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ABSTRACT 

Neutro-Connectedness Theory, Algorithms and Applications 

by 

Min Xian, Doctor of Philosophy 

Utah State University, 2017 

 

Major Professor: Heng-Da Cheng, Ph.D. 
Department: Computer Science 
 

Connectedness is an important topological property and has been widely studied 

in digital topology. However, three main challenges exist in applying connectedness to 

solve real world problems: (1) the definitions of connectedness based on the classic and 

fuzzy logic cannot model the “hidden factors” that could influence our decision-making; 

(2) these definitions are too general to be applied to solve complex problem; and (4) 

many measurements of connectedness are heavily dependent on the shape (spatial 

distribution of vertices) of the graph and violate the intuitive idea of connectedness. 

This research focused on solving these challenges by redesigning the 

connectedness theory, developing fast algorithms for connectedness computation, and 

applying the newly proposed theory and algorithms to solve challenges in real problems. 

The newly proposed Neutro-Connectedness (NC) generalizes the conventional 

definitions of connectedness and can model uncertainty and describe the part and the 

whole relationship. By applying the dynamic programming strategy, a fast algorithm was 

proposed to calculate NC for general dataset. It is not just calculating NC map, and the 
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output NC forest can discover a dataset’s topological structure regarding connectedness. 

In the first application, interactive image segmentation, two approaches were 

proposed to solve the two most difficult challenges: user interaction-dependence and 

intense interaction. The first approach, named NC-Cut, models global topologic property 

among image regions and reduces the dependence of segmentation performance on the 

appearance models generated by user interactions. It is less sensitive to the initial region 

of interest (ROI) than four state-of-the-art ROI-based methods. The second approach, 

named EISeg, provides user with visual clues to guide the interacting process based on 

NC.  It reduces user interaction greatly by guiding user to where interacting can produce 

the best segmentation results. 

In the second application, NC was utilized to solve the challenge of weak 

boundary problem in breast ultrasound image segmentation. The approach can model the 

indeterminacy resulted from weak boundaries better than fuzzy connectedness, and 

achieved more accurate and robust result on our dataset with 131 breast tumor cases. 

 (100 pages) 
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PUBLIC ABSTRACT 

Neutro-Connectedness Theory, Algorithms and Applications 

 

Min Xian 

 
Connectedness plays an important role in human cognitive and learning activities. 

Human vision system is very sensitive to the connectedness property of objects and 

effective in “calculating” the property. The study of connectedness will help us explore 

the way of human brain extracting the global properties of objects, and enable different 

avenues to design new artificial intelligent (AI) systems with better performances. 

However, connectedness is rarely considered in current AI systems because of the 

lack of complete theoretic system and efficient computation algorithm. In this work, I 

focus on building the connectedness theory and algorithms in digital space, and apply 

them to solve many challenging problems in natural image and low-quality biomedical 

image segmentation. 

The newly proposed Neutro-Connectedness (NC) theory makes it possible to 

describe the part and the whole relationship and to model the “hidden factors” 

influencing the decision-making. By applying the dynamic programming strategy, a fast 

algorithm is proposed to calculate NC for general dataset. It calculates the NC map, and 

also outputs the NC forest to discover the topological structure of a dataset. The power of 

NC is demonstrated by applying it to solve two challenging applications: interactive 

image segmentation (IIS) and breast ultrasound image segmentation (BUSIS).   
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Connectedness is an important topological property meaning, in an intuitive sense, 

“all one piece”. In conventional definition, connectedness describes two states of a mathe-

matic object: if we say an object has the property of connectedness, each component of the 

object must be connected with all other components; otherwise at least one component is 

disconnected to other components.   

Connectedness is mostly discussed in topology. It is one of the main topological 

properties utilized to distinguish different topological spaces. In topology, if we say a top-

ological space has the property of connectedness if and only if it cannot be partitioned into 

two disjoint nonempty open sets, otherwise it does not have the property of connectedness. 

There are two definitions associated with topological connectedness: path connectedness 

and local connectedness. 

Path connectedness is stronger than the definition of connectedness. For every pair 

of points in a topological space, it requires a path between any two points in the topological 

space. For example, subsets of R2 space are connected if and only if they are path-con-

nected, which means that we can draw a path between any two points in the space. Local 

connectedness: if a space X is called locally connected if for each point x ∈ X and, for its 

neighborhood N, there exists an open set U that x ∈ U ⊂ . If U is path connected, X can 

be said to be locally path connected. A locally path connected space is locally connected. 

Path connectedness and connectedness describe a space as a whole and are the 

global properties of a space. Local connectedness and local path connectedness are utilized 
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to describe the local properties of a space. Generally, global connectedness cannot guaran-

tee local connectedness, and vice-versa. For example, let X = (0.1, 0.5) ∪ (0.5, 1]; X does 

not have the properties of connectedness and path connectedness, but X is locally con-

nected and locally path connected. 

Within the context of graph theory, a graph is called connected (has the property of 

connectedness) if every two vertices are joined by a path in the graph. The definition is the 

same with path connectedness in topology. A measure of connectedness, named clustering 

coefficient is proposed in graph theory. It measures the degree to which nodes in a graph 

tend to cluster together and has been defined both locally and globally. The global cluster-

ing coefficient gives an overall measurement of a graph, while the local version was de-

signed to quantify the embeddedness of single nodes.  

The global clustering coefficient is based on the triplets of graph vertices and de-

fined by 

=
∑
∑

                                                                      (1) 

where ∑  is the total number connected triplets and ∑  is the number of closed triplets 

(3 × number of triangles); a connected triplet is defined to be a connected subgraph with 

three vertices and two edges. Opsahl et al. [1] proposed a generalization to weighted net-

works, in which the global clustering coefficient is defined as the total weights of all closed 

triplets over the total weights of all connected triplets. 

Let Ni be a set containing all the neighbors a vertex vi, and ki be the number of 

vertices of Ni; the local clustering coefficient [2] for directed graphs is given as 
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=
∑

( − 1)
                                                                      (2) 

where ∑  is the number of edges between the vertices in Ni. For undirected graphs, the 

local clustering coefficient is defined as 2 . 

The term connectivity has intuitive similarity with connectedness. In graph theory, 

the connectivity of a graph is the minimum number of vertices that should be removed to 

create a disconnected graph; for example, if a graph is 4-connected, we must remove four 

vertices to disconnect it.  

Topological properties play an important role in human understanding of the envi-

ronment due to the high sensitivity of human visual system to global topological properties 

[3]. As an important topological property, connectedness is utilized as a criterion of unity 

and can be compute by our visual system effectively [4], which has inspired the solutions 

of many tasks in image segmentation, object detection, visual saliency estimation, biomed-

ical image analysis, data clustering, topological data analysis, etc.   

However, both theoretic and practical challenges exist in applying connectedness 

to solve real world problems: (1) in topology, the definitions of connectedness are based 

on classic logic (connected or disconnected); these definitions cannot handle real world 

problems with uncertainty issue; (2) the connectedness definitions in topology are too 

general and no guideline exists to discuss how to design quantitative measurement; (3) in 

graph theory, the global and local clustering coefficients could be applied to measure the 

degree of connectedness; however, the two measure view a graph or the neighbors of a 

vertex as a whole, they cannot describe and measure the relationship between the part and 

the whole; (4) the local and global clustering coefficients are heavily dependent on the 
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shape (spatial distribution of vertices) of the graph. 

To solve these challenges mentioned above, the author conducted research in the 

following three topics: 

(1) Redesign the theory of connectedness to make it have the ability of modelling 

uncertainty and describe the part and the whole relationship; both the degree of 

connectedness and the confidence of the connectedness are introduced in the 

newly proposed Neutro-Connectedness (NC) theory; 

(2) Design fast algorithm to compute NC; and 

(3) Apply NC to model data topology and solve challenges in real problems such 

as interactive image segmentation, breast tumor detection, and visual saliency 

estimation.  

1.2 Related Work 

Connectedness of topological and digital spaces has been widely studied and ob-

tained popularity in digital image processing. 

1.2.1 Rosenfeld’s Fuzzy Connectedness 

 Fuzzy connectedness (FC) is the first extension of the original definitions of con-

nectedness and redefines connectedness by using the idea of fuzzy set/subset and fuzzy 

relationship.  The first definition of fuzzy connectedness was given in [5] by Rosenfeld in 

1979.  Rosenfeld [5] generalized the topological concepts such as connectedness and sur-

roundings to fuzzy subsets on 2D space. 

Let Σ  be a two-dimensional array of integer coordinate points,  = {( , ( ) ∈
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[0, 1])|  ∈ Σ }  be a fuzzy subset of Σ and = ( = , , ⋯ , = )  be any path be-

tween points p and q; the strength of  [5] is defined by  

( ) =  min
,⋯,

( )                                                        (3) 

In Eq. (3), ( ) defines as the weakest membership values of all points along 

the path ; and the degree of connectedness (FC) of points p and q is given by 

( , ) =  max
∈ℙ

 ( )                                                       (4) 

where ℙ is a set consisting of all paths between points p and q; and ( , ) uses the strong-

est path to define the FC between two points. For and subset ⊆ Σ , the FC of T is defined 

by 

( ) = min
, ∈  

( , )                                                      (5) 

 Rosenfeld [5] also discussed three important properties of FC:  

(1) ( , ) =  ( ), ( , ) = ( , ) 

(2) ( , ) ≤ min ( ), ( )    

(3) ( ) ≤ min
∈

( ) 

The above three properties are quite useful in designing algorithms to calculate FC 

and Eqs. (3), (4) and (5) offer the base for almost all variants of FC definitions. Several 

drawbacks exist in Rosenfeld’s FC: 

(1) The FC is build based on the fuzzy set concept, for a specific task, researcher 

need to have domain related knowledge to define the membership function; this 

is possible in applications in which we could know what objects we are dealing 

with; however, in many applications such as interactive image segmentation, 
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we have no clue about what user could like to segment out from an image; 

therefore, it is impossible to pre-design any membership function for the task. 

(2) In [5], two points p and q are said to be connected if  ( , ) =

min ( ), ( ) .  This definition implies that all membership values along the 

strongest path should be greater than or equal to min ( ), ( ) . This defini-

tion is too strong and cannot handle noisy data well. 

(3) No algorithm was proposed to calculate the FC. 

1.2.2 Chen’s Fuzzy subfiber and Fuzzy Connectedness 

Chen et al. [6] proposed the fuzzy subfiber and extended the FC definitions to deal 

with tasks of multi-dimensional space. Let Σ  be a N-dimensional digital space; an (N, n) 

subfiber is defined by 

= , ( )  : Σ → [0,1] ,  ∈ Σ }                                              (6)  

 In Eq. (6), f defines a N-to-n mapping; when N = 2, and n = 1, Sc is the Rosenfeld’s 

2D fuzzy subset. 

 The definition of FC in [6] follows the basic idea of Rosenfeld’s FC ( ): the 

strength of a path is determined by the weakest point along the path and the degree of 

connectedness of any two points is determined by the strongest path between the two 

points. However, Chen et al. [6] did not define FC by using the membership values (f), but 

by using a newly proposed function named adjacency function. The function defines the 

degree of adjacency between two points: 

( , ) =  
( ), ( ) ,  and  are adjacent

0,                  otherwise
                           (7) 
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 In Eq. (7), E measures the similarity of two vectors and outputs a scalar in [0, 1]; E 

should satisfy E(p, p) = 1 and E(p, q) = E(q, p). Two examples E were given in [6]: 

( ( ), ( )) =  1 −  
‖ ( ) − ( )‖

‖ ( )‖ +  ‖ ( )‖
, ‖ ( )‖ + ‖ ( )‖ ≠ 0

1,                     otherwise
          (8) 

( ( ), ( )) =  1 −  
‖ ( ) − ( )‖

max
, ∈

{‖ ( ) − ( )‖}
                                  (9) 

The strength of a path = ( = , , ⋯ , = )  in [6] is defined by 

( ) = min
,⋯,

( , )                                              (10) 

and the degree of connectedness of any two points p and q is given as 

( , ) =  max
∈ℙ

 ( )                                                     (11) 

where ℙ is a set consisting of all paths between points p and q. 

The new definition in [6] extends the ability of FC to handle high-dimensional data; 

and because f(p) could be feature vector of point p, which makes  and  less dependent 

on the domain-related knowledge. The drawback of [6] is that no effective algorithm was 

proposed to calculate .   

Udupa et al. [7, 8] designed algorithms of FC to solve tasks such as object extrac-

tion, image segmentation and classification. 

1.2.3 Fuzzy Aggregated Connectedness (FACT) 

He et al. [9] stated that always choosing the best (strongest) path to calculate the 

FC makes FC sensitive to noise; and the crisp decision of preserving or discarding a path 

violated the concept of fuzzy sets; therefore, they proposed the fuzzy aggregated 

connectedness (FACT) for image segmentation by using a group of paths to calculate FC. 
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Let f(p) be the feature vector of point p and Ah ∈ [0, 1] be the feature similarity of two 

adjacent points, He et al. defined the strength of a path = ( = , , ⋯ , = ) by 

( ) = ( , )                                             (12) 

( ) is calculated by multiplying all Ah values along the path  ; only when all the 

data points along the path located closely along the path in the feature space, the strength 

of path  could be large. The FACT was defined by 

( , ) =
( )

(ℙ )
∈ℙ

⁄

                                                 (13) 

where ℙ  is a set containing all the paths between points p and q, (ℙ ) is the cardi-

nal number of set ℙ , and l = |px - qx| + |py - qy| is the length of the paths in ℙ ; ( , ) 

only considers the paths with length l in a local region bounded by p and q.  

 Three problems exist in the definition of FACT: (1) the strength of a path ( ) is 

determined by the smallest value in Ah (Ah ∈ [0, 1] and ( )  ≤ min { ( , )}); and 

the chain-multiplication makes the calculation of FACT computational-intensive; (2) 

( ) is sensitive the length of a path; if Ah ∈ (0, 1), the strength of longer path is always 

smaller than the strength of a shorter path. This idea is quite different to the original defi-

nitions in [5] and [6]; and (3)  considers all the paths in a local region, which has no 

problem for objects or image regions with convex shapes; however, it cannot deal with 

regions with nonconvex shapes. 

