364 research outputs found

    Subband beamforming with higher order statistics for distant speech recognition

    Get PDF
    This dissertation presents novel beamforming methods for distant speech recognition (DSR). Such techniques can relieve users from the necessity of putting on close talking microphones. DSR systems are useful in many applications such as humanoid robots, voice control systems for automobiles, automatic meeting transcription systems and so on. A main problem in DSR is that recognition performance is seriously degraded when a speaker is far from the microphones. In order to avoid the degradation, noise and reverberation should be removed from signals received with the microphones. Acoustic beamforming techniques have a potential to enhance speech from the far field with little distortion since they can maintain a distortionless constraint for a look direction. In beamforming, multiple signals propagating from a position are captured with multiple microphones. Typical conventional beamformers then adjust their weights so as to minimize the variance of their own outputs subject to a distortionless constraint in a look direction. The variance is the average of the second power (square) of the beamformer\u27s outputs. Accordingly, it is considered that the conventional beamformer uses second orderstatistics (SOS) of the beamformer\u27s outputs. The conventional beamforming techniques can effectively place a null on any source of interference. However, the desired signal is also canceled in reverberant environments, which is known as the signal cancellation problem. To avoid that problem, many algorithms have been developed. However, none of the algorithms can essentially solve the signal cancellation problem in reverberant environments. While many efforts have been made in order to overcome the signal cancellation problem in the field of acoustic beamforming, researchers have addressed another research issue with the microphone array, that is, blind source separation (BSS) [1]. The BSS techniques aim at separating sources from the mixture of signals without information about the geometry of the microphone array and positions of sources. It is achieved by multiplying an un-mixing matrix with input signals. The un-mixing matrix is constructed so that the outputs are stochastically independent. Measuring the stochastic independence of the signals is based on the theory of the independent component analysis (ICA) [1]. The field of ICA is based on the fact that distributions of information-bearing signals are not Gaussian and distributions of sums of various signals are close to Gaussian. There are two popular criteria for measuring the degree of the non-Gaussianity, namely, kurtosis and negentropy. As described in detail in this thesis, both criteria use more than the second moment. Accordingly, it is referred to as higher order statistics (HOS) in contrast to SOS. HOS is not considered in the field of acoustic beamforming well although Arai et al. showed the similarity between acoustic beamforming and BSS [2]. This thesis investigates new beamforming algorithms which take into consideration higher-order statistics (HOS). The new beamforming methods adjust the beamformer\u27s weights based on one of the following criteria: • minimum mutual information of the two beamformer\u27s outputs, • maximum negentropy of the beamformer\u27s outputs and • maximum kurtosis of the beamformer\u27s outputs. Those algorithms do not suffer from the signal cancellation, which is shown in this thesis. Notice that the new beamforming techniques can keep the distortionless constraint for the direction of interest in contrast to the BSS algorithms. The effectiveness of the new techniques is finally demonstrated through a series of distant automatic speech recognition experiments on real data recorded with real sensors unlike other work where signals artificially convolved with measured impulse responses are considered. Significant improvements are achieved by the beamforming algorithms proposed here.Diese Dissertation präsentiert neue Methoden zur Spracherkennung auf Entfernung. Mit diesen Methoden ist es möglich auf Nahbesprechungsmikrofone zu verzichten. Spracherkennungssysteme, die auf Nahbesprechungsmikrofone verzichten, sind in vielen Anwendungen nützlich, wie zum Beispiel bei Humanoiden-Robotern, in Voice Control Systemen für Autos oder bei automatischen Transcriptionssystemen von Meetings. Ein Hauptproblem in der Spracherkennung auf Entfernung ist, dass mit zunehmendem Abstand zwischen Sprecher und Mikrofon, die Genauigkeit der Spracherkennung stark abnimmt. Aus diesem Grund ist es elementar die Störungen, nämlich Hintergrundgeräusche, Hall und Echo, aus den Mikrofonsignalen herauszurechnen. Durch den Einsatz von mehreren Mikrofonen ist eine räumliche Trennung des Nutzsignals von den Störungen möglich. Diese Methode wird als akustisches Beamformen bezeichnet. Konventionelle akustische Beamformer passen ihre Gewichte so an, dass die Varianz des Ausgangssignals minimiert wird, wobei das Signal in "Blickrichtung" die Bedingung der Verzerrungsfreiheit erfüllen muss. Die Varianz ist definiert als das quadratische Mittel des Ausgangssignals.Somit werden bei konventionellen Beamformingmethoden Second-Order Statistics (SOS) des Ausgangssignals verwendet. Konventionelle Beamformer können Störquellen effizient unterdrücken, aber leider auch das Nutzsignal. Diese unerwünschte Unterdrückung des Nutzsignals wird im Englischen signal cancellation genannt und es wurden bereits viele Algorithmen entwickelt um dies zu vermeiden. Keiner dieser Algorithmen, jedoch, funktioniert effektiv in verhallter Umgebung. Eine weitere Methode das Nutzsignal von den Störungen zu trennen, diesesmal jedoch ohne die geometrische Information zu nutzen, wird Blind Source Separation (BSS) [1] genannt. Hierbei wird eine Matrixmultiplikation mit dem Eingangssignal durchgeführt. Die Matrix muss so konstruiert werden, dass die Ausgangssignale statistisch unabhängig voneinander sind. Die statistische Unabhängigkeit wird mit der Theorie der Independent Component Analysis (ICA) gemessen [1]. Die ICA nimmt an, dass informationstragende Signale, wie z.B. Sprache, nicht gaußverteilt sind, wohingegen die Summe der Signale, z.B. das Hintergrundrauschen, gaußverteilt sind. Es gibt zwei gängige Arten um den Grad der Nichtgaußverteilung zu bestimmen, Kurtosis und Negentropy. Wie in dieser Arbeit beschrieben, werden hierbei höhere Momente als das zweite verwendet und somit werden diese Methoden als Higher-Order Statistics (HOS) bezeichnet. Obwohl Arai et al. zeigten, dass sich Beamforming und BSS ähnlich sind, werden HOS beim akustischen Beamforming bisher nicht verwendet [2] und beruhen weiterhin auf SOS. In der hier vorliegenden Dissertation werden neue Beamformingalgorithmen entwickelt und evaluiert, die auf HOS basieren. Die neuen Beamformingmethoden passen ihre Gewichte anhand eines der folgenden Kriterien an: • Minimum Mutual Information zweier Beamformer Ausgangssignale • Maximum Negentropy der Beamformer Ausgangssignale und • Maximum Kurtosis der Beamformer Ausgangssignale. Es wird anhand von Spracherkennerexperimenten (gemessen in Wortfehlerrate) gezeigt, dass die hier entwickelten Beamformingtechniken auch erfolgreich Störquellen in verhallten Umgebungen unterdrücken, was ein klarer Vorteil gegenüber den herkömmlichen Methoden ist

