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Video segmentation not only spatially performs intra-frame pixel grouping but also

temporally exploits the inter-frame coherence and variations of the grouping. Tra-

ditional approaches simply regard pixel motion as another prior in the MRF-MAP

framework. Since pixel pre-grouping is inefficiently performed on every frame, the

strong correlation between inter-frame groupings is largely underutilized. In this

work, spatio-temporal grouping is accomplished by propagating and validating the

preceding graph that encodes pixel labels for the previous frame, followed by spa-

tial subgraph aggregation subject to the validated labeling information. Graph

propagation is achieved by a global motion estimation which relates two frames

temporally, thus transforming the segmentation of the current frame into a highly

constrained graph partitioning problem. All propagated pixel labels are carefully

validated by similarity measures. Trustworthy labels are preserved and erroneous

ones removed. The unlabeled pixels are merged to their labeled neighbors by pair-
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wise subgraph merging. Experimental results show that the proposed approach

is highly efficient for the spatio-temporal segmentation. It makes good use of

temporal correlation and produces encouraging results.
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Chapter 1

Introduction

1.1 The Video Segmentation Problem

Video segmentation has attracted substantial research interests and effort in the

past decade as it assumes a major role in many video-based applications, such

as object-based compression and coding, and visual content retrieval. While hu-

man vision seems to achieve it effortlessly, the automatic segmentation of video

sequences is one of the most challenging tasks in computer vision. Video seg-

mentation is used in a wide range of vision applications. The exact meaning of

the term video segmentation varies according to the context in which it is applied.

Video segmentation refers to a decomposition of semantic entities in content-based

video retrieval [1] and video epitomes [2], a segmentation of moving blocks in video

coding [3] or a spatio-temporal grouping in scene interpretation [4, 5], etc. Loosely

speaking, segmenting a video is to decompose it into objects, which may include

semantic entities or visual structures, such as color patches. Except in restricted

1
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domains, the semantic level is generally not computable automatically, since it

requires some amount of scene interpretation. Therefore, segmentation methods

rely on concrete and measurable segmentation criteria that define non-semantic

entities.

Image segmentation is a well studied but ill-posed problem. Without task-specific

requirements, there can be several ‘correct’ segmentation outputs for a given im-

age. The notion of correctness is dependent on the application. Based on spatial

grouping cues alone, single image segmentation can yield very different results for

two very similar images. Unlike the image segmentation problem in which only

spatial grouping cues (such as color and texture) are available, in video segmenta-

tion, both spatial and temporal information are available for solving the grouping

problem. Points undergoing coherent motion indicate a strong likelihood to belong

to the same rigid body. With the added temporal dimension, the video segmenta-

tion problem becomes a better constrained problem. The need to impose temporal

consistency constraint makes video segmentation different from a series of single

image segmentations. Video segmentation demands that for a given image, the

segmentation achieved should relate to the segmentation of the previous image,

as long as they belong to the same shot. Video segmentation not only spatially

performs intra-frame pixel grouping but also temporally exploits inter-frame coher-

ence and variations of the grouping. In fact, the inter-frame correlation provides

strong constraints for an optimal intra-frame grouping.

In view of the high correlation between adjacent frames, most of the state-of-the-

art video segmentation algorithms focus on the exploitation of temporal coherence.
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However, these approaches usually enforce temporal coherence on a pixel level,

without much exploitation of the intra-frame spatial coherence, i.e., pixels belong-

ing to the same rigid object undergo similar motion. Hence, motion estimation

and enforcement of temporal coherence can be done at the region level instead of

at the pixel level.

1.2 Contributions

In this thesis, the video segmentation problem is addressed as an intra-frame

grouping reinforced by inter-frame coherence. It is a problem of pixel labeling

based on both temporal coherence and spatial grouping. The focus of this thesis

is on exploiting temporal correlation for efficient spatio-temporal grouping of vi-

sual structures under a graph-based framework. Segmentation is accomplished by

propagating and validating a preceding graph which encodes pixel labels for the

previous frame, followed by spatial subgraph aggregation subject to the validated

label information. Graph propagation is achieved by a global motion estimation

relating the two frames. All propagated labels are carefully validated by similarity

measures. Trustworthy labels are preserved and the erroneous ones rejected. The

segmentation of the current frame is thus transformed into a highly constrained

graph partitioning problem. Henceforth, the problem at hand becomes the label

assignment for the unlabelled, invalidated nodes, given the labelled data. The

proposed method demonstrates a unifying framework which combines the spatial

and temporal constraints in segmenting a sequence of correlated images. Tempo-

ral constraints in turn serve as the spatial constraints for the segmentation of the
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current frame. It is related to semi-supervised learning methods [6, 7] and trans-

ductive learning methods [8]. The fundamental difference is that the proposed

temporal propagation yields a more constrained system as the ratio of labelled to

unlabelled data is much higher since the propagated and validated nodes form the

majority of the graph for the current frame. The proposed method has been pre-

sented at the Conference on Computer Vision and Pattern Recognition (CVPR),

2008 [9].

1.3 Organization of the Thesis

This thesis is is organized as follows. A review of previous work is presented in

Chapter 2, where state-of-the-art image and video segmentation techniques are

studied. Chapter 3 presents a detailed formulation of the proposed approach. Ex-

perimental results and performance evaluations are given in Chapter 4. Chapter 5

concludes this thesis with a discussion of future work.



Chapter 2

Background and Previous Work

2.1 Image Segmentation: Spatial Grouping

Image segmentation, the spatial grouping problem, aims at clustering the pixels

of an image into homogeneous regions based on a variety of cues, e.g., color, tex-

ture and boundary continuity. Image segmentation lays the foundation for video

segmentation, which is essentially an image segmentation problem constrained by

temporal coherence. To devise an effective video segmentation algorithm, it is

important to understand the fundamentals of the spatial grouping problem. In

this section, various image segmentation techniques are studied.

2.1.1 The MRF-MAP Framework

Given an image of N pixels, let S = {s1, s1, . . . , sN} be a set of image pixels.

Define X = {Xs|s ∈ S} as a family of random variables, and L = {1, . . . , lM} as

5
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a set of label states. To segment the image into lM perceptual groups, each pixel

is assigned one of the prescribed labels lm so that ∀s ∈ S, Xs ∈ L. Using only

constraints from image data, it is an ill-posed problem. With the prior distribution

of image labels, Bayes’ rule provides the best estimates of the likelihood of image

labels by

P (X|S) ∝ P (S|X)P (X) (2.1)

Image labeling is the maximum a posteriori (MAP) estimation of P (X|S).

X∗ = arg maxP (X|S) (2.2)

In the MRF-MAP framework (see Appendix A.1), P (X) is modelled as a Markov

Random Field (MRF), which allows the incorporation of contextual constraints

based on piecewise constancy [10]. Using a log likelihood of P (X|S), MRF-MAP

is equivalent to the regularization of X by minimizing the energy function

E = Ed + λEs (2.3)

where Ed is the energy of image data, Es is the smoothness energy, and λ is a

weighting factor.

The smoothness term, known as the Potts model, encodes the MRF prior. It does

not over-penalize labelings with large label changes between neighboring pixels and

hence preserves discontinuity at region boundaries. The elegance of MRF-MAP

framework simplifies the image segmentation problem as an exact minimization of

the above energy function by seeking a global solution for a non-convex energy in
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a high dimensional space.

Y ∗ = arg minE (2.4)

Unfortunately, such an approach is known to be difficult due to a large number of

local minima.

2.1.1.1 Energy Minimization

In the last few decades, effective algorithms for solving equation (2.4) have been

developed. They are either stochastic, deterministic or discriminative in nature.

Being more effective than an exhaustive enumeration, Simulated Annealing (SA)

is traditionally used to find the global solution by a stochastic optimization. How-

ever, it is notorious for its inefficiency and poor performance in degraded images.

Iterative Conditional Mode (ICM) demonstrates a fast convergence by a determin-

istic greedy strategy, but it can only guarantee a local minima [11]. On the other

hand, the discriminative approaches find natural clusters in the feature space by

maximizing intra-cluster similarity while minimizing inter-cluster similarity. The

standard Expectation-Maximization (EM) algorithm [1] fits a mixture of Gaus-

sians to image data. Image pixels are assigned to the clusters using the posterior

probabilities. It relies on a priori knowledge of cluster number, and often con-

verges to a local optimum that depends on the initial conditions. The frequently

used Mean Shift algorithm [12] recursively searches for kernel smoothed centroids

based on the gradient of estimated kernel densities. It is sensitive to the param-

eter settings. A slight variation of color bandwidth can cause a large change in

segmentation granularity.
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2.1.2 Segmentation by Clustering

A large class of image segmentation algorithms is based on feature space analysis.

In this paradigm the pixels are mapped into a color space and clustered. Clustering

is the partitioning of a data set into subsets so that each subset share some common

characteristics. The most commonly used clustering techniques are k-Means and

Mean Shift clustering. The k-Means algorithm starts off with k random cluster

centres and assigns each pixel to the nearest centre (also called centroid) according

to some distance measure. After new clusters are formed, the cluster centres are re-

computed as the mean of all members in the cluster. The total cost of membership

assignment is defined as the cost (distance) of assigning all data points to their

nearest centres. The whole procedure repeats until there is no significant change

in the total cost in successive iterations. Although it can be proven that the

procedure will always terminate, the k-Means algorithm does not necessarily find

the most optimal configuration corresponding to the global minimum of the cost

function. The algorithm is also significantly sensitive to the initialization of cluster

centres.

The Mean Shift algorithm is a nonparametric clustering technique which does not

require prior knowledge of the number of clusters, and does not constrain the

shape of the clusters. Mean Shift is a simple iterative procedure that shifts each

data point to the average of data points in its neighborhood. Mean shift analysis

is a relatively new clustering approach originally advocated by Fukunaga [13] and

recently extended and brought to the attention of the image analysis community

by Comaniciu and Meer [12] who convincingly applied it to image segmentation
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Figure 2.1: This diagram shows a distribution of data points in the feature
space. Mean Shift vector points towards the denser region in the feature space
and converges at the mode of the data set through density gradient estimation.

and frame-by-frame tracking. Figure 2.1 illustrates the Mean Shift mechanism in

which the Mean Shift vector points towards a denser region in the feature space.