He et al. [9] applied FACT for image segmentation. However, no detail and analysis 
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of the algorithm performance were reported; and only two images were applied for evalu-

ation. 

1.2.4 Connectivity 

Connectedness has been widely employed in image segmentation [6-8, 10, 11]. In 

classic logic, the connectedness between any pair of elements is defined as whether there 

exists a path between them (path connectedness). In fuzzy logic, FC is defined as the degree 

of connectedness between two elements. In [10], an interactive segmentation method based 

on FC [6, 7] and Graph cuts [12] was proposed. In digital topology, connectivity defines 

the condition of adjacency between points, which is similar to the connectedness defined 

on classic logic. Connectivity [13, 14] is usually employed to solve the “shrinking bias” 

problem in Graph cuts. The connectivity constraint is usually formulated using a shortest 

geodesic path tree computed by Dijkstra’s algorithm, and user only utilize a point or a 

region as the root node. However, the method cannot achieve good performance for seg-

menting objects with complicated appearance. The geodesic distance accumulates the dis-

tances between adjacent nodes along the shortest path [13, 14]. On a path, the farther a 

node from the source, the larger distance the node has. The connectedness is a global to-

pology property independent of the length of the path. Therefore, the geodesic distance is 

not suitable for defining connectedness.  

1.3 Outline 

In this dissertation, I will present my work in Neutro-Connectedness (NC) theory, 

algorithms, and how to apply NC to solve many challenging problems in interactive image 

segmentation and breast tumor segmentation. 
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In Chapter 2, the newly proposed Neutro-Connectedness (NC) theory and its prop-

erties are presented and discussed; the new definitions of NC introduce a new domain, 

named the confidence of connectedness, to model the indeterminacy of connectedness. 

With the additional domain, NC is capable of dealing with more complex problems, e.g., 

low quality image segmentation, and noisy data analysis. A general fast algorithm for NC 

computation is also given in this section; the algorithm can output NC map (matrix) and 

the structure of connectedness (NC forest) at the same time. In Chapters 3 and 4, two algo-

rithms, NC-Cut and EISeg, are presented. The two algorithms are designed to improve the 

robustness of interactive image segmentation (IIS) to user interactions by applying NC. In 

NC-Cut, we generalize the Neutro-Connectedness (NC) to be independent of top-down 

priors of objects and to model image topology with indeterminacy measurement on image 

regions and put forward a hybrid interactive segmentation method which utilizes both 

pixel-wise appearance information and region-based NC properties. The effective interac-

tive segmentation (EISeg) method provides user with objective visual clues for guiding 

interactions by using NC map and NC forest; The experiments demonstrate that the pro-

posed EISeg method guides interaction effectively, and achieves better results with much 

less user interaction than state-of-the-art approaches.  In Chapter 5, a new breast tumor 

detection algorithm is proposed by modeling tumor structure using NC. Much progress has 

been made on applying fuzzy connectedness to segment objects from low quality images. 

However, the fuzzy connectedness method still has difficult in segmenting objects with 

weak boundaries. In the chapter, we apply NC to model the inherent uncertainty and inde-

terminacy of the spatial topological properties of the image. In Chapter 6, the conclusion 

and my future work are discussed. 
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CHAPTER 2 

NEUTRO-CONNECTEDNESS THEORY AND ALGORITHM 

2.1 Basic Idea 

As discussed in section 1.2, the connectedness theory is built on the concept of 

fuzzy set/subset and fuzzy connectedness is the most fundamental and popular way of de-

fining the degree of connectedness in digital space. However, the classical “Reviewers’ 

Problem” [11] shows that some tasks cannot be solved by fuzzy set-based approaches: two 

reviewers (A and B) rank a paper with memberships μA and μB. Assume that μA = μB = 0.8, 

and they have different background qualifications. Although they give the same member-

ship, the two membership values will have different effects on the paper decision. This 

problem reveals that, besides the membership, some factors may also influence the final 

decision, e.g., a reviewer’s academic background and paper reviewing history. 

The message we can take from the “Reviewers’ Problem” is that some hidden 

factors behind the membership functions could play an important role in decision making; 

and in defining the degree of connectedness, we should consider the “hidden factors”, e.g., 

signal noise ratio (SNR), local homogeneity, and outliers. Therefore, we generalize the 

theory of FC by proposing the Neutro-Connectedness theory which has one additional do-

main, confidence of connectedness, utilized to model the “hidden factors”.  

2.2 Neutro-Connectedness Theory 

We propose Neutro-connectedness (NC) first in [16], and applied to solve the weak 

boundary problem in breast ultrasound (BUS) image segmentation. The NC in [16] is a 

top-down method based on the priori information of the object and background. In this 
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section, we will generalize the NC definition in [16] to make it independent of the top-

down priors of objects.  

In NC, the fuzzy set/subset concept is extended to contain two domains. As dis-

cussed in section 1.2, Rosenfeld [5] proposed the concept of 2D fuzzy subset and related 

methods on grayscale image. L. Chen et al. [6] extended the 2D fuzzy subset to handle the 

spatial uncertainty in multidimensional data by introducing the concept of fuzzy subfiber. 

Based on the membership function, the above two methods could model the imprecision 

of the data; however, both of the approaches did not take the “hidden factors” into consid-

eration. 

2.2.1 Neutro-Subset and Its Operations 

Definition 1: Let U be a universe of discourse, a Neutro-Subset is defined by  

= , ( ), ( )  ∈ U}                                         (14) 

where p is an arbitrary N-dimensional data point in U, and T and C defines the degree of 

connectedness and confidence of connectedness, respectively. T and C could be n-dimen-

sional vectors ([0, 1] ), when C(p) = [0]n, ∀  ∈ U, the Neutro-Subset becomes the fuzzy 

subfiber; and if  N = 2, n = 1 and C(p) = [0]n, ∀  ∈ U,  it becomes the fuzzy subset. 

 In Eq. (14), every T value in the Neutro-Subset is associated with a C value to show 

the confidence of the T value, and the additional C values gives the ability of Neutro-Subset 

to carry more information. Fuzzy subset and fuzzy subfiber become special cases of the 

Neutro-Subset. 

 Define two Neutro-Subsets = , ( ), ( )  ∈ U} and =
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 , ( ), ( )  ∈ U} on U. Basic set operations of union, intersection and com-

plement are defined as follows. 

Union  ∪ =  , ≽ ( ), ( ), ( ), ( )    ∈ U}                (15) 

Intersection  ∩ =  , ≼ ( ), ( ), ( ), ( )    ∈ U}            (16) 

Complement  ̅ =  {( , (1 − ( ), ( ))) | ∈ U}                       (17) 

In Eq. (15), operators ≽ and ≼ define two partial relations; ≽( , , , ) outputs 

(a, b) if and only if >  or ( =  and ≥ ); otherwise, outputs (c, d). ≼( , , , ) 

outputs (a, b) if and only if <  or ( =  and ≤ ); otherwise, outputs (c, d). 

Because fuzzy set is a special case of Neutro-Subset holds all the properties of fuzzy 

set such as commutativity, associativity, distributivity, Idempotency, etc. 

2.2.2 NC Definitions and Propositions 

Definition 2: Let ℧ be the set of all data points, and Zi be the ith path between two 

points in ℧. The strength of the path Zi is defined by                 

( ) = Π ( ), Π ( )

= ( , , ⋯ , ), ∈ ℧, = 1,2, ⋯ , L
                                    (18) 

where L is the number of points on Zi, and zk denotes the kth point, Π ( ) and Π ( ) rep-

resent the degree and confidence of the connectedness of path Zi, respectively. They are 

defined as follows. 

Π ( ) =  , ∈ ℕ , , ∈                   (19) 

Π ( ) =  , ∈ ℕ , , ∈                 (20) 

In Eqs. (19) and (20), we use ℕ( ) to represent the set of all neighbors of point , 
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 to represent the strength of connectedness between two adjacent points, and  to rep-

resent the confidence of the connectedness;  and  must satisfy  

( , ) = ( , ) = 1 

( , ) = ( , ) and  ( , ) =   ( , )                     (21) 

An example of   and  could be defined as follows. 

 ( , ) =
‖ ( ) ( )‖

                                                      (22) 

 ( , ) = min{ℎ( ), ℎ( )}                                                  (23) 

In Eqs. (22) and (23) m(p) and m(q) are feature vectors of p and q, respectively; h(∙) 

is the degree of confidence of a data point by calculating its local properties. Eq. (22) pe-

nalizes the feature discontinuity between p and q: if | ( ) − ( )| < , Eq. (22) penalizes 

more; otherwise less. ℎ could be defined as the degree of homogeneity of the a local region. 

Definition 3: Let ℤ be the set of all the paths between p and q in set ℧. The Neutro-

Connectedness between p and q, ( , ), is defined as. 

( , ) = ( , ) = ( ) , ∈ ℤ,

∀ ∈ ℤ, 〈Π ( ), Π ( )〉 ≼ 〈Π ( ), Π ( ) 〉
                               (24) 

In Eq. (24), Zd is the path with the strongest connectedness between p and q in set ℤ; 

T and C are the corresponding degrees and confidence of connectedness between p and q, 

respectively; the operator ≼ denotes a lexicographical order relation. All the four operators 

≼, ≺, ≽ and ≻ used in the dissertation are defined by 

〈 , 〉 ≼ 〈 ,  〉  ⟺  <  or ( =  and ≤ )                         

〈 , 〉 ≺ 〈 ,  〉  ⟺  <  or ( =  and < )                         

〈 , 〉 ≽ 〈 ,  〉  ⟺  >  or ( =  and ≥ )                         
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〈 , 〉 ≻ 〈 ,  〉  ⟺  >  or ( =  and > )               (25) 

 Proposition 1: ∀ , ∈ U, and let  and  be defined as Eqs. (22) and (23), re-

spectively, we have NC(p, p) = (1, h(p)) NC(q, q) = (1, h(q)) and NC(p, q) = NC(q, p). 

Proof According to constraints of Eqs. (22) and (23), we have ( , ) =

( , ) = 1 and ( , ) = ℎ( )and ( , ) = ℎ( ). Let = ( ) be a path with only 

a single point, the strength of the path ( ) is 1, ℎ( ) . For any path =

( = , , ⋯ , = ) and n>1, we have that Π ( ) ≤ 1 and Π ( ) =

min  {ℎ( )} ≤ ℎ( ) . Then we have ( ) = 1, ℎ( ) ≽ Π ( ), Π ( ) =

( ) and so that NC(p, p) = (1, h(p)). We can also prove that NC(q, q) = (1, h(q)) in 

the same way. 

Let = ( = , , ⋯ , = ) be the strongest path from p to q, and we have that 

NC(p, q) = NCpath( ). For the inverse path of  from q to p, NCpath( ) = NCpath( ) be-

cause of Eqs. (19-21). Now we assume that a path ′ ≠ exists from q to p and NC(q, p) 

= NCpath( ). Then we have that NCpath( )≽ ℎ( )= NCpath( ), which contradicts 

with the assumption that  be the strongest path from p to q. 

Proposition 2: ∀ , , ∈ U, ( , ) ≻ (0, 0)  and ( , ) ≻ (0,0) , we have 

that ( , ) ≻ 0. 

Proof  Let  be the strongest path from p to q and  be the strongest path be-

tween q and r, we have that ( , ) = ≻ (0, 0)  and ( , ) =

≻ (0, 0) . We link the two paths  and  and create a path =

( , ), then we have that = , ≻ (0, 0) 
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and ( , ) ≽ ≻ (0, 0). 

Proposition 3: ∀ , ∈ U, if ( , ) = ( , ), we have  ( , ) ≼ ( , ), 

( , ) ≼ ( , ). 

Proof  As proved in Proposition 1, we have that ( , ) = (1, ℎ( ))  and , 

( , ) = 1, ℎ( ) . Let = ( = , , ⋯ , = ) be the strongest path from p to q, 

we have that ( , ) = (Π ( ), Π ( )) . Because Π ( ) ≤ 1  and Π ( ) =

min  {ℎ( )} ≤ ℎ( ), so we have  ( , ) ≼ ( , ). Similarly, we can prove that 

( , ) ≼ ( , ). 

Proposition 4: Let = ( = , , ⋯ , = ) be a path from point p to q such 

that ( , ) = ( ) ; and for any i and j such that 1 ≤ ≤ ≤ , let =

( , , ⋯ , ) be any subpath of . Then , = . 

Proof  Because that ( , ) = ( ),  is the strongest path from i to j . We 

can divide  into three parts: ,  and , then we have that ( ) =

min ( ), , . Now we assume that a path ≠   ex-

ists from i to j with , = . Then we have ≥  

and a new path , ,  whose strength min { ( ), , 

} ≥ ( ), which contradicts the assumption that  is the strongest path 

from i to j. 

2.3 General Algorithms for NC Computation 

We have proposed the NC computation algorithm for image regions in our previous 

work [16]. In this section, we extend the original algorithm and propose NC computation 
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algorithms for general dataset analysis. According to Proposition 4, the NC computation 

problem exhibits optimal substructure and overlap subproblems, so we could apply the 

dynamic programming strategy to design the NC computation algorithm. We propose a NC 

computation algorithm (Algorithm 2.1) which outputs NC quite fast; moreover, Algorithm 

2.1 generates the NC forest to explore the topological structure of NC.  

As shown in Definitions 2 and 3, the NC value between two data points is defined 

as a two-tuple (T, C). Algorithm 2.1 computes the NC values between every data point and 

the target point x, AT and AC are two sparse matrices; AT saves the similarity between 

every pair of adjacent points calculated by using Eq. (22); AC saves the confidence of 

connectedness (Eq. (23)) of every pair of adjacent points; (Tr, Cr) is the NC between the 

rth data point and data point x; and prer and rtr denote the parent and root node of node r, 

respectively. 