    Efficient Algorithms for Immersive Audio Rendering Enhancement

    Get PDF
    Il rendering audio immersivo è il processo di creazione di un’esperienza sonora coinvolgente e realistica nello spazio 3D. Nei sistemi audio immersivi, le funzioni di trasferimento relative alla testa (head-related transfer functions, HRTFs) vengono utilizzate per la sintesi binaurale in cuffia poiché esprimono il modo in cui gli esseri umani localizzano una sorgente sonora. Possono essere introdotti algoritmi di interpolazione delle HRTF per ridurre il numero di punti di misura e per creare un movimento del suono affidabile. La riproduzione binaurale può essere eseguita anche dagli altoparlanti. Tuttavia, il coinvolgimento di due o più gli altoparlanti causa il problema del crosstalk. In questo caso, algoritmi di cancellazione del crosstalk (CTC) sono necessari per eliminare i segnali di interferenza indesiderati. In questa tesi, partendo da un'analisi comparativa di metodi di misura delle HRTF, viene proposto un sistema di rendering binaurale basato sull'interpolazione delle HRTF per applicazioni in tempo reale. Il metodo proposto mostra buone prestazioni rispetto a una tecnica di riferimento. L'algoritmo di interpolazione è anche applicato al rendering audio immersivo tramite altoparlanti, aggiungendo un algoritmo di cancellazione del crosstalk fisso, che considera l'ascoltatore in una posizione fissa. Inoltre, un sistema di cancellazione crosstalk adattivo, che include il tracciamento della testa dell'ascoltatore, è analizzato e implementato in tempo reale. Il CTC adattivo implementa una struttura in sottobande e risultati sperimentali dimostrano che un maggiore numero di bande migliora le prestazioni in termini di errore totale e tasso di convergenza. Il sistema di riproduzione e le caratteristiche dell'ambiente di ascolto possono influenzare le prestazioni a causa della loro risposta in frequenza non ideale. L'equalizzazione viene utilizzata per livellare le varie parti dello spettro di frequenze che compongono un segnale audio al fine di ottenere le caratteristiche sonore desiderate. L'equalizzazione può essere manuale, come nel caso dell'equalizzazione grafica, dove il guadagno di ogni banda di frequenza può essere modificato dall'utente, o automatica, la curva di equalizzazione è calcolata automaticamente dopo la misurazione della risposta impulsiva della stanza. L'equalizzazione della risposta ambientale può essere applicata anche ai sistemi multicanale, che utilizzano due o più altoparlanti e la zona di equalizzazione può essere ampliata misurando le risposte impulsive in diversi punti della zona di ascolto. In questa tesi, GEQ efficienti e un sistema adattativo di equalizzazione d'ambiente. In particolare, sono proposti e approfonditi tre equalizzatori grafici a basso costo computazionale e a fase lineare e quasi lineare. Gli esperimenti confermano l'efficacia degli equalizzatori proposti in termini di accuratezza, complessità computazionale e latenza. Successivamente, una struttura adattativa in sottobande è introdotta per lo sviluppo di un sistema di equalizzazione d'ambiente multicanale. I risultati sperimentali verificano l'efficienza dell'approccio in sottobande rispetto al caso a banda singola. Infine, viene presentata una rete crossover a fase lineare per sistemi multicanale, mostrando ottimi risultati in termini di risposta in ampiezza, bande di transizione, risposta polare e risposta in fase. I sistemi di controllo attivo del rumore (ANC) possono essere progettati per ridurre gli effetti dell'inquinamento acustico e possono essere utilizzati contemporaneamente a un sistema audio immersivo. L'ANC funziona creando un'onda sonora in opposizione di fase rispetto all'onda sonora in arrivo. Il livello sonoro complessivo viene così ridotto grazie all'interferenza distruttiva. Infine, questa tesi presenta un sistema ANC utilizzato per la riduzione del rumore. L’approccio proposto implementa una stima online del percorso secondario e si basa su filtri adattativi in