, OGlcNAcScan

learned from data in homologous proteins. However whether O-GlcNAc sites are

conserved among close related species is an open question. Jochmann et al. (2014)

reviewed theses methods and identified an issue: the small number of examples in

the training set. The weak pattern observed in the sequence alignment of known

O-GlcNAc sites might be due to lack of data, but also because the motif sequence

itself only carries part of the information recognised by OGT. Chapter 2 indicates
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that predicted local structure, specifically secondary structure and disorder ought to

carry part of this information.

One important aspect when selecting a machine learning implementation is the

training efficiency. The training efficiency depends not only on the machine learning

algorithm but also on the size of the training set, how the data are encoded and

if the positive and negative classes are easy to separate. The training efficiency

is important because several alternative models should be evaluated during the

systematic development of machine learning model. In this work, random forest

models had more efficient training times than other models.

3.4.2 Feature importance

Machine learning methods have a broad spectrum of transparency. In one extreme,

methods such as PSSM, and decision trees provide details that the algorithm learned

from the data. Other methods, such as ANNs, are ‘black boxes’ as they do not offer

information on which features influence learning and how. Some machine learning

methods enable the study of which features are determinant for a correct classification.

Transparent machine learning models can be extended with new features to bring

new light to the problem they describe. Moreover, random forest, and tree-based

methods, enable study of feature importance.

3.4.3 POGSPSF development

POGSPSF was trained on a balanced dataset comprising 21 amino acids surrounding

the modified S/T, plus features predicted from their protein sequences. The negative

dataset contained randomly selected S/T from the same proteins. Careful evaluation
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of the predictor performance was carried out, and it achieved an AUC of the ROC

curve of 0.71 on the blind test. This result is suboptimal, but the impact of structural

features predicted from the protein sequence is positive in the classifier performance.

Moreover, POGSPSF has higher specificity than OGlcNAcScan and YinOYang, and

hence being useful for site prioritisation prior experimental validation.

The most significant contributions of POGSPSF model are the data update, the

addition of features predicted from the sequence and training using random forests.

Regardless, the model can be further optimised. Recent advances in machine learning

are promising for the prediction of PTM sites. Specifically, semi-supervised learning

approaches can handle the lack of an experimentally determined negative dataset

(Hao et al., 2015; Yang et al., 2016). The first studies applying deep learning to the

computational biology field appeared recently (LeCun et al., 2015). This modern

machine learning method has been successfully applied to the prediction of DNA-

and RNA-binding proteins (Alipanahi et al., 2015) and local protein properties (Qi

et al., 2012).

Other machine learning methods were also tested, such as ANN with Stuttgart

Neural Network Simulator (SNNS) (Zell et al.), Theano (The Theano Development

Team et al., 2016), and Stochastic Gradient Descent implemented in SciKit-learn,

but the ANN models could not learn from the data. In the case of the O-GlcNAc

sites, an efficient training is needed to maximise the number of trained models for

further selection.

Two methods that reduce the dimensionality of the feature space, principal

component analysis and linear discriminant analysis implemented in SciKit-Learn,

were tested. The feature dimensionality reduction methods aim to reduce the number
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of features to minimise noise in training and deal with with sparse datasets. Patterns

are harder to spot in such datasets. However, neither method was able to improve

the prediction performance.

Besides the experiments with alternative machine learning methods and prepro-

cessing steps, different amino acid encoding strategies were also tested. The amino

acid sparse encoding was extended with 3 encoding strategies. Firstly, the amino

acids were represented by entries in the AAindex database (Kawashima et al., 1999).

Neuberger et al. (2007) have successfully applied this approach to the prediction of

protein kinase A sites. Secondly, the motif sequence was represented by the amino

acid and dipeptide composition (1- and 2-mer kmer composition), an encoding strat-

egy that has been extensively applied to machine learning tasks trained with protein

information, similarly to the SVM Spectrum Kernel (Leslie et al., 2002) and the

Pseudo Amino Acid Composition (Chou, 2001). Thirdly, a physico-chemical property-

based encoding was based on work of Taylor (1986), which describes the amino acids

set of 10 physico-chemical properties. None of the encoding strategies improved the

random forest prediction performance. Nevertheless, amino acid sequence encoding

to feature vectors is critical for prediction, and the O-GlcNAc-sites classification can

benefit from new encoding strategies that are able to better represent the problem.

Examples of encoding strategies that may be applied to this problem are amino acid

substitution matrix such as BLOSUM 62 and reduced amino acid alphabets that

incorporate structural information (Li et al., 2005; Wong et al., 2007). Chapter 4

also discusses additional features that may be included in the model.
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3.5 The DVA720 dataset

3.5.1 Background

An alternative dataset was also studied. The dataset, called DVA720, comprises

720 13-residues-long peptides from a protein kinase library. The peptides were

subjected to a large scale OGT activity assay (Pathak et al., 2015) to measure

whether they are substrates to the enzyme. The assay consisted of incubating each

of the substrate peptides in the presence of radioactive UDP-GlcNAc in the presence

and absence of OGT. A positive control, CRYA1, and a negative control, CRYA1

with the modified Ser mutated to Ala, were present on each assay plate. The OGT

activity was measured in duplicate for each peptide, and the radioactivity signal was

converted to the activity of the positive control for each replicate, so the presented

activity is relative to the CRYA1 peptides. The DVA720 dataset has 2 differences

from the dataset used to train POGSPSF. The addition of features predicted from

protein sequences would not be appropriate, because the OGT activity was measured

from peptides and not from their full-length proteins. And, this dataset enabled the

training of regression models targeting the OGT activity values. The dataset in its

initial form does not have redundant sites, so cleaning was not required.

Due to the size of this dataset, the models were trained with 5-fold cross validation

and no data was set apart for the blind-test.

3.5.2 Models trained with the DVA720 dataset

Regression models were trained on the sparsely encoded peptide sequences derived

from DVA720, targeting the normalised OGT activity value. If the models could
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Figure 3.5: The number of S/T in peptides does not correlate with the OGT
activity in the DVA720 dataset (Pearson’s correlation=0.11). The activity values of
2 peptides, which were higher than 100 %, were omitted for visualisation purposes
only.
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learn from the data, they would be able to estimate the OGT activity based on a

peptide sequence.

Classification models were also developed from the same dataset. 69 peptides

yield activity greater than the activity observed for the reference peptide CRYA1,

which is known as a poor OGT substrate (Roquemore et al., 1992). The modification

of 36 of these peptides was confirmed by mass-spectrometry. The exploratory analysis

of potential features that could explain the differences in activity reveals one peptide

with no S/T and activity of 7.60 %. There is no relationship between the number

of S/T in the peptides and OGT activity, as shown in Figure 3.5. So, it is safe to

establish the 7.60 % value as a cutoff between unmodified peptides and the other

peptides. Figure 3.6 shows the distribution of peptide activity. 3 classes were derived

from the activity values: ‘Positive’ for the 70 peptides with activity ≥ 12.20 %;

‘Negative’ for the 410 peptides with activity ≤ 7.60 % (409 examples); and ‘Other’ for

the 240 peptides with activity values between 7.60 % and 12.20 %. The ‘Other’ class

comprises both modified and unmodified peptides. 2 binary classification models

were trained: one considering Other and Negative peptides as the negative class and

the other excluding the Other class from the training set.

3.5.3 Model performance

Table 3.5 summarises the results from the models trained with the DVA720 dataset.

The low performance (R2 ≤ 0) of the regression models indicates that these models

did not learn from the dataset. The classification model trained on the complete

dataset, Negative and Other from Figure 3.6 as negative examples, had a lower AUC

than the classification model trained on the dataset without examples classified as
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Figure 3.6: OGT activity distribution for peptides in the DVA720 dataset. The
distribution is log-distributed and there is no clear separation of modified and
unmodified peptides. The activity values were classified as Negative (unmodified),
Other (maybe unmodified) and Positive (modified). 2 activity values > 100 % were
omitted from the plot.
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Table 3.5: Prediction performance for models trained on the DVA720 dataset.
Regression models were evaluated with the R2 metric and classification models were
evaluated with the AUC. The best prediction performance (bold) was obtained by
the SVM model trained with the RBF kernel on the training without the Other class
(see Figure 3.6).

Method AUC R2

Regression

Random forest -8.96
SVM with linear kernel 0.00
SVM with RBF kernel -0.22
SVM with polynomial kernel -0.01

Classification, all data

Random forest 0.57
SVM with linear kernel 0.53
SVM with RBF kernel 0.56
SVM with polynomial kernel 0.53

Classification, without Other

Random forest 0.53
SVM with linear kernel 0.53
SVM with RBF kernel 0.59
SVM with polynomial kernel 0.55

Other. For the model trained on the complete dataset, the random forest method

obtains the highest performance of 0.57 AUC. The second classification model was

trained excluding peptides with activity from > 7.60 % and < 12.20 %, a range that

might contain both modified and unmodified peptides. The SVM model with RBF

kernel produces the highest performance of 0.59 AUC, which is a small gain on the

first classification model. Overall, the classification model learns from the DVA720

dataset, but the models lack performance for real applications.

3.5.4 Discussion

The large scale OGT activity experiment demonstrated that OGT activity is spe-

cific to peptides (Pathak et al., 2015), and more than 400 peptides yield activity

comparable to the peptide without a S/T. It is, however, unclear how this result
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extrapolates to full-length proteins. Despite that, the DVA720 dataset seemed to be

a promising resource for training a predictor of O-GlcNAc sites.

Regression models targeting the OGT activity did not learn from the DVA720

dataset. The highest performance classification model, SVM with RBF kernel,

only achieved 0.59 AUC. This dataset underwent extensive exploratory analysis,

and several models were developed. With the dataset extended with the AAindex

and di-peptide composition encoding and pre-processed with linear discriminant

analysis, the prediction performance increased only to 0.61 AUC. The small increase

in performance does not justify the over-complicated model. In conclusion, the

models trained with the DVA720 dataset were not further studied, because of their

low prediction performance.

3.6 Conclusions

• The chapter describes the development of a new classifier of O-GlcNAc sites

• Several motif encoding strategies and supervised machine learning methods

were evaluated

• POGSPSF random forest model was trained with sparsely encoded motif

sequence plus predicted secondary structure, solvent accessibility and disorder

score

• the model achieved 0.71 AUC of the ROC and higher specificity for modified

sites than YinOYang and OGlcNAcScan

• The DVA720 dataset was studied, but models trained with the dataset had
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low performance.
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Chapter 4

POGSPSF applications

Preface

The previous chapter described POGSPSF development; this chapter outlines the

applications of the tool. Sites were predicted on 71 791 proteins in the human

proteome. The chapter also analyses the proteome-wide prediction of sites, focusing

on Gene Ontology (GO) term analysis of proteins with and without predicted

O-GlcNAc sites. Next, the high and low-scoring S/Ts were also examined for

phosphosites and genetic variants. Finally, the proteins with high-ranking predicted

sites were manually curated to investigate potential novel OGT targets and the

predictions were made available to users on a web application.

4.1 Introduction

POGSPSF has further applications in addition to ranking potential O-GlcNAc sites.

The tool also allows the study of the predictions at a large scale. For example, known
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O-GlcNAc sites occur in nuclear, cytoplasmic and mitochondrial proteins. So it is

important to test whether the predictions preserve this profile. Furthermore, the

analysis of pathways and processes represented by predicted sites could point to yet

unreported targets and pathways.

Several factors limit the prediction of O-GlcNAc sites. The lack of high-quality

O-GlcNAc site data is one of these factors. The limitations of training machine

learning model on sites identified by mass-spectrometry were discussed in Chapter 1.

Also, another factor that may limit the prediction performance is the suboptimal

motif encoding method, since the few alternatives to sparse encoding did not improve

the classifier performance. The application of the classifier on a large scale can

identify problems with the tool.

Despite the limitations, it is still possible to extract new information from large

scale predictions. The information may hold clues to potential associations that are

difficult to observe from the mass-spectrometry data. For example, the predictions

may identify pathways that include low abundance proteins. If the information is

relevant and valid, it can be applied to the next version of the classifier and increase

its predictive performance.

4.1.1 Proteome-wide predictions

In 1995, the term ‘proteome’ was first used to refer to the proteins complementary

to a genome (Wilkins et al., 1996; Wilkins, 2009). At the time, the two-dimensional

electrophoresis technique could observe around 200 proteins per experiment. Pro-

teomics studies could detect the change from cell-type to cell-type and also different

cell conditions such as stress and infection, revealing that the proteome is a dynamic
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entity.

Current proteomics techniques are widespread in life sciences research. These

methods can determine the protein abundance, subcellular locations, interactors and

post-translational state. The protein PTM state defines the multi-site modification

at a given cellular moment. Due to the large scale nature of the methods, proteomics

studies apply several techniques and tools from computational biology. The studies

also depend on databases and information curated in the scientific literature. So,

proteomics and computational biology complement each other.

Overall methods that predict PTM sites tend to overpredict (Blom et al., 2004).

Overprediction can be defined as a high number of false positives meaning that

unmodified sites will be classified as modified. Gupta and Brunak (2002) applied

the YinOYang classifier to ≈5 500 proteins sequences and 4 600 had at least one

predicted site, indicating overprediction. The analysis of this issue can be broken

into several subcomponents. Some proteins, such as secreted and integral membrane

proteins, will never encounter OGT and cannot be modified. Since POGSPSF

predicts at the motif level, rather than the protein level, the tool might predict

sites in proteins that are not in the cytoplasm, nucleus and mitochondria if the

site’s sequence and structural context are similar to examples in the training set.

Users need to have this in mind during the selection of potential protein targets.

For model organisms, this information is readily available and could be added to

POGSPSF. Another component of the overprediction problem is the small number of

examples in the training set, and the possible presence of unmodified sites reported

as modified. One can argue that the number of known sites modified by OGT is

greater than the number of known sites modified by kinases like PKA, which has
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been extensively studied (Pinna and Ruzzene, 1996; Ptacek et al., 2005; Neuberger

et al., 2007; Hornbeck et al., 2015). Although this is true, kinases have a well-defined

modification site. Furthermore, dataset size and quality is a common problem for

classifiers trained with data obtained predominantly from mass spectrometry. A

structure based filter was applied to phosphosites (Vandermarliere and Martens,

2013), to discard probable false positives and improve the data quality. Hence, for

example, buried sites were discarded and the dataset cleaned. However, the use of

protein structure as a filter is limited by the number of structures for the proteins in

the dataset, as discussed in Chapter 2.

Lastly, POGSPSF was trained on the same number of positive and negative exam-

ples. The importance of dataset balance has been established for many computational

biology problems including PTM site prediction and it is commonly observed that

balanced datasets outperform unbalanced datasets (Wei et al., 2013). As discussed

in Chapter 3, although undersampling the majority class increased the predictive

performance, it also leads to overprediction by changing the prior ratio between

classes. This problem is not restricted to random forest models and might occur

with other machine learning methods (Scikit-Learn website, 2016c).

Instead of directly predicting class, the SciKit-Learn random forest implemen-

tation can provide a class probability score with the predict prob method. For

a binary classifier, the score indicates the likelihood that a target belongs to the

positive class (modified). The random forest classifier uses a probabilistic model to

weight each feature’s importance and the classes are given by the score cutoff of 0.5.

Different implementations use majority voting when aggregating the results from the

forest (also called the ensemble) of decision trees (Breiman, 2006).
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To overcome the overprediction issue, a new dataset of O-GlcNAc sites is needed,

which could be used to calibrate the class probability score. However, this is not yet

available. An alternative approach is to observe the prediction over the proteome

and heuristically define a more conservative cutoff aiming to minimise the number of

false positives. This strategy was applied in this chapter.

4.1.2 Gene ontology

The GO project provides a hierarchical annotation for genes (Gene Ontology Consor-

tium). It facilitates the large scale comparison of sets of genes (Gaudet and Dessimoz,

2016). The project provides a controlled and consistent vocabulary of terms sub-

divided into cellular component terms, which identify the subcellular location of

the gene products; the biological process terms, which list the gene participation

on pathways, cell physiology and disease; and the molecular function terms, which

describe the gene product’s main actions. Apart from these three types of terms, GO

also describes the term’s relationship, as groups of terms and terms that regulate

other terms.

Different sources of evidence tags support the GO term assignments. Evidence

tags can be linked to experimental data, inferred by curators or automatically

assigned. Experiment-supported evidence tags connect the gene to references in the

scientific literature. Evidence tags inferred by curators are often associated with

sequence alignments, protein models, orthology or genomic context. Automatically

assigned evidence tags are made by algorithms without curator interference. Although

predictions contain some level of inaccuracy, they are critical for the annotation of

genes in non-model organisms with poorly annotated genomes.
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A plethora of tools and analysis pipelines use GO terms for the high level

functional characterization of proteins (Binns et al., 2009; Mi et al., 2013; Alexa

et al., 2006). GO term analysis has been extensively applied to the investigation of

large scale experiments, such as differential expression and mass-spectrometry in

different conditions, to identify changes of the GO term profile between conditions.

In this chapter GO enrichment analysis was applied to profile proteins with and

without predicted sites.

4.2 Methods

4.2.1 Data collection and processing

Proteome-wide disorder and secondary structure prediction

The human proteome was retrieved from the UniProt KnowledgeBase (UniProtKB) in

November 2015 (release 2015 11). Sequences longer than 800 residues were excluded

because of the maximum sequence length accepted by Jpred4. The resulting dataset

comprises 79 180 sequences. For comparison, the current UniProt release (2016 08)

contains 92 910 sequences from which 20 980 sequences represent the canonical

sequences for human.

Phosphorylation data

Phosphorylation sites were collected from PhosphoSitePlus (Hornbeck et al., 2015),

dbPTM (Lu et al., 2013) and Phospho.ELM (Dinkel et al., 2011), in February 2016,

resulting in 377 373 sites, after the duplicates were excluded. The phosphorylation
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dataset contains substrates for several kinases and different organisms. The intersec-

tion of the dataset of phosphosites and the human proteome included 13 254 proteins

and 83 288 sites.

Human genetic variants

Human germinal variants were collected from Ensembl with ProteoFAV, which is

described in Chapter 5. For this analysis, the protein sequences in UniProtKB

and Ensembl databases were compared and proteins with different sequence length

or mismatches were discarded. Three types of SNVs were collected, synonymous,

missense, and nonsense, resulting in 442 780 S/Ts in 31 169 proteins in the human

proteome.

POGSPSF class probability groups

Proteins or sites were grouped by the POGSPSF class probability score. For both

cases, the score was divided into ten groups. Other numbers of groups were also

tested but did not alter the interpretation of the results. Proteins were represented

by their maximum score and ten score ranges were defined to keep the ten groups

with the same number of proteins. Sites, also referred to as motifs, the 10 groups

have equal width, so the number of motifs per group was used for normalisation to

allow comparison. The difference between the two approaches is due to the difference

of the two distributions. However, the interpretation is similar to either approach:

the higher the quantile group to which a protein or motif belongs, the more likely it

is to be modified by OGT according to the POGSPSF model. The 10 groups are

referred as bins or quantiles.
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4.2.2 GO term analysis

GO terms were investigated to verify differences regarding molecular function, bio-

logical process participation and cellular localisation among protein with top and low

ranking POGSPSF scores. The analysis proceeded with GOATOOLS (Tang et al.,

2015), a Python package with tools for GO analysis. The ontology file used was

released on 14 December 2016 and the protein to gene associations for the human

organism was validated on 20 of May 2016. Terms based on Inferred from Electronic

Annotation (IEA) evidences were dropped to keep only human curated evidences.