Algorithm 2.1: Neutro-Connectedness Computation 
Inputs: data point , AT =  [  ( , )] ×  and AC =  [  ( , )] ×  
Outputs: {( , )} =1, NCF = {( , )}

=1
 

 
1: Initialization: ( , ) = (0, 0), = 1,2, ⋯ , , ( , ) = (1, 1)   
                              = ,  =                                
                                Put  into a queue  
 
2: Extract the point  with the strongest connectedness to  on  according to ≽  
3: For each point  adjecent to  

             if 〈 , 〉 ≺ 〈 , AT( , ) , , AC( , ) 〉 then 

                     = , AT( , )  and =  , AC( , )  

                        = ,  =   
                     Insert  to  
 4: Repeat steps 2 and 3 until  is empty. 
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There are three main steps in Algorithm 2.1. In the initialization step (step 1), we 

set NC of the target point x to (1, 1) and its parent node (and root node) is itself; and set the 

NC values of all other points to (0, 0); and we create a priority queue Q to save data points 

which will be calculated in the next steps; Q is initialized by using the target point x and 

will be updated in steps 2 and 3. Note that x could be single point or a set of data points 

In step 2, every time the point p with the strongest connectedness to point x is ex-

tracted from Q based on the ≽ operator defined in Eq. (25). Because Q is designed as a 

priority queue, so time complexity of the extraction is only O(1). In step 3, the NC values, 

parent nodes and root nodes of point p’s neighbors are updated; and the newly updated 

point is added into the Q. Algorithm 2.1 repeats steps 2 and 3 until Q is empty. 

The time and space complexities: the time complexity of Algorithm 2.1 depends on 

how to implement queue Q. In the first case, if we maintain Q as an array, both the exaction 

operation in step s and the insertion operation in step 3 take O(N) time, and the total time 

of Algorithm 2.1 is O(N2).  Q can be implemented by using max-priority queue, then the 

insertion operation takes O(logN), then the total time is O(NlogN). Since AT and AC are 

both sparse matrices, the space complexity of Algorithm 2.1 is O(N). Algorithm 2.1 is a 

modified version of Dijkstra’s method and the best time complexity can be linear [40].  The 

image foresting transform (IFT) [28] generates spanning forest for image, which is similar 

to NCF generation process in Algorithm 2.1, and a superpixel implementation of the IFT 

can be found in [40]; nevertheless, there are two main differences between NCF and IFT: 

first, the fundamental concept for constructing NCF is taking both the degree and confi-
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dence of connectednesses into consideration, while IFT constructs spanning forests by se-

lecting the path with the minimum path cost. Second, in the case of ties (two paths with 

same T value), IFT follows the last-in-first-out (LIFO) queue policy to break ties; Algo-

rithm 2.1 introduces the lexicographical order relation of (T, C) to determine the best path. 

Fig. 2.1 shows an example of NC computation of a synthetic image with nine re-

gions falling into two categories: dark regions (1, 2, 3, 5, and 6) and light regions (4, 7, 8, 

and 9). Note that region 8 is an inhomogeneous region with Gaussian noise. The fourth and 

eighth regions are the seed regions (x = {4, 8}). Fig. 2.1(c) shows the forest (FC-based) 

and the degree of connectedness (T) between each region and the seed regions without 

considering the confidence of connectedness (C), which is the same with the results of FC 

algorithm; all the light regions have high T values, and all the dark regions have low T 

values; regions 7 and 9 are both connected to seed region 8, and have the same degree of 

connectedness. Fig. 2.1(d) shows results of the proposed NC; the NCF in Fig. 2.1(d) is 

different from the forest in Fig. 2.1(c); even though regions 7 and 9 have same T values 

Fig. 2.1.  A simple example of Neutro-Connectedness Computation. (a) Nine regions; 
(b)the region numbers (lower right corner) and seed regions indicated by red ‘S’; (c) 
the degree of connectedness for each region; (d) NC forest (NCF). 
 

(a)                              (b)                             (c)                                (d) 
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(0.85) to the seed regions, the degree of indeterminacy of region 9 (0.1) is higher than that 

of region 7 (0) due to the noise.  

2.4 NC vs. FC 

We design Algorithm 2.1 using the dynamic programing strategy. There are three 

main differences between the proposed NC algorithm and the FC algorithm: first, the pro-

posed algorithm generates NCF, which uncovers the topological structure of NC maps by 

using trees; second, the proposed algorithm calculates the degrees of connectedness and 

the confidence of connectedness simultaneously; third, the FC method was designed for 

image processing; while the proposed method is designed for calculating connectedness 

for general dataset. 
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CHAPTER 3 

NEUTRO-CONNECTEDNESS CUT 

In this chapter, NC is applied to achieve robust interactive image segmentation by 

solving the major challenges of high interaction sensitivity. The main results have been 

published in [16]. 

3.1 Interactive Image Segmentation (IIS) 

IIS is an interesting and challenging task in image processing. In this task, user 

extracts objects from image by incorporating interactions such as marking seeds, setting 

region of interest, etc. The advantage of IIS is that satisfactory segmentation results can 

always be achieved because it can incorporate priori information (appearance, shape, to-

pology, context, etc.) and correct errors by interactions. However, intense and precise user 

interactions are needed to segment complicated objects using seed-based approaches, 

which lead to low usability; although ROI-based methods need much less user interaction, 

their performances are sensitive to the initial ROI [32]. 

Many inspiring interactive segmentation methods have been proposed in the last 

two decades, and in terms of the ways of user interaction, these approaches can be classified 

into two categories: seed-based [12 - 14, 17 - 25] and region of interest (ROI)-based [26 - 

31] approaches. 

Live wire [19] and intelligent scissors [20] are two boundary seed-based ap-

proaches, and user specify seeds on object boundary to extract objects from image. [19, 

20] obtain the final object boundary by computing the shortest path among the seeds. The 
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two approaches are intuitive, but suffer two main drawbacks: (1) they require user to spec-

ify as much seeds as possible, and insufficient seeds will result in low segmentation per-

formance; (2) the seeds need to be accurately placed on real object boundary, which is 

impossible in many applications such as low-quality image segmentation, mobile device-

based segmentation, large number of objects segmentation, etc.  

Graph cuts [12] is one of the most popular region seed-based approaches, and both 

appearances models and boundary constraints are formulized in a combinational optimiza-

tion framework. The object and background seeds will be utilized to estimate the object 

and background appearances, respectively. Lots of seeds must be marked in Graph cuts to 

obtain accurate result; especially, when image has complicated structures, user need to set 

as many seeds as possible to cover different structures. In [21], the IIS was formulated as 

a spline regression problem. The parameters in the spline function were estimated by using 

the user specified object and background pixels, and the labels of all other pixels were 

determined by the signs of spline function values. However, same with Graph cuts, user 

must specify quite many seeds to obtain controllable and desired accuracy. Spina et al. [22] 

proposed a hybrid IIS approach, Live markers, by combining the boundary seed-based 

methods (Live-wire-on-the-fly [23], Riverbed [24]) and region seed-based methods (Image 

Foresting Transform (IFT) [25], Graph cuts [12]). Although the method needs less user 

interaction than traditional boundary seed-based methods, it still requires user to specify 

seeds on object boundary accurately.  

Grabcut [26] is one of the best-known ROI-based IIS methods. User draws ROI 

(rectangle and polygon) to specify the initial object and background regions. There is only 

one requirement of the interaction: the ROI should fully contain the object. The regions in 
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the ROI and outside the ROI are utilized for learning the object and background appearance 

models, respectively. Grabcut needs much less user interaction and can achieve better seg-

mentation results than graph cuts.  However, its performance is quite sensitive to ROI. Han 

et al. [29] extended the color feature-based GMMs in Grabcut by constructing pixels’ fea-

tures based on color and multiscale nonlinear structure tensor [33]. The method can achieve 

better results than Grabcut for segmenting images with complex texture, but it still needs 

tight ROIs to obtain accurate results. PinPoint [27] defined the tightness by employing a 

user-specified bounding box. The method assumes that the user always specifies tight 

ROIs; and it cannot obtain high segmentation accuracy if a loose ROI is given.  

MILCut [30] formulated IIS as a multiple instance learning (MIL) problem. It gen-

erates negative and positive bags from the pixels outside a bounding box and the pixels of 

sweeping lines within the bounding box, respectively. The segmentation result of MILCut 

is very sensitive to the size of the initial bounding box. Tang el al. [28] proposed One-cut 

to incorporate the measurement of L1 distance between object and background appearance 

models into the Graph cuts energy function. A graph construction method for high order 

potentials was also given in their work [28]. One-Cut needs less user interaction than Graph 

cuts. In [31], Tang et al. proposed a parametric Pseudo-Bound Cuts (pPBC) method for 

optimizing interactive segmentation with high-order and non-submodular energies. The 

experiments in section IV demonstrate that pPBC achieves better results than other ROI-

based methods (Grabcut, MILCut and One-Cut); however, its performance is still sensitive 

to the initial ROI.  

As mentioned above, three are three main challenges in IIS:  (1) intense user inter-

actions are required to segment complicated objects using region seed-based approaches 
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and precise interactions are needed in boundary seed-based methods, which lead to low 

usability of these methods; (2) ROI-based methods need much less user interaction, but 

their performances are sensitive to users’ inputs; and (3) in both seed-based and ROI-based 

approaches, the user interactions have a great arbitrariness which could produce unpredict-

able results; most methods focus on improving segmentation performance by integrating 

higher level information; and to the best of our knowledge, no work has been done to pro-

vide user with useful information about how to interact can achieve good performance. 

In this chapter, we discuss the details and experimental results of Neutro-Connect-

edness Cut (NC-Cut) algorithm in section 3.2. 

NC-Cut is a novel hybrid interactive image segmentation approach, which formu-

lates segmentation based on both pixel-wise appearance models and NC properties.  NC 

models global topologic property among image regions and can reduce the dependence of 

segmentation performance on the appearance models generated by user interactions. The 

user interaction is to specify a polygon containing the object, and the image regions outside 

the polygon are viewed as the background seeds. The NC computation algorithm is utilized 

to calculate the NC values between each region in the polygon and background seeds, and 

generates a NC forest rooted from the background seed set. The constructed graph based 

on NC forest imposes NC as a global constraint to the segmentation.  

3.2 Neutro-Connectedness Cut Overview 

As discussed above, the ROI-based IIS approaches need less user interactions than 

the seed-based approaches. However, high sensitivity to user interaction is their major 

problem, and is caused by using user interaction to learn the initial object and background 
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appearance models. When the user specifies a loose ROI (large portion of background re-

gions in the ROI), the object appearance model will be initialized poorly and result in poor 

segmentation performance. Our basic idea to solve this problem is to make our segmenta-

tion model less sensitive to image appearance models by incorporating image topological 

property (NC). We present the newly proposed NC-Cut algorithm [16] for IIS in this sec-

tion. NC-Cut models IIS by utilizing both image appearance models and NC, and balances 

their contributions by using the average confidence of connectedness. NC can explore the 

topological structure of image regions and is not sensitive to user interactions. NC-Cut 

generates the NC maps and NC forest of an image by expanding outward from the back-

ground regions. NC is not defined on the appearance models initialized by user interaction 

and produces quite informative NC maps and NC forest. By incorporating NC and image 

appearance models, the proposed NC-Cut requires much less user interaction than the seed-

based methods, and is less sensitive to initial ROI than the existing ROI-based methods. 

The flowchart of the proposed NC-Cut method is shown in Fig. 3.1. 

Fig. 3.1. Flowchart of NC-Cut. 
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3.3 NC Computation for Image Regions 

 The Neutro-connectedness (NC) algorithm discussed in section 2.3 is applied to 

calculate the NC maps and NC forests for image. Firstly, an image is partitioned into small 

regions by using the zero-parameter version of SLIC (SLICO) [34]; every image regions 

are treated as a data points; and for a given region p, all the regions shares common bound-

ary with p are viewed as p’s neighbors.  is calculated using Eq. (26), and h(p) is defined 

by 

ℎ( ) =  
1

( )× ( )                                        (26) 

where  is the number of the pixels of region p, and ( )  and ( ) are the nor-

malized local standard deviation and sobel filter output at point i, respectively.  

Fig. 3.2 shows the results of NC computation of the natural images. All the regions 

outside ROI (red polygon) are the background seeds used to initialize x in Algorithm 2.1; 

the forests, NCFs, are shown in the corresponding T maps. As shown in the second and 

the fourth columns of Fig. 3.2, all trees are rooted from x; the T value of a node is less 

than or equal to that of its parent node; the object regions have low T values; however, 

some background regions may also have low T values if they are isolated. 

3.4 NC-Cut Formulation 

Let = { ∈ { , }}  be a group of binary labels for the pixels: labels 0 and 

1 are for pixels in background and object, respectively; Graph is built on the mod-

ified NC forest, and  is constructed as the same as that in [26]. The Neutro-Connected-

ness Cut (NC-Cut) is formulized as 
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( , , ) =  ( , ) + ( , )                  (27) 

  

In Eq. (27), the cost function E is defined based on both appearance and topolog-

ical properties;  takes the form of Grabcut’s cost function [26] and defines the cost 

according to the region and boundary properties;  defines the cost of a cut 

on ;  defines the weights of t-links (terminal links) and n-links (neighborhood 

links) of ;  controls the contribution of , and is defined by 

=  ( ̅)                                                             (28) 

where ̅  is the mean value of the confidences of connectedness of all regions; 

 is the standard deviation; and  is the set of object and background GMM parameters 

defined by 

= ( , ), ( , ), Σ( , ) = 1, ⋯ , K, ∈ {0,1}                 (29) 

In Eq. (29), K is the number of components of object (or background) GMM; 

  (a)                             (b)                               (c)                              (d) 
Fig. 3.2.  NC computation of nature images. (a) and (c) four original images with user 
specified ROIs (red polygons); (b) and (d) NCFs of the maps of the degree of truth of 
NC for each region (Ti map). 
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( , ), ( , ), and Σ( , ) are the Gaussian mixture weight, mean and covariance ma-

trices of the kth GMM component for object (s = 1) or background (s = 0), respectively. 

