410 research outputs found

    Video segmentation: Temporally-constrained graph-based optimization

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Neutro-Connectedness Theory, Algorithms and Applications

    Get PDF
    Connectedness is an important topological property and has been widely studied in digital topology. However, three main challenges exist in applying connectedness to solve real world problems: (1) the definitions of connectedness based on the classic and fuzzy logic cannot model the “hidden factors” that could influence our decision-making; (2) these definitions are too general to be applied to solve complex problem; and (4) many measurements of connectedness are heavily dependent on the shape (spatial distribution of vertices) of the graph and violate the intuitive idea of connectedness. This research focused on solving these challenges by redesigning the connectedness theory, developing fast algorithms for connectedness computation, and applying the newly proposed theory and algorithms to solve challenges in real problems. The newly proposed Neutro-Connectedness (NC) generalizes the conventional definitions of connectedness and can model uncertainty and describe the part and the whole relationship. By applying the dynamic programming strategy, a fast algorithm was proposed to calculate NC for general dataset. It is not just calculating NC map, and the output NC forest can discover a dataset’s topological structure regarding connectedness. In the first application, interactive image segmentation, two approaches were proposed to solve the two most difficult challenges: user interaction-dependence and intense interaction. The first approach, named NC-Cut, models global topologic property among image regions and reduces the dependence of segmentation performance on the appearance models generated by user interactions. It is less sensitive to the initial region of interest (ROI) than four state-of-the-art ROI-based methods. The second approach, named EISeg, provides user with visual clues to guide the interacting process based on NC. It reduces user interaction greatly by guiding user to where interacting can produce the best segmentation results. In the second application, NC was utilized to solve the challenge of weak boundary problem in breast ultrasound image segmentation. The approach can model the indeterminacy resulted from weak boundaries better than fuzzy connectedness, and achieved more accurate and robust result on our dataset with 131 breast tumor cases

    Atlas Construction for Measuring the Variability of Complex Anatomical Structures