Let f(x) be the unknown probability density function underlying a p-dimensional

feature space, and xi, the available data points in this space. Under its simplest

formulation, the mean shift property can be written as

∇̂f(x) ∼ (avexi∈Sh,x
[xi]− x) (2.5)

where Sh,x is the p-dimensional hypersphere with radius h centred on x. Equation

(2.5) states that the estimate of the density gradient at location x is proportional

to the offset of the mean vector computed in a window, from the centre of that

window. Recursive application of the mean shift property yields a simple mode
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detection procedure. The modes are the local maxima of the density, i.e.,∇f(x) =

0. They can be found by moving at each iteration the window Sh,x by the mean

shift vector, until the magnitude of the shifts becomes less than a threshold. The

procedure is guaranteed to converge. When the mean shift procedure is applied

to every point in the feature space, the points of convergence aggregate in groups

which can be merged. These are the detected modes, and the associated data pints

define their basin of attraction. The clusters are delineated by the boundaries

of the basins, and thus can have arbitrary shapes. The number of significant

clusters present in the feature space is automatically determined by the number

of significant modes detected.

In contrast to the classical k-means approach, the clusters found by Mean Shift

are separated by valleys in the point densities and not by artificially defined hy-

perplanes equidistant between the cluster centres. Finding the natural borders of

clusters is important because such borders in feature space are mapped back to

more natural segmentation borders in image space.

2.1.3 Graph-based Segmentation

In recent years, graph cuts have emerged as a powerful optimization technique

for minimizing energy functions that arise in low-level vision problems. Graph

cuts avoid the problems of local minima inherent in other approaches (such as

gradient descent). Theses approaches generally represent the problem in terms

of a graph G = (V,E), where each node vi ∈ V corresponds to a pixel in the

image, and the edges in E connect certain pairs of neighboring pixels. A weight is
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associated with each edge based on some attributes of the nodes that it connects,

such as pixel intensity. Normally, there are two types of edges in the graph: n-links

and t-links. N-links connect pairs of neighboring pixels. Thus, they represent a

neighborhood system in the image. The cost of the n-links corresponds to a penalty

for discontinuities between pixels. T-links connect pixels with terminals (labels).

The cost of a t-link connecting a pixel and a terminal corresponds to a penalty for

assigning the corresponding label to the pixel. This cost is normally derived from

the data term in (2.3).

Considering the set of label states L as the terminals of graph G = (S,E), the

energy minimization of MRF-MAP is equivalent to finding a minimum cost of

multi-way cut for a graph, depending on some predefined label seeds in the image.

With two terminals of source S and sink T, the Potts energy model of equa-

tion (2.3) can be exactly solved by a min-cut/max-flow (see Appendix A.2) of the

s-t graph, i.e., searching for the maximum flow (minimum-cut) from S to T in

the Ford-Fulkerson algorithm [14, 15] (see Appendix A.2.1). The minimum-cut is

denoted as

C(S, T ) = min
∑

u∈S,v∈T

W (u, v) (2.6)

where W (u, v) represents the weight of the edge connecting a node u in set S to

another node v in set T .

The cost of a cut C(S, T ) is the sum of edge weights W (u, v). To solve the

minimum-cut problem is to find a cut that has minimum cost among all possible
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cuts. The NP-hard problem in the multi-way cut is approximated by the α-

expansion algorithm. In spectral graph partitioning, the cost of bi-partitioning

G into subgraphs S and T is the sum of weights of all edges connecting the two

subgraphs. The minimization of this cost is an NP-complete problem. Relaxing

the membership indicator from discrete values to continuous values is equivalent to

solving the eigen system Lx = λx (L is the Laplacian matrix of G). According to

the Rayliegh quotient theorem, the minimum value of the cut is given by the second

smallest eigenvalue of L. The eigenvector λ2 (Fiedler vector) is the optimal solution

of the cut. The minimum cut criterion is prone to cutting small isolated sets. This

bias was later addressed with the normalized cut criterion [16] which considers

self-similarity of regions. The min-max cut is able to perform more compact and

balanced results for strongly overlapped clusters. The spectral graph cut has a high

computation cost. For example, it is proportional to O(N3/2) in normalized-cut,

limiting its application on very large images. The Algebraic Multigrid (AMG) [17]

is able to recursively achieve the minimization of normalized-cut by an adaptive

graph coarsening with only O(N) computation cost. However, in practice, the

error in these approximations are not well understood and they are still fairly hard

to compute, especially for the task of video segmentation when a large amount of

data is to be handled.

These cut-based approaches provide only a characterization of each cut rather

than of the final segmentation, and they often yield NP-hard problems for multi-

way cuts. In view of these, a more efficient algorithm proposed in [18] defines a

scale-adaptive predicate which measures the evidence for a boundary between two
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Figure 2.2: (a) A graph G with 2 terminals S and T . (b) A cut on G. Edge
costs are reflected by thickness.

neighboring regions. Computation is simplified by representing regions in terms

of Minimum Spanning Trees (MST).

2.2 Video Segmentation: Spatio-temporal Group-

ing

Video segmentation makes the distinction from image segmentation by imposing

temporal coherence on spatial feature groupings. Because of the availability of

a third dimension, the temporal dimension which infers motion information from

image features, the grouping problem is no longer ill-posed.
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Video segmentation brings up an efficient way of spatial feature grouping using

temporal correlations. Inter-frame correlation provides strong constraints for an

optimal intra-frame grouping and implies that there exists some form of link-

age/similarity between the segmentation results of consecutive frames. Such a

correlation is justified by the causal relationship between frames. Numerous spatio-

temporal segmentation approaches have been reported in the literature [4]. Many

extend the MRF-MAP framework in time and treat temporal correlation as an-

other prior. In this case, Bayes’ rule in (2.1) is extended to

P (X|S,T,X−,S−) ∝ P (S|X,T,X−,S−)P (X−|X,T)P (X|T) (2.7)

where X− and S− denote the sets of pixel labels, and image pixels in the previous

frame. T refers to the inter-frame pixel displacements. The MRF-MAP estimation

is the minimization of the energy function

E = Ed + λEs + µEt (2.8)

where λ and µ are weighting factors for smoothness and temporal coherence. This

energy minimization has been suggested and solved by Iterative Conditional Modes

(ICM) in [11, 5]. Under this framework, an over-segmentation has to be performed

on each frame followed by enforcement of temporal coherence. Unfortunately, this

approach tends to under-utilize the strong temporal correlation. Temporal corre-

lation can be more efficiently exploited in video-based applications, such as [19].
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Furthermore, MRF-MAP in (2.8) searches for an optimal combination of sub-

groups with different spatial scales. Such an approach will lead to an intractable

problem of finding a model to handle variations in spatial scales. Simple pixel-

based measures, such as intensity or color, are insufficient to characterize the

subgroups with large scales. High-level scale measures, i.e. texture or shape, have

to be incorporated since scale variations commonly occur among the segmented

subgroups [17]. Lastly, estimation of pixel displacement has been a challenge.

This is especially true for those pixels with independent motions. Motion estima-

tion based on optical flow computation suffers from the aperture problem. The

estimated flow is smooth and reliable within objects, but erratic and unreliable

at the object boundaries. Often, such motion estimation is incorporated into the

whole framework in a feed-forward manner which lacks regularization. With an

erroneous motion prior, MRF-MAP in (2.8) can lead to extremely sub-optimal

groupings.

Figure 2.3: Structural flow of grouping along spatial and temporal axes.
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2.3 Previous Video Segmentation Approaches

Spatio-temporal grouping manipulates features embedded in the spatio-temporal

volume, the video stack, produced by the stacking of the individual consecutive

video frames. The spatial and temporal dimensions of this volume can be han-

dled either separately or simultaneously [4]. The structural flow of grouping along

spatial and temporal axes is illustrated in Figure 2.3. Most state-of-the-art ap-

proaches handle these two types of dimensions separately, making a distinction

between spatial segmentation, which groups features using spatial coherence cri-

teria, and temporal tracking, which groups features using a temporal invariance

hypothesis. Apart from these, a third approach, joint spatial and temporal group-

ing, avoids favoring one dimension over the other and instead operates directly

in the spatio-temporal volume. These methods define the grouping criteria si-

multaneously in space and time, so that evidence for grouping is gathered at the

same time in both dimensions. Based on the order of operations, spatio-temporal

grouping approaches can be classified into three categories:

• Segmentation with spatial priority

• Segmentation by trajectory grouping

• Joint spatial and temporal grouping
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2.4 Segmentation with Spatial Priority

This category of approaches favours spatial homogeneity when segmenting pixels

in a video. It can be interpreted as an extension of single frame segmentation

by adding temporal tracking. Such methods comprise two sub-modules, motion

segmentation and spatial segmentation based on feature similarity. Figure 2.4

shows the structure of grouping approaches with spatial priority. Emphasis is

placed on the spatial grouping based on similarity of image features (e.g., color

or texture) or pixel motion. Spatial segmentation is carried out on every frame,

followed by enforcement of temporal consistency.

Figure 2.4: Structure of grouping approaches with spatial priority.

Motion grouping methods rely on an underlying motion model, be it a spatial mo-

tion smoothness model or a parametric model. Many approaches use optical flow
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to estimate motion vectors and cluster pixels into the regions of coherent motion.

However, motion fields may be unreliable or non-parametric under circumstances

such as noisy data or non-rigid bodies. Motion similarity methods estimate motion

parameters on a local basis. The grouping involves clustering features into regions

of similar motion parameters. Motion model fitting methods compute motion pa-

rameters in groups of identically labeled elements. They involve the evaluation of

the quality of fit of an element to a specified motion model. Temporal coherence

can be enforced by two kinds of techniques: initialization from the previous frame

and explicit temporal constraints. The former makes use of previous segmentation

result to initialize the grouping for the current frame, while the latter acts as a

stronger constraint to penalize large temporal change. Unfortunately, this is not

realistic in the case of fast-changing motion or independent motion.