Let GnNCF = ( , ℰ) be a graph with vertex set  (regions) and edge set ℰ defined 

on the nNCF. The edge set ℰ is defined as 

ℰ = {( , )| ≠   ( =   = )}
ℰ : 

∪ 

{( , 0)} ∪ {( , 1)}
ℰ : 

, = 1,2, ⋯ , N                       (30) 

where nprer is the parent node of the rth region, and auxr is the region having an auxiliary 

edge with the rth region in nNCF. Let w(r,t) be the nonnegative weight for each edge 

( , ) ∈ ℰ of graph GnNCF. A cut C is a subset of ℰ, which partitions the vertex set into 

two disjoint parts. The cost of cut C is the sum of the weights of the edges in C, and the 

optimal cut will have the minimal cost. 

We introduce the local connectedness constraint (C1) to the cut C: let ( , ) ∈ ℰ 

and t = nprer, if node r is labeled as 0 (background), the label of node r's parent node t 

should also be 0. If node t is the parent node of node r, there will be four possible labeling 

schemes (Fig. 3.3). The costs of the four possible cuts are 

| | = ( , ) + ( , ) + ( , ),
| | = ( , ) + ( , ) + ( , ),
| | = ( , ) + ( , ), and         

 

| | = ( , ) + ( , ).        

                                (31) 

As shown in Fig. 3.3, the cuts in Figs. 3.3 (b) - (d) satisfy C1, but Fig. 3.3 (a) does 

not. In order to avoid the cut in Fig. 3.3 (a), the optimal cut   must satisfy   

| | = ( , ) + ( , ) + | − | ( , ) 

            < ( , ) + ( , ) + ( , ) = | |            (32) 
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The weights of t-links in GnNCF are defined by 

( , ) =
− ,            =

− 1 − ,   =
, = 1,2, ⋯ ,               (33) 

where  is the degree of the truth of connectedness between the rth region and the 

seed regions in background; the weights of n-links are defined by  

( , ) =  
( ) ,  =

         ,                               =  
        0,                                ℎ

                         (34) 

where  is set as 0.1 by experiment, and  is a fixed value larger than max 

{ ( , )| = 1,2, ⋯ , }. 

Theorem 1. Let GnNCF = ( , ℰ) be a graph constructed according to the back-

ground Neutro-Connectedness. If the edge weights w are defined by Eqs. (33) and (34), 

then there always exists a local cut satisfying C1. 

Proof    Let t be the parent node of r in a background NCF. Then 1 ≥ ≥ ≥ 0. 

 If  > , we get ( , ) >  ( , ) and ( , ) >  ( , ), 

        therefore | |< | |;  

If = , we have  

Fig. 3.3.  Four possible labeling schemes (cuts) for two adjacent nodes in 
NCF. (a) node r is labeled as 0 and t as 1; (b) node r is labeled as 1 and t 
as 0; (c) both r and t are labeled as 0; and (d) both r and t are labeled as 1. 
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( , ) =  ( , ), ( , ) =  ( , ) and ( , ) =  ,  

therefore | | = ( , ) + ( , ) = 2 ( , ) 

                           <  ( , ) + ( , ) + =  | | and  

                 | | = ( , ) + ( , ) = 2 ( , ) 

                         <  ( , ) + ( , ) + =  | | 

Hence, there always exits a local cut whose cost is smaller than | |, i.e., C1 is 

satisfied. 

If ( , ) ∈ ℰ and t = auxr, it means that r and t are two object regions and ( , ) is 

an auxiliary edge produced by the linking operation, edge ( , )  has high weight 

( ( , ) =  ); therefore, similar to the second situation ( = ) in the above proof, a 

local cut tends to assign label 1 to both r and t, which enforces label consistency to object 

regions with auxiliary edge. The computation of NC and NCF, and construction of GnNCF 

are based on image regions to prevent the high time and memory cost of pixel-wise NC 

computation. However, as shown in Eq. (14), the cost function of the NC-Cut is formu-

lated on image pixels to avoid assigning a uniform label to all pixels in an inhomogeneous 

region. Therefore, we approximate the NC of pixel by Eqs. (33) and (34). The pixel-wise 

cost function  of GnNCF is defined by   

( , ) =  ,  + −
∈

( , )        (35) 

In Eq. (35), ,  defines the weight of the t-link between the ith pixel and  

(0 or 1); and ( , ) defines the weight of n-link between the ith and jth pixels. If the ith 

pixel is in the rth region, then ( , ) is given by 
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, = ( , ),                                             (36) 

where ( , ) is defined in Eq. (20); and ( , )is defined by 

( , ) =
,    ( ) = ( )

( ( ), ( )), ∈  and ( ( ), ( )) ∈ ℰ
0, ℎ

          (37) 

where  is the set of i’s adjacent pixels, and R(i) is the index of the region including the 

ith pixel.   is defined as [26] 

 ( , ) = − log , , +
−

( , )
∈

    (38) 

where  is the color feature (RGB) of the ith pixel,  is set as 50; the constant  is set in 

the same way as in [26]; D(i, j) is the Euclidean distance between the ith and the jth pixels;  

and   outputs the possibility of the ith pixel belonging to the object or background, and 

is defined by [26] 

, , = max , , , Σ , , = 1,2, ⋯ K    (39) 

where (∙), Σ(∙) is a multi-dimensional Gaussian distribution with mean vector  and 

covariance matrices Σ; , , , , and Σ , are the Gaussian mixture weight, 

mean and covariance matrices of the kth GMM component for object (  = 1) pixel or 

background (  = 0) pixel, respectively. The cost function in Eq. (27) can be rewritten as 

( , , ) =  ( , ) + ( , )       

= , − log , ,

+ − ( , ) +
( , )

∈

                      (40)
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3.5 NCF Update 

The NC computation algorithm, Algorithm 2.1, outputs a background Neutro-Con-

nectedness forest (NCF), in which the root of every tree is from the background regions. 

As shown in Figs. 3.2(b) and (d), all object regions have quite low connectedness to back-

ground regions, and are on the same tree.    

However, as shown in Figs. 3.2(b) and (d), some background regions may have low 

connectedness if they are not connected to the initial background regions. The segmenta-

tion method only using the background NC cannot handle these isolated regions. To cope 

with such problem, we update NCF by integrating pruning and linking operations.   

On every tree of the NCF, the leaf nodes (regions) have the lowest connectedness 

(T value) to their roots (background seeds), and have the highest possibility to be object or 

isolated background regions; consequently, the candidate object and background regions 

are defined by 

= {  |  is a leaf region in NCF and <  
1

, and ∉ }  (41) 

and 

= {  |  is a leaf region in NCF and <  
1

 and ∈ } (42) 

respectively, where  is the degree of the truth of connectedness between the rth region 

and the background seed regions, the threshold for filtering the leaf regions is set as the 

mean of all regions’ background connectedness ( ∑ ), and set B includes all re-

gions of high similarity with background seed regions and is given by  
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= {  | ( ) =
( )

 > }                                    (43) 

where (∙) is the background GMM distribution learned from SRsbkg, ( ) is the mean 

of color features (RGB) of the rth region,   is the mean of (∙) of the  regions in 

SRsbkg and is defined as (1 )⁄ ∑ ( )∈  where  is the size of SRsbkg, 

and  and  are the standard deviation and the threshold, respectively. 

The candidate object regions   include all the leaf regions in NCFbkg having 

low T value and low similarity with SRsbkg, and the candidate isolated background re-

gions  are the leaf regions with low connectedness but high similarity with SRsbkg. 

 As shown in Fig. 3.4 (c), 29 of 30 candidate regions of the object (indicated by 

yellow points) determined by Eq. (41) belong to the object; and all candidate regions of 

isolated background (indicated by green points) determined by Eq. (42) are in the back-

ground. In Fig. 3.4(e), after five iterations of Algorithm 3.1(section 3.6), all candidate ob-

ject regions are correctly in the object; and there is no candidate background regions be-

cause no region satisfies Eq. (42).  

The NCF is updated by using the following two operations: 

1) Pruning. Disconnect the edge between any isolated background region and its 

parent node by resetting its parent and root nodes to itself (Eqs. (43) and (44)).  

= ,        ∈
,    ℎ

                                              (44) 

= ,        ∈
,    ℎ

                                                   (45) 

In Eqs. (44) and (45), nprer and nrtr denote the new parent node and the new root 

node of the rth region. 
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2) Linking. Add an auxiliary edge to each pair of adjacent object regions located 

on the same tree (Eq. (46)).  

=
, ∈ ℕ( ) , ∈ ,  =
,                      ℎ                         

                         (46) 

In Eq. (46), ℕ( ) denotes all the adjacent regions of the rth region. 

The pruning operation is applied for breaking the link between an isolated back-

ground region and its parent, which will exclude the isolated background regions from the 

segmentation results. The linking operation connects object nodes by adding auxiliary 

edges, which will enforce label consistency to adjacent object nodes. The modified NCF 

(nNCF) is defined by  

nNCF = {( , , )}                                              (47) 

We use Figs. 3.4(c) and (d) to demonstrate how to update the original NCF. In Fig. 

3.4(d), the yellow line segments indicate the auxiliary edges added by the linking operation, 

and the green cross mark indicates that the edge will be removed by the pruning operation.  

         (a)                        (b)                       (c)                           (d)                       (e) 
Fig. 3.4. Candidate object and background regions. (a) Original image with a loose ROI 
(red polygon); (b) background NCF (magenta arrows); (c) the object (yellow points) 
and background (green points) regions on Ti map; (d) the pruning (green cross) and 
linking (yellow edges) operations of the region in the red dashed rectangle in (c); (e) the 
candidate object and background regions after the fifth iteration of Algorithm 3.1.  
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3.6 Optimization 

The optimization of the proposed NC-Cut is conducted iteratively (Algorithm 3.1), 

and estimates appearance models and NC jointly.  

In step 2, the parameters of appearance models (GMMs) are estimated. For a given 

foreground (s =1) or background (s=0) GMM, ( , ) = { | = , = }  defines 

pixels for the kth GMM component; the mixture weights are  ( , ) =

| ( , )| ∑ | ( , )|⁄ ; the mean ( , )  is defined as the sample mean ( , ) =

∑ ∈ ( , ) | ( , )|⁄ ; the covariance matrices ∑( , ) are estimated as the covariance 

of pixels’ RGB values in ( , ). 

In step 3, the SRs set is updated by using the segmentation result ( ) of the previ-

ous iteration: the regions with more than 80% pixels labeled as 0s will be added to SRs; in 

step 4, Algorithm 2.1 generates the NC and NCF based on image regions; in step 5, we 

Algorithm 3.1: Iterative NC cut 

Inputs: image  =  { } , and a user specified ROI 
Outputs: = { ∈ {0,1}}  
1: Initialization: 

   =
1, if is in the ROI 

0, otherwise
, = 1, ⋯ ,  

   generate image regions = { } using SLICO,   
   compute the dissimilarity matrix ATs and  

   indeterminacy matrix AIs 
2: Learning the object and background GMMs′  
     parameters  
3: Update the SRs 
4: Compute background NC and  NCF using Algorithm 1 
5:  NCF update 
6:  Update weights of links  using Eqs. (23) and (24) 
7: Apply max-flow algorithm to solve Eq. (27) 
8:  Repeat steps 1 to 6 until convergence 
 

 



36 
 
apply the object and background regions to update the background NCF; in step 6, the 

pixel-wise weights of t-links and n-links are updated by using Eqs. (36) and (37); and the 

cost function is optimized by using the max-flow algorithm in step 7. All the steps will 

repeat until convergence (no change of the segmentation result).   

User editing. If an interactive image segmentation approach cannot generate a sat-

isfied result, further user editing is needed [12, 26]. For Algorithm 2, the user editing is to 

brush the wrongly labeled object and background superpixels and to update the GMMs and 

SRs; then the entire iterations (steps 2-8) of are applied. Notice that the image region set 

R, matrix ATs and AIs, and previous segmentation could be re-used.   

3.7 Dataset, Metrics, and Parameter Settings 

The performance of the proposed NC-Cut method is validated using two datasets. 

The first dataset (DS1) is the Grabcut [26] dataset which contains 50 images from the 

Berkley image dataset (BSD300) [35]. The second dataset (DS2) includes 215 images from 

MSRA [36] dataset. The manually marked regions of objects are used as the ground truth 

(GT).  

The intersection-over-union (IoU) score [35], Error Rate (ERR), Rand Index (RI) 

[20], Global Consistency error (GCE) [21], and Boundary Displacement Error (BDE) [22] 

are commonly employed to assess the performance of the interactive segmentation meth-

ods. The IoU score for the object/background is defined as the ratio of the number of cor-

rectly labeled object/background pixels to the number of pixels labelled with the ob-

ject/background in either the ground truth or the segmentation result. The average IoU over 

object and background are employed to evaluate the overall performance. The ERR counts 
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the percentage of wrongly labeled pixels in ROI. The RI computes the fraction of pixel 

pairs having consistent labels in both the segmented result and the ground truth; which 

takes value in [0, 1], value 1 indicates that the segmentation result and the ground truth are 

exactly the same, and 0 indicates that they disagree on every pixel pairs. The GCE measures 

the consistency between the segmentation result and the ground truth; it takes value in [0, 

1], and the value close to 0 indicates high accuracy. The BDE computes the average dis-

placement of boundary pixels between the segmentation result and the ground truth; the 

displacement error of a boundary pixel is defined as the Euclidean distance between the 

pixel and its closest pixel on the boundary of the ground truth. 

We compare the proposed NC-Cut algorithm with four state-of-the-art interactive 

segmentation algorithms: Grabcut [26], One-Cut [28], MILCut [30], and pPBC [31]. The 

parameters of Grabcut [26], MILCut [30] and pPBC [31] are adopted from the related pub-

lications. In One-Cut [28], the number of color bins is set as 1283, the weight of smoothness 

is set as 5.  Here, we would like to acknowledge the authors of MILCut, One-Cut and pPBC 

for providing the source code or executable program. The code of the Grabcut is available 

online (http://grabcut.weebly.com/code.html). All experiments are performed on windows-

based PC equipped with a dual-core processor (2GHz) and 4GB memory. 

