
DESIGN OF A UNIFIED CONTROL SYSTEM API

N.Malitsky, R.Casella, K.Lally, S.Peng, J.Smith, BNL, Upton, USA
D.Gurd, LANL, Los Alamos, USA

Abstract

 This paper presents the design of a unified control
system API.

1 MOTIVATION
 The accelerator control client-server environment is
built after the ISO reference multi-layer model where
each layer provides a service interface to the layer above
and protocols for communicating with the corresponding
layers in other systems. There is a mismatch between
object-oriented application semantics and a low-level
control interface. Several accelerator tools address this
task by providing uniform generic Application
Programming Interfaces (API) to heterogeneous
accelerator devices. A generic interface is a very
effective approach for integrating open mutable diverse
underlying systems. However, its highly adaptive
architecture introduces significant overhead for
application and system developers requiring them to
explicitly support and employ proprietary API-specific
meta-facilities and communication requests. Also, a
generic service does not specify application domain data
types and can not act as an object-oriented framework
for high-level accelerator applications. The modern
industrial technologies address this task by providing the
object-oriented approach in developing distributed
systems. They not only automate many routine
procedures, but also create a basis for integrating
accelerator application design patterns and frameworks
into the control system environment. The next sections
describe how to apply these technologies for developing
a unified control system API.

2 SELECTION OF SOFTWARE
TECHNOLOGIES

2.1 Programming Language

The choice of programming language is determined
by several criteria: (1) support of the modern
methodology; (2) the quality and quantity of associated
libraries, extensions, and products; and (3) its popularity.
At this time, most object-oriented applications are
written in C++ or Java. The recent release of the second
version of the Java Development Kit (JDK 2) and the
specification of the Java 2 Enterprise Edition Platform
(J2EE) has shifted the balance between two competitive

languages. The Java 2 not only solves the C++
portability problem and implements the latest ANSI/ISO
C++ Standard features, but also offers a rich set of
integrated technologies and tools that significantly
facilitate developing distributed scientific and control
applications. For example, a meta-facility takes an
essential part of the modern C++ accelerator control
system frameworks and the Java reflection mechanism
allows software developers to avoid the maintenance of
proprietary accelerator-specific meta-languages (such as
ADO .rad files or the CDEV Device Definition
Language). Also, the previous Java version, JDK 1.1,
limited Java developers to the client part of the multi-tier
distributed systems. The Enterprise JavaBeans (EJB)
specification and Java 2 performance enhancements (e.g.
JIT compilers) have opened new possibilities for
developing Java-based client-server systems. To
compare C++ and Java compilers we run on the Sun
Ultra (Solaris 2.7) computer a simple test performing
multiplication on the elements of a large array of
doubles (see Table 1).

Table 1: Average time of multiplication and copy on the
1000000 elements of an array of doubles.

Language Optimization Avg. Time (ms)
Sun CC 4.2 -fast 51
egcs-2.91.66 -O3 75
Java 85

 The next generation of Java compilers, the HotSpot
Performance Engine, aims to provide additional
performance enhancements to the Java platform. The
HotSpot compiler is based on the adaptive optimization
technology that identifies and precompiles the most
frequently used methods and statements of long running
systems. We plan to benchmark its power on real-size
prototypes of accelerator applications.

2.2 Middleware

 The accelerator control systems have to rely on the
robust and high-performance infrastructure. The efficient
communication between distributed components can be
achieved with the low level transport mechanisms, such
as BSD sockets, Windows NT named pipes, or Sun
remote-procedure call (RPC) libraries. However, these
mechanisms lack type-safe, portable, reentrant, and
extensible interfaces, and require the additional adapters
for being embedded into object-oriented applications. To
solve these and other problems, the Object Management
Group consortium has introduced the Common Object
Request Broker Architecture (CORBA), an industrial

International Conference on Accelerator and Large Experimental Physics Control Systems

505

International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, Trieste, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25328358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

standard for developing scalable interoperable object-
oriented distributed systems. CORBA not only
automates the process of marshaling domain objects into
transport layer, but also offers a rich set of supporting
services, such as Naming, Event, Transaction, and many
others. The recent implementation of the CORBA
Internet Inter-ORB Protocol (IIOP) in the Java Remote
Method Interface (RMI) brings CORBA technologies to
the Java conventional environment. Figure 1 shows the
performance comparison of the Sun RMI-IIOP
middleware with BSD sockets, Sun RPC, and TAO
(C++ high-performance real-time ORB). The remote
roundtrip times were measured between Ultra-Enterprise
400 MHz machines running Solaris 2.7 and located on
different subnets.