2.5 Trajectory Grouping

Trajectory grouping takes into account long-term information rather than short-

term information as described in the motion segmentation category in Section 2.4.

Less ambiguous displacement differences can be observed and motions are better

discriminated. Main trajectory grouping techniques include grouping by motion

similarity and grouping by explicit parametric models. Figure 2.5 shows the tax-

onomy of trajectory grouping approaches. The drawback of this approach is that

since the spatial motion segmentation takes place afterward, tracking cannot use
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any a priori spatial constraints. Furthermore, the need for long-term data pre-

cludes its use in online segmentation tasks where video data is obtained sequen-

tially.

Figure 2.5: Taxonomy of trajectory grouping approaches.

2.5.1 Grouping by Motion Similarity

Motion is a prominent source of temporal variations in image sequences. Motion

in image sequences acquired by a video camera is induced by movements of objects

in a 3-D scene as well as by camera motion; hence, estimating motion is always a

challenging task. Methods on direct comparison of trajectories define a similarity

between two trajectories which is not influenced by the other trajectories. It can
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consist in representing each trajectory as a point in a multidimensional vector

space and then use Euclidean distances, or define a more general pairwise motion

similarity such as spatio-temporal flow curves (by integrating local motion flow

over time). Subspace methods represent a trajectory as the vector of the coordi-

nates of its feature points over time, and stack them in a matrix C. With an affine

camera, the tracks associated with rigid bodies moving differently lie in separate

subspaces. Costeira and Kanade [20] factorize the matrix C using singular value

decomposition (SVD).

2.5.2 Grouping by Model Fitting

Hypothesize and test methods are often used when explicit parametric models can

be assumed. Hypotheses are obtained by fitting models to small data point sets

chosen randomly. Each hypothesis is then validated by assessing the quality of

fit. In RANSAC based methods, this is achieved by counting the number of inlier

points. Hypotheses that have enough inliers are kept, and possibly compared to

each other in order to merge similar ones. This method works well with outliers,

when a small set of points are used, but not the case when all the data is used

simultaneously.

Motion mixture models associate each trajectory with an object model; each object

model consists of a parametric motion model, which describes the displacement of

each point in the image over the whole sequence. Estimation of labels of trajecto-

ries (liking each trajectory to an object model) and motion parameter estimation

are performed using an EM algorithm.
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2.6 Joint Spatial and Temporal Segmentation

Figure 2.6: Taxonomy of joint spatial and temporal grouping approaches.

This category of methods avoids favoring one dimension over the other and instead

operates directly in the spatio-temporal volume. The spatio-temporal grouping is

simultaneously performed in a 3-D block of spatio-temporal pixels. The merit

of this approach is supported by the evidence that human vision finds salient

structures jointly in space and time [21]. Figure 2.6 presents the taxonomy of

joint spatial and temporal approaches. Such segmentation approaches can be

branched out into two subsections: grouping by similarity clustering, or fitting of

a mixture model.

Clustering in feature space usually considers an n-dimensional space involving

color, spatial and temporal positions. Each pixel is associated with a point in
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feature space. Clustering a large volume of such points in feature space will incur

high computational cost, and will also require the whole video shot to be available

as input to construct the feature space. On the other hand, graph-based meth-

ods [22] consider a graph whose nodes are the image features, and whose edges

are weighted according to some measure of similarity between nodes. To segment

an image sequence, a weighted graph is constructed by taking each pixel as a

node, and connecting nodes that are in a spatio-temporal neighbourhood of each

other. The weight on a graph edge connecting two image pixels reflects the sim-

ilarity between their motion profiles. A standard optimization technique such as

normalized-cut [16] may be applied to partition the graph. Graph-based methods

tend to model the groupings more accurately, but also require that all pixels in the

entire video stack to be available prior to any graph-based processing. In model

fitting methods such as [23], it is assumed that the image colors and their space-

time distribution are generated by a model, such as a mixture of Gaussians. In

general, a pixel is more likely to belong to a certain cluster if it is located near the

cluster centroid. The EM algorithm is used to determine the maximum likelihood

parameters of a mixture of Gaussians in feature space.

Recently, cosegmentation [24] has emerged as a new methodology for simultane-

ously segmenting the common parts in an image pair. It can be viewed as a joint

spatial and temporal segmentation except that the grouping problem is solved in

the spatial domain. Cosegmentation adopts a generative model for the histograms

of the common parts and works towards maximizing the similarity between the

generated histograms. Inference in the model leads to minimizing an energy with
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an MRF term encoding spatial coherency and a global constraint. Such an op-

timization problem is usually NP-hard. Although more constrained optimization

was later proposed to work around the NP-hard problem, the complexity of such

a framework limits its application to binary segmentation, where the common

foreground is to be segmented out of different backgrounds, while multi-label seg-

mentation is often desired in generic video segmentation algorithms.

2.7 Summary of the Previous Approaches

The previous section presents three types of video segmentation methods. In

segmentation with spatial priority, spatial grouping has to be inefficiently per-

formed on every frame prior to temporal linking of regions. Temporal correlation

is therefore under-utilized. On the other hand, the second method, segmentation

by trajectory grouping, focuses on the separation of pixel trajectories and requires

accurate tracking of features. Unfortunately, the intersection of motion trajecto-

ries would give rise to ambiguities in grouping. The third method, joint spatial and

temporal segmentation, considers a video as a spatio-temporal block of pixels and

performs clustering in the joint domain. However, both the trajectory grouping

and joint spatio-temporal segmentation process all video frames in batches and

hence are not applicable for applications where frames are acquired sequentially.

On reviewing the previous methods, it is obvious that the key issue with video

segmentation lies in the fusion of spatial and temporal information. Spatial and



Chapter 2. Background and Previous Work 24

temporal information interact in a complementary manner and are interchange-

able. While spatial coherence serves as a strong cue for intra-frame grouping,

temporal coherence ensures that such spatial grouping is consistent over time.

Upon enforcement of temporal coherence, temporal constraints in turn act as spa-

tial constraints for the segmentation of the current frame. In view of this, a novel

method is proposed in this thesis to better utilize temporal correlation for more

efficient grouping. Spatial grouping for the previous frame is temporally propa-

gated according to a global transformation. The propagated results are validated

based on similarity measures. Incorrect pixel labels will be disputed and relabelled

subject to the validated labels. This method works for both sequential and batch

data. Details of the proposed method are presented in the following chapter.



Chapter 3

Proposed Method

3.1 Efficient Fusion of Spatial and Temporal In-

formation

The review on previous work in Chapter 2 highlighted the essence of the spatio-

temporal segmentation problem. While most methods strive to maximize the use

of previous frame segmentation, the strong temporal correlation between frames

is still not optimized. Additionally, motion cues are often incorporated in a feed-

forward manner which lacks regularization. In this thesis, the spatio-temporal

video segmentation is cast as a temporally-constrained graph partitioning prob-

lem. It is a problem of pixel labeling based on both temporal coherence and spatial

consistency. Instead of enforcing an unrectified motion prior in the MRF-MAP

model, pixel labels from the previous frame are propagated to the current frame

25
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by a global motion estimation using the affine model. Validation of the propa-

gated pixels labels is based on similarity measures. Trustworthy propagated labels

are preserved, while erroneous labels are removed to reduce the bias in the final

grouping. All unlabeled pixels are initially grouped into subgraphs by a simple

color clustering. These subgraphs are iteratively aggregated by a pairwise sub-

graph grouping to form the final segmentation [9]. The entire cycle repeats itself

by using the obtained segmentation output as previous information for the seg-

mentation of the next frame. In this way, both spatial and temporal information

interact in a complementary manner.

3.2 System Overview

Figure 3.1: Spatio-temporal grouping by the propagation, validation and ag-
gregation of a preceding graph.
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Figure 3.1 shows the structure of the segmentation system. The proposed video

segmentation is accomplished by propagating, validating and aggregating a pre-

ceding graph. Segmentation of the first frame of a given sequence is done using

the Mean Shift segmenter. Minimum user intervention is required in tuning the

parameters for the segmenter. This is done to set a meaningful scale for the seg-

mentation. Applying Mean Shift usually yields an over-segmented result. This

over-segmentation will be merged according to region similarity measures to form

the initial segmentation.

While most of the state-of-the-art methods make use of temporal correlation on

a pixel level to predict the label of a pixel in the next frame, the method pro-

posed here attempts to predict pixel labels on a region level. It is justifiable to

assume the scene in view to be piece-wise planar. A pair of adjacent frames in a

video sequence can be regarded as a narrow baseline stereo system where only a

small amount of translation and rotation are present, hence, the piece-wise pla-

nar assumption holds. Secondly, for the case of segmentation, the requirement on

correspondence can be relaxed unlike in a registration system where point/curve

features are precisely matched. Furthermore, predicting labels on a region level

favours spatial consistency, which is much desired by a segmentation algorithm.

3.3 Notation

A preceding graph for the previous frame I− can be specified by G− = (S−,E−,L−),

where S− is the set of all nodes (pixels), E− is the set of edges connecting the nodes,
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and L− = {1, . . . , lM} is the set of pixel labels. Temporal propagation through

an affine estimation compensates global motion between two consecutive frames,

thereby propagating G− into G of the current frame I. Let Gp = (Sp,Ep,L−) be

the propagated graph from G−. Sp includes all nodes that can be projected to I,

Sp ⊆ S−. Ep is the set of edges connecting the nodes in Sp in I.