A total of 47 871 GO terms and 13 151 annotated proteins were compiled for the

proteins in the human proteome.

The difference in GO term’s composition was assessed over the 10 quantiles, each

with 7 179 proteins. The GO term’s composition was compared to the complete set

of GO terms in the study. The reported p-value refers to the uncorrected Fisher’s

exact test p-value, implemented in Scipy. The advantage of Fisher’s exact test over

other statistical test, such as hypergeometric test, is the direct detection of over- and

under-represented items. P-values for enriched and depleted terms were confirmed

with Benjamini-Hochberg false discovery rate correction. The corrections is needed to

increase the statistical power and avoid false discoveries from multiple statistical tests.

A term was considered statistically significant if p< 0.05. The analysis significantly

change terms in the ontology structure also considered clusters of groups (within 1

node of distance from each other) with uncorrected p-values. The Fisher’s exact test

odd ratio of selected terms was compared among quantiles to determine enrichment

of terms for protein with and without high-scoring sites.
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4.3 Results

4.3.1 Proteome prediction

The proteome-wide analysis provided predictions for 2 429 758 S/T residues, which

belongs to 71 791 proteins. The default cutoff value for the random forest classifier,

implemented in SciKit-Learn, is 0.5. Figure 4.1 shows the distribution of scores for

potential sites in the human proteome. The rug plot (red) displays 111 known O-

GlcNAc sites in human proteins. 99 of those sites have a POGSPSF class probability

score > 0.6. Table 4.1 lists the known O-GlcNAc sites not predicted as modified

by POGSPSF. Ser733 from the inhibitor of nuclear factor kappa-B kinase protein

(UniProt O14920) has two Gln residues close to the modification site, which is

uncommon for sites targeted by OGT, so the modification of this residue needs to be

re-validated. Based on this distribution a class probability of 0.6 was used to define

modified sites rather than the default, in order to limit overprediction.

Figure 4.1 shows the distribution of scores for the whole dataset as represented

by their top scoring sites. The rug plot (red) illustrates 88 known O-GlcNAcylataded

proteins. These modified proteins all have top scoring sites > 0.6 with one exception.

The F-actin-capping protein subunit alpha-3 is a phosphoprotein expressed in the

testes and sperm. The Thr2 residue is modified by OGT as identified by mass

spectrometry (Wang et al., 2010). Mouse and rat homologous proteins have Ser

instead of Thr in position 2. One report indicates the phosphorylation of Ser2 in the

rat protein. This residue is not in the POGSPSF database and the issue is under

investigation but the problem seems linked to the residue’s close proximity to the

protein N-terminus.
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Table 4.1: Known O-GlcNAc sites predicted as unmodified by POGSPSF. Note
that all but 5 motifs would pass with the default threshold of 0.5. Protein names:
O00429, Dynamin-1-like protein; O14920, Inhibitor of nuclear factor kappa-B ki-
nase subunit beta; P10636-8, Microtubule-associated protein Tau-4; P15586, N-
acetylglucosamine-6-sulfatase; P68431, Histone H3.1; Q02818, Nucleoquantiledin-
1; Q13492, Phosphatidylinositol-quantileding clathrin assembly protein; Q16566,
Calcium/calmodulin-dependent protein kinase type IV; Q96JB8, MAGUK p55 sub-
family member 4.

UniProt accession number Position Class probability

O00429 585 0.59
O14920 733 0.28
P10636-8 356 0.41
P15586 404 0.40
P68431 11 0.58
Q02818 47 0.42
Q13492 387 0.36

Q16566

57 0.54
189 0.58
344 0.58
356 0.53

Q96JB8 436 0.59

Table 4.2: Summary of the number of significant GO terms per quantile. Proteins,
number of protein per quantile; terms, number of terms per quantile; significant
terms, number of significant corrected GO terms per quantile.

Quantile range Proteins Terms Significant terms

(0.834, 0.951] 1 620 4 378 62
(0.794, 0.834] 1 560 4 507 21
(0.758, 0.794] 1 488 4 233 19
(0.722, 0.758] 1 496 4 399 5
(0.686, 0.722] 1 394 4 396 3
(0.648, 0.686] 1 332 4 266 1
(0.607, 0.648] 1 212 3 812 1
(0.56, 0.607] 1 084 3 447 14
(0.496, 0.56] 922 2 866 31
[0.0641, 0.496] 984 1 743 89
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Figure 4.1: POGSPSF class probability distribution for 2 429 758 motifs in the
human proteome. Know sites are represented by the rug plot in red. Most of the
known sites have class probability score> 0.60 and exceptions are listed in Table 4.1.
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Figure 4.2: POGSPSF class probability score for 71 791 human proteins. The rug
plot (red) shows 88 human proteins modified by OGT. Each protein’s maximum
motif score was selected to represent each protein.

114



4. POGSPSF applications 4.3. Results

4.3.2 GO term analysis

GO terms describe the functional attributes of genes. Analysis of the overrepresenta-

tion of terms on the GO ontology structures may reveal biological characteristics of

a list of genes or proteins in large scale experiments.

Table 4.2 shows the number of significant terms per quantile. Interestingly, the

number of statistically significant terms from the GO analysis was drastically higher

in the two extremes of the distribution in Figure 4.2, suggesting that certain types

of proteins were separated by the POGSPSF score. So, the investigation focused

the top quantile, which ranges from 0.834 to 0.951 and contains the protein with

high-scoring sites. In addition, the changes in the odd ration among quantiles was

also analysed to determined the shift on representation among the POGSPSF score

range.

Cellular component

Protein O-GlcNAcylation occurs in nuclear, cytoplasmic and mitochondrial proteins.

However, the modification has also been found in proteins common to other subcellu-

lar locations, including the secretory pathway (Jochmann et al., 2014). Table 4.3 lists

19 cellular component GO term significantly changed on the quantile (0.834, 0.951].

All the terms were enriched. The list includes terms related to nucleus and cytoplasm,

but also specific protein complexes such as RNA polymerase II transcription factor

complex. However, terms not directly associated with protein O-GlcNAcylation

have also detected: the external side of plasma membrane, immunoglobulin complex,

lamellipodium and axon. These terms could relate to process yet to be associated

with the modification or artefacts of the analysis. There is no specific mention
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of mitochondria-associated terms. The term external side of plasma membrane

(GO:0009897) is also significantly enriched in the quantile, an unanticipated result

since secreted proteins are not known to be modified by O-GlcNAcylation. Fig-

ure 4.4 illustrates the complete ontology structure for significantly enriched cellular

component terms.

Figure 4.3 shows the change of the odds ratio among the quantiles for selected

GO terms. Proteins annotated with the nucleus (GO:0005634) and cytoplasm

(GO:00058860) terms are enriched in quantiles with high-scoring sites and depleted

in quantiles with low-scoring sites. By contrast, proteins annotated with plasma

membrane (GO:0005886) and extracellular region (GO:0005576) are not enriched

nor depleted in the (0.834, 0.951] quantile, but significantly enriched in quantile

containing low-scoring sites: p< 0.01 for integral component of membrane at [0.0641,

0.496]; p< 0.01 for extracellular region term at (0.607, 0.648]. The graph shows

a clear trend for the decrease of the Fisher’s exact odd ratio from top to bottom

quantiles. However, there is no depletion of membrane proteins within the (0.834,

0.951] range, what is expected since some membrane proteins are modified by OGT.

Thus, the analysis confirms the POGSPSF scoring conserves the nucleus/cytoplasm

profile for proteins with potential sites.

Biological process

The biological process GO terms represent series of the events, such as cellular

pathways. For example, the biological process GO terms can identify proteins that

positively or negatively regulate the transcription of genes. Table 4.4 lists the

significantly under- and overrepresented items in the namespace. Enriched terms
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Table 4.3: Cellular component GO terms identified as significant on quantile with
the top scoring proteins (POGSPSF score range from (0.834, 0.951]). All cellular
component terms were enriched. p-value, corrected Fisher’s exact test p-value; odds
ratio, Fisher’s exact test odds ratio, depth, the length of the longest path from the
top term (Cellular component).

GO Name Depth p-value Odds ratio
GO:0005654 nucleoplasm 5 1.26× 10−25 1.76
GO:0005634 nucleus 5 1.54× 10−23 1.59
GO:0005737 cytoplasm 3 4.40× 10−21 1.57
GO:0015629 actin cytoskeleton 6 2.13× 10−9 2.93
GO:0005794 Golgi apparatus 5 6.93× 10−8 1.86
GO:0005813 centrosome 6 1.20× 10−7 2.11
GO:0005829 cytosol 4 1.42× 10−7 1.35
GO:0045111 intermediate filament cy-

toskeleton
6 3.26× 10−6 4.23

GO:0005882 intermediate filament 6 1.15× 10−5 4.80
GO:0005730 nucleolus 5 1.56× 10−5 1.62
GO:0009897 external side of plasma mem-

brane
3 1.95× 10−5 2.76

GO:0030027 lamellipodium 3 2.12× 10−5 2.93
GO:0000922 spindle pole 5 1.15× 10−4 3.36
GO:0005925 focal adhesion 5 1.28× 10−4 1.79
GO:0042571 immunoglobulin complex,

circulating
4 1.63× 10−4 4.48

GO:0043234 protein complex 2 1.67× 10−4 1.92
GO:0030424 axon 4 1.75× 10−3 2.80
GO:0005814 centriole 6 2.05× 10−3 3.18
GO:0090575 RNA polymerase II tran-

scription factor complex
6 2.23× 10−3 3.60
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Figure 4.3: Trends of the Fisher’s exact test odd ratio from cellular component
terms among quantiles. The odd ratio for nucleus and cytoplasm terms decrease with
the decrease of the score. Odds ratio enrichment peaks for the extracellular region and
plasma membrane terms occurs in quantiles containing protein with low-scoring sites.
GO:0005576, extracellular region; GO:0005634, nucleus; GO:0005737, cytoplasm;
GO:0005886, plasma membrane.
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Red coloured nodes represented the statistically significant ones. D, the depth or the longest path until the cellular component term.
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include positively and negatively regulation of the RNA polymerase II mediated

transcription (GO:0045944 and GO:0000122), protein sumoylation (GO:0016925),

negative regulation of phosphatase activity (GO:0010923) and negative regulation of

apoptotic process (GO:0043066). Two terms related to membrane protein processes

were depleted from the (0.834, 0.951] range: G-protein coupled receptor signaling

pathway (GO:0007186) and sensory perception of smell (GO:0007608). The list

also comprises terms that represent physiological process yet to be experimentally

associated with protein O-GlcNAcylation modification.

Due to the great numbers of biological process GO terms, Figure 4.5 only

illustrate the ontology structure for two terms: negative regulation of apoptotic

process (GO:0043066) and protein sumoylation (GO:0016925). To the author’s

knowledge, protein O-GlcNAcylation has not previously been found controlling

cell death processes; thus, because of the importance of the process, this term

deserves further investigation. The two terms in the figure are distant from the

biological process node with the depth of 7 and 9 nodes, respectively. The majority

of significantly changed terms were also distant from the biological process node

(depth ≥ 6 nodes), with exception of 7 other terms that are in intermediate range

(depth between 4 and 6 nodes). From the intermediate depth, enriched biological

process terms include glomerular filtration (GO:0003094), cell motility (GO:0048870)

and synapse assembly (GO:0007416). Figure 4.6 illustrate trends on three biological

process known to be associated with protein O-GlcNAcylation, intracellular signal

transduction (GO:0035556), protein phosphorylation (GO:0006468), regulation of

transcription, DNA-templated (GO:0006355).
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Figure 4.5: Selected statistically significant biological process terms of proteins in
the (0.834, 0.951] quantile. Proteins with high-scoring sites belongs to this quantile.
Red coloured nodes represented the statistically significant ones. D, the depth or the
longest path until the top term (biological process).
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Table 4.4: Biological process GO terms identified as significant on quantile with the
top scoring proteins (POGSPSF score range from (0.834, 0.951]). p-value, corrected
Fisher’s exact test p-value; Odds ratio, Fisher’s exact test odds ratio, depth, the
length of the longest path to the top term (Biological process).

GO Name Depth p-value Odds ratio

GO:0045944 positive regulation of tran-
scription from RNA poly-
merase II promoter

11 5.20× 10−17 2.28

GO:0007186 G-protein coupled receptor
signaling pathway

5 1.35× 10−13 0.18

GO:0045893 positive regulation of tran-
scription, DNA-templated

10 1.20× 10−7 1.97

GO:0043066 negative regulation of apop-
totic process

7 2.62× 10−7 2.06

GO:0045892 negative regulation of tran-
scription, DNA-templated

10 3.40× 10−7 1.96

GO:0007416 synapse assembly 4 4.52× 10−7 4.55
GO:0000122 negative regulation of tran-

scription from RNA poly-
merase II promoter

11 6.72× 10−7 1.87

GO:0006910 phagocytosis, recognition 4 3.93× 10−6 4.82
GO:0006366 transcription from RNA

polymerase II promoter
10 4.04× 10−6 2.17

GO:0050871 positive regulation of B cell
activation

8 6.60× 10−6 4.62

GO:0016339 calcium-dependent cell-
cell adhesion via plasma
membrane cell adhesion
molecules

5 2.16× 10−5 6.42

GO:0007608 sensory perception of smell 6 2.97× 10−5 0.08
GO:0010923 negative regulation of phos-

phatase activity
9 3.90× 10−5 3.96

GO:0006911 phagocytosis, engulfment 6 3.90× 10−5 3.96
GO:0016925 protein sumoylation 9 4.45× 10−5 2.70
GO:0048870 cell motility 4 4.74× 10−5 5.88
GO:0030490 maturation of SSU-rRNA 10 4.74× 10−5 5.88
GO:0034332 adherens junction organiza-

tion
5 1.37× 10−4 4.13

GO:0003094 glomerular filtration 5 1.69× 10−4 7.20
GO:0006355 regulation of transcription,

DNA-templated
9 1.97× 10−4 1.61
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Figure 4.6: Trends of the Fisher’s exact test odd ratio from biological process terms
among quantiles. The three terms - intracellular signal, protein phosphorylation and
regulation of transcription, DNA-templated - are enriched on proteins predicted to
be modified. GO:0035556, intracellular signal transduction; GO:0006468, protein
phosphorylation; GO:0006355, regulation of transcription, DNA-templated.
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Molecular function

The molecular function terms describe the fundamental actions of gene products

at the molecular level. These terms identify actions, such as chemical reactions

catalysed by enzymes or protein-protein binding. Table 4.5 lists the statistically

significant molecular function GO terms of proteins in the (0.834, 0.951] range.

Only two terms are depleted, olfactory receptor activity (GO:0004984) and odorant

binding (GO:0005549) in the analysed quantile, with 0 proteins annotated with

such terms in the quantile. The vast majority of the enriched terms are related to

regulation of the transcriptional activity mediated by RNA polymerase II and DNA

binding. Other terms, which are relevant in the protein O-GlcNAcylation context

are protein kinase binding (GO:0019901), structural constituent of cytoskeleton

(GO:0005200) and chromatin DNA binding (GO:0031490). So far, the impact of

protein O-GlcNAcylation on protein-protein and protein-ligand interaction has been

neglected, but for a few exceptions (Roos et al., 1997). The enrichment of the

immunoglobulin receptor binding (GO:0034987) term was unexpected, which was

further confirmed by manual curation described in Section 4.3.5.

4.3.3 Analysis of phosphorylation in residues predicted as

modified

Extensive cross-talk between protein phosphorylation and O-GlcNAcylation has

been reported (Griffith and Schmitz, 1999; Wang et al., 2008; Dias et al., 2009).

Recent mass-spectrometry studies show that the interplay between the two mod-

ifications might be more extensive than was thought before. The global levels of
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Table 4.5: Molecular function GO terms identified as significant on quantile with the
top scoring proteins (POGSPSF score range from (0.834, 0.951]). p-value, corrected
Fisher’s exact test p-value; Odds ratio, Fisher’s exact test odds ratio, depth, the
length of the longest path from the top term (molecular function).

GO Name Depth p-value Odds ratio

GO:0005515 protein binding 2 1.37× 10−38 1.48
GO:0003700 transcription factor activity,

sequence-specific DNA bind-
ing

2 9.61× 10−14 2.05

GO:0004984 olfactory receptor activity 5 4.19× 10−13 0
GO:0043565 sequence-specific DNA bind-

ing
5 5.14× 10−10 2.69

GO:0000978 RNA polymerase II core
promoter proximal region
sequence-specific DNA bind-
ing

9 2.09× 10−9 2.46

GO:0000981 RNA polymerase II tran-
scription factor activity,
sequence-specific DNA
binding

3 2.13× 10−9 2.93

GO:0044822 poly(A) RNA binding 5 1.16× 10−8 1.63
GO:0001077 transcriptional activator ac-

tivity, RNA polymerase II
core promoter proximal re-
gion sequence-specific bind-
ing

5 2.14× 10−8 2.84

GO:0019901 protein kinase binding 5 5.72× 10−7 2.22
GO:0097110 scaffold protein binding 3 3.62× 10−6 5.31
GO:0044212 transcription regulatory re-

gion DNA binding
6 1.04× 10−5 2.25

GO:0019899 enzyme binding 3 1.65× 10−5 1.98
GO:0042802 identical protein binding 3 3.06× 10−5 1.68
GO:0003677 DNA binding 4 3.07× 10−5 1.73
GO:0034987 immunoglobulin receptor

binding
4 4.82× 10−5 4.20

GO:0008134 transcription factor binding 3 7.74× 10−5 2.03
GO:0005200 structural constituent of cy-

toskeleton
2 1.09× 10−4 2.91

GO:0005549 odorant binding 2 1.42× 10−4 0
GO:0031267 small GTPase binding 5 1.69× 10−4 7.20
GO:0003723 RNA binding 4 1.80× 10−4 1.79
GO:0046982 protein heterodimerization

activity
4 1.90× 10−4 1.95

GO:0031490 chromatin DNA binding 6 2.23× 10−4 3.60
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Figure 4.7: Selected statistically significant molecular function terms in the quantile with top scoring proteins. Red coloured nodes
represented the statistically significant ones. D, the depth of the longest path until the molecular function term.
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phosphorylation and O-GlcNAcylation appear to be associated (Hart et al., 2011;

Wang et al., 2012; Bullen et al., 2014; Copeland et al., 2008). The interplay be-

tween phosphorylation and O-GlcNAcylation was analysed on the data used to train

POGSPSF. Figure 4.8 shows the differences between the fraction of phosphosites

around O-GlcNAc sites and unmodified S/Ts. If the modified and unmodified S/Ts

are aligned, more phosphosites are observed at the modified group. The modified S/T

is in the centre (0), where the mean fraction of phosphosites is 20% (95% CI from

18% to 23%) for modified and 14% (95% CI from 14% to 15%) for unmodified S/T.

