6,209 research outputs found

    Orthogonal polynomial kernels and canonical correlations for Dirichlet measures

    Full text link
    We consider a multivariate version of the so-called Lancaster problem of characterizing canonical correlation coefficients of symmetric bivariate distributions with identical marginals and orthogonal polynomial expansions. The marginal distributions examined in this paper are the Dirichlet and the Dirichlet multinomial distribution, respectively, on the continuous and the N-discrete d-dimensional simplex. Their infinite-dimensional limit distributions, respectively, the Poisson-Dirichlet distribution and Ewens's sampling formula, are considered as well. We study, in particular, the possibility of mapping canonical correlations on the d-dimensional continuous simplex (i) to canonical correlation sequences on the d+1-dimensional simplex and/or (ii) to canonical correlations on the discrete simplex, and vice versa. Driven by this motivation, the first half of the paper is devoted to providing a full characterization and probabilistic interpretation of n-orthogonal polynomial kernels (i.e., sums of products of orthogonal polynomials of the same degree n) with respect to the mentioned marginal distributions. We establish several identities and some integral representations which are multivariate extensions of important results known for the case d=2 since the 1970s. These results, along with a common interpretation of the mentioned kernels in terms of dependent Polya urns, are shown to be key features leading to several non-trivial solutions to Lancaster's problem, many of which can be extended naturally to the limit as d→∞d\rightarrow\infty.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ403 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    An IRT Analysis of Motive Questionnaires: The Unified Motive Scales

    Get PDF
    Multiple inventories claiming to assess the same explicit motive (achievement, power, or affiliation) show only mediocre convergent validity. In three studies (N = 1685) the structure, nomological net, and content coverage of multiple existing motive scales was investigated with exploratory factor analyses. The analyses revealed four approach factors (achievement, power, affiliation, and intimacy) and a general avoidance factor with a facet structure. New scales (the Unified Motive Scales; UMS) were developed using IRT, reflecting these underlying dimensions. In comparison to existing questionnaires, the UMS have the highest measurement precision and provide short (6-item) and ultra-short (3-item) scales. In a fourth study (N = 96), the UMS demonstrated incremental validity over existing motive scales with respect to several outcome criteria

    A semiparametric regression model for paired longitudinal outcomes with application in childhood blood pressure development

    Full text link
    This research examines the simultaneous influences of height and weight on longitudinally measured systolic and diastolic blood pressure in children. Previous studies have shown that both height and weight are positively associated with blood pressure. In children, however, the concurrent increases of height and weight have made it all but impossible to discern the effect of height from that of weight. To better understand these influences, we propose to examine the joint effect of height and weight on blood pressure. Bivariate thin plate spline surfaces are used to accommodate the potentially nonlinear effects as well as the interaction between height and weight. Moreover, we consider a joint model for paired blood pressure measures, that is, systolic and diastolic blood pressure, to account for the underlying correlation between the two measures within the same individual. The bivariate spline surfaces are allowed to vary across different groups of interest. We have developed related model fitting and inference procedures. The proposed method is used to analyze data from a real clinical investigation.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS567 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Max-stable random sup-measures with comonotonic tail dependence

    Get PDF
    Several objects in the Extremes literature are special instances of max-stable random sup-measures. This perspective opens connections to the theory of random sets and the theory of risk measures and makes it possible to extend corresponding notions and results from the literature with streamlined proofs. In particular, it clarifies the role of Choquet random sup-measures and their stochastic dominance property. Key tools are the LePage representation of a max-stable random sup-measure and the dual representation of its tail dependence functional. Properties such as complete randomness, continuity, separability, coupling, continuous choice, invariance and transformations are also analysed.Comment: 28 pages, 1 figur

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website

    Constructing a bivariate distribution function with given marginals and correlation: application to the galaxy luminosity function

    Full text link
    We show an analytic method to construct a bivariate distribution function (DF) with given marginal distributions and correlation coefficient. We introduce a convenient mathematical tool, called a copula, to connect two DFs with any prescribed dependence structure. If the correlation of two variables is weak (Pearson's correlation coefficient âˆŁÏâˆŁ<1/3|\rho| <1/3 ), the Farlie-Gumbel-Morgenstern (FGM) copula provides an intuitive and natural way for constructing such a bivariate DF. When the linear correlation is stronger, the FGM copula cannot work anymore. In this case, we propose to use a Gaussian copula, which connects two given marginals and directly related to the linear correlation coefficient between two variables. Using the copulas, we constructed the BLFs and discuss its statistical properties. Especially, we focused on the FUV--FIR BLF, since these two luminosities are related to the star formation (SF) activity. Though both the FUV and FIR are related to the SF activity, the univariate LFs have a very different functional form: former is well described by the Schechter function whilst the latter has a much more extended power-law like luminous end. We constructed the FUV-FIR BLFs by the FGM and Gaussian copulas with different strength of correlation, and examined their statistical properties. Then, we discuss some further possible applications of the BLF: the problem of a multiband flux-limited sample selection, the construction of the SF rate (SFR) function, and the construction of the stellar mass of galaxies (M∗M_*)--specific SFR (SFR/M∗SFR/M_*) relation. The copulas turned out to be a very useful tool to investigate all these issues, especially for including the complicated selection effects.Comment: 14 pages, 5 figures, accepted for publication in MNRAS
    • 

    corecore