3,250 research outputs found

    Analysis, Tracing, Characterization and Performance Modeling of Select ASCI Applications for BlueGene/L Using Parallel Discrete Event Simulation

    Get PDF
    Caltech's Jet Propulsion Laboratory (JPL) and Center for Advanced Computer Architecture (CACR) are conducting application and simulation analyses of Blue Gene/L[1] in order to establish a range of effectiveness of the architecture in performing important classes of computations and to determine the design sensitivity of the global interconnect network in support of real world ASCI application execution

    Solving the Klein-Gordon equation using Fourier spectral methods: A benchmark test for computer performance

    Get PDF
    The cubic Klein-Gordon equation is a simple but non-trivial partial differential equation whose numerical solution has the main building blocks required for the solution of many other partial differential equations. In this study, the library 2DECOMP&FFT is used in a Fourier spectral scheme to solve the Klein-Gordon equation and strong scaling of the code is examined on thirteen different machines for a problem size of 512^3. The results are useful in assessing likely performance of other parallel fast Fourier transform based programs for solving partial differential equations. The problem is chosen to be large enough to solve on a workstation, yet also of interest to solve quickly on a supercomputer, in particular for parametric studies. Unlike other high performance computing benchmarks, for this problem size, the time to solution will not be improved by simply building a bigger supercomputer.Comment: 10 page

    Propagation and Decay of Injected One-Off Delays on Clusters: A Case Study

    Full text link
    Analytic, first-principles performance modeling of distributed-memory applications is difficult due to a wide spectrum of random disturbances caused by the application and the system. These disturbances (commonly called "noise") destroy the assumptions of regularity that one usually employs when constructing simple analytic models. Despite numerous efforts to quantify, categorize, and reduce such effects, a comprehensive quantitative understanding of their performance impact is not available, especially for long delays that have global consequences for the parallel application. In this work, we investigate various traces collected from synthetic benchmarks that mimic real applications on simulated and real message-passing systems in order to pinpoint the mechanisms behind delay propagation. We analyze the dependence of the propagation speed of idle waves emanating from injected delays with respect to the execution and communication properties of the application, study how such delays decay under increased noise levels, and how they interact with each other. We also show how fine-grained noise can make a system immune against the adverse effects of propagating idle waves. Our results contribute to a better understanding of the collective phenomena that manifest themselves in distributed-memory parallel applications.Comment: 10 pages, 9 figures; title change

    QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment

    Get PDF
    Previous studies have reported that common dense linear algebra operations do not achieve speed up by using multiple geographical sites of a computational grid. Because such operations are the building blocks of most scientific applications, conventional supercomputers are still strongly predominant in high-performance computing and the use of grids for speeding up large-scale scientific problems is limited to applications exhibiting parallelism at a higher level. We have identified two performance bottlenecks in the distributed memory algorithms implemented in ScaLAPACK, a state-of-the-art dense linear algebra library. First, because ScaLAPACK assumes a homogeneous communication network, the implementations of ScaLAPACK algorithms lack locality in their communication pattern. Second, the number of messages sent in the ScaLAPACK algorithms is significantly greater than other algorithms that trade flops for communication. In this paper, we present a new approach for computing a QR factorization -- one of the main dense linear algebra kernels -- of tall and skinny matrices in a grid computing environment that overcomes these two bottlenecks. Our contribution is to articulate a recently proposed algorithm (Communication Avoiding QR) with a topology-aware middleware (QCG-OMPI) in order to confine intensive communications (ScaLAPACK calls) within the different geographical sites. An experimental study conducted on the Grid'5000 platform shows that the resulting performance increases linearly with the number of geographical sites on large-scale problems (and is in particular consistently higher than ScaLAPACK's).Comment: Accepted at IPDPS10. (IEEE International Parallel & Distributed Processing Symposium 2010 in Atlanta, GA, USA.

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Revisiting Matrix Product on Master-Worker Platforms

    Get PDF
    This paper is aimed at designing efficient parallel matrix-product algorithms for heterogeneous master-worker platforms. While matrix-product is well-understood for homogeneous 2D-arrays of processors (e.g., Cannon algorithm and ScaLAPACK outer product algorithm), there are three key hypotheses that render our work original and innovative: - Centralized data. We assume that all matrix files originate from, and must be returned to, the master. - Heterogeneous star-shaped platforms. We target fully heterogeneous platforms, where computational resources have different computing powers. - Limited memory. Because we investigate the parallelization of large problems, we cannot assume that full matrix panels can be stored in the worker memories and re-used for subsequent updates (as in ScaLAPACK). We have devised efficient algorithms for resource selection (deciding which workers to enroll) and communication ordering (both for input and result messages), and we report a set of numerical experiments on various platforms at Ecole Normale Superieure de Lyon and the University of Tennessee. However, we point out that in this first version of the report, experiments are limited to homogeneous platforms

    Overlapping communication and computation by using a hybrid MPI/SMPSs approach

    Get PDF
    A previous version of this document was submitted for publication by october 2008.Communication overhead is one of the dominant factors that affect performance in high-performance computing systems. To reduce the negative impact of communication, programmers overlap communication and computation by using asynchronous communication primitives. This increases code complexity, requiring more effort to write parallel code and making less readable code. This paper presents the hybrid use of MPI and SMPSs (SMP superscalar), a task-based shared-memory programming model, enhanced with a restart mechanism allowing the programmer to introduce the asynchronism that is necessary to enable the effective communication/computation overlap in a productive way. We demonstrate the hybrid use of MPI/SMPSs with the high-performance LINPACK benchmark, which uses the lookahead technique to overlap communication and computation. MPI/SMPSs improves the performance of a pure MPI with look-ahead by 7,6% on a 1024 processors machine. In addition to better performance, hybrid MPI/SMPSs substantially reduces code complexity, it is less sensitive to network bandwidth and operating system noise, and improves the use of main memory.Postprint (published version
    • …
    corecore