The mean values and CI were calculated from bootstrapping the dataset 1 000 times.

Interestingly, other positions in proximity to the O-GlcNAc-site (±10 residues) also

have increased fractions of phosphosites: sites -3 and -4 and the range from +1

to +15. So, in these datasets, the fraction of phosphosites is increased around the

position target by OGT, including the target S/T.

Figure 4.9 shows the distribution of POGSPSF scores for phosphorylated and

other S/Ts in the proteome. Although the number of sites in each group is different,

no difference was observed in kernel densities, indicating the classifier does not have

a bias for phosphosites. However, modified S/T (POGSPSF score> 0.6) are 1.15

times more likely to be phosphorylated (two-sided Fisher’s exact test p< 0.01). To

explore this result the motifs were grouped in 10 quantiles of equal width by their

POGSPSF class probability score and the fraction of motifs with phosphosites was

plotted. Figure 4.10 and Table 4.6 summarise the relationship between the fraction of

phosphosites and the POGSPSF score. There is a discernible positive trend between

the two variables. The trend comprises two components. A strong increase over

the 3 first quantiles, from 0 to 0.3, and weaker component over [0.5, 1]. Due to the
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Figure 4.8: Comparison of the fraction phosphosites around O-GlcNAc sites and
unmodified S/T of O-GlcNAcylated proteins. Semi-transparent colours represent
the 95% CI obtained from bootstrapping the each dataset 1 000 times. 20% (95% CI
from 18% to 23%) of the O-GlcNAc sites are phosphosites, while 14% (95% CI from
14% to 15%) of the unmodified S/T are phosphosites.
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Figure 4.9: POGSPSF motif score distribution for phosphosites and S/T not
targeted by kinases. The inset shows the kernel density distribution for the two
quantities, which are practically equivalent.
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reduced number of motifs in the two last quantiles ((0.8, 0.9]; (0.9, 1]), the CI is

wider.

4.3.4 Analysis of genetic variants for residues predicted as

modified

Germinal mutations were collected from Ensembl variation (Ensembl variation

website, 2016). Three types of variants were selected and the number of SNVs

mapped to S/Ts in the dataset are as follows: 266 964 missense; 171 712 synonymous;

and nonsense 171 712. The odds-ratio for the co-occurrence of SNVs in S/Ts classified

as modified in relation to unmodified is 0.93 for missense, 0.94 for nonsense and 0.92 for

synonymous, two-sided Fisher’s exact test p< 0.01, 0.22, < 0.01, respectively. So the

test determines that residues predicted as modified by POGSPSF are significantly

less likely to co-occur with known human missense and synonymous mutations,

indicating these sites are less tolerant to variation.

The fraction of motifs with SNVs, in each POGSPSF score bin were investigated

to better understand the relationship between the score and the co-occurrence of

the mutations. Figure 4.11 shows the fraction of motifs with SNVs per POGSPSF

score bin. Bins with high-scoring motifs have a lower fraction for the three types of

variants. Note the discontinuity in the y-axis, since the number of nonsense variants

is small. Also, as shown in Table 4.7, there are 0 nonsense variants in the [0.9, 1]

bin, so the result should be interpreted with care.

As described in Section 1.7, only a small percentage of the SNVs may have

an impact on protein function. Since Ensembl conveniently provides SIFT and
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Table 4.6: Number of phosphosites in the proteome grouped by the POGSPSF
class probability score.

Bins Number of Motifs Proportion
phosphosites per quantile (95% CI)

[0.0, 0.1] 851 68598 0.01 (0.01, 0.01)
(0.1, 0.2] 4044 194551 0.02 (0.02, 0.02)
(0.2, 0.3] 10169 288304 0.04 (0.03, 0.04)
(0.3, 0.4] 19170 520435 0.04 (0.04, 0.04)
(0.4, 0.5] 24141 681044 0.04 (0.04, 0.04)
(0.5, 0.6] 15123 408236 0.04 (0.04, 0.04)
(0.6, 0.7] 6468 168262 0.04 (0.04, 0.04)
(0.7, 0.8] 2445 61993 0.04 (0.04, 0.04)
(0.8, 0.9] 797 18623 0.04 (0.04, 0.05)
(0.9, 1.0] 25 525 0.05 (0.03, 0.07)
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Figure 4.10: Fraction of S/T that are phosphorylated per bin of POGSPSF score
quantile. The x-axis shows the 10 quantiles of equal-width. The y-axis shows
the fraction of S/Ts that are known targets for kinases. Semi-transparent colour
represents the 95% CI of the fraction for each quantile, calculated from the binomial
proportion with StatsModel. There is a small increase of the fraction of phosphosites
with the increasing of the score, which confirms the result that predicted modified
sites are phosphorylated than the unmodified ones.
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PolyPhen-2 scores, these two SNV impact classifiers were studied. SNVs classified as

damaging by SIFT (score< 0.05) and PolyPhen-2 (score> 0.5) decrease for the bins

with high-scoring motifs, with higher likelihood of being modified by OGT, while

SNVs classified as benign by the two tools remain constant over the POGSPSF score

bins. Surprisingly, this indicates that the O-GlcNAc sites are protected from genetic

variation. Alternatively, the classifier may be able to incorporate structural and

phylogenetic information not directly encoded in the training set.

4.3.5 Curated proteins with top ranking sites

The 3 000 proteins with top scoring sites were manually curated to highlight potential

new OGT targets. The list included proteins identified in UniProt as ‘fragments’,

which may represent an artefact of the proteome-wide prediction. If the protein

sequence is too short, the secondary structure and disorder predictors might classify

proteins as mostly disordered. Also, several of protein fragments have not been

derived from experimental evidence of the protein, but from evidence of a transcript or

inferred from homology. The list is also enriched in transcription factors and proteins

containing zinc-finger domains, which are known OGT targets. The examination

focuses on protein kinases and other enzymes involved in PTMs, interesting targets;

secreted and membrane proteins, which should not be modified; and other potential

targets involved in processes that were not previously associated with OGT. Protein

fragments and proteins without information in UniProt were ignored.
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Table 4.7: Number of germinal genetic variants from Ensembl per POGSPSF score
bin. Each column shows the counts for a SNV type within a score bin. The Motifs
columns has the total number of motifs for a given bin.

Bins Missense Nonsense Synonymous Motifs

[0.0, 0.1] 9573 136 6618 72349
(0.1, 0.2] 24485 363 16422 204570
(0.2, 0.3] 32971 510 21308 302171
(0.3, 0.4] 56929 842 36210 544638
(0.4, 0.5] 73631 1155 46716 711851
(0.5, 0.6] 43438 698 27907 426652
(0.6, 0.7] 17650 286 11270 176108
(0.7, 0.8] 6391 91 3978 64755
(0.8, 0.9] 1847 23 1252 19482
(0.9, 1.0] 49 0 31 545

0.04

0.06

0.08

0.10

0.12

0.14

[0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1]

POGSPSF scores bin

0.0000

0.0005

0.0010

0.0015

0.0020

Missense

Nonsense

Synonymous

F
ra

ct
io

n
o
f

m
o
ti

fs
w

it
h

S
N

P

Figure 4.11: Fraction of motifs with missense, nonsense, and synonymous SNV in
S/T in different POGSPSF score bins. The y-axis shows the fraction of S/T affected
by the three types of genetic variants; and the x-axis shows the POGSPSF score
bins. Overall, the fraction of SNVs tends to decrease with the increasing POGSPSF
score bins, which denotes higher likelihood to a motif been targeted by OGT. Note
the y-axis is discontinuous.
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Figure 4.12: Fraction of SNVs with impact classified by PolyPhen-2. The fraction of
SNVs classified by PolyPhen-2 as damaging (score ≥ 0.5) and as benign (score> 0.5)
have different relationship with POGSPSF score. While the number of SNVs classified
as benign remains constant over the bins, the proportion of damaging SNVs decrease.
Semi-transparent colours represent the 95% binomial proportion CI of the values.
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Figure 4.13: Fraction of SNV with impact classified by SIFT. Similar to the result
above, the fraction of SNV classified as damaging by SIFT (score ≤ 0.05) reduce
with the increasing score.
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Histone deacetylase

Histone deacetylase complex subunit SAP130 (UniProt Q9H0E3) participates in the

mSin3A complex, which acts as a corepressor of transcription. This protein is not

only interesting as a biological target, but also an example of overprediction, since

POGSPSF predicts 26 potential sites out of 99 S/Ts.

Kinase associated

The INCA1 protein (UniProtKB Q0VD86) has 7 S/Ts with POGSPSF class prob-

ability score> 0.6, none of which are known phosphosites. This protein negatively

regulates CDK activity by binding. Moreover, the protein has an extensive list

of protein-protein binding partners and so it may be a possible target for testing

whether OGT modification mediates protein-protein interactions.

The Megakaryocyte-associated tyrosine-protein kinase (UniProt P42679; in

POGSPSF with the obsolete accession number A0A087WUR1) caries high-scoring

residues in the extremities of its SH3 domain. It is notable that the potential sites

do not occur within the domain, but in its extremities.

Subunit alpha-1 of the 5′-AMP-activated protein kinase (UniProt Q13131) has 6

high-scoring residues, 4 of which are known phosphosites. The protein is extensively

modified by phosphorylation, ubiquitination and acetylation. OGT and AMP-kinase

regulate each other (Cheung and Hart, 2008; Bullen et al., 2014), but at this time,

the alpha-1 subunit of the AMP kinase has no mapped O-GlcNAc sites.
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Associated with nucleic acids

The Zinc finger protein 286A (UniProtKB J3KSW0) contains three potential sites in

its KRAB domain. This domain is enriched in charged amino acids and folds in two

α-helices. If the sites are truly modified, the modification may disrupt the fold and

therefore transcription regulation.

Death-inducer obliterator 1 is a putative transcription factor with pro-apoptotic

activity. The protein is extensively modified by phosphorylation and POGSPSF pre-

dicted 15 residues as potential new O-GlcNAc sites in the isoform DIDO1 (Q9BTC0-

2). The DNA polymerase iota (UniProtKB J3KSW2) has 12 potential sites and is

example of possible new biological association for OGT since the enzyme involvement

in replication has not been previously reported.

Ubiquitination

Ubiquitination is an important post-translational process that can lead to protein

degradation. The process involves the modifier, the protein ubiquitin, and three

enzymes: E1 (ubiquitin-activating); E2 (ubiquitin-conjugating); and E3 (ubiquitin

ligase). Like protein phosphorylation, ubiquitination cross-talks with O-GlcNAc. As

reviewed by Ruan et al. (2013), the two PTMs have an antagonistic effect: while

ubiquitination leads to degradation via the proteasome, protein O-GlcNAcylation

increases protein stability. OGT is known for targeting ubiquitin itself, and various

isoforms of the E3 enzyme.

POGSPSF predicts 14 potential modification sites in E3 ubiquitin-protein ligase

Mdm2 (UniProt Q00987), 5 of which are known phosphosites. Additional E3 ubiquitin

ligases were observed in the list of proteins with high-scoring sites. RNF43 (UniProt

136



4. POGSPSF applications 4.3. Results

Q68DV7) contains 12 high-scoring sites, none of which are phosphosites. Interestingly,

this protein is a single-pass membrane protein, and the 12 high-scoring sites reside

in the cytoplasmic portion of the protein. The E3 ubiquitin-protein ligase makorin-1

protein contains 10 sites with POGSPSF class probability score> 0.6, including a

PVSAA site from residue 142 to residue 146. Ubiquitin-conjugating enzyme E2

Q2 (UniProt Q8WVN8) contains 4 potential sites. The sites are close to the first

annotated secondary structure element in UniProtKB.

Secreted or membrane-bound proteins

Proteins in the secretory pathway and integral components of the membrane should

not be modified by OGT. However, Jochmann et al. (2014) identified proteins with

known sites in the secretory lumen. Also, some membrane bound proteins contain

cytoplasmic portions or loops and are often regulated by kinases (Valverde et al., 2011)

and OGT, for example the Sarcoplasmic/endoplasmic reticulum calcium ATPase 1

(UniProt Q8R429). Thus, this class of proteins was also analysed. Also, if a clear

pattern is detected on the sequence of such proteins, the pattern could be applied to

the next version of POGSPSF to avoid those sites yielding high scores.

The Signal-regulatory protein beta-1 (UniProtKB H3BQ21) is an integral com-

ponent of the membrane with 10 high-scoring sites, among 36 possible S/Ts. The 10

sites are located in the enzyme’s C-terminus, a region containing an immunoglobulin-

like fold, which in general mediates interaction with other proteins with the same

fold.

Another protein involved in antigen binding has one of the top scoring sites, the

Ig kappa chain V-ID region 16. Interestingly, PhosphoSitePlus reports phospho- and
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acetylation sites for the region facing the extracellular side. Within the proteins with

top scoring sites 35 other proteins contained the ‘immunoglobulin’ term and other

proteins, such as Interleukin 18 binding protein (UniProt G3V1C5) that contain

an immunoglobulin-like domain. To this author’s knowledge, OGT does not target

secreted proteins or proteins with an immunoglobulin-like fold. Despite protein

O-GlcNAcylation being discovered 30 years ago in immune cells, the modification’s

role in immunity was only recently revealed. OGT is essential for response to infection

mediated by T cells (Swamy et al., 2016) and also regulates the innate response to

pathogens (Ryu and Do, 2011).

The probable palmitoyltransferase ZDHHC20 (UniProt Q5W0Z9) is a multi-pass

membrane protein that catalyses the protein palmitoylation process, the addition

of the palmitoyl group to cysteines. POGSPSF predicts two residues, 307 and 328

as potential O-GlcNAc sites. The sites are close to known phosphosites, Ser305

and Ser330. Other palmitoyltransferases were identified in the proteins with top

ranking sites; for example, Palmitoyltransferase ZDHHC5 (UniProt Q9C0B5) and

the probable palmitoyltransferase ZDHHC1 (Q8WTX9).

Mitochondrial

The Acyl-CoA synthetase family member 2 protein (UniProt Q96CM8) catalyses the

metabolism of fatty acids in the mitochondria. The protein contains 11 phosphosites

and 2 residues which have high POGSPSF class probability, neither of which are

phosphosites. The top scoring site is a PVTXX site that is refered to as the ‘canonical

motif’ for OGT in the literature.

Bcl-2-binding component 3 protein (UniProt Q9BXH1) is critical to the apoptotic
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signalling pathway. Residues Thr69 and Ser98 are predicted as potential O-GlcNAc

sites by POGSPSF. Although protein O-GlcNAcylation has been associated with the

apoptotic process (Liu et al., 2000), the molecular mechanisms for the association

have yet to be identified.

4.3.6 Web application

Nowadays, computational classifiers of PTMs are a helpful set of tools for lab

researchers and computational biologists. The tools can be used to rank potential

sites or to provide further evidence when validation methods are not available

(Valverde et al., 2011; Cardoso et al., 2014). Nevertheless, the tools’ application is

only possible if the software is accessible to users.

Software developers can provide access to software via a standalone application,

a web server/application or a web service with programmatic access. The standalone

application requires installation and, generally, targets users trying to replicate the

study or make large scale predictions. Users studying only a few specific proteins

demand access in an easy way; this is best achieved within a web application.

Some users may prefer to access results via a web service or API, so they can

programmatically retrieve results for method comparison or to develop a meta-

classifier. Meta-classifiers are important in machine learning, applying a jury-based

approach and its variations to achieve more reliable prediction based on multiple

predictors. Often, meta-classifier perform better than single decision classifiers

(Madeira et al., 2015).

The POGSPSF classifications can be accessed from www.compbio.dundee.ac.

uk/pogspsf. The website was implemented with Flask, SQLite, Bootstrap and

139

www.compbio.dundee.ac.uk/pogspsf
www.compbio.dundee.ac.uk/pogspsf


4. POGSPSF applications 4.3. Results

Figure 4.14: POGSPSF result web-page for the Protein kinase C (UniProt P17252).
Left panel JQuery-DataTables, where the score is > 0.6 highlighted in red. Human
SNV and phosphosite data are incorporated in the table if available. The information
can be exported as a CSV file. Right panel shows the protein sequence, and the
S/T can be highlighted when selected in the table. http://www.compbio.dundee.
ac.uk/pogspsf/uniprot/P17252
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JQuery DataTables. Custom JavaScript code was developed to communicate from

the DataTables to the protein sequence. Figure 4.14 shows the result page for

protein kinase C (UniProtKB P17252). The 5 scores > 0.6 are highlighted in the

table (red). The user can select proteins from 71 791 human proteins in the database.

Phosphosites and human germinal variant data obtained in Section 4.2.1, are provided

in the results table, if available. On-line prediction service for protein sequences not

in the database will be provided in the near future. An API for programmatic access

of the results is under development.

4.4 Discussion

The analysis of the results from the application of POGSPSF to the proteome had

three main aims. Firstly, to assess the applicability of the classification model.

Secondly, to identify issues in the application and potential improvements for the

future versions. Finally, the study of top ranking sites could reveal new potential

targets and roles for protein O-GlcNAcylation.

4.4.1 Technical challenges

The application of the classifier over the human proteome is technically challenging,

and problems were reported here. The absence of predictions for residues close

(within 3 residues) to the protein termini was a critical issue. However, very few

reported O-GlcNAc sites occur close to the protein C- and N-termini, so this problem

should not interfere with the results described here.

Jpred4’s 800 amino acid cap also limited the proteome-wide study, since POGSPSF
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depends on secondary structure for classification. After discussion with the Jpred4

maintainer, it was decided that omitting proteins with more than 800 residues was

the most practical approach at this stage. Section 6.2 further discuss this issue.

Another interesting observation is the presence of protein fragments within

the proteins containing the high-scoring sites. ‘Fragment protein’ is a UniProtKB

nomenclature for a shorter version of the canonical protein. Often there is no

empirical confirmation of these protein fragments in vivo, so the expression of such

small polypeptide are unknown. Early POGSPSF prototypes that also used secondary

structure and disorder predictions had several fragment proteins within the top-

scoring motifs. Further study of the secondary structure and disorder propensities of

the protein fragments could reveal why these proteins are overrepresented within the

top ranking proteins.

Overprediction is a common problem for PTM classifiers, but developers do not

often discuss this issue. POGSPSF classifies 251 904 S/Ts as modified, for class

probability of 0.6, at least one order of magnitude more than the estimated number

of sites, 36 000, calculated from the POGSPSF training-set. The number calculated

from the training set might be underestimating the total numbers of modified S/T

in the human proteome, due to the incompleteness of the dataset. However, a

number between 10 000 and 100 000 is a reasonable estimate based on the number of

O-GlcNAc sites being less abundant than phosphosites.