3.8 Experimental Results of Interaction Dependence  

The proposed NC-Cut method is compared with other four ROI-based interactive 

methods:  Grabcut [26], One-Cut [28], MILCut [30] and pPBC [31]. 

Fig. 3.5 (a) shows five natural images; each image has one loose ROI and one tight 

ROI specified by user.  
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Fig. 3.5. Five examples. (a) Five images and user-specified ROIs (tight and loose); (b)
and (c) results of Grabcut; (d) and (e) results of One-Cut; (f) and (g) results of MILCut;
(h) and (i) results of the pPBC; (j) and (k) results of the proposed NC-Cut. 
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Fig. 3.5(b) demonstrates that when the ROIs are loose, the Grabcut method wrongly 

labels many pixels; Fig. 3.5(c) shows that when the ROIs are tight, the Grabcut produces 

quite accurate results. As shown in Figs. 3.5(d) and (e), One-Cut is less sensitive to the 

initial ROIs than Grabcut, and can obtain better results than Grabcut on the last two images 

with loose ROIs; however, it cannot generate better results than Grabcut on the images 

with complicated object appearance (the third and fourth images).  

The MILCut method may not always produce better results using tight ROI than 

that using loose ROI (third image), and Figs.3.5(f) and (g) demonstrate that MILCut is 

more sensitive to the initial ROI than Grabcut and One-Cut. In Figs. 3.5(h) and (i), the 

Fig. 3.6.  Segmentation performance according to different ROI looseness. 
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pPBC obtains better results than the other three methods, but it is still sensitive to the initial 

ROI; while the proposed NC-Cut method can produce accurate results (Figs. 3.5(j) and (k)) 

for all the images, and generates almost the same segmentation results using either tight or 

loose ROIs.  

To evaluate the five methods’ level of sensitivity to different ROIs quantitatively, 

we generate 10 groups of bounding boxes with different looseness automatically. We use 

the bounding box of the ground truth as the baseline, and set its looseness to 1; then move 

the four sides of   the bounding box toward image borders to increase the looseness. The 

amount of move is proportional to the margin between the side and the image border. The 

looseness of a bounding box is defined as the ratio of area of the new bounding box to the 

area of the baseline bounding box. Twenty-eight images having bounding box with loose-

ness at least 2 are selected from the two datasets. As shown in Fig.3.6, the proposed NC-

Cut is much less sensitive to the looseness of ROI than the other four methods.  

3.9 Overall Performance 

The proposed NC-Cut and other four state-of-the-art ROI-based methods are com-

pared by utilizing the two datasets with predefined tight ROIs and loose ROIs. We also 

compare the proposed method without using the indeterminacy (NC-Cut0) with the pro-

posed NC-Cut to demonstrate the impacts of the indeterminacy on segmentation perfor-

mance. We specify loose ROIs in the original images by drawing polygons to include more 

background pixels. As shown in Tables 3.1 and 3.2, using datasets DS1 and DS2, Grabcut 

obtains better average results with tight ROIs than those with loose ROIs; using dataset 
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DS2, the average performances of One-Cut and MILCut drop dramatically when the ROIs 

change from tight to loose.  

 

The proposed NC-Cut method outperforms Grabcut, One-Cut, MILCut and pPBC 

in all metrics (IoU, RI, GCE and BDE) using the two datasets with loose ROIs; and obtains 

similar results with Grabcut and pPBC, and much better results than One-Cut and MILCut 

using tight ROIs. The average IoU, RI, GCE and BDE of the NC-Cut using the two datasets 

are almost the same with both the loose or tight ROIs, which implies that the proposed 

Table 3.1. Average performance on dataset DS1 

                      Tight ROIs                        Loose ROIs             
Methods RI GCE BDE IoU RI GCE BDE IoU 
Grabcut  0.94* 0.04* 7.7 0.91* 0.90 0.06 12.2 0.85 
One-Cut 0.88 0.06 10.4 0.80 0.88 0.08 12.7 0.80 
MILCut 0.85 0.12 16.8 0.80 0.87 0.11 13.2 0.82 
pPBC 0.94* 0.05 6.8* 0.91* 0.92 0.06 8.8 0.83 

NC-Cut0 0.91 0.05 14.1 0.85 0.91 0.05* 12.1 0.85 

NC-Cut  0.94* 0.05 7.3 0.91* 0.94 0.05* 8.5* 0.90* 
* indicates the best result(s) in the same column; NC-Cut0 is the proposed           

method without using the indeterminacy. 

 

Table 3.2. Average performance on dataset DS2 

 Tight ROIs Loose ROIs 
Methods RI GCE BDE IoU RI GCE BDE IoU 
Grabcut  0.98* 0.02* 1.9 0.97* 0.96 0.03 3.9 0.94 
One-Cut 0.94 0.05 4.5 0.92 0.88 0.09 12.2 0.86 
MILCut 0.89 0.08 8.5 0.86 0.73 0.17 24.7 0.67 
pPBC 0.98* 0.02* 2.1 0.97* 0.93 0.04 6.1 0.91 

NC-Cut0 0.97 0.02* 2.4 0.96 0.97 0.02* 2.3* 0.96* 
NC-Cut  0.98* 0.02* 1.8* 0.97* 0.98* 0.02* 2.3* 0.96* 

* indicates the best result(s) in the same column; NC-Cut0 is the proposed             
method without using the indeterminacy. 
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approach is not sensitive to the sizes of the initial ROIs; and this is the advantage which 

cannot be demonstrated by any existing state-of-the-art methods. 

The only difference between NC-Cut0 and NC-Cut is that the confidence of con-

nectedness (C) is not utilized in NC-Cut0 (i.e., C = 1).  As shown in Table 3.1, NC-Cut0 

cannot achieve good performance as NC-Cut with both the loose or tight ROIs on DS1. 

Because most images in DS2 have homogenous background, the segmentation perfor-

mance of NC-Cut0 does not degrade much. NC-Cut can avoid shrinking problem on many 

images because of the using of global properties; however, the contribution of the global 

term  in NC-Cut is determined by the average confidences of connectedness. If an 

image has low level of average confidence of connectedness (small ), NC-Cut will trans-

fer more control to the appearance term ( ) which may result in the shrinking problem 

as Grabcut and Graph cuts on some images (Fig. 3.7). How to solve such problem will be 

studied in the future. 

Fig. 3.7.  Failure case. 
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CHAPTER 4 

EFFECTIVE INTERACTIVE SEGMENTATION 

Effective interactive segmentation (EISeg) provides user with visual clues to guide 

the interacting process based on Neutro-Connectedness (NC). The boundary connectedness 

map and NC forest calculated in EISeg can lower the dependence of segmentation perfor-

mance on the appearance models and can also reduce user interaction greatly by guiding 

user where to interact can achieve the best segmentation results. The main results of this 

work have been published in [39]. 

4.1 Overview 

 The flowchart and an example of the proposed EISeg method are shown in Fig. 4.1. 

The EISeg includes three main parts. The first part is the boundary connectedness mapping 

which computes Neutro-Connectedness (NC) between each image region and boundary 

regions. The boundary connectedness has two components: boundary connectedness map 

(BCM) and boundary connectedness forest (BCF). The two components are quite informa-

tive to distinct object and background; and we will apply them to provide visual clues for 

user to determine seeds effectively. The second part is the interaction protocols. The pro-

tocols explain the meanings of the BCM and BCF, and define three simple guidelines for 

user to determine the most suitable the seeds. The EISeg formulation and optimization are 

in the third part. The EISeg is formulated as energy minimization problem based on GMM 

appearance models (Grabcut [26]) and boundary connectedness, which will reduce the sen-

sitivity of the proposed method to user interactions. Like NC-Cut and Grabcut, EISeg is 

optimized iteratively with GMM and boundary connectedness updated in each iteration. 
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4.2 Boundary Connectedness Computation 

The boundary connectedness is a topological property between each image region 

and the regions on image boundary. We calculated boundary connectedness map (BCM) 

and boundary connectedness forest (BCF) by using Algorithm 2.1; The image regions are 

produced by using the zero-parameter version of SLIC (SLICO) [34] method, and all re-

gions connected with image boundary are set as boundary seeds. 

As shown in Fig. 4.2, the BCM and BCF are shown in one image. The BCM is 

shown as a grey image; the BCF is illustrated on the BCM as color arrows, and each color 

indicate one tree.  

4.3 Protocols for User Interactions 

In this section, the interpretations of boundary connectedness map (BCM) and 

boundary connectedness forest (BCF) are described; and then we define the protocols to 

guide user interactions. 

In EISeg, the boundary regions are viewed as the background seeds. High degree 

of boundary connectedness indicates the high possibility of one region to be the back-

ground, whereas the image region with low degree of connectedness has high possibility 

to be object. As shown in Fig. 4.1, the BCM is quite informative for distinguish objects 

from the background. The BCF visually illustrates the topological structure of the BCM. 

There are three facts of BCF: First, all connected structures located on the same tree, e.g., 

the flower in Fig. 3.8. Second, every tree in BCF roots in the boundary region set. Third, 

the further a node is from the root, the less the degree of connectedness between the node 
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and the root. According to the facts of BCM and BCF, three simple protocols for user 

interaction are defined as follows. 

P1: Label isolated background regions with low boundary connectedness as back-

ground. If several isolated background regions are on the same subtree, only the root of the 

subtree needs to be labeled, which reduces both the interaction intensity and the conver-

gence time. 

P2: Label the object region which is a child of a background region as the fore-

ground. There may exist more than one such object regions. If the connectedness difference 

between the object region and background region is large, no need to label the object re-

gion. 

P3: Label object regions connected to the image boundary as the foreground. In 

some images, some parts of object are boundary regions, thus we need to exclude these 

regions from the boundary region for generating meaningful boundary connectedness map. 

The three protocols provide user with guidelines about how to interact based on the 

BCM and BCF. 

Fig. 4.1. Flowchart of EISeg. 
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 Fig. 4.2 demonstrates that it is easy to select seeds by applying the protocols. Let 

F0 and B0 are the sets of indices of user specified object and background regions (seeds), 

respectively; we extend them by using the BCF: 

= {  and its successors on BCF | ∈ } ∪ {the predecessors of  | ∈ }                           

= {  and its successors on BCF| ∈ } −                                (48) 

4.4 EISeg Formulation and Optimization 

Let = { }  denote the colors of each pixel in an image; = { ∈ {0, 1}}  

be a group of binary labels for each pixel: labels 0 and 1 are for the pixels in background 

and object, respectively. The proposed EISeg is formulized as 

( , , , ) =  ∑ ( , , , ) + ∑ , , , ,( , )∈  

. .     = 1,  ( ) ∈ ; = 0,  ( ) ∈                       (49) 

where  denotes the appearance models of the objects and the background,  is the bound-

ary connectedness map,  is the Dirac measure, C is a set of all pairs of neighboring pixel, 

Fig. 4.2. Example of labeling seed regions. The blue point is a background seed 
selected according to P1; and  the red point is an object seed selected based on 
P2. 

Original image                      Seeds 
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the constant  determines the degree of encouraging the smoothness term, R(m) is the in-

dex of the region containing the mth pixel, and D and S define the data and smoothness 

terms, respectively.  

In Eq. (49), the proposed cost function E is defined based on both appearance ( ) 

and boundary connectedness map ( ); therefore, the solving of this problem will take both 

appearance and global topological properties jointly. 

The data term has two components: (1) the first component calculates the labeling 

cost according to the region property, and takes the form of Grabcut’s cost function [26]; 

(2) the second component introduces the boundary connectedness to define cost on topo-

logical property. The data term is defined by 

( , , , ) = ( − 1) log ( , , ) − log ( + (1 − )(1 − )  (50) 

where  is the boundary connectedness of the ith pixel, and is assigned as the boundary 

connectedness value of the rth superpixel which contains the ith pixel; Refer to section 3.4 

for the definitions of  and . 

The smoothness term defines the cost on boundary property, and is defined by 

, , , , = − ∙ 

∙ [ = ] + (1 − ) ∙
( , )

  (51) 

where [∙]is an indicator function taking values 0 and 1;  is the parent node of the jth 

pixel;  is selected as 0.1 by experiment; d(i, j) is the Euclidean distance between the ith 

and  jth pixels; and the constant  is set in the same way as in [26]. 
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In Eq. (51), the smoothness term penalizes both the color and connectedness dis-

continuities of neighboring pixels; the penalty of color discontinuities are calculated on all 

neighboring pixels, while the connectedness penalties are enforced on the connectedness 

forest. The cost function of EISeg is similar to that of the NC-Cut; but there are two main 

differences between EISeg and NC-Cut: first, the user interactions in EISeg are guided by 

BCM and BCF, while the interactions in NC-Cut is arbitrary; second, in EISeg, the equality 

constraints are introduced to make the labels specified by user unchanged in future itera-

tions.   

Like Grabcut and NC-cut, we apply the block-coordinate descent method to mini-

mize the cost function of the proposed EISeg method. The details are illustrated in Algo-

rithm 4.1 which alternates two steps: first, it fixes segmentation, and learns appearance 

Algorithm 4.1: EISeg Optimization 
Inputs: image  =  { } , and sets F, B, BDRs 
Outputs: = { ∈ {0,1}}  
 
Initialization: 

   =
1, if ∈ , or  ∉ BDRs

0, otherwise ∀  

Optimization: 
1: Learning the  GMMs′  parameters  
2: Set the regions with more than 80% background pixels  
      to be boundary regions 
3: Compute boundary connectedness ∶ 
      { }  and  BCF = { }  
4: ( , , , 0) = max( ) , if ( ) ∈ F,  
     ( , , , 0) = min( ) , if R( ) ∈ B, 
5: Apply max-flow algorithm  
6: Repeat steps 1 and 5 until convergence 
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model (θ) and computes BCM and BCF; second, update segmentation based on new mod-

els and parameters. The convergence condition is that the number of pixel with different 

labels between the outputs of two consecutive iterations is smaller than 0.001 of the number 

if image pixels. 