sottobande applicati alla stima del percorso primario che mirano a migliorare le prestazioni dell’intero sistema. La struttura proposta garantisce un tasso di convergenza migliore rispetto all'algoritmo di riferimento.Immersive audio rendering is the process of creating an engaging and realistic sound experience in 3D space. In immersive audio systems, the head-related transfer functions (HRTFs) are used for binaural synthesis over headphones since they express how humans localize a sound source. HRTF interpolation algorithms can be introduced for reducing the number of measurement points and creating a reliable sound movement. Binaural reproduction can be also performed by loudspeakers. However, the involvement of two or more loudspeakers causes the problem of crosstalk. In this case, crosstalk cancellation (CTC) algorithms are needed to delete unwanted interference signals. In this thesis, starting from a comparative analysis of HRTF measurement techniques, a binaural rendering system based on HRTF interpolation is proposed and evaluated for real-time applications. The proposed method shows good performance in comparison with a reference technique. The interpolation algorithm is also applied for immersive audio rendering over loudspeakers, by adding a fixed crosstalk cancellation algorithm, which assumes that the listener is in a fixed position. In addition, an adaptive crosstalk cancellation system, which includes the tracking of the listener's head, is analyzed and a real-time implementation is presented. The adaptive CTC implements a subband structure and experimental results prove that a higher number of bands improves the performance in terms of total error and convergence rate. The reproduction system and the characteristics of the listening room may affect the performance due to their non-ideal frequency response. Audio equalization is used to adjust the balance of different audio frequencies in order to achieve desired sound characteristics. The equalization can be manual, such as in the case of graphic equalization, where the gain of each frequency band can be modified by the user, or automatic, where the equalization curve is automatically calculated after the room impulse response measurement. The room response equalization can be also applied to multichannel systems, which employ two or more loudspeakers, and the equalization zone can be enlarged by measuring the impulse responses in different points of the listening zone. In this thesis, efficient graphic equalizers (GEQs), and an adaptive room response equalization system are presented. In particular, three low-complexity linear- and quasi-linear-phase graphic equalizers are proposed and deeply examined. Experiments confirm the effectiveness of the proposed GEQs in terms of accuracy, computational complexity, and latency. Successively, a subband adaptive structure is introduced for the development of a multichannel and multiple positions room response equalizer. Experimental results verify the effectiveness of the subband approach in comparison with the single-band case. Finally, a linear-phase crossover network is presented for multichannel systems, showing great results in terms of magnitude flatness, cutoff rates, polar diagram, and phase response. Active noise control (ANC) systems can be designed to reduce the effects of noise pollution and can be used simultaneously with an immersive audio system. The ANC works by creating a sound wave that has an opposite phase with respect to the sound wave of the unwanted noise. The additional sound wave creates destructive interference, which reduces the overall sound level. Finally, this thesis presents an ANC system used for noise reduction. The proposed approach implements an online secondary path estimation and is based on cross-update adaptive filters applied to the primary path estimation that aim at improving the performance of the whole system. The proposed structure allows for a better convergence rate in comparison with a reference algorithm