One last problem was the lack of extra data to recalibrate the class probability

score and minimise overprediction. Figure 4.1 shows that the majority of known

sites have a class probability score> 0.6, so this threshold seemed reasonable, but

this value can be recalibrated when more data become available.
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4.4.2 Feature importance

Another typical application of machine learning methods is to determine specific

features that separate two classes. SciKit-Learn implements a few tools to provide

feature selection and extraction from models. The random forest classifier falls

between decision forests and ANNs regarding model transparency, so it is easier

to extract the feature importance for a random forest model if compared to ANNs

and SVMs. In fact, model interpretation is an overlooked attribute, when one

decides which learning algorithm is appropriate for a model. It is much harder,

if even possible, to extract the model preference from ‘Black box’ methods, best

represented by ANNs. In fact, there is a trade-off between model interpretability

and prediction performance (Kuhn and Johnson, 2013). Modern implementations,

such as SciKit-Learn random forests, train models that are not complete black boxes

and, therefore, can be interpreted.

Feature interpretation was attempted but unfortunately did not reveal any novelty.

The motif sequence was revealed as the most important feature, followed by predicted

disorder and secondary structure. Also, the analysis of the positions shows that

residues close to the modification site contain more relevant information than those

distant to it. Alternative methods for feature selection and extraction may be tested

in the future.

4.4.3 Novel findings

Machine learning methods can generalise from examples (Domingos, 2014). So the

POGSPSF application can contribute to (a) prioritising S/Ts within proteins for
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experimental validation; (b) improvements of PTM site prediction; and (c) offer an

overview of the protein O-GlcNAcylation process. The proteome-wide prediction,

described here, was the first practical application of the tool and revealed its main

caveats and potential.

The GO term analysis demonstrated that the POGSPSF model captures the

high-level biological role of protein O-GlcNAcylation. The enrichment of certain

cellular component terms, specifically nucleoplasm, cytoplasm and nucleus, and

molecular function, such as protein kinase binding and transcription factor binding,

within the proteins with high-scoring sites suggest that predictions incorporate the

high-level attributes from OGT modified proteins. In addition, multiple GO terms

not directly related to the proteins in the training set were detected as enriched in

the proteins more likely to be modified, as defined by the POGSPSF model. These

could be new biological features of O-GlcNAc, but some discoveries might be related

to with artefacts from the large scale predict and over-prediction.

Also, S/Ts classified as modified have an increased likelihood (odds ratio 1.15)

of being phosphosites. The results obtained here show a particular increase of

phosphorylation in the central S/T over the background protein frequency in the

human proteome. Such high-level, i.e. proteome-wide, confirmation of this interplay

is as yet unreported. The result agrees with the value observed for known O-GlcNAc

sites. However, since POGSPSF overpredicts, this value may be underestimated. It

would, therefore, be interesting to re-analyse the association of POGSPSF score and

the fraction of phosphosites in future versions of the model, to check whether the

observed trend changes.

Analysis of human genetic variants in S/Ts classified as modified by POGSPSF
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show a small decrease in proportions of germinal SNVs. It is notable that such a

small depletion of SNVs was detected. Despite the magnitude of the effect, this

result has interesting biological implications. Li et al. (2009) found that only a

small percentage of variant affect known PTM sites and indicated that different

PTMs have different observed frequencies for known germinal, somatic and disease-

causing polymorphisms. Uyar et al. (2014) recently established the role of short

linear motifs, unstructured segments of protein known to be associated with protein

phosphorylation (Iakoucheva et al., 2004) and O-GlcNAcylation (see Chapter 2),

in cancer. Uyar et al. (2014) shows a significant increase of somatic mutations

in short linear motifs within disordered segments, compared to germinal variants.

Gray et al. (2014) confirmed that lysines modified by multiple PTMs are more

likely to be associated with a disease phenotype. More recently, Reimand et al.

(2015) demonstrated that PTM sites are enriched in disease causing mutations, by

eliminating other possible genetic confounders. The authors also identified that PTM

sites obtained from experiments (modified residue ±7 residues) have a lower ratio

of non-synonymous to synonymous variants, indicating less deleterious variants in

the sites. These studies mostly focused on phosphorylation data and indicate that

PTM sites are important, and often associated with disease causing genetic variants.

This is the first time sites targeted by OGT have been associated with fewer genetic

variants. What remains to be answered is why the analyses of deleteriousness by

SIFT and PolyPhen-2 clearly reveals that the proportions of deleterious variants,

but not benign, SNVs decrease with the likelihood of OGT modification. Chapter 5

discusses OGT connection with cancer and disease-causing variants. The study of

somatic and other disease-associated genetic variants is suggested for future work.
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Interestingly, regarding the relationship of POGSPSF with phosphosites and

genetic variants, the association observed for a fraction of phosphosites is directly

proportional, while the one obtained for SNVs predicted as damaging is inversely

proportional. If further confirmed, this result denotes that some important sites,

like O-GlcNAc sites and phosphosites, are protected from human genetic variation.

The 10 000 (UK10K) Human Genomes very recently reported a reduction of SNV

distribution in segments that are biologically significant, like transmembrane domains

(Telenti et al., 2016).

Phosphosite and damaging SNV information may be incorporated in the POGSPSF

model. For now, the POGSPSF web application provides the information so that

the user can decide whether to consider it.

In conclusion, the use of machine learning models is a critical tool to the study

of PTM sites. The technical limitations need to be well defined and integrated

with the results interpretation. Also, the investigation needs to be followed up with

experimental validation.

4.5 Conclusions

• POGSPSF was applied to 71 791 proteins in the human proteome generating

scores for 2 429 758 S/Ts

• Problems with the classifier were detected and potential solutions were proposed

• GO term analysis indicated that the predictions could capture the subcel-

lular location, process and functions known to be associated with protein

O-GlcNAcylation

146



4. POGSPSF applications 4.5. Conclusions

• S/Ts classified as modified by POGSPSF are 15% more likely to be phosphosites

and 7% less likely to co-occur with known synonymous and missense SNVs

• Further analysis indicates a decrease of the fraction of motifs predicted as

modified and possessing SNVs classified by SIFT or PolyPhen-2 as damaging,

but no such effect was observed for those classified as benign

• Several potential novel targets were identified from the high-scoring sites;

the experimental validation of these sites could help define OGT substrate

recognition processes

• In summary, the application of POGSPSF provided validation to the method

in the biological context of the modification; additionally, novel biological

associations regarding of protein O-GlcNAcylation were suggested

• A web application was developed to provide external access to the predictions;

phosphosite and genetic variant data were integrated to the application’s result

page so that the user can decide to consider it.
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Chapter 5

Analysis of genetic variants on

OGT structure

Preface

This chapter introduces the data integration problem and presents ProteoFAV, a

Python library that integrates protein structural data with features and genetic

variants. As an example of ProteoFAV, the chapter also investigates the occurrence

of missense genetic variants over OGT in the context of its 3-dimensional structure.

5.1 Introduction

5.1.1 Data Integration

Since the Human Genome Project released the first human genome draft(Lander

et al., 2001), DNA sequencing technologies have become cheaper, faster and more

accurate, as reviewed by van Dijk et al. (2014). Other techniques in the field of Life
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Sciences have also followed these advances. For example, the use of high-content

compound screening led to the discovery of a new antimalarial agent (Baragaña et al.,

2015). Also, low-throughput methods have been scaled to work in the large scale.

For example the method for measuring the OGT activity was scaled to hundreds

of substrates of a single one (Pathak et al., 2015). All of these methods are very

data intensive, as they produce large amounts of data in different file formats. So

new computational methods and tools are required to maximise the information

extracted from these data-intensive methods.

Heterogeneous data integration is one important and challenging task of the

analysis of data from experiments, including the Structural Biology field (Samish

et al., 2015). It involves integrating data from multiple sources, which might be

critical to making new discoveries, unseen when the data are outside each other’s

context. Such tools are absent from the current toolset of the data analyst working

in the structural biology field. Thus, this chapter describes the development of a

Python library that allows the integration of protein structural data with features

and genetic variants. The genetic variants were introduced in Section 1.7

5.1.2 ProteoFAV

ProteoFAV is an open-source Python library that integrates protein structural data,

genetic variants and features. The library combines three-dimensional coordinates

with genetic variants and protein features from the Universal Protein Resource

(UniProt) database. It tackles three main challenges. First, the mapping between

genetic variants, which map to a position within the Ensembl reference genome,

and protein structures, which refer to the UniProt database. Second, the lack of
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a light-weight representation, specifically a Python data structure, for structural

data and other features able to be processed on a large scale. Third, the minor

sequence inconsistencies observed among different databases. The library is modular

and flexible for various use cases. Fábio Madeira and Stuart MacGowan collaborated

in the development of this tool.

5.1.3 ProteoFAV implementation

ProteoFAV was implemented in Python, one of the most popular programming

languages in computational biology. Python readable and easy to maintain and

extend source code is a critical feature of the programming language. Python can be

limited concerning speed and is slower than some other languages (Fourment and

Gillings, 2008). For ProteoFAV development, the problem was overcome by building

the tool over Pandas (McKinney and Team, 2015), a high-performance DataFrame

implementation. Pandas has a wide user-base and is becoming the central library for

data analysis in the Python programming language. Data structures implemented

in the Pandas library - Panel, DataFrame and Series - are compliant with Numpy

multi-dimensional arrays and can be processed by methods from the Numpy and

Scipy libraries, which introduced scientific algorithms to the Python programming

language.

ProteoFAV works as a command line application and as Python module. As a

command line application the user can select a protein from UniProt or a protein

structure from the PDB. The integrated data can be stored in one of the several

formats supported by Pandas, as a comma-separated file, or as a Jalview Annotation

file for easy annotation of multiple sequence alignments in Jalview (Waterhouse et al.,
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Figure 5.1: ProteoFAV: A Python open-source library for integration of protein structural with genetic variants and other features.
The tools also comprise protocols to common tasks such as contact map calculation, custom visualisation with PyMol and Chimera
and spatial clustering.
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2009). Since Pandas is a data analysis library, importing ProteoFAV as a Python

module allows lots of flexibility for data integration and processing. In this thesis,

for example, the structural characterisation of O-GlcNAc sites in Chapter 2 and

mapping genetic variants and phosphorylation sites to UniProt protein sequences in

Chapter 4 were performed with ProteoFAV.

5.1.4 Data sources and integration

The ProteoFAV implementation relies on the Pandas join method, which emulates a

Structured Query Language (SQL) join. A join procedure combines two datasets

using set logic rules, linking the intersection of specific columns of the datasets. With

standard parameters, ProteoFAV outputs a table where each row represents a protein

residue, but use cases where each row represents an atom or specific collections of

atoms - such as the backbone atoms - are also supported. The next section details

how the data source outputs were simplified to achieve this tabular data format.

5.1.5 Structural module

The mmCIF format

The macromolecular Crystallographic Information File (mmCIF) format describes

protein macromolecular structural data, including its three-dimensional atom co-

ordinates, and the experimental material and methods (Westbrook and Bourne,

2000). In 2014, the mmCIF format replaced the PDB format, which was not flexible

and could not support the major advances in protein structure determination. For

example, PDB files do not support structures with more than 99 999 atoms. The
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PDBx Exchange Dictionary is an ontology adopted by mmCIF and it defined a

convention of names, data types and data relationships (Bourne et al., 1997). An

ontology, in this case, is a controlled vocabulary designed to represent the data items,

data categories and their relationship. The PDBx Exchange Dictionary enables the

annotation of macromolecular structures and experiments to keep up with advances

in the field of macromolecular determination.

In mmCIF, data is represented as key-value pairs or in a tabular format. Attributes

are named data items and grouped into data categories. The ATOM SITE table

describes the attributes of the atoms in the structure, including the x, y, and z

coordinates. Other data categories, such as the structure references, are represented

in key-value format.

Other Python libraries have PDB/mmCIF file parsers, notably the Biopython

Structural package (Hamelryck and Manderick, 2003). The Biopython Structural

Class represents macromolecular structures as a hierarchical data structure. This

data structure can be inconvenient for data analysis and processing, due to the

computational cost of retrieving attributes from the deeply nested data structure.

ProteoFAV fixes this problem by storing data in a flat tabular format. Each column

defines a residue attribute, and the table rows represent each residue. With default

parameters, the residues contain its carbon α atom attributes. However, ProteoFAV

also support other configurations, such as an arbitrary list of atom type or only

backbone atoms. Figure 5.2 summarises the difference between Biopython Structural

data structure and ProteoFAV table.
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Figure 5.2: Data accession in the Biopython Structural module compared to
ProteoFAV Table. The Biopython Structural module (Hamelryck and Manderick,
2003) is a popular method to parse and access protein structural information among
Python programmers. The diagram in the left panel shows a simplified version
on how the Biopython class is organised. The top level object, Entity, contains a
collection of Structures, which contain the Models and so on until the Atoms objects.
Because of the deeply nested architecture, the data access for residue and atom
attributes is computationally costly. An excerpt of a ProteoFAV table example is
shown in the right panel. ProteoFAV parses the mmCIF directly into a table, where
each row represents a residue and columns contain the attributes from residues
and atoms. The table provides faster and more convenient access to the data, in
addition to data integration and processing with Pandas. Left panel x, y and z,
Atom three-dimensional coordinates; SS, secondary structure.
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The SIFTS file format

The SIFTS Project (Velankar et al., 2013) is a joint effort of the PDB Europe and

UniProt that provides residue-level or chain-level mappings among the following

databases: Pfam (Finn et al., 2014), InterPro (Hunter et al., 2009), SCOP (Fox et al.,

2014), CATH (Sillitoe et al., 2015), PubMed (Maloney et al., 2013), Gene Ontology

(Gene Ontology Consortium), PDB (Velankar et al., 2010) and UniProt (Bateman

et al., 2015). The SIFTS database serves Extensible Markup Language (XML) files

with a complex hierarchical structure, where the higher-level element is a PDB entry

and lowest-level element a residue or a domain. Apart from the database mapping,

SIFTS also flags missing residues, engineered constructs, expression tags and other

sequence heterogeneities in the protein structure. These problems and discontinuities

of the amino acid sequence are very common, therefore SIFTS is a critical resource

to resolve the differences between the sequence of the deposited protein structure

and the sequence of the UniProt entry. ProteoFAV merges the mmCIF file and

the SIFTS by joining the auth seq id and auth asym id to the PDB dbResNum and

PDB dbChainId of each respective file. An additional step checks the integrity of the

merged data by comparing the amino acid sequence obtained from each data source.

The DSSP file format

The DSSP algorithm assigns secondary structure elements to a protein structure

based on the hydrogen bonding pattern among the backbone atoms of consecutive

residues (Kabsch and Sander, 1983). The DSSP program was recently re-factored

(Joosten et al., 2011) to support changes to the PDB file format, which is the input

file to the DSSP program. DSSP also measures the peptide backbone torsion angles,
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the residue solvent accessible surface and other geometrical attributes of residues

in a protein structure all of which are output in tabular format with fixed column

widths. In ProteoFAV the data are merged via the auth seq id and auth asym id

of the mmCIF and icode and chain id from the DSSP file.

5.1.6 Variant module

The ProteoFAV variant module integrates genetic variant data retrieved from three

databases via their APIs. The Ensembl (Flicek et al., 2014) and UniProt (Bateman

et al., 2015) databases store both human germinal and somatic mutations from

several projects. The Cancer Genome Atlas (TCGA) Pan-Cancer Data portal (Cline

et al., 2013) stores genetic variants from cancerous tissues. Currently, the API

responses are JavaScript Object Notation (JSON) files with no common standard,

hence ProteoFAV has specific methods for processing the data from each database.

By a process called JSON normalisation, a nested JSON file can be flattened into

a table. The variant data are then represented by their Human Genome Variation

Society (HGVS) notation (Den Dunnen and Antonarakis, 2000). For example a

mutation of the Tryptophan in the position 26 to a Cysteine would be represented

as p.Trp26Cys. The notation can be input to the Ensembl VEP (McLaren et al.,

2016) to confirm the variant genomic location; enumerate known variants at the same

position; retrieve the variant minor allele frequency and the SIFT and PolyPhen-2

scores for the variant. The default URL for the structural and variant modules are

listed in Table 5.1.

Protein identifier mappings between the UniProt and Ensembl databases are

well-established and easy to obtain. However, approximately 20 % of human proteins
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Table 5.1: Current web addresses for ProteoFAV data resources. Note that for
APIs different endpoints may be used. For example, in Ensembl the variation
endpoint serves the genetic variant data.

Resource name Current web address

Structure module
mmCIF http://www.ebi.ac.uk/pdbe/entry-files/
DSSP ftp://ftp.cmbi.ru.nl//pub/molbio/data/dssp/
SIFTS ftp://ftp.ebi.ac.uk/pub/databases/msd/sifts/xml/
PDB validation http://www.ebi.ac.uk/pdbe/entry-files/download/
Variant module
UniProt http://www.ebi.ac.uk/uniprot/api/
TCGA Pan-cancer https://dcc.icgc.org/api/v1/
Ensembl http://grch37.rest.ensembl.org/

sequence had at least one amino acid mismatch, as the sequences of the two databases

were compared for the genetic variant study in Chapter 4. ProteoFAV checks the

protein sequence between the two databases before merging the structural and genetic

variant data and alerts in case of errors.

5.1.7 Testing module

ProteoFAV includes a full suite of test code with using the Python UnitTest module.

Currently, the testing module covers more than 80 % of the library methods. Moreover,

if the process fails for a particular protein structure, the library is adapted to handle

the exception and new test cases are added to it. For example, ProteoFAV can also

join protein structures that use insertion codes for indexing, among other corner

cases. The tests are also necessary to detect API changes that break the methods

that process genetic variant data.
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5.1.8 Data format limitations

The analysis of macromolecular structures in large scale demands a simplified data

structure that can carry the maximum amount of information while keeping its

structure. The Pandas DataFrame implementation seemed to be the potential

solution but representing the protein structural data, and annotations in a tabular

format does have its limitations. For example, data redundancy, caused by attributes

that carry the same information is common and should be eliminated with a post-

processing step. The second potential limitation is that the comprehensive integration

of many data sources leads to a large number of attributes (columns). However,

the Pandas DataFrame implementation is optimised to handle such tables. The

third limitation is the attribute type ambiguity. As the solution for this problem

depends on the use-case, the user should define the data type for the attributes with

ambiguous types. ProteoFAV documents the attributes with their expected types

- whether the type of the attribute is a Boolean, String, Integer or Float number

- to assist in handling attributes and attribute type ambiguities. Despite these

limitations, structural data analysis and integration of heterogeneous data sources

work seamlessly with ProteoFAV, which is a convenient solution for the integration

of structural, features and variant data.
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5.2 Methods

5.2.1 OGT three-dimensional structure

The analysis of the AAS found in the OGT structure requires a complete three-

dimensional model of the enzyme. Currently, the PDB contains only constructs of

the OGT’s N- and C-terminus. Hence, an entire model was obtained by combining

two protein structures determined by X-ray crystallography. The structure 1w3b

(chain A) (J́ınek et al., 2004) covers the enzyme’s N-terminus region from residue 4

to 388 (coverage 39 %). The OGT catalytic domain structure, which resides in the

enzyme’s C-terminus, has been determined more than once and the protein structure

with the highest resolution, 4gyw (chain A) (Lazarus et al., 2012), was selected. This

structure covers from residue 323 to 1 041 (coverage 69 %). The full-length OGT

structure was assembled with the MultiDomain Assembler (Hertig et al., 2015) via

the Chimera visualization program (Pettersen et al., 2004). This algorithm merges

protein or domain structures by aligning the three-dimensional positions of the

common residues from both structures using least-squares fitting. It also prepares

the combined structure for model refinement with Modeller (Eswar et al., 2008).

