14,689 research outputs found

    A Monte Carlo Approach to Measure the Robustness of Boolean Networks

    Full text link
    Emergence of robustness in biological networks is a paramount feature of evolving organisms, but a study of this property in vivo, for any level of representation such as Genetic, Metabolic, or Neuronal Networks, is a very hard challenge. In the case of Genetic Networks, mathematical models have been used in this context to provide insights on their robustness, but even in relatively simple formulations, such as Boolean Networks (BN), it might not be feasible to compute some measures for large system sizes. We describe in this work a Monte Carlo approach to calculate the size of the largest basin of attraction of a BN, which is intrinsically associated with its robustness, that can be used regardless the network size. We show the stability of our method through finite-size analysis and validate it with a full search on small networks.Comment: on 1st International Workshop on Robustness and Stability of Biological Systems and Computational Solutions (WRSBS

    Robustness of Transcriptional Regulation in Yeast-like Model Boolean Networks

    Get PDF
    We investigate the dynamical properties of the transcriptional regulation of gene expression in the yeast Saccharomyces Cerevisiae within the framework of a synchronously and deterministically updated Boolean network model. By means of a dynamically determinant subnetwork, we explore the robustness of transcriptional regulation as a function of the type of Boolean functions used in the model that mimic the influence of regulating agents on the transcription level of a gene. We compare the results obtained for the actual yeast network with those from two different model networks, one with similar in-degree distribution as the yeast and random otherwise, and another due to Balcan et al., where the global topology of the yeast network is reproduced faithfully. We, surprisingly, find that the first set of model networks better reproduce the results found with the actual yeast network, even though the Balcan et al. model networks are structurally more similar to that of yeast.Comment: 7 pages, 4 figures, To appear in Int. J. Bifurcation and Chaos, typos were corrected and 2 references were adde

    The Influence of Canalization on the Robustness of Boolean Networks

    Full text link
    Time- and state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by kk-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to cc-sensitivity and provides formulas for the activities and cc-sensitivity of general kk-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the cc-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally efficient way to obtain Derrida values of Boolean networks, deterministic or stochastic, that does not involve simulation.Comment: 16 pages, 2 figures, 3 table

    Control of complex networks requires both structure and dynamics

    Get PDF
    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics.Comment: 15 pages, 6 figure

    On the emergence and evolution of artificial cell signaling networks

    Get PDF
    This PhD project is concerned with the evolution of Cell Signaling Networks (CSNs) in silico. CSNs are complex biochemical networks responsible for the coordination of cellular activities. We are investigating the possibility to build an evolutionary simulation platform that would allow the spontaneous emergence and evolution of Artificial Cell Signaling Networks (ACSNs). From a practical point of view, realizing and evolving ACSNs may provide novel computational paradigms for a variety of application areas. This work may also contribute to the biological understanding of the origins and evolution of real CSNs
    • ā€¦
    corecore