2.3 Component-Oriented Framework

 The design and implementation of the application
domain frameworks involve significant efforts in
evaluating, developing, and integrating reusable
collaborative components. The modern component-
oriented frameworks, such as Sun Enterprise Java Beans
(EJB), CORBA Component Model (CCM), and
Microsoft COM, facilitate and direct the software
development process by providing a standard-based
horizontal platform, a factory of specialized vertical
domain environments. At this time the EJB architecture
is the most advanced, mature, and promising technology.
It takes a central part of the Java 2 Platform, Enterprise
Edition (J2EE), and the CORBA CCM specification
defines the consistent interoperable mechanism for
deploying EJB objects in the future CCM environment.
 EJB architecture divides all domain objects into two
categories: Entity Beans and Session Beans. Entity Bean
represents a persistent coarse-grained identified domain
object that can be shared among multiple clients. Session
Bean can be a service or a conversational session with a
particular client. All EJB objects are executed in the EJB
container’s run-time environment that provides a unified
standard interface to the common industrial services,
such as lifecycle management, persistence, transactions,
and many others. In the next section, we show the
relationship between the EJB architecture and
accelerator framework patterns.

3 CONTROL SYSTEM API

 A control system API unifies the three components:
Accelerator Model, Device API, and Accelerator
Integrator (see Fig. 2).

Mapper Element Device

Persistent data Run-time dataDistributed Resources

Accelerator Integrator Accelerator Model Device API

Unified Control System API

Application Software

3.1 Accelerator Model

The description of accelerator structures is a key part
of accelerator programs. Accelerator combines many
elements of different physical types with heterogeneous
attributes, all organized in a nested hierarchical
structure. The complexity of this organization prompts a
variety of project-specific views and implementations of
accelerator models. The diversity of different models
prevents the comparison, selection, and integration of
reusable algorithms and applications. The recent
Accelerator Description eXchange Format (ADXF)
proposal aimed to provide a uniform, complete, and
extensible approach in the definition of the accelerator
state. The concepts described in this proposal are based
on the Standard Input Format (SIF), Standard Machine
Format (SMF), Standard eXchange Format (SXF) and
experience with actual accelerator applications, such as
RHIC, SNS, LHC, CESR, FNAL Main Injector, and
others.

The original version of the ADXF proposal has been
mapped into the Extensible Markup Language (XML),
an industrial standard for processing Web documents
and application-neutral data. In this paper, we have
implemented its object model into two other
representations: relational database tables and Java
interfaces.

The ADXF database schema is described in Table 2.
The Accelerator Node table keeps references to all
accelerator nodes. Beamline is an intermediary linking
table that represents the many-to-many relationships
between elements and sequences of elements. Node
attributes are distributed in the different element
buckets. Each bucket has its own table to accommodate
a fixed set of element attributes. The Multipole Bucket
table illustrates the use of embedded virtual arrays in an
Oracle table with knl and ktl fields. It is a new feature of
Oracle 8i and is supported in SQL 3 and JDBC 2.0
specifications. Each accelerator element may also
include insertions, other accelerator nodes (e.g. detector

Average Time per Call

0
500

1000
1500
2000
2500
3000
3500
4000
4500

void/long[256] long[256]/long[256]

T
im

e
(u

se
c)

Local RPC Local TAO Local RMI-IOP

BSD Sockets Remote RPC Remote TAO

Remote RMI-IOP

506

solenoid). This many-to-many relationship is represented
by the Element Insertions table.