Modeller reports a normalised Discrete Optimized Protein Energy (Z-DOPE) score

of -0.81. The Z-DOPE score measures how likely the model represents the native

structure with more negative scores indicating better representations of the proteins

native fold.
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5.2.2 Collecting genetic variants

OGT genetic variants were retrieved from the three databases in Table 5.1. These

databases contain variants mapped to the Ensembl human genome assembly Genome

Reference Consortium human (version 37 from March 2009) (GRCh37) (Lander et al.,

2001). Since the OGT protein sequence is identical between the Ensembl and UniProt

databases no additional steps were needed to map the genetic variants to the protein

sequence. The UniProt OGT protein (UniProtKB accession number O15294) maps

to the Ensembl stable protein ENSP00000362824 and transcript ENST00000373719,

which was queried against the databases. Table 5.2 summarises the 957 genetic

variants mapped to OGT. The sSNV and nonsense variants were removed from the

dataset, resulting in the dataset in Appendix C.1. Three entries that yield insertions

instead of missense variants were discarded (in bold on the Appendix table).

Table 5.2: Summary of genetic variants per resource and type. Total: number
of variants before filtering. Missense: number of missense variants. The number
of unique AAS was 242, and the difference of this number to the number in the
Total versus Missense cell is due to more than one resource serving the same variant
information.

Data resource Variant type Total Missense

UniProt Somatic 60 57
Germinal 68 67

Ensembl Somatic 247 184
Germinal 154 58

TCGA Somatic 428 111
Total 957 477

5.2.3 AAS spatial clustering and visualization

The resulting AAS dataset was mapped to the OGT structure obtained in Sec-

tion 5.2.1. Chapter 1 describes the protein structure and function in detail. The
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AAS spatial distribution was analysed visually with Chimera.

To determine whether a region or domain was more susceptible to a type of

genetic variant, the coordinates of the centroid, defined as the mean atom position

for every atom in a given residue, of amino acids affected by AAS were clustered with

DBSCAN algorithm, implemented in the SciKit-learn library. DBSCAN clusters

data based on the density given a distance metric. The algorithm has two parameters

min samples and epf. The min samples parameter establishes the minimum number

of elements - i.e. AAS - to seed a cluster whilst epf is the cut-off Euclidean distance

for cluster membership in Å. Different from hierarchical clustering, which outputs

the hierarchical the cluster hierarchies and the cluster definition depends on a cut-off,

DBSCAN returns cluster partitions, which identifies the membership of each cluster

and elements clustered that are not clustered, also called singletons. Among the

SciKit-learn clustering algorithms, DBSCAN is best able to resolve clusters from

noisy data (Scikit-Learn website, 2016a).

5.3 Results

5.3.1 AAS over OGT primary structure

A total of 242 AAS affecting 144 amino acids were retrieved, where 81 amino acids

were affected by both somatic and germinal variants. Figure 5.3 illustrates the

distribution of AAS over the protein sequence. Green and yellow rectangles represent

the TPR domain (from residue 21 to residue 496) and the glycosyltransferase 41

domains (from residue 556 to residue 1 024), respectively. The plot reveals segments

with no AAS, which are enumerated in Table 5.3. These segments which may be
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Figure 5.3: AAS over OGT primary structure. The x-axis shows the amino acid
position within the OGT sequence; y-axis shows the number of AAS. Green and yellow
rectangles represent the TPR and the glycosyltransferase 41 domains, respectively.
Comparing top and bottom panels (somatic and germinal variant type) reveals that
some regions are more susceptible to one genetic variant type. The three longest
segments without any AAS are listed in Table 5.3.
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protected or intolerant to AAS could indicate important regions for the protein

function.

Table 5.3: Top three longest segments not affected by observed AAS. Start and end
refer to the amino acid position within the OGT sequence; the segments are ordered
by size. 3 regions in the TPR domain are less likely to be affected by germinal
variants, while 2 regions in the in the TPR domain and one in the Glycosyltransferase
41 are less likely to be affected by somatic variants.

Rank Mutation type Region Start End

First Somatic Glycosyltransferase 41 899 944
Second Somatic Interdomain 498 528
Third Somatic TPR 465 494

First Germinal TPR 348 417
Second Germinal TPR 196 248
Third Germinal TPR 454 494

5.3.2 AAS over OGT tertiary structure

The three-dimensional distribution of AAS was also analysed. Figure 5.4 compares

the predictions from PolyPhen-2 (left) and SIFT (right) for somatic (top) and

germinal (bottom) genetic variants. Amino acids affected by AAS predicted to be

deleterious by SIFT (score <0.05 ) and PolyPhen-2 (score >0.50 ) were coloured

red. Other amino acids affected by AAS predicted to be benign were coloured blue.

Amino acids with both benign and deleterious variants received both colours. SIFT

predicts more deleterious AAS than PolyPhen-2. Since SIFT is based upon the

conservation of protein sequence, the higher number of deleterious variants might

be due to the OGT primary sequence being highly conserved among homologous

proteins. Overall, PolyPhen-2 predicts several variants in the TPR domain to be

benign, but these results should be interpreted with care since this region modulates

essential protein-protein interactions, which are essential for OGT function (Iyer
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Figure 5.4: AAS derived from somatic (top panels) and germinal (bottom panels) variants over OGT three-dimensional structure.
The difference between PolyPhen-2 (left panels) and SIFT (right panels) are small in specific residues. Red ribbon SIFT intolerant
PolyPhen-2 possible or probably damaging; blue ribbon SIFT tolerant PolyPhen-2 benign;
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and Hart, 2003). The methods have concordant predictions for only 36 % somatic

and 34 % germinal variants leading to inconclusive prediction if the two methods are

combined.

To identify segments in OGT, that are more often impacted by AAS the three-

dimensional coordinates of residues affected by germinal and somatic variants were

clustered with DBSCAN. The observed cluster distribution was different between the

two variant types. The largest cluster for germinal variants (Figure 5.5, top panel,

blue cluster) comprises 23 residues in the enzyme catalytic domain, in contrast to

the largest cluster for somatic variants (Figure 5.5, bottom panel, purple cluster),

which groups 14 residues in the TPR domain. Table 5.4 enumerates clusters in the

two variant types.

5.4 Discussion

The OGT gene is among the top 3 230 genes most sensitive to germinal genetic

variants (Lek et al., 2016), calculated from the ratio between the expected and

observed number of missense variants from the The Exome Aggregation Consortium

(ExAC). It is also in the top 6 % of the genes ranked by the Residual Variation

Intolerance Score (RVIS) (Petrovski et al., 2013) metric, which also sorts genes for

their tolerance to genetic variation. RVIS scores the gene based on the ratio of the

common functional variation, which is variants with minor allele frequency bigger

than 1 % and effect as severe as missense variation, and the total number of variants.

Thus, in comparison to other genes, the OGT gene is intolerant to genetic variation.

Moreover, the UniProtKB only lists 2 disease associated mutations in OGT. The
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Table 5.4: Colour codes for clusters affecting domains in Figure 5.5. Clusters are
ordered from the N-terminus to the C-terminus. The domain or feature column
assigns clusters containing at least one variant affecting the domain or feature
assigned by UniProt. The number of residues per cluster is in The Residues column.
A Proximal to Histidine 508.

Variant type Cluster colour Domain or feature Residues

Somatic Purple TPR 2, 3, 4 and 5 14
Somatic Yellow TPR 9 and 10 12
Somatic Cyan TPR 11, 12 and 13 9
Somatic Median purple TPR 9 4
Somatic Pink Phosphatidylinositol binding site 9
Somatic Magenta - 6
Somatic Green - 7
Somatic Golden UDP binding site 8

Germinal Purple TPR 2 and 3 5
Germinal Yellow TPR 3 and 4 7
Germinal Cyan TPR 6 and 7 4
Germinal Median purple TPR 9 7
Germinal Pink TPR 11 and 12 6
Germinal Magenta Active siteA 5
Germinal Golden - 4
Germinal Green - 4
Germinal Blue Phosphatidylinositol binding site 23
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5. Analysis of genetic variants on OGT structure 5.4. Discussion

(a) Somatic variants.

(b) Germinal variants.

Figure 5.5: Variant clusters over OGT. Each colour represents a cluster from
DBSCAN with min samples = 4 and epf = 10 and each residue is represented by its
density map, which was generated with the Chimera molmap command. Note that
the two structures were tilted to avoid cluster superimposition in the two-dimensional
perspective.
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germinal mutation p.Ala319Thr is annotated as probably linked to inherited X-linked

intellectual disability (Bouazzi et al., 2015). The somatic mutation p.Leu538Pro was

found in a patient with renal carcinoma. None of those mutations was in the dataset

collected in this work.

So far, only one report experimentally studied the effects of AAS in OGT. The

germinal variants p.Leu254Phe was detected in a family with X-linked intellectual

disability (Wells, 2016). The mutation led to a higher rate of enzyme degradation

and was not the dataset studied in this work, but it is close to the Cyan cluster for

the germinal variants, which affects the TPR 6 and 7. From 5 variants near these

regions, SIFT predicts 2 AAS to be deleterious, and PolyPhen-2 predicts 3.

A total of 111 germinal and 131 somatic variants were collected from 3 databases.

The distribution over OGT’s primary structure reveals several segments without

mutations, including a segment from residue 843 to 870 that comprises the UDP

binding site and does not contain missense, nonsense and synonymous SNV.

However, the statistical determination of whether the segment is protected or

not from genetic variants is not a trivial task. An appropriate statistical test should

incorporate the observed frequency of the mutations. There is no simple way to

combine or compare the frequency of variants sourced from different projects, nor is

it trivial to examine the functional impact of variants in cancer and normal tissue.

Somatic variants are linked to the number of (tissue) donors, while for most, but

not all, projects calculate the minor allele frequency for a germinal variant. For

variants sourced from Ensembl, no germinal variant had a minor allele frequency

> 0.1, meaning that no common functional variant, as defined by Petrovski et al.

(2013) was observed for OGT.
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The clusters in Figure 5.5 highlights regions more often affected by genetic

variants. The groups were observed in three critical regions of the enzyme. One in

TPR repeats 12-13, which provides a hinge mechanism in OGT (Lazarus et al., 2011).

Another is near the catalytic pocket, which mediates interaction with the target

substrate protein during catalysis. Also another is near the phosphatidylinositol

binding site, which is involved in trafficking and insulin signalling (Yang et al.,

2008). Nonetheless, it is difficult to draw conclusions from these results. Variant

clustering does not directly imply that a region is more or less tolerant to a genetic

variant. Thus, this method needs to be combined with a more robust statical test for

comparing genetic variants obtained from random sampling and the scores obtained

from SIFT and PolyPhen-2 to help define regions with increased density of AAS

that may be associated with diseases.

A computational study (Kamburov et al., 2015) highlighted eight amino acids

(Asn335, Gln372, Asp396, Tyr418, Asp430, Phe428, Pro569 and Thr643) mediating

the interaction between OGT and the Host cell factor 1 (UniProt accession P51610)

and affected by somatic missense variants. These residues are within or close to the

Yellow or Pink clusters for the somatic variants. The authors conclude that these

somatic variants may disturb the regulation of the Host cell factor 1 in cancer and

other transcription factors in cancer. Protein O-GlcNAcylation has been extensively

associated with breast cancer, prostate cancer and other cancers as reviewed by

de Queiroz et al. (2014), but no molecular mechanism has been described so far.

The Yellow and Cyan clusters for somatic variants comprise part of the TPR near to

the hinge that links the N- and C-terminus domains. The full extension (including

unclustered AAS) comprises 22 and 24 AAS, out of 39, which are predicted to be
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deleterious by PolyPhen-2 and SIFT, respectively.

ProteoFAV was developed as a simple and convenient data analysis solution for

the study of features and genetic variants within the context of the protein structure.

More details on the method future developments are provided in Chapter 6.

5.5 Conclusions

• ProteoFAV is early in its development. A few milestones need to be achieved

before it is publicly released, such as full documentation and Python3 support.

Regardless, the tool has proven effective for the study of sites in structures (see

Chapter 2) and more convenient than the currently available alternatives in

Python

• Despite its critical importance to the human organism, the OGT gene has 957

known genetic variants reported in databases

• The exploratory analysis and the use of SIFT and PolyPhen-2 did not reveal

any clear patterns on the protein structure

• The investigation reveals no AAS and almost no genetic variants in the OGT

UDP binding site. More elaborate statistical procedures may be developed

from this observation

• The distribution of spatial cluster formed from germinal and somatic variants

is distinct. The analysis of the two variants types can also be summed with

genetic variants that cause diseases and analysed with protein features

• ProteoFAV will be available at https://github.com/bartongroup/ProteoFAV.
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Chapter 6

Future directions

The overall aim of the thesis was (a) to study the structural features of O-GlcNAc

sites and (b) to predict potential sites in the sequences of human proteins. The

thesis described the structure and features of sites modified by OGT (Chapter 2).

The features and the motif sequence were used to train a new random forest model,

POGSPSF (Chapter 3). The model predicted potential sites in the human proteome,

and the results were studied from the proteome to the protein scale (Chapter 4).

A Python library was developed in collaboration with Fábio Madeira and Stuart

MacGowan to tackle the integration of protein structure data with features like

UniProt annotation and genetic variants (Chapter 5).

This chapter summarises the results obtained in the thesis. Additionally, sugges-

tions are offered on the future direction of the computational study and prediction

of O-GlcNAc sites. Future developments of ProteoFAV are also mentioned.

171



6. Future directions 6.1. Further characterization of sites

6.1 Further characterization of sites

The current model, in 2016, dictates that protein-protein interactions direct OGT

specificity for the protein substrate. Databases of protein-protein interactions or

tools that infer the interaction between two protein could thus help understand the

OGT specificity at a protein level. Also, the molecular recognitions process could be

studied by molecular docking experiments and other simulations. The study of OGT

normal modes of motion might unravel structural constraints that might also help

understand the OGT specificity.

One important aspect that was not addressed by this work is the site conservation.

Many non-conserved phosphosites, which appear more recently in the evolution of

an organism, do not have function (Nishi et al., 2011; Lienhard, 2008; Beltrao et al.,

2012). The functional site prioritisation is not trivial even more for the limited

amount of O-GlcNAc site data; however, the study of non-functional O-GlcNAc sites

could reveal new properties of the modification.

The pipeline used during the site characterization could be applied to the charac-

terisation of other PTM sites. PTM such as palmitoylation have a more conserved

motif sequence than O-GlcNAc; therefore it would be interesting to compare the

results for the two modification types.

6.2 Future development for POGSPSF

Development of a machine learning method for the classification of O-GlcNAc sites

was the biggest challenge in this thesis. The pattern in the modified sites is weak. The

secondary structure and disorder dependencies make the classifier slower. Besides all
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the alternative motif encoding strategies, preprocessing steps and machine learning

methods did not improve the predictive performance. The classifier application over

the human proteome was also challenging. As mentioned in Chapter 4, the large

scale study had a few technical problems. Regarding the continuous development of

the tool, the top priority is to fix the problems. Next, the web application will be

able to predict from protein sequence not in the database, since now it just matches

results to sequences in the database.

Ongoing work aims to include sequences with more than 800 residues to the

web application database. To do so, the method described in Chapter 3 will be

applied to the remaining sequences. The method consists of slicing the protein

sequence in segments of 800 residues, leaving a 100 residue overlap for the segment

ends. The segments are submitted to Jpred4 and, subsequently, predictions are

joined, after removing 50 residues in the extremities, to avoid incorrect prediction of

protein extremities. Disorder scores for DisEMBL, JRonn and IUpred methods were

calculated with Jabaws, as described in Chapter 2. Failed predictions resulted from

missing disorder data for some sequences. Ongoing work also targets to calculate

the POGSPSF score for the proteins without disorder predictions.

Validation of the prediction performance is essential. Recently, new classifiers of O-

GlcNAc sites have been published (Jia et al., 2013; Wu et al., 2014; Pejaver et al., 2014;

Kao et al., 2015; Zhao et al., 2015). The publications focus on building a new machine

learning methods and neglected the biological role of the modification. POGSPSF

has increased in specificity when compared to YinOYang and OGlcNAcScan with

12 sites mined from papers abstracts. However, the size of the dataset limits the

comparison, which will gain robustness with a larger dataset. In addition, further
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optimisations of the model, such as score calibration, may increase the prediction

performance for the POGSPSF.

Work in this thesis shows that the regions around known sites and the predicted

S/T are more likely to be phosphorylated. It also suggests that S/T classified as

modified are less liable to have damaging genetic variants. What remains unanswered

is whether the POGSPSF’s overprediction impacts these two findings. Regardless,

the proteome-wide experiment can be used to check the potential interplay of other

modifications and with disease-causing variants, like the ones in the ClinVar dataset

(Landrum et al., 2014) and somatic variants from TCGA and COSMIC (Forbes et al.,

2015; Stratton et al., 2009).

Advances in the machine learning field should accelerate the improvement of

predictors of PTM sites. The use of semi-supervised learning could deal with the lack

of proper negative examples (unmodified sites) in training. Classifiers of PTM sites

trained with random forest models are not very common. However, implementations

of the random forest algorithm support categorical variables in the training set;

therefore the use of amino acid motif as categorical data without sparse encoding will

reduce the number of features, reducing the training time and potentially increasing

the prediction performance.

The developments of machine learning methods occur in iterations. The tool’s

preliminary comparison and the proteome-wide analysis show promising results.

Next, the web application should be finalised. Further study on the importance

of the features and adding heterogeneous data, such as phosphorylation, may be

observed in the next iteration of the method.
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6.3 Future directions for ProteoFAV

With the enormous amount of data currently being produced, data integration solu-

tions are becoming more common. Python is one popular language in computational

biology; however, there are few Python libraries for working with protein structure.

One notable exception is Biopython (Cock et al., 2009). However, the Python

Structural module is not convenient. Therefore the ProteoFAV library was developed.

The library aims to provide a set of tools that allow integration of protein structures,

annotations and genetic variants. ProteoFAV itself was used to the characterisation

of the sites in Chapter 2.

Although ProteoFAV has a test suite and works, it will demand some effort in

documentation and more tests before it is publicly released. ProteoFAV is still under

development. Future improvements will add a statistical permutation test to confirm

or refute the lack of genetic variants within proteins regions.
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Appendix A

Appendices to Chapter 2

A.1 Electron densities manually examined

Table A.1: Uniprot, UniProt accession number; Up, position in the UniProt
sequence; PDB, PDB accession number; C, protein structure chain; PP, position in
the PDB; Expression organism, scientific name of the expression system.