    Real Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficients

    Get PDF
    This paper shows an adaptive statistical test for QRS detection of electrocardiography (ECG) signals. The method is based on a M-ary generalized likelihood ratio test (LRT) defined over a multiple observation window in the Fourier domain. The motivations for proposing another detection algorithm based on maximum a posteriori (MAP) estimation are found in the high complexity of the signal model proposed in previous approaches which i) makes them computationally unfeasible or not intended for real time applications such as intensive care monitoring and (ii) in which the parameter selection conditions the overall performance. In this sense, we propose an alternative model based on the independent Gaussian properties of the Discrete Fourier Transform (DFT) coefficients, which allows to define a simplified MAP probability function. In addition, the proposed approach defines an adaptive MAP statistical test in which a global hypothesis is defined on particular hypotheses of the multiple observation window. In this sense, the observation interval is modeled as a discontinuous transmission discrete-time stochastic process avoiding the inclusion of parameters that constraint the morphology of the QRS complexes.This work has received research funding from the Spanish government (www.micinn.es) under project TEC2012 34306 (DiagnoSIS, Diagnosis by means of Statistical Intelligent Systems, 70K€) and projects P09-TIC-4530 (300K€) and P11-TIC-7103 (156K€) from the Andalusian government (http://www.juntadeandalucia.es/organismo​s/economiainnovacioncienciayempleo.html)