Considering the inter-frame pixel variations, all nodes in Sp are validated by mea-

suring the color similarity between I− and I. A validated graph Gv = (Sv,Ev,Lv)

is formed by removing the nodes with wrong labels from Gp, where Sv ⊆ Sv,

Ev ⊆ Ep. Since Gv include the nodes with correct labels, it can be used to

constrain the segmentation of the current frame I. Gv is then implanted into

the graph G = (S,E) of the current frame I, resulting in G = (Gv,Gx), where

Gx = (Sx,Ex) is the set of unlabeled nodes, Sv ∩ Sx = ∅, Sv ∪ Sx = S. Hence,

the spatio-temporal grouping of the current frame I is equivalent to an optimal

grouping of Gx subject to a labeled Gv. The segmentation of a partially labeled

image (with sparse labeled seeds) has been addressed in [14, 25] as an optimal

cut on a partially labeled graph using min-cut/max-flow or random walker. In a

two-label case, it is possible to find a global optimum because the energy function

is convex. In comparison with a spatial grouping of Gx subject to Gv in video

segmentation, Lx ⊂ Gx may differ from Lv ⊂ Gv due to dynamic scene changes.

The existing labels in Lx may not fully appear in Lv, and Lx can also contain

some new labels. This fundamental difference makes the spatial grouping of Gx

even more complicated. In this thesis, the segmentation problem is solved by a

pairwise aggregation of subgraphs based on color heterogeneity, edge strength and
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shape compactness.

A subgraph gm = (sm, em, lm) of graph G = (S,E,L) is defined as a graph where

sm ⊆ S, em ⊆ E. All nodes in a subgraph gm have a common label lm. A

subgraph is used to describe a region. It may contain any number of nodes. Such

a formulation thus offers flexibility to deal with variations in spatial scales.

3.4 Graph Propagation

The graph Gp is reconstructed in I from the labeled graph G− based on the geo-

metric transformation relating the two frames. Adjacent frames can be regarded

as a narrow baseline stereo pair and the segmentation of the scene can be assumed

to be piece-wise planar. A precise localization for correspondence is not required

in the case of segmentation and hence a simple geometric transformation would

suffice to relate segmentation results between two views. Without loss of general-

ity, the inter-frame global motion can be approximated by an affine transformation

A. Then, I− is warped to I by

AI− = I (3.1)

The above linear system can be solved by using N ≥ 3 corresponding pairs between

I− and I. Motion estimation is embedded in this graph propagation process. With

the transformation A, Gp is constructed by projecting all labeled nodes in S−

into I. The node edges Ep are reconnected in the topology of I. It is worth-

noting that some nodes in Sp may not be fully 4-connected due to the geometric

transformation.
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3.4.1 Scale Invariant Feature Detection

For accurate localization of corresponding feature points, the Scale Invariant Fea-

ture Transform (SIFT) algorithm in [26] is employed to detect scale-invariant fea-

tures. This feature detection algorithm operates in scale space by convolving the

image with Gaussian filters at different scales and taking the difference of succes-

sive Gaussian-blurred images. Extrema in this scale space are taken as distinctive

features.

SIFT is applied to both I− and I to detect and describe scale invariant features.

Feature correspondence is based on the nearest neighbour. In fact, corresponding

pairs undergoing independent motions can cause errors in the estimation of A.

For a robust solution, the Random Sample Consensus (RANSAC ) [27] algorithm

is used to reject the outliers and minimize the transformation error. RANSAC

randomly samples subsets from the data and calculates the affine model based on

a randomly selected subset. The estimated affine transformation is used to verify

against the remaining data points. The process is repeated until, within a certain

error bound, there is at least one outlier-free sample subset. The advantage of

RANSAC is that it can estimate the parameters with a high degree of accuracy

even when significant amount of outliers are present in the data set.

3.5 Validation

The graph propagation G− to Gp relies only on the estimation of inter-frame global

motion. Due to errors introduced by the affine approximation and independent
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(a) (b)

Figure 3.2: A strong temporal correlation implies similar grouping in most
corresponding regions between two frames. (a) Grouping results in the previous
image frame. (b) Pixel labels in the previous frame are propagated and validated
in the current frame. About 94.25 % of labels are reusable in segmenting the
current frame.

motions, some nodes in Sp are wrongly labeled. The propagated node labels

are validated based on color similarity. This step allows the verification of the

motion estimates and it differentiates the proposed method from the state-of-

the-art methods in which motion priors are often incorporated in a feed-forward

manner without validation. An erroneous motion prior can severely affect the

label prediction. For each label l−m in G−, color variances σ−m(r), σ−m(g), σ−m(b) are

calculated for all nodes with label l−m. Given a node sp
n in Gp and its corresponding

node s−n in G−, sp
n is properly labeled if and only if these conditions are satisfied:

|sp
n(r)− s−n (r)| ≤ 3σ−l−(sn)(r)

|sp
n(g)− s−n (g)| ≤ 3σ−l−(sn)(g) (3.2)

|sp
n(b)− s−n (b)| ≤ 3σ−l−(sn)(b)
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Image noise often causes random color variations between two corresponding pix-

els. Instead of performing validation on a stand-alone node (3.2), a node label is

validated by its local neighbors (e.g., 3× 3 neighbors). With all properly labeled

nodes in Sp, a new graph Gv = (Sv,Ev,L−) is formed to retain correct labeling

information from G−. Figure 3.2 shows an example of the propagated and vali-

dated segmentation results that are reusable for the segmentation of the current

frame. In this example, 94.25 % of the propagated pixel labels are valid and re-

tained. This large percentage of validated pixels suggests a profitable exploitation

of temporal correlation.

Upon graph propagation and validation, the percentage of validated node labels

are computed as

Pv =
|Sv|
|S|

(3.3)

where | · | denotes the number of elements in the set. When the percentage of

validated nodes falls below a certain threshold, i.e., Pv ≤ tv, it indicates that the

propagated segmentation results are less reliable. Re-initialization of segmentation

is thus performed on the current frame, taking into consideration the propagated

segmentation results to ensure temporal consistency.

3.6 Independent Motions

The geometric relation in (3.1) can only recover the inter-frame global motion. It

fails to compensate for pixel displacements due to independent motions. These

independent motions can be identified by graph validation. Assume that one
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segmented region r experiences an inter-frame independent motion. Let g−r =

(s−r , e
−
r , l
−
r ) be the subgraph of r in I−. When g−r is propagated to gp

r by A, s−r is

wrongly located in I. As a result, l−r fails the validation check. Let the subgraph

gp
x = (sp

x, e
p
x, l
−
x ) represent the actual location of r in I. Consequently, l−x is also

invalidated due to color dissimilarity.

3.6.1 Regional Changes

Based on the spatial changes induced by independent motion, the invalidated

regions can be classified into the following six cases:

1. Case 1: Whole region displacement

This refers to the case where there is no overlap between the actual and the

temporally predicted regions. It is often caused by fast independent motion

of small objects.

(a) (b)

Figure 3.3: A pair of invalidated subgraphs due to whole region displacement.
(a) The circle g−1 in I− and the pre-propagated location of its wrong prediction
g−2 . (b) The predicted location of the circle is now at gp

1 , while the correct
location should be at gp

2 .
.
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Figure 3.3 shows an example in which a circle moves independently with

respect to the inter-frame global motion. Given the subgraph of the circle

g−1 in frame I−, graph propagation predicts an improper location gp
1 for it

in I. The label of subgraph gp
1 is invalidated, because the circle colors in

I− are different from the observed colors in I. The proper location of the

circle is indicated by the subgraph gp
2 and its pre-propagated location in I− is

indicated by g−2 . Therefore, the label of subgraph gp
2 is also invalidated. The

independent motion of a segmented region causes the label of its propagated

subgraph to be invalidated in I. The label of subgraph at its actual location

in I is also invalidated. In the later graph aggregation process, the two

invalidated subgraphs are matched based on shape similarity and their labels

are exchanged.

2. Case 2: Partial region displacement

Partial region displacement refers to the case where there is partial over-

lap between the actual and the temporally propagated regions. This could

arise because of small independent motion. Two disputed subregions will be

formed, labeled ’A’ and ’B’ respectively, as shown in Figure 3.4.

Figure 3.4 shows an example where independent motion causes the rectangle

to shift away from its predicted location, but there is still a partial overlap

between the two. Given the subgraph of the rectangle g−1 in frame I−,

graph propagation predicts a partially correct location gp
1 for it in I. The

overlapping portion C is validated, while the non-overlapping portions A and

B are invalidated.



Chapter 3. Proposed Method 35

(a) (b)

Figure 3.4: Two invalidated subregions due to partial region displacement. (a)
A rectangle g−1 (orange) and the pre-propagated region of its wrong prediction
in frame I−, annotated as g−2 (green). (b) The actual location of the rectangle
shifts to gp

2 and it partially overlaps with the predicted region gp
1 . The non-

overlapping subregions A and B are invalidated while the overlapping subregion
C is validated.

(a) (b)

Figure 3.5: An invalidated subgraph due to a disappearing object. (a) A circle
g−1 in frame I−. (b) The circle disappears in I, causing gp

1 to be invalidated.
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3. Case 3: Disappearing region

Due to camera motion or independent motion, a region observed in I− may

disappear in I. Thus, a propagated subgraph gp
1 will be an erroneous pre-

diction of g−1 in frame I. See Figure 3.5 for illustration. The total number of

label states for the current frame will be decreased by 1, i.e., |L| = |L−| − 1.

4. Case 4: Newly appeared region

This is the reverse of Case 3. Figure 3.6 shows a newly appeared circle.

To classify a disputed region gx as a newly appearing one, its dissimilarity

with respect to all neighbouring labelled regions in G− should reach a large

value. Note that gx is not a result of temporal propagation and therefore

the superscript ‘P ′ is dropped. Such a region will be seen as an ”unmerged”

subgraph after the pair-wise subgraph aggregation. This will be elaborated

on in Section 3.7.

(a) (b)

Figure 3.6: An invalidated subgraph due to a newly appearing object. (a)
g−1 denotes the pre-propagation of a newly appeared circle. (b) A new circle
appears in frame I, causing gx to be invalidated. Note that the subscript ‘x′

indicates that gx is not a result of temporal propagation and it is yet to be
grouped and labelled, whereas its pre-propagated subgraph g−1 is labelled.
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5. Case 5: Splitting region

The is caused by the splitting of regions or by occlusion. In the case of

occlusion, if a single region seen previously is occluded by another object

that blocks only its middle part but not its ends, it will be seen as a region

split into two disconnected parts in the current frame. As illustrated in

Figure 3.7, the shaded regions gp
2 and gp

3 as well as the gap gp
1B between the

two separated regions are invalidated. The total number of label states |L|

will be increased by 1.