UniProt Up PDB C Pp Expression organism
P68871 73 4x0i B 73 Spodoptera frugiperda
P68871 73 4x0l B 73 Homo sapiens
P68871 73 3w4u F 72 Mus musculus
P68871 73 1yvt B 72 Mus musculus
P68871 73 1yvt D 72 Mus musculus
P68871 85 4x0i B 85 Spodoptera frugiperda
P68871 85 4x0l B 85 Homo sapiens
P68871 85 3w4u F 84 Mus musculus
P68871 85 1yvt B 84 Mus musculus
P68871 85 1yvq D 84 Mus musculus
P69905 134 4x0i A 134 Spodoptera frugiperda
P69905 134 4x0l A 134 Homo sapiens
P69905 134 1yvt A 133 Mus musculus
P69905 134 1yvq C 133 Mus musculus
P69905 4 4x0i A 4 Spodoptera frugiperda
P69905 4 4x0l A 4 Homo sapiens
P69905 4 1yvt A 3 Mus musculus
P69905 4 1yvq C 3 Mus musculus
P69905 36 4x0i A 36 Spodoptera frugiperda
P69905 36 4x0l A 36 Homo sapiens
P69905 36 1yvt A 35 Mus musculus
P69905 36 1yvq C 35 Mus musculus
P27601 59 3ab3 C 59 Spodoptera frugiperda
P27601 59 1zcb A 59 Spodoptera frugiperda
P27601 59 3cx7 A 59 Spodoptera frugiperda
P27600 66 1zca B 66 Spodoptera frugiperda
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UniProt Up PDB C Pp Expression organism
P68871 50 4x0i B 50 Spodoptera frugiperda
P68871 50 4x0l B 50 Homo sapiens
P68871 50 3w4u F 49 Mus musculus
P68871 50 1yvt B 49 Mus musculus
P68871 50 1yvq D 49 Mus musculus
P31749 308 4ejn A 308 Spodoptera frugiperda

A.2 Sites’ properties for SS132 dataset

Table A.2: Sites’ properties for SS132 dataset. List of all entries in the SS132
dataset. PDB, PDB accession number; Chain, chain in the PDB file; Position, residue
position within the chain; Cluster, cluster id. RSA, relative solvent accessibility; SS,
secondary structure.

PDB Chain Position Cluster B-factor RSA SS

1bab C 3 - 2.31 0.51 CCCCCHH
1f2j A 3 - 3.04 0.77 CCCCCCC
1kcx B 17 - 1.20 0.33 CCCEEEE
1oy3 B 193 - 0.08 0.45 CCCCCEC
1pk8 B 115 - -0.06 0.27 CCEEEEE
1pk8 E 114 - 0.70 0.39 CCCEEEE
1pk8 F 115 - 0.73 0.26 CCEEEEE
1px2 B 115 - 0.29 0.24 CCEEEEE
1sfc D 133 - 0.80 0.35 CCCCCCC
1wua A 7 - 0.02 0.29 CCCCEEE
2f2u A 29 - 2.94 0.61 CCCCHHH
2ftw A 9 - 1.30 0.21 CCCCEEE
2i1y A 693 - 2.47 0.47 CCHHHHH
2j4o A 18 - 2.42 0.56 CCCCCCC
2odv A 305 - -1.83 0.47 CCHHHHH
2q9p A 12 - 0.35 0.57 CCCECCC
2qz4 A 306 - 0.69 0.49 CCCCCCC
2w4o A 36 - 1.65 0.54 CCCCCEC
3cb2 A 4 - -0.45 0.08 CCCCEEE
3dxe C 538 - 2.65 0.67 CCCCCCC
3ig3 A 1248 - 0.81 0.65 CCHHHHC
3l1e A 61 - 1.02 0.54 CCCCEEE
3lm5 A 20 - 0.23 0.57 CCCCCCE
3q05 D 96 - 0.35 0.31 CCCCCCC
3w6p B 1 - -0.23 0.28 CCCCCCC
4b1u B 7 - 0.42 0.30 CCCCEEE
4b90 B 10 - 1.21 0.25 CCEEEEE
4ceg A 286 - 0.80 0.33 ECCCCCC
4czt D 21 - 1.37 0.58 CCCCCCC
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PDB Chain Position Cluster B-factor RSA SS

4d9t A 417 - 2.07 0.60 CCCCCCC
4ejn A 6 - 2.00 0.54 CCCEEEE
4gv1 A 145 - 1.89 0.53 CCCCCHH
4mk0 A 32 - -0.48 0.50 CCCCCCC
4n78 F 2 - 0.65 0.52 CHHHHHC
4pjl A 640 - 0.76 0.39 CCCCCEH
5av9 A 39 - 2.66 0.84 CCCCCCC
1k8k A 405 A -0.36 0.32 HHCHHHH
2wbs A 472 A -0.71 0.32 ECCHHHH
3r7d A 197 A -0.70 0.28 ECCHHHH
3ud1 B 960 A 2.94 0.53 HHCCCCC
4l79 A 314 A -0.80 0.31 HHHCCCH
4m9e A 414 A 0.50 0.47 ECCHHHH
4o4h B 298 A -0.04 0.22 HCCHHHE
4y5q A 86 A -0.36 0.34 ECCCCCE
1bab C 36 B -0.63 0.21 HHHHCHH
1cun A 30 B 1.16 0.49 HHCCCCC
1w7j B 115 B -1.04 0.20 HHHHCCC
1wua A 232 B 0.09 0.54 HHHHCCC
2xtz A 49 B -0.95 0.11 CCCCCHH
3cx8 A 59 B -1.29 0.10 CCCCCHH
4pa0 A 748 B 0.24 0.30 HHHCCCC
2w4o A 57 C 1.52 0.45 ECCCEEE
4cbx A 366 C 1.00 0.41 HHCCHHH
1btn A 57 D 0.10 0.45 CCEECCC
1f4j B 114 D -0.89 0.05 EEEECCC
1k8k A 113 D -0.96 0.09 EEEEECC
2ci1 A 260 D -0.21 0.19 EECCCHH
2ci3 A 260 D -0.73 0.18 EECCCHH
2foy A 217 D -0.77 0.21 CCEEECH
2p9i B 243 D -1.20 0.30 CCEEEEC
2zv2 A 167 D 0.81 0.41 CCEEEEE
3cb2 B 170 D -1.30 0.02 EEEEEEC
3ids B 244 D -0.80 0.17 CCEEEEE
4c69 X 101 D 0.17 0.28 EEEEEEC
4c69 X 234 D -0.46 0.22 EEEEEEE
4cbx A 199 D 1.42 0.50 CCCCCCC
4d8o A 1337 D -0.96 0.32 EEECCCE
4ky9 A 162 D 0.64 0.25 CCEECHH
4qvp T 131 D -0.77 0.01 CCEEEEE
1k8k B 338 E 2.07 0.54 CCCCCCC
2gwf A 218 E -1.06 0.13 ECCCEEC
3bjf B 37 E 0.55 0.25 CCCCCCC
3vln A 13 E -0.05 0.47 CCCCCCC
4ky9 A 224 E 1.17 0.37 CCCCCEE
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PDB Chain Position Cluster B-factor RSA SS

1dxt B 50 F 0.54 0.52 CCCCCHH
1j4n A 238 F 1.17 0.59 CCCCCHH
1tki B 324 F 0.55 0.49 CCCCCCC
1w0j B 33 F 0.10 0.20 EEEEECC
2foy A 129 F 0.64 0.38 CCCCCHH
3ud1 B 1162 F 0.71 0.45 CCCCCCC
4c69 X 165 F 0.13 0.37 CEEEEEE
4mk0 B 136 F 0.60 0.31 CEEEEEE
1bab C 134 G -0.64 0.23 HHHHHHH
1dxt B 73 G -0.10 0.25 HHHHHHH
1dxt B 85 G 0.21 0.36 HHHHHHH
1f4j B 254 G 0.86 0.28 HHHHHHC
1l0l A 183 G 0.34 0.27 HHHHHHH
1okc A 6 G 0.64 0.58 CHHHHHH
1qmv A 112 G -0.49 0.20 CHHHHHC
1ryp R 195 G 0.09 0.08 HHHHHHH
1usu A 422 G -0.60 0.20 HHHHHHH
1w7j A 182 G 0.89 0.16 HHHHHCC
2wbs A 415 G 0.82 0.50 CCHHHHH
2zxe A 366 G -0.68 0.02 HHHHHHH
2zxe A 668 G -0.68 0.27 EEHHHHC
3abm R 63 G -0.11 0.01 CHHHHHH
3kn5 A 467 G -0.96 0.21 HHHHHHH
3pry A 452 G -0.68 0.19 HHHHHCC
3pry B 452 G -0.84 0.24 HHHHCCC
3udu B 196 G -0.51 0.08 CHHHHHH
4aif B 303 G 0.22 0.36 HHHHHHH
4b1u B 89 G -0.51 0.22 HHHHHHH
4eo9 A 188 G -0.69 0.05 CHHHHHH
4htm A 21 G -0.59 0.51 HHHHHHH
4l3j A 180 G -0.61 0.01 HHHHHHH
4y5q A 119 G -0.08 0.40 CHHHHHH
4y7y Z 190 G -0.17 0.04 HHHHHHH
1gmi A 132 H 0.60 0.35 EEEEEEE
1k8k A 170 H -0.12 0.20 EEEECCC
1pk8 F 262 H 0.64 0.51 CCCCCCC
1qmv A 18 H 0.46 0.17 CEEEEEE
1wpg D 210 H -1.08 0.07 EECCCCE
3msu A 417 H -0.70 0.19 EEECCCC
3sde B 147 H 1.29 0.19 CCCCCEE
3ufx I 185 H -1.00 0.11 CCEEEEE
1i7n A 264 I 0.91 0.44 CCCCCCE
1yhw A 427 I -0.01 0.23 CCCCHHH
2zbd A 8 I -0.37 0.32 CCCCHHH
3q5i A 369 I -0.75 0.27 HHCCHHH
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PDB Chain Position Cluster B-factor RSA SS

4is4 G 254 I 0.44 0.14 EEECHHH
4w8p A 1487 I 1.13 0.50 CCCCHHH
1nug B 76 J 1.49 0.41 EEEECCC
1okc A 41 J -0.24 0.22 HHHCCCC
1pk8 B 261 J 1.45 0.49 CCCCCCC
1u5p A 1732 J 0.11 0.51 HHCCCCC
2w4o A 137 J -0.34 0.33 CCCCHHH
3ar4 A 625 J -0.93 0.18 EEEECCC
3brv A 733 J -0.34 0.43 CCCCHHH
3cb2 A 289 J 0.34 0.41 CCCCHHH
3kn5 A 669 J 1.15 0.23 HHHCCCC
3ose A 703 J 0.39 0.53 CCCCCCC
4i4t B 174 J -0.63 0.19 EECECCE
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Appendices to Chapter 3

B.1 Redundant proteins sequence in the dataset
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Table B.1: Protein sequence clusters from Blastclust in Chapter 3. Blastclust paramenters: 70% identity and 0.90 coverage. The
protein with the most sites was selected.

UniProt accession Protein name Organism name Cluster number
Q9ERD7 Tubulin beta-3 chain Mus musculus

cluster 1

Q922F4 Tubulin beta-6 chain Mus musculus
P68372 Tubulin beta-4B chain Mus musculus
Q7TMM9 Tubulin beta-2A chain Mus musculus
Q9CWF2 Tubulin beta-2B chain Mus musculus
Q9D6F9 Tubulin beta-4A chain Mus musculus

P62737 Actin, aortic smooth muscle Mus musculus

cluster 2

P68035 Actin, alpha cardiac muscle 1 Rattus norvegicus
P68134 Actin, alpha skeletal muscle Mus musculus
Q8BFZ3 Beta-actin-like protein 2 Mus musculus
P60710 Actin, cytoplasmic 1 Mus musculus
P63260 Actin, cytoplasmic 2 Mus musculus

P08752 Guanine nucleotide-binding protein G subunit alpha-2 Mus musculus

cluster 3B2RSH2 Guanine nucleotide-binding protein G subunit alpha-1 Mus musculus
P18872 Guanine nucleotide-binding protein G subunit alpha Mus musculus
Q9DC51 Guanine nucleotide-binding protein G subunit alpha-3 Mus musculus

Q60974 Nuclear receptor corepressor 1 Mus musculus
cluster 4O75376 Nuclear receptor corepressor 1 Homo sapiens

E9Q2B2 Nuclear receptor corepressor 1 Mus musculus

Q7Z3K3 Pogo transposable element with ZNF domain Homo sapiens
cluster 5Q8BZH4 Pogo transposable element with ZNF domain Mus musculus
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UniProt accession Protein name Organism name Cluster number
Q7Z3K3-2 Pogo transposable element with ZNF domain Homo sapiens

O88532 Zinc finger RNA-binding protein Mus musculus
cluster 6Q96KR1 Zinc finger RNA-binding protein Homo sapiens

Q562A2 Zinc finger RNA-binding protein Rattus norvegicus

Q8VDN2 Sodium/potassium-transporting ATPase subunit alpha-1
alpha-1

Mus musculus
cluster 7

Q6PIE5 Sodium/potassium-transporting ATPase subunit alpha-2
alpha-2

Mus musculus

Q6PIC6 Sodium/potassium-transporting ATPase subunit alpha-3
alpha-3

Mus musculus

P07197 Neurofilament medium polypeptide Homo sapiens
cluster 8P08553 Neurofilament medium polypeptide Mus musculus

P12839 Neurofilament medium polypeptide Rattus norvegicus

P63319 Protein kinase C gamma type Rattus norvegicus
cluster 9P05696 Protein kinase C alpha type Rattus norvegicus

P68403 Protein kinase C beta Rattus norvegicus

Q8VHR5 Transcriptional repressor p66-beta Mus musculus
cluster 10Q4V8E1 GATA zinc finger domain containing 2B Rattus norvegicus

Q8WXI9 Transcriptional repressor p66-beta Homo sapiens

P31749 RAC-alpha serine/threonine-protein kinase Homo sapiens
cluster 11P31750 RAC-alpha serine/threonine-protein kinase Mus musculus

Q8INB9 RAC serine/threonine-protein kinase Drosophila melanogaster
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UniProt accession Protein name Organism name Cluster number

P02470 Alpha-crystallin A chain Bos taurus
cluster 12P02505 Alpha-crystallin A chain Rhea americana

P02488 Alpha-crystallin A chain Macaca mulatta

A8DUV1 Alpha-globin Mus musculus
cluster 13P01942 Hemoglobin subunit alpha Mus musculus

P69905 Hemoglobin subunit alpha Homo sapiens

O55042 Alpha-synuclein Mus musculus
cluster 14P37377 Alpha-synuclein Rattus norvegicus

P37840 Alpha-synuclein Homo sapiens

Q9QYX7 Protein piccolo Mus musculus cluster 15Q9QYX6 Protein piccolo Mus musculus

O88737 Protein bassoon Mus musculus cluster 16O88778 Protein bassoon Rattus norvegicus

Q96T58 Msx2-interacting protein Homo sapiens cluster 17Q62504 Msx2-interacting protein Mus musculus

Q12830 Nucleosome-remodeling factor subunit BPTF Homo sapiens cluster 18A2A654 Protein Bptf Mus musculus

Q9Y520 Protein PRRC2C Homo sapiens cluster 19Q3TLH4 Protein PRRC2C Mus musculus
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UniProt accession Protein name Organism name Cluster number
O75179 Ankyrin repeat domain-containing protein 17 Homo sapiens cluster 20Q99NH0 Ankyrin repeat domain-containing protein 17 Mus musculus

Q9QX47 Protein SON Mus musculus cluster 21P18583-3 Protein SON Homo sapiens

Q9H4A3 Serine/threonine-protein kinase WNK1 Homo sapiens cluster 22P83741 Serine/threonine-protein kinase WNK1 Mus musculus

Q01082 Spectrin beta chain, non-erythrocytic 1 Homo sapiens cluster 23Q62261 Spectrin beta chain, non-erythrocytic 1 Mus musculus

D3YZU1 SH3 and multiple ankyrin repeat domains protein 1 Mus musculus cluster 24Q9WV48 SH3 and multiple ankyrin repeat domains protein 1 Rattus norvegicus

P35658 Nuclear pore complex protein Nup214 Homo sapiens cluster 25Q80U93 Nuclear pore complex protein Nup214 Mus musculus

Q61191 Host cell factor 1 Mus musculus cluster 26P51610 Host cell factor 1 Homo sapiens

A2AQ25 Sickle tail protein Mus musculus cluster 27Q8BHY1 Sickle tail protein Mus musculus

P15146 Microtubule-associated protein 2 Rattus norvegicus cluster 28P20357 Microtubule-associated protein 2 Mus musculus

Q9NYV4 Cyclin-dependent kinase 12 Homo sapiens cluster 29
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UniProt accession Protein name Organism name Cluster number
Q14AX6 Cyclin-dependent kinase 12 Mus musculus

P49790 Nuclear pore complex protein Nup153 Homo sapiens cluster 30E9Q3G8 Protein Nup153 Mus musculus

Q6NXI6 Regulation of nuclear pre-mRNA domain-containing pro-
tein 2

Mus musculus cluster 31

Q5VT52 Regulation of nuclear pre-mRNA domain-containing pro-
tein 2

Homo sapiens

Q6P4R8 Ubiquitin carboxyl-terminal hydrolase isozyme L5 Homo sapiens cluster 32Q6PIJ4 Nuclear factor related to kappa-B-binding protein Mus musculus

O35927 Catenin delta-2 Mus musculus cluster 33B7ZNF6 Ctnnd2 protein Mus musculus

E9Q828 Calcium-transporting ATPase Mus musculus cluster 34D1FNM8 Calcium-transporting ATPase Mus musculus

Q80X50 Ubiquitin-associated protein 2-like Mus musculus cluster 35Q14157 Ubiquitin-associated protein 2-like Homo sapiens

P19246 Neurofilament heavy polypeptide Mus musculus cluster 36P16884 Neurofilament heavy polypeptide Rattus norvegicus

Q8WWM7 Ataxin-2-like protein Homo sapiens cluster 37Q7TQH0 Ataxin-2-like protein Mus musculus

187



B.A
ppendices

to
C

hapter
3

B.1.R
edundant

proteins
sequence

in
the

dataset

UniProt accession Protein name Organism name Cluster number
Q5SFM8 RNA-binding protein 27 Mus musculus cluster 38Q9P2N5 RNA-binding protein 27 Homo sapiens

O55143 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 Mus musculus cluster 39Q8R429 Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 Mus musculus

P97836 Disks large-associated protein 1 Rattus norvegicus cluster 40Q9D415 Disks large-associated protein 1 Mus musculus

Q8NDX5 Polyhomeotic-like protein 3 Homo sapiens cluster 41Q8CHP6 Polyhomeotic-like protein 3 Mus musculus

Q6PFD5 Disks large-associated protein 3 Mus musculus cluster 42Q6PFD6 Kinesin-like protein KIF18B Mus musculus