    Get PDF
    RÉSUMÉ La recherche sur l'anatomie humaine, en particulier sur le cœur et le cerveau, est d'un intérêt particulier car leurs anomalies entraînent des pathologies qui sont parmi les principales causes de décès dans le monde et engendrent des coûts substantiels. Heureusement, les progrès en imagerie médicale permettent des diagnostics et des traitements autrefois impossibles. En contrepartie, la quantité phénoménale de données produites par ces technologies nécessite le développement d'outils efficaces pour leur traitement. L'objectif de cette thèse est de proposer un ensemble d'outils permettant de normaliser des mesures prélevées sur différents individus, essentiels à l'étude des caractéristiques de structures anatomiques complexes. La normalisation de mesures consiste à rassembler une collection d'images dans une référence commune, aussi appelée construction d'atlas numériques, afin de combiner des mesures provenant de différents patients. Le processus de construction inclut deux étapes principales; la segmentation d'images pour trouver des régions d'intérêts et le recalage d'images afin de déterminer les correspondances entres régions d'intérêts. Les méthodes actuelles de constructions d'atlas peuvent nécessiter des interventions manuelles, souvent fastidieuses, variables, et sont en outre limitées par leurs mécanismes internes. Principalement, le recalage d'images dépend d'une déformation incrémentales d'images sujettes a des minimums locaux. Le recalage n'est ainsi pas optimal lors de grandes déformations et ces limitations requièrent la nécessite de proposer de nouvelles approches pour la construction d'atlas. Les questions de recherche de cette thèse se concentrent donc sur l'automatisation des méthodes actuelles ainsi que sur la capture de déformations complexes de structures anatomiques, en particulier sur le cœur et le cerveau. La méthodologie adoptée a conduit à trois objectifs de recherche spécifiques. Le premier prévoit un nouveau cadre de construction automatise d'atlas afin de créer le premier atlas humain de l'architecture de fibres cardiaques. Le deuxième vise à explorer une nouvelle approche basée sur la correspondance spectrale, nommée FOCUSR, afin de capturer une grande variabilité de formes sur des maillages. Le troisième aboutit finalement à développer une approche fondamentalement différente pour le recalage d'images à fortes déformations, nommée les démons spectraux. Le premier objectif vise plus particulièrement à construire un atlas statistique de l'architecture des fibres cardiaques a partir de 10 cœurs ex vivo humains. Le système développé a mené à deux contributions techniques et une médicale, soit l'amélioration de la segmentation de structures cardiaques et l'automatisation du calcul de forme moyenne, ainsi que notamment la première étude chez l'homme de la variabilité de l'architecture des fibres cardiaques. Pour résumer les principales conclusions, les fibres du cœur humain moyen varient de +- 12 degrés, l'angle d'helix s'étend entre -41 degrés (+- 26 degrés) sur l'épicarde à +66 degrés (+- 15 degrés) sur l'endocarde, tandis que l'angle transverse varie entre +9 degrés (+- 12 degrés) et +34 degrés (+- 29 degrés) à travers le myocarde. Ces résultats sont importants car ces fibres jouent un rôle clef dans diverses fonctions mécaniques et électrophysiologiques du cœur. Le deuxième objectif cherche à capturer une grande variabilité de formes entre structures anatomiques complexes, plus particulièrement entre cortex cérébraux à cause de l'extrême variabilité de ces surfaces et de leur intérêt pour l'étude de fonctions cognitives. La nouvelle méthode de correspondance surfacique, nommée FOCUSR, exploite des représentations spectrales car l'appariement devient plus facile et rapide dans le domaine spectral plutôt que dans l'espace Euclidien classique. Dans sa forme la plus simple, FOCUSR améliore les méthodes spectrales actuelles par un recalage non rigide des représentations spectrales, toutefois, son plein potentiel est atteint en exploitant des données supplémentaires lors de la mise en correspondance. Par exemple, les résultats ont montré que la profondeur des sillons et de la courbure du cortex cérébral améliore significativement la correspondance de surfaces de cerveaux. Enfin, le troisième objectif vise à améliorer le recalage d'images d'organes ayant des fortes variabilités entre individus ou subis de fortes déformations, telles que celles créées par le mouvement cardiaque. La méthodologie amenée par la correspondance spectrale permet d'améliorer les approches conventionnelles de recalage d'images. En effet, les représentations spectrales, capturant des similitudes géométriques globales entre différentes formes, permettent de surmonter les limitations actuelles des méthodes de recalage qui restent guidées par des forces locales. Le nouvel algorithme, nommé démons spectraux, peut ainsi supporter de très grandes déformations locales et complexes entre images, et peut être tout autant adapté a d'autres approches, telle que dans un cadre de recalage conjoint d'images. Il en résulte un cadre complet de construction d'atlas, nommé démons spectraux multijoints, où la forme moyenne est calculée directement lors du processus de recalage plutôt qu'avec une approche séquentielle de recalage et de moyennage. La réalisation de ces trois objectifs spécifiques a permis des avancées dans l'état de l'art au niveau des méthodes de correspondance spectrales et de construction d'atlas, en permettant l'utilisation d'organes présentant une forte variabilité de formes. Dans l'ensemble, les différentes stratégies fournissent de nouvelles contributions sur la façon de trouver et d'exploiter des descripteurs globaux d'images et de surfaces. D'un point de vue global, le développement des objectifs spécifiques établit un lien entre : a) la première série d'outils, mettant en évidence les défis à recaler des images à fortes déformations, b) la deuxième série d'outils, servant à capturer de fortes déformations entre surfaces mais qui ne reste pas directement applicable a des images, et c) la troisième série d'outils, faisant un retour sur le traitement d'images en permettant la construction d'atlas a partir d'images ayant subies de fortes déformations. Il y a cependant plusieurs limitations générales qui méritent d'être investiguées, par exemple, les données partielles (tronquées ou occluses) ne sont pas actuellement prises en charge les nouveaux outils, ou encore, les stratégies algorithmiques utilisées laissent toujours place à l'amélioration. Cette thèse donne de nouvelles perspectives dans les domaines de l'imagerie cardiaque et de la neuroimagerie, toutefois, les nouveaux outils développés sont assez génériques pour être appliqués a tout recalage d'images ou de surfaces. Les recommandations portent sur des recherches supplémentaires qui établissent des liens avec la segmentation à base de graphes, pouvant conduire à un cadre complet de construction d'atlas où la segmentation, le recalage, et le moyennage de formes seraient tous interdépendants. Il est également recommandé de poursuivre la recherche sur la construction de meilleurs modèles électromécaniques cardiaques à partir des résultats de cette thèse. En somme, les nouveaux outils offrent de nouvelles bases de recherche et développement pour la normalisation de formes, ce qui peut potentiellement avoir un impact sur le diagnostic, ainsi que la planification et la pratique d'interventions médicales.