4.5 Experimental Results 

The performance of the newly proposed EISeg method is validated utilizing the 

NC-Cut dataset [16] including 215 images from MSRA [36]. The manually marked regions 

of objects are the ground truths (GTs). Traditional interactive segmentation methods 

mainly focused on the improvement of segmentation models, but ignored the effectiveness 

of user interaction. Due to the absence of how to interact to achieve better result, those 

methods have great arbitrariness of user interaction, and good segmentation results can 

only be achieved by involving intense user interactions, e.g., setting more seeds, or speci-

fying a new ROI to exclude more background regions. 

In this section, we will compare EISeg with Grabcut [26] and pPBC [31]. Grabcut 

and pPBC are two ROI-based methods. In Fig. 4.3, we specify two different ROIs for each 

of the four original images (Fig. 4.3(a)); the segmentation results of Grabcut and pPBC 

(Figs. 4.3(b) - (e)) illustrate that different ROIs may result in quite different segmentation 

performance and user usually has no clue about where to set ROI which can generate the 

best result. Fig. 4.3(f) shows the seeds specified according to the proposed interaction pro-

tocols in EISeg; and only two or three seeds are specified for each image. Fig. 4.3(g) 

demonstrates that the proposed EISeg can generate quite accurate results based on weak 

user interaction. 
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We evaluate the proposed EISeg, Grabcut [26] and pPBC [31] using the NC-Cut 

dataset [12]. A user specified background and object seeds for each image according to the 

proposed interaction protocols; and the user specified seeds and all boundary regions are 

used to initialize all three approaches. Table 4.1 shows that the EISeg outperforms the other 

two methods on all four metrics; and averagely only 2.3 foreground and 1.8 background 

seeds are specified per image.  

Table 4.1. Overall Performance on NC-Cut dataset [16]. 

 

Methods ERR(%) RI GCE BDE 
Grabcut [26] 8.4 0.91 0.05 10.4 
pPBC [31] 11.1 0.88 0.06 12.5 

EISeg 1.1 0.98 0.02 2.1 
 

         (a)               (b)                  (c)               (d)                (e)                (f)                (g) 
Fig. 4.3. Interaction effectiveness. (a) original images with a loose and a tight ROIs; (b) 
and (c) results of Grabcut with loose and tight ROIs, respectively; (d) and (e) results of 
pPBC with loose and tight ROIs respectively; (f) interactions of the proposed EI2S method; 
and (g) results of the EISeg. 
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CHAPTER 5 

NC FOR FULLY AUTOMATIC BUS IMAGE SEGMENTATION 

 In this chapter, NC is applied to solve the challenges of segmenting medical im-

ages with low image quality. The main results have been published in [11, 38, 86]. 

5.1 Background 

Breast cancer occurs in the highest frequency in women among all cancers, and is 

also one of the leading causes of cancer death worldwide [37]. Scientists do not definitely 

know what causes breast cancer yet, and only know some risk factors that can increase the 

likelihood of developing breast cancer: getting older, genetics, radiation exposure, dense 

breast tissue, alcohol consumption, etc. The key of reducing the mortality is to find signs 

and symptoms of breast cancer at its early stage by clinic examination. Breast ultrasound 

(BUS) imaging has become one of the most important and effective modality for the early 

detection of breast cancer because of its noninvasive, nonradioactive and cost-effective 

nature; and it is most suitable for large-scale breast cancer screening and diagnosis in low-

resource countries and regions. 

Computer-Aided Diagnosis (CAD) systems based on B-mode breast ultrasound 

have been developed to overcome the considerable inter- and intra-variabilities of the 

breast cancer diagnosis, and have been clinically tested their ability to improve the perfor-

mance of the breast cancer diagnosis. BUS segmentation, extracting tumor region of a BUS 

image, is a crucial step for a BUS CAD system. Base on the segmentation results, quanti-

tative features will be calculated to describe tumor shape, size, echo pattern, etc., and be 

input into a classifier to determine the category of the tumors. Therefore, the precision of 
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BUS segmentation directly affects the performance of the quantitative analysis and diag-

nosis of tumors.  

Automatic BUS image segmentation study attracted great attention in the last two 

decades due to clinical demands and its challenging nature, and results in a lot of automatic 

algorithms. We can classify existing approaches into semi-automatic and fully automatic 

methods according to with or without user interactions in the segmentation process. In most 

semi-automatic methods, user needs to specify a region of interest (ROI) containing the 

lesion, a seed in the lesion, or an initial boundary. Fully automatic segmentation is usually 

modeled as a top-down framework which models knowledge of breast ultrasound and on-

cology as prior constraints, and needs no user intervention at all. However, it is quite chal-

lenging to develop automatic tumor segmentation approaches for BUS images, due to the 

low image quality caused by speckle noise, low contrast, weak boundary, and artifacts. 

Furthermore, tumor size, shape and echo strength vary considerably across patients, which 

prevent the application of strong priors to object features that are important for conven-

tional segmentation methods. 

5.2 A Short Review of BUS Image Segmentation Approaches 

We classify the BUS image segmentation approaches in four categories: (1) de-

formable models, (2) graph-based approaches, (3) learning-based approaches, and (4) clas-

sical approaches (e.g., thresholding, region growing, and watershed). The four categories 

dominate BUS segmentation approaches. For more details, refer to [86]. 

Deformable models (DMs): DMs-based approaches move the curves or surfaces 



53 
 
toward to the object boundary with the influence of forces. They have been studied exten-

sively in BUS image segmentation. According to the ways of representing the curves and 

surfaces, we can generally classify DMs into two categories: (1) the parametric DMs 

(PDMs) and (2) the geometric DMs (GDMs). The PDMs represent curves or surfaces ex-

plicitly and allow direct model interaction; however, unable to adapt to topological change 

and sensitive to user interaction. For GDMs, the curves and surfaces are represented by 

using level set functions. They can adapt to the topological change, but increase the com-

putational cost greatly.  

In PDMs-based BUS image segmentation approaches, the main work was focused 

on generating good initial tumor boundary. Madabhushi et al. [40] proposed a fully auto-

matic approach for BUS tumor segmentation by initializing PDMs using the boundary 

points produced in tumor localization step; and the balloon forces were employed in the 

extern forces. Chang et al. [41] utilized the sticks filter [42] to enhance edge and reduce 

speckle noise before using the PDMs. Huang et al. [43] proposed an automatic BUS image 

segmentation approach by using the gradient vector flow (GVF) model [44], and the initial 

boundary was obtained by using the watershed approach.  

In GDMs-based BUS image segmentation approaches, many researches focused on 

dealing with the weak boundary and inhomogeneity of BUS images. The two main strate-

gies are (1) making the stopping function independent of image gradient, and (2) applying 

local statistics to define the speed function. Gomez et al. [45] proposed a BUS image seg-

mentation approach based on the active contour without edges (ACWE) model [46] which 

defined the stopping term on Mumford-Shah techniques. The initial contour was a five-

pixel radius circle centered at a point in the tumor marked by the user. Daoud et al. [47] 
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built a two-fold termination criterion based on the signal-to-noise ratio and local intensity 

value. Gao et al. [48] proposed a level set approach based on the method in [49] by rede-

fining the edge-based stop function using phase congruency [50] which was invariant to 

intensity magnitude, and integrated the GVF model into the level set framework. Liu et al. 

[80] proposed a GDMs-based approach which enforced priors of intensity distribution by 

calculating the probability density difference between the observed intensity distributions 

and the estimated Rayleigh distribution. 

Graph-based approaches: graph-based approaches gain popularity in BUS image 

segmentation because of their flexibility and efficient energy-optimization. The Markov 

random field - Maximum a posteriori - Iterated Conditional Mode (MRF-MAP-ICM) and 

the Graph cuts are the two major frameworks in graph-based approaches. MRF-MAP-ICM 

can model multiple-object segmentation problem and is popular in early BUS image seg-

mentation; Graph cuts models image bi-partition problem and provides an efficient way 

for MRF energy global optimization. The key issues of applying the two frameworks in 

BUS image segmentation are the likelihood and prior energies definition and parameters 

estimation. 

MRF-MAP-ICM: Boukerroui et al. [51] stated that healthy and pathological breast 

tissues presented different textures on BUS images, and proposed to improve the method 

in [52] by modeling both intensity and texture distributions in the likelihood energy; they 

also assumed that the texture features represented by using co-occurrence matrix follow 

the Gaussian distribution; and the parameters were estimated in a way similar to the one in 

[52]. In [53], the Gaussian parameters in the likelihood energy were defined globally and 
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specified manually. [54] proposed a one-click user interaction to estimate Gaussian param-

eters automatically. The user specified a pixel in the tumor and the method opened a small 

window and a large window to obtain the lesion and background information, respectively. 

The foreground and background parameters were estimated using the intensity distribu-

tions in the small and large windows.  

Graph cuts: Xian et al. [38] proposed a fully automatic BUS image segmentation 

framework in which the graph cuts energy modeled the information from both the fre-

quency and space domains. The data term (likelihood energy) modeled the tumor pose, 

position and intensity distribution. [55] built the graph on image regions, and initialized it 

by specifying a group of tumor regions (F) and a group of background regions (B). The 

weight of any t-link was set to ∞ if the node belonged to F∩B, and all the other weights of 

t-links were set to 0; and the region intensity difference and edge strength discussed in [56] 

were applied to define the weight function of the smoothness term (prior energy). [55] 

proposed a discriminative graph cut approach in which the data term was determined online 

by a pre-trained Probabilistic Boosting Tree (PBT) [57] classifier.  

In [58], hierarchical multiscale superpixel classification framework was proposed 

to define the data term. The hierarchical classifier had four layers (20, 50, 200, and 800 

superpixels/nodes) built by using the normalized cut and k-means for multiscale represen-

tation; the histogram difference (Euclidean distance) between adjacent superpixels was 

used to define the weights in the smoothness term. Low optimization speed and locally 

optimal solution are the two main drawbacks of the MRF-MAP-ICM; while the “shrink-

ing” problem is the main disadvantage of Graph cuts-based approaches. 

Learning based approaches: both supervised and unsupervised learning approaches 
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have been applied to solve the BUS image segmentation problem. Unsupervised ap-

proaches are simple and fast, and commonly applied as a preprocessing step to generate 

candidate image regions. Supervised approaches are good in integrating features at differ-

ent levels, but not good in applying boundary constraints to generate accurate tumor bound-

ary. 

Clustering: Xu et al. [59] proposed a BUS image segmentation method applying 

the spatial FCM (sFCM) [60] to the local texture and intensity features. In sFCM, the mem-

bership value of each point was updated by using its neighbors’ membership values. In 

[59], the number of clusters was set as 2, and the membership values were assigned by 

using the modes of image histogram as the initial cluster centers. In [61], FCM was applied 

to pixel intensities for generating image regions in four clusters; then morphology, location 

and size features were measured for each region; a linear regression model trained on the 

features was employed to produce the tumor likelihoods for all regions, and the region with 

the highest likelihood was considered as a tumor. Moon et al. [76] applied FCM to image 

regions produced by using the mean shift method; the number of clusters was set to 4, and 

the regions belonging to the darkest cluster were extracted as the tumor candidates. Shan 

et al. [79] extended the FCM and proposed the neutrosophic l-means (NLM) clustering to 

deal with the weak boundary problem in BUS image segmentation; and it took the indeter-

minacy of membership into consideration. 

SVM and NN: Liu et al. [62] trained a SVM classifier using local image features to 

classify small image lattices (16×16) into the tumor or non-tumor classes; the radius basis 

function (RBF) was utilized; and 18 features, including 16 features from co-occurrence 

matrix and the mean and variance of the intensities, were extracted from a lattice. Jiang et 
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al. [77] trained Adaboost classifier using 24 Haar-like features [63] to generate a set of 

candidate tumor regions and trained SVM to determine the false positive and true positive 

regions. [64] proposed an NN-based method to segment 3D BUS images by processing 2D 

images slices using local image features. Othman et al. [65] trained two ANNs to determine 

the best-possible threshold. The two ANNs had 3 layers, 60 nodes in hidden layer, one 

node in the output layer. The first ANN used the Scale Invariant Feature Transform (SIFT) 

descriptors as the inputs; and the second employed the texture features from the Grey Level 

Co-occurrence Matrix (GLCM) as the inputs. [78] trained an ANN to conduct pixel-level 

classification by using the joint probability of intensity and texture [40] and two new fea-

tures: the phase in the max-energy orientation (PMO) and radial distance (RD). The NN 

had 6 hidden nodes and 1 output node. 

 Deep Learning-based approaches have been reported to achieve state-of-the-art 

performance for many medical tasks such as prostate segmentation [66], cell tracking [67], 

muscle perimysium segmentation [68], brain tissue segmentation [69], breast tumor diag-

nosis [70], etc. However, there is no deep learning-based approach for BUS image seg-

mentation yet.  Deep learning models have great potential to achieve good performance 

because of their ability to characterize big image variations and to learn compact image 

representation using sufficiently large BUS image dataset. Deep learning architectures 

based on convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are 

quite popular in medical image segmentation [66 - 70].   

Classical approaches: Three most popular classical approaches were applied to 

BUS image segmentation: thresholding, region growing and watershed. In BUS image seg-

mentation, thresholding was often used as a pre-segmentation step for tumor localization. 
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Three main approaches exist in BUS segmentation for selecting the threshold: (1) choose 

the empirical value as threshold for the entire dataset [71]; (2) select threshold for each 

image based on domain related rules [40, 78]; and (3) generate threshold automatically 

based on statistical-decision theory [38, 11]. Region growing extracts image regions by 

starting from a set of pixels (called seeds) and growing seeds to large regions based on 

predefined growth criteria. In [78], Shan et al. proposed an automatic seed generation ap-

proach. Thresholding was used to generate a group of candidate regions first; and then 

region ranking criteria based on region location, size and local feature were utilized to 

determine a true tumor region; and a pixel in the region was selected as the seed. In [72], 

Kwak et al. defined the cost of growing a region by modelling common contour smooth-

ness and region similarity (mean intensity and size). Watershed could produce more stable 

results than thresholding and region growing approaches, and selecting the marker(s) is the 

key issue in watershed segmentation. The first solution is to choose the local minimum 

gradient as the marker, and further step such as region merging should be involved to avoid 

over-segmentation. Another solution is to select makers based on predefined criteria that 

can utilize the task-related priors. Huang et al. [60] selected the markers based on grey 

level and connectivity. [74] applied watershed to determine the boundaries on binary im-

age. The markers were set as the connected dark regions on the binary image. [75] applied 

watershed and post-refinement based on grey level and location to generate candidate tu-

mor regions.  