Q8CC35 Synaptopodin Mus musculus cluster 43Q8N3V7 Synaptopodin Homo sapiens

Q9QZQ0 Neuronal PAS domain-containing protein 3 Mus musculus cluster 44Q0IJ77 Npas3 protein fragment Mus musculus

Q69ZI1 E3 ubiquitin-protein ligase SH3RF1 Mus musculus cluster 45Q7Z6J0 E3 ubiquitin-protein ligase SIAH2 Homo sapiens

Q05BC3 Echinoderm microtubule-associated protein-like 1 Mus musculus cluster 46B9EKL9 Eml1 protein Mus musculus

Q9H1B7 Interferon regulatory factor 2-binding protein-like Homo sapiens cluster 47
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Q8K3X4 Interferon regulatory factor 2-binding protein-like Mus musculus

A0JNY3 Gephyrin Mus musculus cluster 48Q8BUV3 Gephyrin H Mus musculus

P07901 Heat shock protein HSP 90-alpha Mus musculus cluster 49P11499 Heat shock protein HSP 90-beta Mus musculus

O88935 Synapsin-1 Mus musculus cluster 50P09951 Synapsin-1 Rattus norvegicus

Q96BD5 Zyxin Homo sapiens cluster 51Q6ZPK0 PHD finger protein 21A Mus musculus

Q8C2Q3 RNA-binding protein 14 Mus musculus cluster 52Q96PK6 RNA-binding protein 14 Homo sapiens

Q7M6Y3 Phosphatidylinositol-binding clathrin assembly protein Mus musculus cluster 53Q13492 Phosphatidylinositol-binding clathrin assembly protein Homo sapiens

Q86YP4 Transcriptional repressor p66-alpha Homo sapiens cluster 54Q8CHY6 Transcriptional repressor p66 alpha Mus musculus

Q6UN15 Pre-mRNA 3’-end-processing factor FIP1 Homo sapiens cluster 55Q9D824 Pre-mRNA 3’-end-processing factor FIP1 Mus musculus

Q15723 ETS-related transcription factor Elf-2 Homo sapiens cluster 56Q9JHC9 ETS-related transcription factor Elf-2 Mus musculus
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Q7Z739 YTH domain-containing family protein 3 Homo sapiens cluster 57Q8BYK6 YTH domain-containing family protein 3 Mus musculus

O08553 Dihydropyrimidinase-related protein 2 Mus musculus cluster 58P97427 Dihydropyrimidinase-related protein 1 Mus musculus

Q4KLH5 Arf-GAP domain and FG repeat-containing protein 1 Rattus norvegicus cluster 59Q8K2K6 Arf-GAP domain and FG repeat-containing protein 1 Mus musculus

P08551 Neurofilament light polypeptide Mus musculus cluster 60P19527 Neurofilament light polypeptide Rattus norvegicus

P18146 Early growth response protein 1 Homo sapiens cluster 61P08046 Early growth response protein 1 Mus musculus

B4DJQ5 cDNA FLJ59211, highly similar to Glucosidase 2 subunit
beta

Homo sapiens cluster 62

P14314 Glucosidase 2 subunit beta Homo sapiens

P37231 Peroxisome proliferator-activated receptor gamma Homo sapiens cluster 63D2KUA6 Peroxisome proliferative activated receptor gamma Homo sapiens

Q15750 TGF-beta-activated kinase 1 and MAP3K7-binding pro-
tein 1

Homo sapiens cluster 64

Q8CF89 TGF-beta-activated kinase 1 and MAP3K7-binding pro-
tein 1

Mus musculus
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UniProt accession Protein name Organism name Cluster number
Q6PHZ2 Calcium/calmodulin-dependent protein kinase type II

subunit delta
Mus musculus cluster 56

P11798 Calcium/calmodulin-dependent protein kinase type II
subunit alpha

Mus musculus

Q00566 Methyl-CpG-binding protein 2 Rattus norvegicus cluster 66Q9Z2D6 Methyl-CpG-binding protein 2 Mus musculus

P08670 Vimentin Homo sapiens cluster 67P20152 Vimentin Mus musculus

Q02818 Nucleobindin-1 Homo sapiens cluster 68Q02819 Nucleobindin-1 Mus musculus

Q9NR12 PDZ and LIM domain protein 7 Homo sapiens cluster 69Q9Z1Z9 PDZ and LIM domain protein 7 Rattus norvegicus

Q16186 Proteasomal ubiquitin receptor ADRM1 Homo sapiens cluster 70Q9JKV1 Proteasomal ubiquitin receptor ADRM1 Mus musculus

P63094 Guanine nucleotide-binding protein G subunit alpha iso-
forms short

Mus musculus cluster 71

Q8CGK7 Guanine nucleotide-binding protein G subunit alpha Mus musculus

Q02614 SAP30-binding protein Mus musculus cluster 72Q9UHR5 SAP30-binding protein Homo sapiens

P48962 ADP/ATP translocase 1 Mus musculus cluster 73
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P51881 ADP/ATP translocase 2 [Cleaved into: ADP/ATP

translocase 2, N-terminally processed]
Mus musculus

Q9DBJ1 Phosphoglycerate mutase 1 Mus musculus cluster 74O70250 Phosphoglycerate mutase 2 Mus musculus

P28066 Proteasome subunit alpha type-5 Homo sapiens cluster 75Q9Z2U1 Proteasome subunit alpha type-5 Mus musculus

P02511 Alpha-crystallin B chain Homo sapiens cluster 76P23928 Alpha-crystallin B chain Rattus norvegicus
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Table B.2: Sites mapping to the same relative of domains inferred by InterproScan in Chapter 3. The first entry of each group was
kept.

Domain name Interpro accession UniProt accession Site position Protein name

Protein kinase domain IPR000719 P11798 253 CaM-kinase II
P63319 591 Protein kinase C gamma

Protein kinase domain IPR000719 Q16566 57 CaM-kinase IV
P09216 418 Protein kinase C epsilon

Intermediate filament domain IPR001664 Q3TTY5 118 Keratin II
P08553 28 Neurofilament medium

Protein kinase-like domain IPR011009 P63319 82 Protein kinase C gamma
P09217 159 Protein kinase C

P-type ATPase, transmembrane domain IPR023298 D1FNM8 456 Calcium-transporting ATPase
Q8K314 159 Atp2b1

Protein kinase domain IPR000719 P63319 253 Protein kinase C gamma
P11798 591 CaM-kinase II

ATPase, F1 complex alpha/beta subunit IPR004100 P56480 128 ATP synthase subunit beta
Q03265 134 ATP synthase subunit alpha

G protein alpha subunit IPR001019

P63094 51 Guanine nucleotide binding protein alpha short
P08752 44 Guanine nucleotide binding protein alpha-2
P27600 66 Guanine nucleotide binding protein alpha-12
P27601 59 Guanine nucleotide binding protein alpha-13

Synuclein IPR001058 Q91ZZ3 71 Beta-synuclein
O55042 72 Alpha-synuclein

Cation-transporting P-type ATPase IPR001757 Q64436 626 H+/K+ exchanging ATPase
Q6PIE5 614 Na+/K+ transporting ATPase

Intermediate filament DNA binding region IPR006821 P08551 27 Neurofilament light polypeptide
P08553 28 Neurofilament medium polypeptide

Intermediate filament DNA binding region IPR006821 P08670 34 Vimentin
P08553 37 Neurofilament medium polypeptide
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Appendices to Chapter 5

C.1 AAS mapped to OGT 3D

Table C.1: Missense variants over OGT structure. Bold rows represent dircarded
entries, which were classified as missenses variants by Ensembl, but in fact are
insertions.

Position Variant type AAS Source Polyphen score Sift score
8 Somatic V/M TCGA 0.12 0.25

15 Germinal T/M Ensembl, UniProt 0.01 0.13
15 Somatic T/M Ensembl 0.01 0.13
17 Germinal R/C UniProt 0.08 0.08
17 Somatic R/C TCGA 0.08 0.08
35 Germinal G/V UniProt 0.90 0.02
35 Somatic G/V TCGA 0.90 0.02
36 Germinal D/V UniProt 0.68 0.01
36 Germinal D/Y UniProt 0.87 0.12
36 Somatic D/Y TCGA 0.87 0.12
53 Germinal D/G Ensembl, UniProt 0.04 0.30
53 Somatic D/G Ensembl 0.04 0.30
64 Germinal I/M UniProt 0.24 0
64 Somatic I/M TCGA 0.24 0
87 Germinal L/V Ensembl, UniProt 0.01 0.28
87 Somatic L/V Ensembl 0.01 0.28
93 Somatic S/L TCGA 0.99 0.01

102 Germinal R/KX Ensembl
102 Somatic R/KX Ensembl
106 Germinal Q/R UniProt 0.10 0.47
109 Germinal I/T Ensembl, UniProt 0.15 0.08
109 Somatic I/T Ensembl 0.15 0.08
113 Germinal R/Q Ensembl, UniProt 0.04 0.42
113 Somatic R/Q Ensembl 0.04 0.42
117 Germinal R/C UniProt 0.94 0
117 Germinal R/H UniProt 0.13 0.04
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Position Variant type AAS Source Polyphen score Sift score
117 Somatic R/H TCGA 0.13 0.04
120 Germinal P/S Ensembl, UniProt 0.98 0.05
120 Somatic P/S Ensembl 0.98 0.05
122 Germinal F/I UniProt 0.39 0
132 Somatic A/T TCGA 0.53 0.15
136 Germinal A/V Ensembl, UniProt 0.04 0.42
136 Somatic A/V Ensembl 0.04 0.42
139 Germinal M/V Ensembl, UniProt 0.01 0.08
139 Somatic M/V Ensembl 0.01 0.08
146 Germinal Y/C UniProt 0.92 0.29
146 Somatic Y/C TCGA 0.92 0.29
147 Germinal V/I Ensembl, UniProt 0.00 0.31
147 Somatic V/I Ensembl 0.00 0.31
151 Germinal Q/H UniProt 0.01 0.15
153 Germinal N/S Ensembl, UniProt 0.08 0.03
153 Somatic N/S Ensembl 0.08 0.03
160 Germinal R/C UniProt 1.00 0.03
160 Somatic R/C TCGA 1.00 0.03
171 Somatic G/S TCGA 0.32 0.01
178 Germinal A/T Ensembl, UniProt 0.06 0.41
178 Somatic A/T Ensembl 0.06 0.41
184 Somatic I/V TCGA 0.94 0.08
186 Germinal T/M Ensembl, UniProt 1.00 0.11
186 Somatic T/M Ensembl, TCGA 1.00 0.11
196 Germinal N/K Ensembl, UniProt 1 0
196 Somatic N/K Ensembl, TCGA 1 0
213 Somatic H/Y TCGA 1.00 0.53
239 Somatic R/C TCGA 1.00 0.05
239 Somatic R/H TCGA 1.00 0.25
249 Germinal L/H UniProt 1.00 0.13
258 Somatic H/R TCGA 0.87 0.07
259 Germinal A/V UniProt 0.99 0
259 Somatic A/V TCGA 0.99 0
269 Germinal Y/C UniProt 0.92 0.01
269 Somatic Y/C TCGA 0.92 0.01
271 Somatic E/K TCGA 0.98 0.02
275 Germinal I/V UniProt 0.12 0.09
279 Germinal I/V Ensembl, UniProt 0.06 0.12
279 Somatic I/V Ensembl 0.06 0.12
287 Somatic E/K TCGA 0.19 0.24
297 Germinal C/W Ensembl, UniProt 0.99 0.03
297 Somatic C/W Ensembl 0.99 0.03
298 Germinal N/MVCY Ensembl
298 Somatic N/MVCY Ensembl
321 Germinal R/H Ensembl, UniProt 0.00 0.12
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Position Variant type AAS Source Polyphen score Sift score
321 Somatic R/H Ensembl 0.00 0.12
326 Somatic H/Y TCGA 0.46 0.02
334 Germinal A/G UniProt 0.44 0.70
334 Somatic A/G TCGA 0.44 0.70
335 Germinal N/T UniProt 0.80 0.01
335 Somatic N/T TCGA 0.80 0.01
342 Germinal N/D UniProt 0.01 0.24
343 Germinal I/T Ensembl, UniProt 0.08 0.17
343 Somatic I/T Ensembl 0.08 0.17
347 Germinal V/F Ensembl, UniProt 0.16 0.13
347 Somatic V/F Ensembl 0.16 0.13
348 Germinal R/C Ensembl, UniProt 0.07 0.01
348 Somatic R/C Ensembl, TCGA 0.07 0.01
348 Somatic R/S TCGA 0.03 0.56
351 Somatic R/C TCGA 0.09 0.10
375 Somatic G/R TCGA 1.00 0
399 Somatic S/F TCGA 0.94 0.01
403 Somatic N/S TCGA 0.75 0.03
418 Germinal Y/C UniProt 1.00 0
418 Somatic Y/C TCGA 1.00 0
425 Germinal N/I UniProt 0.99 0.02
425 Somatic N/I TCGA 0.99 0.02
430 Germinal D/N UniProt 0.57 0
430 Somatic D/N TCGA 0.57 0
434 Germinal N/I Ensembl, UniProt 1.00 0
434 Somatic N/I Ensembl 1.00 0
441 Somatic D/Y TCGA 0.69 0
451 Germinal S/F Ensembl, UniProt 0.97 0.01
451 Somatic S/F Ensembl 0.97 0.01
451 Somatic S/Y TCGA 0.69 0.04
453 Germinal R/C Ensembl 0.97 0
453 Somatic R/C Ensembl 0.97 0
453 Somatic R/G TCGA 0.18 0.02
454 Germinal T/K UniProt 0.08 0.83
464 Somatic D/H TCGA 0.36 0
464 Somatic D/V TCGA 0.19 0.02
465 Somatic A/V TCGA 0.92 0.07
495 Germinal D/E Ensembl, UniProt 0 0.66
495 Somatic D/E Ensembl 0 0.66
495 Somatic D/G TCGA 0.16 0.04
498 Germinal E/G Ensembl, UniProt 0.00 0.16
498 Somatic E/G Ensembl 0.00 0.16
507 Germinal P/L UniProt 1.00 0
527 Germinal H/Q UniProt 0.93 0
528 Germinal G/D UniProt 0.05 0

197



C. Appendices to Chapter 5 C.1. AAS mapped to OGT 3D

Position Variant type AAS Source Polyphen score Sift score
529 Somatic N/K TCGA 0.03 0.18
533 Germinal D/H UniProt 0.66 0.11
533 Somatic D/H TCGA 0.66 0.11
539 Germinal H/Y Ensembl, UniProt 0.26 0.38
539 Somatic H/Y Ensembl 0.26 0.38
541 Germinal P/S Ensembl, UniProt 0.00 0.08
541 Somatic P/S Ensembl 0.00 0.08
544 Germinal E/K Ensembl, UniProt 0.00 0.98
544 Somatic E/K Ensembl 0.00 0.98
555 Germinal R/W Ensembl, UniProt 0.96 0
555 Somatic R/W Ensembl 0.96 0
557 Germinal R/C Ensembl, UniProt 0.98 0
557 Germinal R/H UniProt 0.96 0
557 Somatic R/C Ensembl, TCGA 0.98 0
568 Somatic H/Y TCGA 0.75 0
569 Germinal P/A UniProt 0.19 0
572 Germinal H/D UniProt 1 0
578 Somatic P/S TCGA 0.93 0.52
590 Germinal C/S UniProt 0.99 0.02
595 Somatic P/L TCGA 0.03 0.02
610 Germinal N/S Ensembl, UniProt 0.01 0.02
610 Somatic N/S Ensembl 0.01 0.02
627 Germinal R/C Ensembl, UniProt 0.95 0.05
627 Germinal R/H Ensembl, UniProt 0.89 0.17
627 Somatic R/C Ensembl 0.95 0.05
627 Somatic R/H Ensembl 0.89 0.17
639 Somatic M/I TCGA 0.88 0.01
642 Germinal Y/H UniProt 0.94 0
642 Somatic Y/H TCGA 0.94 0
647 Germinal R/Q UniProt 0.99 0
647 Somatic R/Q TCGA 0.99 0
658 Somatic I/M TCGA 0.66 0
670 Germinal G/C Ensembl, UniProt 1 0
670 Somatic G/C Ensembl 1 0
671 Somatic A/V TCGA 0.32 0
678 Germinal I/F UniProt 0.56 0
678 Germinal I/V Ensembl, UniProt 0.00 0.69
678 Somatic I/V Ensembl 0.00 0.69
680 Somatic D/N TCGA 0.99 0
687 Somatic E/Q TCGA 0.02 0.13
691 Germinal Q/K UniProt 0.05 0.29
695 Germinal K/E UniProt 0.27 0
701 Germinal H/L UniProt 0.03 0
706 Germinal G/C UniProt 1.00 0
713 Somatic P/S TCGA 0.13 0.09
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739 Somatic I/V TCGA 0.00 1
744 Germinal -/X Ensembl
744 Somatic -/X Ensembl
754 Germinal V/I Ensembl, UniProt 0 0.37
754 Somatic V/I Ensembl 0 0.37
756 Germinal M/T Ensembl, UniProt 0.00 0.57
756 Somatic M/T Ensembl 0.00 0.57
762 Germinal G/R Ensembl, UniProt 0.07 0.13
762 Somatic G/R Ensembl 0.07 0.13
763 Germinal D/G UniProt 0.03 0.25
765 Germinal A/T Ensembl, UniProt 0.00 0.39
765 Somatic A/T Ensembl 0.00 0.39
767 Germinal S/N Ensembl, UniProt 0.00 0.48
767 Somatic S/N Ensembl 0.00 0.48
771 Germinal A/T Ensembl, UniProt 0.00 0.43
771 Somatic A/T Ensembl 0.00 0.43
772 Somatic L/V TCGA 0.00 0.88
773 Germinal N/I UniProt 0.01 0.18
773 Somatic N/I TCGA 0.01 0.18
787 Germinal I/V Ensembl, UniProt 0.00 0.55
787 Somatic I/V Ensembl 0.00 0.55
788 Somatic E/G TCGA 0.00 0.17
796 Germinal Q/L Ensembl, UniProt 0.01 0.06
796 Somatic Q/L Ensembl 0.01 0.06
813 Germinal I/V Ensembl, UniProt 0 1
813 Somatic I/V Ensembl 0 1
819 Germinal T/A UniProt 0.06 0.10
819 Germinal T/I UniProt 0.95 0
819 Somatic T/A TCGA 0.06 0.10
819 Somatic T/I TCGA 0.95 0
819 Somatic T/P TCGA 0.12 0.03
824 Somatic P/L TCGA 0.76 1
825 Germinal R/C UniProt 0.67 0.03
825 Germinal R/H Ensembl, UniProt 0.00 0.16
825 Somatic R/H Ensembl 0.00 0.16
832 Germinal R/L UniProt 1 0
836 Somatic G/R TCGA 0.96 0.07
841 Germinal A/V Ensembl, UniProt 0.16 0.03
841 Somatic A/V Ensembl, TCGA 0.16 0.03
842 Germinal I/V Ensembl, UniProt 0.16 0.59
842 Somatic I/V Ensembl 0.16 0.59
843 Germinal V/I UniProt 0.28 0.35
843 Somatic V/I TCGA 0.28 0.35
843 Somatic V/L TCGA 0.76 0.03
870 Germinal N/K Ensembl, UniProt 0.36 0.05
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870 Somatic N/K Ensembl 0.36 0.05
877 Germinal R/C UniProt 1 0
877 Somatic R/C TCGA 1 0
877 Somatic R/H TCGA 1 0
878 Germinal F/L UniProt 1.00 0.01
878 Somatic F/L TCGA 1.00 0.01
883 Germinal E/Q UniProt 1 0
883 Somatic E/Q TCGA 1 0
887 Somatic Q/E TCGA 0.09 0.07
894 Somatic G/D TCGA 0.88 0.02
896 Somatic P/S TCGA 0.08 0.69
897 Germinal Q/R UniProt 0.01 0.07
899 Germinal R/C Ensembl, UniProt 1.00 0
899 Germinal R/H Ensembl, UniProt 0.99 0
899 Somatic R/C Ensembl 1.00 0
899 Somatic R/H Ensembl 0.99 0
907 Germinal P/S UniProt 0.02 0.12
920 Germinal V/I UniProt 0.04 0.25
945 Germinal T/I Ensembl, UniProt 0.99 0
945 Somatic T/I Ensembl 0.99 0
946 Germinal M/I UniProt 0.04 0.01
954 Somatic R/P TCGA 0.99 0
954 Somatic R/Q TCGA 0.88 0
955 Germinal V/I Ensembl, UniProt 0.96 0
955 Somatic V/I Ensembl 0.96 0
975 Germinal E/D Ensembl 0 0.30
975 Somatic E/D Ensembl 0 0.30
976 Germinal Y/F Ensembl, UniProt 0.99 0
976 Somatic Y/F Ensembl 0.99 0
986 Germinal D/G Ensembl, UniProt 0.80 0.01
986 Somatic D/G Ensembl 0.80 0.01
991 Germinal K/R Ensembl, UniProt 0.01 0.35
991 Somatic K/R Ensembl 0.01 0.35
994 Germinal R/C UniProt 1.00 0