    Doctor of Philosophy

    Get PDF
    dissertationHearing aids suffer from the problem of acoustic feedback that limits the gain provided by hearing aids. Moreover, the output sound quality of hearing aids may be compromised in the presence of background acoustic noise. Digital hearing aids use advanced signal processing to reduce acoustic feedback and background noise to improve the output sound quality. However, it is known that the output sound quality of digital hearing aids deteriorates as the hearing aid gain is increased. Furthermore, popular subband or transform domain digital signal processing in modern hearing aids introduces analysis-synthesis delays in the forward path. Long forward-path delays are not desirable because the processed sound combines with the unprocessed sound that arrives at the cochlea through the vent and changes the sound quality. In this dissertation, we employ a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. In addition, the method of this dissertation automatically identifies and suppresses residual acoustical feedback components at frequencies that have the potential to drive the system to instability. The suppressed frequency components are monitored and the suppression is removed when such frequencies no longer pose a threat to drive the hearing aid system into instability. Together, the method of this dissertation provides more stable gain over traditional methods by reducing acoustical coupling between the microphone and the loudspeaker of a hearing aid. In addition, the method of this dissertation performs necessary hearing aid signal processing with low-delay characteristics. The central idea for the low-delay hearing aid signal processing is a spectral gain shaping method (SGSM) that employs parallel parametric equalization (EQ) filters. Parameters of the parametric EQ filters and associated gain values are selected using a least-squares approach to obtain the desired spectral response. Finally, the method of this dissertation switches to a least-squares adaptation scheme with linear complexity at the onset of howling. The method adapts to the altered feedback path quickly and allows the patient to not lose perceivable information. The complexity of the least-squares estimate is reduced by reformulating the least-squares estimate into a Toeplitz system and solving it with a direct Toeplitz solver. The increase in stable gain over traditional methods and the output sound quality were evaluated with psychoacoustic experiments on normal-hearing listeners with speech and music signals. The results indicate that the method of this dissertation provides 8 to 12 dB more hearing aid gain than feedback cancelers with traditional fixed gain functions. Furthermore, experimental results obtained with real world hearing aid gain profiles indicate that the method of this dissertation provides less distortion in the output sound quality than classical feedback cancelers, enabling the use of more comfortable style hearing aids for patients with moderate to profound hearing loss. Extensive MATLAB simulations and subjective evaluations of the results indicate that the method of this dissertation exhibits much smaller forward-path delays with superior howling suppression capability

    Robust Automatic Transcription of Lectures

    Get PDF
    Die automatische Transkription von Vorträgen, Vorlesungen und Präsentationen wird immer wichtiger und ermöglicht erst die Anwendungen der automatischen Übersetzung von Sprache, der automatischen Zusammenfassung von Sprache, der gezielten Informationssuche in Audiodaten und somit die leichtere Zugänglichkeit in digitalen Bibliotheken. Im Idealfall arbeitet ein solches System mit einem Mikrofon das den Vortragenden vom Tragen eines Mikrofons befreit was der Fokus dieser Arbeit ist

    Filter Bank Design for Subband Adaptive Beamforming and Application to Speech Recognition

    Get PDF
    \begin{abstract} We present a new filter bank design method for subband adaptive beamforming. Filter bank design for adaptive filtering poses many problems not encountered in more traditional applications such as subband coding of speech or music. The popular class of perfect reconstruction filter banks is not well-suited for applications involving adaptive filtering because perfect reconstruction is achieved through alias cancellation, which functions correctly only if the outputs of individual subbands are \emph{not} subject to arbitrary magnitude scaling and phase shifts. In this work, we design analysis and synthesis prototypes for modulated filter banks so as to minimize each aliasing term individually. We then show that the \emph{total response error} can be driven to zero by constraining the analysis and synthesis prototypes to be \emph{Nyquist(MM)} filters. We show that the proposed filter banks are more robust for aliasing caused by adaptive beamforming than conventional methods. Furthermore, we demonstrate the effectiveness of our design technique through a set of automatic speech recognition experiments on the multi-channel, far-field speech data from the \emph{PASCAL Speech Separation Challenge}. In our system, speech signals are first transformed into the subband domain with the proposed filter banks, and thereafter the subband components are processed with a beamforming algorithm. Following beamforming, post-filtering and binary masking are performed to further enhance the speech by removing residual noise and undesired speech. The experimental results prove that our beamforming system with the proposed filter banks achieves the best recognition performance, a 39.6\% word error rate (WER), with half the amount of computation of that of the conventional filter banks while the perfect reconstruction filter banks provided a 44.4\% WER. \end{abstract
    corecore