----------ABSTRACT Research on human anatomy, in particular on the heart and the brain, is a primary concern for society since their related diseases are among top killers across the globe and have exploding associated costs. Fortunately, recent advances in medical imaging offer new possibilities for diagnostics and treatments. On the other hand, the growth in data produced by these relatively new technologies necessitates the development of efficient tools for processing data. The focus of this thesis is to provide a set of tools for normalizing measurements across individuals in order to study complex anatomical characteristics. The normalization of measurements consists of bringing a collection of images into a common reference, also known as atlas construction, in order to combine measurements made on different individuals. The process of constructing an atlas involves the topics of segmentation, which finds regions of interest in the data (e.g., an organ, a structure), and registration, which finds correspondences between regions of interest. Current frameworks may require tedious and hardly reproducible user interactions, and are additionally limited by their computational schemes, which rely on slow iterative deformations of images, prone to local minima. Image registration is, therefore, not optimal with large deformations. Such limitations indicate the need to research new approaches for atlas construction. The research questions are consequently addressing the problems of automating current frameworks and capturing global and complex deformations between anatomical structures, in particular between human hearts and brains. More precisely, the methodology adopted in the thesis led to three specific research objectives. Briefly, the first step aims at developing a new automated framework for atlas construction in order to build the first human atlas of the cardiac fiber architecture. The second step intends to explore a new approach based on spectral correspondence, named FOCUSR, in order to precisely capture large shape variability. The third step leads, finally, to a fundamentally new approach for image registration with large deformations, named the Spectral Demons algorithm. The first objective aims more specifically at constructing a statistical atlas of the cardiac fiber architecture from a unique human dataset of 10 ex vivo hearts. The developed framework made two technical, and one medical, contributions, that are the improvement of the segmentation of cardiac structures, the automation of the shape averaging process, and more importantly, the first human study on the variability of the cardiac fiber architecture. To summarize the main finding, the fiber orientations in human hearts has been found to vary with about +- 12 degrees, the range of the helix angle spans from -41 degrees (+- 26 degrees) on the epicardium to +66 degrees (+- 15 degrees) on the endocardium, while, the range of the transverse angle spans from +9 degrees (+- 12 degrees) to +34 degrees (+- 29 degrees) across the myocardial wall. These findings are significant in cardiology since the fiber architecture plays a key role in cardiac mechanical functions and in electrophysiology. The second objective intends to capture large shape variability between complex anatomical structures, in particular between cerebral cortices due to their highly convoluted surfaces and their high anatomical and functional variability across individuals. The new method for surface correspondence, named FOCUSR, exploits spectral representations since matching is easier in the spectral domain rather than in the conventional Euclidean space. In its simplest form, FOCUSR improves current spectral approaches by refining spectral representations with a nonrigid alignment; however, its full power is demonstrated when using additional features during matching. For instance, the results showed that sulcal depth and cortical curvature improve significantly the accuracy of cortical surface matching. Finally, the third objective is to improve image registration for organs with a high inter-subject variability or undergoing very large deformations, such as the heart. The new approach brought by the spectral matching technique allows the improvement of conventional image registration methods. Indeed, spectral representations, which capture global geometric similarities and large deformations between different shapes, may be used to overcome a major limitation of current registration methods, which are in fact guided by local forces and restrained to small deformations. The new algorithm, named Spectral Demons, can capture very large and complex deformations between images, and can additionally be adapted to other approaches, such as in a groupwise configuration. This results in a complete framework for atlas construction, named Groupwise Spectral Demons, where the average shape is computed during the registration process rather than in sequential steps. The achievements of these three specific objectives permitted advances in the state-of-the-art of spectral matching methods and of atlas construction, enabling the registration of organs with significant shape variability. Overall, the investigation of these different strategies provides new contributions on how to find and exploit global descriptions of images and surfaces. From a global perspective, these objectives establish a link between: a) the first set of tools, that highlights the challenges in registering images with very large deformations, b) the second set of tools, that captures very large deformations between surfaces but are not applicable to images, and c) the third set of tools, that comes back on processing images and allows a natural construction of atlases from images with very large deformations. There are, however, several general remaining limitations, for instance, partial data (truncated or occluded) is currently not supported by the new tools, or also, the strategy for computing and using spectral representations still leaves room for improvement. This thesis gives new perspectives in cardiac and neuroimaging, yet at the same time, the new tools remain general enough for virtually any application that uses surface or image registration. It is recommended to research additional links with graph-based segmentation methods, which may lead to a complete framework for atlas construction where segmentation, registration and shape averaging are all interlinked. It is also recommended to pursue research on building better cardiac electromechanical models from the findings of this thesis. Nevertheless, the new tools provide new grounds for research and application of shape normalization, which may potentially impact diagnostic, as well as planning and performance of medical interventions