(a) (b)

Figure 3.7: Three invalidated subregions due to region splitting. (a) A rect-
angle g−1 in frame I− and the pre-propagation of its separated parts denoted by
g−2 , g−3 and g−1B (the shaded regions). (b) The rectangle splits into two regions
in I, causing gp

2 , gp
3 and gp

1B to be invalidated. Only portions that still overlap
with the split regions (solid yellow regions), gp

1A and gp
1C, are validated.

6. Case 6: Merging regions

The is the opposite of Case 5. It happens when two previously split regions

merge or when an occluding object moves away. Subgraphs gp
1 and gp

2 in

Figure 3.8(b) represents the predicted regions that are merging in frame I.

Here, these two regions will be combined to form a single region during Mean
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Shift segmentation and the propagated portions gp
1A and gp

2B that do not

overlap with the actual merged region will be invalidated. The merged region

will take the label of either participating region. The total number of label

states |L| will be decreased by 1.

(a) (b)

Figure 3.8: A pair of invalidated labels of a single region due to region merging.
a) Two rectangles g−1 and g−2 in frame I− and the pre-propagation of the centre
part of their merged version is denoted by g−3 . (b) The two rectangles merge
into one region in I, causing gp

1A, gp
2B and gp

3 to be invalidated. Only portions
that still overlap with the merged regions (solid yellow regions), gp

1B and gp
2A,

are validated.

3.7 Aggregation

The aggregation of subgraphs performs a spatial grouping for all unlabeled nodes

in Gx based on Gv. The challenge here is that some new groups may be formed in

Gx. Instead of using a seeded segmentation as in [14, 25], we conduct a pairwise

subgraph grouping on Gx, which is similar to [18], but with different grouping

criteria. Prior to the aggregation of subgraphs in Gx, the unlabeled nodes in Sx

are grouped into small subgraphs by a low-level color clustering (Mean Shift [12]).
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This pre-grouping is conducted to serve two purposes. Firstly, it accelerates the

grouping of Gx and secondly, it initializes reasonable scales for the subsequent

groupings. In a pairwise subgraph grouping, each subgraph gx corresponds to an

intermediate group in I. Grouping criteria include edge relationship, color, and

shape measures.

3.7.1 Edge Information

The color gradient between two pixels is characterized by the weight associated

with the edge connecting their respective nodes. Let eij be the edge of two neigh-

boring nodes si and sj. The edge weight is defined by

Definition 3.1. The edge weight w(eij) between two neighboring nodes si and sj

is the norm of L*u*v* color difference between two pixels connected by the edge

w(eij) =
√

(li − lj)2 + (ui − uj)2 + (vi − vj)2 (3.4)

A strong edge connecting two subgraphs discourages the grouping of the said

subgraphs. In [18], the grouping predicate checks if the minimum edge weight

connecting a pair of subgraphs is large relative to the internal difference within at

least one of the subgraphs. The internal difference is defined as the largest edge

weight of the minimum spanning tree, which tries to find a maximum gradient

from a low gradient path. This measure is very sensitive to image noises. Given a

subgraph gi = (si, ei), eB
i is used to denote the edges crossing the region boundary,

eB
i ⊂ ei. A pictorial illustration of this region boundary is given in Figure 3.9.
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The boundary edges are marked as black dotted lines. Let wB(eB
i ) be the strength

of the boundary of subgraph gi, which is given by

Definition 3.2. The strength of the boundary of a subgraph gi is the mean of all

edge weights in eB
i .

wB(eB
i ) =

1

NB

∑
e∈eB

i

w(e) (3.5)

where NB = |eB
i | is the number of elements in the set eB

i .

Figure 3.9: If subgraphs gi and gj are to be merged to form gk, the strength
of the boundary of these two subgraphs is the mean of all edge weights in eB

k

(denoted by black dotted lines). The strength of the joint between subgraphs
gi and gk is computed as the mean of all edge weights in ej (denoted by green
dotted lines).
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In the case of two neighboring subgraphs gi and gj, let eJ = ei ∩ ej be the edges

connecting boundary nodes between gi and gj (this set of edges is called the

“joint”). Edges in this joint are represented by green dotted lines in Figure 3.9.

Let wJ(eJ) be the strength of this joint eJ . Then, wJ(eJ) is estimated by

Definition 3.3. The strength of the joint between gi and gj is the mean of all

edge weights in the set eJ .

wJ(eJ) =
1

NJ

∑
e∈eJ

w(e) (3.6)

where NJ = |eJ| is the number of elements in the set eJ.

In fact, weaker edges in eJ are preferred when merging gi and gj into gk, i.e.,

gk = gi ∪ gj which means a smaller wJ(eJ) than wB(eB
k ). Therefore, the cost of

merging gi and gj can be formulated as follows

CE(gi,gj) =


1 if wJ(eJ) ≥ wB(eB

k )

wJ (eJ )

wB(eB
k )

otherwise

(3.7)

3.7.2 Color

The color heterogeneity of a subgraph gi is computed as the sum of color variances

for all color channels, i.e., CH(gi) = σL(gi)+σu(gi)+σv(gi). Given two neighboring

subgraphs gi and gj, the merging cost in terms of color heterogeneity is computed

by

CH(gi,gj) =


1 if CH(gk) ≥ avg(i, j)

CH(gk)
avg(i,j)

otherwise

(3.8)

where avg(i, j) = (CH(gi) + CH(gj))/2, gk = gi ∪ gj.
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3.7.3 Shape

The merging of two subgraphs gi and gj into gk results in a more compact repre-

sentation of subgraph gk. The compactness of a subgraph gi is used as a generic

shape measure. It is defined as CS(gi) = 4πA(gi)/L(gi)
2, where A(gi) is the area

of gi, and L(gi) is the perimeter of gi. When gi is a circle, CS(gi) = 1. If gi is

infinitely long and narrow, CS(gi) = 0. Given two neighboring subgraphs gi and

gj, the cost of merging gi and gj in terms of shape compactness is given by

CS(gi,gj) = 1− 4πA(gk)

L(gk)2
(3.9)

3.7.4 Cost

The total cost of merging two subgraphs gi and gj is the weighted sum of the

following measures: color heterogeneity, edge strength and shape compactness.

This is given by

C(gi,gj) = kECE(gi,gj) + kHCH(gi,gj) + kSCS(gi,gj) (3.10)

where kE, kH and kS are weighting factors for edge, color and compactness costs

respectively.

A pairwise subgraph aggregation is conducted by searching the best fitting pair of

adjacent subgraphs by the rule of mutual best fitting. Let Cmax be the maximum

merging cost. For the subgraph gi, a neighboring subgraph gj is regarded as a
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merging candidate iff,

C(gi,gj) <= Cmax (3.11)

For the subgraph gi, gj is treated as the best fitting subgraph among all neighbors

of gi if a lowest merging cost exists between gi and gj. According to the rule of

mutual best fitting, the subgraph gi has to be the best fitting neighbor of gj as well.

The algorithm of a pairwise subgraph aggregation is summarized in Algorithm 1.

For the subgraph gj, it should be ensured that the merging cost between gi and

gj is lowest among all neighbors of gj.

During the subgraph grouping, some small subgraphs (with irregular shapes) are

quite resistent to the merging. In this case, a simple smoothing is performed on

them by grouping them into their nearest neighbours based on color similarity

after the above grouping procedure. A threshold is set to control the minimum

similarity score for a merge to take place.

Note that during the merging stage, the participating subgraphs can either be

labelled or unlabelled. Mutually best fitting neighbours that satisfy Equation 3.11

are to be merged. At the end of the iterative pairwise subgraph aggregation,

if there still exists isolated unlabelled subgraphs which differ considerably from

their nearest neighbours, they are likely to be caused by newly appearing objects.

New labels will be assigned to such regions. These labels will be appended to the

existing set of labels to denote the addition of new regions/objects.
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3.7.5 Complexity Analysis of Subgraph Aggregation

The computational complexity is determined by the number of initial subgraph

Ns, and the maximum number of adjacent segments per subgraph Na. In step 2

of Algorithm 1, the computation to construct the adjacency relations is at most

O(NsNa log(NsNa)). The initial number of possible subgraph pairsNsNa gradually

reduces as step 2 proceeds. To update the adjacency relations of one subgraph

in step 8, the computation is at most O(log(NsNa)). The maximum number of

updated subgraphs is 2Na. Steps 4-10 are repeated for at most Ns times. The

computational complexity is O(Ns2Na log(NsNa)).

Algorithm 1 A pairwise subgraph aggregation

Require: Gx, Gv

1: Start with the initial subgraphs in Gx.

2: Construct the adjacency relations of these subgraphs.

3: Calculate the merging cost for all adjacent pairs of subgraphs using (3.10).

4: repeat

5: Search the adjacent subgraphs that satisfy (3.11)

6: Find the best pair of subgraphs (gi,gj) with the minimum merging cost.

7: Merge gi and gj into a new subgraph gk = (gi,gj)

8: Update the adjacency relations of gk.

9: Extend the label to gk if gi or gj is labeled.

10: until No more pairs of subgraphs satisfy (3.11).

11: Assign the new labels to the unlabeled subgraphs.
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3.7.6 Algorithm

The proposed spatio-temporal segmentation involves the propagation and valida-

tion of a preceding graph, followed by the aggregation of unlabeled subgraphs.

The former ensures the correctness of pixel groupings propagated from the pre-

vious frame, while the later performs a pairwise subgraph grouping for unlabeled

subgraphs. The algorithm of the proposed spatio-temporal segmentation is sum-

marized as follows

Algorithm 2 Spatio-temporal segmentation using a preceding graph

Require: I−, I, G−

1: Estimate the affine transformation A using SIFT.

2: Propagate G− to Gp based on (3.1).

3: Validate the labels Lp in Gp using (3.2). Construct the graph Gv that contains

all trustable labels propagated from Gp.