1017 Somatic E/Q TCGA 0.92 0
1018 Germinal R/Q Ensembl, UniProt 0.00 0.20
1018 Germinal R/W Ensembl, UniProt 0.36 0
1018 Somatic R/Q Ensembl 0.00 0.20
1018 Somatic R/W Ensembl, TCGA 0.36 0
1042 Somatic V/I TCGA 0.01 0.05
1043 Germinal T/I Ensembl, UniProt 0.03 0.10
1043 Somatic T/I Ensembl 0.03 0.10
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Kulesha, E., Martin, F. J., Maurel, T., McLaren, W. M., Murphy, D. N., Nag, R.,
et al. 2014. Ensembl 2014. Nucleic Acids Research 42(D1):D749–D755.

Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H.,
Ding, M., Bamford, S., Cole, C., Ward, S., Kok, C. Y., Jia, M., De, T., Teague,
J. W., Stratton, M. R., McDermott, U., and Campbell, P. J. 2015. COSMIC:
Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic
Acids Research 43(D1):D805–D811.

Fourment, M., and Gillings, M. R. 2008. A comparison of common programming
languages used in bioinformatics. BMC Bioinformatics 9:82.

Fox, N. K., Brenner, S. E., and Chandonia, J.-M. 2014. SCOPe: Structural Classifica-
tion of Proteins–extended, integrating SCOP and ASTRAL data and classification
of new structures. Nucleic Acids Research 42(D1):D304–D309.

Fu, Y., Dominissini, D., Rechavi, G., and He, C. 2014. Gene expression regulation
mediated through reversible m6A RNA methylation. Nature Reviews Genetics
15(5):293–306.

Fushimi, K., Sasaki, S., and Marumo, F. 1997. Phosphorylation of serine 256 is
required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water
channel. The Journal of Biological Chemistry 272(23):14800–14804.

Gambetta, M. C., and Müller, J. 2015. A critical perspective of the diverse roles of
O-GlcNAc transferase in chromatin. Chromosoma 124(4):429–442.

Gao, Y., Wells, L., Comer, F. I., Parker, G. J., and Hart, G. W. 2001. Dynamic
O-Glycosylation of Nuclear and Cytosolic Proteins. The Journal of Biological
Chemistry 276(13):9838–9845.

207

https://www.youtube.com/watch?v=8XKRAduG2Hk


Bibliography Bibliography

Gaudet, P., and Dessimoz, C. 2016. Gene Ontology: Pitfalls, Biases, Remedies.
arXiv preprint arXiv:1602.01875.

Gene Ontology Consortium. Nucleic Acids Research 43(D1):D1049–D1056.

Gonzalez-Perez, A., Deu-Pons, J., and Lopez-Bigas, N. 2012. Improving the prediction
of the functional impact of cancer mutations by baseline tolerance transformation.
Genome Medicine 4(11):89.

Gray, V. E., Liu, L., Nirankari, R., Hornbeck, P. V., and Kumar, S. 2014. Signatures
of natural selection on mutations of residues with multiple posttranslational
modifications. Molecular Biology and Evolution 31(7):1641–1645.

Griffith, L. S., and Schmitz, B. 1999. O-linked N-acetylglucosamine levels in cerebellar
neurons respond reciprocally to pertubations of phosphorylation. European Journal
of Biochemistry 262(3):824–831.

Gross, B. J., Kraybill, B. C., and Walker, S. 2005. Discovery of O-GlcNAc transferase
inhibitors. Journal of the American Chemical Society 127(42):14588–14589.

Gupta, R., Birch, H., Rapacki, K., Brunak, S., and Hansen, J. E. 1999. O-GLYCBASE
version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Research
27(1):370–372.

Gupta, R., and Brunak, S. 2002. Prediction of glycosylation across the human
proteome and the correlation to protein function. In Pacific symposium on
biocomputing. pacific symposium on biocomputing, vol. 3002, 310–322.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. 2002. Gene Selection for Cancer
Classification using Support Vector Machines. Machine Learning 46(1-3):389–422.

Hahne, H., Gholami, A. M., Kuster, B., Moghaddas Gholami, A., and Kuster, B.
2012. Discovery of O-GlcNAc-modified proteins in published large-scale proteome
data. Molecular & Cellular Proteomics 11(10):843–50.

Hamelryck, T., and Manderick, B. 2003. PDB file parser and structure class imple-
mented in Python. Bioinformatics 19(17):2308–2310.

Hanover, J. A., Krause, M. W., and Love, D. C. 2012. Bittersweet memories: linking
metabolism to epigenetics through O-GlcNAcylation. Nature Reviews. Molecular
Cell Biology 13(5):312–321.

Hao, Y., Colak, R., Teyra, J., Corbi-Verge, C., Ignatchenko, A., Hahne, H., Wilhelm,
M., Kuster, B., Braun, P., Kaida, D., Kislinger, T., and Kim, P. M. 2015. Semi-
supervised Learning Predicts Approximately One Third of the Alternative Splicing
Isoforms as Functional Proteins. Cell Reports 12(2):183–189.
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sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian
clock. Cell Metabolism 17(2):291–302.

Kabsch, W., and Sander, C. 1983. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):
2577–2637.

Kakade, P. S., Budnar, S., Kalraiya, R. D., and Vaidya, M. M. 2016. Functional
implications of O-GlcNAcylation dependent phosphorylation at proximal site on
keratin 18. The Journal of Biological Chemistry 291(23):12003–12013.

Kamburov, A., Lawrence, M. S., Polak, P., Leshchiner, I., Lage, K., Golub, T. R.,
Lander, E. S., and Getz, G. 2015. Comprehensive assessment of cancer missense
mutation clustering in protein structures. Proceedings of the National Academy of
Sciences of the United States of America 112(40):E5486–E5495.

Kang, E.-S., Han, D., Park, J., Kwak, T. K., Oh, M.-A., Lee, S.-A., Choi, S., Park,
Z. Y., Kim, Y., and Lee, J. W. 2008. O-GlcNAc modulation at Akt1 Ser473
correlates with apoptosis of murine pancreatic β cells. Experimental Cell Research
314(11-12):2238–2248.

Kao, H.-J., Huang, C.-H., Bretaña, N., Lu, C.-T., Huang, K.-Y., Weng, S.-L.,
and Lee, T.-Y. 2015. A two-layered machine learning method to identify pro-
tein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs. BMC
Bioinformatics 16(18):1.

Karplus, M., and Kuriyan, J. 2005. Molecular dynamics and protein function.
Proceedings of The National Academy of Sciences of The United States of America
102(19):6679–6685.

211



Bibliography Bibliography

Kawashima, S., Ogata, H., and Kanehisa, M. 1999. AAindex: Amino acid index
database. Nucleic Acids Research 27(1):368–369.

Kearse, K. P., and Hart, G. W. 1991. Lymphocyte activation induces rapid changes
in nuclear and cytoplasmic glycoproteins. Proceedings of the National Academy of
Sciences of the United States of America 88(5):1701–1705.

Kelly, W. G., Dahmus, M. E., and Hart, G. W. 1993. RNA polymerase II is a
glycoprotein: Modification of the COOH-terminal domain by O-GlcNAc. The
Journal of Biological Chemistry 268(14):10416–10424.

Kemp, B. E., Bylund, D. B., Huang, T. S., and Krebs, E. G. 1975. Substrate specificity
of the cyclic AMP-dependent protein kinase. Proceedings of the National Academy
of Sciences of the United States of America 72(9):3448–3452.

Khidekel, N., Ficarro, S. B., Peters, E. C., and Hsieh-Wilson, L. C. 2004. Exploring
the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from
the brain. Proceedings of the National Academy of Sciences of the United States
of America 101(36):13132–13137.

Khoury, G. a., Baliban, R. C., and Floudas, C. a. 2011. Proteome-wide post-
translational modification statistics: frequency analysis and curation of the swiss-
prot database. Scientific Reports 1:1–5.

Kim, J. H., Lee, J., Oh, B., Kimm, K., and Koh, I. 2004. Prediction of phosphorylation
sites using SVMs. Bioinformatics 20(17):3179–3184.

Kim, Y.-C., Udeshi, N. D., Balsbaugh, J. L., Shabanowitz, J., Hunt, D. F., and
Olszewski, N. E. 2011. O-GlcNAcylation of the Plum pox virus capsid protein
catalyzed by SECRET AGENT: characterization of O-GlcNAc sites by electron
transfer dissociation mass spectrometry. Amino Acids 40(3):869–876.

Kreppel, L. K., Blomberg, M. A., and Hart, G. W. 1997. Dynamic glycosylation of
nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc
transferase with multiple tetratricopeptide repeats. The Journal of Biological
Chemistry 272(14):9308–15.

Kreppel, L. K., and Hart, G. W. 1999. Regulation of a cytosolic and nuclear o-
glcnac transferase role of the tetratricopeptide repeats. The Journal of Biological
Chemistry 274(45):32015–32022.

Kuhn, M., and Johnson, K. 2013. Applied predictive modeling. New York: Springer.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J.,
Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris,
K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P.,
McKernan, K., Meldrim, J., Mesirov, J. P., Miranda, C., Morris, W., Naylor,
J., et al. 2001. Initial sequencing and analysis of the human genome. Nature
409(6822):860–921.

212



Bibliography Bibliography

Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M.,
and Maglott, D. R. 2014. ClinVar: Public archive of relationships among sequence
variation and human phenotype. Nucleic Acids Research 42(D1):D980–D985.

Lazarus, M. M. B., Nam, Y., Jiang, J., Sliz, P., and Walker, S. 2011. Structure of
human O-GlcNAc transferase and its complex with a peptide substrate. Nature
22(5):4109.

Lazarus, M. B., Jiang, J., Gloster, T. M., Zandberg, W. F., Whitworth, G. E., Vocadlo,
D. J., and Walker, S. 2012. Structural snapshots of the reaction coordinate for
O-GlcNAc transferase. Nature Chemical Biology 8(12):966–968.

LeCun, Y., Bengio, Y., Geoffrey, H., Rusk, N., LeCun, Y., Bengio, Y., and Hinton,
G. 2015. Deep learning. Nature Methods 13(1):35–35.

Lefebvre, T., Baert, F., Bodart, J. F., Flament, S., Michalski, J. C., and Vilain, J. P.
2004. Modulation of O-GlcNAc glycosylation during xenopus oocyte maturation.
Journal of Cellular Biochemistry 93(5):999–1010.

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T.,
O’Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., Tukiainen, T.,
Birnbaum, D. P., Kosmicki, J. A., Duncan, L. E., Estrada, K., Zhao, F., Zou,
J., Pierce-Hoffman, E., Berghout, J., Cooper, D. N., Deflaux, N., DePristo, M.,
Do, R., Flannick, J., Fromer, M., et al. 2016. Analysis of protein-coding genetic
variation in 60,706 humans. Nature 536(7616):285–91.

Leslie, C., Eskin, E., and Noble, W. S. 2002. The spectrum kernel: a string kernel
for SVM protein classification. In Pacific symposium on biocomputing. pacific
symposium on biocomputing, vol. 7, 564–575.

Li, A., Wang, L., Shi, Y., Wang, M., Jiang, Z., and Feng, H. 2005. Phosphorylation
site prediction with a modified k-nearest neighbor algorithm and blosum62 matrix.
In 2005 ieee engineering in medicine and biology 27th annual conference, 6075–6078.

Li, W., and Godzik, A. 2006. Cd-hit: A fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659.

Li, X., Molina, H., Huang, H., Zhang, Y.-Y., Liu, M., Qian, S.-W., Slawson, C., Dias,
W. B., Pandey, A., Hart, G. W., Lane, M. D., and Tang, Q.-Q. 2009. O-linked
N-acetylglucosamine modification on CCAAT enhancer-binding protein beta: role
during adipocyte differentiation. The Journal of Biological Chemistry 284(29):
19248–54.

Lienhard, G. E. 2008. Non-functional phosphorylations? Trends in Biochemical
Sciences 33(8):351–352.

Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., and Russell, R. B. 2003.
Protein Disorder Prediction. Structure 11(11):1453–1459.

213



Bibliography Bibliography

Liu, K., Paterson, a. J., Chin, E., and Kudlow, J. E. 2000. Glucose stimulates protein
modification by O-linked GlcNAc in pancreatic beta cells: linkage of O-linked
GlcNAc to beta cell death. Proceedings of the National Academy of Sciences of
the United States of America 97(6):2820–2825.

Love, D. C. 2002. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc
transferase. Journal of Cell Science 116(4):647–654.

Lu, C. T., Huang, K. Y., Su, M. G., Lee, T. Y., Bretaña, N. A., Chang, W. C., Chen,
Y. J., Chen, Y. J., and Huang, H. D. 2013. DbPTM 3.0: An informative resource
for investigating substrate site specificity and functional association of protein
post-translational modifications. Nucleic Acids Research 41(D1):D295–D305.

Lubas, W. A., Frank, D. W., Krause, M., and Hanover, J. A. 1997. O-linked GlcNAc
transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide
repeats. The Journal of Biological Chemistry 272(14):9316–9324.

Lubas, W. a., and Hanover, J. a. 2000. Functional Expression of O-linked GlcNAc
Transferase. The Journal of Biological Chemistry 275(15):10983–10988.

Ma, J., and Hart, G. W. 2014. O-GlcNAc profiling: from proteins to proteomes.
Clinical Proteomics 11(1):8.

Madeira, F., Tinti, M., Murugesan, G., Berrett, E., Stafford, M., Toth, R., Cole,
C., MacKintosh, C., and Barton, G. J. 2015. 14-3-3-Pred: Improved methods to
predict 14-3-3-binding phosphopeptides. Bioinformatics 31(14):2276–2283.

Maloney, C., Sequeira, E., Kelly, C., Orris, R., and Beck, J. 2013. PubMed Central.
In The ncbi handbook [internet]. 2nd edition., 1–31.

Manning, G. 2002. The Protein Kinase Complement of the Human Genome. Science
298(5600):1912–1934.

Marth, J. D., and Grewal, P. K. 2008. Mammalian glycosylation in immunity. Nature
Reviews Immunology 8(11):874–887.

Martin, J. C., Fadda, E., Ito, K., and Woods, R. J. 2014. Defining the structural
origin of the substrate sequence independence of O-GlcNAcase using a combination
of molecular docking and dynamics simulation. Glycobiology 24(1):85–96.

McKinney, W., and Team, P. D. 2015. Pandas - Powerful Python Data Analysis
Toolkit.

McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A.,
Flicek, P., and Cunningham, F. 2016. The Ensembl Variant Effect Predictor.
Genome biology 17(1):122.

Mi, H., Muruganujan, A., Casagrande, J. T., and Thomas, P. D. 2013. Large-scale
gene function analysis with the PANTHER classification system. Nature Protocols
8(8):1551–1566.

214



Bibliography Bibliography

Miller, M. L. M., and Blom, N. 2009. Phospho-Proteomics. Phospho-Proteomics
527(4):299–310.

Müller, R., Jenny, A., and Stanley, P. 2013. The EGF Repeat-Specific O-GlcNAc-
Transferase Eogt Interacts with Notch Signaling and Pyrimidine Metabolism
Pathways in Drosophila. PLoS ONE 8(5):e62835.

Nachman, M. W., and Crowell, S. L. 2000. Estimate of the mutation rate per
nucleotide in humans. Genetics 156(1):297–304.

Nagel, A. K., and Ball, L. E. 2014. O-GlcNAc transferase and O-GlcNAcase: achieving
target substrate specificity. Amino Acids 46(10):2305–2316.

Neuberger, G., Schneider, G., and Eisenhaber, F. 2007. pkaPS: prediction of protein
kinase A phosphorylation sites with the simplified kinase-substrate binding model.
Biology Direct 2(1):1.

Ngoh, G. A., Facundo, H. T., Zafir, A., and Jones, S. P. 2010. O-GlcNAc signaling
in the cardiovascular system. Circulation Research 107(2):171–85.

Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. 1997. a Neural Network
Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and
Prediction of Their Cleavage Sites. Protein Engineering 10(1):1–6.

Nishi, H., Hashimoto, K., and Panchenko, A. R. 2011. Phosphorylation in protein-
protein binding: Effect on stability and function. Structure 19(12):1807–1815.

O’Donnell, N., Zachara, N. E., Hart, G. W., and Marth, J. D. 2004. Ogt-Dependent X-
Chromosome-Linked Protein Glycosylation Is a Requisite Modification in Somatic
Cell Function and Embryo Viability. Molecular and Cellular Biology 24(4):1680–
1690.

Overton, I. M., van Niekerk, C. A. J., and Barton, G. J. 2011. XANNpred: Neural
nets that predict the propensity of a protein to yield diffraction-quality crystals.
Proteins: Structure, Function and Bioinformatics 79(4):1027–1033.

Pathak, S., Alonso, J., Schimpl, M., Rafie, K., Blair, D. E., Borodkin, V. S.,
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