    Alterations in the microstructure of white matter in children and adolescents with Tourette syndrome measured using tract-based spatial statistics and probabilistic tractography

    Get PDF
    Tourette syndrome (TS) is a neurodevelopmental disorder characterised by repetitive and intermittent motor and vocal tics. TS is thought to reflect fronto-striatal dysfunction and the aetiology of the disorder has been linked to widespread alterations in the functional and structural integrity of the brain. The aim of this study was to assess white matter (WM) abnormalities in a large sample of young patients with TS in comparison to a sample of matched typically developing control individuals (CS) using diffusion MRI. The study included 35 patients with TS (3 females; mean age: 14.0 ± 3.3) and 35 CS (3 females; mean age: 13.9 ± 3.3). Diffusion MRI data was analysed using tract-based spatial statistics (TBSS) and probabilistic tractography. Patients with TS demonstrated both marked and widespread decreases in axial diffusivity (AD) together with altered WM connectivity. Moreover, we showed that tic severity and the frequency of premonitory urges (PU) were associated with increased connectivity between primary motor cortex (M1) and the caudate nuclei, and increased information transfer between M1 and the insula, respectively. This is to our knowledge the first study to employ both TBSS and probabilistic tractography in a sample of young patients with TS. Our results contribute to the limited existing literature demonstrating altered connectivity in TS and confirm previous results suggesting in particular, that altered insular function contributes to increased frequency of PU

    Morphometric Similarity Networks Detect Microscale Cortical Organization and Predict Inter-Individual Cognitive Variation.

    Get PDF
    Macroscopic cortical networks are important for cognitive function, but it remains challenging to construct anatomically plausible individual structural connectomes from human neuroimaging. We introduce a new technique for cortical network mapping based on inter-regional similarity of multiple morphometric parameters measured using multimodal MRI. In three cohorts (two human, one macaque), we find that the resulting morphometric similarity networks (MSNs) have a complex topological organization comprising modules and high-degree hubs. Human MSN modules recapitulate known cortical cytoarchitectonic divisions, and greater inter-regional morphometric similarity was associated with stronger inter-regional co-expression of genes enriched for neuronal terms. Comparing macaque MSNs with tract-tracing data confirmed that morphometric similarity was related to axonal connectivity. Finally, variation in the degree of human MSN nodes accounted for about 40% of between-subject variability in IQ. Morphometric similarity mapping provides a novel, robust, and biologically plausible approach to understanding how human cortical networks underpin individual differences in psychological functions

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Computational Pathology: A Survey Review and The Way Forward

    Full text link
    Computational Pathology CPath is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath (https://github.com/AtlasAnalyticsLab/CPath_Survey).Comment: Accepted in Elsevier Journal of Pathology Informatics (JPI) 202

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282
    corecore