3,047 research outputs found

    Learning a Unified Control Policy for Safe Falling

    Full text link
    Being able to fall safely is a necessary motor skill for humanoids performing highly dynamic tasks, such as running and jumping. We propose a new method to learn a policy that minimizes the maximal impulse during the fall. The optimization solves for both a discrete contact planning problem and a continuous optimal control problem. Once trained, the policy can compute the optimal next contacting body part (e.g. left foot, right foot, or hands), contact location and timing, and the required joint actuation. We represent the policy as a mixture of actor-critic neural network, which consists of n control policies and the corresponding value functions. Each pair of actor-critic is associated with one of the n possible contacting body parts. During execution, the policy corresponding to the highest value function will be executed while the associated body part will be the next contact with the ground. With this mixture of actor-critic architecture, the discrete contact sequence planning is solved through the selection of the best critics while the continuous control problem is solved by the optimization of actors. We show that our policy can achieve comparable, sometimes even higher, rewards than a recursive search of the action space using dynamic programming, while enjoying 50 to 400 times of speed gain during online execution

    Unified control/structure design and modeling research

    Get PDF
    To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed

    Research and development activities in unified control-structure modeling and design

    Get PDF
    Results of work sponsored by JPL and other organizations to develop a unified control/structures modeling and design capability for large space structures is presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. The development of a methodology for global design optimization is recommended as a long term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization. Recommendations are also presented for near term research activities at JPL. The key recommendation is to continue the development of integrated dynamic modeling/control design techniques, with special attention given to the development of structural models specially tailored to support design

    Divided government and significant legislation: A History of Congress from 1789 to 2010

    Full text link
    This article presents and analyzes the most comprehensive database to date of significant acts of Congress—from 1789 to 2010—to test whether divided party control of government affects the number of important acts Congress passes. We find that unified control corresponds with one additional significant act passed per Congress in the nineteenth century and four additional such acts in the twentieth century. However, party control of government cannot explain the broad historical trends in the rate at which Congress passes significant legislation. Nixon in 1969 was far more successful with a Democratic Congress than was McKinley in 1897 with a Republican one

    Enhancing satellite & terrestrial networks integration through NFV/SDN technologies

    Get PDF
    NFV and SDN technologies can become key facilitators for the combination of terrestrial and satellite networks. Enabling NFV into the SatCom domain will provide operators with appropriate tools and interfaces in order to establish end-to-end fully operable virtualized satellite networks to be offered to third-party operators/service providers. Enabling SDNbased, federated resource management paves way for a unified control plane that would allow operators to efficiently manage and optimize the operation of the hybrid network. The proposed solution is expected to bring improved coverage, optimized communication resources use and better network resilience, along with improved innovation capacity and business agility for deploying communications services over combined networks.Postprint (author's final draft

    Optical IP switching a solution to dynamic lightpath establishment in disaggregated network architectures

    Get PDF
    The landscape of the telecommunications environment is constantly evolving; in terms of architecture and increasing data-rate. Ensuring that routing decisions are taken at the lowest possible layer offers the possibility of greatest data throughput. We propose using wavelengths in a DWDM scheme as dedicated channels that bypass the routing lookup in a router. The future trend of telecommunications industry is, however, toward larger numbers of interlinked competing operator networks. This in turn means there is a lack of a unified control plane to allow current networks to dynamically provision optical paths. This paper will report on the concept of optical IP switching. This concept seeks to address optical control plane issues in disaggregated networks while providing a means to dynamically provision optical paths to cater for large data flows
    corecore