There are two major challenges in BUS image segmentation: (1) most BUS image 

segmentation approaches work well on BUS images collected in controlled settings such 
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as high image contrast, less artifacts, etc. However, because these approaches heavily de-

pend on non-robust information such as the appearance models of tumor or background 

tissues, their performance degrades greatly with BUS images having large variations in 

image quality and degree and location of artifacts; and (2) all previous approaches were 

evaluated by using private datasets and different quantitative metrics, which make the ob-

jective and effective comparisons among the methods impossible. Therefore, it remains 

challenging to determine the best performance of the breast tumor segmentation algorithms 

available today, what segmentation strategies are valuable in clinic practice and study, and 

what image features are helpful and useful in improving segmentation accuracy and ro-

bustness.  

To overcome the challenges, we are building a BUS benchmark for evaluating seg-

mentation approaches, and the benchmark will be public available soon. 

In this section, we present a fully automatic BUS image segmentation approach 

based on NC for performing accurate and robust ROI generation, and tumor segmentation. 

Fig. 5.1. Flowchart of the proposed fully automatic BUS segmentation approach 
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5.3 Overview of The Proposed Approach 

In the ROI generation step, the proposed adaptive reference point (RP) generation 

algorithm can produce the RPs automatically based on the breast anatomy; and the multi-

path search algorithm generates the seeds accurately and fast. In the tumor segmentation 

step, we propose a segmentation framework in which the cost function is defined by using 

NC map and features from the frequency domain. First, the frequency constraint is built 

base on the newly proposed edge detector which is invariant to contrast and brightness; 

and then the tumor pose, position and intensity distribution are modeled to constrain the 

segmentation in the spatial domain. The well-designed cost function is graph-representable 

and its global optimum can be found. The flow chart of the proposed approach is shown in 

Fig. .1. 

5.4 Preprocessing  

The breast tumor reflects lower level of echoes than surrounding tissues, and ap-

pears relatively darker (hypoechoic) on BUS image [81]. However, the gray levels, con-

trast, texture, etc. of B-mode BUS images vary greatly due to the facts that they are opera-

tor-dependent and device-dependent. The preprocessing is to normalize intensities and to 

enhance the hypoechoic regions (candidates of tumor regions). The proposed prepro-

cessing steps are as below:  

1)  Smoothing. A 2-D discrete Gaussian low-pass filter was utilized to smooth the 

BUS image in the frequency domain (using fast Fourier transform).  

2) Eliminating the intensity range variability. We applied a linear normalization to 

align the lower and upper bounds. The linear normalization is defined as below:  
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In Eq. (52), Ln is the number of gray levels; lbound and ubound are defined as 

Q(0.05) and Q(0.95), respectively. Q is the quantile function on the cumulative distribution 

of the histogram. 
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3) Enhancing hypoechoic regions. An adaptive Z-shaped function (Eq. (53)) was 

proposed to reverse the intensities and transform them into [0, 1]. The shape of the function 

is determined by the characteristics of image adaptively. In Eq. (53), the parameters,  

and , determine the nonlinear range of the curve; the parameter  is used to adjust the 

steepness of the curve which should be decided adaptively according to the skewness of 

the intensity distribution: 
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where   is the intensity of the ith pixel, ̅  is mean of image intensities, n is the number of 

pixels,  is determined by the mean of the intensities, and   is a constant set as 20. SN is 

the bias-corrected skewness [82] which measures the asymmetry of the image intensity 

distribution. The larger the skewness (SN) becomes, the more the mass of the distribution 

concentrates on the left side, which will result a steeper Z-shaped function (small ). 
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5.5 Adaptive Reference Point Generation 

A reference point (RP) is a position in a BUS image for ranking other pixels or 

regions. If a pixel is close to the RP, it will have a large probability to be in the lesion. In 

many fully automatic segmentation methods, the RP was defined as a pixel at the fixed 

position, which led the failure of these algorithms when the actual tumor location was far 

away from the predefined RP. In this section, we propose a novel algorithm (Algorithm 

Fig. 5.2. RP generation for a synthetic image. (a) Three major layers of the 
breast in a BUS image; (b) the result of the BUS image after preprocessing; (c) 
a synthetic image (M = 300, N = 500); (d) C0 and C1; (e) w1 with = 1, =
14, = 38, and =); (f) C2 and C3 on the image generated by the third iter-
ation of Algorithm 5.1; (g) the color bar. 
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5.1) for selecting RP from the preprocessed image automatically and adaptively. The bio-

logical foundation for the proposed method is based on [83]: the breast has three major 

layers from the skin of the breast: the premammary (PM) layer, the mammary layer, and 

the retromammary (RM) layer (Fig. 5.2(a)); the PM layer lies between the skin and the 

mammary layer, and contains subcutaneous fat mainly; the mammary layer is in the middle 

of the three layers, and breast tumors arise in this layer; and the RM layer lies between the 

mammary layer and the chest wall and contains mainly the fat as well.  

Now we propose two definitions for Algorithm 5.1. The first definition is the 

weighted density center which will move to the tumor regions iteratively. The origin of the 

image coordinates is at the top-left corner. The weighted density center at the ith iteration 

is defined  
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where (x, y) are the coordinates of the pixel, I  is the image after preprocessing, is the jth 

weighting function, and M and N are the numbers of rows and columns of the image, re-

spectively. The initial center  is defined as the geometric center of the image and the 

number of weighted density centers will be determined by Algorithm 5.1.  

In Eq. (56), without considering the influence of the weighting functions, cen-

ter   will move to the higher intensity region of  I . However, the fats in the PM and RM 

layers also have high intensities in the preprocessed image, which make  diverge from 

the real tumor region. The weighting function is proposed to solve the above problem based 

on the fact that these normal regions are mainly from the fats in PM and RM layers, while 
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the mammary layer lies in their middle. The weighting function is proposed to attenuate 

the intensities of the surrounding regions and the ith weighting function is defined as 
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where , , and are the distances between the bounds of the ith weighting function 

and their corresponding borders (left: 1, right: M, top: 1, and bottom: N) of the image, 

respectively. The values of , , and are updated according to the weighted den-

sity centers iteratively. The initial weight w0 is a matrix with all elements equal to 1.  

In Algorithm 5.1, the RP is generated by updating the weighting functions and 

weighted density centers iteratively. The algorithm will stop when it reaches the maximum 

Algorithm 5.1: RP generation 
Inputs: C0, w0, I  
Output: the position of RP: RP0 
 
1. For i = 1: NMAX 
2.    Calculate new center Ci using Eq. (5), and ←  ; 
3.    If ||Ci - Ci-1|| < ε1 then 
4.       break; 
5.    Else 
6.       Update the bounds ( , , ,  ) of the weighting function:
7.           If − > 0   ℎ     =  − , =  
8.           Else   =  , = −  
9.           If − > 0  ℎ     =  − , =  
10.         Else    =  , = −  
11.     Update the weighting function wi+1 using Eq. (6); 
12. End   
13.Return ; 
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number of iterations (NMAX) or the Euclidean distance between two adjacent weighted den-

sity centers is smaller than a predefined value ε1 (NMAX = 100 and ε1=2 in all of the exper-

iments). ( , ) and ( , ) represent the coordinates of the weighted density centers 

at the ith and the (i-1)th iterations, respectively. In order to explain the procedure of Algo-

rithm 5.1 clearly, we applied the algorithm to generate RP of a synthetic image (Fig. 5.2); 

and the RP generation results of real B-mode BUS images are shown in Fig. 5.3. 

In Fig. 5.2(b), regions 1 - 3 are used to simulate the fat regions around the mammary 

layer (middle layer); region 4 is the tumor in the mammary layer. Because the four regions 

are distributed mainly in the top right part of the image, the weighted density center C1 

moves to the upper right of C0 (Fig. 5.2(c)). As shown in Fig. 5.2(d) and Fig.5.2(e), the 

weighting function w1 is applied to correct the deviation by moving the center of the 

weighting function to the lower left. Fig. 5.2(f) shows that the intensities of the three re-

gions (regions 1-3) around the target (region 4) are attenuated after the third iteration, and 

C2 and C3 are already in the target region. 

Algorithm 5.2: Seed generation 
'

0

0 rp

rp

rp

Inputs :  ,I
Outputs :  

1. Extend a   N  ;
2. Initialize an array  with size N  to save the candidate positions;
3. For   1 :  N
4.  Initialize the start position  to be ;
5.     Iterate

i

RP
seed

RP to RPs
c

i
p RP
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 until converge to a candidate position [ ] :
6.        Calculate next position ( ) using Eq. (9);
7.        If || ( ) - ||     [ ] ;  break current iteration;
8.        Else  ( );  
9

c i
next p

next p p then c i p
p next p

 


. End   
10.Choose the point in  with the maximum local mean (using Eq. (12)) as our final seed;c
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5.6 Seed Generation 

In this section, we will use the RP as the initial point to search the seed. We develop 

a multipath search algorithm to obtain the seed in the tumor. The advantages of the pro-

posed algorithm are: (1) the seed is generated iteratively based on the local mean of inten-

sities rather than heavily depended on the distances between the RP and the candidate re-

gions [40, 84], which will be more accurate than the existing methods (refer Fig. 5.3), and 

(2) it generates the seed with high speed (refer Table 5.1). 

In Algorithm 5.2, RP0 is the position of the final reference point and I  is the pre-

processed image. We extend the reference point into multiple points. The reference point's 

position along the ith direction is defined as  

= + ℎ ∙ ( , ) ,  =  1,2, ⋯ ,                             (58) 

= 2 (i − 1)/                                                                 (59) 

where  is the number of directions,  denotes the angle of the ith direction relative to 

RP0, and h is the step size (12 pixels) determined by experiments. 

Mean shift [84, 85] is utilized to calculate the next position of the current point (Eq. 

(60)). We shift position p to a new position next(p) when the distance between next(p) and 

p is larger than a predefined value (ε2), and next(p) is defined by [85]  
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where I' is the normalized image, pi is the coordinate of the ith point of I', and KH is a kernel 

function defined by 

( − ) = [H( / )×( − )]                                             (61) 
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where H is a bandwidth matrix, H = diag(h2, h2) and F is the unit flat kernel [84] centered 

at position p. After the iterations on each RP, we obtain Nrp candidate seeds. The one with 

the maximum local sum of intensities will be the final seed     

 
 rpargmax( ( )), [i] 1, 2, , N

p
seed M p p c i   
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where M(p) is the local mean of the candidate seed p. The predefined value ε2 = 2 deter-

mined by experiments. 

5. 7 NC Computation and Deneutrosophication 

In order to apply the proposed NC to model the uncertainty and indeterminacy of 

tumor segmentation problem, the specific forms of  and   need to be defined.  Let zj 

and zk be two 8-connected neighbors. We define  as the same as fuzzy spel affinity in 

[7].    

  , = ℎ , + ℎ ,                                                            

ℎ , = exp − 1 2      

ℎ , = exp − 1 2 ( − ( ) − )/⁄               (64) 

In Eq. (64), W(z), is the value of pixel in the normalized image; function h1 com-

putes the degree of difference in appearance between the two adjacent pixels and the object 

of interest; function h2 is used to impose the boundary constraint; m1 and s1 are the mean 

and standard deviation of the gray values (W) in the object of interest, respectively; m2 and 
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s2 are the mean and standard deviation of gray gradient values in the object of interest, 

respectively.  

 

Fig. 5.3. The seed generation of four BUS images: (a) – (c) the original images with 
delineation by an experienced radiologist; (d) – (f) the seeds generated by the method in
[40]; (g) – (i) the seeds generated by the method in [15]; and (j) – (l) the seeds generated
by the proposed method. 

                            (a)                                                   (b)                                                    (c) 

                            (d)                                                   (e)                                                    (f) 

                            (g)                                                   (h)                                                    (i) 

                            (j)                                                   (k)                                                    (l) 
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The confidence of connectedness between two adjacent points is defined as  

 ( , ) =
exp −1 2 ,

exp −1 2
( ( ) )

,

                        (65) 

where m12 and s12 define a plane between the intensity distributions of object of interest 

(tumor region) and the non-object (normal tissues). The confidence of connectedness be-

tween zj and zk will decrease when W(zj) or W(zk) is close to m12. For any pair of nonadja-

cent pixels,  is set to 0 and  is 1. 

We define deneutrosophication to represent the decision-making process. In this 

section, we describe a common strategy used for deneutrosophication. At a high level, the 

proposed deneutrosophication involves two steps to perform the tumor segmentation: 

 Domain reduction. The two domains of NC will be reduced into one domains (t’). 

Fig. 5.4.  Domain  reduction functions. 
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 Graph cuts segmentation. t’ will be applied to constrain the graph cuts to perform 

the final segmentation. 

As shown in Fig. 5.4, a group of power functions will be employed to do the domain 

reduction; r is defined as 

( , ),   ( , ) 0.5

1 / ( , ),  ( , ) 0.5

i p q if i p q
r

i p q if i p q


                                                    (66) 

where i(p, q) is 1 – C(p,q). The domain reduction will decrease the connectedness between 

pixels if the corresponding indeterminacy is bigger than 0.5; otherwise, the connectedness 

will increase. The f’ is set to 1 – t’.  

Graph cuts is chosen to perform the second step of de-neutrosophication, and the 

main reason is that it is easy to integrate different constraints from multi-domains into the 

segmentation framework in a soft manner. The t’ and f’ will be used to constrain the global 

term (data term) of the graph cuts; therefore, the final segmentation will not only consider 

the local differences and global similarity, but also try to segment the pixels with high 

connectedness in the same classes (tumor or normal tissues).  