Table 2: ADXF schema
Table Columns
Accelerator Node ID, NODE_TYPE, DESIGN_ID
Beamline ID, POSITION, NODE_ID
Element Buckets ID, BUCKET_INDEX,

BUCKET_TYPE
Element Insertions ID, POSITION, NODE_ID
Basic Bucket BUCKET_INDEX,

BUCKET_TYPE
Multipole Bucket BUCKET_INDEX, KNL, KTL

Other Element Buckets
. . .

 The ADXF model has been evaluated also in the Java
RMI-IIOP-based distributed environment. Client and
server communication stubs for accelerator nodes have
been generated by the Sun rmic compiler from the
AcceleratorNode remote interface. The interface
between application server objects and Oracle is based
on the standard Java JDBC technology.

3.2 Accelerator Device API

Accelerator Device represents an identified
accelerator physical entity which actual run-time
parameters can be accessed, controlled, and monitored
by accelerator applications. In most control software
packages, the structure of the Accelerator Device is
described by the following model:

• Accelerator Device contains a collection of
Parameters.

• Parameter has a value and Properties. There are
several types of Parameters that are characterized
by fixed sets of associated Properties.

This Accelerator Device and the ADXF Element have
the same two-level structure: a dynamic collection of
statically defined data sets. This structure facilitates
selection and classification of well-defined concrete data
types. On the other hand, it provides a consistent
extensible mechanism for describing and integrating new
element parameters. Also, Accelerator Device and
ADXF Element models complement each other and can
be connected according to the following formula: a
value of Accelerator Device parameter is an attribute of
the corresponding Element. It means that Accelerator
Device may act as a service for comparing or
synchronizing the Accelerator Model attributes with
actual run-time data.
 Employing the CORBA technology significantly
facilitates the implementation of the Accelerator Device
model in the distributed control environment and
provides the following benefits: simultaneous support of
generic and object-oriented interfaces to remote
accelerator devices and extension of communication

data types by objects. On the other hand, the CORBA is
a highly adaptable technology and permits the
incremental integration of its components with existing
low–level control system interfaces, such as EPICS
Channel Access and ADO classes.

3.3 Accelerator Integrator

 The Accelerator Integrator is a computational engine
that simulates diverse beam dynamic processes and
transforms accelerator data into accelerator physics
modeling abstractions (such as Twiss parameters, Taylor
maps, etc.) for high-level applications. Accelerator
physics (as any other scientific domain) is characterized
by a variety of different algorithms and approaches.
Usually, a choice of the optimal solution is a difficult
tradeoff among many project-specific factors. The UAL
framework infrastructure addresses this task by defining
a universal mechanism for assembly and reuse of
independently developed accelerator algorithms.
 The mechanism is based on the Element-Algorithm
Probe analysis pattern that introduces three collaborative
classes: Element (e.g. Quadrupole), Algorithm (e.g.
QuadrupoleTracker), and Probe (e.g. Bunch). This
structure is very similar to the EJB architecture and
makes straightforward its implementation in the EJB
environment. The Accelerator element is an identified
persistent object that corresponds to the EJB Entity Bean
semantics. The Algorithm does not have a persistent
state and can be implemented as a stateless or stateful
EJB Session Bean. The Probe is used for data exchange
between different Algorithms and fits to a Java serialized
object.
 The implementation of the Element-Algorithm-Probe
analysis pattern is based on the Mutable Class design
pattern. A Mutable Class divides a class into two parts, a
Type class and Instance class, and delegates an
Instance’s behavior to Type. The Type object is
implemented as a singleton, that serves as a Manager
(factory and finder) of Instance objects. For accelerator
elements of the same type (e.g. sector magnet) there is a
separate manager (e.g. SBendManager) and associated
algorithm managers (e.g. SBendTrackerManager) The
Type-Manager singletons can be grouped together in the
uniform collection and be controlled by the separate
object, a Type Registry (finder). One can consider an
Algorithm Registry as an alternative approach to a
Visitor for open configurable systems. In the EJB
environment, Element and Algorithm Managers
correspond to EJB Homes that are automatically
generated for each element types.
 Architectural principles of the Element-Algorithm-
Probe framework have been tested with the BullSoft
freely available open source implementation of the EJB
specifications.
 We thank S.Sathe, J.Song, and J.Wei for many useful
discussions.

507