4: Correct labels of independent moving regions.

5: Implant Gv into G. Group unlabeled nodes Sx into small regions using Mean

Shift

6: Perform subgraph aggregation for unlabeled subgraphs using algorithm 1.

7: Return the labeled G.
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3.8 Connections to Transductive Learning

The proposed algorithm is similar to transductive learning method [6, 7, 8] which

aims to learn from partially labelled data. The transductive method is used in im-

age segmentation where partial grouping is known a priori and label assignment

for the unlabelled data is done through statistical transductive inference. The

transductive learning problem can be solved by spectral graph partitioning, such

as min-cut and normalized-cut. However, the fundamental difference between

the proposed method and the transductive method is that the number of label

states for the video segmentation problem changes dynamically due to indepen-

dent motions and appearance/disappearence of objects, whereas in a transductive

segmentation framework, the number of labels is usually fixed. Furthermore, the

ratio of unlabelled to labelled data is much less in the proposed method and hence

it is faster to converge to a global minima. In the case where the propagated la-

bels are invalidated, temporal constraints have no effects on the partitioning of the

new unlabelled data if they are not temporally related. Only spatial constraints

induced by the validated temporal constraints have effects on the partitioning of

such data.



Chapter 4

Experimental Results and

Discussion

To assess the validity and to evaluate the performance of the proposed video

segmentation algorithm, a series of tests and comparisons has been performed on

several standard test sequences. This chapter describes details of the experiment

and analyzes the segmentation results qualitatively and quantitatively, using both

the standalone and relative evaluation methodologies. To highlight the advantage

of the graph-based temporal propagation and validation scheme, examples are

shown to demonstrate the proposed algorithm’s strength in handling independent

moving objects, as well as the efficiency achieved by propagating and preserving

reliable results for the segmentation of later frames.

47
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4.1 Experiment Settings

The proposed algorithm is applied on several typical test sequences containing dif-

ferent spatial complexity and temporal activity characteristics, namely, the “Table

Tennis”, the “Coast Guard”, the “Jumping Girl” and the “Dog” sequences. Re-

sults are presented for the video sequences in which different challenges arise.

Details of the sequences are as follows.

• Table Tennis, images 1 to 30− Sequence with high temporal activity due to

rapidly-changing independent motions of the pingpong ball and the player.

There are appearing and disappearing objects entering and leaving the scene.

• Coast Guard, images 10 to 35 − Sequence with independently moving

boats and a static background. The camera follows the boat in the middle,

while another boat is entering the scene. The water of the river globally ap-

pears to move to the right, but deviation from the dominant motion pattern

occur locally. The small sizes of the independent moving objects and their

blurry edges make it difficult to contrast against the background.

• Jumping Girl, images 1 to 30 − Sequence with two girls, one jumping

towards another stationary girl. There is considerable independent motion

caused by the jumping girl, though the background is uniform and easy to

segment.

• Dog, images 60 to 80 − Sequence with a moving dog on the lawn. The

background is uniform and therefore easy to segment, but the dog in the

foreground has large and fast motions in certain frames.
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Default parameters used in the total cost function (3.10) are: kE = 0.27, kH = 0.55

and kS = 0.18. More weightage is given to the color heterogeneity for the subgraph

grouping. Results for the four test sequences will be presented in later sections.

For the purpose of a comparative evaluation, due to lack of reference segmentation

results for some of the test sequences, discussions will be focused on the “Table

Tennis” and the “Coast Guard” sequences.

4.1.1 First Frame Initialization

The solution proposed in Chapter 3 deals mainly with the propagation, validation

and aggregation of previous segmentation result, assuming a segmented first frame

is given. Initialization of the first frame of the video sequences was done by

applying the Mean Shift [12] segmenter. A five-dimensional feature space was used.

The three components of the CIE L*u*v* color space were used as color features

while the remaining two dimensions were the lattice coordinates. The L*u*v* color

space was employed since its metric is a satisfactory approximation to Euclidean,

hence allowing the use of spherical windows. A cluster in this 5D feature space

thus contains pixels which are not only similar in color but also contiguous in

the spatial domain. The quality of segmentation is controlled by the size of the

spatial hs, and the color hr, resolution parameters defining the radii of the (3D/2D)

windows in the respective domains. The segmentation algorithm has two major

steps. First, the image is filtered using mean shift in 5D, replacing the value of

each pixel with the 3D (color) component of the 5D mode it is associated to.

Note that this filtering is discontinuity-preserving. In the second step, the basins
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of attraction of the modes, located within hr/2 in the color space are recursively

fused until convergence. The resulting large basins of attraction are the delineated

regions, and the value of all the pixels within are set to their average [28]. It is

important to emphasize that the segmenter processes gray level and color images

in the same way.

In the fusion step, extensive use is made of region adjacency graphs and graph

contraction with the union-find algorithm [29]. The initial RAG was built from

the filtered image, the modes being the vertices of the graph and the edges were

defined based on four-connectivity on the lattice. Fusion was performed as a tran-

sitive closure operation on the graph, under the condition that the color difference

between two adjacent nodes should not exceed hr/2. At convergence, the color of

the regions was recomputed and the transitive closure was again performed. After

at most three iterations the final labelling of the image was obtained. Small re-

gions (the minimum region size, M , is defined by the user) were then allocated to

the nearest neighbour in the color space. This postprocessing step can be refined

by employing a look-up table which captures the relation between the smallest

significant color difference and the minimum region size.

Minimum user intervention is required in tuning the parameters for the Mean Shift

clustering. Default parameters for a 240×320 image is (hs = 13, hr = 11,M = 30).

Applying Mean Shift yields an over-segmentation of the first frame. This over-

segmentation was merged according to region color similarity in the L*u*v* color

space. The procedure is similar to the bottom-up agglomerative clustering. The

merging cost is the Euclidean distance between any two cluster centroids. Two
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adjacent regions are merged if the cost is below a certain threshold, according

to the rule of mutual best fitting. The iterative steps are analogous to the pair-

wise sub-graph aggregation discussed in Chapter 3. Merging terminates when all

regions are considered and no more pairs of regions satisfy the above-mentioned

conditions. Results of the first frame initialization for the four test sequences are

shown in Figures 4.7(b), 4.8(b), 4.9(b) and 4.10(b), respectively.

4.2 Segmentation Evaluation Methodology

The challenge faced when evaluating a video segmentation algorithm lies in the

lack of ground truth and an objective and reliable quantitative metric. There is

no ground truth segmentation result readily and clearly available in most segmen-

tation problems. Manually segmented results are often used as ground truth for

performance evaluation, but there is no unique ground truth for a fair compari-

son [30]. The optimal segmentation varies according to the context in which it is

applied. Depending on the availability of a reference, the evaluation can be car-

ried out in two ways: the standalone evaluation and the relative evaluation [31].

The former is used when a reference segmentation is not available, while the latter

compares the segmentation results against some ground truth. The ground truth

can either be the segmentation defined by human subjects or representative results

produced by state-of-the-art algorithms.

Given the subjectivity of this topic, to avoid favoring either one of the above-

mentioned evaluation methods and to arrive at a fair conclusion, results of the
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proposed algorithm is evaluated under both standalone and relative schemes. Al-

though it is generally accepted that the relative evaluation is expected to produce

more reliable assessment of segmentation quality, the reference segmentation per-

formed by human subjects may induce some degree of subjectivity. Furthermore,

owing to the lack of ground truth segmentation results, certain test sequences can

only be evaluated by the standalone method. For the case of relative evaluation,

segmentation results generated by the COST211 Analysis Model [32] and [33] are

used to benchmark the performance of the algorithm proposed in this thesis.

Past work on no-reference quality metrics for image and video has been used

to measure performance in the absence of reference. In a no-reference quality

metric, instead of approaching the result to a truth reference, one aims at defining

the characteristics of a good quality image (in the case of segmentation, a good

segmentation result). The quality of segmentation is then assessed by examining

the degree in which the algorithm approaches the good characteristics mentioned

above. Past work both on image quality assessment and segmentation quality

assessment show there is a good potential behind this approach. Results obtained

however are quite preliminary and unacceptable in terms of fidelity and correlation

with a subjective metric performed by a human being. This is especially true for

the case of segmentation quality metrics [31].

Two types of measurements were targeted when performing video segmentation

quality evaluation: 1) Individual object segmentation quality evaluation − when
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one of the objects identified by the segmentation algorithm is independently eval-

uated in terms of its segmentation quality; 2) Overall segmentation quality eval-

uation − when the complete set of objects (the scene partition) identified by the

segmentation algorithm is globally evaluated in terms of its segmentation quality.

4.3 Standalone Segmentation Quality Evaluation

Metrics for individual object standalone segmentation quality evaluation can be

established based on the expected feature values computed for each object (intra-

object metrics), as well as on the observed disparity of some key features relative to

the neighbours (inter-object metrics). The former is used in this thesis to examine

the effects of temporal constraints on spatial segmentation.

4.3.1 Spatial Uniformity

Since the proposed algorithm focuses on temporal propagation of previous seg-

mentation results, the resulted object-level segmentation is temporally coherent.

Spatial segmentation is a result of the temporal propagation. To examine the va-

lidity of this temporal constraints on the spatial segmentation, Spatial Perceptual

Information(SI) [31] is adopted as a quality metric for spatial uniformity. This

metric is defined as

SIr(Rn) =

√√√√ 1

Nn

∑
i

∑
j

(Sobel(i, j))2 −

(
1

Nn

·
∑

i

∑
j

(Sobel(i, j))

)2

(4.1)
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where Rn denotes the nth region of a frame and Nn is the number of pixels in that

region.

The above metric computes the standard deviation over all pixels in a Sobel-filted

segment. The Sobel filter is implemented by convolving two 3× 3 kernels over the

video frame and taking the square root of the sum of the squares of the results of

these convolutions.