If function  is identically equal to 1 (i(p, q) = 0,), NC will degenerate into the 

fuzzy connectedness in Ref. [7]. 

5.8 Experimental Results 

5.8.1 Dataset, Parameters, and Metrics 

The proposed method was evaluated on a B-mode BUS image database with 131 

cases (60 benign and 71 malignant). The radiologist’s manually delineated boundaries were 

used as the golden standards and our segmentation results were evaluated by comparing 
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with them. 

The area error metrics and boundary error metrics were employed to evaluate the 

performance of the proposed segmentation method. The area error metrics include the 

Dice’s coefficient (DSC) and false positive ratio (FPR). 

=
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=
| ∪ − |

| |
 

where Am is the pixel set of the tumor region manually outlined by the radiologist, and Ar 

is the pixel set of the tumor region generated by the proposed method. The average 

Hausdorff error (AHE) is used to assess the average performance of boundaries. 

The weight w1 was set to 0.5[12]. The parameters of prior distribution (m1, s1), (m2, 

s2) and (m12, s12) were select as (0.13, 0.2), (0.62, 0.07) and (0.38, 0.2) by experiments, 

respectively. 

5.8.2 Results  

The ROIs are generated automatically from the original BUS images, and the seed 

regions are small square (side lengths = 21 pixels) regions around the seed points. Figs. 

5.5(a) and (d) are two ROIs generated automatically from the original BUS images. As 

shown in Figs. 5.5(b) and (e), the fuzzy connectedness leaks through the weak parts (red 

circles) of the boundaries, and links the tumor region with the nearby normal regions. It 

will produce wrong segmentation results (high false positives). Figs. 5.5(c) and (f) show 

the confidence of connectedness calculated by using the proposed method.  
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                                                            (a)                              (b)                              (c) 

    
                                      (d)                            (e)                              (f) 
Fig. 5.6 Deneutrosophication: (a) and (d) the fuzzy connectedness of two BUS images; (b) 
and (e) the inverse map of confidence of connectedness; (c) and (f) the results of domain 
reduction (t’). 

Fig. 5.5. Calculating connectedness of two BUS images: (a) and (d) two 
ROIs (rectangle) of the original BUS images with weak boundaries, and the 
white squares are seed regions; (b) and (e) the strength of fuzzy 
connectedness between each pixel and the seed regions; (c) and (f) the 
inverse map of the confidence of connectedness (1 - C). 

 

 

 

                            (a)                             (b)                               (c) 

                              
(d)                             (e)                               (f) 
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The normal regions with high fuzzy connectedness in Fig. 5.5(b) and (e) have rel-

atively low confidence values in Figs. 5.5(c) and (f). It will prevent the leakage of the fuzzy 

connectedness.  

In order to apply the NC to solve the tumor segmentation problem, we reduced the 

three domains (t, i and f) into two domains (t’ and f’) using the proposed method. As shown 

in Fig. 5.6, the strength of the connectedness between the tumor-like region and tumor is 

reduced by applying the indeterminacy of connectedness. 

Based on the same database, we compared our method with the fuzzy connected-

ness based segmentation method. The tumor segmentation of three ROIs of BUS images 

are shown Fig 5.7. Figs. 5.7(a) – (r) show the intermediated results and the final results of 

the fuzzy connectedness method and the proposed neutro-connectedness method. As 

shown in Figs. 5.7(c), (i) and (o), the fuzzy connectedness leaks through the weak bound-

aries and links the tumor regions with the nearby normal regions, which finally results in 

the increasing of the false positive (Figs 5.7. (e), (k) and (g)). Fig. 5.7 (d), (j) and (p) shows 

that the false connectedness produced by the fuzzy connectedness can be largely reduced 

by applying the proposed neutro-connectedness method, and the results of the proposed 

method is much better that of the fuzzy connectedness method.  

To validate the overall performance of the proposed method, the SIR, FPR and 

AHE were computed and showed in Table 5.1. As shown in Table 5.1, the SIR of the 

proposed method on both the benign and the malignant cases are higher than the SIR of 

fuzzy connectedness method; which indicates that the results of the proposed segmentation 

method is more similar to the true tumor region than that of the fuzzy connectedness 

method.  
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  The FPR of the proposed method is much smaller than the FPR of the fuzzy con-

nectedness method; therefor, the proposed method can exclude most of the tumor-like re-

 
 

   
                           (a)                    (b)                    (c) 

   
                           (d)                    (e)                    (f) 

   
                 (g)                    (h)                    (i) 

    
                  (j)                  (k)                     (l) 

     
                  (m)                 (n)                   (o) 

   
                   (p)                    (q)                  (r) 

Fig. 5.7. BUS image segmentation: (a), (g) and (m) three ROIs with seed 
regions (white rectangle); (b), (h) and (n) the results of the preprocessing 
step; (c), (i) and (o) the results of fuzzy connectedness; (d), (j) and (p) the 
confidence of connectedness (1-C); (e), (k) and (q) the results of the fuzzy 
connectedness based segmentation; (f), (l) and (r) the results of the pro-
posed method. 
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gions (shadows and fat) out of the tumor region by employing the neutro-connectedness. 

Our smaller AHE also shows that the tumor boundaries produced by the proposed method 

is closer to the true tumor boundaries than boundaries produced by the fuzzy connectedness 

method. 

 
          Table 5.1. Average Performance of Tumor Segmentation Approaches. 

Cases 

Fuzzy connectedness 
based segmentation 

Proposed method 

DSC 
(%) 

FPR 
(%) 

AHE 
DSC 

(%) 
FPR 
(%) 

AHE 

A 60 79.47 22.30 20.0 80.92 6.90 18.0 

B 71 78.48 23.99 24.0 82.43 4.99 21.6 

C 131 78.93 22.74 22.2 79.65 9.85 20.9 

A: benign tumors; B: malignant tumors; C: total. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK  

This dissertation is comprised of my main work in Neutro-Connectedness (NC) 

theory, algorithms and applications. The main contributions are summarized as follows. 

(1) The proposed NC theory generalizes the traditional concept of connectedness, 

and has one additional domain, the confidence of connectedness, to model “hidden fac-

tors”. With the additional domain, NC can deal with more complex problems, e.g., low 

quality image segmentation and noisy data analysis.  

(2) A general algorithm for NC computation is also given in section 2.3 the pro-

posed algorithm calculates the degrees of connectedness and the confidence of connect-

edness simultaneously and can uncovers the topological structure of a dataset by using 

the output NC forest. 

(3) The proposed NC-Cut is a hybrid interactive segmentation method that needs 

much less user interaction than seed-based methods, and is less sensitive to the initial 

ROI than state-of-the-art ROI-based methods. We formulate NC-Cut using both pixel-

wise appearance models and region-based NC, which can overcome the two problems of 

initial ROI-dependence and intense user interactions in interactive image segmentation 

approaches. 

(4) The proposed effective interactive segmentation (EISeg) method reduces the 

degree of arbitrariness of user interaction in interactive image segmentation greatly, and 

needs much less user interaction than state-of-the-art ROI-based methods. EISeg provides 

user with objective visual clues of topological property by computing the boundary con-

nectedness map and forest, and gives user three sample interaction protocols to guide user 
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interaction according to the visual clues. The experiments demonstrate that the proposed 

EISeg method guides interaction effectively, and achieves better results with much less 

user interaction than state-of-the-art approaches.   

(5) A fully automatic breast tumor detection approach is proposed by modeling 

tumor structure using NC. The proposed methods are based on solid biologic foundations 

from breast anatomy and can generate the RPs adaptively and accurately; and the ap-

proach models the spatial topological property of image pixels using the neutro-connect-

edness to handle the weak boundary problem of BUS images. 

In the future, I will focus on improving the NC computation algorithm in terms of 

scalability, robustness and low time cost; we will also explore the possibility of applying 

NC to data clustering, topological data analysis, saliency detection, unsupervised image 

segmentation, object tracking, etc. 
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ogy in neutrosophic domain, with the goal to ensure robustness and accuracy on data anal-
ysis tasks under weak user interaction and low data quality. Specially, my Ph.D. research 
includes four parts: (1) Neutro-Connectedness (NC) theory and algorithms; (2) framework 
for integrating topological properties in image processing; (3) fully automatic breast cancer 
detection; and (4) left atrium (LA) / left atrial appendage (LAA) thrombus recognition; 
 
 (1) Neutro-Connectedness (NC) theory and algorithm 
Leading research on NC theory and algorithm for modelling image topology with indeter-
minacy measurement: 

 Building the generalized NC based on region similarity and inhomogeneity, which 
enable the NC to be independent of top-down prior from the task domain and to 
have wide potential fields in image processing (image segmentation, saliency esti-
mation, object detection, etc.); 

 Designing NC computation algorithm taking polynomial time to output NC values 
and NC forest simultaneously. The NC forest explores the topological structure of 
NC and is useful for reducing interaction intensity by providing topological clues. 

(2) Framework for integrating topological properties in image processing 
Conducted research on the framework of applying NC on image processing tasks: 

 Proposed NC-Cut by utilizing pixel-wise appearance information and region-based 
NC to overcome the user interaction-dependence and high interaction intensity 
problem in interactive image segmentation. The proposed method was evaluated 
on two public datasets with 265 images, and outperformed state-of-the-art methods 
(Grabcut, MILCut, One-Cut and pPBC); 

 Applied NC on low quality breast ultrasound (BUS) for breast cancer early detec-
tion. The proposed BUS tumor segmentation method can handle the weak boundary 
problem and can reduce the false positive ratio greatly. 

(3) Fully automatic breast cancer detection 
Leading research on fully automatic breast cancer detection: 

 Tumor segmentation. Designed a segmentation framework for integrating space 
and frequency domain knowledge, which makes the proposed segmentation method 
less sensitive to the variation of image brightness and contrast and more robust than 
the traditional gradient-based methods; 

 Tumor detection by modelling attention mechanism. We proposed a novel hybrid 
saliency estimation framework based on convex optimization for fully automatic 
BUS tumor segmentation. It models three hypotheses from biological priors and 
low-level BUS image information; 
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 Breast cancer detection by using multiple-instance learning (MIL). We modeled 
breast cancer detection as a MIL problem and proposed the local weighted citation-
KNN approach that output the label of each test image by considering local distri-
bution of samples (voters); 

 Breast cancer benchmark. To assess current state-of-the-art breast tumor segmen-
tation methods on BUS images, I am working on publishing the first BUS image 
benchmark in the world. In this task, I collaborate with four radiologists from 3 
hospitals to prepare and make publicly available a unique BUS dataset of benign 
and malignant tumors. 

(4) LA/LAA thrombus recognition on transesophageal echocardiography (TEE) 
Designed and implemented a CAD system for LA/LAA thrombus recognition: 

 Dynamic texture-based thrombus recognition. Utilized dynamic texture to describe 
local stiffness by measuring texture difference along TEE sequence; evaluated the 
CAD on 264 cases (TEE sequences). The experimental results demonstrate that the 
proposed approach achieve state-of-the-art performance (Sensitivity: 95.6%, Spec-
ificity: 95.3%). 

TEACHING EXPERIENCE                                                 

Lab Instructor, C++ Programming, Harbin Institute of Technology, Spring 2010, 2011 
Lab instructor for undergraduate C++ programming course. Lectured and tutored for the 
weekly lab session. Developed course projects and graded assignments, exams and pro-
jects. 
 
Teaching Assistant, Utah State University 
Collaborated on class development, tutored students during office hour or upon requests 
and graded all assignments and projects for: 

 Database Systems(CS5800), Fall 2014, 2016 
 Game Development (CS5410, JavaScript and HTML), Spring 2015, 2016 
 C++ Programming (CS1400), Fall 2015 
 Fuzzy Logic (CS 6630), Spring 2014 
 Computer Vision, Pattern Recognition, and Image Processing (CS 5650), Fall 2012 

 
Mentoring Experience 
Mentored graduates’ and undergraduates’ research projects. Hosted weekly meeting to help 
students clarify problems, generate new ideas, optimize algorithms, develop experimental 
schemes, and write research papers. The research projects I have mentored include: 

• Deep Learning for pavement crack detection. 
• Visual saliency estimation.  
• Multiple Instance Learning (MIL) for thrombus detection.  



88 
 

• Breast tumor detection based on visual saliency modelling.  
• ECG data analysis. Thesis of undergraduate. 

 
WORK EXPERIENCE                                                 

Research Intern. March 2009 - August 2009 
Pattern Recognition Research Center, HIT, Harbin, Heilongjiang China 

 Participated in a project for developing real-time signal processing algorithms run-
ning on financial equipment. Designed and implemented an algorithm for fast 
recognition of the patterns of magnetic signals on banknotes’ security thread. This 
work is very useful for identifying counterfeit banknote (false positive ratio ≤ 
0:005%), and the algorithm has been embedded in the final product. 
 

VOLUNTEER                                                 

• Volunteer for IEEE WACV, Lake Placid, NY March 2016 
• Judge for Bridgerland Science and Engineering Fair 2015 & 2016 
• Student Support for Faculty Search Committee, Department of CS, USU, 2013 
• Served as a volunteer math teacher at Guzhai Elementary School, Summer 2006 
 

PROGRAMMING SKILLS 

• Proficient: C++, C, Matlab, R 
• Familiar: Java, JavaScript, Python 

 
PROFESSIONAL MEMBERSHIP                                                 

IEEE Member and ACM Member 
 
PROFESSIONAL SERVICE                                                 

 Reviewed manuscripts for Pattern Recognition, Medical Physics, Neurocomputing, 
Neural Processing Letters, Journal of Computer Science and Technology(JCST), 
ICPR, IEEE ICME, and IEEE WACV 

 Program Committee member for the International Conference of Pioneering Com-
puter Scientists, Engineers and Educators (ICPCSEE) 

 
PUBLICATIONS                                                 

Articles Submitted for Publication 
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[13]  J. Ding, M. Xian, H. D. Cheng, “An algorithm based on LBPV and MIL for left 
atrial thrombi detection using transesophageal echocardiography,” in IEEE ICIP, 
2015, pp. 4224-4227. 
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