The SI metric was originally used to measure the spatial detail in an image, taking

higher values for the more spatially complex scenes. The SI metric is specified in

ITU-T Recommendation P.910 [34] and it is based on the amplitude of the Sobel

edge detector. Here the SI is adapted to measure the spatial homogeneity of a

segmented region. It is normalized to produce results in the interval [0,1], with

the lower value associated to the more homogeneous segmentation result. Note

that SIr = 0 corresponds to a perfect segmentation on a textureless image region.

A textureless and uniform region itself is actually a perfect grouping without

any segmentation. This rarely happens in real images with random variations in

intensity and hence one should expect the SIr value to be above zero.

̂SIr(Rn) =

(
1

1 + SIr(Rn)
256

− 0.5

)
× 2 (4.2)

Combining all scores for individual regions, the aggregated frame-wise SI is com-

puted as
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SI(It) =
1

N

N∑
n=1

(SIr(Rn)) (4.3)

where N is the total number of regions in the segmentation result.

Figures 4.1 and 4.2 present the evaluated spatial uniformity scores for sections of

the four test sequences. It can be observed that despite some temporal fluctuations,

most of the SI values of subsequent frames do not deviate much from that of the

initialized segmentation, suggesting spatially coherent results. For the “Table

Tennis” and the “Dog” sequences where there exist more independent motions,

the maximum deviation from the initialized frame amounts to 0.123 and 0.052,

respectively. Due to independent motions, especially significant change in spatial

position, such as the pingpong ball and the hand in the former sequence, tracking

and localization of object boundaries tend to be more difficult over time. Using

the Sobel response, the SI metric measures how well the segmentation results,

the delineation, agree with the observed boundaries (edges) found on the image

itself. The presence of an edge-like feature within a segmented region is penalized.

Hence, it is understood that the performance for sequences with more temporal

activity is lower than the more static ones. Note that for a few frames in the test

sequences except for the “Dog” sequence, the SI values obtained are actually lower

than that of the initialization. This suggests that the temporal propagation and

validation to a certain extent has the self-correcting effect to achieve more spatially

coherent segmentation. Overall, for the four test sequences, the SI scores for

subsequent segmentation are quite close to the initializations, hence demonstrating

the effectiveness of temporal propagation on spatial grouping.
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(a)

(b)

Figure 4.1: (a) and (b) Spatial uniformity ( SI) of frames 1−30 of the “Table
Tennis” Sequence and frames 10−35 of the “Coast Guard” Sequence respec-
tively. The horizontal line marks the SI value of the initialized segmentation.
The majority of the segmentation results have SI values close to that of the
initialized segmentation.
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(a)

(b)

Figure 4.2: (a) and (b) Spatial uniformity ( SI) of frames 50−80 of the “Dog”
Sequence and frames 1−20 of the “Coast Guard” Sequence respectively. The
horizontal line marks the SI value of the initialized segmentation. The major-
ity of the segmentation results have SI values close to that of the initialized
segmentation.
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4.3.2 Independent Motion

As discussed in Section 3.3, the proposed algorithm is designed to handle indepen-

dent motion. Figure 4.3 illustrates a case of fast independent motion. The video

section that was used for testing (frames 1−30 of “Table Tennis” sequence) con-

tains fast independent motion. The pingpong ball bounces up and down and the

human arm, an articulated model, swings back and forth. Traditional approaches

based on motion parameter estimation suffer from their inability to handle fast-

moving objects, while the proposed algorithm is able to track both the pingpong

ball and the arm accurately. In segmenting the pingpong ball in this example, the

proposed algorithm is able to handle fast moving objects that do not overlap if

adjacent frames are superimposed by warping one onto another according to an

affine transformation estimated from SIFT features. As for the human arm, there

is some overlap between the projected and the actual regions upon warping, and

reassignment of region labels is handled by graph aggregation.

4.3.3 Newly Appeared Objects

Newly appeared objects are detected during graph aggregation as “unmerged” re-

gions. Figure 4.4 shows a case where a poster hanging on the wall enters the scene.

The proposed algorithm is able to detect this newly appeared object. Despite its

color similarity to the pingpong ball and the table edge, proximity constraint (only

neighboring subgraphs are merged during pair-wise subgraph grouping) is still able

to identify this object as a new comer. A new label state will be appended to the
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(a) (b)

(c) (d)

Figure 4.3: (a)−(d) Segmentation results of frames 2, 5, 9 and 12 in the “Table
Tennis” sequence by the proposed algorithm. The pingpong ball and human
hand are segmented as independent moving objects. Note that pingpong ball is
correctly associated despite no temporal overlapping after propagation.

existing set of labels L. Segmentation for subsequent frames will carry out with

the updated label set.

The disappearance of existing objects is handled during the graph validation pro-

cess. During later subgraph grouping, the invalidated region belonging to a dis-

appearing object will be pre-grouped into subgraph(s) and merged into its best
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Table 4.1: Average percentage of propagated, validated and new pixels for
frames 1−30 of “Table Tennis” sequence.

Class Propagated(%) Validated(%) New(%)

Table 96.20 85.10 0.20
Ball 98.35 0.29 0
Hand 97.50 12.18 6.57

Table 4.2: Average percentage of propagated, validated and new pixels for
frames 10−35 of “Coast Guard” sequence.

Class Propagated(%) Validated(%) New(%)

Boat 97.50 87.10 0.11
Water 98.35 84.20 5.22
Land 97.21 95.50 5.43

fitting neighbouring labeled subgraph. This graph-based validation and aggre-

gation processes is flexible in the handling of appearance and disappearance of

objects.

4.3.4 Benefit of Temporal Propagation

To highlight the profitable exploitation of temporal redundancy in video segmen-

tation, Table 1 and Table 2 show the average percentage of propagated, validated

and newly appeared pixels for both video sections. Segmentation results of the

major objects in the two sequences are analyzed. For every pair of adjacent frames,

the percentage of propagated, validated and newly appeared pixels for these ma-

jor objects are evaluated. For a sequence of N frames, there are N − 1 adjacent

pairs. The average values are computed over the N −1 results. On comparing the
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(a)

(b)

(c)

Figure 4.4: (a)−(c) Segmentation results for frame 35, 37 and 39 of the “Table
Tennis” sequence. The poster on the wall is successfully detected and segmented
as a newly appeared object.
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percentage of validated pixel labels for both sections, it can be seen that the per-

centage of validated labels for a particular object is more than 84.20% when there

is little or no independent motions as in the case of the “Coast Guard” sequence

(Table 2).

4.4 Relative Segmentation Quality Evaluation

4.4.1 Overall Segmentation Evaluation

To examine the segmentation quality with respect to a reference segmentation, ex-

perimental results are compared by overlaying the segmentation with their man-

ually segmented ground truths. Examples of these ground truths are shown in

Figure 4.5. Figure 4.6 shows the overall segmentation accuracy for frames 1−30

of the “Table Tennis” sequence and that for frames 10−35 of the “Coast Guard”

sequence. This overall segmentation accuracy is defined as,

AC(S) =

sN∑
s=s1

Naccu(s)

Ntotal(s)
(4.4)

where Naccu(s) is the number of correctly labeled pixels in s, and Ntotal(s) is the

number of pixels in s.

Segmentation results are analyzed holistically for sections of the test sequences.

Figures 4.7 and 4.8 show selected segmentation results for sections of the test

sequences. Results for the “Dog” and the “Jumping Girl” sequences are shown
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(a)

(b)

Figure 4.5: (a) Manually segmented ground truth of frame 1 of the “Table
Tennis” sequence; (b) Manually segmented ground-truth of frame 10 of the
“Coast Guard” sequence.
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in Figures 4.9 and 4.10. Without re-initialization, the overall accuracy for the

“Table Tennis” sequence drops from an initial value of 96.35% to the lowest value

of 88.9% as the temporal section approaches its end. Similar results are observed

for the “Coast Guard” sequence, with a maximum drop of 13%. The decline in

segmentation accuracy is due to accumulation of propagation error. The results

shown also reflect a tolerance limit for acceptable deterioration. Temporal graph

validation verifies the predicted pixel labels after propagation, but it does not

guarantee an error-free graph aggregation. Some residual error will still be carried

over to subsequent frames. Empirically, it is found that to limit the temporal

error propagation to within 10%, the maximum propagation time span allowed

is about 20 frames. A re-initialization is required to avoid further accumulation

of propagation error. As previously discussed in Section 3.5, the decision to re-

initialize segmentation can be made based on the percentage of validated pixel

labels, but the rejected pixel labels can also be attributed by large independent

motions. Such a decision is also dependent on the reliability of the validation.
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(a)

(b)

Figure 4.6: Overall segmentation quality: (a) Overall quality for frames 1−30
of the “Table Tennis” sequence. (b) Overall quality for frames 10−35 of the
“Coast Guard” sequence.
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(a) Frame 1 (b) Initialization (16 segments)

(c) Frame 3 (d)

(e) Frame 7 (f)
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(g) Frame 13 (h)

(i) Frame 25 (j)

(k) Frame 30 (l)

Figure 4.7: Selected segmentation results for frames 1−30 in the “Ta-
ble Tennis” sequence. (a),(c),(e),(g),(i) and (k) Frames 1,3,7,13,25 and 30.
(b)Initialized segmentation for frame 1. (d),(f),(h),(j) and (l) Corresponding
segmentation results.
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(a) Frame 10 (b) Initialization (33 segments)

(c) Frame 13 (d)

(e) Frame 19 (f)
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(g) Frame 22 (h)

(i) Frame 27 (j)

(k) Frame 33 (l)

Figure 4.8: Selected segmentation results for frames 10−35 in the “Coast
Guard” sequence: (a),(c),(e),(g),(i) and (k) Frames 10,13,19,22,27 and 33.
(b)Initialized segmentation for frame 10. (d),(f),(h),(j) and (l) Corresponding
segmentation results.
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(a) Frame 50 (b) Initialization (13 segments)

(c) Frame 60 (d)

(e) Frame 63 (f)
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(g) Frame 67 (h)

(i) Frame 70 (j)

(k) Frame 79 (l)

Figure 4.9: Selected segmentation results for frames 50−80 in the “Dog”
sequence: (a),(c),(e),(g),(i) and (k) Frames 50,60,63,67,70 and 79. (b)Initialized
segmentation for frame 50. (d),(f),(h),(j) and (l) Corresponding segmentation
results.
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(a) Frame 1 (b) Initialization (14 segments)

(c) Frame 5 (d)

(e) Frame 15 (f)

(g) Frame 20 (h)

Figure 4.10: Selected segmentation results for frames 1−20 in the “Jumping
Girl” sequence: (a),(c),(e) and (g) Frames 1,5,15 and 20. (b)Initialized segmen-
tation for frame 1. (d),(f) and (h) Corresponding segmentation results.

4.4.2 Comparison against State-of-the-art Video Segmen-

tation

Apart from comparing the segmentation results with the manually segmented

ground truth, they are also compared against benchmark results such as seg-

mentation produced by the COST211 Analysis Model [32] as well as Sifakis’
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algorithm [33, 35]. This comparison caters mainly to the segmentation quality

evaluation of individual objects.

The Cost211 Analysis Model is a collection of image analysis tools which can be

flexibly combined to achieve fully automatic segmentation and tracking of moving

objects in a video sequence. Both scenes with static textured background and

scenes where the background can be described by global motion parameters are

considered. The algorithm proposed by Sifakis et al. adopts statistical and level

set approaches in formulating moving object detection and localization. For the

change detection problem, the inter-frame difference is modelled by a mixture of

two zero-mean Laplacian distributions. Statistical tests using criteria with negligi-

ble error probability are used for labelling as changed or unchanged as many sites

as possible. A multi-label fast marching algorithm was introduced for expanding

competitive regions. The solution of the localization problem is based on the map

of changed pixels previously extracted. The boundary of the moving object is

determined by a level set algorithm. Sifakis’ result serves as a reference for the

segmentation of scenes containing independent moving objects.

As seen in Figure 4.12, the results for the “Table Tennis” sequence produced by

the proposed algorithm compare favorably to the results presented by Sifakis.

In Sifakis’ results, the independently moving pingpong ball and paddle tend to

merge with their neighbouring regions, resulting in inaccurate object boundaries,

especially for frames 20 and 30 (Figures 4.12(h) and (k)). On the other hand,

the proposed segmentation algorithm successfully tracks and segments these inde-

pendent objects by the graph propagation and aggregation. The proposed video
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segmentation algorithm also compares favorably to the Cost211 Analysis Model

which fails to segment out the pingpong ball (Figure 4.12 (i)).

As for the “Coast Guard” sequence, as the Cost211 Analysis Model could not

identify any moving objects for the first 30 frames, the proposed algorithm is only

compared against Sifakis’. The proposed algorithm performs better than Sifakis’,

in terms of segmentation quality of the boat and the water tail. Note that part of

the water tail is cut off in Sifakis’ results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.11: Comparison of segmentation results for the frames 1−30 of the
“Table Tennis” sequence: (a),(d),(g) and (j) Segmentation masks for frames 1,
10, 20 and 30 of the Cost211 Analysis Model; (b),(e),(h) and (k) Corresponding
segmentation results produced by Sifaki et al.; (c),(f),(i) and (l) Corresponding
segmentation results produced by the proposed graph-based algorithm. The
Cost211 results lost track on the pingpong ball for frame 20 (g).



Chapter 4. Experiment 76

(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Comparison of segmentation results for the frames 10−35 of the
“Table Tennis” sequence: (a),(e) and (e) Segmentation masks for frames 10, 20
and 30 presented by Sifakis; (b),(d) and (f) Corresponding segmentation results
produced by the proposed algorithm. The Cost211 Analysis Model could not
identify any moving objects for the first 30 frames of the sequence, hence results
are not available.
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Future Work and Conclusions

In this work, an efficient algorithm is proposed to gain leverage on temporal re-

dundancy in video sequences. The proposed algorithm exploits the inter-frame

correlation to propagate trust-worthy grouping from the previous frame to the

current. A preceding graph is constructed and labeled for the previous frame. It

is temporally propagated to the current frame, validated by the similarity mea-

sures, and spatially aggregated for the final grouping. In doing so, one can retain

maximally the propagated segmentation results and hence lessen the computa-

tional burden of re-segmenting every frame. Experimental results demonstrated

the proposed algorithm’s strength in handling fast independent motion and ap-

pearance of new objects through graph validation and aggregation processes. To

evaluation the performance of the proposed video segmentation algorithm, both

standalone and relative methodologies were adopted. Results show that, for the

standalone evaluation, the proposed graph propagation and aggregation method

77
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is able to preserve spatial uniformity. For the relative comparison, an overall seg-

mentation evaluation based on manually segmented ground truth suggests that

the segmentation accuracy declines over time due to accumulation of propagation

error, but a re-initialization can be easily incorporated to tackle this problem.

Results of the proposed algorithm also compare favorably to benchmark results

which include segmentation by the COST211 Analysis Model and that produced

by Sifakis et al., especially in the handling of fast moving and independent moving

objects.

The current algorithm validates pixel labels based on color information and it

may not be sufficient to handle lighting variations. For future work, a more robust

subgraph validation approach is aimed to be achieved, such as correlation matching

which considers multiple low-level cues in a local neighbourhood on top of the

currently adopted color similarity check. In addition, an automatic scheme to re-

initialize the segmentation output to minimize propagation error is also desirable.

The percentage of validated pixel labels may not be a reliable indicator for re-

initialization because large independent motions can also cause a significant drop

in this measure. In the presence of large independent motion or abrupt motion,

one has to strike a balance between temporal correlation (when correlation is low

for some objects) and spatial coherence (re-initialization) to avoid compromising

region label consistency.

The proposed video segmentation algorithm has a wide range of potential ap-

plications. It is applicable for content-based video coding or compression, or a

content-based multimedia application such as video object querying. The generic
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segmentation algorithm can also be made more task-specific by incorporating prior

knowledge for tasks such as target object segmentation and background/fore-

ground modelling.



Appendix A

Mathematical Models

A.1 Markov Random Field (MRF)

Consider a set of random variable X = X1, X2, · · · , Xn defined on the set S,

such that, each variable Xi can take a value xi from the set L = l1, l2, · · · , ln of

all possible values. Then X is said to be a MRF with respect to a neighbour-

hood system N = {Ni|i ∈ S} if and only if it satisfies the positivity property

P (x) > 0, and Markovian property P (xi|xS−i) = P (xi|xNi
), ∀i ∈ S. Let P (x)

represent P (X = x) and P (xi) represent P (Xi = xi). Refer to the joint event

(X1 = x1, · · · , Xn = xn) as X = x where x = {xi|i ∈ S} is a configuration of

X corresponding to a realization of the field. The MRF-MAP estimation can be

formulated as an energy minimization problem where the energy corresponding to

the configuration x is the negative log likelihood of the joint posterior probability

of the MRF and is defined as
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E(x) = −logP (x|D) (A.1)

where D is the observation (such as pixel intensities).

A.1.1 MRF for Image Segmentation

In the context of image segmentation, S corresponds to the set of all image pixels,

N is a neighbourhood defined on this set, the set L comprises of labels representing

the different image segments, and the random variables in the set X denote the

labelling of the pixels in the image. Note that every configuration x of the MRF

defines a segmentation. The image segmentation problem can thus be solved by

finding the least energy configuration of the MRF. The energy corresponding to a

configuration x consists of a likelihood and a prior term as

Ψ1(x) =
∑
i∈S

(
φ(D|xi) +

∑
j∈Ni

ψ(xi, xj)

)
+ const (A.2)

where φ(D|xi) is the log likelihood which imposes individual penalties for assigning

label li to pixel i and is given by

φ(D|xi) = − logP (i ∈ Sk|Hk) if xi = lk (A.3)

where Hk is the RGB distribution for Sk, the segment denoted by lk. Here, P (i ∈

Sk|Hk) = P (Ii|Hk), where Ii is the color intensity of the pixel i. The prior ψ(xi, xj)
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takes the form of a Generalized Potts model

ψ(xi, xj) =


Kij if xi 6= xj

0 if xi = xj

(A.4)

In MRFs used for image segmentation, a contrast term is added which favours

pixels with similar color having the same labels. This is incorporated in the energy

function by reducing the cost within the Potts model for two labels being different

in proportion to the difference in intensities of their corresponding pixels.

A.2 Max-flow/Min-cut Algorithm

One of the fundamental results in combinatorial optimization is that the minimum

s-t cut problem can be solved by finding a maximum flow from the sources s to

sink t. The theorem of Ford and Fulkerson [15] states that a maximum flow from s

to t saturates a set of edges in the graph dividing the nodes into two disjoint parts

S, T , corresponding to a minimum cut. Thus min-cut and max-flow problems are

equivalent.

Theorem A.1. (Max-flow Min-cut Theorem) In every network, the maximum

value of a feasible flow equals the minimum capacity of a source/sink cut.
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A.2.1 Ford−Fulkerson Algorithm

The Ford−Fulkerson Algorithm computes the maximum flow in a flow network.

As long as there is a path from the source (start node) to the sink (end node),

with available capacity on all edges in the path, flow is sent along one of these

paths. Then another path is sought, and so on. A path with available capacity is

called an augmenting path. The detailed algorithm is as follows.

Algorithm A.1.(Ford−Fulkerson Labelling Algorithm)

Input: A feasible flow f in a network

Output: An f -augmenting path or a cut with capacity val(f)

Idea: Find the nodes reachable from s by paths with positive tolerance. Reaching

t completes an f -augmenting path. during the search, R is the set of nodes labelled

Reached, and S is the subset of R labelled Searched.

Initialization: R = s, S = ∅

For each existing edge vw with f(vw) < c(vw) and w 6∈ R, add w to R.

For each entering edge uv with f(uv) > 0 and u 6∈ R, add u to R Label each

vertex added to R as “reached”, and record v as the vertex reaching it. After

exploring all edges at v, add v to S.

If the sink t has been reached (put in R), then trace the path reaching t to report

an f -augmenting path and terminate. If R = S, then return the cut [S,S] and

terminate. Otherwise, iterate.
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